
 MINISTRY OF EDUCATION

لكل المـهتمين و المـهتمـات بدروس و مراجع الجامعيـة eduschool40.blog مدونةّ المناهـح اللسعودية

Chapter 5: FORCE AND MOTIN I

1. The figures below shows four situation in which forces act on a block that lies on a frictionless floor. In which figure the block has the greatest acceleration?
(a)

(b)

(c)

(d)

2. A force of $\mathbf{0 . 2} \mathbf{N}$ acts on a mass of $\mathbf{1 0 0} \mathbf{g}$, what is its acceleration?
(a) $2 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}$
(c) $2 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$
(d) $2 \mathrm{~m} / \mathrm{s}^{2}$
3. A man pulls a box of mass $\mathbf{3}$ kgvertically upward with a force of magnitude $\mathbf{4 0} \mathbf{N}$. What is the acceleration of the box?
(a) $a=\frac{T-m g}{m}$
(b) $a=\frac{m g-T}{m}$
(c) $a=\frac{T+m g}{m}$
(d) $a=\frac{m}{T+m g}$
4. Which of the following figures correctly show the vector addition of forces $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$?
(a)

(b)

(c)

(d)

5. If the $\mathbf{1} \mathbf{~ k g}$ body has an acceleration of $\mathbf{2} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$ at an angle of $\mathbf{2 0 ^ { \circ }}$ above the positive direction of the x-axis. What is the net force in unit vctor notation?
(a) $\vec{F}=0.34 \hat{i}+0.94 \hat{j}$
(b) $\vec{F}=1.88 \hat{i}+0.68 \hat{j}$
(c) $\vec{F}=0.68 \hat{i}+1.88 \hat{j}$
(d) $\vec{F}=0.94 \hat{i}+0.34 \hat{j}$
6. Two forces act on a particle that moves with constantvelocity $\vec{v}=3 \hat{i}-4 \hat{j} \mathbf{m} / \mathbf{s}$, one of the forces is $\vec{F}_{1}=2 \hat{i}-6 \hat{j} \mathbf{N}$,what is the other force?
(a) $\vec{F}_{2}=2 \hat{i}-6 \hat{j}$
(b) $\vec{F}_{2}=6 \hat{i}-10 \hat{j}$
(c) $\vec{F}_{2}=-2 \hat{i}+6 \hat{j}$
(d) $\vec{F}_{2}=-6 \hat{i}+10 \hat{j}$
7. A particle has a weight of $\mathbf{2 2} \mathbf{N}$ at a point where $\mathbf{g}=\mathbf{9 . 8} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what are its mass and weight at a point where $\mathbf{g}=\mathbf{0}$?
(a) $m=2.2 \mathrm{~kg}$
(b) $\mathrm{m}=0$
$\mathrm{W}=0$
$\mathrm{W}=2.2 \mathrm{~N}$
(c) $\begin{aligned} \mathrm{m} & =0.45 \mathrm{~kg} \\ \mathrm{~W} & =0\end{aligned}$
(d) $\mathrm{m}=0$
$\mathrm{W}=45 \mathrm{~N}$
8. In which figure of the following the \mathbf{y}-component of the net force is zero?
أعداد: أ.خذيجة سعيد إشراف: د.هناء فرحان1
(a)

(b)

(c)

9. In the figure a cord holds stationary a block of mass $\mathbf{m}=\mathbf{8 . 5} \mathbf{~ k g}$ on a frictionless plane that is inclined at An angle $\boldsymbol{\theta}=\mathbf{3 0}{ }^{\circ}$, the tension in the cord \mathbf{T} equals:
(a) 72.14 N
(b) 83.3 N
(c) 53.14 N
(d) 41.65 N

10. In question9, the Normal forceN acting on the block is:
(a) $N=F_{g}-m g \cos \theta$
(b) $N=F_{g} \cos \theta$
(c) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}+\mathrm{mg} \cos \theta$
(d) $N=F_{g}$
11. In question9, if the cord is cut then the mass will slide with acceleration equals:
(a) $\mathrm{a}=-4.9 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\mathrm{a}=-8.5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $\mathrm{a}=-3.4 \mathrm{~m} / \mathrm{s}^{2}$
12. A block of mass $\mathbf{M}=\mathbf{2 0} \mathbf{~ k g}$ hangs from three cords by means of a knot, (the mass \mathbf{M} does not move), what is the value of tensionT ${ }_{3}$?

(a) 230 N
(b) 196 N
(c) 426 N
(d) 226 N
13. What is the net force acting on a body of a mass of $48 \mathbf{k g}$, when its acceleration is $6 \mathrm{~m} / \mathrm{s}^{2}$?
(a) 758 N
(b) 182 N
(c) 288 N
(d) 470 N
14. Which figure of the following shows the right direction of the tension \mathbf{T} ? (the two masses are stationary).
(a)

(b)

(c)

(d)

أعداد: أ.خذيجة ستيد إشراف: د.هناء فرحان2
15. Two forces act on a block of mass $\mathbf{m}=\mathbf{0 . 5} \mathbf{~ k g}$ that Moves along the \mathbf{x}-axis on a frictionless table, $\mathbf{F}_{\mathbf{1}}=\mathbf{3} \mathbf{N}$ and $\mathbf{F}_{\mathbf{2}}=\mathbf{1} \mathbf{N}$ directed at angle $\theta=\mathbf{3 0 ^ { \circ }}$ as shown, What is the acceleration of the block?

(a) $-4.3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $-7.7 \mathrm{~m} / \mathrm{s}^{2}$
(c) $-5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $-7 \mathrm{~m} / \mathrm{s}^{2}$
16. If $\mathbf{m}_{\mathbf{1}}=\mathbf{2} \mathbf{~ k g}$ and $\mathbf{m}_{\mathbf{2}}=\mathbf{4} \mathbf{~ k g}$ and the same force is applied to both masses, then the ratio of their accelerations is:
(a) $\frac{a_{2}}{a_{1}}=\frac{1}{2}$
(b) $\frac{a_{2}}{a_{1}}=2$
(c) $\frac{a_{2}}{a_{1}}=\frac{1}{4}$
(d) $\frac{a_{2}}{a_{1}}=4$
17. A force \mathbf{F} applied to a body of mass $\mathbf{m}_{\mathbf{0}}$ giving it an acceleration $\mathbf{a}_{\mathbf{0}}$, what is the mass of a body \mathbf{x} if the same force is applied to it and accelerate it by $\mathbf{a}_{\mathbf{x}}$?
(a) $m_{x}=m_{0} \frac{a_{x}}{a_{0}}$
(b) $m_{x}=m_{0} \frac{a_{0}}{a_{x}}$
(c) $m_{x}=\frac{a_{x}}{a_{0}}$
(d) $m_{x}=\frac{a_{0}}{a_{x}}$
18. In the figure, two forces acting on a box of mass \mathbf{m} moving over a frictionless ice along the \mathbf{x}-axis .
What is the acceleration of the box?
(a) $a_{x}=\frac{F_{1}+F_{2} \cos \theta}{m}$
(b) $a_{x}=\frac{F_{2} \cos \theta-F_{1}}{m}$
(c) $a_{x}=\frac{F_{2} \cos \theta}{m}$
(d) $a_{x}=\frac{F_{1}-F_{2}}{m}$

19. The magnitude of the centripetal force is
(a) $F=m \frac{v^{2}}{R^{2}}$
(b) $F=\frac{v^{2}}{R}$
(c) $F=m \frac{v}{R}$
(d) $F=m \frac{v^{2}}{R}$
20. What is the gravitational force on a man of mass \boldsymbol{m} when he is sitting in a car that accelerates at \mathbf{a} ?
(a) $F_{g}=m a$
(b) $\mathrm{F}_{\mathrm{g}}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
(c) $\mathrm{F}_{\mathrm{g}}=\mathrm{mg}$
(d) $\mathrm{F}_{\mathrm{g}}=\mathrm{m}(\mathrm{a}-\mathrm{g})$
21. Two forces act on a particle that moves with constantvelocity $\vec{v}=3 \hat{i}-4 \hat{j} \mathbf{m} / \mathbf{s}$, one of the forces is $\vec{F}_{1}=2 \hat{i}-6 \hat{j} \mathbf{N}$,what is the other force?
(a) $\vec{F}_{2}=2 \hat{i}-6 \hat{j}$
(b) $\vec{F}_{2}=6 \hat{i}-10 \hat{j}$
(c) $\vec{F}_{2}=-2 \hat{i}+6 \hat{j}$
(d) $\vec{F}_{2}=-6 \hat{i}+10 \hat{j}$
22. The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, what total mass is accelerated to the right byCord 2?

أعداد: أ.خذيجةٌ سـيد إشراف: د. هناء فرحان
(a) 10 kg
(b) 18 kg
(c) 13 kg
(d) 7 kg
23. A particle has a weight of $\mathbf{2 2} \mathbf{N}$ at a point where $\mathbf{g}=\mathbf{9 . 8} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what are its mass and weight at a point where $\mathbf{g}=\mathbf{0}$?
(a) $m=2.2 \mathrm{~kg}$
(b) $\mathrm{m}=0$
(c) $\mathrm{m}=0.45 \mathrm{~kg}$
(d) $m=0$
$\mathrm{W}=0$
$\mathrm{W}=2.2 \mathrm{~N}$
$\mathrm{W}=0$
$W=45 \mathrm{~N}$
24. In which figure of the following the \mathbf{y}-component of the net force is zero?
(a)

(b)

(c)

25. The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, what total mass is accelerated to the right by force \vec{F} ?

(a) 10 kg
(b) 18 kg
(c) 13 kg
(d) $245 \mathrm{~m} / \mathrm{s}$
26. Three forces act on a particle that moves with unchanging velocity $\bar{v}=2 \hat{i}-7 \hat{j}$, two of the forces are $\vec{F}_{1}=2 \hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{F}_{2}=-5 \hat{i}+8 \hat{j}-2 \hat{k}$. what is the third force ?
(a) $3 \hat{i}-11 \hat{j}+4 \hat{k}$
(b) $7 \hat{i}-5 \hat{j}$
(c) $-3 \hat{i}+11 \hat{j}-4 \hat{k}$
(d) $-7 \hat{i}+5 \hat{j}$
27. An $\mathbf{1 1} \mathbf{~ k g}$ object is supported by a cord that Runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall.
What is the reading on the scale?
(a) 11 N
(b) 9.8 N
(c) 107.8 N
(d) 215.6 N

(b)
28. A block of mass $\mathbf{m}_{\mathbf{1}} \mathbf{= 3 . 7} \mathbf{~ k g}$ on frictionless inclined plane of angle 30° is connected by a cord over a massless frictionless pulley to a second block of mass $\mathbf{m}_{\mathbf{2}} \mathbf{= 2 . 3} \mathbf{~ k g}$ hanging vertically as shown.

If the magnitude of the acceleration of each block is $0.735 \mathrm{~m} / \mathbf{s}^{\mathbf{2}}$, what is the tension in the cord ?

(a) 36.3 N
(b) 22.5 N
(c) 20.8 N
(d) 18.1 N
28. In question 27 , what is the normal force acting on the block $\mathbf{m}_{\mathbf{1}}$?
(a) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}-\mathrm{m}_{1} \mathrm{~g}$
(b) $\mathrm{N}=\mathrm{F}_{\mathrm{g}} \cos \theta$
(c) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}+\mathrm{m}_{1} \mathrm{~g}$
(d) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}$
$\cos \theta$
$\cos \theta$
29. In question $\mathbf{2 7}$, if the cord is cut what is the acceleration of mass $\mathbf{m}_{\mathbf{2}}$?
(a) $a=-4.9 \mathrm{~m} / \mathrm{s}^{2}$
(b) $a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $a=-0.735$
(d) $a=$ zero
$\mathrm{m} / \mathrm{s}^{2}$
30.If the $\mathbf{1} \mathbf{~ k g}$ body has an acceleration of $\mathbf{2} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$ at an angle of $\mathbf{2 0 ^ { \circ }}$ above the positive direction of the x-axis. What is the net force in unit vctor notation?
(a) $\vec{F}=0.34 \hat{i}+0.94 \hat{j}$
(b) $\vec{F}=1.88 \hat{i}+0.68 \hat{j}$
(c) $\vec{F}=0.68 \hat{i}+1.88 \hat{j}$
(d) $\vec{F}=0.94 \hat{i}+0.34 \hat{j}$

Test bank Chapter 5 solutions

1. a
2. d
3. a
4. b
5. b
6. c
7. a
8. b
9. d
10. b
11. a
12. b
13. c
14. c
15. a
16. a
17. b
18. b
19. d
20. (after question 19) (c)
21. c
22. c
23. a
24. b
25. 20 kg
26. a
27. c
28. c
29. b
30. b
31. b

Chapter 6: FORCE AND MOTIN II

1. In the figure a woman pulls a loaded sled of mass \mathbf{m} along a horizontal surface at constant velocity.
The coefficient of kinetic friction between the runners and the snow is $\mu_{\mathbf{k}}$.
Which figure shows the correct free body diagram for the sled and load?

(a)

(b)

(C)

load
(d)

load
2. In question 2, The equation of the forces acting on the load and sled (from Newton's second law) is:
(a) $\bar{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{k}=0$
(b) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{s}=0$
(c) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{k}=m \vec{a}$
(d) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{s}=m \vec{a}$
3. A $12 \mathbf{N}$ horizontal force pushes a block of weight $5 \mathbf{N}$ to make it move with constant speed, the value of the coefficient of friction μ_{k} is:
(a) 2.4
(b) 0.24
(c) 4.1
(d) 0.41
4. A car has a weight of $\mathbf{1 . 1} \mathbf{N}$ slides on the road with acceleration $\mathbf{a}=\mathbf{1 . 2 4} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what is the force of friction between the car and the road?
(a) -1.13 N
(b) -11 N
(c) -1.4 N
(d) -0.14 N
5. A $12 \mathbf{N}$ horizontal force pushes a block of weight $5 \mathbf{N}$ to make it move with constant speed, the value of the coefficient of friction μ_{k} is:
(a) 2.4
(b) 0.24
(c) 4.1
(d) 0.41

6. A block lies on a floor.If the maximum value $f_{\mathrm{x}, \text { max }}$ of the static frictional force on the block is $\mathbf{1 0} \mathbf{N}$, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is $\mathbf{8} \mathbf{N}$?
(a) 10 N
(b) 8 N
(c) 2 N
(d) 18 N
7. A $\mathbf{4 7 0} \mathbf{N}$ horizontal force pushes a block of mass $\mathbf{7 9} \mathbf{~ k g}$ to make it move with constant speed, what is the value of the coefficient of friction μ_{k} ?
(a) 0.61
(b) 6
(c) 1.6
(d) 0.06
8. A block lies on a floor.If the maximum value $f_{\mathbf{x}, \max }$ of the static frictional force on the block is $\mathbf{1 0} \mathbf{N}$, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is $\mathbf{1 2} \mathbf{~ N}$?
(a) 10 N
(b) 12 N
(c) 2 N
(d) 22 N
9. In the figure, block B weighs $\mathbf{7 1 1} \mathbf{N}$. The coefficient of static friction between the block and the table is $\mathbf{0 . 2 5}$ assume that the cord between \mathbf{B} and the knot is horizontal

What is the magnitude of the tension \mathbf{T} ?

(a) 205.2 N
(b) 355.5 N
(c) 820.1 N
(d) 1422 N
10. In question 9, the weight of block \mathbf{A} is :
(a) $\mathrm{T} \cos 30$
(b) $\mathrm{T} \sin 30$
(c) $F_{g}-T \cos 30$
(d) $\mathrm{F}_{\mathrm{g}}-\mathrm{T} \sin 30$

Chapter 6 Test Bank Solutions

1. C
2. a
3. a
4. d
5. a
6. b
7. a
8. c
9. a (T is the tension in the rope attached to the wall not to block B)
10. b (T is the tension in the rope attached to the wall not to block B)
