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Chapter 1
MEASUREMENT

� The important skills from this chapter:
1. Identify physical quantities
2. Differentiate between based & derived quantities
3. Identify based quantities in Mechanics & their units
4. Define the international system of unit SI
5. Convert between different systems of units
6. Define the standards of length, time & mass



What is physics?
� Experimental observations & quantitative 

measurements 

� How quantities are measured & compared?

� The unit for measurements & comparisons

� Physics purpose: 
Find laws to conduct those experiments & develop 
theories to predict future results



Measuring things   
� Physical quantities:

1. Independent (base quantities) à time, length, temperature, 
mass 

2. Dependent (derived quantities) à speed, density, power, 
work

Physical quantities are defined in terms of the base quantities & 
their standards (called base standards)

Base standards must be both accessible & invariable

� Quantities are measured by “Unit”
Unit: name assigned to measure a quantity



Measuring things   
� Base quantities à based units

� Derived quantities à derived units 

� Derived units are defined in terms of the based unit 

e.g. the unit of power (watt) is a derived unit; defined in terms of the 
base units for mass, length & time:

1 watt = 1 w = 1 kg.m2/s3

kg.m2/s3 is read as: kilogram-meter squared per second cubed



The international system of unit 
SI

� Known as metric system

Quantity Unit name Unit symbol

Length Meter m

Time Second s

Mass Kilogram kg



Scientific notation
Very large & small quantities are expressed by: 

� Power of ten
3,560,000,000 m = 3.56 × 109 m 
0.000 000 492 s  =  4.92 × 10−7 s 

� Exponent of ten (on computer) 
3.56 × 109 m = 3.56 E9
4.92 × 10-7  s  = 4.92 E−7

� Prefixes e.g. centi-, kilo-, micro-, nano-..

k       M       G p       n       μ m       c 
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1-3 The International System of Units
In 1971, the 14th General Conference on Weights and Measures picked seven
quantities as base quantities, thereby forming the basis of the International
System of Units, abbreviated SI from its French name and popularly known as
the metric system. Table 1-1 shows the units for the three base quantities—
length, mass, and time—that we use in the early chapters of this book. These
units were defined to be on a “human scale.”

Many SI derived units are defined in terms of these base units. For example,
the SI unit for power, called the watt (W), is defined in terms of the base units
for mass, length, and time.Thus, as you will see in Chapter 7,

1 watt ! 1 W ! 1 kg " m2/s3, (1-1)

where the last collection of unit symbols is read as kilogram-meter squared per
second cubed.

To express the very large and very small quantities we often run into in
physics, we use scientific notation, which employs powers of 10. In this notation,

3 560 000 000 m ! 3.56 # 109 m (1-2)

and 0.000 000 492 s ! 4.92 # 10$7 s. (1-3)

Scientific notation on computers sometimes takes on an even briefer look, as in
3.56 E9 and 4.92 E–7, where E stands for “exponent of ten.” It is briefer still on
some calculators, where E is replaced with an empty space.

As a further convenience when dealing with very large or very small mea-
surements, we use the prefixes listed in Table 1-2. As you can see, each prefix
represents a certain power of 10, to be used as a multiplication factor. Attaching
a prefix to an SI unit has the effect of multiplying by the associated factor. Thus,
we can express a particular electric power as

1.27 # 109 watts ! 1.27 gigawatts ! 1.27 GW (1-4)

or a particular time interval as

2.35 # 10$9 s ! 2.35 nanoseconds ! 2.35 ns. (1-5)

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are
probably familiar to you.

Table 1-1

Units for Three SI Base Quantities

Quantity Unit Name Unit Symbol

Length meter m
Time second s
Mass kilogram kg

Table 1-2

Prefixes for SI Units

Factor Prefixa Symbol Factor Prefixa Symbol

1024 yotta- Y
1021 zetta- Z
1018 exa- E
1015 peta- P
1012 tera- T
109 giga- G
106 mega- M
103 kilo- k
102 hecto- h
101 deka- da

10$1 deci- d
10!2 centi- c
10!3 milli- m
10!6 micro- m

10!9 nano- n
10!12 pico- p
10$15 femto- f
10$18 atto- a
10$21 zepto- z
10$24 yocto- y

aThe most frequently used prefixes are shown in bold type.
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Examples 
� 30 000 g = 30 × 103 g = 30 kg 

� 3.5 × 109 m = 3.5 Gm

� 2.6 × 106 m = 2.6 Mm

� 1.48 × 10−9 s = 1.48 ns

� 50 km = 50 × 103 m 

� 0.00000712 watt = 7.12 × 10−6 watt
= 7.12 micro watt = 7.12 μ watt

k       M       G p       n       μ m       c 



Changing units
� To change unit, we use a method called “chain-link conversion 

method” 
à we multiply the original measurement by a “conversion factor” 

� Conversion factor: a ratio of units that is equal to unity 

� Example: convert 2 min to s:
Answer: 1min = 60s
the conversion factor is:

2min = 2min× 60s
1min

=120s

1min
60s

=1    or     
60s

1min
=1



Standard of length
� Meter (unit of length): 

The length of the path traveled by light in a vacuum 
during a time interval of 1/299 792 458 of a second

� Second (unit of time): 
The time taken by 9 192 631 770 oscillations of 
light emitted from a cesium−133 atom

Standard of time



Standard of mass
� Kilogram (unit of mass): 

A platinum–iridium standard mass 
kept near Paris 

� Atomic mass unit (u): 
The carbon−12 atom
1 u = 1.660 538 86 × 10−27 kg

� Density ρ:
The mass (m) per unit volume (V)

ρ = m
V
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(NIST) in Boulder, Colorado, is the standard for Coordinated Universal Time
(UTC) in the United States. Its time signals are available by shortwave radio
(stations WWV and WWVH) and by telephone (303-499-7111). Time signals
(and related information) are also available from the United States Naval
Observatory at website http://tycho.usno.navy.mil/time.html. (To set a clock
extremely accurately at your particular location, you would have to account for
the travel time required for these signals to reach you.)

Figure 1-2 shows variations in the length of one day on Earth over a 4-year
period, as determined by comparison with a cesium (atomic) clock. Because the
variation displayed by Fig. 1-2 is seasonal and repetitious, we suspect the rota-
ting Earth when there is a difference between Earth and atom as timekeepers.
The variation is due to tidal effects caused by the Moon and to large-scale winds.

The 13th General Conference on Weights and Measures in 1967 adopted
a standard second based on the cesium clock:

Fig. 1-3 The international 1 kg standard
of mass, a platinum–iridium cylinder 3.9 cm
in height and in diameter. (Courtesy Bureau
International des Poids et Mesures, France)

One second is the time taken by 9 192 631 770 oscillations of the light (of a speci-
fied wavelength) emitted by a cesium-133 atom.

Atomic clocks are so consistent that, in principle, two cesium clocks would have to
run for 6000 years before their readings would differ by more than 1 s. Even such
accuracy pales in comparison with that of clocks currently being developed; their
precision may be 1 part in 1018 —that is, 1 s in 1 ! 1018 s (which is about 3 ! 1010 y).

1-7 Mass
The Standard Kilogram
The SI standard of mass is a platinum–iridium cylinder (Fig. 1-3) kept at the
International Bureau of Weights and Measures near Paris and assigned, by
international agreement, a mass of 1 kilogram. Accurate copies have been sent
to standardizing laboratories in other countries, and the masses of other bodies
can be determined by balancing them against a copy. Table 1-5 shows some
masses expressed in kilograms, ranging over about 83 orders of magnitude.

The U.S. copy of the standard kilogram is housed in a vault at NIST. It is
removed, no more than once a year, for the purpose of checking duplicate

Fig. 1-2 Variations in the length of the day over a 4-year period. Note that the entire
vertical scale amounts to only 3 ms (" 0.003 s).
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Examples 
1. Convert 60 kg to g

1 kg  = 1000 g  à

2. Convert 5μm to mm 
1μm = 10−6m,  1mm = 10−3m

3. Convert 5 km to m à 5 km = 5 × 103 m

4. Convert 7000 m to km à 7000 m = 7 × 103 × 10−3 km = 7 km

5. Convert 55.00 km/h to m/s 

60kg = 60kg × 1000g
1kg

= 60000g

55km
h

= 55×10
3m

60× 60s
=15.28m / s

5µm = 5µm× 10
−6m
1µm

× 1mm
10−3m

= 5×10−3mm



6. The basic SI. units of mass is :
(a) m/s2 (b) m/s (c) kg/m3 (d) g (e) kg

7. A microsecond is :
(a) 106s      (b) 10−6s     (c) 109 s     (d) 10−9

8. The SI units of the based quantities (length, mass, time) are:
(a) m, kg, s      (b) cm, g, s    (c) km, g, s     (d) km, kg, s

9. (0.000 000 00636) is equal to:
(a) 6.36×10−7 (b) 6.36×10−8 (c) 6.36×10−9 (d) 6.36×10−10

10. 50 km=
(a) 5×105 cm       (b) 5×106 cm   (c) 5×107 cm  (d) 5×108 cm

11. 100 g/cm3 =
(a)103 kg/m3 (b)104 kg/m3 (c)105 kg/m3 (d)106 kg/m3

12. The density of water is 1g/cm3. This value in SI unit is:
(a) 103 kg/cm3 (b)10 kg/m3 (c)103kg/m3 (d)102 kg/m3



!
!
!
!

 

Chapter 1: MEASUREMENT!

 

1- 1 mi is equivalent to 1609 m so 55 mi/h is: 
 
a) 15 m/s ������b) 25 m/s �����������c) 66 m/s ����������������d)88 m/s 
 
2- A cubic box with an edge of exactly 1 cm has a volume of: 
 
a) 10�9 m3      b) 10�6 m3         c) 10�3  m3           d) 106 m3 
 
3 -The SI base unit for mass is: 
 
a) gram ����������b) pound ����������c) kilogram ������������d) kilopound 
 
4 - A nanosecond is: 
 

a) 109 s ����������b) 10�9 s �����������c) 10�10 s �����������������d) c) 1010 s 

 

5 - A gram is: 
 
a). 10-6 kg b) 10-3 kg�����������c) 1 kg �����������������d) 103 kg  
 

6- W e can write the speed of light (c = 299,000,000 m/s) using the 
scientific notation as: 
 
!"#$%&&#'#()#*#####+"#$&%&#'#()#*########,"#)%$&&#'#()#*#########-"#$&&#'#()#*#
 

Problems:        1  (  a  , b )   and    25 (a)  . 

 

 

Assignments: 

3 27
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sec. 1-5 Length
•1 Earth is approximately a sphere of radius 6.37 ! 106 m.
What are (a) its circumference in kilometers, (b) its surface area in
square kilometers, and (c) its volume in cubic kilometers?

•2 A gry is an old English measure for length, defined as 1/10 of a
line, where line is another old English measure for length, defined
as 1/12 inch. A common measure for length in the publishing busi-
ness is a point, defined as 1/72 inch. What is an area of 0.50 gry2 in
points squared (points2)?

SSM

•3 The micrometer (1 mm) is often called the micron. (a) How
many microns make up 1.0 km? (b) What fraction of a centimeter
equals 1.0 mm? (c) How many microns are in 1.0 yd?

•4 Spacing in this book was generally done in units of points and
picas: 12 points " 1 pica, and 6 picas " 1 inch. If a figure was mis-
placed in the page proofs by 0.80 cm, what was the misplacement
in (a) picas and (b) points?

•5 Horses are to race over a certain English meadow
for a distance of 4.0 furlongs. What is the race distance in (a) rods

WWWSSM

Measurement in Physics Physics is based on measurement
of physical quantities. Certain physical quantities have been cho-
sen as base quantities (such as length, time, and mass); each has
been defined in terms of a standard and given a unit of measure
(such as meter, second, and kilogram). Other physical quantities
are defined in terms of the base quantities and their standards
and units.

SI Units The unit system emphasized in this book is the
International System of Units (SI). The three physical quantities
displayed in Table 1-1 are used in the early chapters. Standards,
which must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement. These
standards are used in all physical measurement, for both the base
quantities and the quantities derived from them. Scientific nota-
tion and the prefixes of Table 1-2 are used to simplify measure-
ment notation.

Changing Units Conversion of units may be performed by us-
ing chain-link conversions in which the original data are multiplied

successively by conversion factors written as unity and the units
are manipulated like algebraic quantities until only the desired
units remain.

Length The meter is defined as the distance traveled by light
during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time signals
are sent worldwide by radio signals keyed to atomic clocks in stan-
dardizing laboratories.

Mass The kilogram is defined in terms of a platinum–
iridium standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of the atom
carbon-12, is usually used.

Density The density r of a material is the mass per unit volume:

(1-8)# "
m
V

.

From Eq. 1-8, the total mass msand of the sand grains is the
product of the density of silicon dioxide and the total vol-
ume of the sand grains:

(1-12)

Substituting this expression into Eq. 1-10 and then substitut-
ing for Vgrains from Eq. 1-11 lead to

(1-13)#sand "
#SiO2

Vtotal
 

Vtotal

1 $ e
"

#SiO2

1 $ e
.

m sand " #SiO2
Vgrains.

Substituting " 2.600 ! 103 kg/m3 and the critical value
of e 0.80, we find that liquefaction occurs when the sand
density is less than

(Answer)

A building can sink several meters in such liquefaction.

#sand "
2.600 ! 103 kg/m3

1.80
" 1.4 ! 103 kg/m3.

"
#SiO2

Additional examples, video, and practice available at WileyPLUS

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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clocks according to their relative value as good timekeepers, best
to worst. Justify your choice.

Clock Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14

B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03

C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33

D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17

E 12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

••18 Because Earth’s rotation is gradually slowing, the length of
each day increases: The day at the end of 1.0 century is 1.0 ms
longer than the day at the start of the century. In 20 centuries, what
is the total of the daily increases in time?

•••19 Suppose that, while lying on a beach near the equator
watching the Sun set over a calm ocean, you start a stopwatch just
as the top of the Sun disappears. You then stand, elevating your
eyes by a height H ! 1.70 m, and stop the watch when the top of
the Sun again disappears. If the elapsed time is t ! 11.1 s, what is
the radius r of Earth?

sec. 1-7 Mass
•20 The record for the largest glass bottle was set in 1992 by a
team in Millville, New Jersey—they blew a bottle with a volume of
193 U.S. fluid gallons. (a) How much short of 1.0 million cubic cen-
timeters is that? (b) If the bottle were filled with water at the
leisurely rate of 1.8 g/min, how long would the filling take? Water
has a density of 1000 kg/m3.

•21 Earth has a mass of 5.98 " 1024 kg. The average mass of the
atoms that make up Earth is 40 u. How many atoms are there in
Earth?

•22 Gold, which has a density of 19.32 g/cm3, is the most ductile
metal and can be pressed into a thin leaf or drawn out into a long
fiber. (a) If a sample of gold, with a mass of 27.63 g, is pressed into a
leaf of 1.000 mm thickness, what is the area of the leaf? (b) If,
instead, the gold is drawn out into a cylindrical fiber of radius 2.500
mm, what is the length of the fiber?

•23 (a) Assuming that water has a density of exactly 1 g/cm3,
find the mass of one cubic meter of water in kilograms. (b) Suppose
that it takes 10.0 h to drain a container of 5700 m3 of water.What is
the “mass flow rate,” in kilograms per second, of water from the
container?

••24 Grains of fine California beach sand are approximately
spheres with an average radius of 50 m and are made of silicon
dioxide, which has a density of 2600 kg/m3.What mass of sand grains
would have a total surface area (the total area of all the individual
spheres) equal to the surface area of a cube 1.00 m on an edge?

••25 During heavy rain, a section of a mountainside mea-
suring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m
deep slips into a valley in a mud slide. Assume that the mud ends
up uniformly distributed over a surface area of the valley measur-
ing 0.40 km " 0.40 km and that mud has a density of 1900 kg/m3.
What is the mass of the mud sitting above a 4.0 m2 area of the val-
ley floor?

••26 One cubic centimeter of a typical cumulus cloud contains 50
to 500 water drops, which have a typical radius of 10 mm. For that

#

SSM

range, give the lower value and the higher value, respectively, for
the following. (a) How many cubic meters of water are in a cylin-
drical cumulus cloud of height 3.0 km and radius 1.0 km? (b) How
many 1-liter pop bottles would that water fill? (c) Water has a den-
sity of 1000 kg/m3. How much mass does the water in the cloud
have?

••27 Iron has a density of 7.87 g/cm3, and the mass of an iron
atom is 9.27 " 10$26 kg. If the atoms are spherical and tightly
packed, (a) what is the volume of an iron atom and (b) what is the
distance between the centers of adjacent atoms?

••28 A mole of atoms is 6.02 " 1023 atoms. To the nearest order
of magnitude, how many moles of atoms are in a large domestic
cat? The masses of a hydrogen atom, an oxygen atom, and a carbon
atom are 1.0 u, 16 u, and 12 u, respectively. (Hint: Cats are some-
times known to kill a mole.)

••29 On a spending spree in Malaysia, you buy an ox with
a weight of 28.9 piculs in the local unit of weights: 1 picul !
100 gins, 1 gin ! 16 tahils, 1 tahil ! 10 chees, and 1 chee !
10 hoons. The weight of 1 hoon corresponds to a mass of 0.3779 g.
When you arrange to ship the ox home to your astonished family,
how much mass in kilograms must you declare on the shipping
manifest? (Hint: Set up multiple chain-link conversions.)

••30 Water is poured into a container that has a small leak.
The mass m of the water is given as a function of time t by
m ! 5.00t0.8 $ 3.00t % 20.00, with t & 0, m in grams, and t in sec-
onds. (a) At what time is the water mass greatest, and (b) what is
that greatest mass? In kilograms per minute, what is the rate of
mass change at (c) t ! 2.00 s and (d) t ! 5.00 s?

•••31 A vertical container with base area measuring 14.0 cm by
17.0 cm is being filled with identical pieces of candy, each with a
volume of 50.0 mm3 and a mass of 0.0200 g. Assume that the vol-
ume of the empty spaces between the candies is negligible. If the
height of the candies in the container increases at the rate of 0.250
cm/s, at what rate (kilograms per minute) does the mass of the can-
dies in the container increase?

Additional Problems
32 In the United States, a doll house has the scale of 1!12 of a
real house (that is, each length of the doll house is that of the real
house) and a miniature house (a doll house to fit within a doll
house) has the scale of 1!144 of a real house. Suppose a real house
(Fig. 1-7) has a front length of 20 m, a depth of 12 m, a height of 6.0
m, and a standard sloped roof (vertical triangular faces on the
ends) of height 3.0 m. In cubic meters, what are the volumes of the
corresponding (a) doll house and (b) miniature house?

Fig. 1-7 Problem 32.

6.0 m

12 m

20 m

3.0 m

1
12
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Chapter 1: MEASUREMENT!

 

1- 1 mi is equivalent to 1609 m so 55 mi/h is: 
 
a) 15 m/s ������b) 25 m/s �����������c) 66 m/s ����������������d)88 m/s 
 
2- A cubic box with an edge of exactly 1 cm has a volume of: 
 
a) 10�9 m3      b) 10�6 m3         c) 10�3  m3           d) 106 m3 
 
3 -The SI base unit for mass is: 
 
a) gram ����������b) pound ����������c) kilogram ������������d) kilopound 
 
4 - A nanosecond is: 
 

a) 109 s ����������b) 10�9 s �����������c) 10�10 s �����������������d) c) 1010 s 

 

5 - A gram is: 
 
a). 10-6 kg b) 10-3 kg�����������c) 1 kg �����������������d) 103 kg  
 

6- W e can write the speed of light (c = 299,000,000 m/s) using the 
scientific notation as: 
 
!"#$%&&#'#()#*#####+"#$&%&#'#()#*########,"#)%$&&#'#()#*#########-"#$&&#'#()#*#
 

Problems:        1  (  a  , b )   and    25 (a)  . 

 

 

Assignments: 

3 27



(a) Since 1km =1×103 m and 1m = 1×106 μm, 
1km =103 m = (103m)(106 μm/m) = 109 μm.

The given measurement is 1.0 km (two significant figures), which implies our 
result should be written as 1.0 × 109 μm.

(b) We calculate the number of microns in 1 centimeter. 
Since 1 cm = 10−2 m, 
1cm = 10−2 m = (10−2 m) (106 μ m/m) = 104 μm

We conclude that the fraction of one centimeter equal to 1.0 μm is 1.0 ×
10−4
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sec. 1-5 Length
•1 Earth is approximately a sphere of radius 6.37 ! 106 m.
What are (a) its circumference in kilometers, (b) its surface area in
square kilometers, and (c) its volume in cubic kilometers?

•2 A gry is an old English measure for length, defined as 1/10 of a
line, where line is another old English measure for length, defined
as 1/12 inch. A common measure for length in the publishing busi-
ness is a point, defined as 1/72 inch. What is an area of 0.50 gry2 in
points squared (points2)?

SSM

•3 The micrometer (1 mm) is often called the micron. (a) How
many microns make up 1.0 km? (b) What fraction of a centimeter
equals 1.0 mm? (c) How many microns are in 1.0 yd?

•4 Spacing in this book was generally done in units of points and
picas: 12 points " 1 pica, and 6 picas " 1 inch. If a figure was mis-
placed in the page proofs by 0.80 cm, what was the misplacement
in (a) picas and (b) points?

•5 Horses are to race over a certain English meadow
for a distance of 4.0 furlongs. What is the race distance in (a) rods

WWWSSM

Measurement in Physics Physics is based on measurement
of physical quantities. Certain physical quantities have been cho-
sen as base quantities (such as length, time, and mass); each has
been defined in terms of a standard and given a unit of measure
(such as meter, second, and kilogram). Other physical quantities
are defined in terms of the base quantities and their standards
and units.

SI Units The unit system emphasized in this book is the
International System of Units (SI). The three physical quantities
displayed in Table 1-1 are used in the early chapters. Standards,
which must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement. These
standards are used in all physical measurement, for both the base
quantities and the quantities derived from them. Scientific nota-
tion and the prefixes of Table 1-2 are used to simplify measure-
ment notation.

Changing Units Conversion of units may be performed by us-
ing chain-link conversions in which the original data are multiplied

successively by conversion factors written as unity and the units
are manipulated like algebraic quantities until only the desired
units remain.

Length The meter is defined as the distance traveled by light
during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time signals
are sent worldwide by radio signals keyed to atomic clocks in stan-
dardizing laboratories.

Mass The kilogram is defined in terms of a platinum–
iridium standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of the atom
carbon-12, is usually used.

Density The density r of a material is the mass per unit volume:

(1-8)# "
m
V

.

From Eq. 1-8, the total mass msand of the sand grains is the
product of the density of silicon dioxide and the total vol-
ume of the sand grains:

(1-12)

Substituting this expression into Eq. 1-10 and then substitut-
ing for Vgrains from Eq. 1-11 lead to

(1-13)#sand "
#SiO2

Vtotal
 

Vtotal

1 $ e
"

#SiO2

1 $ e
.

m sand " #SiO2
Vgrains.

Substituting " 2.600 ! 103 kg/m3 and the critical value
of e 0.80, we find that liquefaction occurs when the sand
density is less than

(Answer)

A building can sink several meters in such liquefaction.

#sand "
2.600 ! 103 kg/m3

1.80
" 1.4 ! 103 kg/m3.

"
#SiO2

Additional examples, video, and practice available at WileyPLUS

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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To convert the density ρ unit into kg/m3

If we ignore the empty spaces between the close-packed spheres, then the 
density of an individual iron atom will be the same as the density of any 
iron sample. That is, if m is the mass and V is the volume of an atom, then

ρ = (7.87g / cm3) 1kg
1000g

⎛
⎝⎜

⎞
⎠⎟
100cm
1m

⎛
⎝⎜

⎞
⎠⎟

3

= 7870kg /m3

ρ = m
V

⇒V = m
ρ
= 9.27×10

−26kg
7870kg /m3

=1.18×10−29m3
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clocks according to their relative value as good timekeepers, best
to worst. Justify your choice.

Clock Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14

B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03

C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33

D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17

E 12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

••18 Because Earth’s rotation is gradually slowing, the length of
each day increases: The day at the end of 1.0 century is 1.0 ms
longer than the day at the start of the century. In 20 centuries, what
is the total of the daily increases in time?

•••19 Suppose that, while lying on a beach near the equator
watching the Sun set over a calm ocean, you start a stopwatch just
as the top of the Sun disappears. You then stand, elevating your
eyes by a height H ! 1.70 m, and stop the watch when the top of
the Sun again disappears. If the elapsed time is t ! 11.1 s, what is
the radius r of Earth?

sec. 1-7 Mass
•20 The record for the largest glass bottle was set in 1992 by a
team in Millville, New Jersey—they blew a bottle with a volume of
193 U.S. fluid gallons. (a) How much short of 1.0 million cubic cen-
timeters is that? (b) If the bottle were filled with water at the
leisurely rate of 1.8 g/min, how long would the filling take? Water
has a density of 1000 kg/m3.

•21 Earth has a mass of 5.98 " 1024 kg. The average mass of the
atoms that make up Earth is 40 u. How many atoms are there in
Earth?

•22 Gold, which has a density of 19.32 g/cm3, is the most ductile
metal and can be pressed into a thin leaf or drawn out into a long
fiber. (a) If a sample of gold, with a mass of 27.63 g, is pressed into a
leaf of 1.000 mm thickness, what is the area of the leaf? (b) If,
instead, the gold is drawn out into a cylindrical fiber of radius 2.500
mm, what is the length of the fiber?

•23 (a) Assuming that water has a density of exactly 1 g/cm3,
find the mass of one cubic meter of water in kilograms. (b) Suppose
that it takes 10.0 h to drain a container of 5700 m3 of water.What is
the “mass flow rate,” in kilograms per second, of water from the
container?

••24 Grains of fine California beach sand are approximately
spheres with an average radius of 50 m and are made of silicon
dioxide, which has a density of 2600 kg/m3.What mass of sand grains
would have a total surface area (the total area of all the individual
spheres) equal to the surface area of a cube 1.00 m on an edge?

••25 During heavy rain, a section of a mountainside mea-
suring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m
deep slips into a valley in a mud slide. Assume that the mud ends
up uniformly distributed over a surface area of the valley measur-
ing 0.40 km " 0.40 km and that mud has a density of 1900 kg/m3.
What is the mass of the mud sitting above a 4.0 m2 area of the val-
ley floor?

••26 One cubic centimeter of a typical cumulus cloud contains 50
to 500 water drops, which have a typical radius of 10 mm. For that

#

SSM

range, give the lower value and the higher value, respectively, for
the following. (a) How many cubic meters of water are in a cylin-
drical cumulus cloud of height 3.0 km and radius 1.0 km? (b) How
many 1-liter pop bottles would that water fill? (c) Water has a den-
sity of 1000 kg/m3. How much mass does the water in the cloud
have?

••27 Iron has a density of 7.87 g/cm3, and the mass of an iron
atom is 9.27 " 10$26 kg. If the atoms are spherical and tightly
packed, (a) what is the volume of an iron atom and (b) what is the
distance between the centers of adjacent atoms?

••28 A mole of atoms is 6.02 " 1023 atoms. To the nearest order
of magnitude, how many moles of atoms are in a large domestic
cat? The masses of a hydrogen atom, an oxygen atom, and a carbon
atom are 1.0 u, 16 u, and 12 u, respectively. (Hint: Cats are some-
times known to kill a mole.)

••29 On a spending spree in Malaysia, you buy an ox with
a weight of 28.9 piculs in the local unit of weights: 1 picul !
100 gins, 1 gin ! 16 tahils, 1 tahil ! 10 chees, and 1 chee !
10 hoons. The weight of 1 hoon corresponds to a mass of 0.3779 g.
When you arrange to ship the ox home to your astonished family,
how much mass in kilograms must you declare on the shipping
manifest? (Hint: Set up multiple chain-link conversions.)

••30 Water is poured into a container that has a small leak.
The mass m of the water is given as a function of time t by
m ! 5.00t0.8 $ 3.00t % 20.00, with t & 0, m in grams, and t in sec-
onds. (a) At what time is the water mass greatest, and (b) what is
that greatest mass? In kilograms per minute, what is the rate of
mass change at (c) t ! 2.00 s and (d) t ! 5.00 s?

•••31 A vertical container with base area measuring 14.0 cm by
17.0 cm is being filled with identical pieces of candy, each with a
volume of 50.0 mm3 and a mass of 0.0200 g. Assume that the vol-
ume of the empty spaces between the candies is negligible. If the
height of the candies in the container increases at the rate of 0.250
cm/s, at what rate (kilograms per minute) does the mass of the can-
dies in the container increase?

Additional Problems
32 In the United States, a doll house has the scale of 1!12 of a
real house (that is, each length of the doll house is that of the real
house) and a miniature house (a doll house to fit within a doll
house) has the scale of 1!144 of a real house. Suppose a real house
(Fig. 1-7) has a front length of 20 m, a depth of 12 m, a height of 6.0
m, and a standard sloped roof (vertical triangular faces on the
ends) of height 3.0 m. In cubic meters, what are the volumes of the
corresponding (a) doll house and (b) miniature house?

Fig. 1-7 Problem 32.

6.0 m

12 m

20 m

3.0 m

1
12
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(a) The radius of the Earth 
R = (6.37×106m)(10−3km) = 6.37×103 km 

Earth circumference
s = 2πR = 2π (6.37 × 103km) = 4.00 ×104 km

(b) The surface area of Earth is 
A = 4πR2 =4π (6.37×103 km)2 = 5.10×108 km2

8 CHAPTE R 1 M EAS U R E M E NT
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sec. 1-5 Length
•1 Earth is approximately a sphere of radius 6.37 ! 106 m.
What are (a) its circumference in kilometers, (b) its surface area in
square kilometers, and (c) its volume in cubic kilometers?

•2 A gry is an old English measure for length, defined as 1/10 of a
line, where line is another old English measure for length, defined
as 1/12 inch. A common measure for length in the publishing busi-
ness is a point, defined as 1/72 inch. What is an area of 0.50 gry2 in
points squared (points2)?

SSM

•3 The micrometer (1 mm) is often called the micron. (a) How
many microns make up 1.0 km? (b) What fraction of a centimeter
equals 1.0 mm? (c) How many microns are in 1.0 yd?

•4 Spacing in this book was generally done in units of points and
picas: 12 points " 1 pica, and 6 picas " 1 inch. If a figure was mis-
placed in the page proofs by 0.80 cm, what was the misplacement
in (a) picas and (b) points?

•5 Horses are to race over a certain English meadow
for a distance of 4.0 furlongs. What is the race distance in (a) rods

WWWSSM

Measurement in Physics Physics is based on measurement
of physical quantities. Certain physical quantities have been cho-
sen as base quantities (such as length, time, and mass); each has
been defined in terms of a standard and given a unit of measure
(such as meter, second, and kilogram). Other physical quantities
are defined in terms of the base quantities and their standards
and units.

SI Units The unit system emphasized in this book is the
International System of Units (SI). The three physical quantities
displayed in Table 1-1 are used in the early chapters. Standards,
which must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement. These
standards are used in all physical measurement, for both the base
quantities and the quantities derived from them. Scientific nota-
tion and the prefixes of Table 1-2 are used to simplify measure-
ment notation.

Changing Units Conversion of units may be performed by us-
ing chain-link conversions in which the original data are multiplied

successively by conversion factors written as unity and the units
are manipulated like algebraic quantities until only the desired
units remain.

Length The meter is defined as the distance traveled by light
during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time signals
are sent worldwide by radio signals keyed to atomic clocks in stan-
dardizing laboratories.

Mass The kilogram is defined in terms of a platinum–
iridium standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of the atom
carbon-12, is usually used.

Density The density r of a material is the mass per unit volume:

(1-8)# "
m
V

.

From Eq. 1-8, the total mass msand of the sand grains is the
product of the density of silicon dioxide and the total vol-
ume of the sand grains:

(1-12)

Substituting this expression into Eq. 1-10 and then substitut-
ing for Vgrains from Eq. 1-11 lead to

(1-13)#sand "
#SiO2

Vtotal
 

Vtotal

1 $ e
"

#SiO2

1 $ e
.

m sand " #SiO2
Vgrains.

Substituting " 2.600 ! 103 kg/m3 and the critical value
of e 0.80, we find that liquefaction occurs when the sand
density is less than

(Answer)

A building can sink several meters in such liquefaction.

#sand "
2.600 ! 103 kg/m3

1.80
" 1.4 ! 103 kg/m3.

"
#SiO2

Additional examples, video, and practice available at WileyPLUS

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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Physics 110
1435-1436 H

Instructor: Dr. Alaa Imam
E-mail: alaa_y_emam@hotmail.com



Chapter 2
Motion Along Straight Line

Sections: 2-2, 2-3, 2-4, 2-5



� The important skills from this lecture
1. Locate the position of a particle with respect to the origin

2. Identify the positive & negative directions of x & y axes

3. Calculate the displacement in magnitude & determine its 
direction

4. Differentiate between displacement & distance

5. Define velocity & differentiate between velocity & speed

6. Calculate the average velocity & speed

7. Define & calculate the instantaneous velocity & speed

8. Differentiate between average & instantaneous velocity



Motion
� Everything in the world moves, even seemingly 

stationary objects

� The classification & comparison of motions called 
kinematics, and is often challenging

� Motion could be:

x

y

x

y y

x
z

in 1 dimension in 2 dimensions in 3 dimensions



Motion in One Dimension 
� It is a long a straight line only 

� This straight line might be vertical, horizontal, or 
slanted

� The moving object speeds up, slow down, stop, or 
reverse direction 

� The motion involves time 

vertical horizontal slanted



Position
� Locate an object means: find its position relative to some 

reference point, often the origin (zero)

� If the particle is located at:
x = 3 m    à it is 3 m in the +ve direction from the origin 
x = – 3 m à it is 3 m in the –ve direction from the origin 

A coordinate of – 3 m < – 1 m, and both are < +3 m 

� + sign don’t need to be shown
– sign must always to be shown

2-1 W H AT  I S  P H YS I C S ?
One purpose of physics is to study the motion of objects—how fast they

move, for example, and how far they move in a given amount of time. NASCAR
engineers are fanatical about this aspect of physics as they determine the
performance of their cars before and during a race. Geologists use this physics to
measure tectonic-plate motion as they attempt to predict earthquakes. Medical
researchers need this physics to map the blood flow through a patient when diag-
nosing a partially closed artery, and motorists use it to determine how they might
slow sufficiently when their radar detector sounds a warning. There are countless
other examples. In this chapter, we study the basic physics of motion where the
object (race car, tectonic plate, blood cell, or any other object) moves along a sin-
gle axis. Such motion is called one-dimensional motion.

2-2 Motion
The world, and everything in it, moves. Even seemingly stationary things, such as
a roadway, move with Earth’s rotation, Earth’s orbit around the Sun, the Sun’s or-
bit around the center of the Milky Way galaxy, and that galaxy’s migration relative
to other galaxies. The classification and comparison of motions (called kinematics)
is often challenging.What exactly do you measure, and how do you compare?

Before we attempt an answer, we shall examine some general properties of
motion that is restricted in three ways.

1. The motion is along a straight line only. The line may be vertical, horizontal, or
slanted, but it must be straight.

2. Forces (pushes and pulls) cause motion but will not be discussed until Chapter
5. In this chapter we discuss only the motion itself and changes in the motion.
Does the moving object speed up, slow down, stop, or reverse direction? If the
motion does change, how is time involved in the change?

3. The moving object is either a particle (by which we mean a point-like object
such as an electron) or an object that moves like a particle (such that every
portion moves in the same direction and at the same rate). A stiff pig slipping
down a straight playground slide might be considered to be moving like a par-
ticle; however, a tumbling tumbleweed would not.

2-3 Position and Displacement
To locate an object means to find its position relative to some reference point, of-
ten the origin (or zero point) of an axis such as the x axis in Fig. 2-1. The positive
direction of the axis is in the direction of increasing numbers (coordinates), which
is to the right in Fig. 2-1.The opposite is the negative direction.

M O T I O N  A L O N G
A S T R A I G H T  L I N E

Fig. 2-1 Position is determined on an
axis that is marked in units of length (here
meters) and that extends indefinitely in op-
posite directions.The axis name, here x, is
always on the positive side of the origin.

–3 0

Origin

–2 –1 1 2 3

Negative direction

Positive direction

x (m)

2
C H A P T E R

13
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Displacement
� Displacement Δx (called delta x): the change from a position 

x1 to a position x2

� Δ: represents a change in a quantity
Δ = final value – initial value

� Displacement in the right direction always comes out +ve
Displacement in the left direction always comes out –ve

� If we ignore the sign (the direction) of a displacement 
à magnitude or absolute value of the displacement 
e.g. Δx = – 4 m has a magnitude = – 4 m = 4 m

� The actual number of meters covered for a trip is irrelevant; 
displacement involves only the original & final positions

Δx = x2 − x1



� Displacement has two features: 
1. Its magnitude is the distance between the original & 

final positions

2. Its direction, from an original position to a final 
position, has + or – sign (vector quantity) 

14 CHAPTE R 2 MOTION ALONG A STRAIG HT LI N E

2-4 Average Velocity and Average Speed
A compact way to describe position is with a graph of position x plotted as a func-
tion of time t—a graph of x(t). (The notation x(t) represents a function x of t, not
the product x times t.) As a simple example, Fig. 2-2 shows the position function
x(t) for a stationary armadillo (which we treat as a particle) over a 7 s time inter-
val.The animal’s position stays at x ! "2 m.

Figure 2-3 is more interesting, because it involves motion. The armadillo is
apparently first noticed at t ! 0 when it is at the position x ! "5 m. It moves

For example, a particle might be located at x ! 5 m, which means it is 5 m in
the positive direction from the origin. If it were at x ! "5 m, it would be just as
far from the origin but in the opposite direction. On the axis, a coordinate of
"5 m is less than a coordinate of "1 m, and both coordinates are less than a
coordinate of #5 m. A plus sign for a coordinate need not be shown, but a minus
sign must always be shown.

A change from position x1 to position x2 is called a displacement $x, where

$x ! x2 " x1. (2-1)

(The symbol $, the Greek uppercase delta, represents a change in a quantity, and
it means the final value of that quantity minus the initial value.) When numbers
are inserted for the position values x1 and x2 in Eq. 2-1, a displacement in the 
positive direction (to the right in Fig. 2-1) always comes out positive, and a dis-
placement in the opposite direction (left in the figure) always comes out negative.
For example, if the particle moves from x1 ! 5 m to x2 ! 12 m, then the displace-
ment is $x ! (12 m) " (5 m) ! #7 m. The positive result indicates that the mo-
tion is in the positive direction. If, instead, the particle moves from x1 ! 5 m to 
x2 ! 1 m, then $x ! (1 m) " (5 m) ! "4 m. The negative result indicates that
the motion is in the negative direction.

The actual number of meters covered for a trip is irrelevant; displacement in-
volves only the original and final positions. For example, if the particle moves
from x ! 5 m out to x ! 200 m and then back to x ! 5 m, the displacement from
start to finish is $x ! (5 m) " (5 m) ! 0.

A plus sign for a displacement need not be shown, but a minus sign must
always be shown. If we ignore the sign (and thus the direction) of a displacement,
we are left with the magnitude (or absolute value) of the displacement. For exam-
ple, a displacement of $x ! "4 m has a magnitude of 4 m.

Displacement is an example of a vector quantity, which is a quantity that has
both a direction and a magnitude. We explore vectors more fully in Chapter 3 (in
fact, some of you may have already read that chapter), but here all we need is the
idea that displacement has two features: (1) Its magnitude is the distance (such as
the number of meters) between the original and final positions. (2) Its direction,
from an original position to a final position, can be represented by a plus sign or a
minus sign if the motion is along a single axis.

What follows is the first of many checkpoints you will see in this book. Each
consists of one or more questions whose answers require some reasoning or a
mental calculation, and each gives you a quick check of your understanding
of a point just discussed.The answers are listed in the back of the book.

CHECKPOINT 1

Here are three pairs of initial and final positions, respectively, along an x axis. Which
pairs give a negative displacement: (a) "3 m, #5 m; (b) "3 m, "7 m; (c) 7 m, "3 m?
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Δx = x2 − x1

(a)  x1 = −3,   x2 = +5⇒   Δx = 5− (−3) = 8m
(b)  x1 = −3,   x2 = −7⇒   Δx = −7− (−3) = −4m
(c)  x1 = 7,   x2 = −3⇒   Δx = −3− 7 = −10m

✔

✗

✔

Solution:



Distance 
� The actual meters that the object travels 

� It is a scalar quantities

� It is not always equal to the magnitude of the displacement
e.g. if the particle moves from x1 to x5 as follows:

The displacement = x5 – x1 = 0 – 0 = 0
The distance = 2 + 2 +1.5 + 3.5 = 9 m 

2 m

2 m

1.5 m

3.5 m
x

y

x1

x2 x3

x4
x5

0



Examples 
Find the displacement, direction and distance for:

1. A particle moves from x1= 5 m to x2 = 12 m, 
Δx = 12 m – 5 m = +7 m. 
7 is positive à the motion in + direction
Distance = 12 + 5 =17 m 

2. A particle moves from x1= 5 m to x2 = 1 m, 
Δx = 1 m – 5 m = – 4 m. 
4 is negative à the motion in – direction
Distance = 1 + 5 = 6 m 

3. A particle moves from x1= 5 m to x2 = 200 m then back to 
x3 = 5 
Δx = 5 m – 5 m = 0
Distance = 5 + 200 + 5 =210 m 



Graphical Description for Motion
� A position is described also with a graph of position (x) plotted as a 

function of time (t) − this graph is called a graph of x(t)

1. If the particle is not moving:

The graph shows position x(t) for a stationary object over 7s time interval
The object’s position stays at x = – 2 m (not moving)

152-4 AVE RAG E VE LOCITY AN D AVE RAG E S PE E D
PART 1

toward x ! 0, passes through that point at t ! 3 s, and then moves on to increas-
ingly larger positive values of x. Figure 2-3 also depicts the straight-line motion of
the armadillo (at three times) and is something like what you would see. The
graph in Fig. 2-3 is more abstract and quite unlike what you would see, but it is
richer in information. It also reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One of
them is the average velocity vavg, which is the ratio of the displacement "x that oc-
curs during a particular time interval "t to that interval:

(2-2)

The notation means that the position is x1 at time t1 and then x2 at time t2. A com-
mon unit for vavg is the meter per second (m/s). You may see other units in the
problems, but they are always in the form of length/time.

On a graph of x versus t, vavg is the slope of the straight line that connects two
particular points on the x(t) curve: one is the point that corresponds to x2 and t2,
and the other is the point that corresponds to x1 and t1. Like displacement, vavg

has both magnitude and direction (it is another vector quantity). Its magnitude is
the magnitude of the line’s slope. A positive vavg (and slope) tells us that the line
slants upward to the right; a negative vavg (and slope) tells us that the line slants
downward to the right. The average velocity vavg always has the same sign as the
displacement "x because "t in Eq. 2-2 is always positive.

vavg !
"x
"t

!
x2 # x1

t2 # t1
.

Fig. 2-2 The graph of
x(t) for an armadillo that
is stationary at x ! #2 m.
The value of x is #2 m for
all times t.

x (m)

t (s)
1 2 3 4

+1

–1
–1

x(t)

0

This is a graph
of position x
versus time t
for a stationary
object.
 

Same position
for any time. 

Fig. 2-3 The graph of x(t) for a moving armadillo.The path associated with the graph is also
shown, at three times.

x (m)

t (s)
1 2 3 4

4
3
2
1

0

It is at position x = –5 m
when time t = 0 s.
That data is plotted here.
 

This is a graph
of position x
versus time t
for a moving
object.
 

0–5 2
x (m)

0 s
0–5 2

x (m)

3 s 

At x = 0 m when t = 3 s.
Plotted here.
 

At x = 2 m when t = 4 s.
Plotted here.
 

–1
–2
–3
–4
–5

x(t) 0–5 2
x (m)

4 s

A

halliday_c02_013-037hr2.qxd  29-09-2009  12:44  Page 15

152-4 AVE RAG E VE LOCITY AN D AVE RAG E S PE E D
PART 1

toward x ! 0, passes through that point at t ! 3 s, and then moves on to increas-
ingly larger positive values of x. Figure 2-3 also depicts the straight-line motion of
the armadillo (at three times) and is something like what you would see. The
graph in Fig. 2-3 is more abstract and quite unlike what you would see, but it is
richer in information. It also reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One of
them is the average velocity vavg, which is the ratio of the displacement "x that oc-
curs during a particular time interval "t to that interval:

(2-2)

The notation means that the position is x1 at time t1 and then x2 at time t2. A com-
mon unit for vavg is the meter per second (m/s). You may see other units in the
problems, but they are always in the form of length/time.

On a graph of x versus t, vavg is the slope of the straight line that connects two
particular points on the x(t) curve: one is the point that corresponds to x2 and t2,
and the other is the point that corresponds to x1 and t1. Like displacement, vavg

has both magnitude and direction (it is another vector quantity). Its magnitude is
the magnitude of the line’s slope. A positive vavg (and slope) tells us that the line
slants upward to the right; a negative vavg (and slope) tells us that the line slants
downward to the right. The average velocity vavg always has the same sign as the
displacement "x because "t in Eq. 2-2 is always positive.

vavg !
"x
"t

!
x2 # x1

t2 # t1
.

Fig. 2-2 The graph of
x(t) for an armadillo that
is stationary at x ! #2 m.
The value of x is #2 m for
all times t.

x (m)

t (s)
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toward x ! 0, passes through that point at t ! 3 s, and then moves on to increas-
ingly larger positive values of x. Figure 2-3 also depicts the straight-line motion of
the armadillo (at three times) and is something like what you would see. The
graph in Fig. 2-3 is more abstract and quite unlike what you would see, but it is
richer in information. It also reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One of
them is the average velocity vavg, which is the ratio of the displacement "x that oc-
curs during a particular time interval "t to that interval:

(2-2)

The notation means that the position is x1 at time t1 and then x2 at time t2. A com-
mon unit for vavg is the meter per second (m/s). You may see other units in the
problems, but they are always in the form of length/time.

On a graph of x versus t, vavg is the slope of the straight line that connects two
particular points on the x(t) curve: one is the point that corresponds to x2 and t2,
and the other is the point that corresponds to x1 and t1. Like displacement, vavg

has both magnitude and direction (it is another vector quantity). Its magnitude is
the magnitude of the line’s slope. A positive vavg (and slope) tells us that the line
slants upward to the right; a negative vavg (and slope) tells us that the line slants
downward to the right. The average velocity vavg always has the same sign as the
displacement "x because "t in Eq. 2-2 is always positive.
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2. If the object is moving

Time (s) 0 3 4

Position (m) – 5 0 2
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richer in information. It also reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One of
them is the average velocity vavg, which is the ratio of the displacement "x that oc-
curs during a particular time interval "t to that interval:

(2-2)

The notation means that the position is x1 at time t1 and then x2 at time t2. A com-
mon unit for vavg is the meter per second (m/s). You may see other units in the
problems, but they are always in the form of length/time.

On a graph of x versus t, vavg is the slope of the straight line that connects two
particular points on the x(t) curve: one is the point that corresponds to x2 and t2,
and the other is the point that corresponds to x1 and t1. Like displacement, vavg

has both magnitude and direction (it is another vector quantity). Its magnitude is
the magnitude of the line’s slope. A positive vavg (and slope) tells us that the line
slants upward to the right; a negative vavg (and slope) tells us that the line slants
downward to the right. The average velocity vavg always has the same sign as the
displacement "x because "t in Eq. 2-2 is always positive.
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the armadillo (at three times) and is something like what you would see. The
graph in Fig. 2-3 is more abstract and quite unlike what you would see, but it is
richer in information. It also reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One of
them is the average velocity vavg, which is the ratio of the displacement "x that oc-
curs during a particular time interval "t to that interval:
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The notation means that the position is x1 at time t1 and then x2 at time t2. A com-
mon unit for vavg is the meter per second (m/s). You may see other units in the
problems, but they are always in the form of length/time.

On a graph of x versus t, vavg is the slope of the straight line that connects two
particular points on the x(t) curve: one is the point that corresponds to x2 and t2,
and the other is the point that corresponds to x1 and t1. Like displacement, vavg

has both magnitude and direction (it is another vector quantity). Its magnitude is
the magnitude of the line’s slope. A positive vavg (and slope) tells us that the line
slants upward to the right; a negative vavg (and slope) tells us that the line slants
downward to the right. The average velocity vavg always has the same sign as the
displacement "x because "t in Eq. 2-2 is always positive.
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Average Velocity (vavg)
� vavg: the ratio of the displacement Δx that occurs during a 

particular time interval Δt to that interval

� How we calculate vavg from x(t) graph?
1. Draw a straight line between the initial & final position of the     

object
2.  Find the slope of that straight line 

� vavg is a vector quantities (magnitude & direction)
Magnitude: the slope value 
Direction: + vavg (+ slope) à line slants upward to the right ì

– vavg (– slope) à line slants downward to the right î

� vavg has the same sign of displacement? Because Δt is always +

vavg =
displacement

Δt
= Δx
Δt

=
x2 − x1
t2 − t1

length/time e.g. m/s, Km/h



Example: 
Calculate vavg from x(t) graph

16 CHAPTE R 2 MOTION ALONG A STRAIG HT LI N E

Sample Problem

Average velocity, beat-up pickup truck

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another 2.0 km
farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY I DEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x1 ! 0 to a second
position of x2 at the station. That second position must be at 
x2 ! 8.4 km " 2.0 km ! 10.4 km.Then your displacement #x
along the x axis is the second position minus the first position.

Calculation: From Eq. 2-1, we have

#x ! x2 $ x1 ! 10.4 km $ 0 ! 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.

(b) What is the time interval #t from the beginning of your
drive to your arrival at the station?

KEY I DEA

We already know the walking time interval #twlk (! 0.50 h),
but we lack the driving time interval #tdr. However, we
know that for the drive the displacement #xdr is 8.4 km and
the average velocity vavg,dr is 70 km/h. Thus, this average

Fig. 2-4 Calculation of the
average velocity between t ! 1 s
and t ! 4 s as the slope of the line
that connects the points on the
x(t) curve representing those times.
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This vertical distance is how far
it moved, start to end:
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∆x__
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run= =

This is a graph
of position x
versus time t.

To find average velocity,
first draw a straight line,
start to end, and then
find the slope of the
line.

A

Figure 2-4 shows how to find vavg in Fig. 2-3 for the time interval t ! 1 s to t ! 4 s.
We draw the straight line that connects the point on the position curve at the be-
ginning of the interval and the point on the curve at the end of the interval. Then
we find the slope #x/#t of the straight line. For the given time interval, the aver-
age velocity is

Average speed savg is a different way of describing “how fast” a particle
moves. Whereas the average velocity involves the particle’s displacement #x, the
average speed involves the total distance covered (for example, the number of
meters moved), independent of direction; that is,

(2-3)

Because average speed does not include direction, it lacks any algebraic sign.
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the
two can be quite different.

savg !
total distance

#t
.

vavg !
6 m
3 s

! 2 m/s.
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You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another 2.0 km
farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY I DEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x1 ! 0 to a second
position of x2 at the station. That second position must be at 
x2 ! 8.4 km " 2.0 km ! 10.4 km.Then your displacement #x
along the x axis is the second position minus the first position.

Calculation: From Eq. 2-1, we have

#x ! x2 $ x1 ! 10.4 km $ 0 ! 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.

(b) What is the time interval #t from the beginning of your
drive to your arrival at the station?

KEY I DEA

We already know the walking time interval #twlk (! 0.50 h),
but we lack the driving time interval #tdr. However, we
know that for the drive the displacement #xdr is 8.4 km and
the average velocity vavg,dr is 70 km/h. Thus, this average

Fig. 2-4 Calculation of the
average velocity between t ! 1 s
and t ! 4 s as the slope of the line
that connects the points on the
x(t) curve representing those times.
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Figure 2-4 shows how to find vavg in Fig. 2-3 for the time interval t ! 1 s to t ! 4 s.
We draw the straight line that connects the point on the position curve at the be-
ginning of the interval and the point on the curve at the end of the interval. Then
we find the slope #x/#t of the straight line. For the given time interval, the aver-
age velocity is

Average speed savg is a different way of describing “how fast” a particle
moves. Whereas the average velocity involves the particle’s displacement #x, the
average speed involves the total distance covered (for example, the number of
meters moved), independent of direction; that is,

(2-3)

Because average speed does not include direction, it lacks any algebraic sign.
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the
two can be quite different.
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Sample Problem

Average velocity, beat-up pickup truck

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another 2.0 km
farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY I DEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x1 ! 0 to a second
position of x2 at the station. That second position must be at 
x2 ! 8.4 km " 2.0 km ! 10.4 km.Then your displacement #x
along the x axis is the second position minus the first position.

Calculation: From Eq. 2-1, we have

#x ! x2 $ x1 ! 10.4 km $ 0 ! 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.

(b) What is the time interval #t from the beginning of your
drive to your arrival at the station?

KEY I DEA

We already know the walking time interval #twlk (! 0.50 h),
but we lack the driving time interval #tdr. However, we
know that for the drive the displacement #xdr is 8.4 km and
the average velocity vavg,dr is 70 km/h. Thus, this average
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Figure 2-4 shows how to find vavg in Fig. 2-3 for the time interval t ! 1 s to t ! 4 s.
We draw the straight line that connects the point on the position curve at the be-
ginning of the interval and the point on the curve at the end of the interval. Then
we find the slope #x/#t of the straight line. For the given time interval, the aver-
age velocity is

Average speed savg is a different way of describing “how fast” a particle
moves. Whereas the average velocity involves the particle’s displacement #x, the
average speed involves the total distance covered (for example, the number of
meters moved), independent of direction; that is,

(2-3)

Because average speed does not include direction, it lacks any algebraic sign.
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the
two can be quite different.
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Average Speed savg
� savg: the total distance travelled (e.g. the number of 

meters moved), independent of the direction

� It is a scalar quantity

savg =
total distance

Δt
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Average velocity, beat-up pickup truck

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another 2.0 km
farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY I DEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x1 ! 0 to a second
position of x2 at the station. That second position must be at 
x2 ! 8.4 km " 2.0 km ! 10.4 km.Then your displacement #x
along the x axis is the second position minus the first position.

Calculation: From Eq. 2-1, we have

#x ! x2 $ x1 ! 10.4 km $ 0 ! 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.

(b) What is the time interval #t from the beginning of your
drive to your arrival at the station?

KEY I DEA

We already know the walking time interval #twlk (! 0.50 h),
but we lack the driving time interval #tdr. However, we
know that for the drive the displacement #xdr is 8.4 km and
the average velocity vavg,dr is 70 km/h. Thus, this average
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Figure 2-4 shows how to find vavg in Fig. 2-3 for the time interval t ! 1 s to t ! 4 s.
We draw the straight line that connects the point on the position curve at the be-
ginning of the interval and the point on the curve at the end of the interval. Then
we find the slope #x/#t of the straight line. For the given time interval, the aver-
age velocity is

Average speed savg is a different way of describing “how fast” a particle
moves. Whereas the average velocity involves the particle’s displacement #x, the
average speed involves the total distance covered (for example, the number of
meters moved), independent of direction; that is,

(2-3)

Because average speed does not include direction, it lacks any algebraic sign.
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the
two can be quite different.
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station

Δxdrv = 8.4 Km  
vavg,drv = 70 Km/h

Δxwalk= 2 Km     
Δtwalk=30 min

42 CHAPTE R 3 VECTORS

CHECKPOINT 2

In the figure, which of the indicated methods for combining the x and y components
of vector are proper to determine that vector?a:
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Sample Problem

Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. How far east and north is the airplane
from the airport when sighted?

KEY I DEA

We are given the magnitude (215 km) and the angle (22°
east of due north) of a vector and need to find the compo-
nents of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
The airplane’s displacement points from the origin to
where the airplane is sighted.

d
:

Fig. 3-10 A plane takes off from an airport at the origin and is
later sighted at P.
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Fig. 3-8a is given (completely determined) by a and u. It can also be given by its
components ax and ay. Both pairs of values contain the same information. If we
know a vector in component notation (ax and ay) and want it in magnitude-angle
notation (a and u), we can use the equations

(3-6)

to transform it.
In the more general three-dimensional case, we need a magnitude and two

angles (say, a, u, and f) or three components (ax, ay, and az) to specify a vector.

a ! √a2
x " ay

2  and  tan # !
ay

ax
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Sample Problem

Average velocity, beat-up pickup truck

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another 2.0 km
farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY I DEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x1 ! 0 to a second
position of x2 at the station. That second position must be at 
x2 ! 8.4 km " 2.0 km ! 10.4 km.Then your displacement #x
along the x axis is the second position minus the first position.

Calculation: From Eq. 2-1, we have

#x ! x2 $ x1 ! 10.4 km $ 0 ! 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.

(b) What is the time interval #t from the beginning of your
drive to your arrival at the station?

KEY I DEA

We already know the walking time interval #twlk (! 0.50 h),
but we lack the driving time interval #tdr. However, we
know that for the drive the displacement #xdr is 8.4 km and
the average velocity vavg,dr is 70 km/h. Thus, this average

Fig. 2-4 Calculation of the
average velocity between t ! 1 s
and t ! 4 s as the slope of the line
that connects the points on the
x(t) curve representing those times.
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line.

A

Figure 2-4 shows how to find vavg in Fig. 2-3 for the time interval t ! 1 s to t ! 4 s.
We draw the straight line that connects the point on the position curve at the be-
ginning of the interval and the point on the curve at the end of the interval. Then
we find the slope #x/#t of the straight line. For the given time interval, the aver-
age velocity is

Average speed savg is a different way of describing “how fast” a particle
moves. Whereas the average velocity involves the particle’s displacement #x, the
average speed involves the total distance covered (for example, the number of
meters moved), independent of direction; that is,

(2-3)

Because average speed does not include direction, it lacks any algebraic sign.
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the
two can be quite different.

savg !
total distance

#t
.

vavg !
6 m
3 s

! 2 m/s.

halliday_c02_013-037hr.qxd  17-09-2009  12:15  Page 16

x1 = 0
x3 = 8.4km + 2.0km = 10.4km
Δxtotal = x3 − x1 ⇒10.4 − 0 = 10.4km

station

x1 x3

Δxdrv = 8.4 Km  
vavg,drv = 70 Km/h

Δxwalk= 2 Km     
Δtwalk=30 min

x2

Another solution:

Δxtotal = Δxdrv + Δxwalk
         = 8.4km + 2km = 10.4km



Δttotal = Δtdrv + Δtwalk
Δtwalk = 30min = 0.5h

vavg ,drv =
Δxdrv
Δtdrv

Δtdrv =
Δxdrv
vsvg ,drv

= 8.4km
70km / h

= 0.12h

Δttotal = 0.12h + 0.5h = 0.62h
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Sample Problem

Average velocity, beat-up pickup truck

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another 2.0 km
farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY I DEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x1 ! 0 to a second
position of x2 at the station. That second position must be at 
x2 ! 8.4 km " 2.0 km ! 10.4 km.Then your displacement #x
along the x axis is the second position minus the first position.

Calculation: From Eq. 2-1, we have

#x ! x2 $ x1 ! 10.4 km $ 0 ! 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.

(b) What is the time interval #t from the beginning of your
drive to your arrival at the station?

KEY I DEA

We already know the walking time interval #twlk (! 0.50 h),
but we lack the driving time interval #tdr. However, we
know that for the drive the displacement #xdr is 8.4 km and
the average velocity vavg,dr is 70 km/h. Thus, this average

Fig. 2-4 Calculation of the
average velocity between t ! 1 s
and t ! 4 s as the slope of the line
that connects the points on the
x(t) curve representing those times.
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t (s)

x(t)
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–1

–2
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–4

–5

vavg = slope of this line

0

This horizontal distance is how long
it took, start to end:
∆t = 4 s – 1 s = 3 sStart of interval

This vertical distance is how far
it moved, start to end:
∆x = 2 m – (–4 m) = 6 m

End of interval
∆x__
∆t

rise___
run= =

This is a graph
of position x
versus time t.

To find average velocity,
first draw a straight line,
start to end, and then
find the slope of the
line.

A

Figure 2-4 shows how to find vavg in Fig. 2-3 for the time interval t ! 1 s to t ! 4 s.
We draw the straight line that connects the point on the position curve at the be-
ginning of the interval and the point on the curve at the end of the interval. Then
we find the slope #x/#t of the straight line. For the given time interval, the aver-
age velocity is

Average speed savg is a different way of describing “how fast” a particle
moves. Whereas the average velocity involves the particle’s displacement #x, the
average speed involves the total distance covered (for example, the number of
meters moved), independent of direction; that is,

(2-3)

Because average speed does not include direction, it lacks any algebraic sign.
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the
two can be quite different.

savg !
total distance

#t
.

vavg !
6 m
3 s

! 2 m/s.
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Δxdrv = 8.4 Km  
vavg,drv = 70 Km/h

Δxwalk= 2 Km     
Δtwalk=30 min
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Fig. 2-5 The lines marked “Driving” and “Walking” are
the position–time plots for the driving and walking stages.
(The plot for the walking stage assumes a constant rate of
walking.) The slope of the straight line joining the origin
and the point labeled “Station” is the average velocity for
the trip, from the beginning to the station.
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How long:
∆t  = 0.62 h

average speed from the beginning of your drive to your
return to the truck with the gasoline?

KEY I DEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km ! 2.0 km ! 2.0
km " 12.4 km. The total time interval is 0.12 h ! 0.50 h !
0.75 h " 1.37 h.Thus, Eq. 2-3 gives us

(Answer)savg "
12.4 km
1.37 h

" 9.1 km/h.

velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

Rearranging and substituting data then give us

So,
(Answer)

(c) What is your average velocity vavg from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that vavg for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time in-
terval of 0.62 h for the entire trip.

Calculation: Here we find

(Answer)

To find vavg graphically, first we graph the function x(t) as
shown in Fig. 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.”
Your average velocity is the slope of the straight line connect-
ing those points; that is, vavg is the ratio of the rise (#x " 10.4
km) to the run (#t " 0.62 h), which gives us vavg " 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your

 " 16.8 km/h ! 17 km/h.

  vavg "
#x
#t

"
10.4 km
0.62 h

 " 0.12 h ! 0.50 h " 0.62 h. 
 #t " #tdr ! #twlk

 #tdr "
#xdr

vavg,dr
"

8.4 km
70 km/h

" 0.12 h.

vavg,dr "
#xdr

#tdr
.

2-5 Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average
velocity and average speed, both of which are measured over a time interval #t.
However, the phrase “how fast” more commonly refers to how fast a particle is
moving at a given instant—its instantaneous velocity (or simply velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking
the time interval #t closer and closer to 0.As #t dwindles, the average velocity ap-
proaches a limiting value, which is the velocity at that instant:

(2-4)v " lim
# t : 0

 
#x
#t

"
dx
dt

.

Additional examples, video, and practice available at WileyPLUS

halliday_c02_013-037hr.qxd  17-09-2009  12:15  Page 17

vavg ,total =
Δxtotal
Δttotal

= 10.4km
0.62h

=16.6km / h
Numerically
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Fig. 2-5 The lines marked “Driving” and “Walking” are
the position–time plots for the driving and walking stages.
(The plot for the walking stage assumes a constant rate of
walking.) The slope of the straight line joining the origin
and the point labeled “Station” is the average velocity for
the trip, from the beginning to the station.
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KEY I DEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km ! 2.0 km ! 2.0
km " 12.4 km. The total time interval is 0.12 h ! 0.50 h !
0.75 h " 1.37 h.Thus, Eq. 2-3 gives us

(Answer)savg "
12.4 km
1.37 h

" 9.1 km/h.

velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

Rearranging and substituting data then give us

So,
(Answer)

(c) What is your average velocity vavg from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that vavg for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time in-
terval of 0.62 h for the entire trip.

Calculation: Here we find

(Answer)

To find vavg graphically, first we graph the function x(t) as
shown in Fig. 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.”
Your average velocity is the slope of the straight line connect-
ing those points; that is, vavg is the ratio of the rise (#x " 10.4
km) to the run (#t " 0.62 h), which gives us vavg " 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your

 " 16.8 km/h ! 17 km/h.

  vavg "
#x
#t

"
10.4 km
0.62 h

 " 0.12 h ! 0.50 h " 0.62 h. 
 #t " #tdr ! #twlk

 #tdr "
#xdr

vavg,dr
"

8.4 km
70 km/h

" 0.12 h.

vavg,dr "
#xdr

#tdr
.

2-5 Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average
velocity and average speed, both of which are measured over a time interval #t.
However, the phrase “how fast” more commonly refers to how fast a particle is
moving at a given instant—its instantaneous velocity (or simply velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking
the time interval #t closer and closer to 0.As #t dwindles, the average velocity ap-
proaches a limiting value, which is the velocity at that instant:

(2-4)v " lim
# t : 0

 
#x
#t

"
dx
dt

.

Additional examples, video, and practice available at WileyPLUS
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Graphically 

x (km) 0 8.4 10.4

t (h) 0 0.12 0.62



45min → 45min
60

= 0.75h

savg =
total distance

Δt

savg =
8.4+ 2.0+ 2.0

0.12+ 0.5+ 0.75
= 12.4km

1.37h
= 9.1km / h
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Fig. 2-5 The lines marked “Driving” and “Walking” are
the position–time plots for the driving and walking stages.
(The plot for the walking stage assumes a constant rate of
walking.) The slope of the straight line joining the origin
and the point labeled “Station” is the average velocity for
the trip, from the beginning to the station.

Po
si

tio
n 

(k
m

)

Time (h)

0
0 0.2 0.4 0.6

2

4

6

8

10

12

x

t

Walking

D
ri

vi
ng

How far: 
∆x  = 10.4 km

Station

Driving ends, walking starts.

Slope of this 
line gives 
average 
velocity.

How long:
∆t  = 0.62 h

average speed from the beginning of your drive to your
return to the truck with the gasoline?

KEY I DEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km ! 2.0 km ! 2.0
km " 12.4 km. The total time interval is 0.12 h ! 0.50 h !
0.75 h " 1.37 h.Thus, Eq. 2-3 gives us

(Answer)savg "
12.4 km
1.37 h

" 9.1 km/h.

velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

Rearranging and substituting data then give us

So,
(Answer)

(c) What is your average velocity vavg from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that vavg for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time in-
terval of 0.62 h for the entire trip.

Calculation: Here we find

(Answer)

To find vavg graphically, first we graph the function x(t) as
shown in Fig. 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.”
Your average velocity is the slope of the straight line connect-
ing those points; that is, vavg is the ratio of the rise (#x " 10.4
km) to the run (#t " 0.62 h), which gives us vavg " 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your

 " 16.8 km/h ! 17 km/h.

  vavg "
#x
#t

"
10.4 km
0.62 h

 " 0.12 h ! 0.50 h " 0.62 h. 
 #t " #tdr ! #twlk

 #tdr "
#xdr

vavg,dr
"

8.4 km
70 km/h

" 0.12 h.

vavg,dr "
#xdr

#tdr
.

2-5 Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average
velocity and average speed, both of which are measured over a time interval #t.
However, the phrase “how fast” more commonly refers to how fast a particle is
moving at a given instant—its instantaneous velocity (or simply velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking
the time interval #t closer and closer to 0.As #t dwindles, the average velocity ap-
proaches a limiting value, which is the velocity at that instant:

(2-4)v " lim
# t : 0

 
#x
#t

"
dx
dt

.

Additional examples, video, and practice available at WileyPLUS
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Fig. 2-5 The lines marked “Driving” and “Walking” are
the position–time plots for the driving and walking stages.
(The plot for the walking stage assumes a constant rate of
walking.) The slope of the straight line joining the origin
and the point labeled “Station” is the average velocity for
the trip, from the beginning to the station.
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KEY I DEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km ! 2.0 km ! 2.0
km " 12.4 km. The total time interval is 0.12 h ! 0.50 h !
0.75 h " 1.37 h.Thus, Eq. 2-3 gives us

(Answer)savg "
12.4 km
1.37 h

" 9.1 km/h.

velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

Rearranging and substituting data then give us

So,
(Answer)

(c) What is your average velocity vavg from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that vavg for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time in-
terval of 0.62 h for the entire trip.

Calculation: Here we find

(Answer)

To find vavg graphically, first we graph the function x(t) as
shown in Fig. 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.”
Your average velocity is the slope of the straight line connect-
ing those points; that is, vavg is the ratio of the rise (#x " 10.4
km) to the run (#t " 0.62 h), which gives us vavg " 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your

 " 16.8 km/h ! 17 km/h.

  vavg "
#x
#t

"
10.4 km
0.62 h

 " 0.12 h ! 0.50 h " 0.62 h. 
 #t " #tdr ! #twlk

 #tdr "
#xdr

vavg,dr
"

8.4 km
70 km/h

" 0.12 h.

vavg,dr "
#xdr

#tdr
.

2-5 Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average
velocity and average speed, both of which are measured over a time interval #t.
However, the phrase “how fast” more commonly refers to how fast a particle is
moving at a given instant—its instantaneous velocity (or simply velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking
the time interval #t closer and closer to 0.As #t dwindles, the average velocity ap-
proaches a limiting value, which is the velocity at that instant:

(2-4)v " lim
# t : 0

 
#x
#t

"
dx
dt

.

Additional examples, video, and practice available at WileyPLUS
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Instantaneous Velocity (v) 
� The instantaneous velocity (or simply velocity) v refers to 

velocity of a particle at a given instant 

� It is obtained from the vavg by shrinking the time interval 
Δt closer and closer to 0
As Δt reduced à vavg approaches a limiting value, which 
is the velocity at that instant:

� v: the rate at which position x is changing with time at a 
given instant (derivative of x with respect to t) 
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Fig. 2-5 The lines marked “Driving” and “Walking” are
the position–time plots for the driving and walking stages.
(The plot for the walking stage assumes a constant rate of
walking.) The slope of the straight line joining the origin
and the point labeled “Station” is the average velocity for
the trip, from the beginning to the station.
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KEY I DEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km ! 2.0 km ! 2.0
km " 12.4 km. The total time interval is 0.12 h ! 0.50 h !
0.75 h " 1.37 h.Thus, Eq. 2-3 gives us

(Answer)savg "
12.4 km
1.37 h

" 9.1 km/h.

velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

Rearranging and substituting data then give us

So,
(Answer)

(c) What is your average velocity vavg from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that vavg for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time in-
terval of 0.62 h for the entire trip.

Calculation: Here we find

(Answer)

To find vavg graphically, first we graph the function x(t) as
shown in Fig. 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.”
Your average velocity is the slope of the straight line connect-
ing those points; that is, vavg is the ratio of the rise (#x " 10.4
km) to the run (#t " 0.62 h), which gives us vavg " 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your

 " 16.8 km/h ! 17 km/h.

  vavg "
#x
#t

"
10.4 km
0.62 h

 " 0.12 h ! 0.50 h " 0.62 h. 
 #t " #tdr ! #twlk

 #tdr "
#xdr

vavg,dr
"

8.4 km
70 km/h

" 0.12 h.

vavg,dr "
#xdr

#tdr
.

2-5 Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average
velocity and average speed, both of which are measured over a time interval #t.
However, the phrase “how fast” more commonly refers to how fast a particle is
moving at a given instant—its instantaneous velocity (or simply velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking
the time interval #t closer and closer to 0.As #t dwindles, the average velocity ap-
proaches a limiting value, which is the velocity at that instant:

(2-4)v " lim
# t : 0

 
#x
#t

"
dx
dt

.

Additional examples, video, and practice available at WileyPLUS
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� Graphically, v is given from the slope of the position–
time curve (x(t)) at the point representing that 
instant 

� v is a vector quantity (magnitude & direction)



Instantaneous Speed
� The magnitude of velocity

(velocity without any indication of direction)

� Notice: speed & average speed are different
A velocity of + 5 m/s & − 5 m/s both have an 
associated speed of 5 m/s 

� The speedometer in a car measures speed, not 
velocity (it cannot determine the direction)
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CHECKPOINT 2

The following equations give the position x(t) of a particle in four situations (in each
equation, x is in meters, t is in seconds, and t ! 0): (1) x " 3t # 2; (2) x " #4t2 # 2;
(3) x " 2/t2; and (4) x " #2. (a) In which situation is the velocity v of the particle con-
stant? (b) In which is v in the negative x direction?

Sample Problem

move and then later slows to a stop, v varies as indicated in
the intervals 1 s to 3 s and 8 s to 9 s. Thus, Fig. 2-6b is the
required plot. (Figure 2-6c is considered in Section 2-6.)

Given a v(t) graph such as Fig. 2-6b, we could “work
backward” to produce the shape of the associated x(t) graph
(Fig. 2-6a). However, we would not know the actual values
for x at various times, because the v(t) graph indicates only
changes in x. To find such a change in x during any interval,
we must, in the language of calculus, calculate the area
“under the curve” on the v(t) graph for that interval. For
example, during the interval 3 s to 8 s in which the cab has a
velocity of 4.0 m/s, the change in x is

$x " (4.0 m/s)(8.0 s # 3.0 s) " %20 m. (2-6)

(This area is positive because the v(t) curve is above the
t axis.) Figure 2-6a shows that x does indeed increase by 20
m in that interval. However, Fig. 2-6b does not tell us the
values of x at the beginning and end of the interval. For that,
we need additional information, such as the value of x at
some instant.

Velocity and slope of x versus t, elevator cab

Figure 2-6a is an x(t) plot for an elevator cab that is initially
stationary, then moves upward (which we take to be the pos-
itive direction of x), and then stops. Plot v(t).

KEY I DEA

We can find the velocity at any time from the slope of the
x(t) curve at that time.

Calculations: The slope of x(t), and so also the velocity, is
zero in the intervals from 0 to 1 s and from 9 s on, so then
the cab is stationary. During the interval bc, the slope is con-
stant and nonzero, so then the cab moves with constant veloc-
ity.We calculate the slope of x(t) then as

(2-5)

The plus sign indicates that the cab is moving in the positive
x direction. These intervals (where v " 0 and v " 4 m/s) are
plotted in Fig. 2-6b. In addition, as the cab initially begins to

$x
$t

" v "
24 m # 4.0 m
8.0 s # 3.0 s

" %4.0 m/s.

Note that v is the rate at which  position x is changing with time at a given instant;
that is, v is the derivative of x with respect to t. Also note that v at any instant is
the slope of the position–time curve at the point representing that instant.
Velocity is another vector quantity and thus has an associated direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been
stripped of any indication of direction, either in words or via an algebraic sign.
(Caution: Speed and average speed can be quite different.) A velocity of %5 m/s
and one of #5 m/s both have an associated speed of 5 m/s. The speedometer in a
car measures speed, not velocity (it cannot determine the direction).

2-6 Acceleration
When a particle’s velocity changes, the particle is said to undergo acceleration (or
to accelerate). For motion along an axis, the average acceleration aavg over a time
interval $t is

(2-7)

where the particle has velocity v1 at time t1 and then velocity v2 at time t2. The
instantaneous acceleration (or simply acceleration) is

(2-8)a "
dv
dt

.

aavg "
v2 # v1

t2 # t1
"

$v
$t

,
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v = dx
dt

(1)  x = 3t − 2,   v = d(3t − 2)
dt

= 3m / s

(2)  x = −4t2 − 2,   v = d(−4t2 − 2)
dt

= −8tm / s

(3)  x = 2 / t2 ,   v = d(2t−2 )
dt

= −4t−3m / s

(4)  x = −2,   v = d(−2)
dt

= 0

 
(a) v is constant à (1) & (4) 
(b) v is negative à (2) & (3)



The position of a particle moving on an x axis is given by

With x in meter & t in second. (1) What is its velocity at t = 3.5 s? (2) Is 
the velocity constant, or is it continuously changing?

(1) 

(2) Because v is a function of t, it is not constant but continuously 
changes with time

x = 7.8+ 9.2t − 2.1t3

v = dx
dt

= d
dt

7.8+ 9.2t − 2.1t3( )
  = 9.2− 3(2.1)t2 = 9.2− 6.3t2

at t =3.5 s
v = 9.2− 6.3(3.5)2 = 9.2− 77.175
  = −67.97 ≈ −68m / s

Answer:

42 CHAPTE R 3 VECTORS

CHECKPOINT 2

In the figure, which of the indicated methods for combining the x and y components
of vector are proper to determine that vector?a:
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Sample Problem

Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. How far east and north is the airplane
from the airport when sighted?

KEY I DEA

We are given the magnitude (215 km) and the angle (22°
east of due north) of a vector and need to find the compo-
nents of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
The airplane’s displacement points from the origin to
where the airplane is sighted.

d
:

Fig. 3-10 A plane takes off from an airport at the origin and is
later sighted at P.
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Fig. 3-8a is given (completely determined) by a and u. It can also be given by its
components ax and ay. Both pairs of values contain the same information. If we
know a vector in component notation (ax and ay) and want it in magnitude-angle
notation (a and u), we can use the equations

(3-6)

to transform it.
In the more general three-dimensional case, we need a magnitude and two

angles (say, a, u, and f) or three components (ax, ay, and az) to specify a vector.

a ! √a2
x " ay

2  and  tan # !
ay

ax
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Examples:
Q.1 The position of a particle along the x-axis is given by

where x in meters and t in second, the velocity of this particle in 
the time interval from t1= 1 s to t2 = 3 s is:
(a) 13 m/s   (b) 10 m/s   (c) 31 m/s   (d) −10 m/s

x = 3t3 − 2t2 − 2

t1 =1s   ⇒  x1 = 3(1)3 − 2(1)2 − 2 = −1m

t2 = 3s   ⇒  x2 = 3(3)3 − 2(3)2 − 2 = 61m

vavg =
x2 − x1

t2 − t1
= 61− (−1)

3−1
= 31m / s

Answer:



Q.2 A car moves along a straight line with velocity in m/s given by 

The velocity at t = 0 is:
(a) zero   (b) 4 m/s    (c) −16 m/s    (d) -9 m/s

Answer:

The change in the velocity between the time interval t = 1 and t = 5 is:
(a) zero   (b) 4 (c) 24             (d) -9

Answer:

Q.3 Referring to the previous question, the car stops when t equals:
(a) zero    (b) 4s    (c) 3s    (d) 6s    (e) 2s

Answer:

When car stops, v = 0  à

v(t) = t2 −16    ⇒   v(0) = (0)2 −16 = -16m / s

v = t2 −16

0 = t2 −16    ⇒    t2 =16    ⇒    t = 4s

v(1) = 1−16 = −15,       v(5) = (5)2 −16 = 9m / s
Δv = 9 − (−15) = 24



Q.4 A bicycle is moving along x-axis according to the equation 

where x is in meters and t is in second. Its velocity at t = 2 s is:
(a) 14 m/s    (b) 26 m/s    (c) 32 m/s    (d) m/s   (e) 38 m/s

Q.5 The initial and final positions of a particle along the x-axis 
are −3 m, 10 m respectively. Its displacement is:
(a) 7m    (b) 13m   (c) −13 m    (d) −7 m    (e) 4.5 m

x(t) = 2t + 3t2

v = dx(t)
dt

=
d 2t + 3t2( )

dt
= 2+ 6t

at  t = 2s,    v = 2+12 =14m / s

Δx =10− (−3) =13m

Answer:

Answer:



Chapter 2
Motion Along Straight Line

Sections 2-6, 2-7

Acceleration
Constant Acceleration



� The important skills from this lecture
1. Define & calculate the average acceleration

2. Define & calculate the instantaneous acceleration
3. Differentiate between average & instantaneous 

acceleration
4. Explain motion with constant acceleration

5. Apply the constant acceleration equations to solve 
problems



Q.3

Acceleration (a)
� Changing velocity à acceleration 

If the particle has velocity v1 at time t1 & v2 at time t2, the
average acceleration aavg over a time interval Δt is

� The instantaneous acceleration (or simply acceleration) a
is the acceleration of a particle at any instant 

a is the rate at which the particle’s velocity is changing at 
that instant

18 CHAPTE R 2 MOTION ALONG A STRAIG HT LI N E

CHECKPOINT 2

The following equations give the position x(t) of a particle in four situations (in each
equation, x is in meters, t is in seconds, and t ! 0): (1) x " 3t # 2; (2) x " #4t2 # 2;
(3) x " 2/t2; and (4) x " #2. (a) In which situation is the velocity v of the particle con-
stant? (b) In which is v in the negative x direction?

Sample Problem

move and then later slows to a stop, v varies as indicated in
the intervals 1 s to 3 s and 8 s to 9 s. Thus, Fig. 2-6b is the
required plot. (Figure 2-6c is considered in Section 2-6.)

Given a v(t) graph such as Fig. 2-6b, we could “work
backward” to produce the shape of the associated x(t) graph
(Fig. 2-6a). However, we would not know the actual values
for x at various times, because the v(t) graph indicates only
changes in x. To find such a change in x during any interval,
we must, in the language of calculus, calculate the area
“under the curve” on the v(t) graph for that interval. For
example, during the interval 3 s to 8 s in which the cab has a
velocity of 4.0 m/s, the change in x is

$x " (4.0 m/s)(8.0 s # 3.0 s) " %20 m. (2-6)

(This area is positive because the v(t) curve is above the
t axis.) Figure 2-6a shows that x does indeed increase by 20
m in that interval. However, Fig. 2-6b does not tell us the
values of x at the beginning and end of the interval. For that,
we need additional information, such as the value of x at
some instant.

Velocity and slope of x versus t, elevator cab

Figure 2-6a is an x(t) plot for an elevator cab that is initially
stationary, then moves upward (which we take to be the pos-
itive direction of x), and then stops. Plot v(t).

KEY I DEA

We can find the velocity at any time from the slope of the
x(t) curve at that time.

Calculations: The slope of x(t), and so also the velocity, is
zero in the intervals from 0 to 1 s and from 9 s on, so then
the cab is stationary. During the interval bc, the slope is con-
stant and nonzero, so then the cab moves with constant veloc-
ity.We calculate the slope of x(t) then as

(2-5)

The plus sign indicates that the cab is moving in the positive
x direction. These intervals (where v " 0 and v " 4 m/s) are
plotted in Fig. 2-6b. In addition, as the cab initially begins to

$x
$t

" v "
24 m # 4.0 m
8.0 s # 3.0 s

" %4.0 m/s.

Note that v is the rate at which  position x is changing with time at a given instant;
that is, v is the derivative of x with respect to t. Also note that v at any instant is
the slope of the position–time curve at the point representing that instant.
Velocity is another vector quantity and thus has an associated direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been
stripped of any indication of direction, either in words or via an algebraic sign.
(Caution: Speed and average speed can be quite different.) A velocity of %5 m/s
and one of #5 m/s both have an associated speed of 5 m/s. The speedometer in a
car measures speed, not velocity (it cannot determine the direction).

2-6 Acceleration
When a particle’s velocity changes, the particle is said to undergo acceleration (or
to accelerate). For motion along an axis, the average acceleration aavg over a time
interval $t is

(2-7)

where the particle has velocity v1 at time t1 and then velocity v2 at time t2. The
instantaneous acceleration (or simply acceleration) is

(2-8)a "
dv
dt

.

aavg "
v2 # v1

t2 # t1
"

$v
$t

,
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Given a v(t) graph such as Fig. 2-6b, we could “work
backward” to produce the shape of the associated x(t) graph
(Fig. 2-6a). However, we would not know the actual values
for x at various times, because the v(t) graph indicates only
changes in x. To find such a change in x during any interval,
we must, in the language of calculus, calculate the area
“under the curve” on the v(t) graph for that interval. For
example, during the interval 3 s to 8 s in which the cab has a
velocity of 4.0 m/s, the change in x is

$x " (4.0 m/s)(8.0 s # 3.0 s) " %20 m. (2-6)

(This area is positive because the v(t) curve is above the
t axis.) Figure 2-6a shows that x does indeed increase by 20
m in that interval. However, Fig. 2-6b does not tell us the
values of x at the beginning and end of the interval. For that,
we need additional information, such as the value of x at
some instant.

Velocity and slope of x versus t, elevator cab

Figure 2-6a is an x(t) plot for an elevator cab that is initially
stationary, then moves upward (which we take to be the pos-
itive direction of x), and then stops. Plot v(t).

KEY I DEA

We can find the velocity at any time from the slope of the
x(t) curve at that time.

Calculations: The slope of x(t), and so also the velocity, is
zero in the intervals from 0 to 1 s and from 9 s on, so then
the cab is stationary. During the interval bc, the slope is con-
stant and nonzero, so then the cab moves with constant veloc-
ity.We calculate the slope of x(t) then as

(2-5)

The plus sign indicates that the cab is moving in the positive
x direction. These intervals (where v " 0 and v " 4 m/s) are
plotted in Fig. 2-6b. In addition, as the cab initially begins to

$x
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" v "
24 m # 4.0 m
8.0 s # 3.0 s

" %4.0 m/s.

Note that v is the rate at which  position x is changing with time at a given instant;
that is, v is the derivative of x with respect to t. Also note that v at any instant is
the slope of the position–time curve at the point representing that instant.
Velocity is another vector quantity and thus has an associated direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been
stripped of any indication of direction, either in words or via an algebraic sign.
(Caution: Speed and average speed can be quite different.) A velocity of %5 m/s
and one of #5 m/s both have an associated speed of 5 m/s. The speedometer in a
car measures speed, not velocity (it cannot determine the direction).

2-6 Acceleration
When a particle’s velocity changes, the particle is said to undergo acceleration (or
to accelerate). For motion along an axis, the average acceleration aavg over a time
interval $t is

(2-7)

where the particle has velocity v1 at time t1 and then velocity v2 at time t2. The
instantaneous acceleration (or simply acceleration) is

(2-8)a "
dv
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aavg "
v2 # v1
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� From equations:

à The acceleration of a particle at any instant is the second 
derivative of its position x(t) with respect to time

� Acceleration unit: m/s2 (length/(time2) 

� Acceleration has both magnitude & direction (vector quantity)

� The sign of an acceleration has a nonscientific meaning: 
+ve acceleration à the speed is increasing é
−ve negative acceleration à the speed is decreasing ê (called 
deceleration) 

192-6 ACCE LE RATION
PART 1

Fig. 2-6 (a) The x(t) curve for an eleva-
tor cab that moves upward along an x axis.
(b) The v(t) curve for the cab. Note that it is
the derivative of the x(t) curve (v ! dx/dt).
(c) The a(t) curve for the cab. It is the deriv-
ative of the v(t) curve (a ! dv/dt).The stick
figures along the bottom suggest how a pas-
senger’s body might feel during the
accelerations.
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What you would feel.

In words, the acceleration of a particle at any instant is the rate at which its velocity
is changing at that instant. Graphically, the acceleration at any point is the slope of
the curve of v(t) at that point.We can combine Eq. 2-8 with Eq. 2-4 to write

(2-9)

In words, the acceleration of a particle at any instant is the second derivative of
its position x(t) with respect to time.

A common unit of acceleration is the meter per second per second: m/(s " s)
or m/s2. Other units are in the form of length/(time " time) or length/time2.
Acceleration has both magnitude and direction (it is yet another vector quan-
tity). Its algebraic sign represents its direction on an axis just as for displacement
and velocity; that is, acceleration with a positive value is in the positive direction
of an axis, and acceleration with a negative value is in the negative direction.

a !
dv
dt

!
d
dt

 ! dx
dt " !

d 2x
dt 2 .

Additional examples, video, and practice available at WileyPLUS
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v = dx
dt

,    a = dv
dt

à



� If the signs of the v & a are the same à speed increased é
If the signs of the v & a are opposite  à speed decreased ê

(a) movement in +ve direction, éspeed 
à a & v has same signs à +ve a
(b) movement in +ve direction, êspeed
à a & v has different signs à −ve a

(c) movement in −ve direction, éspeed 
à a & v has same signs à −ve a
(d) movement in −ve direction, êspeed 
à a & v has same signs à +ve a

212-6 ACCE LE RATION
PART 1

CHECKPOINT 3

A wombat moves along an x axis. What is the sign of its acceleration if it is moving
(a) in the positive direction with increasing speed, (b) in the positive direction with de-
creasing speed, (c) in the negative direction with increasing speed, and (d) in the nega-
tive direction with decreasing speed?

Sample Problem

which has the solution

t ! "3 s. (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the
clock reads 0.

(c) Describe the particle’s motion for t # 0.

Reasoning: We need to examine the expressions for x(t),
v(t), and a(t).

At t ! 0, the particle is at x(0) ! $4 m and is moving
with a velocity of v(0) ! %27 m/s—that is, in the negative
direction of the x axis. Its acceleration is a(0) ! 0 because just
then the particle’s velocity is not changing.

For 0 & t & 3 s, the particle still has a negative velocity, so
it continues to move in the negative direction. However, its
acceleration is no longer 0 but is increasing and positive.
Because the signs of the velocity and the acceleration are
opposite, the particle must be slowing.

Indeed, we already know that it stops momentarily at
t ! 3 s. Just then the particle is as far to the left of the origin
in Fig. 2-1 as it will ever get. Substituting t ! 3 s into the
expression for x(t), we find that the particle’s position just then
is x ! %50 m. Its acceleration is still positive.

For t ' 3 s, the particle moves to the right on the axis.
Its acceleration remains positive and grows progressively
larger in magnitude. The velocity is now positive, and it too
grows progressively larger in magnitude.

Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2-1 is given by

x ! 4 % 27t $ t3,

with x in meters and t in seconds.

(a) Because position x depends on time t, the particle must
be moving. Find the particle’s velocity function v(t) and ac-
celeration function a(t).

KEY I DEAS

(1) To get the velocity function v(t), we differentiate the po-
sition function x(t) with respect to time. (2) To get the accel-
eration function a(t), we differentiate the velocity function
v(t) with respect to time.

Calculations: Differentiating the position function, we find

v ! %27 $ 3t2, (Answer)

with v in meters per second. Differentiating the velocity
function then gives us

a ! $6t, (Answer)
with a in meters per second squared.

(b) Is there ever a time when v ! 0?

Calculation: Setting v(t) ! 0 yields
0 ! %27 $ 3t2,

Additional examples, video, and practice available at WileyPLUS
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Answer: 
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t ! 3 s. Just then the particle is as far to the left of the origin
in Fig. 2-1 as it will ever get. Substituting t ! 3 s into the
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(a) Because position x depends on time t, the particle must
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eration function a(t), we differentiate the velocity function
v(t) with respect to time.

Calculations: Differentiating the position function, we find

v ! %27 $ 3t2, (Answer)

with v in meters per second. Differentiating the velocity
function then gives us

a ! $6t, (Answer)
with a in meters per second squared.

(b) Is there ever a time when v ! 0?

Calculation: Setting v(t) ! 0 yields
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in Fig. 2-1 as it will ever get. Substituting t ! 3 s into the
expression for x(t), we find that the particle’s position just then
is x ! %50 m. Its acceleration is still positive.

For t ' 3 s, the particle moves to the right on the axis.
Its acceleration remains positive and grows progressively
larger in magnitude. The velocity is now positive, and it too
grows progressively larger in magnitude.

Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2-1 is given by

x ! 4 % 27t $ t3,

with x in meters and t in seconds.

(a) Because position x depends on time t, the particle must
be moving. Find the particle’s velocity function v(t) and ac-
celeration function a(t).

KEY I DEAS

(1) To get the velocity function v(t), we differentiate the po-
sition function x(t) with respect to time. (2) To get the accel-
eration function a(t), we differentiate the velocity function
v(t) with respect to time.

Calculations: Differentiating the position function, we find

v ! %27 $ 3t2, (Answer)

with v in meters per second. Differentiating the velocity
function then gives us

a ! $6t, (Answer)
with a in meters per second squared.

(b) Is there ever a time when v ! 0?

Calculation: Setting v(t) ! 0 yields
0 ! %27 $ 3t2,

Additional examples, video, and practice available at WileyPLUS
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v = dx
dt

= −27+ 3t2m / s

a = dv
dt

= 6tm / s2

v = 0 = −27+ 3t2    ⇒   3t2 = 27   ⇒   t = 9 = ±3s

The velocity is zero both 3 s before and 3 s after the clock reads 0

Answer:

Answer:



Examples: 
Q.1  If t1= 2 s and t2= 4 s, find the average acceleration when the velocity 
changes from 8 m/s to 12 m/s.
(a) 1 m/s2 (b) 3.33 m/s2 (c) 5 m/s2 (d) 2 m/s2 (e) 4.5 m/s2

Q.2 The velocity of a particle starts from the origin as:

The acceleration of the particle after 2 second is:
(a) 6 m/s2 (b) 12 m/s2 (c) 18 m/s2 (b) 24 m/s2 (b) 30 m/s2

v(t) = 3t2 + 5m / s

aavg =
v2 − v1
t2 − t1

= 12−8
4− 2

= 4
2
= 2m / s2

v(t) = 3t2 + 5m / s

a(t) = dv
dt

= 6t,    ⇒ a(2) = 6× 2 =12m / s2



Q.3 The instantaneous acceleration is given by:

Q.4 A car is traveling at constant speed of 30 m/s for 3 s:
(1) The acceleration of the car is
(a) 0 (b) 3 m/s2 (c) 10 m/s2 (d) 9 m/s2

Because the speed is constant à the acceleration is zero

(2) The distance after that time is:
(a) 90 m (b) 50 m (c) 33 m           (d) 27 m

The distance x = vt = 30 × 3 = 90 m

(a) dx
dt

    (b) d
dt

(dx
dt

)    (c) d
2

dt2
(dx
dt

)    (d ) d
dt

( dx
dt2

)    (e) d
2

dt2
(dv
dt

)
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2-7 Constant Acceleration: A Special Case
In many types of motion, the acceleration is either constant or approximately so.
For example, you might accelerate a car at an approximately constant rate when
a traffic light turns from red to green. Then graphs of your position, velocity, and
acceleration would resemble those in Fig. 2-8. (Note that a(t) in Fig. 2-8c is con-
stant, which requires that v(t) in Fig. 2-8b have a constant slope.) Later when you
brake the car to a stop, the acceleration (or deceleration in common language)
might also be approximately constant.

Such cases are so common that a special set of equations has been derived
for dealing with them. One approach to the derivation of these equations is given
in this section. A second approach is given in the next section. Throughout both
sections and later when you work on the homework problems, keep in mind that
these equations are valid only for constant acceleration (or situations in which you
can approximate the acceleration as being constant).

When the acceleration is constant, the average acceleration and instantaneous ac-
celeration are equal and we can write Eq.2-7,with some changes in notation,as

Here v0 is the velocity at time t ! 0 and v is the velocity at any later time t.We can
recast this equation as

v ! v0 " at. (2-11)

As a check, note that this equation reduces to v ! v0 for t ! 0, as it must.As a fur-
ther check, take the derivative of Eq. 2-11. Doing so yields dv/dt ! a, which is the
definition of a. Figure 2-8b shows a plot of Eq. 2-11, the v(t) function; the function
is linear and thus the plot is a straight line.

In a similar manner, we can rewrite Eq. 2-2 (with a few changes in notation) as

vavg !
x # x0

t # 0

a ! aavg !
v # v0

t # 0
.
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the velocity graph.

Slope of the velocity
graph is plotted on the
acceleration graph.Fig. 2-8 (a) The position x(t) of a particle

moving with constant acceleration. (b) Its
velocity v(t), given at each point by the
slope of the curve of x(t). (c) Its (constant)
acceleration, equal to the (constant) slope
of the curve of v(t).
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a(t) is constant, which requires 
that v(t) has a constant slope

a =	v/t
)2(m/s

x =	vt
(m)

v
(m/s)

t
(s)

2020201

2080402

20180603

20320804

205001005
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2-7 Constant Acceleration: A Special Case
In many types of motion, the acceleration is either constant or approximately so.
For example, you might accelerate a car at an approximately constant rate when
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for dealing with them. One approach to the derivation of these equations is given
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can approximate the acceleration as being constant).
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celeration are equal and we can write Eq.2-7,with some changes in notation,as

Here v0 is the velocity at time t ! 0 and v is the velocity at any later time t.We can
recast this equation as

v ! v0 " at. (2-11)

As a check, note that this equation reduces to v ! v0 for t ! 0, as it must.As a fur-
ther check, take the derivative of Eq. 2-11. Doing so yields dv/dt ! a, which is the
definition of a. Figure 2-8b shows a plot of Eq. 2-11, the v(t) function; the function
is linear and thus the plot is a straight line.
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Equations of Motion with a 
Constant Acceleration

When the acceleration is constant à aavg = a

à

Similarly,

à

2-7 Constant Acceleration: A Special Case
In many types of motion, the acceleration is either constant or approximately so.
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for dealing with them. One approach to the derivation of these equations is given
in this section. A second approach is given in the next section. Throughout both
sections and later when you work on the homework problems, keep in mind that
these equations are valid only for constant acceleration (or situations in which you
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celeration are equal and we can write Eq.2-7,with some changes in notation,as

Here v0 is the velocity at time t ! 0 and v is the velocity at any later time t.We can
recast this equation as

v ! v0 " at. (2-11)

As a check, note that this equation reduces to v ! v0 for t ! 0, as it must.As a fur-
ther check, take the derivative of Eq. 2-11. Doing so yields dv/dt ! a, which is the
definition of a. Figure 2-8b shows a plot of Eq. 2-11, the v(t) function; the function
is linear and thus the plot is a straight line.

In a similar manner, we can rewrite Eq. 2-2 (with a few changes in notation) as
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t # 0
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v # v0

t # 0
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since  t1 = 0,t2 = t,v1 = v0 ,v2 = v
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for dealing with them. One approach to the derivation of these equations is given
in this section. A second approach is given in the next section. Throughout both
sections and later when you work on the homework problems, keep in mind that
these equations are valid only for constant acceleration (or situations in which you
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celeration are equal and we can write Eq.2-7,with some changes in notation,as

Here v0 is the velocity at time t ! 0 and v is the velocity at any later time t.We can
recast this equation as

v ! v0 " at. (2-11)

As a check, note that this equation reduces to v ! v0 for t ! 0, as it must.As a fur-
ther check, take the derivative of Eq. 2-11. Doing so yields dv/dt ! a, which is the
definition of a. Figure 2-8b shows a plot of Eq. 2-11, the v(t) function; the function
is linear and thus the plot is a straight line.

In a similar manner, we can rewrite Eq. 2-2 (with a few changes in notation) as
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t # 0
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since  t1 = 0,t2 = t,x1 = x0 ,x2 = x

232-7 CON STANT ACCE LE RATION: A S PECIAL CAS E
PART 1

Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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a = aavg =
v2 − v1
t2 − t1

= v − vo
t − 0



� For the linear velocity function, vavg from t = 0 to t = 
t) is given by:

� Substituting v from                      into the above 
equation:

� Substituting vavg from the above equation into
gives: 

232-7 CON STANT ACCE LE RATION: A S PECIAL CAS E
PART 1

Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
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First, note that as many as five quantities can possibly be involved in any problem
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then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
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2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?

halliday_c02_013-037hr2.qxd  29-09-2009  12:44  Page 23

2-7 Constant Acceleration: A Special Case
In many types of motion, the acceleration is either constant or approximately so.
For example, you might accelerate a car at an approximately constant rate when
a traffic light turns from red to green. Then graphs of your position, velocity, and
acceleration would resemble those in Fig. 2-8. (Note that a(t) in Fig. 2-8c is con-
stant, which requires that v(t) in Fig. 2-8b have a constant slope.) Later when you
brake the car to a stop, the acceleration (or deceleration in common language)
might also be approximately constant.

Such cases are so common that a special set of equations has been derived
for dealing with them. One approach to the derivation of these equations is given
in this section. A second approach is given in the next section. Throughout both
sections and later when you work on the homework problems, keep in mind that
these equations are valid only for constant acceleration (or situations in which you
can approximate the acceleration as being constant).

When the acceleration is constant, the average acceleration and instantaneous ac-
celeration are equal and we can write Eq.2-7,with some changes in notation,as

Here v0 is the velocity at time t ! 0 and v is the velocity at any later time t.We can
recast this equation as

v ! v0 " at. (2-11)

As a check, note that this equation reduces to v ! v0 for t ! 0, as it must.As a fur-
ther check, take the derivative of Eq. 2-11. Doing so yields dv/dt ! a, which is the
definition of a. Figure 2-8b shows a plot of Eq. 2-11, the v(t) function; the function
is linear and thus the plot is a straight line.

In a similar manner, we can rewrite Eq. 2-2 (with a few changes in notation) as

vavg !
x # x0

t # 0

a ! aavg !
v # v0

t # 0
.
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232-7 CON STANT ACCE LE RATION: A S PECIAL CAS E
PART 1

Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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232-7 CON STANT ACCE LE RATION: A S PECIAL CAS E
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?

halliday_c02_013-037hr2.qxd  29-09-2009  12:44  Page 23



232-7 CON STANT ACCE LE RATION: A S PECIAL CAS E
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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acceleration problem are: x − x0, v, t, a, & v0
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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(1)   x = 3t − 4,                 v = dx
dt

= 3,                    a = dv
dt

= 0

(2)   x = −5t3 + 4t2 + 6,    v = dx
dt

= −15t2 +8t,      a = dv
dt

= −30t +8

(3)   x = 2t−2 − 4t−1,          v = dx
dt

= −4t−3 + 4t−2 ,    a = dv
dt

=12t−4 −8t−3

(4)   x = 5t2 − 3,                v = dx
dt

=10t,                 a = dv
dt

=10

✔

✗

✔

✗



The head of a woodpecker is moving forward at speed of 7.49 m/s 
when the beak makes first contact with a tree limb. The beak stops 
after penetrating the limb by 1.87 mm. Assuming that acceleration 
to be constant, find the acceleration magnitude in terms of g 

212-6 ACCE LE RATION
PART 1

CHECKPOINT 3

A wombat moves along an x axis. What is the sign of its acceleration if it is moving
(a) in the positive direction with increasing speed, (b) in the positive direction with de-
creasing speed, (c) in the negative direction with increasing speed, and (d) in the nega-
tive direction with decreasing speed?

Sample Problem

which has the solution

t ! "3 s. (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the
clock reads 0.

(c) Describe the particle’s motion for t # 0.

Reasoning: We need to examine the expressions for x(t),
v(t), and a(t).

At t ! 0, the particle is at x(0) ! $4 m and is moving
with a velocity of v(0) ! %27 m/s—that is, in the negative
direction of the x axis. Its acceleration is a(0) ! 0 because just
then the particle’s velocity is not changing.

For 0 & t & 3 s, the particle still has a negative velocity, so
it continues to move in the negative direction. However, its
acceleration is no longer 0 but is increasing and positive.
Because the signs of the velocity and the acceleration are
opposite, the particle must be slowing.

Indeed, we already know that it stops momentarily at
t ! 3 s. Just then the particle is as far to the left of the origin
in Fig. 2-1 as it will ever get. Substituting t ! 3 s into the
expression for x(t), we find that the particle’s position just then
is x ! %50 m. Its acceleration is still positive.

For t ' 3 s, the particle moves to the right on the axis.
Its acceleration remains positive and grows progressively
larger in magnitude. The velocity is now positive, and it too
grows progressively larger in magnitude.

Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2-1 is given by

x ! 4 % 27t $ t3,

with x in meters and t in seconds.

(a) Because position x depends on time t, the particle must
be moving. Find the particle’s velocity function v(t) and ac-
celeration function a(t).

KEY I DEAS

(1) To get the velocity function v(t), we differentiate the po-
sition function x(t) with respect to time. (2) To get the accel-
eration function a(t), we differentiate the velocity function
v(t) with respect to time.

Calculations: Differentiating the position function, we find

v ! %27 $ 3t2, (Answer)

with v in meters per second. Differentiating the velocity
function then gives us

a ! $6t, (Answer)
with a in meters per second squared.

(b) Is there ever a time when v ! 0?

Calculation: Setting v(t) ! 0 yields
0 ! %27 $ 3t2,

Additional examples, video, and practice available at WileyPLUS
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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Free-Fall Object 
� If an object is tossed up or down & the effects of air is 

eliminated (in vacuum)
à accelerates downward ê at a certain constant rate 
called free-fall acceleration g 

� The free-fall acceleration g:
� Independent of the object’s characteristics 

(mass, density, or shape..)
� Same for all objects

� In vacuum, feather & apple free-fall at 
the same g 
The acceleration increases the distance 
between successive images 
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including t ! 0) yields
v0 ! (a)(0) " C ! C.

Substituting this into Eq. 2-20 gives us Eq. 2-11.
To derive Eq. 2-15, we rewrite the definition of velocity (Eq. 2-4) as

dx ! v dt

and then take the indefinite integral of both sides to obtain

Next, we substitute for v with Eq. 2-11:

Since v0 is a constant, as is the acceleration a, this can be rewritten as

Integration now yields
(2-21)

where C# is another constant of integration. At time t ! 0, we have x ! x0.
Substituting these values in Eq. 2-21 yields x0 ! C#. Replacing C# with x0 in Eq.
2-21 gives us Eq. 2-15.

2-9 Free-Fall Acceleration
If you tossed an object either up or down and could somehow eliminate the
effects of air on its flight, you would find that the object accelerates downward at
a certain constant rate.That rate is called the free-fall acceleration, and its magni-
tude is represented by g. The acceleration is independent of the object’s charac-
teristics, such as mass, density, or shape; it is the same for all objects.

Two examples of free-fall acceleration are shown in Fig. 2-10, which is a series
of stroboscopic photos of a feather and an apple. As these objects fall, they
accelerate downward—both at the same rate g.Thus, their speeds increase at the
same rate, and they fall together.

The value of g varies slightly with latitude and with elevation. At sea level in
Earth’s midlatitudes the value is 9.8 m/s2 (or 32 ft/s2), which is what you should
use as an exact number for the problems in this book unless otherwise noted.

The equations of motion in Table 2-1 for constant acceleration also apply to
free fall near Earth’s surface; that is, they apply to an object in vertical flight,
either up or down, when the effects of the air can be neglected. However, note
that for free fall: (1) The directions of motion are now along a vertical y axis
instead of the x axis, with the positive direction of y upward. (This is important
for later chapters when combined horizontal and vertical motions are examined.)
(2) The free-fall acceleration is negative—that is, downward on the y axis, toward
Earth’s center—and so it has the value $g in the equations.

x ! v0t " 1
2 at 2 " C#,

!dx ! v0!dt " a!t dt.

!dx ! !(v0 " at) dt.

!dx ! !v dt.

The free-fall acceleration near Earth’s surface is a ! $g ! $9.8 m/s2, and the
magnitude of the acceleration is g ! 9.8 m/s2. Do not substitute $9.8 m/s2 for g. Fig. 2-10 A feather and an apple free

fall in vacuum at the same magnitude of ac-
celeration g.The acceleration increases the
distance between successive images. In the
absence of air, the feather and apple fall to-
gether. (Jim Sugar/Corbis Images)

Suppose you toss a tomato directly upward with an initial (positive) velocity v0
and then catch it when it returns to the release level. During its free-fall flight (from
just after its release to just before it is caught), the equations of Table 2-1 apply to its
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� The equations of motion for constant acceleration 
also applied to free-fall 

� For free-fall: 

1. The directions of motion are along y axis instead 
of the x axis
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a = − g = −9.8 m/s2 in the equations, so it is 
downward ê

� Free-Fall Equations of Motion
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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a = !g,      x0 = y0 ,      x = y
                v = v0 ! gt

          y ! y0 = v0t !
1
2
gt2

         v2 = v0
2 ! 2g(y ! y0 )

         y ! y0 =
1
2

(v0 + v)t

         y ! y0 = vt !
1
2
gt2

à

+



� The velocity changes in 
magnitude & direction:
� During ascent (upward é): 

+ve direction, v decreases, until 
it becomes zero

� The object reaches its maximum 
height at v = 0

� During descent (downward ê): 
−ve direction, v increases
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CHECKPOINT 5

(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the as-
cent, from the release point to the highest point? (b) What is it for the descent, from the
highest point back to the release point? (c) What is the ball’s acceleration at its highest
point?

motion. The acceleration is always a ! "g ! "9.8 m/s2, negative and thus down-
ward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the
ascent, the magnitude of the positive velocity decreases, until it momentarily be-
comes zero. Because the tomato has then stopped, it is at its maximum height.
During the descent, the magnitude of the (now negative) velocity increases.

Sample Problem

those four variables.This yields

(Answer)

(b) What is the ball’s maximum height above its release
point?

Calculation: We can take the ball’s release point to be
y0 ! 0.We can then write Eq. 2-16 in y notation, set y " y0 !
y and v ! 0 (at the maximum height), and solve for y. We 
get

(Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know v0, a ! "g, and displacement y "
y0 ! 5.0 m, and we want t, so we choose Eq. 2-15. Rewriting
it for y and setting y0 ! 0 give us

or

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

4.9t2 " 12t # 5.0 ! 0.

Solving this quadratic equation for t yields

t ! 0.53 s and t ! 1.9 s. (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y ! 5.0 m, once on the
way up and once on the way down.

5.0 m ! (12 m/s)t " (1
2)(9.8 m/s2)t 2.

y ! v0t " 1
2 gt 2,

y !
v 2 " v 0

2

2a
!

0 " (12 m/s)2

2("9.8 m/s2)
! 7.3 m.

t !
v " v0

a
!

0 " 12 m/s
"9.8 m/s2 ! 1.2 s.

Time for full up-down flight, baseball toss

In Fig. 2-11, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum
height?

KEY I DEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall acceleration a ! "g.
Because this is constant, Table 2-1 applies to the motion. (2)
The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial velocity 
v0 ! 12 m/s, and seeking t, we solve Eq. 2-11, which contains

Fig. 2-11 A pitcher tosses a
baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling
objects, provided any effects
from the air can be neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Additional examples, video, and practice available at WileyPLUS
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On September 26, 1993, Dave Munday went over the Canadian edge of Niagara 
Falls in a steel ball equipped with an air hole and then fell 48 m to the water 
(and rocks). Assume his initial velocity was zero, and neglect the effect of the air 
on the ball during the fall.

(a) How long did Munday fall to reach the water surface?

26 CHAPTE R 2 MOTION ALONG A STRAIG HT LI N E

CHECKPOINT 5

(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the as-
cent, from the release point to the highest point? (b) What is it for the descent, from the
highest point back to the release point? (c) What is the ball’s acceleration at its highest
point?

motion. The acceleration is always a ! "g ! "9.8 m/s2, negative and thus down-
ward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the
ascent, the magnitude of the positive velocity decreases, until it momentarily be-
comes zero. Because the tomato has then stopped, it is at its maximum height.
During the descent, the magnitude of the (now negative) velocity increases.

Sample Problem

those four variables.This yields

(Answer)

(b) What is the ball’s maximum height above its release
point?

Calculation: We can take the ball’s release point to be
y0 ! 0.We can then write Eq. 2-16 in y notation, set y " y0 !
y and v ! 0 (at the maximum height), and solve for y. We 
get

(Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know v0, a ! "g, and displacement y "
y0 ! 5.0 m, and we want t, so we choose Eq. 2-15. Rewriting
it for y and setting y0 ! 0 give us

or

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

4.9t2 " 12t # 5.0 ! 0.

Solving this quadratic equation for t yields

t ! 0.53 s and t ! 1.9 s. (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y ! 5.0 m, once on the
way up and once on the way down.

5.0 m ! (12 m/s)t " (1
2)(9.8 m/s2)t 2.

y ! v0t " 1
2 gt 2,

y !
v 2 " v 0

2

2a
!

0 " (12 m/s)2

2("9.8 m/s2)
! 7.3 m.

t !
v " v0

a
!

0 " 12 m/s
"9.8 m/s2 ! 1.2 s.

Time for full up-down flight, baseball toss

In Fig. 2-11, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum
height?

KEY I DEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall acceleration a ! "g.
Because this is constant, Table 2-1 applies to the motion. (2)
The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial velocity 
v0 ! 12 m/s, and seeking t, we solve Eq. 2-11, which contains

Fig. 2-11 A pitcher tosses a
baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling
objects, provided any effects
from the air can be neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Additional examples, video, and practice available at WileyPLUS
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0

0

0

=

=

y
v y = −48m

a = g = 9.8m s2

y − y0 = v0t −
1
2
gt2

−48 = (0)t − 1
2

(9.8)t2

t2 = 48
4.8

      ⇒ t = 3.1s
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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at      t =1s,         y − y0 = v0t −
1
2
gt2

                       ⇒ y − 0 = (0)t − 1
2

(9.8)(1)2 ⇒ y = −4.9m

at      t = 2s,         y = −19.6m
at      t = 3s,         y = −44.1m

(b) Munday could count off the three seconds of free fall but could not see how 
far he had fallen with each count. Determine his position at each full second. 

(c) What was Munday’s velocity as he reached the water surface?

v2 = v0 − 2g y − y0( )
v2 = (0) − 2(9.8)(−48)
v2 = −19.6(−48)
v = ±30.67m s

Because the motion in − y à v = −30.67m/s
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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at t = 1s
v = v0 − gt = (−9.8)(1) = −9.8m s
at t = 2s
v = (−9.8)(2) = −19.6m s
at t = 3s
v = (−9.8)(3) = −29.4m s

(d) What was Munday’s velocity at each count of one full second? Was he 
aware of his increasing speed?

He was unaware of his increasing speed 
because his acceleration was constant
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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CHECKPOINT 5

(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the as-
cent, from the release point to the highest point? (b) What is it for the descent, from the
highest point back to the release point? (c) What is the ball’s acceleration at its highest
point?

motion. The acceleration is always a ! "g ! "9.8 m/s2, negative and thus down-
ward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the
ascent, the magnitude of the positive velocity decreases, until it momentarily be-
comes zero. Because the tomato has then stopped, it is at its maximum height.
During the descent, the magnitude of the (now negative) velocity increases.

Sample Problem

those four variables.This yields

(Answer)

(b) What is the ball’s maximum height above its release
point?

Calculation: We can take the ball’s release point to be
y0 ! 0.We can then write Eq. 2-16 in y notation, set y " y0 !
y and v ! 0 (at the maximum height), and solve for y. We 
get

(Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know v0, a ! "g, and displacement y "
y0 ! 5.0 m, and we want t, so we choose Eq. 2-15. Rewriting
it for y and setting y0 ! 0 give us

or

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

4.9t2 " 12t # 5.0 ! 0.

Solving this quadratic equation for t yields

t ! 0.53 s and t ! 1.9 s. (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y ! 5.0 m, once on the
way up and once on the way down.

5.0 m ! (12 m/s)t " (1
2)(9.8 m/s2)t 2.

y ! v0t " 1
2 gt 2,

y !
v 2 " v 0

2

2a
!

0 " (12 m/s)2

2("9.8 m/s2)
! 7.3 m.

t !
v " v0

a
!

0 " 12 m/s
"9.8 m/s2 ! 1.2 s.

Time for full up-down flight, baseball toss

In Fig. 2-11, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum
height?

KEY I DEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall acceleration a ! "g.
Because this is constant, Table 2-1 applies to the motion. (2)
The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial velocity 
v0 ! 12 m/s, and seeking t, we solve Eq. 2-11, which contains

Fig. 2-11 A pitcher tosses a
baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling
objects, provided any effects
from the air can be neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Additional examples, video, and practice available at WileyPLUS
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CHECKPOINT 5

(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the as-
cent, from the release point to the highest point? (b) What is it for the descent, from the
highest point back to the release point? (c) What is the ball’s acceleration at its highest
point?

motion. The acceleration is always a ! "g ! "9.8 m/s2, negative and thus down-
ward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the
ascent, the magnitude of the positive velocity decreases, until it momentarily be-
comes zero. Because the tomato has then stopped, it is at its maximum height.
During the descent, the magnitude of the (now negative) velocity increases.

Sample Problem

those four variables.This yields

(Answer)

(b) What is the ball’s maximum height above its release
point?

Calculation: We can take the ball’s release point to be
y0 ! 0.We can then write Eq. 2-16 in y notation, set y " y0 !
y and v ! 0 (at the maximum height), and solve for y. We 
get

(Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know v0, a ! "g, and displacement y "
y0 ! 5.0 m, and we want t, so we choose Eq. 2-15. Rewriting
it for y and setting y0 ! 0 give us

or

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

4.9t2 " 12t # 5.0 ! 0.

Solving this quadratic equation for t yields

t ! 0.53 s and t ! 1.9 s. (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y ! 5.0 m, once on the
way up and once on the way down.

5.0 m ! (12 m/s)t " (1
2)(9.8 m/s2)t 2.

y ! v0t " 1
2 gt 2,

y !
v 2 " v 0

2

2a
!

0 " (12 m/s)2

2("9.8 m/s2)
! 7.3 m.

t !
v " v0

a
!

0 " 12 m/s
"9.8 m/s2 ! 1.2 s.

Time for full up-down flight, baseball toss

In Fig. 2-11, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum
height?

KEY I DEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall acceleration a ! "g.
Because this is constant, Table 2-1 applies to the motion. (2)
The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial velocity 
v0 ! 12 m/s, and seeking t, we solve Eq. 2-11, which contains

Fig. 2-11 A pitcher tosses a
baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling
objects, provided any effects
from the air can be neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Additional examples, video, and practice available at WileyPLUS
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232-7 CON STANT ACCE LE RATION: A S PECIAL CAS E
PART 1

Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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CHECKPOINT 5

(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the as-
cent, from the release point to the highest point? (b) What is it for the descent, from the
highest point back to the release point? (c) What is the ball’s acceleration at its highest
point?

motion. The acceleration is always a ! "g ! "9.8 m/s2, negative and thus down-
ward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the
ascent, the magnitude of the positive velocity decreases, until it momentarily be-
comes zero. Because the tomato has then stopped, it is at its maximum height.
During the descent, the magnitude of the (now negative) velocity increases.

Sample Problem

those four variables.This yields

(Answer)

(b) What is the ball’s maximum height above its release
point?

Calculation: We can take the ball’s release point to be
y0 ! 0.We can then write Eq. 2-16 in y notation, set y " y0 !
y and v ! 0 (at the maximum height), and solve for y. We 
get

(Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know v0, a ! "g, and displacement y "
y0 ! 5.0 m, and we want t, so we choose Eq. 2-15. Rewriting
it for y and setting y0 ! 0 give us

or

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

4.9t2 " 12t # 5.0 ! 0.

Solving this quadratic equation for t yields

t ! 0.53 s and t ! 1.9 s. (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y ! 5.0 m, once on the
way up and once on the way down.

5.0 m ! (12 m/s)t " (1
2)(9.8 m/s2)t 2.

y ! v0t " 1
2 gt 2,

y !
v 2 " v 0

2

2a
!

0 " (12 m/s)2

2("9.8 m/s2)
! 7.3 m.

t !
v " v0

a
!

0 " 12 m/s
"9.8 m/s2 ! 1.2 s.

Time for full up-down flight, baseball toss

In Fig. 2-11, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum
height?

KEY I DEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall acceleration a ! "g.
Because this is constant, Table 2-1 applies to the motion. (2)
The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial velocity 
v0 ! 12 m/s, and seeking t, we solve Eq. 2-11, which contains

Fig. 2-11 A pitcher tosses a
baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling
objects, provided any effects
from the air can be neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Additional examples, video, and practice available at WileyPLUS
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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CHECKPOINT 5

(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the as-
cent, from the release point to the highest point? (b) What is it for the descent, from the
highest point back to the release point? (c) What is the ball’s acceleration at its highest
point?

motion. The acceleration is always a ! "g ! "9.8 m/s2, negative and thus down-
ward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the
ascent, the magnitude of the positive velocity decreases, until it momentarily be-
comes zero. Because the tomato has then stopped, it is at its maximum height.
During the descent, the magnitude of the (now negative) velocity increases.

Sample Problem

those four variables.This yields

(Answer)

(b) What is the ball’s maximum height above its release
point?

Calculation: We can take the ball’s release point to be
y0 ! 0.We can then write Eq. 2-16 in y notation, set y " y0 !
y and v ! 0 (at the maximum height), and solve for y. We 
get

(Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know v0, a ! "g, and displacement y "
y0 ! 5.0 m, and we want t, so we choose Eq. 2-15. Rewriting
it for y and setting y0 ! 0 give us

or

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

4.9t2 " 12t # 5.0 ! 0.

Solving this quadratic equation for t yields

t ! 0.53 s and t ! 1.9 s. (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y ! 5.0 m, once on the
way up and once on the way down.

5.0 m ! (12 m/s)t " (1
2)(9.8 m/s2)t 2.

y ! v0t " 1
2 gt 2,

y !
v 2 " v 0

2

2a
!

0 " (12 m/s)2

2("9.8 m/s2)
! 7.3 m.

t !
v " v0

a
!

0 " 12 m/s
"9.8 m/s2 ! 1.2 s.

Time for full up-down flight, baseball toss

In Fig. 2-11, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum
height?

KEY I DEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall acceleration a ! "g.
Because this is constant, Table 2-1 applies to the motion. (2)
The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial velocity 
v0 ! 12 m/s, and seeking t, we solve Eq. 2-11, which contains

Fig. 2-11 A pitcher tosses a
baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling
objects, provided any effects
from the air can be neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Additional examples, video, and practice available at WileyPLUS
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Two times because the ball passes twice through y = 5.0 m, once on 
the way up and once on the way down
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PART 1

Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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Chapter 2: MOTION ALONG A STRAIGHT LINE 

1- Complete the following statement: Displacement is 
a) a scalar that indicates the distance between two points. 
b) a vector indicating the distance and direction from one point to another. 
c) a measure of volume. 
d) the same as the distance traveled between two points. 

2- A particle moves along the x axis from xi to xf . which results 
in the displacement with the largest magnitude? 
a). xi = 4m ,  xf = 6m 
b). xi = - 4m, xf = - 8m 
c). xi = - 4m, xf = 2m 
d). xi = - 4m, xf = 4m 
#
3. Suppose the motion of a particle is described by the equation: 
X = 20 + 4 t 2. Find the average velocity of the particle in the time 
interval t1=2 s to t2=5 s ? 
#
a) 29 m/s              b) 28 m/s               c) 84 m/s                     d) 10 m/s 
#
4. The following are equations of the position of a particle, in 
which situation the velocity of the particle is constant ? 
!"#'#.#/#0#

$
#1#$########+"#'#.#1$#0#2########,"#'#.#12#0#�#$############-"#'#.#/#0#�#$ 

5. The coordinate of a particle in meters is given by                  
x(t) = 16t � 3 t3, where the time t is in seconds. The particle is 
momentarily at  rest at t = 
 
!")%34#5####################+"#(%2#5###################,"4%2#5##########################-"3%2#5#
!

Check point : 1, 2 , 3, 4 , 5 

 

Problems   27, 47  

 

Problems:  23, 45

Assignments: 
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x

Green
car

Red
car

xg

xr

Fig. 2-24 Problems 34 and 35.

what time is it reached? (h) What is the acceleration of the particle
at the instant the particle is not moving (other than at t ! 0)?
(i) Determine the average velocity of the particle between t ! 0
and t ! 3 s.

•19 At a certain time a particle had a speed of 18 m/s in
the positive x direction, and 2.4 s later its speed was 30 m/s in the
opposite direction. What is the average acceleration of the particle
during this 2.4 s interval?

•20 (a) If the position of a particle is given by x ! 20t " 5t3,
where x is in meters and t is in seconds, when, if ever, is the parti-
cle’s velocity zero? (b) When is its acceleration a zero? (c) For
what time range (positive or negative) is a negative? (d) Positive?
(e) Graph x(t), v(t), and a(t).

••21 From t ! 0 to t ! 5.00 min, a man stands still, and from 
t ! 5.00 min to t ! 10.0 min, he walks briskly in a straight line at a
constant speed of 2.20 m/s. What are (a) his average velocity vavg

and (b) his average acceleration aavg in the time interval 2.00 min to
8.00 min? What are (c) vavg and (d) aavg in the time interval 3.00 min
to 9.00 min? (e) Sketch x versus t and v versus t, and indicate how
the answers to (a) through (d) can be obtained from the graphs.

••22 The position of a particle moving along the x axis depends
on the time according to the equation x ! ct2 " bt3, where x is in
meters and t in seconds.What are the units of (a) constant c and (b)
constant b? Let their numerical values be 3.0 and 2.0, respectively.
(c) At what time does the particle reach its maximum positive x po-
sition? From t ! 0.0 s to t ! 4.0 s, (d) what distance does the parti-
cle move and (e) what is its displacement? Find its velocity at times
(f) 1.0 s, (g) 2.0 s, (h) 3.0 s, and (i) 4.0 s. Find its acceleration at
times (j) 1.0 s, (k) 2.0 s, (l) 3.0 s, and (m) 4.0 s.

sec. 2-7 Constant Acceleration: A Special Case
•23 An electron with an initial velocity v0 1.50 # 105 m/s
enters a region of length L 1.00
cm where it is electrically acceler-
ated (Fig. 2-23). It emerges with
v 5.70 # 106 m/s. What is its ac-
celeration, assumed constant?

•24 Catapulting mush-
rooms. Certain mushrooms launch
their spores by a catapult mecha-
nism.As water condenses from the
air onto a spore that is attached to
the mushroom, a drop grows on
one side of the spore and a film
grows on the other side. The spore is bent over by the drop’s
weight, but when the film reaches the drop, the drop’s water sud-
denly spreads into the film and the spore springs upward so rapidly
that it is slung off into the air. Typically, the spore reaches a speed
of 1.6 m/s in a 5.0 mm launch; its speed is then reduced to zero in
1.0 mm by the air. Using that data and assuming constant accelera-
tions, find the acceleration in terms of g during (a) the launch and
(b) the speed reduction.

•25 An electric vehicle starts from rest and accelerates at a rate
of 2.0 m/s2 in a straight line until it reaches a speed of 20 m/s. The
vehicle then slows at a constant rate of 1.0 m/s2 until it stops. (a)
How much time elapses from start to stop? (b) How far does the
vehicle travel from start to stop?

•26 A muon (an elementary particle) enters a region with a
speed of 5.00 # 106 m/s and then is slowed at the rate of 1.25 #

!

!
!SSM

SSM

1014 m/s2. (a) How far does the muon take to stop? (b) Graph x
versus t and v versus t for the muon.

•27 An electron has a constant acceleration of $3.2 m/s2. At a
certain instant its velocity is $9.6 m/s. What is its velocity (a) 2.5 s
earlier and (b) 2.5 s later?

•28 On a dry road, a car with good tires may be able to brake with a
constant deceleration of 4.92 m/s2. (a) How long does such a car, ini-
tially traveling at 24.6 m/s, take to stop? (b) How far does it travel in
this time? (c) Graph x versus t and v versus t for the deceleration.

•29 A certain elevator cab has a total run of 190 m and a max-
imum speed of 305 m/min, and it accelerates from rest and then
back to rest at 1.22 m/s2. (a) How far does the cab move while ac-
celerating to full speed from rest? (b) How long does it take to
make the nonstop 190 m run, starting and ending at rest?

•30 The brakes on your car can slow you at a rate of 5.2 m/s2. (a)
If you are going 137 km/h and suddenly see a state trooper, what is
the minimum time in which you can get your car under the 90
km/h speed limit? (The answer reveals the futility of braking to
keep your high speed from being detected with a radar or laser
gun.) (b) Graph x versus t and v versus t for such a slowing.

•31 Suppose a rocket ship in deep space moves with con-
stant acceleration equal to 9.8 m/s2, which gives the illusion of nor-
mal gravity during the flight. (a) If it starts from rest, how long will
it take to acquire a speed one-tenth that of light, which travels at
3.0 # 108 m/s? (b) How far will it travel in so doing?

•32 A world’s land speed record was set by Colonel John
P. Stapp when in March 1954 he rode a rocket-propelled sled that
moved along a track at 1020 km/h. He and the sled were brought to
a stop in 1.4 s. (See Fig. 2-7.) In terms of g, what acceleration did he
experience while stopping?

•33 A car traveling 56.0 km/h is 24.0 m from a barrier
when the driver slams on the brakes. The car hits the barrier 2.00 s
later. (a) What is the magnitude of the car’s constant acceleration
before impact? (b) How fast is the car traveling at impact?

••34 In Fig.2-24,a red car and a green car, identical except for the
color, move toward each other in adjacent lanes and parallel to an x
axis. At time t ! 0, the red car is at xr ! 0 and the green car is at xg !
220 m. If the red car has a constant velocity of 20 km/h, the cars pass
each other at x ! 44.5 m, and if it has a constant velocity of 40 km/h,
they pass each other at x ! 76.6 m. What are (a) the initial velocity
and (b) the constant acceleration of the green car?

ILWSSM

SSM

ILW

Nonaccelerating
region

Accelerating
region

Path of
electron

L

Fig. 2-23 Problem 23.

••35 Figure 2-24 shows a red car
and a green car that move toward
each other. Figure 2-25 is a graph of
their motion, showing the positions
xg0 ! 270 m and xr0 ! "35.0 m at
time t ! 0. The green car has a con-
stant speed of 20.0 m/s and the red
car begins from rest. What is the ac-
celeration magnitude of the red car?

xg 0

xr 0
0

x 
(m

)

t (s)
120

Fig. 2-25 Problem 35.
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33PROB LE M S
PART 1

••36 A car moves along an x axis through a distance of 900 m,
starting at rest (at x ! 0) and ending at rest (at x ! 900 m).
Through the first of that distance, its acceleration is "2.25 m/s2.
Through the rest of that distance, its acceleration is #0.750 m/s2.
What are (a) its travel time through the 900 m and (b) its maxi-
mum speed? (c) Graph position x, velocity v, and acceleration a
versus time t for the trip.

••37 Figure 2-26 depicts the motion
of a particle moving along an x axis
with a constant acceleration. The fig-
ure’s vertical scaling is set by xs ! 6.0
m.What are the (a) magnitude and (b)
direction of the particle’s acceleration?

••38 (a) If the maximum acceleration
that is tolerable for passengers in a
subway train is 1.34 m/s2 and subway
stations are located 806 m apart, what
is the maximum speed a subway train
can attain between stations? (b) What is
the travel time between stations? (c) If a subway train stops for 20 s
at each station, what is the maximum average speed of the train, from
one start-up to the next? (d) Graph x, v, and a versus t for the interval
from one start-up to the next.

••39 Cars A and B move in the same direction in adjacent lanes.The
position x of car A is given in Fig. 2-27, from time t ! 0 to t ! 7.0 s.The
figure’s vertical scaling is set by xs ! 32.0 m.At t ! 0, car B is at x ! 0,
with a velocity of 12 m/s and a negative constant acceleration aB. (a)
What must aB be such that the cars are (momentarily) side by side
(momentarily at the same value of x) at t ! 4.0 s? (b) For that value of
aB, how many times are the cars side by side? (c) Sketch the position x
of car B versus time t on Fig.2-27.How many times will the cars be side
by side if the magnitude of acceleration aB is (d) more than and (e) less
than the answer to part (a)?

1
4

processes begin when the trains
are 200 m apart. What is their
separation when both trains have
stopped?

•••42 You are arguing over a
cell phone while trailing an
unmarked police car by 25 m;
both your car and the police
car are traveling at 110 km/h.
Your argument diverts your attention from the police car for 2.0 s
(long enough for you to look at the phone and yell, “I won’t do
that!”). At the beginning of that 2.0 s, the police officer begins
braking suddenly at 5.0 m/s2. (a) What is the separation between
the two cars when your attention finally returns? Suppose that you
take another 0.40 s to realize your danger and begin braking. (b) If
you too brake at 5.0 m/s2, what is your speed when you hit the po-
lice car?

•••43 When a high-speed passenger train traveling at
161 km/h rounds a bend, the engineer is shocked to see that a
locomotive has improperly entered onto the track from a siding
and is a distance D ! 676 m ahead (Fig. 2-29). The locomotive is
moving at 29.0 km/h.The engineer of the high-speed train immedi-
ately applies the brakes. (a) What must be the magnitude of the re-
sulting constant deceleration if a collision is to be just avoided? (b)
Assume that the engineer is at x ! 0 when, at t ! 0, he first spots
the locomotive. Sketch x(t) curves for the locomotive and high-
speed train for the cases in which a collision is just avoided and is
not quite avoided.

1 2
0

x (m)

xs

t (s)

Fig. 2-26 Problem 37.

x 
(m

)

xs

0 1 2 3
t (s)

4 5 6 7

Fig. 2-27 Problem 39.

D

High-speed
train Locomotive

Fig. 2-29 Problem 43.

sec. 2-9 Free-Fall Acceleration
•44 When startled, an armadillo will leap upward. Suppose it
rises 0.544 m in the first 0.200 s. (a) What is its initial speed as it
leaves the ground? (b) What is its speed at the height of 0.544 m?
(c) How much higher does it go?

•45 (a) With what speed must a ball be thrown verti-
cally from ground level to rise to a maximum height of 50 m?
(b) How long will it be in the air? (c) Sketch graphs of y, v, and a
versus t for the ball. On the first two graphs, indicate the time at
which 50 m is reached.

•46 Raindrops fall 1700 m from a cloud to the ground. (a) If they
were not slowed by air resistance, how fast would the drops be
moving when they struck the ground? (b) Would it be safe to walk
outside during a rainstorm?

•47 At a construction site a pipe wrench struck the ground
with a speed of 24 m/s. (a) From what height was it inadvertently

SSM

WWWSSM

••40 You are driving toward a traffic signal when it turns
yellow. Your speed is the legal speed limit of v0 55 km/h; your
best deceleration rate has the magnitude a ! 5.18 m/s2. Your best
reaction time to begin braking is T ! 0.75 s. To avoid having the
front of your car enter the intersection after the light turns red,
should you brake to a stop or continue to move at 55 km/h if the
distance to the intersection and the duration of the yellow light are
(a) 40 m and 2.8 s, and (b) 32 m and 1.8 s? Give an answer of
brake, continue, either (if either strategy works), or neither (if nei-
ther strategy works and the yellow duration is inappropriate).

••41 As two trains move along a track, their conductors suddenly
notice that they are headed toward each other. Figure 2-28 gives their
velocities v as functions of time t as the conductors slow the trains.
The figure’s vertical scaling is set by vs ! 40.0 m/s. The slowing

!

v 
(m

/s
)

0

vs

t (s)2 4 6

Fig. 2-28 Problem 41.
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Physics 110
1435-1436 H

Instructor: Dr. Alaa Imam
E-mail: alaa_y_emam@hotmail.com



Chapter 3
Vectors

Sections 3-2, 3-3

Vectors & Scalars
Adding Vectors Geometrically



� The important skills from this lecture:
1. Define and differentiate between vector & scalar 

quantities

2. Add vectors geometrically 

3. Identify the addition properties of vectors: 
commutative law, associative law, and subtraction



Vectors & Scalars
� A particle moving along a straight line can move in only 

two directions, +ve & −ve

� For a particle moving in 3D, + & − signs is not enough to 
indicate a direction à we use a vector

� Physical quantities could be vector or scalar: 
� Vector quantity: has magnitude & direction 

à represented by vector 
e.g. displacement, velocity, & acceleration

� A vector that represents a displacement is called 
displacement vector
(Similarly, velocity vectors & acceleration vectors) 

� Scalar quantity: no direction 
e.g. temperature, pressure, energy, mass..

� Note: A single value, with a sign specifies a scalar 
(e.g., a temperature of −40°F)



3-1 W H AT  I S  P H YS I C S ?
Physics deals with a great many quantities that have both size and direc-

tion, and it needs a special mathematical language—the language of vectors—to
describe those quantities. This language is also used in engineering, the other
sciences, and even in common speech. If you have ever given directions such as
“Go five blocks down this street and then hang a left,” you have used the language
of vectors. In fact, navigation of any sort is based on vectors, but physics and engi-
neering also need vectors in special ways to explain phenomena involving rotation
and magnetic forces, which we get to in later chapters. In this chapter, we focus on
the basic language of vectors.

3-2 Vectors and Scalars
A particle moving along a straight line can move in only two directions. We can
take its motion to be positive in one of these directions and negative in the other.
For a particle moving in three dimensions, however, a plus sign or minus sign is no
longer enough to indicate a direction. Instead, we must use a vector.

A vector has magnitude as well as direction, and vectors follow certain
(vector) rules of combination, which we examine in this chapter. A vector
quantity is a quantity that has both a magnitude and a direction and thus can be
represented with a vector. Some physical quantities that are vector quantities are
displacement, velocity, and acceleration. You will see many more throughout this
book, so learning the rules of vector combination now will help you greatly in
later chapters.

Not all physical quantities involve a direction.Temperature, pressure, energy,
mass, and time, for example, do not “point” in the spatial sense. We call such
quantities scalars, and we deal with them by the rules of ordinary algebra. A sin-
gle value, with a sign (as in a temperature of !40°F), specifies a scalar.

The simplest vector quantity is displacement, or change of position. A vec-
tor that represents a displacement is called, reasonably, a displacement vector.
(Similarly, we have velocity vectors and acceleration vectors.) If a particle
changes its position by moving from A to B in Fig. 3-1a, we say that it undergoes
a displacement from A to B, which we represent with an arrow pointing from A
to B. The arrow specifies the vector graphically. To distinguish vector symbols
from other kinds of arrows in this book, we use the outline of a triangle as the
arrowhead.

In Fig. 3-1a, the arrows from A to B, from A" to B", and from A# to B# have
the same magnitude and direction. Thus, they specify identical displacement vec-
tors and represent the same change of position for the particle. A vector can be
shifted without changing its value if its length and direction are not changed.

The displacement vector tells us nothing about the actual path that the parti-
cle takes. In Fig. 3-1b, for example, all three paths connecting points A and B cor-
respond to the same displacement vector, that of Fig. 3-1a. Displacement vectors
represent only the overall effect of the motion, not the motion itself.

V E C T O R S

Fig. 3-1 (a) All three arrows have the
same magnitude and direction and thus
represent the same displacement. (b) All
three paths connecting the two points cor-
respond to the same displacement vector.

(a)

A'

B'

A"

B"

A

B

A

B

(b)

3
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Example: Displacement Vector
� If a particle moves from A to B 

à its displacement represented 
by an arrow from A to B

� The arrows from A to B, from A’ to B’, and from A’’ to 
B’’ have the same magnitude & direction
à identical displacement vectors 
à represent the same change in position

� A vector can be shifted without changing its value 
if its length & direction are not changed

� Displacement vectors represent only the overall effect 
of the motion, not the path of motion itself

3-1 W H AT  I S  P H YS I C S ?
Physics deals with a great many quantities that have both size and direc-

tion, and it needs a special mathematical language—the language of vectors—to
describe those quantities. This language is also used in engineering, the other
sciences, and even in common speech. If you have ever given directions such as
“Go five blocks down this street and then hang a left,” you have used the language
of vectors. In fact, navigation of any sort is based on vectors, but physics and engi-
neering also need vectors in special ways to explain phenomena involving rotation
and magnetic forces, which we get to in later chapters. In this chapter, we focus on
the basic language of vectors.

3-2 Vectors and Scalars
A particle moving along a straight line can move in only two directions. We can
take its motion to be positive in one of these directions and negative in the other.
For a particle moving in three dimensions, however, a plus sign or minus sign is no
longer enough to indicate a direction. Instead, we must use a vector.

A vector has magnitude as well as direction, and vectors follow certain
(vector) rules of combination, which we examine in this chapter. A vector
quantity is a quantity that has both a magnitude and a direction and thus can be
represented with a vector. Some physical quantities that are vector quantities are
displacement, velocity, and acceleration. You will see many more throughout this
book, so learning the rules of vector combination now will help you greatly in
later chapters.

Not all physical quantities involve a direction.Temperature, pressure, energy,
mass, and time, for example, do not “point” in the spatial sense. We call such
quantities scalars, and we deal with them by the rules of ordinary algebra. A sin-
gle value, with a sign (as in a temperature of !40°F), specifies a scalar.

The simplest vector quantity is displacement, or change of position. A vec-
tor that represents a displacement is called, reasonably, a displacement vector.
(Similarly, we have velocity vectors and acceleration vectors.) If a particle
changes its position by moving from A to B in Fig. 3-1a, we say that it undergoes
a displacement from A to B, which we represent with an arrow pointing from A
to B. The arrow specifies the vector graphically. To distinguish vector symbols
from other kinds of arrows in this book, we use the outline of a triangle as the
arrowhead.

In Fig. 3-1a, the arrows from A to B, from A" to B", and from A# to B# have
the same magnitude and direction. Thus, they specify identical displacement vec-
tors and represent the same change of position for the particle. A vector can be
shifted without changing its value if its length and direction are not changed.

The displacement vector tells us nothing about the actual path that the parti-
cle takes. In Fig. 3-1b, for example, all three paths connecting points A and B cor-
respond to the same displacement vector, that of Fig. 3-1a. Displacement vectors
represent only the overall effect of the motion, not the motion itself.

V E C T O R S

Fig. 3-1 (a) All three arrows have the
same magnitude and direction and thus
represent the same displacement. (b) All
three paths connecting the two points cor-
respond to the same displacement vector.

(a)

A'

B'

A"

B"

A

B

A

B

(b)

3
C H A P T E R

38

halliday_c03_038-057hr.1.qxd  21-09-2009  14:48  Page 38

Head 

Tail 
Magnitude A

B



Adding Vectors Geometrically

� If a particle moves from A to B, then to C 
à the overall displacement (net displacement) 
is the sum of AB & BC vectors
AB + BC à displacement from A to C 
AC called vector sum (or resultant)

� represent the displacement vectors 
AB, BC, & AC

indicate only the magnitude 

� We can represent the relation among the three 
vectors with the vector equation

393-3 ADDI NG VECTORS G EOM ETR ICALLY
PART 1

3-3 Adding Vectors Geometrically
Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol ! in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Vector addition, defined in this way, has two important properties. First, the
order of addition does not matter. Adding to gives the same result as adding

to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
add that sum to . We get the same result either way, as shown in Fig. 3-4. That is,

(associative law). (3-3)

The vector is a vector with the same magnitude as but the opposite
direction (see Fig. 3-5).Adding the two vectors in Fig. 3-5 would yield

b
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b
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b
:
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b
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b
:

a:s:

s: # a: ! b
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,

a:

Fig. 3-2 (a) AC is the vector sum of the
vectors AB and BC. (b) The same vectors
relabeled.

A 
C 

B 

(a) 

Actual 
path 

Net displacement 
is the vector sum 

(b) 

a 

s 

b 

This is the 
resulting vector, 
from tail of a 
to head of b.

To add a and b,
draw them 
head to tail.

Fig. 3-3 The two vectors and can be
added in either order; see Eq. 3-2.

b
:

a:

a + b 

b + a 
Finish Start 

Vector sum 
a 

a 

b 

b 

You get the same vector
result for either order of
adding vectors.

Fig. 3-4 The three vectors , , and can be grouped in any way as they are added; see
Eq. 3-3.
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a + (b + c ) 
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c 

You get the same vector
result for any order of
adding the vectors.

Fig. 3-5 The vectors and have the
same magnitude and opposite directions.
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3-3 Adding Vectors Geometrically
Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol ! in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Vector addition, defined in this way, has two important properties. First, the
order of addition does not matter. Adding to gives the same result as adding

to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
add that sum to . We get the same result either way, as shown in Fig. 3-4. That is,

(associative law). (3-3)

The vector is a vector with the same magnitude as but the opposite
direction (see Fig. 3-5).Adding the two vectors in Fig. 3-5 would yield
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what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
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in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
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which says that the vector is the vector sum of vectors and .The symbol ! in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Vector addition, defined in this way, has two important properties. First, the
order of addition does not matter. Adding to gives the same result as adding

to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
add that sum to . We get the same result either way, as shown in Fig. 3-4. That is,

(associative law). (3-3)

The vector is a vector with the same magnitude as but the opposite
direction (see Fig. 3-5).Adding the two vectors in Fig. 3-5 would yield
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and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol ! in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Vector addition, defined in this way, has two important properties. First, the
order of addition does not matter. Adding to gives the same result as adding

to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
add that sum to . We get the same result either way, as shown in Fig. 3-4. That is,

(associative law). (3-3)

The vector is a vector with the same magnitude as but the opposite
direction (see Fig. 3-5).Adding the two vectors in Fig. 3-5 would yield
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How to Add Vectors
1. Draw the 1st vector with 

proper length & orientation

2. Draw the 2nd vector with 
proper length & orientation 
originating from the head of 
the 1st vector

3. The vector sum is the vector 
that extends from the tail of 
1st vector  to the head of the 
2nd one

4. Measure the length & 
orientation angle of the 
resultant
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Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol ! in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Vector addition, defined in this way, has two important properties. First, the
order of addition does not matter. Adding to gives the same result as adding

to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
add that sum to . We get the same result either way, as shown in Fig. 3-4. That is,

(associative law). (3-3)

The vector is a vector with the same magnitude as but the opposite
direction (see Fig. 3-5).Adding the two vectors in Fig. 3-5 would yield
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Vector Addition Properties
� Vector addition is commutative: 

The addition order does not matter

� Vector addition is Associative: 
For adding more than two vectors, we can group them in any 
order
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Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol ! in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Vector addition, defined in this way, has two important properties. First, the
order of addition does not matter. Adding to gives the same result as adding

to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
add that sum to . We get the same result either way, as shown in Fig. 3-4. That is,

(associative law). (3-3)

The vector is a vector with the same magnitude as but the opposite
direction (see Fig. 3-5).Adding the two vectors in Fig. 3-5 would yield
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Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol ! in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Vector addition, defined in this way, has two important properties. First, the
order of addition does not matter. Adding to gives the same result as adding

to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
add that sum to . We get the same result either way, as shown in Fig. 3-4. That is,

(associative law). (3-3)

The vector is a vector with the same magnitude as but the opposite
direction (see Fig. 3-5).Adding the two vectors in Fig. 3-5 would yield
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� If the vector a & b have the same direction & 
magnitude 
à a = b, a & b are parallel 

� If the vector b & b have the same magnitude 
but opposite direction 
à b = − b, b & − b are antiparallel

� Vector subtraction

As in algebra, we can move a term that includes 
a vector symbol from one side of a vector 
equation to the other, but we must change its 
signs
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3-3 Adding Vectors Geometrically
Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol ! in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Vector addition, defined in this way, has two important properties. First, the
order of addition does not matter. Adding to gives the same result as adding

to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
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3-1 W H AT  I S  P H YS I C S ?
Physics deals with a great many quantities that have both size and direc-

tion, and it needs a special mathematical language—the language of vectors—to
describe those quantities. This language is also used in engineering, the other
sciences, and even in common speech. If you have ever given directions such as
“Go five blocks down this street and then hang a left,” you have used the language
of vectors. In fact, navigation of any sort is based on vectors, but physics and engi-
neering also need vectors in special ways to explain phenomena involving rotation
and magnetic forces, which we get to in later chapters. In this chapter, we focus on
the basic language of vectors.

3-2 Vectors and Scalars
A particle moving along a straight line can move in only two directions. We can
take its motion to be positive in one of these directions and negative in the other.
For a particle moving in three dimensions, however, a plus sign or minus sign is no
longer enough to indicate a direction. Instead, we must use a vector.

A vector has magnitude as well as direction, and vectors follow certain
(vector) rules of combination, which we examine in this chapter. A vector
quantity is a quantity that has both a magnitude and a direction and thus can be
represented with a vector. Some physical quantities that are vector quantities are
displacement, velocity, and acceleration. You will see many more throughout this
book, so learning the rules of vector combination now will help you greatly in
later chapters.

Not all physical quantities involve a direction.Temperature, pressure, energy,
mass, and time, for example, do not “point” in the spatial sense. We call such
quantities scalars, and we deal with them by the rules of ordinary algebra. A sin-
gle value, with a sign (as in a temperature of !40°F), specifies a scalar.

The simplest vector quantity is displacement, or change of position. A vec-
tor that represents a displacement is called, reasonably, a displacement vector.
(Similarly, we have velocity vectors and acceleration vectors.) If a particle
changes its position by moving from A to B in Fig. 3-1a, we say that it undergoes
a displacement from A to B, which we represent with an arrow pointing from A
to B. The arrow specifies the vector graphically. To distinguish vector symbols
from other kinds of arrows in this book, we use the outline of a triangle as the
arrowhead.

In Fig. 3-1a, the arrows from A to B, from A" to B", and from A# to B# have
the same magnitude and direction. Thus, they specify identical displacement vec-
tors and represent the same change of position for the particle. A vector can be
shifted without changing its value if its length and direction are not changed.

The displacement vector tells us nothing about the actual path that the parti-
cle takes. In Fig. 3-1b, for example, all three paths connecting points A and B cor-
respond to the same displacement vector, that of Fig. 3-1a. Displacement vectors
represent only the overall effect of the motion, not the motion itself.

V E C T O R S

Fig. 3-1 (a) All three arrows have the
same magnitude and direction and thus
represent the same displacement. (b) All
three paths connecting the two points cor-
respond to the same displacement vector.

(a)
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B'

A"

B"

A

B

A

B

(b)

3
C H A P T E R
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393-3 ADDI NG VECTORS G EOM ETR ICALLY
PART 1

3-3 Adding Vectors Geometrically
Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.
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that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol ! in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.
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40 CHAPTE R 3 VECTORS

Thus, adding has the effect of subtracting . We use this property to define
the difference between two vectors: let .Then

(vector subtraction); (3-4)

that is, we find the difference vector by adding the vector to the vector .
Figure 3-6 shows how this is done geometrically.

As in the usual algebra, we can move a term that includes a vector symbol
from one side of a vector equation to the other, but we must change its sign.
For example, if we are given Eq. 3-4 and need to solve for , we can rearrange the
equation as

Remember that, although we have used displacement vectors here, the rules
for addition and subtraction hold for vectors of all kinds, whether they represent
velocities, accelerations, or any other vector quantity. However, we can add
only vectors of the same kind. For example, we can add two displacements, or two
velocities, but adding a displacement and a velocity makes no sense. In the arith-
metic of scalars, that would be like trying to add 21 s and 12 m.
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Sample Problem

The order shown in Fig. 3-7b is for the vector sum

.

Using the scale given in Fig. 3-7a, we measure the length d of
this vector sum, finding

d " 4.8 m. (Answer)
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Adding vectors in a drawing, orienteering

In an orienteering class, you have the goal of moving as far
(straight-line distance) from base camp as possible by mak-
ing three straight-line moves. You may use the following
displacements in any order: (a) , 2.0 km due east (directly
toward the east); (b) , 2.0 km 30° north of east (at an angle
of 30° toward the north from due east); (c) , 1.0 km due
west. Alternatively, you may substitute either for or

for .What is the greatest distance you can be from base
camp at the end of the third displacement?

Reasoning: Using a convenient scale, we draw vectors , ,
, , and as in Fig. 3-7a. We then mentally slide the

vectors over the page, connecting three of them at a time in
head-to-tail arrangements to find their vector sum . The
tail of the first vector represents base camp. The head of the
third vector represents the point at which you stop. The vec-
tor sum extends from the tail of the first vector to the head
of the third vector. Its magnitude d is your distance from
base camp.

We find that distance d is greatest for a head-to-tail
arrangement of vectors , , and . They can be in any
order, because their vector sum is the same for any order.
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This is the vector result
for adding those three
vectors in any order.

Additional examples, video, and practice available at WileyPLUS
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40 CHAPTE R 3 VECTORS
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Using the scale given in Fig. 3-7a, we measure the length d of
this vector sum, finding

d " 4.8 m. (Answer)
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Adding vectors in a drawing, orienteering

In an orienteering class, you have the goal of moving as far
(straight-line distance) from base camp as possible by mak-
ing three straight-line moves. You may use the following
displacements in any order: (a) , 2.0 km due east (directly
toward the east); (b) , 2.0 km 30° north of east (at an angle
of 30° toward the north from due east); (c) , 1.0 km due
west. Alternatively, you may substitute either for or

for .What is the greatest distance you can be from base
camp at the end of the third displacement?

Reasoning: Using a convenient scale, we draw vectors , ,
, , and as in Fig. 3-7a. We then mentally slide the

vectors over the page, connecting three of them at a time in
head-to-tail arrangements to find their vector sum . The
tail of the first vector represents base camp. The head of the
third vector represents the point at which you stop. The vec-
tor sum extends from the tail of the first vector to the head
of the third vector. Its magnitude d is your distance from
base camp.

We find that distance d is greatest for a head-to-tail
arrangement of vectors , , and . They can be in any
order, because their vector sum is the same for any order.
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Thus, adding has the effect of subtracting . We use this property to define
the difference between two vectors: let .Then

(vector subtraction); (3-4)

that is, we find the difference vector by adding the vector to the vector .
Figure 3-6 shows how this is done geometrically.

As in the usual algebra, we can move a term that includes a vector symbol
from one side of a vector equation to the other, but we must change its sign.
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for addition and subtraction hold for vectors of all kinds, whether they represent
velocities, accelerations, or any other vector quantity. However, we can add
only vectors of the same kind. For example, we can add two displacements, or two
velocities, but adding a displacement and a velocity makes no sense. In the arith-
metic of scalars, that would be like trying to add 21 s and 12 m.
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Homework  J



Chapter 3
Vectors

Sections 3-4, 3-5, 3-6

Component of Vectors
Unit Vector

Adding Vectors by Components



� The important skills from this lecture
1. Find the inverse of any vector

2. Resolve any vector and find its x and y component
3. Calculate both magnitude and direction of vector

4. Identify the unit vector

5. Write a vector in unit vector notation
6. Adding vectors by components



Component of Vectors 
� A vector component: 

The projection of the vector on an axis 

� How we find a vector projection along an axis 
(Resolving vector)?
� We draw perpendicular lines from the two ends of 

the vector to the axis

� Projection of the vector on x axis à x component of 
the vector 
Projection of the vector on y axis à y component of 
the vector 

� ax à vector component along x axis
ay à vector component along y axis

� The vector component of has the same direction 
of the vector

� ax & ay are both in +ve direction of x & y
because    extends in +ve direction of both axes

� If the vector a is reversed, its components would 
point toward − x & − y 

413-4 COM PON E NTS OF VECTORS
PART 1

3-4 Components of Vectors
Adding vectors geometrically can be tedious. A neater and easier technique
involves algebra but requires that the vectors be placed on a rectangular coordi-
nate system.The x and y axes are usually drawn in the plane of the page, as shown
in Fig. 3-8a. The z axis comes directly out of the page at the origin; we ignore it for
now and deal only with two-dimensional vectors.

A component of a vector is the projection of the vector on an axis. In Fig.
3-8a, for example, ax is the component of vector on (or along) the x axis and ay

is the component along the y axis. To find the projection of a vector along an axis,
we draw perpendicular lines from the two ends of the vector to the axis, as shown.
The projection of a vector on an x axis is its x component, and similarly the pro-
jection on the y axis is the y component. The process of finding the components of
a vector is called resolving the vector.

A component of a vector has the same direction (along an axis) as the vector.
In Fig. 3-8, ax and ay are both positive because extends in the positive direction
of both axes. (Note the small arrowheads on the components, to indicate their di-
rection.) If we were to reverse vector , then both components would be negative
and their arrowheads would point toward negative x and y. Resolving vector in
Fig. 3-9 yields a positive component bx and a negative component by.

In general, a vector has three components, although for the case of Fig. 3-8a
the component along the z axis is zero.As Figs. 3-8a and b show, if you shift a vec-
tor without changing its direction, its components do not change.

b
:

a:

a:

a:

Fig. 3-8 (a) The components ax and ay of vector . (b) The components are unchanged if the
vector is shifted,as long as the magnitude and orientation are maintained.(c) The components
form the legs of a right triangle whose hypotenuse is the magnitude of the vector.
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a y  
a a a

This is the y component
of the vector.

This is the x component
of the vector.

The components and the
vector form a right triangle.

Fig. 3-9 The component of on the x
axis is positive, and that on the y axis is
negative.

b
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θ x (m) 
bx  = 7 m 

b y
 =
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m
 

b 

This is the x component
of the vector.

This is the y component
of the vector.

We can find the components of in Fig. 3-8a geometrically from the right tri-
angle there:

ax ! a cos u and ay ! a sin u, (3-5)

where u is the angle that the vector makes with the positive direction of the
x axis, and a is the magnitude of . Figure 3-8c shows that and its x and y com-
ponents form a right triangle. It also shows how we can reconstruct a vector from
its components: we arrange those components head to tail. Then we complete a
right triangle with the vector forming the hypotenuse, from the tail of one com-
ponent to the head of the other component.

Once a vector has been resolved into its components along a set of axes, the
components themselves can be used in place of the vector. For example, ina:

a:a:
a:

a:
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� Example: the components of vector b?

� In general, a vector has 3 components in x, y, z
In the previous examples, the component along the z axis is zero

� If the vector is shifted without changing its direction
à its components do not change
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Finding Vector Components Geometrically

� How to find the components of geometrically from the 
right triangle?
1. Arrange vector components head to tail

2. Complete a right triangle by the vector itself 

3. The vector forms the hypotenuse, from the tail of one 
component to the head of the other component

θ: the angle between vector a and +ve direction of x axis
a: the magnitude of vector a

� Vector a could be completely determined by 2 ways:
1. Component notation (ax & ay) 

2. Magnitude−angle notation (a & θ)
If we know the components ax & ay , both a & θ are given by
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tor without changing its direction, its components do not change.
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Fig. 3-8 (a) The components ax and ay of vector . (b) The components are unchanged if the
vector is shifted,as long as the magnitude and orientation are maintained.(c) The components
form the legs of a right triangle whose hypotenuse is the magnitude of the vector.
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We can find the components of in Fig. 3-8a geometrically from the right tri-
angle there:

ax ! a cos u and ay ! a sin u, (3-5)

where u is the angle that the vector makes with the positive direction of the
x axis, and a is the magnitude of . Figure 3-8c shows that and its x and y com-
ponents form a right triangle. It also shows how we can reconstruct a vector from
its components: we arrange those components head to tail. Then we complete a
right triangle with the vector forming the hypotenuse, from the tail of one com-
ponent to the head of the other component.

Once a vector has been resolved into its components along a set of axes, the
components themselves can be used in place of the vector. For example, ina:

a:a:
a:

a:
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In the figure, which of the indicated methods for combining the x and y components
of vector are proper to determine that vector?a:
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Sample Problem

Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. How far east and north is the airplane
from the airport when sighted?

KEY I DEA

We are given the magnitude (215 km) and the angle (22°
east of due north) of a vector and need to find the compo-
nents of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
The airplane’s displacement points from the origin to
where the airplane is sighted.

d
:

Fig. 3-10 A plane takes off from an airport at the origin and is
later sighted at P.
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Fig. 3-8a is given (completely determined) by a and u. It can also be given by its
components ax and ay. Both pairs of values contain the same information. If we
know a vector in component notation (ax and ay) and want it in magnitude-angle
notation (a and u), we can use the equations

(3-6)

to transform it.
In the more general three-dimensional case, we need a magnitude and two

angles (say, a, u, and f) or three components (ax, ay, and az) to specify a vector.

a ! √a2
x " ay

2  and  tan # !
ay

ax
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3-4 Components of Vectors
Adding vectors geometrically can be tedious. A neater and easier technique
involves algebra but requires that the vectors be placed on a rectangular coordi-
nate system.The x and y axes are usually drawn in the plane of the page, as shown
in Fig. 3-8a. The z axis comes directly out of the page at the origin; we ignore it for
now and deal only with two-dimensional vectors.

A component of a vector is the projection of the vector on an axis. In Fig.
3-8a, for example, ax is the component of vector on (or along) the x axis and ay

is the component along the y axis. To find the projection of a vector along an axis,
we draw perpendicular lines from the two ends of the vector to the axis, as shown.
The projection of a vector on an x axis is its x component, and similarly the pro-
jection on the y axis is the y component. The process of finding the components of
a vector is called resolving the vector.

A component of a vector has the same direction (along an axis) as the vector.
In Fig. 3-8, ax and ay are both positive because extends in the positive direction
of both axes. (Note the small arrowheads on the components, to indicate their di-
rection.) If we were to reverse vector , then both components would be negative
and their arrowheads would point toward negative x and y. Resolving vector in
Fig. 3-9 yields a positive component bx and a negative component by.

In general, a vector has three components, although for the case of Fig. 3-8a
the component along the z axis is zero.As Figs. 3-8a and b show, if you shift a vec-
tor without changing its direction, its components do not change.

b
:

a:

a:

a:

Fig. 3-8 (a) The components ax and ay of vector . (b) The components are unchanged if the
vector is shifted,as long as the magnitude and orientation are maintained.(c) The components
form the legs of a right triangle whose hypotenuse is the magnitude of the vector.
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We can find the components of in Fig. 3-8a geometrically from the right tri-
angle there:

ax ! a cos u and ay ! a sin u, (3-5)

where u is the angle that the vector makes with the positive direction of the
x axis, and a is the magnitude of . Figure 3-8c shows that and its x and y com-
ponents form a right triangle. It also shows how we can reconstruct a vector from
its components: we arrange those components head to tail. Then we complete a
right triangle with the vector forming the hypotenuse, from the tail of one com-
ponent to the head of the other component.

Once a vector has been resolved into its components along a set of axes, the
components themselves can be used in place of the vector. For example, ina:

a:a:
a:

a:
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We can find the components of in Fig. 3-8a geometrically from the right tri-
angle there:

ax ! a cos u and ay ! a sin u, (3-5)

where u is the angle that the vector makes with the positive direction of the
x axis, and a is the magnitude of . Figure 3-8c shows that and its x and y com-
ponents form a right triangle. It also shows how we can reconstruct a vector from
its components: we arrange those components head to tail. Then we complete a
right triangle with the vector forming the hypotenuse, from the tail of one com-
ponent to the head of the other component.

Once a vector has been resolved into its components along a set of axes, the
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In the figure, which of the indicated methods for combining the x and y components
of vector are proper to determine that vector?a:
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Sample Problem

Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. How far east and north is the airplane
from the airport when sighted?

KEY I DEA

We are given the magnitude (215 km) and the angle (22°
east of due north) of a vector and need to find the compo-
nents of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
The airplane’s displacement points from the origin to
where the airplane is sighted.

d
:

Fig. 3-10 A plane takes off from an airport at the origin and is
later sighted at P.
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Fig. 3-8a is given (completely determined) by a and u. It can also be given by its
components ax and ay. Both pairs of values contain the same information. If we
know a vector in component notation (ax and ay) and want it in magnitude-angle
notation (a and u), we can use the equations

(3-6)

to transform it.
In the more general three-dimensional case, we need a magnitude and two

angles (say, a, u, and f) or three components (ax, ay, and az) to specify a vector.

a ! √a2
x " ay

2  and  tan # !
ay

ax

halliday_c03_038-057hr.qxd  17-09-2009  12:25  Page 42

ü✗✗

üü ✗



42 CHAPTE R 3 VECTORS

CHECKPOINT 2

In the figure, which of the indicated methods for combining the x and y components
of vector are proper to determine that vector?a:

y 

x 
ax  

a y  

(a) 

y 

x 
ax  

a y  

(c) 

y 

x 
ax  

a y  

(b) 

x
ax

a y

y

x

ax

a y

(d)

y

( f )

y

x
ax

a y

(e)

a 

a a a

a a 

Sample Problem

Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. How far east and north is the airplane
from the airport when sighted?

KEY I DEA

We are given the magnitude (215 km) and the angle (22°
east of due north) of a vector and need to find the compo-
nents of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
The airplane’s displacement points from the origin to
where the airplane is sighted.

d
:

Fig. 3-10 A plane takes off from an airport at the origin and is
later sighted at P.

21
5 

km
 

100 

y 

x 

200 

0 
0 100 

22° 

θ 

D
is

ta
nc

e 
(k

m
) 

Distance (km) 

P 
d 

Fig. 3-8a is given (completely determined) by a and u. It can also be given by its
components ax and ay. Both pairs of values contain the same information. If we
know a vector in component notation (ax and ay) and want it in magnitude-angle
notation (a and u), we can use the equations
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In the more general three-dimensional case, we need a magnitude and two

angles (say, a, u, and f) or three components (ax, ay, and az) to specify a vector.
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(3-6)

to transform it.
In the more general three-dimensional case, we need a magnitude and two

angles (say, a, u, and f) or three components (ax, ay, and az) to specify a vector.

a ! √a2
x " ay

2  and  tan # !
ay

ax
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Problem-Solving Tactics

the angle is measured from the positive direction of the x axis. If it
is measured relative to some other direction, then the trig func-
tions in Eq. 3-5 may have to be interchanged and the ratio in Eq.
3-6 may have to be inverted.A safer method is to convert the angle
to one measured from the positive direction of the x axis.

Angles, trig functions, and inverse trig functions

Tactic 1: Angles—Degrees and Radians Angles that are
measured relative to the positive direction of the x axis are positive
if they are measured in the counterclockwise direction and nega-
tive if measured clockwise. For example, 210° and !150° are the
same angle.

Angles may be measured in degrees or radians (rad).To relate
the two measures, recall that a full circle is 360° and 2p rad.To con-
vert, say, 40° to radians, write

Tactic 2: Trig Functions You need to know the definitions
of the common trigonometric functions—sine, cosine, and tan-
gent—because they are part of the language of science and engi-
neering. They are given in Fig. 3-11 in a form that does not depend
on how the triangle is labeled.

You should also be able to sketch how the trig functions vary
with angle, as in Fig. 3-12, in order to be able to judge whether a
calculator result is reasonable. Even knowing the signs of the func-
tions in the various quadrants can be of help.

40" 
2# rad

360"
$ 0.70 rad.

Fig. 3-12 Three useful curves to remember.A calculator’s range
of operation for taking inverse trig functions is indicated by the
darker portions of the colored curves.

Fig. 3-11 A triangle used to define the trigonometric functions.
See also Appendix E.
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Tactic 3: Inverse Trig Functions When the inverse trig
functions sin!1, cos!1, and tan!1 are taken on a calculator, you must
consider the reasonableness of the answer you get, because there is
usually another possible answer that the calculator does not give.
The range of operation for a calculator in taking each inverse trig
function is indicated in Fig. 3-12. As an example, sin!1 0.5 has asso-
ciated angles of 30° (which is displayed by the calculator, since 30°
falls within its range of operation) and 150°. To see both values,
draw a horizontal line through 0.5 in Fig. 3-12a and note where it
cuts the sine curve. How do you distinguish a correct answer? It is
the one that seems more reasonable for the given situation.

Tactic 4: Measuring Vector Angles The equations for 
cos u and sin u in Eq. 3-5 and for tan u in Eq. 3-6 are valid only if

To find the components of , we use Eq. 3-5 with u $
68° ($ 90° ! 22°):

dx $ d cos u $ (215 km)(cos 68°)
$ 81 km (Answer)

d
:

dy $ d sin u $ (215 km)(sin 68°)
$ 199 km ! 2.0 % 102 km. (Answer)

Thus, the airplane is 81 km east and 2.0 % 102 km north of
the airport.

Additional examples, video, and practice available at WileyPLUS
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Unit Vectors
� Unit vector: vector that has a magnitude of 

exactly 1 and points in a particular direction

� The unit vectors in the +ve directions of 
the x, y, and z axes are 

� The arrangement of axes is named:
a right-handed coordinate system

� Unit vectors are used to express vectors; 
e.g. 

� are vectors à vector components 
ax and ay are scalars à scalar components 
of vector a (or simply its components) 

44 CHAPTE R 3 VECTORS

3-5 Unit Vectors
A unit vector is a vector that has a magnitude of exactly 1 and points in a particu-
lar direction. It lacks both dimension and unit. Its sole purpose is to point—that
is, to specify a direction. The unit vectors in the positive directions of the x, y, and
z axes are labeled , , and , where the hat is used instead of an overhead arrow
as for other vectors (Fig. 3-13).The arrangement of axes in Fig. 3-13 is said to be a
right-handed coordinate system. The system remains right-handed if it is rotated
rigidly.We use such coordinate systems exclusively in this book.

Unit vectors are very useful for expressing other vectors; for example, we can
express and of Figs. 3-8 and 3-9 as

(3-7)

and . (3-8)

These two equations are illustrated in Fig. 3-14.The quantities ax and ay are vec-
tors, called the vector components of .The quantities ax and ay are scalars, called
the scalar components of (or, as before, simply its components).

3-6 Adding Vectors by Components
Using a sketch, we can add vectors geometrically. On a vector-capable calculator,
we can add them directly on the screen. A third way to add vectors is to combine
their components axis by axis, which is the way we examine here.

To start, consider the statement

, (3-9)

which says that the vector is the same as the vector . Thus, each 
component of must be the same as the corresponding component of :

rx ! ax " bx (3-10)
ry ! ay " by (3-11)
rz ! az " bz. (3-12)

In other words, two vectors must be equal if their corresponding components are
equal. Equations 3-9 to 3-12 tell us that to add vectors and , we must (1) re-
solve the vectors into their scalar components; (2) combine these scalar compo-
nents, axis by axis, to get the components of the sum ; and (3) combine
the components of to get itself. We have a choice in step 3. We can express 
in unit-vector notation or in magnitude-angle notation.

This procedure for adding vectors by components also applies to vector 
subtractions. Recall that a subtraction such as can be rewritten as an
addition .To subtract, we add and by components, to get

dx ! ax # bx, dy ! ay # by, and dz ! az # bz,

where .. (3-13)d
:

! dxî " dyĵ " dzk̂

#b
:

a:d
:

! a: " (#b
:

)
d
:

! a: # b
:

r:r:r:
r:

b
:

a:

(a: " b
:

)r:
(a: " b

:
)r:

r: ! a: " b
:

a:
a:

ĵî
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b
:

a:

ˆk̂ĵî
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Examples: 
Q1. A vector a in the xy plane, if its direction is 230o

counterclockwise from the positive direction of the x axis, and its 
magnitude is 7.3m
(1) the x-component is:
(a) − 4.7Î     (b) −4.7     (c) 2.3Î     (d) −2.3

ax = a cosθ = 7.3 cos 230o = −4.7

(2) the y-component is:
(a) −5.6Ĵ (b) −5.6     (c) −4.2Ĵ (d) −4.2 

ay = a sinθ = 7.3 sin 230o = −5.6



Q.2 If the components of vector a is given by:
ax = 8 cm  and ay = 5 cm, find the direction of this vector

Q.3 In the previous question, if ay = −5 cm, find its direction

Because the vector a located in the 4th quarter, −32o means 
that θ= 360o − 32o = 328o

Q.4 The angle between vector D = 2Î + 2Ĵ and the +ve y-axis is:
(a) 63o (b) 19o (c) 30o (d) 45o (e) 11o

The vector D is located in the 1st quarter and its components are equal

θ = tan−1 ay
ax

= tan−1 5
8
= 32o

θ = tan−1 ay
ax

= tan−1 −5
8

= −32o

θ = tan−1 ay
ax

= tan−1 2
2
= 45o

ax

ay
a
32o

ax

ay a
-32o



Q.5 The x component of vector a is −20 m, and the y component is +15 m. 
(1) Vector a in unit vector is:
(a) −20Î + 15Ĵ (a) 15Î − 20Ĵ (c) 5Î − 10Ĵ (d) 20Î − 15Ĵ

(2) The magnitude of vector a is:
(a) −5     (b) 35     (c) 25     (d) 1.25

(3) The angle between the direction of vector a and the +ve x axis is:
(a) 37o (b) 143o (c) 120o (d) 215o

Because the vector a located in the 2nd quarter, −37o means 
that θ= 180o − 37o = 143o

a = (−20)2 + (15)2 = 25

θ = tan−1 ay
ax

= tan−1 15
−20

= −37o



Q.6 Vector C starts at point (4, 1, 2) and ends at point (4, 3, 2). 
Its magnitude is:
(a) 5     (b) 6     (c) 2     (d) 8     (e) 4 

C = Δx2 + Δy2 + Δz2 = (4− 4)2 + (3−1)2 + (2− 2)2 = 2



Adding Vectors by Components

� To add vectors by component:
1. Resolve the vectors into their scalar components
2. Combine these scalar components, axis by axis, 

to get the components of the sum 
3. Combine the components of to get     itself

� Adding vectors by components also applies to vector subtractions

� Remember! There are 2 ways to express any vector:
1. In unit-vector notation (Î, Ĵ)
2. In magnitude-angle notation (r,θ)
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3-5 Unit Vectors
A unit vector is a vector that has a magnitude of exactly 1 and points in a particu-
lar direction. It lacks both dimension and unit. Its sole purpose is to point—that
is, to specify a direction. The unit vectors in the positive directions of the x, y, and
z axes are labeled , , and , where the hat is used instead of an overhead arrow
as for other vectors (Fig. 3-13).The arrangement of axes in Fig. 3-13 is said to be a
right-handed coordinate system. The system remains right-handed if it is rotated
rigidly.We use such coordinate systems exclusively in this book.

Unit vectors are very useful for expressing other vectors; for example, we can
express and of Figs. 3-8 and 3-9 as

(3-7)

and . (3-8)

These two equations are illustrated in Fig. 3-14.The quantities ax and ay are vec-
tors, called the vector components of .The quantities ax and ay are scalars, called
the scalar components of (or, as before, simply its components).

3-6 Adding Vectors by Components
Using a sketch, we can add vectors geometrically. On a vector-capable calculator,
we can add them directly on the screen. A third way to add vectors is to combine
their components axis by axis, which is the way we examine here.

To start, consider the statement

, (3-9)

which says that the vector is the same as the vector . Thus, each 
component of must be the same as the corresponding component of :

rx ! ax " bx (3-10)
ry ! ay " by (3-11)
rz ! az " bz. (3-12)

In other words, two vectors must be equal if their corresponding components are
equal. Equations 3-9 to 3-12 tell us that to add vectors and , we must (1) re-
solve the vectors into their scalar components; (2) combine these scalar compo-
nents, axis by axis, to get the components of the sum ; and (3) combine
the components of to get itself. We have a choice in step 3. We can express 
in unit-vector notation or in magnitude-angle notation.

This procedure for adding vectors by components also applies to vector 
subtractions. Recall that a subtraction such as can be rewritten as an
addition .To subtract, we add and by components, to get

dx ! ax # bx, dy ! ay # by, and dz ! az # bz,

where .. (3-13)d
:
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! bxî " by ĵ
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y 

x 

z 

j ̂ 

i ̂ k ˆ 

The unit vectors point
along axes.

halliday_c03_038-057hr.qxd  17-09-2009  12:25  Page 44

a

b

r


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b = (a x+b x )î + (a y+b y ) ĵ

               = r x î + ry ĵ

Vectors are equal if 
their corresponding 

components are equal
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in unit-vector notation or in magnitude-angle notation.

This procedure for adding vectors by components also applies to vector 
subtractions. Recall that a subtraction such as can be rewritten as an
addition .To subtract, we add and by components, to get
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3-5 Unit Vectors
A unit vector is a vector that has a magnitude of exactly 1 and points in a particu-
lar direction. It lacks both dimension and unit. Its sole purpose is to point—that
is, to specify a direction. The unit vectors in the positive directions of the x, y, and
z axes are labeled , , and , where the hat is used instead of an overhead arrow
as for other vectors (Fig. 3-13).The arrangement of axes in Fig. 3-13 is said to be a
right-handed coordinate system. The system remains right-handed if it is rotated
rigidly.We use such coordinate systems exclusively in this book.

Unit vectors are very useful for expressing other vectors; for example, we can
express and of Figs. 3-8 and 3-9 as

(3-7)

and . (3-8)

These two equations are illustrated in Fig. 3-14.The quantities ax and ay are vec-
tors, called the vector components of .The quantities ax and ay are scalars, called
the scalar components of (or, as before, simply its components).

3-6 Adding Vectors by Components
Using a sketch, we can add vectors geometrically. On a vector-capable calculator,
we can add them directly on the screen. A third way to add vectors is to combine
their components axis by axis, which is the way we examine here.

To start, consider the statement
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which says that the vector is the same as the vector . Thus, each 
component of must be the same as the corresponding component of :
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ry ! ay " by (3-11)
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equal. Equations 3-9 to 3-12 tell us that to add vectors and , we must (1) re-
solve the vectors into their scalar components; (2) combine these scalar compo-
nents, axis by axis, to get the components of the sum ; and (3) combine
the components of to get itself. We have a choice in step 3. We can express 
in unit-vector notation or in magnitude-angle notation.
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a: ! axî " ay ĵ
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453-6 ADDI NG VECTORS BY COM PON E NTS
PART 1

Sample Problem

Adding vectors, unit-vector components

Figure 3-15a shows the following three vectors:

and

What is their vector sum which is also shown?r:
 c: ! ("3.7 m)ĵ.
 b
:

! ("1.6 m)î # (2.9 m)ĵ,
 a: ! (4.2 m)î " (1.5 m)ĵ,

x 
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r 
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c 

b 

ˆ 

–2.3ĵ  

To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

KEY I DEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx ! ax # bx # cx

! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,

ry ! ay # by # cy

! "1.5 m # 2.9 m " 3.7 m ! "2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the +x direction) is

(Answer)

where the minus sign means clockwise.

$ ! tan"1 ! "2.3 m
2.6 m " ! "41%,

r ! 2(2.6 m)2 # ("2.3 m)2 # 3.5 m

r:

r:
"

r:

r: ! (2.6 m)î " (2.3 m)ĵ,

r:

r:c:,b
:

,
a:,

r:

Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:

.d
:

net ! d
:

1 # d
:

2 # d
:

3 # d
:

4 # d
:

5

d
:

net,

d
:

home

d
:

net,
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! ("1.6 m)î # (2.9 m)ĵ,
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To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

KEY I DEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx ! ax # bx # cx

! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,

ry ! ay # by # cy

! "1.5 m # 2.9 m " 3.7 m ! "2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the +x direction) is
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where the minus sign means clockwise.
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Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:
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Sahara desert. When one of the ants forages for food, it
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vector that points directly home. As an example of the cal-
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(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
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We can also answer the question by giving the magnitude
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what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.
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find their net x component
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components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in
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We can add the three vectors by components, axis by axis,
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sum .
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! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,
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in unit-vector notation:
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where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is
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and the angle (measured from the +x direction) is
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(Answer)

and the angle (measured from the +x direction) is

(Answer)

where the minus sign means clockwise.

$ ! tan"1 ! "2.3 m
2.6 m " ! "41%,

r ! 2(2.6 m)2 # ("2.3 m)2 # 3.5 m

r:

r:
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r: ! (2.6 m)î " (2.3 m)ĵ,
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r:

Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:

.d
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net ! d
:

1 # d
:

2 # d
:

3 # d
:

4 # d
:
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Sample Problem

Adding vectors, unit-vector components

Figure 3-15a shows the following three vectors:

and

What is their vector sum which is also shown?r:
 c: ! ("3.7 m)ĵ.
 b
:

! ("1.6 m)î # (2.9 m)ĵ,
 a: ! (4.2 m)î " (1.5 m)ĵ,
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To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

KEY I DEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx ! ax # bx # cx

! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,

ry ! ay # by # cy

! "1.5 m # 2.9 m " 3.7 m ! "2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the +x direction) is

(Answer)

where the minus sign means clockwise.

$ ! tan"1 ! "2.3 m
2.6 m " ! "41%,

r ! 2(2.6 m)2 # ("2.3 m)2 # 3.5 m

r:
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r: ! (2.6 m)î " (2.3 m)ĵ,
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r:

Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:

.d
:

net ! d
:

1 # d
:

2 # d
:

3 # d
:

4 # d
:
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Sample Problem

Adding vectors, unit-vector components

Figure 3-15a shows the following three vectors:

and

What is their vector sum which is also shown?r:
 c: ! ("3.7 m)ĵ.
 b
:

! ("1.6 m)î # (2.9 m)ĵ,
 a: ! (4.2 m)î " (1.5 m)ĵ,
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To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

KEY I DEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx ! ax # bx # cx

! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,

ry ! ay # by # cy

! "1.5 m # 2.9 m " 3.7 m ! "2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the +x direction) is

(Answer)

where the minus sign means clockwise.

$ ! tan"1 ! "2.3 m
2.6 m " ! "41%,

r ! 2(2.6 m)2 # ("2.3 m)2 # 3.5 m

r:

r:
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r:

r: ! (2.6 m)î " (2.3 m)ĵ,
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Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:

.d
:

net ! d
:

1 # d
:

2 # d
:

3 # d
:

4 # d
:

5

d
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home

d
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Adding vectors, unit-vector components

Figure 3-15a shows the following three vectors:

and

What is their vector sum which is also shown?r:
 c: ! ("3.7 m)ĵ.
 b
:

! ("1.6 m)î # (2.9 m)ĵ,
 a: ! (4.2 m)î " (1.5 m)ĵ,
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To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

KEY I DEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx ! ax # bx # cx

! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,

ry ! ay # by # cy

! "1.5 m # 2.9 m " 3.7 m ! "2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the +x direction) is

(Answer)

where the minus sign means clockwise.

$ ! tan"1 ! "2.3 m
2.6 m " ! "41%,

r ! 2(2.6 m)2 # ("2.3 m)2 # 3.5 m

r:

r:
"

r:

r: ! (2.6 m)î " (2.3 m)ĵ,
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a:,
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Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:

.d
:

net ! d
:

1 # d
:

2 # d
:

3 # d
:

4 # d
:

5

d
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home

d
:
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Sample Problem

Adding vectors, unit-vector components

Figure 3-15a shows the following three vectors:

and

What is their vector sum which is also shown?r:
 c: ! ("3.7 m)ĵ.
 b
:

! ("1.6 m)î # (2.9 m)ĵ,
 a: ! (4.2 m)î " (1.5 m)ĵ,
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To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

KEY I DEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx ! ax # bx # cx

! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,

ry ! ay # by # cy

! "1.5 m # 2.9 m " 3.7 m ! "2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the +x direction) is

(Answer)

where the minus sign means clockwise.

$ ! tan"1 ! "2.3 m
2.6 m " ! "41%,

r ! 2(2.6 m)2 # ("2.3 m)2 # 3.5 m

r:

r:
"

r:

r: ! (2.6 m)î " (2.3 m)ĵ,
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a:,
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Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:

.d
:

net ! d
:

1 # d
:

2 # d
:

3 # d
:

4 # d
:

5

d
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:

home

d
:
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Sample Problem

Adding vectors, unit-vector components

Figure 3-15a shows the following three vectors:

and

What is their vector sum which is also shown?r:
 c: ! ("3.7 m)ĵ.
 b
:

! ("1.6 m)î # (2.9 m)ĵ,
 a: ! (4.2 m)î " (1.5 m)ĵ,
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To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

KEY I DEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx ! ax # bx # cx

! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,

ry ! ay # by # cy

! "1.5 m # 2.9 m " 3.7 m ! "2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the +x direction) is

(Answer)

where the minus sign means clockwise.

$ ! tan"1 ! "2.3 m
2.6 m " ! "41%,

r ! 2(2.6 m)2 # ("2.3 m)2 # 3.5 m

r:

r:
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r:

r: ! (2.6 m)î " (2.3 m)ĵ,
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Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:

.d
:

net ! d
:

1 # d
:

2 # d
:

3 # d
:

4 # d
:

5
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Sample Problem

Adding vectors, unit-vector components

Figure 3-15a shows the following three vectors:

and

What is their vector sum which is also shown?r:
 c: ! ("3.7 m)ĵ.
 b
:

! ("1.6 m)î # (2.9 m)ĵ,
 a: ! (4.2 m)î " (1.5 m)ĵ,
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To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

KEY I DEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx ! ax # bx # cx

! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,

ry ! ay # by # cy

! "1.5 m # 2.9 m " 3.7 m ! "2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the +x direction) is

(Answer)

where the minus sign means clockwise.

$ ! tan"1 ! "2.3 m
2.6 m " ! "41%,

r ! 2(2.6 m)2 # ("2.3 m)2 # 3.5 m
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Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:

.d
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net ! d
:

1 # d
:

2 # d
:

3 # d
:

4 # d
:
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Sample Problem

Adding vectors, unit-vector components

Figure 3-15a shows the following three vectors:

and

What is their vector sum which is also shown?r:
 c: ! ("3.7 m)ĵ.
 b
:

! ("1.6 m)î # (2.9 m)ĵ,
 a: ! (4.2 m)î " (1.5 m)ĵ,
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To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

KEY I DEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx ! ax # bx # cx

! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,

ry ! ay # by # cy

! "1.5 m # 2.9 m " 3.7 m ! "2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the +x direction) is

(Answer)

where the minus sign means clockwise.

$ ! tan"1 ! "2.3 m
2.6 m " ! "41%,

r ! 2(2.6 m)2 # ("2.3 m)2 # 3.5 m
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Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:
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PART 1

Sample Problem

Adding vectors, unit-vector components

Figure 3-15a shows the following three vectors:

and

What is their vector sum which is also shown?r:
 c: ! ("3.7 m)ĵ.
 b
:

! ("1.6 m)î # (2.9 m)ĵ,
 a: ! (4.2 m)î " (1.5 m)ĵ,

x 
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2.6i 

(b) 

r 

r 

a 

c 

b 

ˆ 

–2.3ĵ  

To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Fig. 3-15 Vector is the vector sum of the other three vectors.r:

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

KEY I DEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx ! ax # bx # cx

! 4.2 m " 1.6 m # 0 ! 2.6 m.

Similarly, for the y axis,

ry ! ay # by # cy

! "1.5 m # 2.9 m " 3.7 m ! "2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the +x direction) is

(Answer)

where the minus sign means clockwise.

$ ! tan"1 ! "2.3 m
2.6 m " ! "41%,

r ! 2(2.6 m)2 # ("2.3 m)2 # 3.5 m

r:

r:
"

r:

r: ! (2.6 m)î " (2.3 m)ĵ,

r:

r:c:,b
:

,
a:,

r:

Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector and what are those of the homeward vec-
tor that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.

KEY I DEAS

(1) To find the net displacement we need to sum the
five individual displacement vectors:

.d
:

net ! d
:

1 # d
:

2 # d
:

3 # d
:

4 # d
:

5

d
:
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d
:
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d
:

net,
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θ = 360o − 41o = 319o



Q.1 Two vectors are given as
find vector c that satisfies the relation
(a) Î + 3Ĵ (b) −Î + 5Ĵ (c) −Î + Ĵ (d) 4Î + 2Ĵ (b) −Î + 2Ĵ

Q.2 Vector A has a magnitude of 5.0 m and is directed 30o north of east. Vector 
B has a magnitude of 6.0 m and is directed north. The magnitude of A + B is:
(a) 7.4 m     (b) 6.8 m     (c) 5.4 m     (d) 9.5 m     (e) 3.2 m 

Examples:
a = î + 2 ĵ + 2k̂,  and  


b = 2î + 4 ĵ + 2k̂a −


b + c = 3î

a −

b + c = 3î ⇒ c = 3î +


b − a


b − a = (2−1)î + (4− 2) ĵ + (2− 2)k̂ = î + 2 ĵ
c = 3î + (î + 2 ĵ) = 4î + 2 ĵ

Ax = 5cos30 = 4.3,      Ay = 5sin30 = 2.5

A = 4.3î + 2.5 ĵ
Bx = 6cos90 = 0,        By = 6sin90 = 6

B = 0î + 6 ĵ

A+

B = 4.3î +8.5 ĵ,      


A+

B = 4.32 +8.52 = 9.5

30o

N

E

AB



Q.3 vector A has a magnitude of 3 m and is directed east, vector B has a magnitude 
of 5 m and directed 35o west of north
(1) Vector A in unit-vector notation is:
(a) 3Î      (b) 3Î − 2Ĵ + 0k     (c) 0Î + 3Ĵ + 0k    (d) 5Î − 2Ĵ + k  

(2) Vector B in unit-vector notation is:
(a) 0.1Î + 4.1Ĵ (b) −0.1Î + 5Ĵ (c) −2.9Î + 4.1Ĵ (d) −2.9Î + 4.1Ĵ + k

(3) Vector A + B is:
(a) 0.1Î + 4.1Ĵ (b) −0.1Î + 4.1Ĵ (c) 2.5Î + 0Ĵ (d) 0.1Î − 2.5Ĵ + k 

(4) The magnitude and direction of A + B is:
(a) 4.1, 88.6o (b) 7.2, 325o (c) 5.5, 325o (d) 13.5, 34o

(5) Vector A − B is:
(a) 5.9Î − 4.1Ĵ (b) −5.9Î + 4.1Ĵ (c) 2.1Î − 2.5Ĵ (d) 5Î − 2.5Ĵ

(6) The magnitude and direction of A − B is:
(a) 13, 34o (b) 7.2, −35o (c) 5.5, 325o (d) 13.5, 34o

35o

N

E
A

B

θ = 90o + 35o =125o

Bx = 5cos125 = −2.9,        By = 5sin125 = 4.1,     

B = −2.9î + 4.1 ĵ


A+

B = 0.12 + 4.12 = 4.1,      θ = tan−1 4.1

0.1
= 88.6o

 


A −

B = (5.92 + 4.1)2 = 7.2,      θ = tan−1 −4.1

5.9
= −35o



Q.4 You drive 6 km north and then 5 km northwest. The magnitude of the 
resultant displacement is: 
(a) 9.24 km     (b) 12.07 km     (c) 6.57 km     (d) 8.32 km     (e) 10.17 km

Q.5 Two vectors A = xÎ + 6Ĵ and B = 2Î + yĴ. The values of x and y satisfying 
the relation A + B = 4Î + Ĵ are:
(a) (-1, -2)     (b) (-3, 2)     (c) (2, -5)     (d) (1, -4)     (e) (0, -3)  

45o

N

E

6km5km

W

Ax = 6cos90 = 0,      Ay = 6sin90 = 6

A = 0î + 6 ĵ
Bx = 5cos135 = −3.5,        By = 5sin135 = 3.5

B = −3.5î + 3.5 ĵ

A+

B = −3.5î + 9.5 ĵ,      


A+

B = (−3.5)2 + 9.52 =10.12


A = xî + 6 ĵ

B = 2î + yĵ

A+

B = (x + 2)î + (6+ y) ĵ = 4î + ĵ  

⇒ x + 2 = 4,      ⇒ x = 2
⇒ 6+ y =1,      ⇒ y = −5

AB



Q.6 The sum of two vectors A + B is 4Î + Ĵ, and their difference A − B is 
−2Î + Ĵ, the magnitude of vector A is:

(a) 1.8     (b) 2.8     (c) 4.1     (d) 2     (e) 1.4

Q.7 The magnitude of vector A is 5 units, and its x-component is 2.5 
unit, find the angle θ between the vector A and the x-axis.


A+

B = 4î + ĵ

 

A−

B = −2î + ĵ

2

A = 2î + 2 ĵ

⇒

A = î + ĵ

⇒

A = 1+1 = 2 =1.4

+

Ax = Acosθ    

2.5 = 5cosθ

θ = cos−1 2.5
5



Chapter 3
Vectors

Section 3-8

Multiplying Vectors
By Scalar

By vectors: Scalar Product
Vector Product



� The important skills from this lecture
1. Multiply vector by scalar
2. Identify the two kinds of multiplications of vector by another 

vector
3. Calculate the scalar product of unit vectors
4. Identify the properties of the scalar product 
5. Calculate the scalar product of two vectors when they are 

written in unit-vector notation, and in angle-magnitude 
notation 

6. Calculate the vector product of unit vectors
7. Identify the properties of the vector product 
8. Calculate the vector product of two vectors when they are 

written in unit-vector notation, and in angle-magnitude 
notation 



Multiplying a Vector by a Scalar
� If we have vector a & scalar s à

is a new vector, 

� direction: if s is +ve à in the same direction of vector a, 
if s is −ve à in the opposite direction of vector a 

� To divide vector a by scalar  s à
is a new vector, 
direction: if s is +ve à in the same direction of vector a, 

if s is −ve à in the opposite direction of vector a

sa = rr r = s a
r

r = a(1/ s)rr

rr

rr



Multiplying a Vector by a Vector

scalar quantity vector quantity

scalar product vector product



Scalar Product
(dot product)

a: magnitude of 
b: magnitude of 
Φ: angle between     & 

Notice: there are two such angles between    &    , the small one, Φ, and
the big one 360° − Φ. Both of them can be used because their 

cosines are the same (cos Φ=cos360o− Φ)

A dot product is a product of 2  quantities: 
(1) the magnitude of one of the vectors and 
(2) the scalar component of the 2nd vector along the direction of 

the 1st one

48 CHAPTE R 3 VECTORS

Fig. 3-18 (a) Two vectors 
and , with an angle f between
them. (b) Each vector has a
component along the direction
of the other vector.

b
:

a:

a 

a 

b 

b 
φ 

(a) 

(b) 

Component of b 
along direction of 

a is b cos    φ 

Component of a 
along direction of 

b is a cos    φ 

φ 

Multiplying these gives
the dot product.

Or multiplying these
gives the dot product.

direction of if s is positive but the opposite direction if s is negative.To divide 
by s, we multiply by 1/s.

Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be

! ab cos f, (3-20)

where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
from the head of onto determines that component. Similarly, has a scalar
component b cos along the direction of .a:"

b
:

b
:

a:
b
:

"
a:

b
:

a: !
b
:

a: !"

# ""
b
:

a:b
:

a:
"b

:
a:

a: ! b
:

a: ! b
:

b
:

a:

a:
a:a:

If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°, the
component of one vector along the other is zero, and so is the dot product.

"
"

Equation 3-20 can be rewritten as follows to emphasize the components:

! ! (a cos f)(b) ! (a)(b cos f). (3-21)b
:

a:
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direction of if s is positive but the opposite direction if s is negative.To divide 
by s, we multiply by 1/s.

Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be

! ab cos f, (3-20)

where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
from the head of onto determines that component. Similarly, has a scalar
component b cos along the direction of .a:"

b
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b
:
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b
:

"
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b
:

a: !
b
:
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b
:

a:b
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"b
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a: ! b
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b
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If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°, the
component of one vector along the other is zero, and so is the dot product.

"
"

Equation 3-20 can be rewritten as follows to emphasize the components:

! ! (a cos f)(b) ! (a)(b cos f). (3-21)b
:

a:
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Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be

! ab cos f, (3-20)

where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
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If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°, the
component of one vector along the other is zero, and so is the dot product.
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direction of if s is positive but the opposite direction if s is negative.To divide 
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Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be

! ab cos f, (3-20)

where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
from the head of onto determines that component. Similarly, has a scalar
component b cos along the direction of .a:"
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b
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a: !
b
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b
:

a:b
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If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°, the
component of one vector along the other is zero, and so is the dot product.

"
"

Equation 3-20 can be rewritten as follows to emphasize the components:

! ! (a cos f)(b) ! (a)(b cos f). (3-21)b
:
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(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be
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where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
from the head of onto determines that component. Similarly, has a scalar
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If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°, the
component of one vector along the other is zero, and so is the dot product.

"
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Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be

! ab cos f, (3-20)

where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
from the head of onto determines that component. Similarly, has a scalar
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b
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b
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b
:
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b
:
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b
:
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If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°, the
component of one vector along the other is zero, and so is the dot product.

"
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Equation 3-20 can be rewritten as follows to emphasize the components:
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gives the dot product.

direction of if s is positive but the opposite direction if s is negative.To divide 
by s, we multiply by 1/s.

Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be

! ab cos f, (3-20)

where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
from the head of onto determines that component. Similarly, has a scalar
component b cos along the direction of .a:"

b
:

b
:

a:
b
:

"
a:

b
:

a: !
b
:

a: !"

# ""
b
:

a:b
:

a:
"b

:
a:

a: ! b
:

a: ! b
:

b
:

a:

a:
a:a:

If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°, the
component of one vector along the other is zero, and so is the dot product.

"
"

Equation 3-20 can be rewritten as follows to emphasize the components:

! ! (a cos f)(b) ! (a)(b cos f). (3-21)b
:

a:
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Scalar product properties: 

� Commutative law:

� When two vectors are in unit-vector notation: 

φ = 0→ a.b = abcosφ = ab

φ = 90→ a.b = abcosφ = 0
φ =180→ a.b = abcosφ = −ab 493-8 M U LTI PYI NG VECTORS

PART 1

The commutative law applies to a scalar product, so we can write

! ! ! .

When two vectors are in unit-vector notation, we write their dot product as

! ! (ax " ay " az ) ! (bx " by " bz ), (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that

! ! axbx " ayby " azbz. (3-23)b
:

a:

k̂ĵîk̂ĵîb
:

a:

a:b
:

b
:

a:

CHECKPOINT 4

Vectors and have magnitudes of 3 units and 4 units, respectively. What is the
angle between the directions of and if equals (a) zero, (b) 12 units, and 
(c) 12 units?#

D
:

C
:

!D
:

C
:

D
:

C
:

Sample Problem

ing the vectors in unit-vector notation and using the distrib-
utive law:

! ! (3.0 # 4.0 ) ! (#2.0 " 3.0 )
! (3.0 ) ! (#2.0 ) " (3.0 ) ! (3.0 )

" (#4.0 ) ! (#2.0 ) " (#4.0 ) ! (3.0 ).

We next apply Eq. 3-20 to each term in this last expression.
The angle between the unit vectors in the first term ( and ) is
0°, and in the other terms it is 90°.We then have

! ! #(6.0)(1) " (9.0)(0) " (8.0)(0) # (12)(0)
! #6.0.

Substituting this result and the results of Eqs. 3-25 and 3-26
into Eq. 3-24 yields

#6.0 ! (5.00)(3.61) cos f,

so (Answer)$ ! cos#1 
#6.0

(5.00)(3.61)
! 109% !110%.

b
:

a:

îî

k̂ĵîĵ
k̂îîî

k̂îĵîb
:

a:

Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)

KEY I DEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or

(3-26)

We can separately evaluate the left side of Eq. 3-24 by writ-

b ! 2(#2.0)2 " 3.0 2 ! 3.61.

b
:

a ! 23.0 2 " (#4.0)2 ! 5.00

a:

b
:

a:

k̂î "#
b
:

!ĵî #a: !$

Additional examples, video, and practice available at WileyPLUS

The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”

b
:

a:

b
:

a:

c:b
:

a:b
:

a:
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What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)
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The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):
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Additional examples, video, and practice available at WileyPLUS

The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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k̂îîî
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What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)
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The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or
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and b is the magnitude of , or
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We can separately evaluate the left side of Eq. 3-24 by writ-
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Additional examples, video, and practice available at WileyPLUS

The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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direction of if s is positive but the opposite direction if s is negative.To divide 
by s, we multiply by 1/s.

Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be

! ab cos f, (3-20)

where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
from the head of onto determines that component. Similarly, has a scalar
component b cos along the direction of .a:"

b
:

b
:

a:
b
:

"
a:

b
:

a: !
b
:

a: !"

# ""
b
:

a:b
:

a:
"b

:
a:

a: ! b
:

a: ! b
:

b
:

a:

a:
a:a:

If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°, the
component of one vector along the other is zero, and so is the dot product.

"
"

Equation 3-20 can be rewritten as follows to emphasize the components:

! ! (a cos f)(b) ! (a)(b cos f). (3-21)b
:

a:
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The commutative law applies to a scalar product, so we can write
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When two vectors are in unit-vector notation, we write their dot product as
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tor. By doing so, we can show that
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k̂ĵîk̂ĵîb
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We next apply Eq. 3-20 to each term in this last expression.
The angle between the unit vectors in the first term ( and ) is
0°, and in the other terms it is 90°.We then have

! ! #(6.0)(1) " (9.0)(0) " (8.0)(0) # (12)(0)
! #6.0.

Substituting this result and the results of Eqs. 3-25 and 3-26
into Eq. 3-24 yields

#6.0 ! (5.00)(3.61) cos f,

so (Answer)$ ! cos#1 
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(5.00)(3.61)
! 109% !110%.
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îî
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k̂îîî

k̂îĵîb
:

a:

Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)

KEY I DEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or

(3-26)

We can separately evaluate the left side of Eq. 3-24 by writ-

b ! 2(#2.0)2 " 3.0 2 ! 3.61.

b
:

a ! 23.0 2 " (#4.0)2 ! 5.00
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k̂î "#
b
:

!ĵî #a: !$

Additional examples, video, and practice available at WileyPLUS

The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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b
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c:b
:

a:b
:

a:

halliday_c03_038-057hr.qxd  17-09-2009  12:25  Page 49

4=D


C.

D =CDcosθ ,⇒ cosθ =


C.

D

CD

(a)   

C.

D = 0,⇒θ = cos−1 0

12
= 90o

(b)   

C.

D =12,⇒θ = cos−1 12

12
= 0

(d )   

C.

D = −12,⇒θ = cos−1 −12

12
=180

3=C



493-8 M U LTI PYI NG VECTORS
PART 1

The commutative law applies to a scalar product, so we can write

! ! ! .

When two vectors are in unit-vector notation, we write their dot product as

! ! (ax " ay " az ) ! (bx " by " bz ), (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that

! ! axbx " ayby " azbz. (3-23)b
:

a:

k̂ĵîk̂ĵîb
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îî

k̂ĵîĵ
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The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):
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where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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0°, and in the other terms it is 90°.We then have

! ! #(6.0)(1) " (9.0)(0) " (8.0)(0) # (12)(0)
! #6.0.

Substituting this result and the results of Eqs. 3-25 and 3-26
into Eq. 3-24 yields
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Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)

KEY I DEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or

(3-26)
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Additional examples, video, and practice available at WileyPLUS

The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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k̂ĵîĵ
k̂îîî
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k̂îîî
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k̂î "#
b
:
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îî
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k̂îîî
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k̂ĵîk̂ĵîb
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îî

k̂ĵîĵ
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Examples:
Q.1 If           , then the angle between vector A and vector B is:
(a) zero     (b) 90o (c) 180o (d) 45o (e) 360o

Q.2 The vectors A and B are in x-y plane. Their magnitude are 4.5 and 
7.3 units, respectively whereas their direction are 320o and 85o

measured counterclockwise from the psitive x-axis. The A dot B is:
(a) 3.45î−2.9Ĵ (b) −18.8          (c) 0.6î+7.3Ĵ (d)2.2î−21Ĵ

Q.3 Given                 the vector that is perpendicular to vector A is:
(a) 2î−4Ĵ (b) 4î+2Ĵ (c) 2î+4Ĵ (d)2î−6Ĵ

For vector A that is normal to vector B,             . This condition is 
applied when vector B is 4Î+2Ĵ


A ⋅

B = 0

θ = 320o −85o = 235o

A ⋅

B = ABcosθ = 4.5× 7.3× cos235 = −18.8


A = 2î − 4 ĵ


A ⋅

B = 0



Q.4 For vectors                   and                     ,           is:
(a) -31     (b) 31      (c) -31Î      (d) –Î

Q.5 Three vectors                    ,                        and                .
The value of                 is:
(a) 18      (b) 12       (c) 14         (d) 7


A = 3î − 4 ĵ


B = −5î + 4 ĵ


A ⋅

B


A ⋅

B = −15−16 = −31


A = î − 2 ĵ + k̂


B = 5î + 2 ĵ − 6k̂


C = 2î + 3 ĵ

(

A+

B) ⋅

C


A+

B = 6î + 0−5k̂

      

C = 2î + 3 ĵ + 0

(

A+

B) ⋅

C =12+ 0+ 0 =12



50 CHAPTE R 3 VECTORS

If and are parallel or antiparallel, ! ! 0. The magnitude of ! , which
can be written as , is maximum when and are perpendicular to each other.b

:
a:!a: ! b

:!
b
:

a:b
:

a:b
:

a:

The direction of is perpendicular to the plane that contains and . Figure
3-19a shows how to determine the direction of ! ! with what is known as
a right-hand rule. Place the vectors and tail to tail without altering their ori-
entations, and imagine a line that is perpendicular to their plane where they
meet. Pretend to place your right hand around that line in such a way that your
fingers would sweep into through the smaller angle between them. Your out-
stretched thumb points in the direction of .

The order of the vector multiplication is important. In Fig. 3-19b, we are
determining the direction of , so the fingers are placed to sweep into

through the smaller angle. The thumb ends up in the opposite direction froma:
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Vector product
(cross product)

� The vector product of   &   ,            à third vector    whose magnitude
is:

where Φ is the smaller of the 2 angles between  &     
Notice: Φ is the smaller angle between the vectors because 

sinΦ ≠ sin(360° − Φ) 

� The direction of is perpendicular to the plane that contains   &

� The direction of is determined by the right-hand rule:
� Place the vectors tail to tail without altering their orientations

� Imagine a line that is perpendicular to their plane where they 
meet

� Pretend to place your right hand around that line in such a way
that your fingers would sweep into   through the smaller angle 
between them

� The thumb points in the direction of
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The commutative law applies to a scalar product, so we can write

! ! ! .

When two vectors are in unit-vector notation, we write their dot product as

! ! (ax " ay " az ) ! (bx " by " bz ), (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that

! ! axbx " ayby " azbz. (3-23)b
:

a:

k̂ĵîk̂ĵîb
:

a:

a:b
:

b
:

a:

CHECKPOINT 4

Vectors and have magnitudes of 3 units and 4 units, respectively. What is the
angle between the directions of and if equals (a) zero, (b) 12 units, and 
(c) 12 units?#

D
:

C
:

!D
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C
:

D
:

C
:

Sample Problem

ing the vectors in unit-vector notation and using the distrib-
utive law:

! ! (3.0 # 4.0 ) ! (#2.0 " 3.0 )
! (3.0 ) ! (#2.0 ) " (3.0 ) ! (3.0 )

" (#4.0 ) ! (#2.0 ) " (#4.0 ) ! (3.0 ).

We next apply Eq. 3-20 to each term in this last expression.
The angle between the unit vectors in the first term ( and ) is
0°, and in the other terms it is 90°.We then have

! ! #(6.0)(1) " (9.0)(0) " (8.0)(0) # (12)(0)
! #6.0.

Substituting this result and the results of Eqs. 3-25 and 3-26
into Eq. 3-24 yields

#6.0 ! (5.00)(3.61) cos f,

so (Answer)$ ! cos#1 
#6.0

(5.00)(3.61)
! 109% !110%.

b
:

a:

îî

k̂ĵîĵ
k̂îîî

k̂îĵîb
:

a:

Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)

KEY I DEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or

(3-26)

We can separately evaluate the left side of Eq. 3-24 by writ-

b ! 2(#2.0)2 " 3.0 2 ! 3.61.

b
:

a ! 23.0 2 " (#4.0)2 ! 5.00

a:

b
:

a:

k̂î "#
b
:

!ĵî #a: !$

Additional examples, video, and practice available at WileyPLUS

The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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k̂îĵîb
:

a:

Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)

KEY I DEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or

(3-26)

We can separately evaluate the left side of Eq. 3-24 by writ-

b ! 2(#2.0)2 " 3.0 2 ! 3.61.

b
:

a ! 23.0 2 " (#4.0)2 ! 5.00

a:

b
:

a:

k̂î "#
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k̂î "#
b
:
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k̂ĵîk̂ĵîb
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Substituting this result and the results of Eqs. 3-25 and 3-26
into Eq. 3-24 yields

#6.0 ! (5.00)(3.61) cos f,

so (Answer)$ ! cos#1 
#6.0

(5.00)(3.61)
! 109% !110%.
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k̂îĵîb
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Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)

KEY I DEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or

(3-26)

We can separately evaluate the left side of Eq. 3-24 by writ-

b ! 2(#2.0)2 " 3.0 2 ! 3.61.

b
:

a ! 23.0 2 " (#4.0)2 ! 5.00
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b
:
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k̂î "#
b
:

!ĵî #a: !$

Additional examples, video, and practice available at WileyPLUS

The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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The commutative law applies to a scalar product, so we can write

! ! ! .

When two vectors are in unit-vector notation, we write their dot product as

! ! (ax " ay " az ) ! (bx " by " bz ), (3-22)
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îî

k̂ĵîĵ
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where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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0°, and in the other terms it is 90°.We then have
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more about scalar products if, at least here, you use these steps.)
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The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):
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Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or

(3-26)
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The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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If and are parallel or antiparallel, ! ! 0. The magnitude of ! , which
can be written as , is maximum when and are perpendicular to each other.b

:
a:!a: ! b

:!
b
:

a:b
:

a:b
:

a:

The direction of is perpendicular to the plane that contains and . Figure
3-19a shows how to determine the direction of ! ! with what is known as
a right-hand rule. Place the vectors and tail to tail without altering their ori-
entations, and imagine a line that is perpendicular to their plane where they
meet. Pretend to place your right hand around that line in such a way that your
fingers would sweep into through the smaller angle between them. Your out-
stretched thumb points in the direction of .

The order of the vector multiplication is important. In Fig. 3-19b, we are
determining the direction of , so the fingers are placed to sweep into

through the smaller angle. The thumb ends up in the opposite direction froma:
b
:

c": ! b
:

! a:

c:
b
:

a:

b
:

a:
b
:

a:c:
b
:

a:c:

Fig. 3-19 Illustration of the right-hand rule for vector products. (a) Sweep vector into
vector with the fingers of your right hand.Your outstretched thumb shows the direction
of vector . (b) Showing that is the reverse of .a: ! b

:
b
:

! a:c: ! a: ! b
:

b
:
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a

b b b

c

a

b
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The commutative law applies to a scalar product, so we can write

! ! ! .

When two vectors are in unit-vector notation, we write their dot product as

! ! (ax " ay " az ) ! (bx " by " bz ), (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that

! ! axbx " ayby " azbz. (3-23)b
:

a:

k̂ĵîk̂ĵîb
:

a:

a:b
:

b
:

a:

CHECKPOINT 4

Vectors and have magnitudes of 3 units and 4 units, respectively. What is the
angle between the directions of and if equals (a) zero, (b) 12 units, and 
(c) 12 units?#

D
:

C
:

!D
:

C
:

D
:

C
:

Sample Problem

ing the vectors in unit-vector notation and using the distrib-
utive law:

! ! (3.0 # 4.0 ) ! (#2.0 " 3.0 )
! (3.0 ) ! (#2.0 ) " (3.0 ) ! (3.0 )

" (#4.0 ) ! (#2.0 ) " (#4.0 ) ! (3.0 ).

We next apply Eq. 3-20 to each term in this last expression.
The angle between the unit vectors in the first term ( and ) is
0°, and in the other terms it is 90°.We then have

! ! #(6.0)(1) " (9.0)(0) " (8.0)(0) # (12)(0)
! #6.0.

Substituting this result and the results of Eqs. 3-25 and 3-26
into Eq. 3-24 yields

#6.0 ! (5.00)(3.61) cos f,

so (Answer)$ ! cos#1 
#6.0

(5.00)(3.61)
! 109% !110%.

b
:

a:

îî

k̂ĵîĵ
k̂îîî

k̂îĵîb
:

a:

Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)

KEY I DEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or

(3-26)

We can separately evaluate the left side of Eq. 3-24 by writ-

b ! 2(#2.0)2 " 3.0 2 ! 3.61.

b
:

a ! 23.0 2 " (#4.0)2 ! 5.00

a:

b
:

a:

k̂î "#
b
:

!ĵî #a: !$

Additional examples, video, and practice available at WileyPLUS

The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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:
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c:b
:

a:b
:

a:
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The commutative law applies to a scalar product, so we can write
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When two vectors are in unit-vector notation, we write their dot product as

! ! (ax " ay " az ) ! (bx " by " bz ), (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that
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Vectors and have magnitudes of 3 units and 4 units, respectively. What is the
angle between the directions of and if equals (a) zero, (b) 12 units, and 
(c) 12 units?#
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Sample Problem

ing the vectors in unit-vector notation and using the distrib-
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! ! (3.0 # 4.0 ) ! (#2.0 " 3.0 )
! (3.0 ) ! (#2.0 ) " (3.0 ) ! (3.0 )

" (#4.0 ) ! (#2.0 ) " (#4.0 ) ! (3.0 ).

We next apply Eq. 3-20 to each term in this last expression.
The angle between the unit vectors in the first term ( and ) is
0°, and in the other terms it is 90°.We then have

! ! #(6.0)(1) " (9.0)(0) " (8.0)(0) # (12)(0)
! #6.0.

Substituting this result and the results of Eqs. 3-25 and 3-26
into Eq. 3-24 yields
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Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)
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The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or

(3-26)

We can separately evaluate the left side of Eq. 3-24 by writ-
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The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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When two vectors are in unit-vector notation, we write their dot product as
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We next apply Eq. 3-20 to each term in this last expression.
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0°, and in the other terms it is 90°.We then have
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Substituting this result and the results of Eqs. 3-25 and 3-26
into Eq. 3-24 yields

#6.0 ! (5.00)(3.61) cos f,
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k̂îĵîb
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2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)
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The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or
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We can separately evaluate the left side of Eq. 3-24 by writ-
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The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”
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� The order of the vector multiplication is important

φ = 0→ a × b = absinφ = 0

φ = 90→ a × b = absinφ = ab
φ =180→ a × b = absinφ = 0

Vector product properties: 
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CHECKPOINT 5

Vectors and have magnitudes of 3 units and 4 units, respectively. What is the angle
between the directions of  and  if the magnitude of the vector product is (a)
zero and (b) 12 units?

D
:

C
:

!D
:

C
:

D
:

C
:

previously, and so it must be that ; that is,

. (3-28)

In other words, the commutative law does not apply to a vector product.
In unit-vector notation, we write

! ! (ax " ay " az ) ! (bx " by " bz ), (3-29)

which can be expanded according to the distributive law; that is, each component
of the first vector is to be crossed with each component of the second vector. The
cross products of unit vectors are given in Appendix E (see “Products of
Vectors”). For example, in the expansion of Eq. 3-29, we have

ax ! bx ! axbx( ! ) ! 0,

because the two unit vectors and are parallel and thus have a zero cross prod-
uct. Similarly, we have

ax ! by ! axby( ! ) ! axby .

In the last step we used Eq. 3-27 to evaluate the magnitude of ! as unity.
(These vectors and each have a magnitude of unity, and the angle between
them is 90°.) Also, we used the right-hand rule to get the direction of as
being in the positive direction of the z axis (thus in the direction of ).

Continuing to expand Eq. 3-29, you can show that

! ! (aybz # byaz) " (azbx # bzax) " (axby # bxay) . (3-30)

A determinant (Appendix E) or a vector-capable calculator can also be used.
To check whether any xyz coordinate system is a right-handed coordinate

system, use the right-hand rule for the cross product ! ! with that system. If
your fingers sweep (positive direction of x) into (positive direction of y) with
the outstretched thumb pointing in the positive direction of z (not the negative
direction), then the system is right-handed.

ĵî
k̂ĵî

k̂ĵîb
:

a:

k̂
ĵî !

ĵî
ĵî

k̂ĵîĵî

îî

îîîî

k̂ĵîk̂ĵîb
:

a:

b
:

! a: ! #(a: ! b
:

)

c$: ! #c:

Sample Problem

Cross product, right-hand rule

In Fig. 3-20, vector lies in the xy plane, has a magnitude of
18 units and points in a direction 250° from the positive di-
rection of the x axis. Also, vector has a magnitude of
12 units and points in the positive direction of the z axis.What
is the vector product  ! ! ?

KEY I DEA

When we have two vectors in magnitude-angle notation, we
find the magnitude of their cross product with Eq. 3-27 and
the direction of their cross product with the right-hand rule
of Fig. 3-19.

b
:

a:c:

b
:

a:

Fig. 3-20 Vector (in the xy plane) is the vector (or cross)
product of vectors and .b

:
a:

c:

z 

250° 
160° 

y x 

a b 
c = a    b 

This is the resulting
vector, perpendicular to
both a and b.

Sweep a into b.
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commutative law 
does not apply

50 CHAPTE R 3 VECTORS

If and are parallel or antiparallel, ! ! 0. The magnitude of ! , which
can be written as , is maximum when and are perpendicular to each other.b

:
a:!a: ! b

:!
b
:

a:b
:

a:b
:

a:

The direction of is perpendicular to the plane that contains and . Figure
3-19a shows how to determine the direction of ! ! with what is known as
a right-hand rule. Place the vectors and tail to tail without altering their ori-
entations, and imagine a line that is perpendicular to their plane where they
meet. Pretend to place your right hand around that line in such a way that your
fingers would sweep into through the smaller angle between them. Your out-
stretched thumb points in the direction of .

The order of the vector multiplication is important. In Fig. 3-19b, we are
determining the direction of , so the fingers are placed to sweep into

through the smaller angle. The thumb ends up in the opposite direction froma:
b
:

c": ! b
:

! a:

c:
b
:

a:

b
:

a:
b
:

a:c:
b
:

a:c:

Fig. 3-19 Illustration of the right-hand rule for vector products. (a) Sweep vector into
vector with the fingers of your right hand.Your outstretched thumb shows the direction
of vector . (b) Showing that is the reverse of .a: ! b

:
b
:

! a:c: ! a: ! b
:

b
:

a:

a

b b b

c

a

b

a a

(a)

(b)

c "

A
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� When two vectors    &    are in unit-vector notation: 

î × î = ĵ × ĵ = k̂ × k̂ = 0,          (φ = 0)

î × ĵ = ĵ × k̂ = k̂ × î =1       (φ = 90o )

ĵ × î = î × k̂ = k̂ × ĵ = −1     (φ = 90o )

à
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CHECKPOINT 5

Vectors and have magnitudes of 3 units and 4 units, respectively. What is the angle
between the directions of  and  if the magnitude of the vector product is (a)
zero and (b) 12 units?
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:

previously, and so it must be that ; that is,

. (3-28)

In other words, the commutative law does not apply to a vector product.
In unit-vector notation, we write

! ! (ax " ay " az ) ! (bx " by " bz ), (3-29)

which can be expanded according to the distributive law; that is, each component
of the first vector is to be crossed with each component of the second vector. The
cross products of unit vectors are given in Appendix E (see “Products of
Vectors”). For example, in the expansion of Eq. 3-29, we have

ax ! bx ! axbx( ! ) ! 0,

because the two unit vectors and are parallel and thus have a zero cross prod-
uct. Similarly, we have

ax ! by ! axby( ! ) ! axby .

In the last step we used Eq. 3-27 to evaluate the magnitude of ! as unity.
(These vectors and each have a magnitude of unity, and the angle between
them is 90°.) Also, we used the right-hand rule to get the direction of as
being in the positive direction of the z axis (thus in the direction of ).

Continuing to expand Eq. 3-29, you can show that

! ! (aybz # byaz) " (azbx # bzax) " (axby # bxay) . (3-30)

A determinant (Appendix E) or a vector-capable calculator can also be used.
To check whether any xyz coordinate system is a right-handed coordinate

system, use the right-hand rule for the cross product ! ! with that system. If
your fingers sweep (positive direction of x) into (positive direction of y) with
the outstretched thumb pointing in the positive direction of z (not the negative
direction), then the system is right-handed.

ĵî
k̂ĵî

k̂ĵîb
:

a:

k̂
ĵî !

ĵî
ĵî

k̂ĵîĵî

îî

îîîî

k̂ĵîk̂ĵîb
:

a:

b
:

! a: ! #(a: ! b
:

)

c$: ! #c:

Sample Problem

Cross product, right-hand rule

In Fig. 3-20, vector lies in the xy plane, has a magnitude of
18 units and points in a direction 250° from the positive di-
rection of the x axis. Also, vector has a magnitude of
12 units and points in the positive direction of the z axis.What
is the vector product  ! ! ?

KEY I DEA

When we have two vectors in magnitude-angle notation, we
find the magnitude of their cross product with Eq. 3-27 and
the direction of their cross product with the right-hand rule
of Fig. 3-19.

b
:

a:c:

b
:

a:

Fig. 3-20 Vector (in the xy plane) is the vector (or cross)
product of vectors and .b

:
a:

c:

z 

250° 
160° 

y x 

a b 
c = a    b 

This is the resulting
vector, perpendicular to
both a and b.

Sweep a into b.
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CHECKPOINT 5

Vectors and have magnitudes of 3 units and 4 units, respectively. What is the angle
between the directions of  and  if the magnitude of the vector product is (a)
zero and (b) 12 units?

D
:

C
:

!D
:

C
:

D
:

C
:

previously, and so it must be that ; that is,

. (3-28)

In other words, the commutative law does not apply to a vector product.
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ĵî
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The commutative law applies to a scalar product, so we can write

! ! ! .

When two vectors are in unit-vector notation, we write their dot product as

! ! (ax " ay " az ) ! (bx " by " bz ), (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that

! ! axbx " ayby " azbz. (3-23)b
:

a:

k̂ĵîk̂ĵîb
:

a:

a:b
:

b
:

a:

CHECKPOINT 4

Vectors and have magnitudes of 3 units and 4 units, respectively. What is the
angle between the directions of and if equals (a) zero, (b) 12 units, and 
(c) 12 units?#

D
:

C
:

!D
:

C
:

D
:

C
:

Sample Problem

ing the vectors in unit-vector notation and using the distrib-
utive law:

! ! (3.0 # 4.0 ) ! (#2.0 " 3.0 )
! (3.0 ) ! (#2.0 ) " (3.0 ) ! (3.0 )

" (#4.0 ) ! (#2.0 ) " (#4.0 ) ! (3.0 ).

We next apply Eq. 3-20 to each term in this last expression.
The angle between the unit vectors in the first term ( and ) is
0°, and in the other terms it is 90°.We then have

! ! #(6.0)(1) " (9.0)(0) " (8.0)(0) # (12)(0)
! #6.0.

Substituting this result and the results of Eqs. 3-25 and 3-26
into Eq. 3-24 yields

#6.0 ! (5.00)(3.61) cos f,

so (Answer)$ ! cos#1 
#6.0

(5.00)(3.61)
! 109% !110%.

b
:

a:

îî

k̂ĵîĵ
k̂îîî

k̂îĵîb
:

a:

Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following steps

can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)

KEY I DEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

! ! ab cos f. (3-24)

Calculations: In Eq. 3-24, a is the magnitude of , or

, (3-25)

and b is the magnitude of , or

(3-26)

We can separately evaluate the left side of Eq. 3-24 by writ-

b ! 2(#2.0)2 " 3.0 2 ! 3.61.

b
:

a ! 23.0 2 " (#4.0)2 ! 5.00

a:

b
:

a:

k̂î "#
b
:

!ĵî #a: !$

Additional examples, video, and practice available at WileyPLUS

The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin f and sin(360° # f)
differ in algebraic sign.) Because of the notation, " is also known as the cross
product, and in speech it is “a cross b.”

b
:

a:

b
:

a:

c:b
:

a:b
:

a:
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!ĵî #a: !$

Additional examples, video, and practice available at WileyPLUS

The Vector Product
The vector product of and , written " , produces a third vector whose
magnitude is

c ! ab sin f, (3-27)

where f is the smaller of the two angles between and . (You must use the
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b
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b
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c:b
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� can also be calculated by taking the 
determinant of the following matrix:

+      − + +      − + +      − +

î ĵ k̂
ax ay az
bx by bz

î ĵ k̂
ax ay az
bx by bz

î ĵ k̂
ax ay az
bx by bz

 
c = a ×


b

 

c =
î ĵ k̂
ax ay az
bx by bz

 
c = a ×


b = (aybz − byaz )î − (axbz − bxaz ) ĵ + (axby − bxay )k̂
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CHECKPOINT 5

Vectors and have magnitudes of 3 units and 4 units, respectively. What is the angle
between the directions of  and  if the magnitude of the vector product is (a)
zero and (b) 12 units?

D
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C
:

!D
:

C
:

D
:

C
:

previously, and so it must be that ; that is,

. (3-28)

In other words, the commutative law does not apply to a vector product.
In unit-vector notation, we write

! ! (ax " ay " az ) ! (bx " by " bz ), (3-29)

which can be expanded according to the distributive law; that is, each component
of the first vector is to be crossed with each component of the second vector. The
cross products of unit vectors are given in Appendix E (see “Products of
Vectors”). For example, in the expansion of Eq. 3-29, we have

ax ! bx ! axbx( ! ) ! 0,

because the two unit vectors and are parallel and thus have a zero cross prod-
uct. Similarly, we have

ax ! by ! axby( ! ) ! axby .

In the last step we used Eq. 3-27 to evaluate the magnitude of ! as unity.
(These vectors and each have a magnitude of unity, and the angle between
them is 90°.) Also, we used the right-hand rule to get the direction of as
being in the positive direction of the z axis (thus in the direction of ).

Continuing to expand Eq. 3-29, you can show that

! ! (aybz # byaz) " (azbx # bzax) " (axby # bxay) . (3-30)

A determinant (Appendix E) or a vector-capable calculator can also be used.
To check whether any xyz coordinate system is a right-handed coordinate

system, use the right-hand rule for the cross product ! ! with that system. If
your fingers sweep (positive direction of x) into (positive direction of y) with
the outstretched thumb pointing in the positive direction of z (not the negative
direction), then the system is right-handed.
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ĵî !
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k̂ĵîĵî
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îîîî
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Sample Problem

Cross product, right-hand rule

In Fig. 3-20, vector lies in the xy plane, has a magnitude of
18 units and points in a direction 250° from the positive di-
rection of the x axis. Also, vector has a magnitude of
12 units and points in the positive direction of the z axis.What
is the vector product  ! ! ?

KEY I DEA

When we have two vectors in magnitude-angle notation, we
find the magnitude of their cross product with Eq. 3-27 and
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b
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4=D


C ×

D =CDsinθ ,⇒ sinθ =


C ×

D

CD

(a)   

C ×

D = 0,⇒θ = sin−1 0

12
= 0

(b)   

C ×

D =12,⇒θ = sin−1 12

12
= 90o

3=C



52 CHAPTE R 3 VECTORS

Scalars and Vectors Scalars, such as temperature, have mag-
nitude only. They are specified by a number with a unit (10°C) and
obey the rules of arithmetic and ordinary algebra. Vectors, such as
displacement, have both magnitude and direction (5 m, north) and
obey the rules of vector algebra.

Adding Vectors Geometrically Two vectors and may be
added geometrically by drawing them to a common scale and plac-
ing them head to tail. The vector connecting the tail of the first to
the head of the second is the vector sum . To subtract from ,
reverse the direction of to get ! ; then add ! to  . Vector ad-
dition is commutative and obeys the associative law.

Components of a Vector The (scalar) components ax and ay

of any two-dimensional vector along the coordinate axes are
found by dropping perpendicular lines from the ends of onto the
coordinate axes.The components are given by

ax " a cos u and ay " a sin u, (3-5)

where u is the angle between the positive direction of the x axis
and the direction of . The algebraic sign of a component indicatesa:

a:
a:

a:b
:

b
:

b
:

a:b
:

s:

b
:

a:

its direction along the associated axis. Given its components, we
can find the magnitude and orientation of the vector with

and . (3-6)

Unit-Vector Notation Unit vectors , , and have magnitudes
of unity and are directed in the positive directions of the x, y, and z
axes, respectively, in a right-handed coordinate system. We can
write a vector in terms of unit vectors as

" ax # ay # az , (3-7)

in which ax , ay , and az are the vector components of and ax, ay,
and az are its scalar components.

Adding Vectors in Component Form To add vectors in
component form, we use the rules

rx " ax # bx ry " ay # by rz " az # bz. (3-10 to 3-12)

Here and are the vectors to be added, and is the vector sum.
Note that we add components axis by axis.

r:b
:

a:

a:k̂ĵî

k̂ĵîa:

a:

k̂ĵî

tan $ "
ay

ax
a " 2a2

x # a2
y

a:

Sample Problem

We next evaluate each term with Eq. 3-27, finding the
direction with the right-hand rule. For the first term here,
the angle f between the two vectors being crossed is 0. For
the other terms,f is 90°.We find

" !6(0) # 9(! ) # 8(! ) ! 12
" !12 ! 9 ! 8 . (Answer)

This vector is perpendicular to both and , a fact you
can check by showing that ! = 0 and ! = 0; that is,
there is no component of along the direction of either

or .b
:

a:
c:

b
:

c:a:c:
b
:

a:c:
k̂ĵî

îk̂ĵc:

Cross product, unit-vector notation

If " 3 ! 4 and " !2 # 3 , what is " " ?

KEY I DEA

When two vectors are in unit-vector notation, we can find
their cross product by using the distributive law.

Calculations: Here we write
" (3 ! 4 ) " (!2 # 3 )
" 3 " (!2 ) # 3 " 3 # (!4 ) " (!2 )

# (!4 ) " 3 .k̂ĵ
îĵk̂îîî

k̂îĵîc:

b
:

a:c:k̂îb
:

ĵîa:

Additional examples, video, and practice available at WileyPLUS

Calculations: For the magnitude we write

c " ab sin f " (18)(12)(sin 90°) " 216. (Answer)

To determine the direction in Fig. 3-20, imagine placing the
fingers of your right hand around a line perpendicular to the
plane of and (the line on which is shown) such that
your fingers sweep into . Your outstretched thumb thenb

:
a:

c:b
:

a:

gives the direction of .Thus, as shown in the figure, lies in
the xy plane. Because its direction is perpendicular to the
direction of (a cross product always gives a perpendicular
vector), it is at an angle of

250° ! 90° " 160° (Answer)

from the positive direction of the x axis.

a:

c:c:
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can check by showing that ! = 0 and ! = 0; that is,
there is no component of along the direction of either

or .b
:

a:
c:

b
:

c:a:c:
b
:

a:c:
k̂ĵî

îk̂ĵc:

Cross product, unit-vector notation

If " 3 ! 4 and " !2 # 3 , what is " " ?

KEY I DEA

When two vectors are in unit-vector notation, we can find
their cross product by using the distributive law.

Calculations: Here we write
" (3 ! 4 ) " (!2 # 3 )
" 3 " (!2 ) # 3 " 3 # (!4 ) " (!2 )

# (!4 ) " 3 .k̂ĵ
îĵk̂îîî

k̂îĵîc:

b
:

a:c:k̂îb
:

ĵîa:

Additional examples, video, and practice available at WileyPLUS

Calculations: For the magnitude we write

c " ab sin f " (18)(12)(sin 90°) " 216. (Answer)

To determine the direction in Fig. 3-20, imagine placing the
fingers of your right hand around a line perpendicular to the
plane of and (the line on which is shown) such that
your fingers sweep into . Your outstretched thumb thenb

:
a:

c:b
:

a:

gives the direction of .Thus, as shown in the figure, lies in
the xy plane. Because its direction is perpendicular to the
direction of (a cross product always gives a perpendicular
vector), it is at an angle of

250° ! 90° " 160° (Answer)

from the positive direction of the x axis.

a:

c:c:
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Scalars and Vectors Scalars, such as temperature, have mag-
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b
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b
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b
:
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plane of and (the line on which is shown) such that
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gives the direction of .Thus, as shown in the figure, lies in
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Q.1 For any two vectors A and B, if              , then the angle between 
them is:
(a) 60o (b) 90o (c) zero     (d) 30o (e) 270o

Q.2 Two vectors                    and                         . The vector that is 
perpendicular to the plane of A and B vectors is:
(a)  12Î-20Ĵ+k     (b) 14Î+6Ĵ+23k     (c) -14Î-6Ĵ+23k     (d) 5Î-2Ĵ+13k

Examples:

A×

B = 0


A = 3î − 7 ĵ


B = 2î + 3 ĵ − 2k̂

 


A ×

B =

î ĵ k̂
3 −7 0
2 3 −2

= [14 − 0]î + [0 − (−6)] ĵ + [9 − (−14)]k̂ = 14î + 6 ĵ + 23k̂



Q.3 The vector perpendicular to vector                   and vector                  
is:

(a) 11Î          (b) -9k          (c) -2Ĵ (d) 6Î           (e) 4k

Q.4 A vector A of magnitude 10 units and another vector b of 
magnitude 5 units differ in directions by 60o

(1) The scalar product of the two vectors is:
(a) 13Î      (b) 15     (c) 25   (d) 25Ĵ

(2) The magnitude of the vector product is:
(a) 43.3     (b) 43.3k    (c) 15.5Î    (d) 16.6


A = 2î + 2k̂

B = 5î + 6k̂


A×

B =

î ĵ k̂
2 0 2
5 0 6

= 0î + [10−12] ĵ + 0k̂ = −2 ĵ


A ⋅

B = ABcosθ = 5(10)cos60o = 25


A×

B = ABsinθ = 5(10)sin60o = 43.3



!
!
!
!

 

 

Chapter 3: VECTORS 

 
 
1- A vector has two components ( Ax = 3 cm and Ay = - 4 cm ). 
What is the magnitude of A? 
!"#/#,6##################+"#4#,6####################,"#(#,6########################-"#3#,6#
#
#
#
2-Let A = (2m) i+ (6m) j + (3m) k and B = (4m) i+(2m) j - (1m) k.  
the vector sum             S = A +B  is: 
 
!"%#78#6"#9#:#7*6"#;#:#7$6"#<#
#
+"%#71$6"#9#:#7/6"#;#:#7/6"#<#
#
,"%#7$#6"#9:#7/6"#;#:#7/6"#<#
#
-"%#7*6"#9#:#7($6"#;#:#726"#<#
#
#
3- The value of   k . ( k ×  i  ) is 
 
!
!" =>?@####################+"#:(################################,"#1(####################-"#2#

#
#
#
#
#
#
#
Check point : 1, 2 , 3, 4 , 5 

 

Problems   1, 3 ,13   

Assignments:

4- What is the cross product of a = (1, 2, 3) and b = (4, 5, 6)?



Problems:
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direction of in the three situations shown in Fig. 3-24 when con-
stant q is (a) positive and (b) negative?

B
:

10 Figure 3-25 shows vector and
four other vectors that have the same
magnitude but differ in orientation.
(a) Which of those other four vectors
have the same dot product with ? (b)
Which have a negative dot product
with ?A

:

A
:

A
:

B

A

C
E

D

θ
θ

θ
θ

Fig. 3-25 Question 10.

F F

Fv

v v
xxx

z z z

yyy

(1) (2) (3)

Fig. 3-24 Question 9.

sec. 3-4 Components of Vectors
•1 What are (a) the x component and (b) the y component of a
vector in the xy plane if its direction is 250° counterclockwise from
the positive direction of the x axis and its magnitude is 7.3 m?

•2 A displacement vector in the xy
plane is 15 m long and directed at angle 
u ! 30° in Fig. 3-26. Determine (a) the x
component and (b) the y component of the
vector.

•3 The x component of vector is
25.0 m and the y component is 40.0 m.

(a) What is the magnitude of ? (b) What is the angle between the
direction of and the positive direction of x?

•4 Express the following angles in radians: (a) 20.0°, (b) 50.0°, (c)
100°. Convert the following angles to degrees: (d) 0.330 rad, (e)
2.10 rad, (f) 7.70 rad.

•5 A ship sets out to sail to a point 120 km due north. An unex-
pected storm blows the ship to a point 100 km due east of its start-
ing point. (a) How far and (b) in
what direction must it now sail to
reach its original destination?

•6 In Fig. 3-27, a heavy piece of
machinery is raised by sliding it a
distance d ! 12.5 m along a plank
oriented at angle u ! 20.0° to the
horizontal. How far is it moved (a)
vertically and (b) horizontally?

••7 A room has di-
mensions 3.00 m (height) 3.70 m 4.30 m. A fly starting at one
corner flies around, ending up at the diagonally opposite corner. (a)
What is the magnitude of its displacement? (b) Could the length of
its path be less than this magnitude? (c) Greater? (d) Equal? (e)
Choose a suitable coordinate system and express the components
of the displacement vector in that system in unit-vector notation.
(f) If the fly walks, what is the length of the shortest path? (Hint:
This can be answered without calculus. The room is like a box.
Unfold its walls to flatten them into a plane.)

""
WWWSSM

A
:

A
:

#$
A
:

SSM

r:

a:
SSM

sec. 3-6 Adding Vectors by Components
•8 A person walks in the following pattern: 3.1 km north, then 2.4
km west, and finally 5.2 km south. (a) Sketch the vector diagram
that represents this motion. (b) How far and (c) in what direction
would a bird fly in a straight line from the same starting point to
the same final point?

•9 Two vectors are given by

and .

In unit-vector notation, find (a) , (b) , and (c) a third
vector such that .

•10 Find the (a) x, (b) y, and (c) z components of the sum of
the displacements and whose components in meters are
cx 7.4, cy 3.8, cz 6.1; dx 4.4, dy 2.0, dz 3.3.

•11 (a) In unit-vector notation, what is the sum if 
(4.0 m) (3.0 m) and ( 13.0 m) (7.0 m) ? What

are the (b) magnitude and (c) direction of ?

•12 A car is driven east for a distance of 50 km, then north for 30
km, and then in a direction 30° east of north for 25 km. Sketch the
vector diagram and determine (a) the magnitude and (b) the angle
of the car’s total displacement from its starting point.

•13 A person desires to reach a point that is 3.40 km from her
present location and in a direction that is 35.0° north of east.
However, she must travel along streets that are oriented either
north–south or east–west. What is the minimum distance she
could travel to reach her destination?

•14 You are to make four straight-line moves over a flat desert
floor, starting at the origin of an xy coordinate system and ending
at the xy coordinates ($140 m, 30 m).The x component and y com-
ponent of your moves are the following, respectively, in meters: (20
and 60), then (bx and $70), then ($20 and cy), then ($60 and $70).
What are (a) component bx and (b) component cy? What are (c)
the magnitude and (d) the angle (relative to the positive direction
of the x axis) of the overall displacement?

•15 The two vectors and in Fig. 3-28 have
equal magnitudes of 10.0 m and the angles are 30° and %2 !%1 !

b
:

a:WWWILWSSM

a: # b
:

ĵ#î$!b
:

ĵ#î!a:
a: # b

:
SSM

!! $!! $! $!
d
:

c:
r:

a: $ b
:

# c: ! 0c:
a: $ b

:
a: # b

:

 b
:

! ($1.0 m)î # (1.0 m)ĵ # (4.0 m)k̂

 a: ! (4.0 m)î $ (3.0 m)ĵ # (1.0 m)k̂θ
x

y

r

Fig. 3-26
Problem 2.

θ

d

Fig. 3-27 Problem 6.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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direction of in the three situations shown in Fig. 3-24 when con-
stant q is (a) positive and (b) negative?
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10 Figure 3-25 shows vector and
four other vectors that have the same
magnitude but differ in orientation.
(a) Which of those other four vectors
have the same dot product with ? (b)
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sec. 3-4 Components of Vectors
•1 What are (a) the x component and (b) the y component of a
vector in the xy plane if its direction is 250° counterclockwise from
the positive direction of the x axis and its magnitude is 7.3 m?

•2 A displacement vector in the xy
plane is 15 m long and directed at angle 
u ! 30° in Fig. 3-26. Determine (a) the x
component and (b) the y component of the
vector.

•3 The x component of vector is
25.0 m and the y component is 40.0 m.

(a) What is the magnitude of ? (b) What is the angle between the
direction of and the positive direction of x?

•4 Express the following angles in radians: (a) 20.0°, (b) 50.0°, (c)
100°. Convert the following angles to degrees: (d) 0.330 rad, (e)
2.10 rad, (f) 7.70 rad.

•5 A ship sets out to sail to a point 120 km due north. An unex-
pected storm blows the ship to a point 100 km due east of its start-
ing point. (a) How far and (b) in
what direction must it now sail to
reach its original destination?

•6 In Fig. 3-27, a heavy piece of
machinery is raised by sliding it a
distance d ! 12.5 m along a plank
oriented at angle u ! 20.0° to the
horizontal. How far is it moved (a)
vertically and (b) horizontally?

••7 A room has di-
mensions 3.00 m (height) 3.70 m 4.30 m. A fly starting at one
corner flies around, ending up at the diagonally opposite corner. (a)
What is the magnitude of its displacement? (b) Could the length of
its path be less than this magnitude? (c) Greater? (d) Equal? (e)
Choose a suitable coordinate system and express the components
of the displacement vector in that system in unit-vector notation.
(f) If the fly walks, what is the length of the shortest path? (Hint:
This can be answered without calculus. The room is like a box.
Unfold its walls to flatten them into a plane.)
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sec. 3-6 Adding Vectors by Components
•8 A person walks in the following pattern: 3.1 km north, then 2.4
km west, and finally 5.2 km south. (a) Sketch the vector diagram
that represents this motion. (b) How far and (c) in what direction
would a bird fly in a straight line from the same starting point to
the same final point?

•9 Two vectors are given by

and .

In unit-vector notation, find (a) , (b) , and (c) a third
vector such that .

•10 Find the (a) x, (b) y, and (c) z components of the sum of
the displacements and whose components in meters are
cx 7.4, cy 3.8, cz 6.1; dx 4.4, dy 2.0, dz 3.3.

•11 (a) In unit-vector notation, what is the sum if 
(4.0 m) (3.0 m) and ( 13.0 m) (7.0 m) ? What

are the (b) magnitude and (c) direction of ?

•12 A car is driven east for a distance of 50 km, then north for 30
km, and then in a direction 30° east of north for 25 km. Sketch the
vector diagram and determine (a) the magnitude and (b) the angle
of the car’s total displacement from its starting point.

•13 A person desires to reach a point that is 3.40 km from her
present location and in a direction that is 35.0° north of east.
However, she must travel along streets that are oriented either
north–south or east–west. What is the minimum distance she
could travel to reach her destination?

•14 You are to make four straight-line moves over a flat desert
floor, starting at the origin of an xy coordinate system and ending
at the xy coordinates ($140 m, 30 m).The x component and y com-
ponent of your moves are the following, respectively, in meters: (20
and 60), then (bx and $70), then ($20 and cy), then ($60 and $70).
What are (a) component bx and (b) component cy? What are (c)
the magnitude and (d) the angle (relative to the positive direction
of the x axis) of the overall displacement?

•15 The two vectors and in Fig. 3-28 have
equal magnitudes of 10.0 m and the angles are 30° and %2 !%1 !
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      
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Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com
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sec. 3-4 Components of Vectors
•1 What are (a) the x component and (b) the y component of a
vector in the xy plane if its direction is 250° counterclockwise from
the positive direction of the x axis and its magnitude is 7.3 m?

•2 A displacement vector in the xy
plane is 15 m long and directed at angle 
u ! 30° in Fig. 3-26. Determine (a) the x
component and (b) the y component of the
vector.

•3 The x component of vector is
25.0 m and the y component is 40.0 m.

(a) What is the magnitude of ? (b) What is the angle between the
direction of and the positive direction of x?

•4 Express the following angles in radians: (a) 20.0°, (b) 50.0°, (c)
100°. Convert the following angles to degrees: (d) 0.330 rad, (e)
2.10 rad, (f) 7.70 rad.

•5 A ship sets out to sail to a point 120 km due north. An unex-
pected storm blows the ship to a point 100 km due east of its start-
ing point. (a) How far and (b) in
what direction must it now sail to
reach its original destination?

•6 In Fig. 3-27, a heavy piece of
machinery is raised by sliding it a
distance d ! 12.5 m along a plank
oriented at angle u ! 20.0° to the
horizontal. How far is it moved (a)
vertically and (b) horizontally?

••7 A room has di-
mensions 3.00 m (height) 3.70 m 4.30 m. A fly starting at one
corner flies around, ending up at the diagonally opposite corner. (a)
What is the magnitude of its displacement? (b) Could the length of
its path be less than this magnitude? (c) Greater? (d) Equal? (e)
Choose a suitable coordinate system and express the components
of the displacement vector in that system in unit-vector notation.
(f) If the fly walks, what is the length of the shortest path? (Hint:
This can be answered without calculus. The room is like a box.
Unfold its walls to flatten them into a plane.)
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•8 A person walks in the following pattern: 3.1 km north, then 2.4
km west, and finally 5.2 km south. (a) Sketch the vector diagram
that represents this motion. (b) How far and (c) in what direction
would a bird fly in a straight line from the same starting point to
the same final point?

•9 Two vectors are given by

and .

In unit-vector notation, find (a) , (b) , and (c) a third
vector such that .

•10 Find the (a) x, (b) y, and (c) z components of the sum of
the displacements and whose components in meters are
cx 7.4, cy 3.8, cz 6.1; dx 4.4, dy 2.0, dz 3.3.
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(4.0 m) (3.0 m) and ( 13.0 m) (7.0 m) ? What
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•12 A car is driven east for a distance of 50 km, then north for 30
km, and then in a direction 30° east of north for 25 km. Sketch the
vector diagram and determine (a) the magnitude and (b) the angle
of the car’s total displacement from its starting point.

•13 A person desires to reach a point that is 3.40 km from her
present location and in a direction that is 35.0° north of east.
However, she must travel along streets that are oriented either
north–south or east–west. What is the minimum distance she
could travel to reach her destination?

•14 You are to make four straight-line moves over a flat desert
floor, starting at the origin of an xy coordinate system and ending
at the xy coordinates ($140 m, 30 m).The x component and y com-
ponent of your moves are the following, respectively, in meters: (20
and 60), then (bx and $70), then ($20 and cy), then ($60 and $70).
What are (a) component bx and (b) component cy? What are (c)
the magnitude and (d) the angle (relative to the positive direction
of the x axis) of the overall displacement?

•15 The two vectors and in Fig. 3-28 have
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Physics 110
1435-1436 H

Instructor: Dr. Alaa Imam
E-mail: alaa_y_emam@hotmail.com



Chapter 4
MOTION IN TWO AND 
THREE DIMENSIONS

Sections 4-2, 4-3, 4-4

Position & Displacement
Average Velocity & Instantaneous Velocity

Average Acceleration & Instantaneous Acceleration



Important skills from this lecture:
1. Define the motion in 2 and 3 dimensions 
2. Locate the particle position in 2 and 3 dimensions
3. Calculate the displacement vector 
4. Calculate the average velocity 
5. Calculate the instantaneous velocity
6. Write all the preceding vectors in magnitude-direction and 

unit-vector notation
7. Calculate the average acceleration
8. Calculate the instantaneous acceleration 
9. Write all the preceding vectors in magnitude-direction and 

unit-vector notation



� Motion could be:

x

y

x

y y

x
z

in 1 dimension in 2 dimensions in 3 dimensions
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In this chapter we continue looking at the aspect of physics that analyzes
motion, but now the motion can be in two or three dimensions. For example, med-
ical researchers and aeronautical engineers might concentrate on the physics of
the two- and three-dimensional turns taken by fighter pilots in dogfights because a
modern high-performance jet can take a tight turn so quickly that the pilot
immediately loses consciousness. A sports engineer might focus on the physics of
basketball. For example, in a free throw (where a player gets an uncontested shot
at the basket from about 4.3 m), a player might employ the overhand push shot, in
which the ball is pushed away from about shoulder height and then released. Or
the player might use an underhand loop shot, in which the ball is brought upward
from about the belt-line level and released. The first technique is the overwhelm-
ing choice among professional players, but the legendary Rick Barry set the
record for free-throw shooting with the underhand technique.

Motion in three dimensions is not easy to understand. For example, you are
probably good at driving a car along a freeway (one-dimensional motion) but
would probably have a difficult time in landing an airplane on a runway (three-
dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position
and displacement.

4-2 Position and Displacement
One general way of locating a particle (or particle-like object) is with a position
vector , which is a vector that extends from a reference point (usually the ori-
gin) to the particle. In the unit-vector notation of Section 3-5, can be written

(4-1)

where x , y , and z are the vector components of and the coefficients x, y, and
z are its scalar components.

The coefficients x, y, and z give the particle’s location along the coordinate
axes and relative to the origin; that is, the particle has the rectangular coordinates
(x, y, z). For instance, Fig. 4-1 shows a particle with position vector

and rectangular coordinates (!3 m, 2 m, 5 m). Along the x axis the particle is 3 m
from the origin, in the direction. Along the y axis it is 2 m from the origin, in
the direction.Along the z axis it is 5 m from the origin, in the direction."k̂"ĵ

!î

r: # (!3 m)î " (2 m)ĵ " (5 m)k̂

r:k̂ĵî

r: # x î " y ĵ " zk̂,

r:
r:

C H A P T E R

y

x

z

(–3 m)i
(2 m)j(5 m)k

O

ˆ
ˆ

ˆ

r

To locate the 
particle, this
is how far 
parallel to z.

This is how far 
parallel to y.

This is how far 
parallel to x.

Fig. 4-1 The position vector for a parti-
cle is the vector sum of its vector components.
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Position in 3 Dimensions
� To locate a particle à position vector

à vector components, 
x, y, and z (called coefficient) à scalar components

� e.g. a particle with position vector

has rectangular coordinates 
(x, y, z) = (−3 m, 2 m, 5 m)

� The location of this particle is:
Along the x axis, 3 m from the origin,
in the −Î direction 
Along the y axis, 2 m from the origin,
in the +Ĵ direction 
Along the z axis, 5 m from the origin, 
in the + kˆ direction58
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modern high-performance jet can take a tight turn so quickly that the pilot
immediately loses consciousness. A sports engineer might focus on the physics of
basketball. For example, in a free throw (where a player gets an uncontested shot
at the basket from about 4.3 m), a player might employ the overhand push shot, in
which the ball is pushed away from about shoulder height and then released. Or
the player might use an underhand loop shot, in which the ball is brought upward
from about the belt-line level and released. The first technique is the overwhelm-
ing choice among professional players, but the legendary Rick Barry set the
record for free-throw shooting with the underhand technique.

Motion in three dimensions is not easy to understand. For example, you are
probably good at driving a car along a freeway (one-dimensional motion) but
would probably have a difficult time in landing an airplane on a runway (three-
dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position
and displacement.

4-2 Position and Displacement
One general way of locating a particle (or particle-like object) is with a position
vector , which is a vector that extends from a reference point (usually the ori-
gin) to the particle. In the unit-vector notation of Section 3-5, can be written
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where x , y , and z are the vector components of and the coefficients x, y, and
z are its scalar components.

The coefficients x, y, and z give the particle’s location along the coordinate
axes and relative to the origin; that is, the particle has the rectangular coordinates
(x, y, z). For instance, Fig. 4-1 shows a particle with position vector
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r:k̂ĵî
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which the ball is pushed away from about shoulder height and then released. Or
the player might use an underhand loop shot, in which the ball is brought upward
from about the belt-line level and released. The first technique is the overwhelm-
ing choice among professional players, but the legendary Rick Barry set the
record for free-throw shooting with the underhand technique.

Motion in three dimensions is not easy to understand. For example, you are
probably good at driving a car along a freeway (one-dimensional motion) but
would probably have a difficult time in landing an airplane on a runway (three-
dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position
and displacement.

4-2 Position and Displacement
One general way of locating a particle (or particle-like object) is with a position
vector , which is a vector that extends from a reference point (usually the ori-
gin) to the particle. In the unit-vector notation of Section 3-5, can be written
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where x , y , and z are the vector components of and the coefficients x, y, and
z are its scalar components.

The coefficients x, y, and z give the particle’s location along the coordinate
axes and relative to the origin; that is, the particle has the rectangular coordinates
(x, y, z). For instance, Fig. 4-1 shows a particle with position vector
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In this chapter we continue looking at the aspect of physics that analyzes
motion, but now the motion can be in two or three dimensions. For example, med-
ical researchers and aeronautical engineers might concentrate on the physics of
the two- and three-dimensional turns taken by fighter pilots in dogfights because a
modern high-performance jet can take a tight turn so quickly that the pilot
immediately loses consciousness. A sports engineer might focus on the physics of
basketball. For example, in a free throw (where a player gets an uncontested shot
at the basket from about 4.3 m), a player might employ the overhand push shot, in
which the ball is pushed away from about shoulder height and then released. Or
the player might use an underhand loop shot, in which the ball is brought upward
from about the belt-line level and released. The first technique is the overwhelm-
ing choice among professional players, but the legendary Rick Barry set the
record for free-throw shooting with the underhand technique.

Motion in three dimensions is not easy to understand. For example, you are
probably good at driving a car along a freeway (one-dimensional motion) but
would probably have a difficult time in landing an airplane on a runway (three-
dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position
and displacement.

4-2 Position and Displacement
One general way of locating a particle (or particle-like object) is with a position
vector , which is a vector that extends from a reference point (usually the ori-
gin) to the particle. In the unit-vector notation of Section 3-5, can be written

(4-1)

where x , y , and z are the vector components of and the coefficients x, y, and
z are its scalar components.

The coefficients x, y, and z give the particle’s location along the coordinate
axes and relative to the origin; that is, the particle has the rectangular coordinates
(x, y, z). For instance, Fig. 4-1 shows a particle with position vector

and rectangular coordinates (!3 m, 2 m, 5 m). Along the x axis the particle is 3 m
from the origin, in the direction. Along the y axis it is 2 m from the origin, in
the direction.Along the z axis it is 5 m from the origin, in the direction."k̂"ĵ
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In this chapter we continue looking at the aspect of physics that analyzes
motion, but now the motion can be in two or three dimensions. For example, med-
ical researchers and aeronautical engineers might concentrate on the physics of
the two- and three-dimensional turns taken by fighter pilots in dogfights because a
modern high-performance jet can take a tight turn so quickly that the pilot
immediately loses consciousness. A sports engineer might focus on the physics of
basketball. For example, in a free throw (where a player gets an uncontested shot
at the basket from about 4.3 m), a player might employ the overhand push shot, in
which the ball is pushed away from about shoulder height and then released. Or
the player might use an underhand loop shot, in which the ball is brought upward
from about the belt-line level and released. The first technique is the overwhelm-
ing choice among professional players, but the legendary Rick Barry set the
record for free-throw shooting with the underhand technique.

Motion in three dimensions is not easy to understand. For example, you are
probably good at driving a car along a freeway (one-dimensional motion) but
would probably have a difficult time in landing an airplane on a runway (three-
dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position
and displacement.

4-2 Position and Displacement
One general way of locating a particle (or particle-like object) is with a position
vector , which is a vector that extends from a reference point (usually the ori-
gin) to the particle. In the unit-vector notation of Section 3-5, can be written

(4-1)

where x , y , and z are the vector components of and the coefficients x, y, and
z are its scalar components.

The coefficients x, y, and z give the particle’s location along the coordinate
axes and relative to the origin; that is, the particle has the rectangular coordinates
(x, y, z). For instance, Fig. 4-1 shows a particle with position vector

and rectangular coordinates (!3 m, 2 m, 5 m). Along the x axis the particle is 3 m
from the origin, in the direction. Along the y axis it is 2 m from the origin, in
the direction.Along the z axis it is 5 m from the origin, in the direction."k̂"ĵ
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Displacement in 3 Dimensions 

� As a particle moves à position vector changes 

� If the position vector changes from     to      during a certain 
time interval à the particle’s displacement is given by:

� Using the unit-vector notation:

594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
x (m) 

0 

20 

40 

–20 

–40 

–60 

y (m) 

20 40 60 80 

(a) 

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

(b) 25 s
20 s

15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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r:
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As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)
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or as (4-3)
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by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):
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Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
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r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.
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As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
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A rabbit runs across a parking lot on which a set of
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time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
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The x and y coordinates of the rabbit’s position, as given by
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At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,
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which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:
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As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):
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Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
x (m) 

0 
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y (m) 
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(b) 25 s
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15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
x (m) 

0 
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y (m) 
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(b) 25 s
20 s

15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
x (m) 

0 
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y (m) 
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(b) 25 s
20 s

15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
x (m) 

0 
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–60 

y (m) 
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(b) 25 s
20 s

15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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The position vector for a particle initially is:

and then later is:

what is the particle’s displacement?

r1 = (−3.0m)î + (2.0m) ĵ + (5.0m)k̂

r2 = (9.0m)î + (2.0m) ĵ + (8.0m)k̂

Δr = r2 −
r1

   = [9.0− (−3.0)]î + [2.0− 2.0] ĵ + [8.0−5.0]k̂
   = (12m)î + (3m)k̂

594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
x (m) 

0 
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–60 

y (m) 
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(b) 25 s
20 s

15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
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(b) 25 s
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15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
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5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
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15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
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(b) 25 s
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15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
x (m) 
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15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
x (m) 
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5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
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–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:
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t = 0 s

–41° 
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This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.

r:

r:

halliday_c04_058-086hr.qxd  4-09-2009  10:16  Page 59

62 CHAPTE R 4 MOTION I N TWO AN D TH R E E DI M E N S ION S

4-4 Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink !t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

a: "
dv:

dt
.

a:
a:avg

a:avg "
v:2 # v:1

!t
"

!v:

!t
.

average
acceleration "

change in velocity
time interval

,

!a:avg

!v:2v:1

Sample Problem

(Answer)

and

(Answer)

Check: Is the angle #130° or #130° $ 180° " 50°?

 " tan#1 1.19 " #130%.

 & " tan#1  
vy

vx
" tan#1  ! #2.5 m/s

#2.1 m/s "
 " 3.3 m/s

 v " 2vx
2 $ vy

2 " 2(#2.1 m/s)2 $ (#2.5 m/s)2

Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity at time t " 15 s.

KEY I DEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to 
Eq. 4-5, we find the x component of to be

(4-13)

At t " 15 s, this gives vx " #2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t " 15 s, this gives vy " #2.5 m/s. Equation 4-11 then
yields

(Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t " 15 s.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write

v:

v: " (#2.1 m/s)î $ (#2.5 m/s)ĵ ,

 " 0.44t # 9.1.

 vy "
dy
dt

"
d
dt

 (0.22t2 # 9.1t $ 30)

 " #0.62t $ 7.2.

 vx "
dx
dt

"
d
dt

 (#0.31t2 $ 7.2t $ 28)

v:

v:

v:

Fig. 4-5 The rabbit’s velocity at t " 15 s.v:

–130° 

x (m) 
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x 

v These are the x and y
components of the vector
at this instant.

Additional examples, video, and practice available at WileyPLUS
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg

v:avg# r:/#t
# r:r:1r:2

#

# r:
r:2r:1#

v: !
d r:

dt
.

v:
#

v:avgv:v:

v:avg !
# r:

#t
!

(12 m)î $ (3.0 m)k̂
2.0 s

! (6.0 m/s)î $ (1.5 m/s)k̂.

(12 m)î $ (3.0 m)k̂

v:avg !
#xî $ #yĵ $ #zk̂

#t
!

#x
#t

 î $
#y
#t

 ĵ $
#z
#t

 k̂.

# r:
v:avg

v:avg !
# r:

#t
.

average velocity !
displacement
time interval

,

v:avg

## r:

Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.

r:2

r:1

# r:

r1
r2

Path

Tangent

O

y

x

1
2

    r∆

As the particle moves,
the position vector 
must change.

This is the 
displacement.

Additional examples, video, and practice available at WileyPLUS
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As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2
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This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.
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we repeat part (a) for several values of t
and then plot the results. 

t X(t) Y(t)

0 28 30

5 56.25 −10

10 69 −39

15 66 −57

20 48 −64

25 14 −60

594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)
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or as (4-3)
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by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?
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Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write
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(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:
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and . (Answer)% " tan$1  
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg

v:avg# r:/#t
# r:r:1r:2

#

# r:
r:2r:1#

v: !
d r:

dt
.

v:
#
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# r:

#t
.

average velocity !
displacement
time interval

,

v:avg

## r:

Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.
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As the particle moves,
the position vector 
must change.

This is the 
displacement.

Additional examples, video, and practice available at WileyPLUS
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg
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Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg
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! (6.0 m/s)î $ (1.5 m/s)k̂.
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 ĵ $
#z
#t

 k̂.

# r:
v:avg

v:avg !
# r:

#t
.

average velocity !
displacement
time interval

,

v:avg

## r:

Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg
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 î $
#y
#t

 ĵ $
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Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg
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Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.
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As the particle moves,
the position vector 
must change.

This is the 
displacement.

Additional examples, video, and practice available at WileyPLUS
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If a particle’s displacement is given by

Find its velocity during the time interval of 2 s.
Δr = (12m)î + (3m)k̂

594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
x (m) 

0 

20 

40 

–20 

–40 

–60 

y (m) 

20 40 60 80 

(a) 

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

(b) 25 s
20 s

15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.

r:

r:
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vavg =
Δr
Δt

= (12m)î + (3m)k̂
2sec

= (6m / s)î + (1.5m / s)k̂

The average velocity has a component of 6.0 m/s along the x axis and a 
component of 1.5 m /s along the z axis



Instantaneous Velocity
� The instantaneous velocity     (or simply velocity) is the value 

that  approaches when the time interval Δt reached to 0

� In three dimensions
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg

v:avg# r:/#t
# r:r:1r:2

#

# r:
r:2r:1#

v: !
d r:

dt
.

v:
#

v:avgv:v:

v:avg !
# r:

#t
!

(12 m)î $ (3.0 m)k̂
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! (6.0 m/s)î $ (1.5 m/s)k̂.

(12 m)î $ (3.0 m)k̂
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!
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#t

 î $
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 ĵ $
#z
#t

 k̂.

# r:
v:avg

v:avg !
# r:

#t
.

average velocity !
displacement
time interval

,

v:avg

## r:

Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.

r:2

r:1

# r:

r1
r2

Path
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    r∆

As the particle moves,
the position vector 
must change.

This is the 
displacement.

Additional examples, video, and practice available at WileyPLUS
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In the limit as , we have and, most important here,
takes on the direction of the tangent line.Thus, has that direction as well:v:v:avg

v:avg : v:!t : 0

The direction of the instantaneous velocity of a particle is always tangent to the
particle’s path at the particle’s position.

v:

The result is the same in three dimensions: is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for from Eq. 4-1:

This equation can be simplified somewhat by writing it as

(4-11)

where the scalar components of are

(4-12)

For example, dx/dt is the scalar component of along the x axis.Thus, we can find
the scalar components of by differentiating the scalar components of .

Figure 4-4 shows a velocity vector and its scalar x and y components.
Note that is tangent to the particle’s path at the particle’s position. Caution:
When a position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that
extends from one point (a “here”) to another point (a “there”). However,
when a velocity vector is drawn, as in Fig. 4-4, it does not extend from one
point to another. Rather, it shows the instantaneous direction of travel of a
particle at the tail, and its length (representing the velocity magnitude) can be
drawn to any scale.

v:
v:

r:v:
v:

vx "
dx
dt

, vy "
dy
dt

, and vz "
dz
dt

.

v:

v: " vx î # vy ĵ # vzk̂,

v: "
d
dt

 (x î # y ĵ # zk̂) "
dx
dt

 î #
dy
dt

 ĵ #
dz
dt

 k̂.

r:
v:

Fig. 4-4 The velocity of a
particle, along with the scalar
components of .v:

v:
Path

O

y

x

Tangent

vy

vx

v

The velocity vector is always
tangent to the path.

These are the x and y
components of the vector
at this instant.

CHECKPOINT 1

The figure shows a circular path taken by a particle. If
the instantaneous velocity of the particle is

, through which quadrant is the
particle moving at that instant if it is traveling (a) clock-
wise and (b) counterclockwise around the circle? For
both cases, draw on the figure.v:

v: " (2 m/s)î $ (2 m/s)ĵ

y

x
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In the limit as , we have and, most important here,
takes on the direction of the tangent line.Thus, has that direction as well:v:v:avg

v:avg : v:!t : 0

The direction of the instantaneous velocity of a particle is always tangent to the
particle’s path at the particle’s position.

v:

The result is the same in three dimensions: is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for from Eq. 4-1:

This equation can be simplified somewhat by writing it as

(4-11)

where the scalar components of are

(4-12)

For example, dx/dt is the scalar component of along the x axis.Thus, we can find
the scalar components of by differentiating the scalar components of .

Figure 4-4 shows a velocity vector and its scalar x and y components.
Note that is tangent to the particle’s path at the particle’s position. Caution:
When a position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that
extends from one point (a “here”) to another point (a “there”). However,
when a velocity vector is drawn, as in Fig. 4-4, it does not extend from one
point to another. Rather, it shows the instantaneous direction of travel of a
particle at the tail, and its length (representing the velocity magnitude) can be
drawn to any scale.
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Fig. 4-4 The velocity of a
particle, along with the scalar
components of .v:
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The velocity vector is always
tangent to the path.

These are the x and y
components of the vector
at this instant.

CHECKPOINT 1

The figure shows a circular path taken by a particle. If
the instantaneous velocity of the particle is

, through which quadrant is the
particle moving at that instant if it is traveling (a) clock-
wise and (b) counterclockwise around the circle? For
both cases, draw on the figure.v:

v: " (2 m/s)î $ (2 m/s)ĵ
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg

v:avg# r:/#t
# r:r:1r:2

#
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Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.
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As the particle moves,
the position vector 
must change.

This is the 
displacement.

Additional examples, video, and practice available at WileyPLUS
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg
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Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.
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In the limit as , we have and, most important here,
takes on the direction of the tangent line.Thus, has that direction as well:v:v:avg

v:avg : v:!t : 0

The direction of the instantaneous velocity of a particle is always tangent to the
particle’s path at the particle’s position.

v:

The result is the same in three dimensions: is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for from Eq. 4-1:

This equation can be simplified somewhat by writing it as

(4-11)

where the scalar components of are

(4-12)

For example, dx/dt is the scalar component of along the x axis.Thus, we can find
the scalar components of by differentiating the scalar components of .

Figure 4-4 shows a velocity vector and its scalar x and y components.
Note that is tangent to the particle’s path at the particle’s position. Caution:
When a position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that
extends from one point (a “here”) to another point (a “there”). However,
when a velocity vector is drawn, as in Fig. 4-4, it does not extend from one
point to another. Rather, it shows the instantaneous direction of travel of a
particle at the tail, and its length (representing the velocity magnitude) can be
drawn to any scale.
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Fig. 4-4 The velocity of a
particle, along with the scalar
components of .v:
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The velocity vector is always
tangent to the path.

These are the x and y
components of the vector
at this instant.

CHECKPOINT 1

The figure shows a circular path taken by a particle. If
the instantaneous velocity of the particle is

, through which quadrant is the
particle moving at that instant if it is traveling (a) clock-
wise and (b) counterclockwise around the circle? For
both cases, draw on the figure.v:

v: " (2 m/s)î $ (2 m/s)ĵ
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In the limit as , we have and, most important here,
takes on the direction of the tangent line.Thus, has that direction as well:v:v:avg

v:avg : v:!t : 0

The direction of the instantaneous velocity of a particle is always tangent to the
particle’s path at the particle’s position.

v:

The result is the same in three dimensions: is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for from Eq. 4-1:

This equation can be simplified somewhat by writing it as

(4-11)

where the scalar components of are

(4-12)

For example, dx/dt is the scalar component of along the x axis.Thus, we can find
the scalar components of by differentiating the scalar components of .

Figure 4-4 shows a velocity vector and its scalar x and y components.
Note that is tangent to the particle’s path at the particle’s position. Caution:
When a position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that
extends from one point (a “here”) to another point (a “there”). However,
when a velocity vector is drawn, as in Fig. 4-4, it does not extend from one
point to another. Rather, it shows the instantaneous direction of travel of a
particle at the tail, and its length (representing the velocity magnitude) can be
drawn to any scale.
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particle moving at that instant if it is traveling (a) clock-
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In the limit as , we have and, most important here,
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The result is the same in three dimensions: is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for from Eq. 4-1:

This equation can be simplified somewhat by writing it as

(4-11)

where the scalar components of are

(4-12)

For example, dx/dt is the scalar component of along the x axis.Thus, we can find
the scalar components of by differentiating the scalar components of .

Figure 4-4 shows a velocity vector and its scalar x and y components.
Note that is tangent to the particle’s path at the particle’s position. Caution:
When a position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that
extends from one point (a “here”) to another point (a “there”). However,
when a velocity vector is drawn, as in Fig. 4-4, it does not extend from one
point to another. Rather, it shows the instantaneous direction of travel of a
particle at the tail, and its length (representing the velocity magnitude) can be
drawn to any scale.

v:
v:

r:v:
v:

vx "
dx
dt

, vy "
dy
dt

, and vz "
dz
dt

.

v:

v: " vx î # vy ĵ # vzk̂,

v: "
d
dt

 (x î # y ĵ # zk̂) "
dx
dt

 î #
dy
dt

 ĵ #
dz
dt

 k̂.

r:
v:

Fig. 4-4 The velocity of a
particle, along with the scalar
components of .v:

v:
Path

O

y

x

Tangent

vy

vx

v

The velocity vector is always
tangent to the path.

These are the x and y
components of the vector
at this instant.

CHECKPOINT 1

The figure shows a circular path taken by a particle. If
the instantaneous velocity of the particle is

, through which quadrant is the
particle moving at that instant if it is traveling (a) clock-
wise and (b) counterclockwise around the circle? For
both cases, draw on the figure.v:

v: " (2 m/s)î $ (2 m/s)ĵ

y

x
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg

v:avg# r:/#t
# r:r:1r:2

#

# r:
r:2r:1#

v: !
d r:

dt
.

v:
#

v:avgv:v:

v:avg !
# r:

#t
!

(12 m)î $ (3.0 m)k̂
2.0 s

! (6.0 m/s)î $ (1.5 m/s)k̂.

(12 m)î $ (3.0 m)k̂

v:avg !
#xî $ #yĵ $ #zk̂

#t
!

#x
#t

 î $
#y
#t

 ĵ $
#z
#t

 k̂.

# r:
v:avg

v:avg !
# r:

#t
.

average velocity !
displacement
time interval

,

v:avg

## r:

Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.

r:2

r:1

# r:

r1
r2

Path

Tangent

O

y

x

1
2

    r∆

As the particle moves,
the position vector 
must change.

This is the 
displacement.

Additional examples, video, and practice available at WileyPLUS
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Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg

v:avg# r:/#t
# r:r:1r:2

#

# r:
r:2r:1#

v: !
d r:

dt
.

v:
#

v:avgv:v:

v:avg !
# r:

#t
!

(12 m)î $ (3.0 m)k̂
2.0 s

! (6.0 m/s)î $ (1.5 m/s)k̂.

(12 m)î $ (3.0 m)k̂

v:avg !
#xî $ #yĵ $ #zk̂

#t
!

#x
#t

 î $
#y
#t

 ĵ $
#z
#t

 k̂.

# r:
v:avg

v:avg !
# r:

#t
.

average velocity !
displacement
time interval

,

v:avg

## r:

Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.

r:2

r:1

# r:

r1
r2

Path

Tangent

O

y

x

1
2

    r∆

As the particle moves,
the position vector 
must change.

This is the 
displacement.

Additional examples, video, and practice available at WileyPLUS

halliday_c04_058-086hr.qxd  4-09-2009  10:16  Page 60

scalar 
component 
of along 
the z axis

60 CHAPTE R 4 MOTION I N TWO AN D TH R E E DI M E N S ION S

Check: Although u ! 139° has the same tangent as "41°,
the components of position vector indicate that the de-
sired angle is  139° " 180° ! "41°.

(b) Graph the rabbit’s path for t ! 0 to t ! 25 s.

r:
Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.
We can also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in 2.0
s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg

v:avg# r:/#t
# r:r:1r:2

#

# r:
r:2r:1#

v: !
d r:

dt
.

v:
#

v:avgv:v:

v:avg !
# r:

#t
!

(12 m)î $ (3.0 m)k̂
2.0 s

! (6.0 m/s)î $ (1.5 m/s)k̂.

(12 m)î $ (3.0 m)k̂

v:avg !
#xî $ #yĵ $ #zk̂

#t
!

#x
#t

 î $
#y
#t

 ĵ $
#z
#t

 k̂.

# r:
v:avg

v:avg !
# r:

#t
.

average velocity !
displacement
time interval

,

v:avg

## r:

Fig. 4-3 The displacement of a parti-
cle during a time interval #t, from position
1 with position vector at time t1 to posi-
tion 2 with position vector at time t2.The
tangent to the particle’s path at position 1 is
shown.
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Path
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    r∆

As the particle moves,
the position vector 
must change.

This is the 
displacement.

Additional examples, video, and practice available at WileyPLUS
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614-3 AVE RAG E VE LOCITY AN D I N STANTAN EOUS VE LOCITY
PART 1

In the limit as , we have and, most important here,
takes on the direction of the tangent line.Thus, has that direction as well:v:v:avg

v:avg : v:!t : 0

The direction of the instantaneous velocity of a particle is always tangent to the
particle’s path at the particle’s position.

v:

The result is the same in three dimensions: is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for from Eq. 4-1:

This equation can be simplified somewhat by writing it as

(4-11)

where the scalar components of are

(4-12)

For example, dx/dt is the scalar component of along the x axis.Thus, we can find
the scalar components of by differentiating the scalar components of .

Figure 4-4 shows a velocity vector and its scalar x and y components.
Note that is tangent to the particle’s path at the particle’s position. Caution:
When a position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that
extends from one point (a “here”) to another point (a “there”). However,
when a velocity vector is drawn, as in Fig. 4-4, it does not extend from one
point to another. Rather, it shows the instantaneous direction of travel of a
particle at the tail, and its length (representing the velocity magnitude) can be
drawn to any scale.

v:
v:

r:v:
v:

vx "
dx
dt

, vy "
dy
dt

, and vz "
dz
dt

.

v:

v: " vx î # vy ĵ # vzk̂,

v: "
d
dt

 (x î # y ĵ # zk̂) "
dx
dt

 î #
dy
dt

 ĵ #
dz
dt

 k̂.

r:
v:

Fig. 4-4 The velocity of a
particle, along with the scalar
components of .v:

v:
Path

O

y

x

Tangent

vy

vx

v

The velocity vector is always
tangent to the path.

These are the x and y
components of the vector
at this instant.

CHECKPOINT 1

The figure shows a circular path taken by a particle. If
the instantaneous velocity of the particle is

, through which quadrant is the
particle moving at that instant if it is traveling (a) clock-
wise and (b) counterclockwise around the circle? For
both cases, draw on the figure.v:

v: " (2 m/s)î $ (2 m/s)ĵ

y

x

halliday_c04_058-086hr.qxd  4-09-2009  10:16  Page 61

The direction of the velocity of 
a particle is always tangent to 

the particle’s path at the 
particle’s position.
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4-4 Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink !t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

a: "
dv:

dt
.

a:
a:avg

a:avg "
v:2 # v:1

!t
"

!v:

!t
.

average
acceleration "

change in velocity
time interval

,

!a:avg

!v:2v:1

Sample Problem

(Answer)

and

(Answer)

Check: Is the angle #130° or #130° $ 180° " 50°?

 " tan#1 1.19 " #130%.

 & " tan#1  
vy

vx
" tan#1  ! #2.5 m/s

#2.1 m/s "
 " 3.3 m/s

 v " 2vx
2 $ vy

2 " 2(#2.1 m/s)2 $ (#2.5 m/s)2

Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity at time t " 15 s.

KEY I DEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to 
Eq. 4-5, we find the x component of to be

(4-13)

At t " 15 s, this gives vx " #2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t " 15 s, this gives vy " #2.5 m/s. Equation 4-11 then
yields

(Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t " 15 s.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write

v:

v: " (#2.1 m/s)î $ (#2.5 m/s)ĵ ,

 " 0.44t # 9.1.

 vy "
dy
dt

"
d
dt

 (0.22t2 # 9.1t $ 30)

 " #0.62t $ 7.2.

 vx "
dx
dt

"
d
dt

 (#0.31t2 $ 7.2t $ 28)

v:

v:

v:

Fig. 4-5 The rabbit’s velocity at t " 15 s.v:
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components of the vector
at this instant.

Additional examples, video, and practice available at WileyPLUS
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594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:

r:
x (m) 
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20 
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–60 

y (m) 

20 40 60 80 

(a) 

x (m)
0

20

40

–20

–40

–60

y (m)
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(b) 25 s
20 s

15 s

10 s

5 s

t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.

r:

r:
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4-4 Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink !t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

a: "
dv:

dt
.

a:
a:avg

a:avg "
v:2 # v:1

!t
"

!v:

!t
.

average
acceleration "

change in velocity
time interval

,

!a:avg

!v:2v:1

Sample Problem

(Answer)

and

(Answer)

Check: Is the angle #130° or #130° $ 180° " 50°?

 " tan#1 1.19 " #130%.

 & " tan#1  
vy

vx
" tan#1  ! #2.5 m/s

#2.1 m/s "
 " 3.3 m/s

 v " 2vx
2 $ vy

2 " 2(#2.1 m/s)2 $ (#2.5 m/s)2

Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity at time t " 15 s.

KEY I DEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to 
Eq. 4-5, we find the x component of to be

(4-13)

At t " 15 s, this gives vx " #2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t " 15 s, this gives vy " #2.5 m/s. Equation 4-11 then
yields

(Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t " 15 s.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write

v:

v: " (#2.1 m/s)î $ (#2.5 m/s)ĵ ,

 " 0.44t # 9.1.

 vy "
dy
dt

"
d
dt

 (0.22t2 # 9.1t $ 30)

 " #0.62t $ 7.2.

 vx "
dx
dt

"
d
dt

 (#0.31t2 $ 7.2t $ 28)

v:

v:

v:

Fig. 4-5 The rabbit’s velocity at t " 15 s.v:
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4-4 Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink !t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

a: "
dv:

dt
.

a:
a:avg

a:avg "
v:2 # v:1

!t
"

!v:

!t
.

average
acceleration "

change in velocity
time interval

,

!a:avg

!v:2v:1

Sample Problem

(Answer)

and

(Answer)

Check: Is the angle #130° or #130° $ 180° " 50°?

 " tan#1 1.19 " #130%.

 & " tan#1  
vy

vx
" tan#1  ! #2.5 m/s

#2.1 m/s "
 " 3.3 m/s

 v " 2vx
2 $ vy

2 " 2(#2.1 m/s)2 $ (#2.5 m/s)2

Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity at time t " 15 s.

KEY I DEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to 
Eq. 4-5, we find the x component of to be

(4-13)

At t " 15 s, this gives vx " #2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find
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the direction the rabbit is running at t " 15 s.

To get the magnitude and angle of , either we use a
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594-2 POS ITION AN D DI S PLACE M E NT
PART 1

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)! r: " !x î # !y ĵ # !zk̂.

$!$!$!
r:2

r:1

! r: " (x2 $ x1)î # (y2 $ y1)ĵ # (z2 $ z1)k̂,

! r: " (x2î # y2 ĵ # z2k̂) $ (x1î # y1 ĵ # z1k̂)

! r: " r:2 $ r:1.

! r:
r:2r:1

Sample Problem

Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x " $0.31t2 # 7.2t # 28 (4-5)
and y " 0.22t2 $ 9.1t # 30. (4-6)

(a) At t " 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY I DEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector .

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t " 15 s, the scalar components are
x " ($0.31)(15)2 # (7.2)(15) # 28 " 66 m

and y " (0.22)(15)2 $ (9.1)(15) # 30 " $57 m,

so (Answer)

which is drawn in Fig. 4-2a. To get the magnitude and angle
of , we use Eq. 3-6:

(Answer)

and . (Answer)% " tan$1  
y
x

" tan$1 ! $57 m
66 m " " $41&

 " 87 m,
 r " 2x2 # y2 " 2(66 m)2 # ($57 m)2

r:

r: " (66 m)î $ (57 m)ĵ,

r:
r:r:(t)

r:(t) " x(t)î # y(t)ĵ.

r:
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t = 0 s

–41° 

r 

This is the y component.

To locate the 
rabbit, this is the 
x component.

This is the path with
various times indicated.

Fig. 4-2
(a) A rabbit’s
position vector 
at time t " 15 s.
The scalar com-
ponents of are
shown along the
axes. (b) The
rabbit’s path and
its position at six
values of t.

r:

r:
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4-4 Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink !t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.
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Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity at time t " 15 s.

KEY I DEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to 
Eq. 4-5, we find the x component of to be

(4-13)

At t " 15 s, this gives vx " #2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t " 15 s, this gives vy " #2.5 m/s. Equation 4-11 then
yields

(Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t " 15 s.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write

v:

v: " (#2.1 m/s)î $ (#2.5 m/s)ĵ ,

 " 0.44t # 9.1.
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Examples: 
Q.1  If the x-component of a vector r is 3.2 m and the y-component 
is 6.2 m, then vector r in unit vector notation is:
(a) 2.6Î−2.3Ĵ (b) -2.3Î+2.6Ĵ (c) 6.2Î+3.2Ĵ (d) 3.2Î+6.2Ĵ
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(a) -7Î+12Ĵ (b) 3Î+4k^     (c) 7Î−12Ĵ (d) -3Î−4k^
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r1 = −5î + 2 ĵ + 2k̂ r2 = −8î + 2 ĵ − 2k̂

Δr = r2 −
r1

   = [−8− (−5)]î + [2− 2] ĵ + [−2− 2]k̂
   = −3î − 4k̂

vx = 2t + 3,         vy = 3t2 + 3



Average Acceleration & 
Instantaneous Acceleration

� If the particle's velocity changed from    to    at time interval Δt, 
then its average acceleration is: 

� If Δt à zero, then average acceleration = instantaneous 
acceleration (or acceleration)    :

� Remember: If the velocity changes in either magnitude or 
direction (or both), the particle must have an acceleration
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4-4 Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink !t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.
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"
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Check: Is the angle #130° or #130° $ 180° " 50°?

 " tan#1 1.19 " #130%.

 & " tan#1  
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" tan#1  ! #2.5 m/s

#2.1 m/s "
 " 3.3 m/s

 v " 2vx
2 $ vy

2 " 2(#2.1 m/s)2 $ (#2.5 m/s)2

Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity at time t " 15 s.

KEY I DEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to 
Eq. 4-5, we find the x component of to be

(4-13)

At t " 15 s, this gives vx " #2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t " 15 s, this gives vy " #2.5 m/s. Equation 4-11 then
yields

(Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t " 15 s.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write
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� In unit-vector notation:

� The scalar components of    :

634-4 AVE RAG E ACCE LE RATION AN D I N STANTAN EOUS ACCE LE RATION
PART 1

We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-6 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.

a:
v:a:

ax !
dvx

dt
, ay !

dvy

dt
, and az !

dvz

dt
.

a:

a: ! ax î " ay ĵ " azk̂,

 !
dvx

dt
 î "

dvy

dt
 ĵ "

dvz

dt
 k̂.

 a: !
d
dt

 (vx î " vy ĵ " vzk̂)

v:

CHECKPOINT 2

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x ! #3t 2 " 4t # 2 and y ! 6t 2 # 4t (3)

(2) x ! #3t 3 # 4t and y ! #5t 2 " 6 (4)

Are the x and y acceleration components constant? Is  acceleration constant?a:
r: ! (4t 3 # 2t)î " 3ĵ

r: ! 2t 2 î # (4t " 3)ĵ

O

y

x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Fig. 4-6 The acceleration of a particle
and the scalar components of .a:

a:

Sample Problem

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.

a: ! (#0.62 m/s2)î " (0.44 m/s2)ĵ ,

Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two Sample Problems, find
the acceleration at time t ! 15 s.

KEY I DEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields

ay !
dvy

dt
!

d
dt

 (0.44t # 9.1) ! 0.44 m/s2.

ax !
dvx

dt
!

d
dt

 (#0.62t " 7.2) ! #0.62 m/s2.

a:

a:

a:
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y (m) 
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145° a 

These are the x and y
components of the vector
at this instant.

Fig. 4-7 The acceler-
ation of the rabbit at
t ! 15 s.The rabbit
happens to have this
same acceleration at
all points on its path.

a:
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a:
v:a:

ax !
dvx

dt
, ay !

dvy

dt
, and az !

dvz

dt
.

a:

a: ! ax î " ay ĵ " azk̂,

 !
dvx

dt
 î "

dvy

dt
 ĵ "

dvz

dt
 k̂.

 a: !
d
dt

 (vx î " vy ĵ " vzk̂)

v:

CHECKPOINT 2

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x ! #3t 2 " 4t # 2 and y ! 6t 2 # 4t (3)

(2) x ! #3t 3 # 4t and y ! #5t 2 " 6 (4)

Are the x and y acceleration components constant? Is  acceleration constant?a:
r: ! (4t 3 # 2t)î " 3ĵ

r: ! 2t 2 î # (4t " 3)ĵ

O

y

x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Fig. 4-6 The acceleration of a particle
and the scalar components of .a:

a:

Sample Problem

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.

a: ! (#0.62 m/s2)î " (0.44 m/s2)ĵ ,

Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two Sample Problems, find
the acceleration at time t ! 15 s.

KEY I DEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields

ay !
dvy

dt
!

d
dt

 (0.44t # 9.1) ! 0.44 m/s2.

ax !
dvx

dt
!

d
dt

 (#0.62t " 7.2) ! #0.62 m/s2.

a:

a:

a:
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y (m) 
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145° a 

These are the x and y
components of the vector
at this instant.

Fig. 4-7 The acceler-
ation of the rabbit at
t ! 15 s.The rabbit
happens to have this
same acceleration at
all points on its path.

a:
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4-4 Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink !t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

a: "
dv:

dt
.

a:
a:avg

a:avg "
v:2 # v:1

!t
"

!v:

!t
.

average
acceleration "

change in velocity
time interval

,

!a:avg

!v:2v:1

Sample Problem

(Answer)

and

(Answer)

Check: Is the angle #130° or #130° $ 180° " 50°?

 " tan#1 1.19 " #130%.

 & " tan#1  
vy

vx
" tan#1  ! #2.5 m/s

#2.1 m/s "
 " 3.3 m/s

 v " 2vx
2 $ vy

2 " 2(#2.1 m/s)2 $ (#2.5 m/s)2

Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity at time t " 15 s.

KEY I DEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to 
Eq. 4-5, we find the x component of to be

(4-13)

At t " 15 s, this gives vx " #2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t " 15 s, this gives vy " #2.5 m/s. Equation 4-11 then
yields

(Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t " 15 s.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write

v:

v: " (#2.1 m/s)î $ (#2.5 m/s)ĵ ,

 " 0.44t # 9.1.

 vy "
dy
dt

"
d
dt

 (0.22t2 # 9.1t $ 30)

 " #0.62t $ 7.2.

 vx "
dx
dt

"
d
dt

 (#0.31t2 $ 7.2t $ 28)

v:

v:

v:

Fig. 4-5 The rabbit’s velocity at t " 15 s.v:
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v These are the x and y
components of the vector
at this instant.

Additional examples, video, and practice available at WileyPLUS
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We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-6 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.
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ax !
dvx

dt
, ay !

dvy

dt
, and az !

dvz

dt
.

a:

a: ! ax î " ay ĵ " azk̂,

 !
dvx

dt
 î "

dvy

dt
 ĵ "

dvz

dt
 k̂.

 a: !
d
dt

 (vx î " vy ĵ " vzk̂)

v:

CHECKPOINT 2

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x ! #3t 2 " 4t # 2 and y ! 6t 2 # 4t (3)

(2) x ! #3t 3 # 4t and y ! #5t 2 " 6 (4)

Are the x and y acceleration components constant? Is  acceleration constant?a:
r: ! (4t 3 # 2t)î " 3ĵ

r: ! 2t 2 î # (4t " 3)ĵ

O

y

x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Fig. 4-6 The acceleration of a particle
and the scalar components of .a:

a:

Sample Problem

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.

a: ! (#0.62 m/s2)î " (0.44 m/s2)ĵ ,

Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two Sample Problems, find
the acceleration at time t ! 15 s.

KEY I DEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields

ay !
dvy

dt
!

d
dt

 (0.44t # 9.1) ! 0.44 m/s2.

ax !
dvx

dt
!

d
dt

 (#0.62t " 7.2) ! #0.62 m/s2.

a:

a:

a:

x (m) 
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20 

40 
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–40 

–60 

y (m) 

20 40 60 80 

x 

145° a 

These are the x and y
components of the vector
at this instant.

Fig. 4-7 The acceler-
ation of the rabbit at
t ! 15 s.The rabbit
happens to have this
same acceleration at
all points on its path.

a:
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We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-6 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.
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dvx

dt
, ay !

dvy

dt
, and az !

dvz

dt
.

a:

a: ! ax î " ay ĵ " azk̂,

 !
dvx

dt
 î "

dvy

dt
 ĵ "

dvz

dt
 k̂.

 a: !
d
dt

 (vx î " vy ĵ " vzk̂)

v:

CHECKPOINT 2

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x ! #3t 2 " 4t # 2 and y ! 6t 2 # 4t (3)

(2) x ! #3t 3 # 4t and y ! #5t 2 " 6 (4)

Are the x and y acceleration components constant? Is  acceleration constant?a:
r: ! (4t 3 # 2t)î " 3ĵ

r: ! 2t 2 î # (4t " 3)ĵ

O
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x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Fig. 4-6 The acceleration of a particle
and the scalar components of .a:

a:

Sample Problem

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.

a: ! (#0.62 m/s2)î " (0.44 m/s2)ĵ ,

Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two Sample Problems, find
the acceleration at time t ! 15 s.

KEY I DEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields

ay !
dvy

dt
!

d
dt

 (0.44t # 9.1) ! 0.44 m/s2.

ax !
dvx

dt
!

d
dt

 (#0.62t " 7.2) ! #0.62 m/s2.

a:

a:
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These are the x and y
components of the vector
at this instant.

Fig. 4-7 The acceler-
ation of the rabbit at
t ! 15 s.The rabbit
happens to have this
same acceleration at
all points on its path.

a:
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We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-6 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.

a:
v:a:

ax !
dvx

dt
, ay !

dvy

dt
, and az !

dvz

dt
.

a:

a: ! ax î " ay ĵ " azk̂,

 !
dvx

dt
 î "

dvy

dt
 ĵ "

dvz

dt
 k̂.

 a: !
d
dt

 (vx î " vy ĵ " vzk̂)

v:

CHECKPOINT 2

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x ! #3t 2 " 4t # 2 and y ! 6t 2 # 4t (3)

(2) x ! #3t 3 # 4t and y ! #5t 2 " 6 (4)

Are the x and y acceleration components constant? Is  acceleration constant?a:
r: ! (4t 3 # 2t)î " 3ĵ

r: ! 2t 2 î # (4t " 3)ĵ

O

y

x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Fig. 4-6 The acceleration of a particle
and the scalar components of .a:

a:

Sample Problem

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.

a: ! (#0.62 m/s2)î " (0.44 m/s2)ĵ ,

Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two Sample Problems, find
the acceleration at time t ! 15 s.

KEY I DEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields

ay !
dvy

dt
!

d
dt

 (0.44t # 9.1) ! 0.44 m/s2.

ax !
dvx

dt
!

d
dt

 (#0.62t " 7.2) ! #0.62 m/s2.

a:

a:

a:
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y (m) 
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x 

145° a 

These are the x and y
components of the vector
at this instant.

Fig. 4-7 The acceler-
ation of the rabbit at
t ! 15 s.The rabbit
happens to have this
same acceleration at
all points on its path.

a:
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We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-6 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.

a:
v:a:

ax !
dvx

dt
, ay !

dvy

dt
, and az !

dvz

dt
.

a:

a: ! ax î " ay ĵ " azk̂,

 !
dvx

dt
 î "

dvy

dt
 ĵ "

dvz

dt
 k̂.

 a: !
d
dt

 (vx î " vy ĵ " vzk̂)

v:

CHECKPOINT 2

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x ! #3t 2 " 4t # 2 and y ! 6t 2 # 4t (3)

(2) x ! #3t 3 # 4t and y ! #5t 2 " 6 (4)

Are the x and y acceleration components constant? Is  acceleration constant?a:
r: ! (4t 3 # 2t)î " 3ĵ

r: ! 2t 2 î # (4t " 3)ĵ

O

y

x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Fig. 4-6 The acceleration of a particle
and the scalar components of .a:

a:

Sample Problem

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.

a: ! (#0.62 m/s2)î " (0.44 m/s2)ĵ ,

Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two Sample Problems, find
the acceleration at time t ! 15 s.

KEY I DEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields

ay !
dvy

dt
!

d
dt

 (0.44t # 9.1) ! 0.44 m/s2.

ax !
dvx

dt
!

d
dt

 (#0.62t " 7.2) ! #0.62 m/s2.
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These are the x and y
components of the vector
at this instant.

Fig. 4-7 The acceler-
ation of the rabbit at
t ! 15 s.The rabbit
happens to have this
same acceleration at
all points on its path.

a:
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We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-6 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.

a:
v:a:

ax !
dvx

dt
, ay !

dvy

dt
, and az !

dvz

dt
.

a:

a: ! ax î " ay ĵ " azk̂,

 !
dvx

dt
 î "

dvy

dt
 ĵ "

dvz

dt
 k̂.

 a: !
d
dt

 (vx î " vy ĵ " vzk̂)

v:

CHECKPOINT 2

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x ! #3t 2 " 4t # 2 and y ! 6t 2 # 4t (3)

(2) x ! #3t 3 # 4t and y ! #5t 2 " 6 (4)

Are the x and y acceleration components constant? Is  acceleration constant?a:
r: ! (4t 3 # 2t)î " 3ĵ

r: ! 2t 2 î # (4t " 3)ĵ

O

y

x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Fig. 4-6 The acceleration of a particle
and the scalar components of .a:

a:

Sample Problem

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.

a: ! (#0.62 m/s2)î " (0.44 m/s2)ĵ ,

Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two Sample Problems, find
the acceleration at time t ! 15 s.

KEY I DEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields

ay !
dvy

dt
!

d
dt

 (0.44t # 9.1) ! 0.44 m/s2.

ax !
dvx

dt
!

d
dt

 (#0.62t " 7.2) ! #0.62 m/s2.
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a:
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These are the x and y
components of the vector
at this instant.

Fig. 4-7 The acceler-
ation of the rabbit at
t ! 15 s.The rabbit
happens to have this
same acceleration at
all points on its path.

a:
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4-4 Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink !t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

a: "
dv:

dt
.

a:
a:avg

a:avg "
v:2 # v:1

!t
"

!v:

!t
.

average
acceleration "

change in velocity
time interval

,

!a:avg

!v:2v:1

Sample Problem

(Answer)

and

(Answer)

Check: Is the angle #130° or #130° $ 180° " 50°?

 " tan#1 1.19 " #130%.

 & " tan#1  
vy

vx
" tan#1  ! #2.5 m/s

#2.1 m/s "
 " 3.3 m/s

 v " 2vx
2 $ vy

2 " 2(#2.1 m/s)2 $ (#2.5 m/s)2

Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity at time t " 15 s.

KEY I DEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to 
Eq. 4-5, we find the x component of to be

(4-13)

At t " 15 s, this gives vx " #2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t " 15 s, this gives vy " #2.5 m/s. Equation 4-11 then
yields

(Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t " 15 s.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write

v:

v: " (#2.1 m/s)î $ (#2.5 m/s)ĵ ,

 " 0.44t # 9.1.

 vy "
dy
dt

"
d
dt

 (0.22t2 # 9.1t $ 30)

 " #0.62t $ 7.2.

 vx "
dx
dt

"
d
dt

 (#0.31t2 $ 7.2t $ 28)

v:

v:

v:

Fig. 4-5 The rabbit’s velocity at t " 15 s.v:
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v These are the x and y
components of the vector
at this instant.

Additional examples, video, and practice available at WileyPLUS
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4-4 Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink !t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

a: "
dv:

dt
.

a:
a:avg

a:avg "
v:2 # v:1

!t
"

!v:

!t
.

average
acceleration "

change in velocity
time interval

,

!a:avg

!v:2v:1

Sample Problem

(Answer)

and

(Answer)

Check: Is the angle #130° or #130° $ 180° " 50°?

 " tan#1 1.19 " #130%.

 & " tan#1  
vy

vx
" tan#1  ! #2.5 m/s

#2.1 m/s "
 " 3.3 m/s

 v " 2vx
2 $ vy

2 " 2(#2.1 m/s)2 $ (#2.5 m/s)2

Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity at time t " 15 s.

KEY I DEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to 
Eq. 4-5, we find the x component of to be

(4-13)

At t " 15 s, this gives vx " #2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t " 15 s, this gives vy " #2.5 m/s. Equation 4-11 then
yields

(Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t " 15 s.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write
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Fig. 4-5 The rabbit’s velocity at t " 15 s.v:
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4-4 Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink !t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.
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634-4 AVE RAG E ACCE LE RATION AN D I N STANTAN EOUS ACCE LE RATION
PART 1

We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-6 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.

a:
v:a:

ax !
dvx

dt
, ay !

dvy

dt
, and az !

dvz

dt
.

a:

a: ! ax î " ay ĵ " azk̂,

 !
dvx

dt
 î "

dvy

dt
 ĵ "

dvz

dt
 k̂.

 a: !
d
dt

 (vx î " vy ĵ " vzk̂)

v:

CHECKPOINT 2

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x ! #3t 2 " 4t # 2 and y ! 6t 2 # 4t (3)

(2) x ! #3t 3 # 4t and y ! #5t 2 " 6 (4)

Are the x and y acceleration components constant? Is  acceleration constant?a:
r: ! (4t 3 # 2t)î " 3ĵ

r: ! 2t 2 î # (4t " 3)ĵ

O

y

x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Fig. 4-6 The acceleration of a particle
and the scalar components of .a:

a:

Sample Problem

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.

a: ! (#0.62 m/s2)î " (0.44 m/s2)ĵ ,

Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two Sample Problems, find
the acceleration at time t ! 15 s.

KEY I DEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields

ay !
dvy

dt
!

d
dt

 (0.44t # 9.1) ! 0.44 m/s2.

ax !
dvx

dt
!

d
dt

 (#0.62t " 7.2) ! #0.62 m/s2.

a:

a:

a:

x (m) 
0 

20 

40 

–20 

–40 

–60 

y (m) 

20 40 60 80 

x 

145° a 

These are the x and y
components of the vector
at this instant.

Fig. 4-7 The acceler-
ation of the rabbit at
t ! 15 s.The rabbit
happens to have this
same acceleration at
all points on its path.

a:
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Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two Sample Problems, find
the acceleration at time t ! 15 s.

KEY I DEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields
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4-5 Projectile Motion
We next consider a special case of two-dimensional motion: A particle moves in a
vertical plane with some initial velocity but its acceleration is always the free-
fall acceleration , which is downward. Such a particle is called a projectile (mean-
ing that it is projected or launched), and its motion is called projectile motion. A
projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not an air-
plane or a duck in flight. Many sports (from golf and football to lacrosse and rac-
quetball) involve the projectile motion of a ball, and much effort is spent in trying
to control that motion for an advantage. For example, the racquetball player who
discovered the Z-shot in the 1970s easily won his games because the ball’s peculiar
flight to the rear of the court always perplexed his opponents.

Our goal here is to analyze projectile motion using the tools for two-
dimensional motion described in Sections 4-2 through 4-4 and making the
assumption that air has no effect on the projectile. Figure 4-9, which is analyzed in
the next section, shows the path followed by a projectile when the air has no
effect. The projectile is launched with an initial velocity that can be written as

(4-19)

The components v0x and v0y can then be found if we know the angle u0 between 
and the positive x direction:

v0x ! v0 cos u0 and v0y ! v0 sin u0. (4-20)

During its two-dimensional motion, the projectile’s position vector and velocity
vector change continuously, but its acceleration vector is constant and always
directed vertically downward.The projectile has no horizontal acceleration.

Projectile motion, like that in Figs. 4-8 and 4-9, looks complicated, but we
have the following simplifying feature (known from experiment):

a:v:
r:

v:0

v:0 ! v0x î " v0y ĵ.

v:0

g:
v:0

Fig. 4-8 A stroboscopic photograph of a
yellow tennis ball bouncing off a hard sur-
face. Between impacts, the ball has projec-
tile motion. Source: Richard Megna/
Fundamental Photographs.

In projectile motion, the horizontal motion and the vertical motion are independent
of each other; that is, neither motion affects the other.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6. For the mag-
nitude we have

(Answer)
For the angle we have

However, this angle, which is the one displayed on a calcula-

# ! tan$1  
ay

ax
! tan$1 ! 0.44 m/s2

$0.62 m/s2 " ! $35%.

 ! 0.76 m/s2.
 a ! 2ax

2 " ay
2 ! 2($0.62 m/s2)2 " (0.44 m/s2)2

a: tor, indicates that is directed to the right and downward
in Fig. 4-7. Yet, we know from the components that must
be directed to the left and upward. To find the other angle
that has the same tangent as $35° but is not displayed on a
calculator, we add 180°:

$35° " 180° ! 145°. (Answer)

This is consistent with the components of because it gives
a vector that is to the left and upward. Note that has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant.

a:
a:

a:
a:

Additional examples, video, and practice available at WileyPLUS

This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.
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Additional examples, video, and practice available at WileyPLUS

This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.
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projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not an air-
plane or a duck in flight. Many sports (from golf and football to lacrosse and rac-
quetball) involve the projectile motion of a ball, and much effort is spent in trying
to control that motion for an advantage. For example, the racquetball player who
discovered the Z-shot in the 1970s easily won his games because the ball’s peculiar
flight to the rear of the court always perplexed his opponents.

Our goal here is to analyze projectile motion using the tools for two-
dimensional motion described in Sections 4-2 through 4-4 and making the
assumption that air has no effect on the projectile. Figure 4-9, which is analyzed in
the next section, shows the path followed by a projectile when the air has no
effect. The projectile is launched with an initial velocity that can be written as

(4-19)

The components v0x and v0y can then be found if we know the angle u0 between 
and the positive x direction:

v0x ! v0 cos u0 and v0y ! v0 sin u0. (4-20)

During its two-dimensional motion, the projectile’s position vector and velocity
vector change continuously, but its acceleration vector is constant and always
directed vertically downward.The projectile has no horizontal acceleration.

Projectile motion, like that in Figs. 4-8 and 4-9, looks complicated, but we
have the following simplifying feature (known from experiment):

a:v:
r:

v:0

v:0 ! v0x î " v0y ĵ.
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This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.
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PART 1

We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-6 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.
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Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two Sample Problems, find
the acceleration at time t ! 15 s.

KEY I DEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields
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ax !
dvx

dt
!

d
dt

 (#0.62t " 7.2) ! #0.62 m/s2.

a:
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These are the x and y
components of the vector
at this instant.

Fig. 4-7 The acceler-
ation of the rabbit at
t ! 15 s.The rabbit
happens to have this
same acceleration at
all points on its path.

a:
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A particle with velocity                           (in meters per second) at t = 0 
undergoes a constant acceleration of a magnitude a = 3 m/s2 at an angle 
θ= 130o from the positive direction of the x axis. What is the particle's
velocity at t = 5 s?


vo = −2î + 4 ĵ

634-4 AVE RAG E ACCE LE RATION AN D I N STANTAN EOUS ACCE LE RATION
PART 1
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(4-17)
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(4-18)
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a:
v:a:
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dt
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dvy

dt
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dvz

dt
.

a:
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 !
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 î "

dvy
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 k̂.
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d
dt
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CHECKPOINT 2
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O

y

x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.
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and the scalar components of .a:

a:

Sample Problem

(Answer)
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KEY I DEA
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Because the acceleration is constant, we can apply the equations of motion

vx = vox + axt        and     vy = voy + ayt  

vox = −2m / s      and     voy = 4m / s

ax = acosθ = 3cos130o = −1.93m / s2

ay = asinθ = 3sin130o = 2.3m / s2

vx = −2+ (−1.9)(5) = −11.65m / s
vy = 4+ (2.3)(5) =15.5m / s

v = −12m / s( ) î + 16m / s( ) ĵ

v = vx
2 + vy

2 =19.4m / s

θ = tan−1 vy
vx

=127o
à



Examples:
Q.1 if the position of a particle is given by 

(a) Find its velocity vector at t = 1s, and the magnitude and direction

(b) Find the average acceleration from t = 1s to t = 2s

(c) Find the acceleration at t = 2s

r = (3t2 + 2t)î + (t3 +1) ĵ


v(t) = d


r (t)
dt

= (6t + 2)î + (3t2 ) ĵ         v(1) = 8î + 3 ĵ

v = 82 + 32 = 73               θ = tan−1 3
8
= 20.6o

v1 = 8î + 3 ĵ             v2 =14î +12 ĵ

a =
v2 −
v1

t2 − t1
= 6î + 9 ĵ

1

v(t) = (6t + 2)î + (3t2 ) ĵ        
a(t)= d

v(t)
dt

=6î + (6t) ĵ         a(2)=6î +12 ĵ



Q.2 The components of a car’s velocity as a function of time are 
given by vx= 5t2 – 5, vy= -4t3. The  acceleration components 
are:(a) ax= 10t, ay= -12t2 (b) ax=  4t, ay= -6t2

(c) ax=  6t, ay= -15t         (d) ax=  12t, ay= -9t2

Q.3 Acceleration is equal to:
(a) dr/dt (b) dv/dt (c) Δr/Δt

Q.4 A particle is  moving with initial velocity 
and acceleration                   , the x-component vx of the final 
velocity at t = 7s is?
(a) 7m/s       (b) 17m/s     (c) 27m/s     (d) 37m/s  


vo = 2î + 4 ĵm / sa = 5î +8 ĵm / s2

vox = 2,        ax = 5
vx = vox + axt    =2+5(7)=37    



Chapter 4
MOTION IN TWO AND THREE 

DIMENSIONS
Section 4-5, 4-6

Projectile Motion
Projectile Motion Analyzed



� Important skills from this lecture:
1. Identify the projectile motion and its velocity and 

acceleration components
2. Analyze the projectile motion into horizontal and 

vertical motion
3. Describe the projectile path
4. Calculate its horizontal & vertical components of the 

final velocity after time t
5. Calculate its horizontal & vertical displacement
6. Calculate its horizontal range & maximum height
7. Calculate the time projectile spend to reach any 

position



Projectile Motion
� A projectile: particle launched or projected near the earth's 

surface with initial velocity (launched velocity)     , and it moves 
along a curved path under the action of gravity only

� Such motion is called a projectile motion
It is a special case of two-dimensional motion

� Examples: tennis ball or baseball 
It is not the motion of a flying airplane 
or a flying duck 

� The projectile acceleration is always the free-fall acceleration    , 
(downward ê)

� The projectile’s position vector    & velocity vector      
change during its two-dimensional motion 
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4-5 Projectile Motion
We next consider a special case of two-dimensional motion: A particle moves in a
vertical plane with some initial velocity but its acceleration is always the free-
fall acceleration , which is downward. Such a particle is called a projectile (mean-
ing that it is projected or launched), and its motion is called projectile motion. A
projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not an air-
plane or a duck in flight. Many sports (from golf and football to lacrosse and rac-
quetball) involve the projectile motion of a ball, and much effort is spent in trying
to control that motion for an advantage. For example, the racquetball player who
discovered the Z-shot in the 1970s easily won his games because the ball’s peculiar
flight to the rear of the court always perplexed his opponents.

Our goal here is to analyze projectile motion using the tools for two-
dimensional motion described in Sections 4-2 through 4-4 and making the
assumption that air has no effect on the projectile. Figure 4-9, which is analyzed in
the next section, shows the path followed by a projectile when the air has no
effect. The projectile is launched with an initial velocity that can be written as

(4-19)

The components v0x and v0y can then be found if we know the angle u0 between 
and the positive x direction:

v0x ! v0 cos u0 and v0y ! v0 sin u0. (4-20)

During its two-dimensional motion, the projectile’s position vector and velocity
vector change continuously, but its acceleration vector is constant and always
directed vertically downward.The projectile has no horizontal acceleration.

Projectile motion, like that in Figs. 4-8 and 4-9, looks complicated, but we
have the following simplifying feature (known from experiment):

a:v:
r:

v:0

v:0 ! v0x î " v0y ĵ.

v:0

g:
v:0

Fig. 4-8 A stroboscopic photograph of a
yellow tennis ball bouncing off a hard sur-
face. Between impacts, the ball has projec-
tile motion. Source: Richard Megna/
Fundamental Photographs.

In projectile motion, the horizontal motion and the vertical motion are independent
of each other; that is, neither motion affects the other.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6. For the mag-
nitude we have

(Answer)
For the angle we have

However, this angle, which is the one displayed on a calcula-

# ! tan$1  
ay

ax
! tan$1 ! 0.44 m/s2

$0.62 m/s2 " ! $35%.

 ! 0.76 m/s2.
 a ! 2ax

2 " ay
2 ! 2($0.62 m/s2)2 " (0.44 m/s2)2

a: tor, indicates that is directed to the right and downward
in Fig. 4-7. Yet, we know from the components that must
be directed to the left and upward. To find the other angle
that has the same tangent as $35° but is not displayed on a
calculator, we add 180°:

$35° " 180° ! 145°. (Answer)

This is consistent with the components of because it gives
a vector that is to the left and upward. Note that has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant.

a:
a:

a:
a:

Additional examples, video, and practice available at WileyPLUS

This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.
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dimensional motion described in Sections 4-2 through 4-4 and making the
assumption that air has no effect on the projectile. Figure 4-9, which is analyzed in
the next section, shows the path followed by a projectile when the air has no
effect. The projectile is launched with an initial velocity that can be written as
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The components v0x and v0y can then be found if we know the angle u0 between 
and the positive x direction:
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During its two-dimensional motion, the projectile’s position vector and velocity
vector change continuously, but its acceleration vector is constant and always
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of each other; that is, neither motion affects the other.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6. For the mag-
nitude we have
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For the angle we have

However, this angle, which is the one displayed on a calcula-
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a: tor, indicates that is directed to the right and downward
in Fig. 4-7. Yet, we know from the components that must
be directed to the left and upward. To find the other angle
that has the same tangent as $35° but is not displayed on a
calculator, we add 180°:

$35° " 180° ! 145°. (Answer)

This is consistent with the components of because it gives
a vector that is to the left and upward. Note that has the
same magnitude and direction throughout the rabbit’s run
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fall acceleration , which is downward. Such a particle is called a projectile (mean-
ing that it is projected or launched), and its motion is called projectile motion. A
projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not an air-
plane or a duck in flight. Many sports (from golf and football to lacrosse and rac-
quetball) involve the projectile motion of a ball, and much effort is spent in trying
to control that motion for an advantage. For example, the racquetball player who
discovered the Z-shot in the 1970s easily won his games because the ball’s peculiar
flight to the rear of the court always perplexed his opponents.

Our goal here is to analyze projectile motion using the tools for two-
dimensional motion described in Sections 4-2 through 4-4 and making the
assumption that air has no effect on the projectile. Figure 4-9, which is analyzed in
the next section, shows the path followed by a projectile when the air has no
effect. The projectile is launched with an initial velocity that can be written as
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The components v0x and v0y can then be found if we know the angle u0 between 
and the positive x direction:

v0x ! v0 cos u0 and v0y ! v0 sin u0. (4-20)

During its two-dimensional motion, the projectile’s position vector and velocity
vector change continuously, but its acceleration vector is constant and always
directed vertically downward.The projectile has no horizontal acceleration.
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To get the magnitude and angle of , either we use a
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� Because a projectile motion is a two-dimensional motion à we break 
up its problem into 2 separated one-dimensional problems: 
1. The horizontal motion 

2. The vertical motion 

� The projectile’s launched velocity vector     has two components:

� The components of its velocity:

� The projectile’s acceleration:
a = ay + ax

ax = 0 à vx = constant
ay = − g (ê)

� In projectile motion, the horizontal motion & the vertical motion are 
independent of each other; that is, neither motion affects the other
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We next consider a special case of two-dimensional motion: A particle moves in a
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v:0

g:
v:0

Fig. 4-8 A stroboscopic photograph of a
yellow tennis ball bouncing off a hard sur-
face. Between impacts, the ball has projec-
tile motion. Source: Richard Megna/
Fundamental Photographs.

In projectile motion, the horizontal motion and the vertical motion are independent
of each other; that is, neither motion affects the other.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6. For the mag-
nitude we have

(Answer)
For the angle we have

However, this angle, which is the one displayed on a calcula-

# ! tan$1  
ay

ax
! tan$1 ! 0.44 m/s2

$0.62 m/s2 " ! $35%.

 ! 0.76 m/s2.
 a ! 2ax

2 " ay
2 ! 2($0.62 m/s2)2 " (0.44 m/s2)2

a: tor, indicates that is directed to the right and downward
in Fig. 4-7. Yet, we know from the components that must
be directed to the left and upward. To find the other angle
that has the same tangent as $35° but is not displayed on a
calculator, we add 180°:

$35° " 180° ! 145°. (Answer)

This is consistent with the components of because it gives
a vector that is to the left and upward. Note that has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant.

a:
a:

a:
a:

Additional examples, video, and practice available at WileyPLUS

This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.

halliday_c04_058-086hr.qxd  4-09-2009  10:16  Page 64

64 CHAPTE R 4 MOTION I N TWO AN D TH R E E DI M E N S ION S

4-5 Projectile Motion
We next consider a special case of two-dimensional motion: A particle moves in a
vertical plane with some initial velocity but its acceleration is always the free-
fall acceleration , which is downward. Such a particle is called a projectile (mean-
ing that it is projected or launched), and its motion is called projectile motion. A
projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not an air-
plane or a duck in flight. Many sports (from golf and football to lacrosse and rac-
quetball) involve the projectile motion of a ball, and much effort is spent in trying
to control that motion for an advantage. For example, the racquetball player who
discovered the Z-shot in the 1970s easily won his games because the ball’s peculiar
flight to the rear of the court always perplexed his opponents.

Our goal here is to analyze projectile motion using the tools for two-
dimensional motion described in Sections 4-2 through 4-4 and making the
assumption that air has no effect on the projectile. Figure 4-9, which is analyzed in
the next section, shows the path followed by a projectile when the air has no
effect. The projectile is launched with an initial velocity that can be written as

(4-19)

The components v0x and v0y can then be found if we know the angle u0 between 
and the positive x direction:

v0x ! v0 cos u0 and v0y ! v0 sin u0. (4-20)

During its two-dimensional motion, the projectile’s position vector and velocity
vector change continuously, but its acceleration vector is constant and always
directed vertically downward.The projectile has no horizontal acceleration.

Projectile motion, like that in Figs. 4-8 and 4-9, looks complicated, but we
have the following simplifying feature (known from experiment):

a:v:
r:

v:0

v:0 ! v0x î " v0y ĵ.
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In projectile motion, the horizontal motion and the vertical motion are independent
of each other; that is, neither motion affects the other.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6. For the mag-
nitude we have

(Answer)
For the angle we have

However, this angle, which is the one displayed on a calcula-

# ! tan$1  
ay

ax
! tan$1 ! 0.44 m/s2

$0.62 m/s2 " ! $35%.

 ! 0.76 m/s2.
 a ! 2ax

2 " ay
2 ! 2($0.62 m/s2)2 " (0.44 m/s2)2

a: tor, indicates that is directed to the right and downward
in Fig. 4-7. Yet, we know from the components that must
be directed to the left and upward. To find the other angle
that has the same tangent as $35° but is not displayed on a
calculator, we add 180°:

$35° " 180° ! 145°. (Answer)

This is consistent with the components of because it gives
a vector that is to the left and upward. Note that has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant.

a:
a:

a:
a:

Additional examples, video, and practice available at WileyPLUS

This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.
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AFig. 4-9 The projectile motion of an object launched into the
air at the origin of a coordinate system and with launch velocity

at angle u0.The motion is a combination of vertical motion
(constant acceleration) and horizontal motion (constant veloc-
ity), as shown by the velocity components.
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Projectile Motion Analyzed
� We analyze projectile motion horizontally & vertically

Horizontal analysis:

� No acceleration (ax = 0) à vx = v0x (constant),
we apply the equations of motion with a constant acceleration  

� x - x0 (the horizontal displacement from an initial position x0) is 
given by:

ax = 0 à

Because

à

674-6 PROJ ECTI LE MOTION ANALYZ E D
PART 1

tile’s horizontal displacement x ! x0 from an initial position x0 is given by Eq.
2-15 with a " 0, which we write as

x ! x0 " v0xt.

Because v0x " v0 cos u0, this becomes
x ! x0 " (v0 cos u0)t. (4-21)

The Vertical Motion
The vertical motion is the motion we discussed in Section 2-9 for a particle in free
fall. Most important is that the acceleration is constant. Thus, the equations of
Table 2-1 apply, provided we substitute !g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin u0. Similarly, Eqs. 2-11 and 2-16 become

vy " v0 sin u0 ! gt (4-23)

and (4-24)

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into
Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)y " (tan #0)x !
gx2

2(v0 cos #0)2

vy
2 " (v0 sin #0)2 ! 2g(y ! y0).

" (v0 sin #0)t ! 1
2gt 2,

 y ! y0 " v0yt ! 1
2gt 2

Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity.As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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Vertical analysis:

� It is a free fall motion à constant acceleration (ay = −g)
we apply the equations of motion with a constant acceleration:

� The vertical displacement is:

and the vertical velocity

� Initially, the vertical velocity is directed upward é
& its magnitude steadily decreases to zero (at the maximum 
height of the path), then its component reverses direction ê
& its magnitude increases with time

674-6 PROJ ECTI LE MOTION ANALYZ E D
PART 1

tile’s horizontal displacement x ! x0 from an initial position x0 is given by Eq.
2-15 with a " 0, which we write as

x ! x0 " v0xt.

Because v0x " v0 cos u0, this becomes
x ! x0 " (v0 cos u0)t. (4-21)

The Vertical Motion
The vertical motion is the motion we discussed in Section 2-9 for a particle in free
fall. Most important is that the acceleration is constant. Thus, the equations of
Table 2-1 apply, provided we substitute !g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin u0. Similarly, Eqs. 2-11 and 2-16 become

vy " v0 sin u0 ! gt (4-23)

and (4-24)

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
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 y ! y0 " v0yt ! 1
2gt 2

Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity.As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.
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Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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for t 2.00 s. (d) What is the angle between the positive direction
of the x axis and a line tangent to the particle’s path at t 2.00 s? 

•12 At one instant a bicyclist is 40.0 m due east of a park’s flag-
pole, going due south with a speed of 10.0 m/s.Then 30.0 s later, the
cyclist is 40.0 m due north of the flagpole, going due east with a
speed of 10.0 m/s. For the cyclist in this 30.0 s interval, what are the
(a) magnitude and (b) direction of the displacement, the (c) magni-
tude and (d) direction of the average velocity, and the (e) magni-
tude and (f) direction of the average acceleration?

•13 A particle moves so that its position (in meters) as
a function of time (in seconds) is . Write expres-
sions for (a) its velocity and (b) its acceleration as functions of time.

•14 A proton initially has and then 
4.0 s later has (in meters per second). For
that 4.0 s, what are (a) the proton’s average acceleration in unit-
vector notation, (b) the magnitude of , and (c) the angle between

and the positive direction of the x axis?

••15 A particle leaves the origin with an initial veloc-
ity and a constant acceleration 

. When it reaches its maximum x coordinate, what are
its (a) velocity and (b) position vector?

••16 The velocity of a particle moving in the xy plane is
given by , with in meters per second
and t ( 0) in seconds. (a) What is the acceleration when t 3.0
s? (b) When (if ever) is the acceleration zero? (c) When (if ever) is
the velocity zero? (d) When (if ever) does the speed equal 10 m/s?

••17 A cart is propelled over an xy plane with acceleration compo-
nents ax ! 4.0 m/s2 and ay ! "2.0 m/s2. Its initial velocity has com-
ponents v0x ! 8.0 m/s and v0y ! 12 m/s. In unit-vector notation, what
is the velocity of the cart when it reaches its greatest y coordinate?

••18 A moderate wind accelerates a pebble over a horizontal xy
plane with a constant acceleration .
At time t 0, the velocity is (4.00 m/s)i. What are the (a) magni-
tude and (b) angle of its velocity when it has been displaced by 12.0
m parallel to the x axis?

•••19 The acceleration of a particle moving only on a horizontal
xy plane is given by , where is in meters per second-
squared and t is in seconds. At t 0, the position vector

locates the particle, which then has the
velocity vector .At t 4.00 s, what are
(a) its position vector in unit-vector notation and (b) the angle be-
tween its direction of travel and the
positive direction of the x axis?

•••20 In Fig. 4-32, particle A moves
along the line y ! 30 m with a con-
stant velocity of magnitude 3.0
m/s and parallel to the x axis. At the
instant particle A passes the y axis,
particle B leaves the origin with a
zero initial speed and a constant
acceleration of magnitude 0.40
m/s2. What angle u between and
the positive direction of the y axis
would result in a collision?

sec. 4-6 Projectile Motion Analyzed
•21 A dart is thrown horizontally with an initial speed of 
10 m/s toward point P, the bull’s-eye on a dart board. It hits at

a:
a:

v:

!v: ! (5.00 m/s)î # (2.00 m/s)ĵ
r: ! (20.0 m)î # (40.0 m)ĵ

!
a:a: ! 3t î # 4t ĵ

î!
(7.00 m/s2)ĵa: ! (5.00 m/s2)î #

!$
v:v: ! (6.0t " 4.0t2)î # 8.0ĵ

v:

0.500ĵ) m/s2
a: ! ("1.00î "(3.00î) m/sv: !

ILWSSM

a:avg

a:avg

a:avg

v: ! "2.0î " 2.0ĵ # 5.0k̂
v: ! 4.0î " 2.0ĵ # 3.0k̂

r: ! î # 4t2ĵ # tk̂
SSM

!
! point Q on the rim, vertically below P, 0.19 s later. (a) What is the

distance PQ? (b) How far away from the dart board is the dart
released?

•22 A small ball rolls horizontally off the edge of a tabletop that
is 1.20 m high. It strikes the floor at a point 1.52 m horizontally
from the table edge. (a) How long is the ball in the air? (b) What is
its speed at the instant it leaves the table?

•23 A projectile is fired horizontally from a gun that is 
45.0 m above flat ground, emerging from the gun with a speed of
250 m/s. (a) How long does the projectile remain in the air? (b) At
what horizontal distance from the firing point does it strike the
ground? (c) What is the magnitude of the vertical component of its
velocity as it strikes the ground?

•24 In the 1991 World Track and Field Championships in
Tokyo, Mike Powell jumped 8.95 m, breaking by a full 5 cm the 23-
year long-jump record set by Bob Beamon. Assume that Powell’s
speed on takeoff was 9.5 m/s (about equal to that of a sprinter) and
that g 9.80 m/s2 in Tokyo. How much less was Powell’s range
than the maximum possible range for a particle launched at the
same speed?

•25 The current world-record motorcycle jump is 77.0 m, set
by Jason Renie. Assume that he left the take-off ramp at 12.0º to the
horizontal and that the take-off and landing heights are the same.
Neglecting air drag,determine his take-off speed.

•26 A stone is catapulted at time t 0, with an initial velocity of
magnitude 20.0 m/s and at an angle of 40.0° above the horizontal.
What are the magnitudes of the (a) horizontal and (b) vertical
components of its displacement from the catapult site at t 1.10
s? Repeat for the (c) horizontal and (d) vertical components at
t 1.80 s, and for the (e) horizontal and (f) vertical components at
t 5.00 s.

••27 A certain airplane has a
speed of 290.0 km/h and is diving at
an angle of 30.0° below the hor-
izontal when the pilot releases a
radar decoy (Fig. 4-33). The hori-
zontal distance between the release
point and the point where the decoy
strikes the ground is d ! 700 m. (a)
How long is the decoy in the air? (b)
How high was the release point?

••28 In Fig. 4-34, a stone is pro-
jected at a cliff of height h
with an initial speed of 42.0 m/s directed at angle u0 ! 60.0° above
the horizontal. The stone strikes at A, 5.50 s after launching. Find
(a) the height h of the cliff, (b) the speed of the stone just before
impact at A, and (c) the maximum height H reached above the
ground.

% !

ILW

!
!

!

!

!

xB

A

y

θ 

v 

a

Fig. 4-32 Problem 20.

θ 

d

Fig. 4-33 Problem 27.
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Fig. 4-34 Problem 28.
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22. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. 
 
(a) With the origin at the initial point (edge of table), the y coordinate of the ball is given 
by y gt� � 1

2
2 .  If t is the time of flight and y = –1.20 m indicates the level at which the 

ball hits the floor, then 

� �
2

2 1.20 m
0.495s.

9.80 m/s
t

�
� �

�
 

 
(b) The initial (horizontal) velocity of the ball is �v v� 0

�i . Since x = 1.52 m is the 
horizontal position of its impact point with the floor, we have x = v0t. Thus, 
 

0
1.52 m

3.07 m/s.
0.495 s

x
v

t
� � �  

 
23. (a) From Eq. 4-22 (with �0 = 0), the time of flight is 
 

2

2 2(45.0 m)
3.03 s.

9.80 m/s
h

t
g

� � �  

 
(b) The horizontal distance traveled is given by Eq. 4-21: 
 

0 (250 m/s)(3.03 s) 758 m.x v t� � � �  
 
(c) And from Eq. 4-23, we find 
 

2(9.80 m/s )(3.03 s) 29.7 m/s.yv gt� � �  

 
24. We use Eq. 4-26 
 

� �22 2
0 0

max 0 2
max

9.50m/s
sin 2 9.209 m 9.21m

9.80m/s
v v

R
g g

�
	 �

� � � � �
 

� �

 

 
to compare with Powell’s long jump; the difference from Rmax is only �R =(9.21m – 
8.95m) = 0.259 m. 
 
25. Using Eq. (4-26), the take-off speed of the jumper is  
 

 
2

0
0

(9.80 m/s )(77.0 m)
43.1 m/s

sin 2 sin 2(12.0 )
gR

v
�

� � �
�
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tile’s horizontal displacement x ! x0 from an initial position x0 is given by Eq.
2-15 with a " 0, which we write as

x ! x0 " v0xt.

Because v0x " v0 cos u0, this becomes
x ! x0 " (v0 cos u0)t. (4-21)

The Vertical Motion
The vertical motion is the motion we discussed in Section 2-9 for a particle in free
fall. Most important is that the acceleration is constant. Thus, the equations of
Table 2-1 apply, provided we substitute !g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin u0. Similarly, Eqs. 2-11 and 2-16 become

vy " v0 sin u0 ! gt (4-23)

and (4-24)

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into
Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)y " (tan #0)x !
gx2

2(v0 cos #0)2

vy
2 " (v0 sin #0)2 ! 2g(y ! y0).

" (v0 sin #0)t ! 1
2gt 2,

 y ! y0 " v0yt ! 1
2gt 2

Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity.As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.
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22. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. 
 
(a) With the origin at the initial point (edge of table), the y coordinate of the ball is given 
by y gt� � 1

2
2 .  If t is the time of flight and y = –1.20 m indicates the level at which the 

ball hits the floor, then 
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(b) The initial (horizontal) velocity of the ball is �v v� 0

�i . Since x = 1.52 m is the 
horizontal position of its impact point with the floor, we have x = v0t. Thus, 
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23. (a) From Eq. 4-22 (with �0 = 0), the time of flight is 
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(b) The horizontal distance traveled is given by Eq. 4-21: 
 

0 (250 m/s)(3.03 s) 758 m.x v t� � � �  
 
(c) And from Eq. 4-23, we find 
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24. We use Eq. 4-26 
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to compare with Powell’s long jump; the difference from Rmax is only �R =(9.21m – 
8.95m) = 0.259 m. 
 
25. Using Eq. (4-26), the take-off speed of the jumper is  
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24. We use Eq. 4-26 
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to compare with Powell’s long jump; the difference from Rmax is only �R =(9.21m – 
8.95m) = 0.259 m. 
 
25. Using Eq. (4-26), the take-off speed of the jumper is  
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Fig. 4-39 Problem 42.

••38 A golf ball is struck at
ground level. The speed of
the golf ball as a function of
the time is shown in Fig. 4-36,
where t ! 0 at the instant the
ball is struck. The scaling on
the vertical axis is set by

and .
(a) How far does the golf
ball travel horizontally be-
fore returning to ground
level? (b) What is the maximum height above ground level at-
tained by the ball?

••39 In Fig. 4-37, a ball is thrown leftward from the left edge of the
roof, at height h above the ground. The ball hits the ground 1.50 s
later, at distance d ! 25.0 m from the building and at angle u ! 60.0°
with the horizontal. (a) Find h.
(Hint: One way is to reverse
the motion, as if on video.)
What are the (b) magnitude
and (c) angle relative to the
horizontal of the velocity at
which the ball is thrown? (d)
Is the angle above or below
the horizontal?

••40 Suppose that a shot putter can put a shot at the world-
class speed 15.00 m/s and at a height of 2.160 m.What horizontal
distance would the shot travel if the launch angle is (a) 45.00° and
(b) 42.00°? The answers indicate that the angle of 45°, which maxi-
mizes the range of projectile motion, does not maximize the horizon-
tal distance when the launch and landing are at different heights.

••41 Upon spotting
an insect on a twig overhanging
water, an archer fish squirts water
drops at the insect to knock it into
the water (Fig. 4-38).Although the
fish sees the insect along a straight-
line path at angle f and distance d,
a drop must be launched at a differ-
ent angle u0 if its parabolic path is
to intersect the insect. If f ! 36.0°
and d ! 0.900 m, what launch angle u0 is required for the drop to be
at the top of the parabolic path when it reaches the insect?

••42 In 1939 or 1940, Emanuel Zacchini took his human-
cannonball act to an extreme: After being shot from a cannon, he
soared over three Ferris wheels and into a net (Fig. 4-39).Assume that

"0

v0 !

vb ! 31 m/sva ! 19 m/s

v 
(m

/s
)

vb

va
0 1 2

t (s)
3 4 5

Fig. 4-36 Problem 38.

••29 A projectile’s launch speed is five times its speed at maxi-
mum height. Find launch angle .

••30 A soccer ball is kicked from the ground with an initial
speed of 19.5 m/s at an upward angle of 45°. A player 55 m away in
the direction of the kick starts running to meet the ball at that in-
stant. What must be his average speed if he is to meet the ball just
before it hits the ground?

••31 In a jump spike, a volleyball player slams the ball from
overhead and toward the opposite floor. Controlling the angle of the
spike is difficult. Suppose a ball is spiked from a height of 2.30 m
with an initial speed of 20.0 m/s at a downward angle of 18.00°. How
much farther on the opposite floor would it have landed if the down-
ward angle were, instead, 8.00°?

••32 You throw a ball toward a
wall at speed 25.0 m/s and at angle

40.0° above the horizontal (Fig.
4-35). The wall is distance d 22.0
m from the release point of the ball.
(a) How far above the release point
does the ball hit the wall? What are
the (b) horizontal and (c) vertical
components of its velocity as it hits the wall? (d) When it hits, has it
passed the highest point on its trajectory?

••33 A plane, diving with constant speed at an angle of
53.0° with the vertical, releases a projectile at an altitude of 730 m.
The projectile hits the ground 5.00 s after release. (a) What is the
speed of the plane? (b) How far does the projectile travel horizon-
tally during its flight? What are the (c) horizontal and (d) vertical
components of its velocity just before striking the ground?

••34 A trebuchet was a hurling machine built to attack the
walls of a castle under siege. A large stone could be hurled against a
wall to break apart the wall. The machine was not placed near the
wall because then arrows could reach it from the castle wall. Instead,
it was positioned so that the stone hit the wall during the second half
of its flight. Suppose a stone is launched with a speed of v0 ! 28.0 m/s
and at an angle of u0 ! 40.0°. What is the speed of the stone if it hits
the wall (a) just as it reaches the top of its parabolic path and (b)
when it has descended to half that height? (c) As a percentage, how
much faster is it moving in part (b) than in part (a)?

••35 A rifle that shoots bullets at 460 m/s is to be aimed at
a target 45.7 m away. If the center of the target is level with the ri-
fle, how high above the target must the rifle barrel be pointed so
that the bullet hits dead center?

••36 During a tennis match, a player serves the ball at 
23.6 m/s, with the center of the ball leaving the racquet horizon-
tally 2.37 m above the court surface. The net is 12 m away and 0.90
m high. When the ball reaches the net, (a) does the ball clear it and
(b) what is the distance between the center of the ball and the top
of the net? Suppose that, instead, the ball is served as before but
now it leaves the racquet at 5.00° below the horizontal. When the
ball reaches the net, (c) does the ball clear it and (d) what now is
the distance between the center of the ball and the top of the net?

••37 A lowly high diver pushes off horizontally with
a speed of 2.00 m/s from the platform edge 10.0 m above the sur-
face of the water. (a) At what horizontal distance from the edge is
the diver 0.800 s after pushing off? (b) At what vertical distance
above the surface of the water is the diver just then? (c) At what
horizontal distance from the edge does the diver strike the water?
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tile’s horizontal displacement x ! x0 from an initial position x0 is given by Eq.
2-15 with a " 0, which we write as

x ! x0 " v0xt.

Because v0x " v0 cos u0, this becomes
x ! x0 " (v0 cos u0)t. (4-21)

The Vertical Motion
The vertical motion is the motion we discussed in Section 2-9 for a particle in free
fall. Most important is that the acceleration is constant. Thus, the equations of
Table 2-1 apply, provided we substitute !g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin u0. Similarly, Eqs. 2-11 and 2-16 become

vy " v0 sin u0 ! gt (4-23)

and (4-24)

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into
Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)y " (tan #0)x !
gx2

2(v0 cos #0)2

vy
2 " (v0 sin #0)2 ! 2g(y ! y0).

" (v0 sin #0)t ! 1
2gt 2,

 y ! y0 " v0yt ! 1
2gt 2

Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity.As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.
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Then Eq. 4-21 yields �x = (v0 cos �0)t = 38.7 m. Thus, using Eq. 4-8, the player must 
have an average velocity of 
 

avg 

ˆ ˆ(38.7 m) i (55 m) i ˆ( 5.8 m/s) i
2.81s

rv
t

� �
� � � �
�

��  

 
which means his average speed (assuming he ran in only one direction) is 5.8 m/s.  
  
31. We first find the time it takes for the volleyball to hit the ground. Using Eq. 4-22, we 
have 

 2 2 2
0 0 0

1 1  ( sin ) 0 2.30 m ( 20.0 m/s)sin(18.0 ) (9.80 m/s )
2 2

y y v t gt t t�� � � 	 � � � � �  

 
which gives 0.30 st � . Thus, the range of the volleyball is  
 
 � �0 0cos (20.0 m/s) cos18.0 (0.30 s) 5.71 mR v t�� � � �  
 
On the other hand, when the angle is changed to 0 8.00� � � � , using the same procedure as 
shown above, we find   
 

2 2 2
0 0 0

1 1  ( sin ) 0 2.30 m ( 20.0 m/s)sin(8.00 ) (9.80 m/s )
2 2

y y v t gt t t� � � � � �� � � 	 � � � � �   

 
which yields 0.46 st� � , and the range is 
 

� �0 0cos (20.0 m/s) cos18.0 (0.46 s) 9.06 mR v t�� �� � � �  
 
Thus, the ball travels an extra distance of 
 
 9.06 m 5.71 m 3.35 mR R R�� � � � � �  
 
32. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at the release point (the initial 
position for the ball as it begins projectile motion in the sense of §4-5), and we let �0 be 
the angle of throw (shown in the figure).  Since the horizontal component of the velocity 
of the ball is vx = v0 cos 40.0°, the time it takes for the ball to hit the wall is 
 

22.0 m 1.15 s.
(25.0 m/s)cos 40.0x

xt
v
�

� � �
�

 

 
(a) The vertical distance is 
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Eq. 4-22 are directly applicable. The coordinate origin is at the release point (the initial 
position for the ball as it begins projectile motion in the sense of §4-5), and we let �0 be 
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(a) The vertical distance is 
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2 2 2
0 0

1 1
( sin ) (25.0 m/s)sin 40.0 (1.15 s) (9.80 m/s )(1.15 s) 12.0 m.

2 2
y v t gt�� � � � � � �  

 
(b) The horizontal component of the velocity when it strikes the wall does not change 
from its initial value: vx = v0 cos 40.0° = 19.2 m/s. 
 
(c) The vertical component becomes (using Eq. 4-23) 
 

2
0 0sin (25.0 m/s) sin 40.0 (9.80 m/s )(1.15 s) 4.80 m/s.yv v gt�� � � � � �  

 
(d) Since vy > 0 when the ball hits the wall, it has not reached the highest point yet. 
 
33. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 
the release point. We write �0 = –37.0° for the angle measured from +x, since the angle 

0 53.0� � �given in the problem is measured from the –y direction. The initial setup of 
the problem is shown in the figure below. 

 
(a) The initial speed of the projectile is the plane’s speed at the moment of release.  Given 
that 0 730 my �  and 0y �  at 5.00 st � , we use Eq. 4-22 to find v0: 
 

2 2 2
0 0 0 0

1 1
  ( sin ) 0 730 m sin( 37.0 )(5.00 s) (9.80 m/s )(5.00 s)

2 2
y y v t gt v�� � � � � � � � �

 
which yields v0 = 202 m/s. 
 
(b) The horizontal distance traveled is  
 
 0 0( cos ) [(202 m/s)cos( 37.0 )](5.00 s) 806 mxR v t v t�� � � � � �  
 
(c) The x component of the velocity (just before impact) is  
 

0 0cos (202 m/s)cos( 37.0 ) 161 m/sxv v �� � � � � . 
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The Equation of the Path (trajectory):

� We can find the equation of the projectile’s 
path (its trajectory) by eliminating time t 
between Eqs:

à

� Since θ0, v0 and g constants, this equation 
in the form of                      (equation of a 
parabola)
à the path is parabolic
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tile’s horizontal displacement x ! x0 from an initial position x0 is given by Eq.
2-15 with a " 0, which we write as

x ! x0 " v0xt.

Because v0x " v0 cos u0, this becomes
x ! x0 " (v0 cos u0)t. (4-21)

The Vertical Motion
The vertical motion is the motion we discussed in Section 2-9 for a particle in free
fall. Most important is that the acceleration is constant. Thus, the equations of
Table 2-1 apply, provided we substitute !g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin u0. Similarly, Eqs. 2-11 and 2-16 become

vy " v0 sin u0 ! gt (4-23)

and (4-24)

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into
Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)y " (tan #0)x !
gx2

2(v0 cos #0)2

vy
2 " (v0 sin #0)2 ! 2g(y ! y0).

" (v0 sin #0)t ! 1
2gt 2,

 y ! y0 " v0yt ! 1
2gt 2

Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity.As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.
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and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into
Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)y " (tan #0)x !
gx2

2(v0 cos #0)2

vy
2 " (v0 sin #0)2 ! 2g(y ! y0).

" (v0 sin #0)t ! 1
2gt 2,

 y ! y0 " v0yt ! 1
2gt 2

Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity.As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.
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This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we
let x0 ! 0 and y0 ! 0 in Eqs. 4-21 and 4-22, respectively. Because g, u0, and v0 are
constants, Eq. 4-25 is of the form y ! ax " bx2, in which a and b are constants.
This is the equation of a parabola, so the path is parabolic.

The Horizontal Range
The horizontal range R of the projectile is the horizontal distance the projectile
has traveled when it returns to its initial height (the height at which it is
launched).To find range R, let us put x # x0 ! R in Eq. 4-21 and y # y0 ! 0 in Eq.
4-22, obtaining

R ! (v0 cos u0)t

and

Eliminating t between these two equations yields

Using the identity sin 2u0 ! 2 sin u0 cos u0 (see Appendix E), we obtain

(4-26)

Caution: This equation does not give the horizontal distance traveled by a projec-
tile when the final height is not the launch height.

Note that R in Eq. 4-26 has its maximum value when sin 2u0 ! 1, which
corresponds to 2u0 ! 90° or u0 ! 45°.

R !
v0

2

g
 sin 2$0.

R !
2v0

2

g
 sin $0 cos $0.

0 ! (v0 sin $0)t # 1
2gt 2.

CHECKPOINT 4

A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what hap-
pens to its (a) horizontal and (b) vertical components of velocity? What are the (c) hor-
izontal and (d) vertical components of its acceleration during ascent, during descent,
and at the topmost point of its flight?

Fig. 4-13 (I) The path of a fly ball calcu-
lated by taking air resistance into account.
(II) The path the ball would follow in a vac-
uum, calculated by the methods of this
chapter. See Table 4-1 for corresponding
data. (Adapted from “The Trajectory of
a Fly Ball,” by Peter J. Brancazio, The
Physics Teacher, January 1985.)

x

y

60°

v0

I
II

The horizontal range R is maximum for a launch angle of 45°.

However, when the launch and landing heights differ, as in shot put, hammer
throw, and basketball, a launch angle of 45° does not yield the maximum horizon-
tal distance.

The Effects of the Air
We have assumed that the air through which the projectile moves has no effect
on its motion. However, in many situations, the disagreement between our calcu-
lations and the actual motion of the projectile can be large because the air resists
(opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that
leaves the bat at an angle of 60° with the horizontal and an initial speed of 44.7
m/s. Path I (the baseball player’s fly ball) is a calculated path that approximates
normal conditions of play, in air. Path II (the physics professor’s fly ball) is the
path the ball would follow in a vacuum.

Table 4-1

Two Fly Ballsa

Path I Path II 
(Air) (Vacuum)

Range 98.5 m 177 m
Maximum 

height 53.0 m 76.8 m
Time 

of flight 6.6 s 7.9 s

aSee Fig. 4-13.The launch angle is 60° and the
launch speed is 44.7 m/s.
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The Horizontal Range (R):

� It is the horizontal distance traveled by
the projectile when it returns to its initial height

� To find R, we put                  and                   in Eqs

respectively, then eliminate t between the new 

equations 

à (horizontal range)

� Note: This equation gives the horizontal distance 
traveled by a projectile only when the final height is as 
the same as the launched height

� R is maximum when the launched angle is 45°
(sin 2θ0 =1 à θ0 = 45o)
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This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we
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This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we
let x0 ! 0 and y0 ! 0 in Eqs. 4-21 and 4-22, respectively. Because g, u0, and v0 are
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tile’s horizontal displacement x ! x0 from an initial position x0 is given by Eq.
2-15 with a " 0, which we write as

x ! x0 " v0xt.

Because v0x " v0 cos u0, this becomes
x ! x0 " (v0 cos u0)t. (4-21)

The Vertical Motion
The vertical motion is the motion we discussed in Section 2-9 for a particle in free
fall. Most important is that the acceleration is constant. Thus, the equations of
Table 2-1 apply, provided we substitute !g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin u0. Similarly, Eqs. 2-11 and 2-16 become

vy " v0 sin u0 ! gt (4-23)

and (4-24)

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into
Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)y " (tan #0)x !
gx2

2(v0 cos #0)2

vy
2 " (v0 sin #0)2 ! 2g(y ! y0).

" (v0 sin #0)t ! 1
2gt 2,

 y ! y0 " v0yt ! 1
2gt 2

Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity.As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.
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This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we
let x0 ! 0 and y0 ! 0 in Eqs. 4-21 and 4-22, respectively. Because g, u0, and v0 are
constants, Eq. 4-25 is of the form y ! ax " bx2, in which a and b are constants.
This is the equation of a parabola, so the path is parabolic.

The Horizontal Range
The horizontal range R of the projectile is the horizontal distance the projectile
has traveled when it returns to its initial height (the height at which it is
launched).To find range R, let us put x # x0 ! R in Eq. 4-21 and y # y0 ! 0 in Eq.
4-22, obtaining

R ! (v0 cos u0)t

and

Eliminating t between these two equations yields

Using the identity sin 2u0 ! 2 sin u0 cos u0 (see Appendix E), we obtain

(4-26)

Caution: This equation does not give the horizontal distance traveled by a projec-
tile when the final height is not the launch height.

Note that R in Eq. 4-26 has its maximum value when sin 2u0 ! 1, which
corresponds to 2u0 ! 90° or u0 ! 45°.

R !
v0

2

g
 sin 2$0.

R !
2v0

2

g
 sin $0 cos $0.

0 ! (v0 sin $0)t # 1
2gt 2.

CHECKPOINT 4

A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what hap-
pens to its (a) horizontal and (b) vertical components of velocity? What are the (c) hor-
izontal and (d) vertical components of its acceleration during ascent, during descent,
and at the topmost point of its flight?

Fig. 4-13 (I) The path of a fly ball calcu-
lated by taking air resistance into account.
(II) The path the ball would follow in a vac-
uum, calculated by the methods of this
chapter. See Table 4-1 for corresponding
data. (Adapted from “The Trajectory of
a Fly Ball,” by Peter J. Brancazio, The
Physics Teacher, January 1985.)

x

y

60°

v0

I
II

The horizontal range R is maximum for a launch angle of 45°.

However, when the launch and landing heights differ, as in shot put, hammer
throw, and basketball, a launch angle of 45° does not yield the maximum horizon-
tal distance.
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We have assumed that the air through which the projectile moves has no effect
on its motion. However, in many situations, the disagreement between our calcu-
lations and the actual motion of the projectile can be large because the air resists
(opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that
leaves the bat at an angle of 60° with the horizontal and an initial speed of 44.7
m/s. Path I (the baseball player’s fly ball) is a calculated path that approximates
normal conditions of play, in air. Path II (the physics professor’s fly ball) is the
path the ball would follow in a vacuum.

Table 4-1

Two Fly Ballsa

Path I Path II 
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Time 

of flight 6.6 s 7.9 s

aSee Fig. 4-13.The launch angle is 60° and the
launch speed is 44.7 m/s.
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pens to its (a) horizontal and (b) vertical components of velocity? What are the (c) hor-
izontal and (d) vertical components of its acceleration during ascent, during descent,
and at the topmost point of its flight?

Fig. 4-13 (I) The path of a fly ball calcu-
lated by taking air resistance into account.
(II) The path the ball would follow in a vac-
uum, calculated by the methods of this
chapter. See Table 4-1 for corresponding
data. (Adapted from “The Trajectory of
a Fly Ball,” by Peter J. Brancazio, The
Physics Teacher, January 1985.)
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v0

I
II

The horizontal range R is maximum for a launch angle of 45°.

However, when the launch and landing heights differ, as in shot put, hammer
throw, and basketball, a launch angle of 45° does not yield the maximum horizon-
tal distance.

The Effects of the Air
We have assumed that the air through which the projectile moves has no effect
on its motion. However, in many situations, the disagreement between our calcu-
lations and the actual motion of the projectile can be large because the air resists
(opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that
leaves the bat at an angle of 60° with the horizontal and an initial speed of 44.7
m/s. Path I (the baseball player’s fly ball) is a calculated path that approximates
normal conditions of play, in air. Path II (the physics professor’s fly ball) is the
path the ball would follow in a vacuum.

Table 4-1

Two Fly Ballsa

Path I Path II 
(Air) (Vacuum)

Range 98.5 m 177 m
Maximum 

height 53.0 m 76.8 m
Time 

of flight 6.6 s 7.9 s

aSee Fig. 4-13.The launch angle is 60° and the
launch speed is 44.7 m/s.
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Two Golf Balls
Figure 4-10 is a stroboscopic photograph of two golf balls, one simply released
and the other shot horizontally by a spring. The golf balls have the same vertical
motion, both falling through the same vertical distance in the same interval of
time. The fact that one ball is moving horizontally while it is falling has no effect on
its vertical motion; that is, the horizontal and vertical motions are independent of
each other.

A Great Student Rouser
Figure 4-11 shows a demonstration that has enlivened many a physics lecture. It
involves a blowgun G, using a ball as a projectile. The target is a can suspended
from a magnet M, and the tube of the blowgun is aimed directly at the can. The
experiment is arranged so that the magnet releases the can just as the ball leaves
the blowgun.

If g (the magnitude of the free-fall acceleration) were zero, the ball would
follow the straight-line path shown in Fig. 4-11 and the can would float in place
after the magnet released it.The ball would certainly hit the can.

However, g is not zero, but the ball still hits the can! As Fig. 4-11 shows,
during the time of flight of the ball, both ball and can fall the same distance h
from their zero-g locations. The harder the demonstrator blows, the greater is the
ball’s initial speed, the shorter the flight time, and the smaller the value of h.

Fig. 4-10 One ball is released from rest
at the same instant that another ball is shot
horizontally to the right.Their vertical mo-
tions are identical. Source: Richard Megna/
Fundamental Photographs.

CHECKPOINT 3

At a certain instant, a fly ball has velocity (the x axis is horizontal, the y
axis is upward, and is in meters per second). Has the ball passed its highest point?v:

v: ! 25î " 4.9ĵ

4-6 Projectile Motion Analyzed
Now we are ready to analyze projectile motion, horizontally and vertically.

The Horizontal Motion
Because there is no acceleration in the horizontal direction, the horizontal
component vx of the projectile’s velocity remains unchanged from its initial value
v0x throughout the motion, as demonstrated in Fig. 4-12.At any time t, the projec-

Fig. 4-11 The projectile ball always hits the
falling can. Each falls a distance h from where it
would be were there no free-fall acceleration.

M

Can
h

Zero
-g 

 path

G

The ball and the can fall
the same distance h.
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Yes, because vy = −4.9 is in the negative direction
of the y-axes, so the ball started to move
downward after it passed the maximum height (at
vy = 0)

+y −y



The total time (t):

The y component of the projectile velocity is:

at maximum height, vy = 0  à

Note: this t is the projectile time to reach the maximum height
the total time for the projectile ( time for fight) is 2t

The maximum height (H):

à

The relation between R & H:
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tile’s horizontal displacement x ! x0 from an initial position x0 is given by Eq.
2-15 with a " 0, which we write as

x ! x0 " v0xt.

Because v0x " v0 cos u0, this becomes
x ! x0 " (v0 cos u0)t. (4-21)

The Vertical Motion
The vertical motion is the motion we discussed in Section 2-9 for a particle in free
fall. Most important is that the acceleration is constant. Thus, the equations of
Table 2-1 apply, provided we substitute !g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin u0. Similarly, Eqs. 2-11 and 2-16 become

vy " v0 sin u0 ! gt (4-23)

and (4-24)

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into
Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)y " (tan #0)x !
gx2

2(v0 cos #0)2

vy
2 " (v0 sin #0)2 ! 2g(y ! y0).

" (v0 sin #0)t ! 1
2gt 2,

 y ! y0 " v0yt ! 1
2gt 2

Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity.As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.
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This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we
let x0 ! 0 and y0 ! 0 in Eqs. 4-21 and 4-22, respectively. Because g, u0, and v0 are
constants, Eq. 4-25 is of the form y ! ax " bx2, in which a and b are constants.
This is the equation of a parabola, so the path is parabolic.

The Horizontal Range
The horizontal range R of the projectile is the horizontal distance the projectile
has traveled when it returns to its initial height (the height at which it is
launched).To find range R, let us put x # x0 ! R in Eq. 4-21 and y # y0 ! 0 in Eq.
4-22, obtaining

R ! (v0 cos u0)t

and

Eliminating t between these two equations yields

Using the identity sin 2u0 ! 2 sin u0 cos u0 (see Appendix E), we obtain

(4-26)

Caution: This equation does not give the horizontal distance traveled by a projec-
tile when the final height is not the launch height.

Note that R in Eq. 4-26 has its maximum value when sin 2u0 ! 1, which
corresponds to 2u0 ! 90° or u0 ! 45°.

R !
v0

2

g
 sin 2$0.

R !
2v0

2

g
 sin $0 cos $0.

0 ! (v0 sin $0)t # 1
2gt 2.

CHECKPOINT 4

A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what hap-
pens to its (a) horizontal and (b) vertical components of velocity? What are the (c) hor-
izontal and (d) vertical components of its acceleration during ascent, during descent,
and at the topmost point of its flight?

Fig. 4-13 (I) The path of a fly ball calcu-
lated by taking air resistance into account.
(II) The path the ball would follow in a vac-
uum, calculated by the methods of this
chapter. See Table 4-1 for corresponding
data. (Adapted from “The Trajectory of
a Fly Ball,” by Peter J. Brancazio, The
Physics Teacher, January 1985.)

x

y

60°

v0

I
II

The horizontal range R is maximum for a launch angle of 45°.

However, when the launch and landing heights differ, as in shot put, hammer
throw, and basketball, a launch angle of 45° does not yield the maximum horizon-
tal distance.

The Effects of the Air
We have assumed that the air through which the projectile moves has no effect
on its motion. However, in many situations, the disagreement between our calcu-
lations and the actual motion of the projectile can be large because the air resists
(opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that
leaves the bat at an angle of 60° with the horizontal and an initial speed of 44.7
m/s. Path I (the baseball player’s fly ball) is a calculated path that approximates
normal conditions of play, in air. Path II (the physics professor’s fly ball) is the
path the ball would follow in a vacuum.

Table 4-1

Two Fly Ballsa

Path I Path II 
(Air) (Vacuum)

Range 98.5 m 177 m
Maximum 

height 53.0 m 76.8 m
Time 

of flight 6.6 s 7.9 s

aSee Fig. 4-13.The launch angle is 60° and the
launch speed is 44.7 m/s.
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a. Horizontal velocity vx is constant all the time
b. Vertical velocity vy :

• Initially positive and maximum
• Then decreases to zero
• Then becomes negative & increases to maximum

c. Horizontal acceleration ax= 0 
d. Vertical acceleration ay =− g during both ascent and descent
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tile’s horizontal displacement x ! x0 from an initial position x0 is given by Eq.
2-15 with a " 0, which we write as

x ! x0 " v0xt.

Because v0x " v0 cos u0, this becomes
x ! x0 " (v0 cos u0)t. (4-21)

The Vertical Motion
The vertical motion is the motion we discussed in Section 2-9 for a particle in free
fall. Most important is that the acceleration is constant. Thus, the equations of
Table 2-1 apply, provided we substitute !g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin u0. Similarly, Eqs. 2-11 and 2-16 become

vy " v0 sin u0 ! gt (4-23)

and (4-24)

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into
Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)y " (tan #0)x !
gx2

2(v0 cos #0)2

vy
2 " (v0 sin #0)2 ! 2g(y ! y0).

" (v0 sin #0)t ! 1
2gt 2,

 y ! y0 " v0yt ! 1
2gt 2

Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity.As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.
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Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)y " (tan #0)x !
gx2

2(v0 cos #0)2

vy
2 " (v0 sin #0)2 ! 2g(y ! y0).

" (v0 sin #0)t ! 1
2gt 2,

 y ! y0 " v0yt ! 1
2gt 2

Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity.As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.
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This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we
let x0 ! 0 and y0 ! 0 in Eqs. 4-21 and 4-22, respectively. Because g, u0, and v0 are
constants, Eq. 4-25 is of the form y ! ax " bx2, in which a and b are constants.
This is the equation of a parabola, so the path is parabolic.

The Horizontal Range
The horizontal range R of the projectile is the horizontal distance the projectile
has traveled when it returns to its initial height (the height at which it is
launched).To find range R, let us put x # x0 ! R in Eq. 4-21 and y # y0 ! 0 in Eq.
4-22, obtaining

R ! (v0 cos u0)t

and

Eliminating t between these two equations yields

Using the identity sin 2u0 ! 2 sin u0 cos u0 (see Appendix E), we obtain

(4-26)

Caution: This equation does not give the horizontal distance traveled by a projec-
tile when the final height is not the launch height.

Note that R in Eq. 4-26 has its maximum value when sin 2u0 ! 1, which
corresponds to 2u0 ! 90° or u0 ! 45°.

R !
v0

2

g
 sin 2$0.

R !
2v0

2

g
 sin $0 cos $0.

0 ! (v0 sin $0)t # 1
2gt 2.

CHECKPOINT 4

A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what hap-
pens to its (a) horizontal and (b) vertical components of velocity? What are the (c) hor-
izontal and (d) vertical components of its acceleration during ascent, during descent,
and at the topmost point of its flight?

Fig. 4-13 (I) The path of a fly ball calcu-
lated by taking air resistance into account.
(II) The path the ball would follow in a vac-
uum, calculated by the methods of this
chapter. See Table 4-1 for corresponding
data. (Adapted from “The Trajectory of
a Fly Ball,” by Peter J. Brancazio, The
Physics Teacher, January 1985.)

x

y

60°

v0

I
II

The horizontal range R is maximum for a launch angle of 45°.

However, when the launch and landing heights differ, as in shot put, hammer
throw, and basketball, a launch angle of 45° does not yield the maximum horizon-
tal distance.

The Effects of the Air
We have assumed that the air through which the projectile moves has no effect
on its motion. However, in many situations, the disagreement between our calcu-
lations and the actual motion of the projectile can be large because the air resists
(opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that
leaves the bat at an angle of 60° with the horizontal and an initial speed of 44.7
m/s. Path I (the baseball player’s fly ball) is a calculated path that approximates
normal conditions of play, in air. Path II (the physics professor’s fly ball) is the
path the ball would follow in a vacuum.

Table 4-1

Two Fly Ballsa

Path I Path II 
(Air) (Vacuum)

Range 98.5 m 177 m
Maximum 

height 53.0 m 76.8 m
Time 

of flight 6.6 s 7.9 s

aSee Fig. 4-13.The launch angle is 60° and the
launch speed is 44.7 m/s.
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4-7 Uniform Circular Motion
A particle is in uniform circular motion if it travels around a circle or a circular
arc at constant (uniform) speed. Although the speed does not vary, the particle is
accelerating because the velocity changes in direction.

Figure 4-16 shows the relationship between the velocity and acceleration
vectors at various stages during uniform circular motion. Both vectors have
constant magnitude, but their directions change continuously. The velocity is
always directed tangent to the circle in the direction of motion. The acceleration
is always directed radially inward. Because of this, the acceleration associated
with uniform circular motion is called a centripetal (meaning “center seeking”)
acceleration. As we prove next, the magnitude of this acceleration is

(centripetal acceleration), (4-34)

where r is the radius of the circle and v is the speed of the particle.
In addition, during this acceleration at constant speed, the particle travels the

circumference of the circle (a distance of 2pr) in time

(period). (4-35)T !
2"r

v

a !
v2

r

a:

Sample Problem

Cannonball to pirate ship

Figure 4-15 shows a pirate ship 560 m from a fort defending
a harbor entrance. A defense cannon, located at sea level,
fires balls at initial speed v0 ! 82 m/s.

(a) At what angle u0 from the horizontal must a ball be fired
to hit the ship?

KEY I DEAS

(1) A fired cannonball is a projectile. We want an equation
that relates the launch angle u0 to the ball’s horizontal dis-
placement as it moves from cannon to ship. (2) Because the
cannon and the ship are at the same height, the horizontal
displacement is the range.

Fig. 4-15 A pirate ship under fire.

27° 
x 

y 

63° 

R = 560 m

Either launch angle
gives a hit.

Calculations: We can relate the launch angle u0 to the
range R with Eq. 4-26 which, after rearrangement, gives

(4-33)

One solution of sin#1 (54.7°) is displayed by a calculator; we
subtract it from 180° to get the other solution (125.3°).Thus,
Eq. 4-33 gives us

and . (Answer)

(b) What is the maximum range of the cannonballs?

Calculations: We have seen that maximum range corre-
sponds to an elevation angle u0 of 45°.Thus,

(Answer)

As the pirate ship sails away, the two elevation angles at
which the ship can be hit draw together, eventually merging
at u0 ! 45° when the ship is 690 m away. Beyond that dis-
tance the ship is safe. However, the cannonballs could go
farther if the cannon were higher.

 ! 686 m ! 690 m. 

R !
v0

2

g
 sin 2$0 !

(82 m/s)2

9.8 m/s2  sin (2 % 45&)

$0 ! 63&$0 ! 27&

 !
1
2

 sin#1 0.816.

 $0 !
1
2

 sin#1 
gR
v2

0
!

1
2

 sin#1 
(9.8 m/s2)(560 m)

(82 m/s)2

Additional examples, video, and practice available at WileyPLUS
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2θ = sin−1 Rg
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2 →θ = 1

2
sin−1 9.8( ) 560( )
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Because the cannon and the ship are at the same height, the horizontal 
displacement is the range.

θ = 1
2
sin−1 .816( ) = 12 54.7( )

θ = 27o
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Examples:
Q.1: The maximum range of a projectile is at a launch angle:
(a) 35o (b) 45o (c) 55o (d) 25o

Q.2: In the projectile motion, the horizontal velocity component Vx

remains constant because the acceleration in the horizontal direction is:

(a) xx = g (b) ax >g (c) ax = 0 (d) ax > 0

Q.3: The range of a ball that is thrown at angle of 30o above the 
horizontal with an initial speed of 65 m/s is:
(a) 318.1m (b) 266.3m (c) 373.4m (d) 220m

R =
Vo
2 sin(2θ )
g

= 65
2 sin60
9.8

= 373.4m



Q.4: An object is projected from the ground with an initial velocity of 
15m/s at an angle of 30o above the horizontal. The maximum height 
the object reaches above the ground is:
(a) 11.48m (b) 16.3m (c) 2.87m (d) 5.1m

Q.5: Cannon is firing a ball from ground level at an angle of 15o above 
the horizontal. If the ball speed is 200m/s, the horizontal distance of 
the ball just before it hits the ground is:
(a) 4.59km (b) 3.19km (c) 6.25km (d) 2.04km

H =
Vo
2 sin2θo
2g

= 15
2 sin2(30)
2(9.8)

= 2.87m

R =
Vo
2 sin 2θ
g

= 200
2 sin(30)
9.8

= 2040.8m



Q.6: A projectile is fired from a ground at angle 45o above the 
horizontal. If it reaches the ground at 60m from the starting 
point, the initial velocity is:
(a) 24.2m/s (b) 16m/s (c) 9.8m/s 31.3m/s

Q.7: A baseball leaves the bat with initial velocity of 
vo= 10Î+20Ĵ m/s, its range is:
(a) 40.8m (b) 102m (c) 20.4m (d) 61.2m

R =
Vo
2 sin 2θ
g

⇒Vo =
Rg
sin 2θ

= 60× 9.8
sin90

= 24.3m / s

Vo = 102 + 202 = 500           θ = tan−1 20
10

= 63.430

R =
Vo

2 sin 2θ
g

= 500sin126.86
9.8

= 40.8m



Q.8: A ball is projected above the horizontal with an initial velocity 
Vo= 25Î+25Ĵ m/s. The maximum height the ball rises is:
(a) 1m (b) 20.4m (c) 2.4m (d) 31.89m

Q.9: A ball is kicked with speed of 25m/s at an angle of 35o above 
the ground. Its time of flight is:
(a) 5.9s (b) 11s (c) 3.25s (d) 2.93s

H =
Vo
2 sin2θo
2g

= 1250sin
2(45)

2(9.8)
= 31.89m

Vo = 252 + 252 = 35.35m / s          θ = tan−1 25
25

= 450

t = 2
Vo sinθ
g

⎛
⎝⎜

⎞
⎠⎟
= 2(25)sin35

9.8
= 2.93s



Q.10: A ball is kicked from the ground with an initial speed of 
4m/s at an upward angle of 30o. The time the ball takes to reach 
its maximum height is:
(a) 0.2s (b) 0.31s (c) 0.41s (d) 0.51s

Q.11: A ball is kicked from the ground with initial speed of 
15m/s, the maximum horizontal distance the ball travels is:
(a) 40.8m (b) 22.96m (c) 25.5m (d) 63.8m

When a projectile is thrown and reach the maximum horizontal 
distance, this means that θ= 45o

t =
Vo sinθ
g

= 4sin30
9.8

= 0.2s

R =
Vo
2 sin 2θ
g

= 15
2 sin90
9.8

= 22.96m



Q.12: A projectile is launched at an angle such that the 
maximum height reached equals the horizontal range. The 
launch angle is:
(a) 22.5o (b) 45o (c) 30o (d) 76o

H = R         

θ = tan−1 4H
R

= tan−1 4 = 76o

H = R tanθ
4



Chapter 4
MOTION IN TWO AND THREE 

DIMENSIONS
Section 4-7

Uniform Circular Motion



� Important skills from this lecture:
1. Define the uniform circular motion
2. Define the direction for both velocity & acceleration in 

the circular motion 
3. Calculate the particle’s acceleration in the uniform 

circular motion
4. Calculate the period of the revolution 



Uniform Circular Motion
� Uniform circular motion: when a particle travels 

around a circle at constant (uniform) speed

� Its speed does not vary
� Its acceleration changes?

because its velocity changes in direction

� The relationship between the particle's velocity 
& acceleration: 
� Both vectors have constant magnitude, but 

their directions change continuously
� The velocity is always directed tangent to 

the circle in the direction of motion
� The acceleration is always directed radially 

inward 

714-7 U N I FOR M CI RCU LAR MOTION
PART 1

T is called the period of revolution, or simply the period, of the motion. It is, in
general, the time for a particle to go around a closed path exactly once.

Proof of Eq. 4-34
To find the magnitude and direction of the acceleration for uniform circular
motion, we consider Fig. 4-17. In Fig. 4-17a, particle p moves at constant speed
v around a circle of radius r.At the instant shown, p has coordinates xp and yp.

Recall from Section 4-3 that the velocity of a moving particle is always tan-
gent to the particle’s path at the particle’s position. In Fig. 4-17a, that means is
perpendicular to a radius r drawn to the particle’s position.Then the angle u that 
makes with a vertical at p equals the angle u that radius r makes with the x axis.

The scalar components of are shown in Fig. 4-17b. With them, we can write
the velocity as

. (4-36)

Now, using the right triangle in Fig. 4-17a, we can replace sin u with yp/r and 
cos u with xp/r to write

(4-37)

To find the acceleration of particle p, we must take the time derivative of this
equation. Noting that speed v and radius r do not change with time, we obtain

(4-38)a: !
dv:

dt
! !"

v
r

 
dyp

dt " î # ! v
r

 
dxp

dt " ĵ.

a:

v: ! !"
vyp

r " î # ! vxp

r " ĵ .

v: ! vx î # vy ĵ ! ("v sin $)î # (v cos $)ĵ
v:

v:

v:
v:

v:

Fig. 4-17 Particle p moves in counterclockwise uniform circular motion. (a) Its position
and velocity at a certain instant. (b) Velocity . (c) Acceleration .a:v:v:
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ax
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Fig. 4-16 Velocity and acceleration vec-
tors for uniform circular motion.

v

v

v
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The acceleration vector
always points toward the
center.

The velocity
vector is always
tangent to the path.
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� Centripetal acceleration: it is the acceleration that is 
associated with the uniform circular motion 

� The magnitude of the centripetal acceleration a is

where r : the radius of the circle 
v : the speed of the particle

� During this acceleration, the particle travels the circumference 
of the circle (a distance of 2Πr) in time T

� Period of revolution or period (T ): the time for a particle to go 
around a closed path exactly once
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4-7 Uniform Circular Motion
A particle is in uniform circular motion if it travels around a circle or a circular
arc at constant (uniform) speed. Although the speed does not vary, the particle is
accelerating because the velocity changes in direction.

Figure 4-16 shows the relationship between the velocity and acceleration
vectors at various stages during uniform circular motion. Both vectors have
constant magnitude, but their directions change continuously. The velocity is
always directed tangent to the circle in the direction of motion. The acceleration
is always directed radially inward. Because of this, the acceleration associated
with uniform circular motion is called a centripetal (meaning “center seeking”)
acceleration. As we prove next, the magnitude of this acceleration is

(centripetal acceleration), (4-34)

where r is the radius of the circle and v is the speed of the particle.
In addition, during this acceleration at constant speed, the particle travels the

circumference of the circle (a distance of 2pr) in time

(period). (4-35)T !
2"r

v

a !
v2

r

a:

Sample Problem

Cannonball to pirate ship

Figure 4-15 shows a pirate ship 560 m from a fort defending
a harbor entrance. A defense cannon, located at sea level,
fires balls at initial speed v0 ! 82 m/s.

(a) At what angle u0 from the horizontal must a ball be fired
to hit the ship?

KEY I DEAS

(1) A fired cannonball is a projectile. We want an equation
that relates the launch angle u0 to the ball’s horizontal dis-
placement as it moves from cannon to ship. (2) Because the
cannon and the ship are at the same height, the horizontal
displacement is the range.

Fig. 4-15 A pirate ship under fire.

27° 
x 

y 

63° 

R = 560 m

Either launch angle
gives a hit.

Calculations: We can relate the launch angle u0 to the
range R with Eq. 4-26 which, after rearrangement, gives

(4-33)

One solution of sin#1 (54.7°) is displayed by a calculator; we
subtract it from 180° to get the other solution (125.3°).Thus,
Eq. 4-33 gives us

and . (Answer)

(b) What is the maximum range of the cannonballs?

Calculations: We have seen that maximum range corre-
sponds to an elevation angle u0 of 45°.Thus,

(Answer)

As the pirate ship sails away, the two elevation angles at
which the ship can be hit draw together, eventually merging
at u0 ! 45° when the ship is 690 m away. Beyond that dis-
tance the ship is safe. However, the cannonballs could go
farther if the cannon were higher.

 ! 686 m ! 690 m. 

R !
v0

2

g
 sin 2$0 !

(82 m/s)2

9.8 m/s2  sin (2 % 45&)

$0 ! 63&$0 ! 27&

 !
1
2

 sin#1 0.816.

 $0 !
1
2

 sin#1 
gR
v2

0
!

1
2

 sin#1 
(9.8 m/s2)(560 m)

(82 m/s)2

Additional examples, video, and practice available at WileyPLUS
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A particle is in uniform circular motion if it travels around a circle or a circular
arc at constant (uniform) speed. Although the speed does not vary, the particle is
accelerating because the velocity changes in direction.

Figure 4-16 shows the relationship between the velocity and acceleration
vectors at various stages during uniform circular motion. Both vectors have
constant magnitude, but their directions change continuously. The velocity is
always directed tangent to the circle in the direction of motion. The acceleration
is always directed radially inward. Because of this, the acceleration associated
with uniform circular motion is called a centripetal (meaning “center seeking”)
acceleration. As we prove next, the magnitude of this acceleration is

(centripetal acceleration), (4-34)

where r is the radius of the circle and v is the speed of the particle.
In addition, during this acceleration at constant speed, the particle travels the

circumference of the circle (a distance of 2pr) in time

(period). (4-35)T !
2"r

v

a !
v2

r

a:

Sample Problem

Cannonball to pirate ship

Figure 4-15 shows a pirate ship 560 m from a fort defending
a harbor entrance. A defense cannon, located at sea level,
fires balls at initial speed v0 ! 82 m/s.

(a) At what angle u0 from the horizontal must a ball be fired
to hit the ship?

KEY I DEAS

(1) A fired cannonball is a projectile. We want an equation
that relates the launch angle u0 to the ball’s horizontal dis-
placement as it moves from cannon to ship. (2) Because the
cannon and the ship are at the same height, the horizontal
displacement is the range.

Fig. 4-15 A pirate ship under fire.

27° 
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63° 

R = 560 m

Either launch angle
gives a hit.

Calculations: We can relate the launch angle u0 to the
range R with Eq. 4-26 which, after rearrangement, gives

(4-33)

One solution of sin#1 (54.7°) is displayed by a calculator; we
subtract it from 180° to get the other solution (125.3°).Thus,
Eq. 4-33 gives us

and . (Answer)

(b) What is the maximum range of the cannonballs?

Calculations: We have seen that maximum range corre-
sponds to an elevation angle u0 of 45°.Thus,

(Answer)

As the pirate ship sails away, the two elevation angles at
which the ship can be hit draw together, eventually merging
at u0 ! 45° when the ship is 690 m away. Beyond that dis-
tance the ship is safe. However, the cannonballs could go
farther if the cannon were higher.

 ! 686 m ! 690 m. 

R !
v0

2

g
 sin 2$0 !

(82 m/s)2

9.8 m/s2  sin (2 % 45&)

$0 ! 63&$0 ! 27&

 !
1
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 sin#1 0.816.
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1
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 sin#1 
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 sin#1 
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Sample Problem

cle’s radius. Also, the time required to complete a full circle
is the period given by Eq. 4-35 (T ! 2pR/v).

Calculations: Because we do not know radius R, let’s solve
Eq. 4-35 for R and substitute into Eq. 4-34.We find

Speed v here is the (constant) magnitude of the velocity
during the turning. Let’s substitute the components of the
initial velocity into Eq. 3-6:

To find the period T of the motion, first note that the final
velocity is the reverse of the initial velocity. This means the
aircraft leaves on the opposite side of the circle from the ini-
tial point and must have completed half a circle in the given
24.0 s. Thus a full circle would have taken T ! 48.0 s.
Substituting these values into our equation for a, we find

(Answer)a !
2"(640.31 m/s)

48.0 s
! 83.81 m/s2 ! 8.6g.

v ! 2(400 m/s)2 # (500 m/s)2 ! 640.31 m/s.

a !
2"v
T

.

Top gun pilots in turns

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood
pressure in the brain decreases, leading to loss of brain
function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of (400î 500ĵ) m/s and 24.0 s later leaves the
turn with a velocity of ( 400î 500 ĵ) m/s?

KEY I DEAS

We assume the turn is made with uniform circular mo-
tion. Then the pilot’s acceleration is centripetal and has
magnitude a given by Eq. 4-34 (a ! v2/R), where R is the cir-

$$v:
f

!
#v:i !

Now note that the rate dyp/dt at which yp changes is equal to the velocity
component vy. Similarly, dxp/dt ! vx, and, again from Fig. 4-17b, we see that vx !
$v sin u and vy ! v cos u. Making these substitutions in Eq. 4-38, we find

. (4-39)

This vector and its components are shown in Fig. 4-17c. Following Eq. 3-6, we find

as we wanted to prove.To orient , we find the angle f shown in Fig. 4-17c:

.

Thus, f ! u, which means that is directed along the radius r of Fig. 4-17a,
toward the circle’s center, as we wanted to prove.

a:

tan % !
ay

ax
!

$(v2/r) sin &
$(v2/r) cos &

! tan &

a:

a ! 2ax
2 # ay

2 !
v2

r
 2(cos &)2 # (sin &)2 !

v2

r
 11 !

v2

r
,

a: ! "$
v2

r
 cos &# î # "$

v2

r
 sin &# ĵ

CHECKPOINT 5

An object moves at constant speed along a circular path in a horizontal xy plane, with
the center at the origin. When the object is at x ! $2 m, its velocity is $(4 m/s) . Give
the object’s (a) velocity and (b) acceleration at y ! 2 m.

ĵ

Additional examples, video, and practice available at WileyPLUS
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v = - 4 j

v = - 4 i

a

a

(a) v = - 4Î

(b) a = v2/r
= 16/2 = 8 m/s2

a direction: - 8 Ĵ m/s2
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Sample Problem

cle’s radius. Also, the time required to complete a full circle
is the period given by Eq. 4-35 (T ! 2pR/v).

Calculations: Because we do not know radius R, let’s solve
Eq. 4-35 for R and substitute into Eq. 4-34.We find

Speed v here is the (constant) magnitude of the velocity
during the turning. Let’s substitute the components of the
initial velocity into Eq. 3-6:

To find the period T of the motion, first note that the final
velocity is the reverse of the initial velocity. This means the
aircraft leaves on the opposite side of the circle from the ini-
tial point and must have completed half a circle in the given
24.0 s. Thus a full circle would have taken T ! 48.0 s.
Substituting these values into our equation for a, we find

(Answer)a !
2"(640.31 m/s)

48.0 s
! 83.81 m/s2 ! 8.6g.

v ! 2(400 m/s)2 # (500 m/s)2 ! 640.31 m/s.

a !
2"v
T

.

Top gun pilots in turns

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood
pressure in the brain decreases, leading to loss of brain
function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of (400î 500ĵ) m/s and 24.0 s later leaves the
turn with a velocity of ( 400î 500 ĵ) m/s?

KEY I DEAS

We assume the turn is made with uniform circular mo-
tion. Then the pilot’s acceleration is centripetal and has
magnitude a given by Eq. 4-34 (a ! v2/R), where R is the cir-

$$v:
f

!
#v:i !

Now note that the rate dyp/dt at which yp changes is equal to the velocity
component vy. Similarly, dxp/dt ! vx, and, again from Fig. 4-17b, we see that vx !
$v sin u and vy ! v cos u. Making these substitutions in Eq. 4-38, we find

. (4-39)

This vector and its components are shown in Fig. 4-17c. Following Eq. 3-6, we find

as we wanted to prove.To orient , we find the angle f shown in Fig. 4-17c:

.

Thus, f ! u, which means that is directed along the radius r of Fig. 4-17a,
toward the circle’s center, as we wanted to prove.

a:

tan % !
ay

ax
!

$(v2/r) sin &
$(v2/r) cos &

! tan &

a:

a ! 2ax
2 # ay

2 !
v2

r
 2(cos &)2 # (sin &)2 !

v2

r
 11 !

v2

r
,

a: ! "$
v2

r
 cos &# î # "$

v2

r
 sin &# ĵ

CHECKPOINT 5

An object moves at constant speed along a circular path in a horizontal xy plane, with
the center at the origin. When the object is at x ! $2 m, its velocity is $(4 m/s) . Give
the object’s (a) velocity and (b) acceleration at y ! 2 m.

ĵ

Additional examples, video, and practice available at WileyPLUS
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Sample Problem

cle’s radius. Also, the time required to complete a full circle
is the period given by Eq. 4-35 (T ! 2pR/v).

Calculations: Because we do not know radius R, let’s solve
Eq. 4-35 for R and substitute into Eq. 4-34.We find

Speed v here is the (constant) magnitude of the velocity
during the turning. Let’s substitute the components of the
initial velocity into Eq. 3-6:

To find the period T of the motion, first note that the final
velocity is the reverse of the initial velocity. This means the
aircraft leaves on the opposite side of the circle from the ini-
tial point and must have completed half a circle in the given
24.0 s. Thus a full circle would have taken T ! 48.0 s.
Substituting these values into our equation for a, we find

(Answer)a !
2"(640.31 m/s)

48.0 s
! 83.81 m/s2 ! 8.6g.

v ! 2(400 m/s)2 # (500 m/s)2 ! 640.31 m/s.

a !
2"v
T

.

Top gun pilots in turns

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood
pressure in the brain decreases, leading to loss of brain
function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of (400î 500ĵ) m/s and 24.0 s later leaves the
turn with a velocity of ( 400î 500 ĵ) m/s?

KEY I DEAS

We assume the turn is made with uniform circular mo-
tion. Then the pilot’s acceleration is centripetal and has
magnitude a given by Eq. 4-34 (a ! v2/R), where R is the cir-

$$v:
f

!
#v:i !

Now note that the rate dyp/dt at which yp changes is equal to the velocity
component vy. Similarly, dxp/dt ! vx, and, again from Fig. 4-17b, we see that vx !
$v sin u and vy ! v cos u. Making these substitutions in Eq. 4-38, we find

. (4-39)

This vector and its components are shown in Fig. 4-17c. Following Eq. 3-6, we find

as we wanted to prove.To orient , we find the angle f shown in Fig. 4-17c:

.

Thus, f ! u, which means that is directed along the radius r of Fig. 4-17a,
toward the circle’s center, as we wanted to prove.

a:

tan % !
ay

ax
!

$(v2/r) sin &
$(v2/r) cos &

! tan &

a:

a ! 2ax
2 # ay

2 !
v2

r
 2(cos &)2 # (sin &)2 !

v2

r
 11 !

v2

r
,

a: ! "$
v2

r
 cos &# î # "$

v2

r
 sin &# ĵ

CHECKPOINT 5

An object moves at constant speed along a circular path in a horizontal xy plane, with
the center at the origin. When the object is at x ! $2 m, its velocity is $(4 m/s) . Give
the object’s (a) velocity and (b) acceleration at y ! 2 m.

ĵ

Additional examples, video, and practice available at WileyPLUS
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The final velocity is the reverse of the initial velocity à
the aircraft leaves on the opposite side of the circle 
from the initial point and must have completed half a 
circle in the given 24.0 s. Thus a full circle would have 
taken T = 48.0 s. 

T = 2πr
v

⇒ r = Tv
2π

a = v
2

r
= 2πv

2

Tv
= 2πv

T
v = (400)2 + (500)2 = 640.31m / s

a = 2(3.14)(640.31)
48

= 83.81= 83.81× g
9.8

= 8.6g

vi
vf =-vi
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Sample Problem

cle’s radius. Also, the time required to complete a full circle
is the period given by Eq. 4-35 (T ! 2pR/v).

Calculations: Because we do not know radius R, let’s solve
Eq. 4-35 for R and substitute into Eq. 4-34.We find

Speed v here is the (constant) magnitude of the velocity
during the turning. Let’s substitute the components of the
initial velocity into Eq. 3-6:

To find the period T of the motion, first note that the final
velocity is the reverse of the initial velocity. This means the
aircraft leaves on the opposite side of the circle from the ini-
tial point and must have completed half a circle in the given
24.0 s. Thus a full circle would have taken T ! 48.0 s.
Substituting these values into our equation for a, we find

(Answer)a !
2"(640.31 m/s)

48.0 s
! 83.81 m/s2 ! 8.6g.

v ! 2(400 m/s)2 # (500 m/s)2 ! 640.31 m/s.

a !
2"v
T

.

Top gun pilots in turns

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood
pressure in the brain decreases, leading to loss of brain
function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of (400î 500ĵ) m/s and 24.0 s later leaves the
turn with a velocity of ( 400î 500 ĵ) m/s?

KEY I DEAS

We assume the turn is made with uniform circular mo-
tion. Then the pilot’s acceleration is centripetal and has
magnitude a given by Eq. 4-34 (a ! v2/R), where R is the cir-

$$v:
f

!
#v:i !

Now note that the rate dyp/dt at which yp changes is equal to the velocity
component vy. Similarly, dxp/dt ! vx, and, again from Fig. 4-17b, we see that vx !
$v sin u and vy ! v cos u. Making these substitutions in Eq. 4-38, we find

. (4-39)

This vector and its components are shown in Fig. 4-17c. Following Eq. 3-6, we find

as we wanted to prove.To orient , we find the angle f shown in Fig. 4-17c:

.

Thus, f ! u, which means that is directed along the radius r of Fig. 4-17a,
toward the circle’s center, as we wanted to prove.

a:

tan % !
ay

ax
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$(v2/r) sin &
$(v2/r) cos &

! tan &
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a ! 2ax
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r
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CHECKPOINT 5

An object moves at constant speed along a circular path in a horizontal xy plane, with
the center at the origin. When the object is at x ! $2 m, its velocity is $(4 m/s) . Give
the object’s (a) velocity and (b) acceleration at y ! 2 m.

ĵ
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Sample Problem

cle’s radius. Also, the time required to complete a full circle
is the period given by Eq. 4-35 (T ! 2pR/v).

Calculations: Because we do not know radius R, let’s solve
Eq. 4-35 for R and substitute into Eq. 4-34.We find

Speed v here is the (constant) magnitude of the velocity
during the turning. Let’s substitute the components of the
initial velocity into Eq. 3-6:

To find the period T of the motion, first note that the final
velocity is the reverse of the initial velocity. This means the
aircraft leaves on the opposite side of the circle from the ini-
tial point and must have completed half a circle in the given
24.0 s. Thus a full circle would have taken T ! 48.0 s.
Substituting these values into our equation for a, we find

(Answer)a !
2"(640.31 m/s)

48.0 s
! 83.81 m/s2 ! 8.6g.

v ! 2(400 m/s)2 # (500 m/s)2 ! 640.31 m/s.

a !
2"v
T

.

Top gun pilots in turns

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood
pressure in the brain decreases, leading to loss of brain
function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of (400î 500ĵ) m/s and 24.0 s later leaves the
turn with a velocity of ( 400î 500 ĵ) m/s?

KEY I DEAS

We assume the turn is made with uniform circular mo-
tion. Then the pilot’s acceleration is centripetal and has
magnitude a given by Eq. 4-34 (a ! v2/R), where R is the cir-

$$v:
f

!
#v:i !

Now note that the rate dyp/dt at which yp changes is equal to the velocity
component vy. Similarly, dxp/dt ! vx, and, again from Fig. 4-17b, we see that vx !
$v sin u and vy ! v cos u. Making these substitutions in Eq. 4-38, we find

. (4-39)

This vector and its components are shown in Fig. 4-17c. Following Eq. 3-6, we find

as we wanted to prove.To orient , we find the angle f shown in Fig. 4-17c:

.

Thus, f ! u, which means that is directed along the radius r of Fig. 4-17a,
toward the circle’s center, as we wanted to prove.

a:

tan % !
ay

ax
!

$(v2/r) sin &
$(v2/r) cos &

! tan &

a:

a ! 2ax
2 # ay

2 !
v2

r
 2(cos &)2 # (sin &)2 !

v2

r
 11 !

v2

r
,

a: ! "$
v2

r
 cos &# î # "$

v2

r
 sin &# ĵ

CHECKPOINT 5

An object moves at constant speed along a circular path in a horizontal xy plane, with
the center at the origin. When the object is at x ! $2 m, its velocity is $(4 m/s) . Give
the object’s (a) velocity and (b) acceleration at y ! 2 m.

ĵ

Additional examples, video, and practice available at WileyPLUS
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Examples:
Q.1: a player runs in a circular tract has a radius of 50m with a 
constant speed of 10m/s. The magnitude of his centripetal 
acceleration is:
(a) 0.2m/s2 (b) 2m/s2 (c) 5m/s2 (d) 20m/s2

a = v
2

r
= 100
50

= 2m / s2
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  Chapter ( 4 ) MOTION IN TWO AND THREE DIMENSIONS 

- A projectile is fired from the ground level over level ground with an initial 
velocity     that has a vertical component of 20m/s and a horizontal 
component of 30m/s.  
 
 
1-  The distance from launching to landing points is: 
 
(a). 40m (b) 60m           (c) 20.4m               (d) 122m 
 

 

"#The maximum  height  the!projectile reached is : !

(a). 40m (b) 60m           (c) 20 .4m               (d) 122m 
!

!

$#The time the projectile takes to reach  its maximum height is:!

(a). 4.1 s (b) 2.05 s           (c) 1.05 s               (d)0.5 s 
  
 
 

!

%&'()*+,-.!!/!!"#0!#1!

!

!

23+45'6!/!!!7!!8-9!71!

 

Problem: 3 and 17



sec. 4-2 Position and Displacement
•1 The position vector for an electron is 

. (a) Find the magnitude of . (b) Sketch the
vector on a right-handed coordinate system.
•2 A watermelon seed has the following coordinates: x ! "5.0 m,
y ! 8.0 m, and z ! 0 m. Find its position vector (a) in unit-vector no-
tation and as (b) a magnitude and (c) an angle relative to the positive
direction of the x axis. (d) Sketch the vector on a right-handed coor-
dinate system. If the seed is moved to the xyz coordinates (3.00 m,
0 m, 0 m), what is its displacement (e) in unit-vector notation and as
(f) a magnitude and (g) an angle relative to the positive x direction?

•3 A positron undergoes a displacement ,
ending with the position vector , in meters. What
was the positron’s initial position vector?

••4 The minute hand of a wall clock measures 10 cm from its tip to
the axis about which it rotates. The magnitude and angle of the dis-
placement vector of the tip are to be determined for three time inter-
vals. What are the (a) magnitude and (b) angle from a quarter after
the hour to half past, the (c) magnitude and (d) angle for the next half
hour, and the (e) magnitude and (f) angle for the hour after that?

sec. 4-3 Average Velocity and Instantaneous Velocity
•5 A train at a constant 60.0 km/h moves east for 40.0 min,
then in a direction 50.0° east of due north for 20.0 min, and then
west for 50.0 min. What are the (a) magnitude and (b) angle of its
average velocity during this trip?

•6 An electron’s position is given by 
, with t in seconds and in meters. (a) In unit-vector

notation, what is the electron’s velocity ? At t 2.00 s, what is
(b) in unit-vector notation and as (c) a magnitude and (d) an an-

gle relative to the positive direction of the x axis?

•7 An ion’s position vector is initially ,
and 10 s later it is , all in meters. In unit-
vector notation, what is its during the 10 s?

••8 A plane flies 483 km east from city A to city B in 45.0 min and
then 966 km south from city B to city C in 1.50 h. For the total trip,

v:avg

r: ! "2.0î # 8.0ĵ " 2.0k̂
2.0k̂6.0ĵ #r: ! 5.0î "

v:
!v:(t)

r:4.00t2ĵ # 2.00k̂
r: ! 3.00t î "

SSM

r: ! 3.0ĵ " 4.0k̂
3.0ĵ # 6.0k̂$ r: ! 2.0î "

r:(3.0 m)ĵ # (2.0 m)k̂
r: ! (5.0 m)î "

what are the (a) magnitude and (b) direction of the plane’s dis-
placement, the (c) magnitude and (d) direction of its average ve-
locity, and (e) its average speed?

••9 Figure 4-30 gives the
path of a squirrel moving
about on level ground, from
point A (at time t ! 0), to
points B (at t ! 5.00 min), C
(at t ! 10.0 min), and finally
D (at t ! 15.0 min). Consider
the average velocities of the
squirrel from point A to each
of the other three points. Of
them, what are the (a) magni-
tude and (b) angle of the one
with the least magnitude and
the (c) magnitude and (d) an-
gle of the one with the great-
est magnitude?

•••10 The position vector
lo-

cates a particle as a function
of time t. Vector is in me-
ters, t is in seconds, and fac-
tors e and f are constants.
Figure 4-31 gives the angle u
of the particle’s direction of
travel as a function of t (u is
measured from the positive x
direction). What are (a) e
and (b) f, including units?

sec. 4-4 Average Acceleration and Instantaneous
Acceleration
•11 The position of a particle moving in an xy plane is given
by , with in meters and t
in seconds. In unit-vector notation, calculate (a) , (b) , and (c) a:v:r:

r:r: ! (2.00t3 " 5.00t)î # (6.00 " 7.00t4)ĵ
r:

r:

r: ! 5.00t î # (et # ft2)ĵ

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

D
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B
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–25

–50

y (m)

x (m)

Fig. 4-30 Problem 9.

θ 

20°

0°

–20°

10 20

t (s)

Fig. 4-31 Problem 10.
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ball’s speed at maximum height, great-
est first.

11 Figure 4-28 shows four tracks (ei-
ther half- or quarter-circles) that can be
taken by a train, which moves at a con-
stant speed. Rank the tracks according
to the magnitude of a train’s accelera-
tion on the curved portion, greatest
first.
12 In Fig. 4-29, particle P is in uni-
form circular motion, centered on the
origin of an xy coordinate system. (a)

At what values of u is the vertical com-
ponent ry of the position vector greatest
in magnitude? (b) At what values of u is
the vertical component vy of the parti-
cle’s velocity greatest in magnitude? (c)
At what values of u is the vertical com-
ponent ay of the particle’s acceleration
greatest in magnitude?

13 (a) Is it possible to be accelerating
while traveling at constant speed? Is it
possible to round a curve with (b) zero
acceleration and (c) a constant magnitude of acceleration?

3

4

2

1

Fig. 4-28 Question 11.

x

y

θ 
r

P

Fig. 4-29 Question 12.
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for t 2.00 s. (d) What is the angle between the positive direction
of the x axis and a line tangent to the particle’s path at t 2.00 s? 

•12 At one instant a bicyclist is 40.0 m due east of a park’s flag-
pole, going due south with a speed of 10.0 m/s.Then 30.0 s later, the
cyclist is 40.0 m due north of the flagpole, going due east with a
speed of 10.0 m/s. For the cyclist in this 30.0 s interval, what are the
(a) magnitude and (b) direction of the displacement, the (c) magni-
tude and (d) direction of the average velocity, and the (e) magni-
tude and (f) direction of the average acceleration?

•13 A particle moves so that its position (in meters) as
a function of time (in seconds) is . Write expres-
sions for (a) its velocity and (b) its acceleration as functions of time.

•14 A proton initially has and then 
4.0 s later has (in meters per second). For
that 4.0 s, what are (a) the proton’s average acceleration in unit-
vector notation, (b) the magnitude of , and (c) the angle between

and the positive direction of the x axis?

••15 A particle leaves the origin with an initial veloc-
ity and a constant acceleration 

. When it reaches its maximum x coordinate, what are
its (a) velocity and (b) position vector?

••16 The velocity of a particle moving in the xy plane is
given by , with in meters per second
and t ( 0) in seconds. (a) What is the acceleration when t 3.0
s? (b) When (if ever) is the acceleration zero? (c) When (if ever) is
the velocity zero? (d) When (if ever) does the speed equal 10 m/s?

••17 A cart is propelled over an xy plane with acceleration compo-
nents ax ! 4.0 m/s2 and ay ! "2.0 m/s2. Its initial velocity has com-
ponents v0x ! 8.0 m/s and v0y ! 12 m/s. In unit-vector notation, what
is the velocity of the cart when it reaches its greatest y coordinate?

••18 A moderate wind accelerates a pebble over a horizontal xy
plane with a constant acceleration .
At time t 0, the velocity is (4.00 m/s)i. What are the (a) magni-
tude and (b) angle of its velocity when it has been displaced by 12.0
m parallel to the x axis?

•••19 The acceleration of a particle moving only on a horizontal
xy plane is given by , where is in meters per second-
squared and t is in seconds. At t 0, the position vector

locates the particle, which then has the
velocity vector .At t 4.00 s, what are
(a) its position vector in unit-vector notation and (b) the angle be-
tween its direction of travel and the
positive direction of the x axis?

•••20 In Fig. 4-32, particle A moves
along the line y ! 30 m with a con-
stant velocity of magnitude 3.0
m/s and parallel to the x axis. At the
instant particle A passes the y axis,
particle B leaves the origin with a
zero initial speed and a constant
acceleration of magnitude 0.40
m/s2. What angle u between and
the positive direction of the y axis
would result in a collision?

sec. 4-6 Projectile Motion Analyzed
•21 A dart is thrown horizontally with an initial speed of 
10 m/s toward point P, the bull’s-eye on a dart board. It hits at

a:
a:

v:

!v: ! (5.00 m/s)î # (2.00 m/s)ĵ
r: ! (20.0 m)î # (40.0 m)ĵ

!
a:a: ! 3t î # 4t ĵ

î!
(7.00 m/s2)ĵa: ! (5.00 m/s2)î #

!$
v:v: ! (6.0t " 4.0t2)î # 8.0ĵ

v:

0.500ĵ) m/s2
a: ! ("1.00î "(3.00î) m/sv: !

ILWSSM

a:avg

a:avg

a:avg

v: ! "2.0î " 2.0ĵ # 5.0k̂
v: ! 4.0î " 2.0ĵ # 3.0k̂

r: ! î # 4t2ĵ # tk̂
SSM

!
! point Q on the rim, vertically below P, 0.19 s later. (a) What is the

distance PQ? (b) How far away from the dart board is the dart
released?

•22 A small ball rolls horizontally off the edge of a tabletop that
is 1.20 m high. It strikes the floor at a point 1.52 m horizontally
from the table edge. (a) How long is the ball in the air? (b) What is
its speed at the instant it leaves the table?

•23 A projectile is fired horizontally from a gun that is 
45.0 m above flat ground, emerging from the gun with a speed of
250 m/s. (a) How long does the projectile remain in the air? (b) At
what horizontal distance from the firing point does it strike the
ground? (c) What is the magnitude of the vertical component of its
velocity as it strikes the ground?

•24 In the 1991 World Track and Field Championships in
Tokyo, Mike Powell jumped 8.95 m, breaking by a full 5 cm the 23-
year long-jump record set by Bob Beamon. Assume that Powell’s
speed on takeoff was 9.5 m/s (about equal to that of a sprinter) and
that g 9.80 m/s2 in Tokyo. How much less was Powell’s range
than the maximum possible range for a particle launched at the
same speed?

•25 The current world-record motorcycle jump is 77.0 m, set
by Jason Renie. Assume that he left the take-off ramp at 12.0º to the
horizontal and that the take-off and landing heights are the same.
Neglecting air drag,determine his take-off speed.

•26 A stone is catapulted at time t 0, with an initial velocity of
magnitude 20.0 m/s and at an angle of 40.0° above the horizontal.
What are the magnitudes of the (a) horizontal and (b) vertical
components of its displacement from the catapult site at t 1.10
s? Repeat for the (c) horizontal and (d) vertical components at
t 1.80 s, and for the (e) horizontal and (f) vertical components at
t 5.00 s.

••27 A certain airplane has a
speed of 290.0 km/h and is diving at
an angle of 30.0° below the hor-
izontal when the pilot releases a
radar decoy (Fig. 4-33). The hori-
zontal distance between the release
point and the point where the decoy
strikes the ground is d ! 700 m. (a)
How long is the decoy in the air? (b)
How high was the release point?

••28 In Fig. 4-34, a stone is pro-
jected at a cliff of height h
with an initial speed of 42.0 m/s directed at angle u0 ! 60.0° above
the horizontal. The stone strikes at A, 5.50 s after launching. Find
(a) the height h of the cliff, (b) the speed of the stone just before
impact at A, and (c) the maximum height H reached above the
ground.

% !

ILW

!
!

!

!

!

xB

A

y

θ 

v 

a

Fig. 4-32 Problem 20.

θ 

d

Fig. 4-33 Problem 27.
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0

H

h

A

θ 

Fig. 4-34 Problem 28.
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  Chapter ( 4 ) MOTION IN TWO AND THREE DIMENSIONS 

- A projectile is fired from the ground level over level ground with an initial 
velocity     that has a vertical component of 20m/s and a horizontal 
component of 30m/s.  
 
 
1-  The distance from launching to landing points is: 
 
(a). 40m (b) 60m           (c) 20.4m               (d) 122m 
 

 

"#The maximum  height  the!projectile reached is : !

(a). 40m (b) 60m           (c) 20 .4m               (d) 122m 
!

!

$#The time the projectile takes to reach  its maximum height is:!

(a). 4.1 s (b) 2.05 s           (c) 1.05 s               (d)0.5 s 
  
 
 

!

%&'()*+,-.!!/!!"#0!#1!

!

!

23+45'6!/!!!7!!8-9!71!

 

vo = vox
2 + voy

2 = 36.1m / s

θ = tan−1 voy
vox

= 33.68o

R = vo
2

g
sin2θ = 122m
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  Chapter ( 4 ) MOTION IN TWO AND THREE DIMENSIONS 

- A projectile is fired from the ground level over level ground with an initial 
velocity     that has a vertical component of 20m/s and a horizontal 
component of 30m/s.  
 
 
1-  The distance from launching to landing points is: 
 
(a). 40m (b) 60m           (c) 20.4m               (d) 122m 
 

 

"#The maximum  height  the!projectile reached is : !

(a). 40m (b) 60m           (c) 20 .4m               (d) 122m 
!

!

$#The time the projectile takes to reach  its maximum height is:!

(a). 4.1 s (b) 2.05 s           (c) 1.05 s               (d)0.5 s 
  
 
 

!
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!

!

23+45'6!/!!!7!!8-9!71!

 

H = v
2
o sin

2θo

2g
= 1300(0.55)

2

2(9.8)
= 20.4m
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  Chapter ( 4 ) MOTION IN TWO AND THREE DIMENSIONS 

- A projectile is fired from the ground level over level ground with an initial 
velocity     that has a vertical component of 20m/s and a horizontal 
component of 30m/s.  
 
 
1-  The distance from launching to landing points is: 
 
(a). 40m (b) 60m           (c) 20.4m               (d) 122m 
 

 

"#The maximum  height  the!projectile reached is : !

(a). 40m (b) 60m           (c) 20 .4m               (d) 122m 
!

!

$#The time the projectile takes to reach  its maximum height is:!

(a). 4.1 s (b) 2.05 s           (c) 1.05 s               (d)0.5 s 
  
 
 

!
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t = vo sinθo

g
= 2.04s
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where we choose the former possibility (�45°, or 45° measured clockwise from +x) since 
the signs of the components imply the vector is in the fourth quadrant. A sketch of r��  is 
shown on the right. 
 
3. The initial position vector  �ro  satisfies � � �r r r� �o � , which results in 
 

o
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(3.0 j 4.0k)m (2.0i 3.0 j 6.0 k)m ( 2.0 m) i (6.0 m) j ( 10 m) kr r r� � � � � � � � � � � � �

� � � . 
 
4. We choose a coordinate system with origin at the clock center and +x rightward 
(toward the “3:00” position) and +y upward (toward “12:00”). 
 
(a) In unit-vector notation, we have 1 2

ˆ ˆ(10 cm)i  and  ( 10 cm) j.r r� � �
� � Thus, Eq. 4-2 gives 

 

2 1
ˆ ˆ( 10 cm)i ( 10 cm) j.r r r� � � � � � �

� � �  
 

The magnitude is given by 2 2| | ( 10 cm) ( 10 cm) 14 cm.r� � � � � �
�  

 
(b) Using Eq. 3-6, the angle is  
 

 1 10 cm
tan 45  or 135 .

10 cm
� � �	 �� � � � �
 
�� �

 

 
We choose 135� � since the desired angle is in the third quadrant. In terms of the 
magnitude-angle notation, one may write 
 

2 1
ˆ ˆ( 10 cm)i ( 10 cm) j (14 cm 135 ).r r r� � � � � � � � � � �

� � �  
 
(c) In this case, we have 1 2

ˆ ˆ ˆ( 10 cm) j and (10 cm) j, and  (20 cm) j.r r r� � � � �
� � �  Thus, 

| | 20 cm.r� �
�

 
 
(d) Using Eq. 3-6, the angle is given by 
 

1 20 cm
tan 90 .

0 cm
� � 	 �
� � �
 


� �
 

 
(e) In a full-hour sweep, the hand returns to its starting position, and the displacement is 
zero. 
 
(f) The corresponding angle for a full-hour sweep is also zero.  
 
 
 

sec. 4-2 Position and Displacement
•1 The position vector for an electron is 

. (a) Find the magnitude of . (b) Sketch the
vector on a right-handed coordinate system.
•2 A watermelon seed has the following coordinates: x ! "5.0 m,
y ! 8.0 m, and z ! 0 m. Find its position vector (a) in unit-vector no-
tation and as (b) a magnitude and (c) an angle relative to the positive
direction of the x axis. (d) Sketch the vector on a right-handed coor-
dinate system. If the seed is moved to the xyz coordinates (3.00 m,
0 m, 0 m), what is its displacement (e) in unit-vector notation and as
(f) a magnitude and (g) an angle relative to the positive x direction?

•3 A positron undergoes a displacement ,
ending with the position vector , in meters. What
was the positron’s initial position vector?

••4 The minute hand of a wall clock measures 10 cm from its tip to
the axis about which it rotates. The magnitude and angle of the dis-
placement vector of the tip are to be determined for three time inter-
vals. What are the (a) magnitude and (b) angle from a quarter after
the hour to half past, the (c) magnitude and (d) angle for the next half
hour, and the (e) magnitude and (f) angle for the hour after that?

sec. 4-3 Average Velocity and Instantaneous Velocity
•5 A train at a constant 60.0 km/h moves east for 40.0 min,
then in a direction 50.0° east of due north for 20.0 min, and then
west for 50.0 min. What are the (a) magnitude and (b) angle of its
average velocity during this trip?

•6 An electron’s position is given by 
, with t in seconds and in meters. (a) In unit-vector

notation, what is the electron’s velocity ? At t 2.00 s, what is
(b) in unit-vector notation and as (c) a magnitude and (d) an an-

gle relative to the positive direction of the x axis?

•7 An ion’s position vector is initially ,
and 10 s later it is , all in meters. In unit-
vector notation, what is its during the 10 s?

••8 A plane flies 483 km east from city A to city B in 45.0 min and
then 966 km south from city B to city C in 1.50 h. For the total trip,

v:avg

r: ! "2.0î # 8.0ĵ " 2.0k̂
2.0k̂6.0ĵ #r: ! 5.0î "

v:
!v:(t)

r:4.00t2ĵ # 2.00k̂
r: ! 3.00t î "

SSM

r: ! 3.0ĵ " 4.0k̂
3.0ĵ # 6.0k̂$ r: ! 2.0î "

r:(3.0 m)ĵ # (2.0 m)k̂
r: ! (5.0 m)î "

what are the (a) magnitude and (b) direction of the plane’s dis-
placement, the (c) magnitude and (d) direction of its average ve-
locity, and (e) its average speed?

••9 Figure 4-30 gives the
path of a squirrel moving
about on level ground, from
point A (at time t ! 0), to
points B (at t ! 5.00 min), C
(at t ! 10.0 min), and finally
D (at t ! 15.0 min). Consider
the average velocities of the
squirrel from point A to each
of the other three points. Of
them, what are the (a) magni-
tude and (b) angle of the one
with the least magnitude and
the (c) magnitude and (d) an-
gle of the one with the great-
est magnitude?

•••10 The position vector
lo-

cates a particle as a function
of time t. Vector is in me-
ters, t is in seconds, and fac-
tors e and f are constants.
Figure 4-31 gives the angle u
of the particle’s direction of
travel as a function of t (u is
measured from the positive x
direction). What are (a) e
and (b) f, including units?

sec. 4-4 Average Acceleration and Instantaneous
Acceleration
•11 The position of a particle moving in an xy plane is given
by , with in meters and t
in seconds. In unit-vector notation, calculate (a) , (b) , and (c) a:v:r:

r:r: ! (2.00t3 " 5.00t)î # (6.00 " 7.00t4)ĵ
r:

r:

r: ! 5.00t î # (et # ft2)ĵ

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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ball’s speed at maximum height, great-
est first.

11 Figure 4-28 shows four tracks (ei-
ther half- or quarter-circles) that can be
taken by a train, which moves at a con-
stant speed. Rank the tracks according
to the magnitude of a train’s accelera-
tion on the curved portion, greatest
first.
12 In Fig. 4-29, particle P is in uni-
form circular motion, centered on the
origin of an xy coordinate system. (a)

At what values of u is the vertical com-
ponent ry of the position vector greatest
in magnitude? (b) At what values of u is
the vertical component vy of the parti-
cle’s velocity greatest in magnitude? (c)
At what values of u is the vertical com-
ponent ay of the particle’s acceleration
greatest in magnitude?

13 (a) Is it possible to be accelerating
while traveling at constant speed? Is it
possible to round a curve with (b) zero
acceleration and (c) a constant magnitude of acceleration?

3

4

2

1

Fig. 4-28 Question 11.
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Fig. 4-29 Question 12.
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 CHAPTER 4 116 

� �� � � �2 ˆ ˆ ˆ6.0 4.0 i + 8.0 j 6.0 8.0 i
dv da t t t
dt dt

� � � � �
��  

 
in SI units. Specifically, we find the acceleration vector at 3.0 st �  to be 

� � 2ˆ ˆ6.0 8.0(3.0) i ( 18 m/s )i.� � �  
 
(b) The equation is 

�a t� �6 0 8 0. . �b gi = 0 ; we find t = 0.75 s. 
 
(c) Since the y component of the velocity, vy = 8.0 m/s, is never zero, the velocity cannot 
vanish. 
 
(d) Since speed is the magnitude of the velocity, we have  
 

| |v v�
� � � � �2 226.0 4.0 8.0 10t t� � � �  

 
in SI units (m/s). To solve for t, we first square both sides of the above equation, followed 
by some rearrangement: 
 
 � � � �2 22 26.0 4.0 64   100 6.0 4.0 36t t t t� � � � � �  

 
Taking the square root of the new expression and making further simplification lead to  
 
 2 26.0 4.0 6.0 4.0 6.0 6.0 0t t t t� � � � � � �  
 
Finally, using the quadratic formula, we obtain 
 

� �� �
� �

6.0 36 4 4.0 6.0
 

2 8.0
t

� � �
�  

 
where the requirement of a real positive result leads to the unique answer: t = 2.2 s. 
 
17. We find t by applying Eq. 2-11 to motion along the y axis (with vy = 0 characterizing 
y = ymax ):   

0 = (12 m/s) + (�2.0 m/s2)t   �   t = 6.0 s. 
 
Then, Eq. 2-11 applies to motion along the x axis to determine the answer:   
 

vx = (8.0 m/s) + (4.0 m/s2)(6.0 s) = 32 m/s. 
 
Therefore, the velocity of the cart, when it reaches y = ymax , is (32 m/s)i^. 
 

for t 2.00 s. (d) What is the angle between the positive direction
of the x axis and a line tangent to the particle’s path at t 2.00 s? 

•12 At one instant a bicyclist is 40.0 m due east of a park’s flag-
pole, going due south with a speed of 10.0 m/s.Then 30.0 s later, the
cyclist is 40.0 m due north of the flagpole, going due east with a
speed of 10.0 m/s. For the cyclist in this 30.0 s interval, what are the
(a) magnitude and (b) direction of the displacement, the (c) magni-
tude and (d) direction of the average velocity, and the (e) magni-
tude and (f) direction of the average acceleration?

•13 A particle moves so that its position (in meters) as
a function of time (in seconds) is . Write expres-
sions for (a) its velocity and (b) its acceleration as functions of time.

•14 A proton initially has and then 
4.0 s later has (in meters per second). For
that 4.0 s, what are (a) the proton’s average acceleration in unit-
vector notation, (b) the magnitude of , and (c) the angle between

and the positive direction of the x axis?

••15 A particle leaves the origin with an initial veloc-
ity and a constant acceleration 

. When it reaches its maximum x coordinate, what are
its (a) velocity and (b) position vector?

••16 The velocity of a particle moving in the xy plane is
given by , with in meters per second
and t ( 0) in seconds. (a) What is the acceleration when t 3.0
s? (b) When (if ever) is the acceleration zero? (c) When (if ever) is
the velocity zero? (d) When (if ever) does the speed equal 10 m/s?

••17 A cart is propelled over an xy plane with acceleration compo-
nents ax ! 4.0 m/s2 and ay ! "2.0 m/s2. Its initial velocity has com-
ponents v0x ! 8.0 m/s and v0y ! 12 m/s. In unit-vector notation, what
is the velocity of the cart when it reaches its greatest y coordinate?

••18 A moderate wind accelerates a pebble over a horizontal xy
plane with a constant acceleration .
At time t 0, the velocity is (4.00 m/s)i. What are the (a) magni-
tude and (b) angle of its velocity when it has been displaced by 12.0
m parallel to the x axis?

•••19 The acceleration of a particle moving only on a horizontal
xy plane is given by , where is in meters per second-
squared and t is in seconds. At t 0, the position vector

locates the particle, which then has the
velocity vector .At t 4.00 s, what are
(a) its position vector in unit-vector notation and (b) the angle be-
tween its direction of travel and the
positive direction of the x axis?

•••20 In Fig. 4-32, particle A moves
along the line y ! 30 m with a con-
stant velocity of magnitude 3.0
m/s and parallel to the x axis. At the
instant particle A passes the y axis,
particle B leaves the origin with a
zero initial speed and a constant
acceleration of magnitude 0.40
m/s2. What angle u between and
the positive direction of the y axis
would result in a collision?

sec. 4-6 Projectile Motion Analyzed
•21 A dart is thrown horizontally with an initial speed of 
10 m/s toward point P, the bull’s-eye on a dart board. It hits at

a:
a:

v:

!v: ! (5.00 m/s)î # (2.00 m/s)ĵ
r: ! (20.0 m)î # (40.0 m)ĵ

!
a:a: ! 3t î # 4t ĵ

î!
(7.00 m/s2)ĵa: ! (5.00 m/s2)î #

!$
v:v: ! (6.0t " 4.0t2)î # 8.0ĵ

v:

0.500ĵ) m/s2
a: ! ("1.00î "(3.00î) m/sv: !

ILWSSM

a:avg

a:avg

a:avg

v: ! "2.0î " 2.0ĵ # 5.0k̂
v: ! 4.0î " 2.0ĵ # 3.0k̂

r: ! î # 4t2ĵ # tk̂
SSM

!
! point Q on the rim, vertically below P, 0.19 s later. (a) What is the

distance PQ? (b) How far away from the dart board is the dart
released?

•22 A small ball rolls horizontally off the edge of a tabletop that
is 1.20 m high. It strikes the floor at a point 1.52 m horizontally
from the table edge. (a) How long is the ball in the air? (b) What is
its speed at the instant it leaves the table?

•23 A projectile is fired horizontally from a gun that is 
45.0 m above flat ground, emerging from the gun with a speed of
250 m/s. (a) How long does the projectile remain in the air? (b) At
what horizontal distance from the firing point does it strike the
ground? (c) What is the magnitude of the vertical component of its
velocity as it strikes the ground?

•24 In the 1991 World Track and Field Championships in
Tokyo, Mike Powell jumped 8.95 m, breaking by a full 5 cm the 23-
year long-jump record set by Bob Beamon. Assume that Powell’s
speed on takeoff was 9.5 m/s (about equal to that of a sprinter) and
that g 9.80 m/s2 in Tokyo. How much less was Powell’s range
than the maximum possible range for a particle launched at the
same speed?

•25 The current world-record motorcycle jump is 77.0 m, set
by Jason Renie. Assume that he left the take-off ramp at 12.0º to the
horizontal and that the take-off and landing heights are the same.
Neglecting air drag,determine his take-off speed.

•26 A stone is catapulted at time t 0, with an initial velocity of
magnitude 20.0 m/s and at an angle of 40.0° above the horizontal.
What are the magnitudes of the (a) horizontal and (b) vertical
components of its displacement from the catapult site at t 1.10
s? Repeat for the (c) horizontal and (d) vertical components at
t 1.80 s, and for the (e) horizontal and (f) vertical components at
t 5.00 s.

••27 A certain airplane has a
speed of 290.0 km/h and is diving at
an angle of 30.0° below the hor-
izontal when the pilot releases a
radar decoy (Fig. 4-33). The hori-
zontal distance between the release
point and the point where the decoy
strikes the ground is d ! 700 m. (a)
How long is the decoy in the air? (b)
How high was the release point?

••28 In Fig. 4-34, a stone is pro-
jected at a cliff of height h
with an initial speed of 42.0 m/s directed at angle u0 ! 60.0° above
the horizontal. The stone strikes at A, 5.50 s after launching. Find
(a) the height h of the cliff, (b) the speed of the stone just before
impact at A, and (c) the maximum height H reached above the
ground.

% !

ILW

!
!

!

!

!

xB

A

y
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a

Fig. 4-32 Problem 20.

θ 

d

Fig. 4-33 Problem 27.
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232-7 CON STANT ACCE LE RATION: A S PECIAL CAS E
PART 1

Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:
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Finally, we can eliminate v0, obtaining
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Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.
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Chapter 5
FORCE AND MOTION -I

Sections 5-2, 5-3, 5-4, 5-5, 5-6

Newtonian Mechanics
Newton’s First Law

Force
Mass

Newton’s Second Law



� Important skills from this lecture:
1. Explain Newton’s first law
2. Define the force and its unit
3. Resolve forces and find the resultant along x & y axes
4. Define the mass and its relation to force
5. Explain newton second law
6. Relate the force component along an axis to its 

acceleration
7. Define Newton unit
8. Draw free-body diagram
9. Apply Newton 2nd law in one & two dimensions



Newtonian Mechanics
� The study of the relation between force & acceleration is 

called Newtonian mechanics

� Newtonian mechanics does not apply to all situations;
� If the speeds of the interacting bodies are very large (near 

the speed of light) à Einstein’s special theory of relativity 
applied

� If the interacting bodies are on the scale of atomic structure, 
e.g. electrons à quantum mechanics is applied

� Newtonian mechanics is applied to the motion of objects 
ranging in size from the very small to astronomical 
objects



Newton’s First Law
� When there is no force acting on a body:

� If the body is at rest, it stays at rest

� If the body is moving, it continues to move with the 
same velocity (same magnitude & direction)

In other words, if the body is at rest, it stays at rest. If it is moving, it continues to
move with the same velocity (same magnitude and same direction).

5-4 Force
We now wish to define the unit of force. We know that a force can cause the
acceleration of a body. Thus, we shall define the unit of force in terms of the
acceleration that a force gives to a standard reference body, which we take to
be the standard kilogram of Fig. 1-3. This body has been assigned, exactly and
by definition, a mass of 1 kg.

We put the standard body on a horizontal frictionless table and pull the body
to the right (Fig. 5-1) so that, by trial and error, it eventually experiences a mea-
sured acceleration of 1 m/s2. We then declare, as a matter of definition, that the
force we are exerting on the standard body has a magnitude of 1 newton 
(abbreviated N).

We can exert a 2 N force on our standard body by pulling it so that its
measured acceleration is 2 m/s2, and so on. Thus in general, if our standard body
of 1 kg mass has an acceleration of magnitude a, we know that a force F must be
acting on it and that the magnitude of the force (in newtons) is equal to the mag-
nitude of the acceleration (in meters per second per second).

Thus, a force is measured by the acceleration it produces. However, accelera-
tion is a vector quantity, with both magnitude and direction. Is force also a vector
quantity? We can easily assign a direction to a force (just assign the direction of
the acceleration), but that is not sufficient. We must prove by experiment that
forces are vector quantities.Actually, that has been done: forces are indeed vector
quantities; they have magnitudes and directions, and they combine according to
the vector rules of Chapter 3.

This means that when two or more forces act on a body, we can find their net
force, or resultant force, by adding the individual forces vectorially.A single force
that has the magnitude and direction of the net force has the same effect on the
body as all the individual forces together.This fact is called the principle of super-
position for forces. The world would be quite strange if, for example, you and a
friend were to pull on the standard body in the same direction, each with a force
of 1 N, and yet somehow the net pull was 14 N.

In this book, forces are most often represented with a vector symbol such as
and a net force is represented with the vector symbol .As with other vectors,

a force or a net force can have components along coordinate axes.When forces act
only along a single axis, they are single-component forces. Then we can drop the

F
:

netF
:
,
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Send a puck sliding over the ice of a skating rink, however, and it goes a
lot farther. You can imagine longer and more slippery surfaces, over which the
puck would slide farther and farther. In the limit you can think of a long, ex-
tremely slippery surface (said to be a frictionless surface), over which the
puck would hardly slow. (We can in fact come close to this situation by send-
ing a puck sliding over a horizontal air table, across which it moves on a film
of air.)

From these observations, we can conclude that a body will keep moving with
constant velocity if no force acts on it. That leads us to the first of Newton’s three
laws of motion:

Newton’s First Law: If no force acts on a body, the body’s velocity cannot change;
that is, the body cannot accelerate.

Fig. 5-1 A force on the standard kilo-
gram gives that body an acceleration .a:

F
:

a

F



Force
� A force is measured by the acceleration it produces 

� Acceleration is a vector quantity à force is a vector quantity 
(  )

� Force unit is Newton (N)

� Superposition principle for forces:
� When two or more forces act on a body, their net force or 

resultant force (      ) are the vector addition of the 
individual forces 

� A single force that has the magnitude & direction of the net 
force has the same effect on the body as all the individual 
forces together

� can have many components along coordinate axes
� When forces act only along a single axis, they are single-

component forces à the arrows could be replaced by signs 
to indicate the forces directions

In other words, if the body is at rest, it stays at rest. If it is moving, it continues to
move with the same velocity (same magnitude and same direction).

5-4 Force
We now wish to define the unit of force. We know that a force can cause the
acceleration of a body. Thus, we shall define the unit of force in terms of the
acceleration that a force gives to a standard reference body, which we take to
be the standard kilogram of Fig. 1-3. This body has been assigned, exactly and
by definition, a mass of 1 kg.

We put the standard body on a horizontal frictionless table and pull the body
to the right (Fig. 5-1) so that, by trial and error, it eventually experiences a mea-
sured acceleration of 1 m/s2. We then declare, as a matter of definition, that the
force we are exerting on the standard body has a magnitude of 1 newton 
(abbreviated N).

We can exert a 2 N force on our standard body by pulling it so that its
measured acceleration is 2 m/s2, and so on. Thus in general, if our standard body
of 1 kg mass has an acceleration of magnitude a, we know that a force F must be
acting on it and that the magnitude of the force (in newtons) is equal to the mag-
nitude of the acceleration (in meters per second per second).

Thus, a force is measured by the acceleration it produces. However, accelera-
tion is a vector quantity, with both magnitude and direction. Is force also a vector
quantity? We can easily assign a direction to a force (just assign the direction of
the acceleration), but that is not sufficient. We must prove by experiment that
forces are vector quantities.Actually, that has been done: forces are indeed vector
quantities; they have magnitudes and directions, and they combine according to
the vector rules of Chapter 3.

This means that when two or more forces act on a body, we can find their net
force, or resultant force, by adding the individual forces vectorially.A single force
that has the magnitude and direction of the net force has the same effect on the
body as all the individual forces together.This fact is called the principle of super-
position for forces. The world would be quite strange if, for example, you and a
friend were to pull on the standard body in the same direction, each with a force
of 1 N, and yet somehow the net pull was 14 N.

In this book, forces are most often represented with a vector symbol such as
and a net force is represented with the vector symbol .As with other vectors,
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Send a puck sliding over the ice of a skating rink, however, and it goes a
lot farther. You can imagine longer and more slippery surfaces, over which the
puck would slide farther and farther. In the limit you can think of a long, ex-
tremely slippery surface (said to be a frictionless surface), over which the
puck would hardly slow. (We can in fact come close to this situation by send-
ing a puck sliding over a horizontal air table, across which it moves on a film
of air.)

From these observations, we can conclude that a body will keep moving with
constant velocity if no force acts on it. That leads us to the first of Newton’s three
laws of motion:

Newton’s First Law: If no force acts on a body, the body’s velocity cannot change;
that is, the body cannot accelerate.
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F
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a

F

In other words, if the body is at rest, it stays at rest. If it is moving, it continues to
move with the same velocity (same magnitude and same direction).

5-4 Force
We now wish to define the unit of force. We know that a force can cause the
acceleration of a body. Thus, we shall define the unit of force in terms of the
acceleration that a force gives to a standard reference body, which we take to
be the standard kilogram of Fig. 1-3. This body has been assigned, exactly and
by definition, a mass of 1 kg.

We put the standard body on a horizontal frictionless table and pull the body
to the right (Fig. 5-1) so that, by trial and error, it eventually experiences a mea-
sured acceleration of 1 m/s2. We then declare, as a matter of definition, that the
force we are exerting on the standard body has a magnitude of 1 newton 
(abbreviated N).

We can exert a 2 N force on our standard body by pulling it so that its
measured acceleration is 2 m/s2, and so on. Thus in general, if our standard body
of 1 kg mass has an acceleration of magnitude a, we know that a force F must be
acting on it and that the magnitude of the force (in newtons) is equal to the mag-
nitude of the acceleration (in meters per second per second).

Thus, a force is measured by the acceleration it produces. However, accelera-
tion is a vector quantity, with both magnitude and direction. Is force also a vector
quantity? We can easily assign a direction to a force (just assign the direction of
the acceleration), but that is not sufficient. We must prove by experiment that
forces are vector quantities.Actually, that has been done: forces are indeed vector
quantities; they have magnitudes and directions, and they combine according to
the vector rules of Chapter 3.

This means that when two or more forces act on a body, we can find their net
force, or resultant force, by adding the individual forces vectorially.A single force
that has the magnitude and direction of the net force has the same effect on the
body as all the individual forces together.This fact is called the principle of super-
position for forces. The world would be quite strange if, for example, you and a
friend were to pull on the standard body in the same direction, each with a force
of 1 N, and yet somehow the net pull was 14 N.

In this book, forces are most often represented with a vector symbol such as
and a net force is represented with the vector symbol .As with other vectors,

a force or a net force can have components along coordinate axes.When forces act
only along a single axis, they are single-component forces. Then we can drop the

F
:

netF
:

,
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Send a puck sliding over the ice of a skating rink, however, and it goes a
lot farther. You can imagine longer and more slippery surfaces, over which the
puck would slide farther and farther. In the limit you can think of a long, ex-
tremely slippery surface (said to be a frictionless surface), over which the
puck would hardly slow. (We can in fact come close to this situation by send-
ing a puck sliding over a horizontal air table, across which it moves on a film
of air.)

From these observations, we can conclude that a body will keep moving with
constant velocity if no force acts on it. That leads us to the first of Newton’s three
laws of motion:

Newton’s First Law: If no force acts on a body, the body’s velocity cannot change;
that is, the body cannot accelerate.

Fig. 5-1 A force on the standard kilo-
gram gives that body an acceleration .a:

F
:

a

F
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� If many forces are acting on a body, and their net 
force is zeroà the body cannot accelerate
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overhead arrows on the force symbols and just use signs to indicate the directions
of the forces along that axis.

Instead of the wording used in Section 5-3, the more proper statement of
Newton’s First Law is in terms of a net force:

An inertial reference frame is one in which Newton’s laws hold.

Newton’s First Law: If no net force acts on a body , the body’s velocity
cannot change; that is, the body cannot accelerate.

(F
:

net ! 0)

There may be multiple forces acting on a body, but if their net force is zero, the
body cannot accelerate.

Inertial Reference Frames
Newton’s first law is not true in all reference frames, but we can always find
reference frames in which it (as well as the rest of Newtonian mechanics) is
true. Such special frames are referred to as inertial reference frames, or simply
inertial frames.

Fig. 5-2 (a) The path of a puck sliding from the north pole as seen from a stationary
point in space. Earth rotates to the east. (b) The path of the puck as seen from the ground.

N

S
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(b)(a)

Earth's rotation
causes an
apparent deflection.

For example, we can assume that the ground is an inertial frame provided we can
neglect Earth’s astronomical motions (such as its rotation).

That assumption works well if, say, a puck is sent sliding along a short strip of
frictionless ice—we would find that the puck’s motion obeys Newton’s laws.
However, suppose the puck is sent sliding along a long ice strip extending from
the north pole (Fig. 5-2a). If we view the puck from a stationary frame in space,
the puck moves south along a simple straight line because Earth’s rotation
around the north pole merely slides the ice beneath the puck. However, if we
view the puck from a point on the ground so that we rotate with Earth, the puck’s
path is not a simple straight line. Because the eastward speed of the ground be-
neath the puck is greater the farther south the puck slides, from our ground-
based view the puck appears to be deflected westward (Fig. 5-2b). However, this
apparent deflection is caused not by a force as required by Newton’s laws but by
the fact that we see the puck from a rotating frame. In this situation, the ground is
a noninertial frame.

In this book we usually assume that the ground is an inertial frame and
that measured forces and accelerations are from this frame. If measurements
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are made in, say, an elevator that is accelerating relative to the ground, then
the measurements are being made in a noninertial frame and the results can be
surprising.

CHECKPOINT 1

Which of the figure’s six arrangements correctly show the vector addition of forces 
and to yield the third vector, which is meant to represent their net force ?F

:
netF

:
2

F
:

1

(a) (c) (b) 

F1 F1 F1 

F1 F1 F1

F2 F2 F2 

F2 

F2 F2 
(d) ( f ) (e) 

5-5 Mass
Everyday experience tells us that a given force produces different magnitudes of
acceleration for different bodies. Put a baseball and a bowling ball on the floor
and give both the same sharp kick. Even if you don’t actually do this, you know
the result:The baseball receives a noticeably larger acceleration than the bowling
ball. The two accelerations differ because the mass of the baseball differs from
the mass of the bowling ball—but what, exactly, is mass?

We can explain how to measure mass by imagining a series of experiments in
an inertial frame. In the first experiment we exert a force on a standard body,
whose mass m0 is defined to be 1.0 kg. Suppose that the standard body acceler-
ates at 1.0 m/s2.We can then say the force on that body is 1.0 N.

We next apply that same force (we would need some way of being certain it
is the same force) to a second body, body X, whose mass is not known. Suppose
we find that this body X accelerates at 0.25 m/s2. We know that a less massive
baseball receives a greater acceleration than a more massive bowling ball when
the same force (kick) is applied to both. Let us then make the following conjec-
ture: The ratio of the masses of two bodies is equal to the inverse of the ratio of
their accelerations when the same force is applied to both. For body X and the
standard body, this tells us that

Solving for mX yields

Our conjecture will be useful, of course, only if it continues to hold when
we change the applied force to other values. For example, if we apply an 8.0 N force
to the standard body, we obtain an acceleration of 8.0 m/s2.When the 8.0 N force is

mX ! m0 
a0

aX
! (1.0 kg) 

1.0 m/s2

0.25 m/s2 ! 4.0 kg.

mX

m0
!

a0

aX
.

üü

ü



Mass
� Force produces different magnitudes of acceleration for different 

bodies

� e.g., if a baseball          & a bowling ball              are given the 
same kick
à baseball acceleration > bowling ball?
� Because the mass of the baseball differs from the mass of the bowling
� A less massive baseball receives a greater acceleration than a more 

massive bowling ball when the same force is applied to both

� The mass of a body is the characteristic that relates a force on the 
body to the resulting acceleration

� Mass is:
� an intrinsic characteristic of a body 
� a scalar quantity



Newton’s Second Law

� This equation is equivalent to three component equations, one 
for each axis of an xyz coordinate system

� Each of these equations relates the net force component along 
an axis to the acceleration along that same axis
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applied to body X, we obtain an acceleration of 2.0 m/s2. Our conjecture then
gives us

consistent with our first experiment. Many experiments yielding similar results
indicate that our conjecture provides a consistent and reliable means of assigning
a mass to any given body.

Our measurement experiments indicate that mass is an intrinsic characteristic
of a body—that is, a characteristic that automatically comes with the existence of
the body. They also indicate that mass is a scalar quantity. However, the nagging
question remains:What, exactly, is mass?

Since the word mass is used in everyday English, we should have some in-
tuitive understanding of it, maybe something that we can physically sense. Is it
a body’s size, weight, or density? The answer is no, although those characteris-
tics are sometimes confused with mass. We can say only that the mass of a body
is the characteristic that relates a force on the body to the resulting acceleration.
Mass has no more familiar definition; you can have a physical sensation of mass
only when you try to accelerate a body, as in the kicking of a baseball or a bowl-
ing ball.

5-6 Newton’s Second Law
All the definitions, experiments, and observations we have discussed so far can be
summarized in one neat statement:

mX ! m0 
a0

aX
! (1.0 kg)  

8.0 m/s2

2.0 m/s2 ! 4.0 kg,

Newton’s Second Law: The net force on a body is equal to the product of the body’s
mass and its acceleration.

In equation form,

(Newton’s second law). (5-1)

This equation is simple, but we must use it cautiously. First, we must be
certain about which body we are applying it to. Then must be the vector sum
of all the forces that act on that body. Only forces that act on that body are to be
included in the vector sum, not forces acting on other bodies that might be
involved in the given situation. For example, if you are in a rugby scrum, the net
force on you is the vector sum of all the pushes and pulls on your body. It does
not include any push or pull on another player from you or from anyone else.
Every time you work a force problem, your first step is to clearly state the body to
which you are applying Newton’s law.

Like other vector equations, Eq. 5-1 is equivalent to three component equa-
tions, one for each axis of an xyz coordinate system:

Fnet, x ! max, Fnet,y ! may, and Fnet,z ! maz. (5-2)

Each of these equations relates the net force component along an axis to the
acceleration along that same axis. For example, the first equation tells us that
the sum of all the force components along the x axis causes the x component ax

of the body’s acceleration, but causes no acceleration in the y and z directions.
Turned around, the acceleration component ax is caused only by the sum of the
force components along the x axis. In general,

F
:

net

F
:

net ! ma:

915-6 N EWTON’S S ECON D LAW
PART 1

applied to body X, we obtain an acceleration of 2.0 m/s2. Our conjecture then
gives us

consistent with our first experiment. Many experiments yielding similar results
indicate that our conjecture provides a consistent and reliable means of assigning
a mass to any given body.

Our measurement experiments indicate that mass is an intrinsic characteristic
of a body—that is, a characteristic that automatically comes with the existence of
the body. They also indicate that mass is a scalar quantity. However, the nagging
question remains:What, exactly, is mass?

Since the word mass is used in everyday English, we should have some in-
tuitive understanding of it, maybe something that we can physically sense. Is it
a body’s size, weight, or density? The answer is no, although those characteris-
tics are sometimes confused with mass. We can say only that the mass of a body
is the characteristic that relates a force on the body to the resulting acceleration.
Mass has no more familiar definition; you can have a physical sensation of mass
only when you try to accelerate a body, as in the kicking of a baseball or a bowl-
ing ball.

5-6 Newton’s Second Law
All the definitions, experiments, and observations we have discussed so far can be
summarized in one neat statement:

mX ! m0 
a0

aX
! (1.0 kg)  

8.0 m/s2

2.0 m/s2 ! 4.0 kg,

Newton’s Second Law: The net force on a body is equal to the product of the body’s
mass and its acceleration.

In equation form,

(Newton’s second law). (5-1)

This equation is simple, but we must use it cautiously. First, we must be
certain about which body we are applying it to. Then must be the vector sum
of all the forces that act on that body. Only forces that act on that body are to be
included in the vector sum, not forces acting on other bodies that might be
involved in the given situation. For example, if you are in a rugby scrum, the net
force on you is the vector sum of all the pushes and pulls on your body. It does
not include any push or pull on another player from you or from anyone else.
Every time you work a force problem, your first step is to clearly state the body to
which you are applying Newton’s law.

Like other vector equations, Eq. 5-1 is equivalent to three component equa-
tions, one for each axis of an xyz coordinate system:

Fnet, x ! max, Fnet,y ! may, and Fnet,z ! maz. (5-2)

Each of these equations relates the net force component along an axis to the
acceleration along that same axis. For example, the first equation tells us that
the sum of all the force components along the x axis causes the x component ax

of the body’s acceleration, but causes no acceleration in the y and z directions.
Turned around, the acceleration component ax is caused only by the sum of the
force components along the x axis. In general,

F
:

net

F
:

net ! ma:

915-6 N EWTON’S S ECON D LAW
PART 1

applied to body X, we obtain an acceleration of 2.0 m/s2. Our conjecture then
gives us

consistent with our first experiment. Many experiments yielding similar results
indicate that our conjecture provides a consistent and reliable means of assigning
a mass to any given body.

Our measurement experiments indicate that mass is an intrinsic characteristic
of a body—that is, a characteristic that automatically comes with the existence of
the body. They also indicate that mass is a scalar quantity. However, the nagging
question remains:What, exactly, is mass?

Since the word mass is used in everyday English, we should have some in-
tuitive understanding of it, maybe something that we can physically sense. Is it
a body’s size, weight, or density? The answer is no, although those characteris-
tics are sometimes confused with mass. We can say only that the mass of a body
is the characteristic that relates a force on the body to the resulting acceleration.
Mass has no more familiar definition; you can have a physical sensation of mass
only when you try to accelerate a body, as in the kicking of a baseball or a bowl-
ing ball.

5-6 Newton’s Second Law
All the definitions, experiments, and observations we have discussed so far can be
summarized in one neat statement:

mX ! m0 
a0

aX
! (1.0 kg)  

8.0 m/s2

2.0 m/s2 ! 4.0 kg,

Newton’s Second Law: The net force on a body is equal to the product of the body’s
mass and its acceleration.

In equation form,

(Newton’s second law). (5-1)

This equation is simple, but we must use it cautiously. First, we must be
certain about which body we are applying it to. Then must be the vector sum
of all the forces that act on that body. Only forces that act on that body are to be
included in the vector sum, not forces acting on other bodies that might be
involved in the given situation. For example, if you are in a rugby scrum, the net
force on you is the vector sum of all the pushes and pulls on your body. It does
not include any push or pull on another player from you or from anyone else.
Every time you work a force problem, your first step is to clearly state the body to
which you are applying Newton’s law.

Like other vector equations, Eq. 5-1 is equivalent to three component equa-
tions, one for each axis of an xyz coordinate system:

Fnet, x ! max, Fnet,y ! may, and Fnet,z ! maz. (5-2)

Each of these equations relates the net force component along an axis to the
acceleration along that same axis. For example, the first equation tells us that
the sum of all the force components along the x axis causes the x component ax

of the body’s acceleration, but causes no acceleration in the y and z directions.
Turned around, the acceleration component ax is caused only by the sum of the
force components along the x axis. In general,

F
:

net

F
:

net ! ma:

92 CHAPTE R 5 FORCE AN D MOTION—I

Equation 5-1 tells us that if the net force on a body is zero, the body’s
acceleration . If the body is at rest, it stays at rest; if it is moving, it continues
to move at constant velocity. In such cases, any forces on the body balance one
another, and both the forces and the body are said to be in equilibrium.
Commonly, the forces are also said to cancel one another, but the term “cancel” is
tricky. It does not mean that the forces cease to exist (canceling forces is not like
canceling dinner reservations).The forces still act on the body.

For SI units, Eq. 5-1 tells us that

1 N ! (1 kg)(1 m/s2) ! 1 kg " m/s2. (5-3)

Some force units in other systems of units are given in Table 5-1 and Appendix D.

a: ! 0

CHECKPOINT 2

The figure here shows two horizontal forces acting on a block on a frictionless floor. If a
third horizontal force also acts on the block,
what are the magnitude and direction of when
the block is (a) stationary and (b) moving to the
left with a constant speed of 5 m/s?

F
:

3

F
:

3 3 N 5 N

Table 5-1

Units in Newton’s Second Law (Eqs. 5-1 and 5-2)

System Force Mass Acceleration

SI newton (N) kilogram (kg) m/s2

CGSa dyne gram (g) cm/s2

Britishb pound (lb) slug ft/s2

a1 dyne ! 1 g " cm/s2.
b1 lb ! 1 slug " ft/s2.

The acceleration component along a given axis is caused only by the sum of the force
components along that same axis, and not by force components along any other axis.

To solve problems with Newton’s second law, we often draw a free-body
diagram in which the only body shown is the one for which we are summing
forces.A sketch of the body itself is preferred by some teachers but, to save space
in these chapters, we shall usually represent the body with a dot. Also, each force
on the body is drawn as a vector arrow with its tail on the body.A coordinate sys-
tem is usually included, and the acceleration of the body is sometimes shown with
a vector arrow (labeled as an acceleration).

A system consists of one or more bodies, and any force on the bodies inside
the system from bodies outside the system is called an external force. If the bod-
ies making up a system are rigidly connected to one another, we can treat the sys-
tem as one composite body, and the net force on it is the vector sum of all 
external forces. (We do not include internal forces—that is, forces between two
bodies inside the system.) For example, a connected railroad engine and car form
a system. If, say, a tow line pulls on the front of the engine, the force due to the
tow line acts on the whole engine–car system. Just as for a single body, we can re-
late the net external force on a system to its acceleration with Newton’s second
law, , where m is the total mass of the system.F

:
net ! ma:

F
:

net



� From Newton’s 2nd law, if                    
� If the body is at rest (v = 0 & a = 0), it stays at rest

� If the body is moving (v ≠ 0 & a = 0), it continues to 
move at constant velocity

� Any forces on such body balance one another, and 
both the forces and the body are said to be in 
equilibrium

� The forces could cancel one another, 
but still act on the body

� In SI units


Fnet = 0    ⇒ a = 0
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� Some force units in other systems of units are given 
in Table 5-1 
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Calculate an unknown mass by 
knowing another mass and their 
accelerations

If a force F = 1 N is applied on 2 bodies, a standard body, 
whose mass mo = 1.0 kg, and acceleration ao = 1.0 m/s2, and 
the 2nd body X whose mass (mX) is not known, and its 
acceleration aX = 0.25 m/s2. To find mX :
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are made in, say, an elevator that is accelerating relative to the ground, then
the measurements are being made in a noninertial frame and the results can be
surprising.

CHECKPOINT 1

Which of the figure’s six arrangements correctly show the vector addition of forces 
and to yield the third vector, which is meant to represent their net force ?F

:
netF

:
2

F
:

1

(a) (c) (b) 

F1 F1 F1 

F1 F1 F1

F2 F2 F2 

F2 

F2 F2 
(d) ( f ) (e) 

5-5 Mass
Everyday experience tells us that a given force produces different magnitudes of
acceleration for different bodies. Put a baseball and a bowling ball on the floor
and give both the same sharp kick. Even if you don’t actually do this, you know
the result:The baseball receives a noticeably larger acceleration than the bowling
ball. The two accelerations differ because the mass of the baseball differs from
the mass of the bowling ball—but what, exactly, is mass?

We can explain how to measure mass by imagining a series of experiments in
an inertial frame. In the first experiment we exert a force on a standard body,
whose mass m0 is defined to be 1.0 kg. Suppose that the standard body acceler-
ates at 1.0 m/s2.We can then say the force on that body is 1.0 N.

We next apply that same force (we would need some way of being certain it
is the same force) to a second body, body X, whose mass is not known. Suppose
we find that this body X accelerates at 0.25 m/s2. We know that a less massive
baseball receives a greater acceleration than a more massive bowling ball when
the same force (kick) is applied to both. Let us then make the following conjec-
ture: The ratio of the masses of two bodies is equal to the inverse of the ratio of
their accelerations when the same force is applied to both. For body X and the
standard body, this tells us that

Solving for mX yields

Our conjecture will be useful, of course, only if it continues to hold when
we change the applied force to other values. For example, if we apply an 8.0 N force
to the standard body, we obtain an acceleration of 8.0 m/s2.When the 8.0 N force is

mX ! m0 
a0

aX
! (1.0 kg) 

1.0 m/s2

0.25 m/s2 ! 4.0 kg.

mX

m0
!

a0

aX
.

Fo = Fx
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Free-body Diagram
� To solve problems with Newton’s second law, a free-

body diagram is drawn

� A free-body diagram is a diagram that contains the 
only body under the forces

� In the free-body diagram, the body is represented 
with a dot, and each force on the body is drawn as a 
vector arrow with its tail on the body



� A system consists of one or more bodies

� Types of forces that affect any system:
� External force: any force on the bodies that comes from 

outside the system 

� Internal forces: forces between two bodies inside the 
system

� If the bodies making up a system are rigidly connected to 
one another, 
à the system is treated as one composite body, and 
on the system is the vector sum of all external forces

� e.g., a system of a connected railroad engine & car 
If a tow line pulls on the front of the engine 
à tow force acts on the whole engine – car system
à on the system can be related to its
acceleration using Newton’s 2nd law
(m) will be the total mass of the system

In other words, if the body is at rest, it stays at rest. If it is moving, it continues to
move with the same velocity (same magnitude and same direction).

5-4 Force
We now wish to define the unit of force. We know that a force can cause the
acceleration of a body. Thus, we shall define the unit of force in terms of the
acceleration that a force gives to a standard reference body, which we take to
be the standard kilogram of Fig. 1-3. This body has been assigned, exactly and
by definition, a mass of 1 kg.

We put the standard body on a horizontal frictionless table and pull the body
to the right (Fig. 5-1) so that, by trial and error, it eventually experiences a mea-
sured acceleration of 1 m/s2. We then declare, as a matter of definition, that the
force we are exerting on the standard body has a magnitude of 1 newton 
(abbreviated N).

We can exert a 2 N force on our standard body by pulling it so that its
measured acceleration is 2 m/s2, and so on. Thus in general, if our standard body
of 1 kg mass has an acceleration of magnitude a, we know that a force F must be
acting on it and that the magnitude of the force (in newtons) is equal to the mag-
nitude of the acceleration (in meters per second per second).

Thus, a force is measured by the acceleration it produces. However, accelera-
tion is a vector quantity, with both magnitude and direction. Is force also a vector
quantity? We can easily assign a direction to a force (just assign the direction of
the acceleration), but that is not sufficient. We must prove by experiment that
forces are vector quantities.Actually, that has been done: forces are indeed vector
quantities; they have magnitudes and directions, and they combine according to
the vector rules of Chapter 3.

This means that when two or more forces act on a body, we can find their net
force, or resultant force, by adding the individual forces vectorially.A single force
that has the magnitude and direction of the net force has the same effect on the
body as all the individual forces together.This fact is called the principle of super-
position for forces. The world would be quite strange if, for example, you and a
friend were to pull on the standard body in the same direction, each with a force
of 1 N, and yet somehow the net pull was 14 N.

In this book, forces are most often represented with a vector symbol such as
and a net force is represented with the vector symbol .As with other vectors,

a force or a net force can have components along coordinate axes.When forces act
only along a single axis, they are single-component forces. Then we can drop the

F
:

netF
:

,
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Send a puck sliding over the ice of a skating rink, however, and it goes a
lot farther. You can imagine longer and more slippery surfaces, over which the
puck would slide farther and farther. In the limit you can think of a long, ex-
tremely slippery surface (said to be a frictionless surface), over which the
puck would hardly slow. (We can in fact come close to this situation by send-
ing a puck sliding over a horizontal air table, across which it moves on a film
of air.)

From these observations, we can conclude that a body will keep moving with
constant velocity if no force acts on it. That leads us to the first of Newton’s three
laws of motion:

Newton’s First Law: If no force acts on a body, the body’s velocity cannot change;
that is, the body cannot accelerate.

Fig. 5-1 A force on the standard kilo-
gram gives that body an acceleration .a:

F
:

a

F
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Equation 5-1 tells us that if the net force on a body is zero, the body’s
acceleration . If the body is at rest, it stays at rest; if it is moving, it continues
to move at constant velocity. In such cases, any forces on the body balance one
another, and both the forces and the body are said to be in equilibrium.
Commonly, the forces are also said to cancel one another, but the term “cancel” is
tricky. It does not mean that the forces cease to exist (canceling forces is not like
canceling dinner reservations).The forces still act on the body.

For SI units, Eq. 5-1 tells us that

1 N ! (1 kg)(1 m/s2) ! 1 kg " m/s2. (5-3)

Some force units in other systems of units are given in Table 5-1 and Appendix D.

a: ! 0

CHECKPOINT 2

The figure here shows two horizontal forces acting on a block on a frictionless floor. If a
third horizontal force also acts on the block,
what are the magnitude and direction of when
the block is (a) stationary and (b) moving to the
left with a constant speed of 5 m/s?

F
:

3

F
:

3 3 N 5 N

Table 5-1

Units in Newton’s Second Law (Eqs. 5-1 and 5-2)

System Force Mass Acceleration

SI newton (N) kilogram (kg) m/s2

CGSa dyne gram (g) cm/s2

Britishb pound (lb) slug ft/s2

a1 dyne ! 1 g " cm/s2.
b1 lb ! 1 slug " ft/s2.

The acceleration component along a given axis is caused only by the sum of the force
components along that same axis, and not by force components along any other axis.

To solve problems with Newton’s second law, we often draw a free-body
diagram in which the only body shown is the one for which we are summing
forces.A sketch of the body itself is preferred by some teachers but, to save space
in these chapters, we shall usually represent the body with a dot. Also, each force
on the body is drawn as a vector arrow with its tail on the body.A coordinate sys-
tem is usually included, and the acceleration of the body is sometimes shown with
a vector arrow (labeled as an acceleration).

A system consists of one or more bodies, and any force on the bodies inside
the system from bodies outside the system is called an external force. If the bod-
ies making up a system are rigidly connected to one another, we can treat the sys-
tem as one composite body, and the net force on it is the vector sum of all 
external forces. (We do not include internal forces—that is, forces between two
bodies inside the system.) For example, a connected railroad engine and car form
a system. If, say, a tow line pulls on the front of the engine, the force due to the
tow line acts on the whole engine–car system. Just as for a single body, we can re-
late the net external force on a system to its acceleration with Newton’s second
law, , where m is the total mass of the system.F

:
net ! ma:

F
:

net

(b) The body is moving with a constant velocity à a = 0
From Newton’s 2nd law, Fnet = 0
à F3 = −2N

F1 = 5N,  F2 = −3N
From Newton’s 2nd law, Fnet = ma

(a) The block is stationary à v = 0, a = 0, à Fnet = 0
F3 + F1 + F2 = 0
à F3 + 5 −3 =0
à F3 = −2N
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PART 1

Sample Problem

axis, we can simplify each situation by writing the second
law for x components only:

Fnet, x ! max. (5-4)

The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.

Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F1 ! max,

which, with given data, yields

(Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, in the positive direction of x and in the negative
direction. Now Eq. 5-4 gives us

F1 " F2 ! max,

which, with given data, yields

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force is not directed along the
direction of the puck’s acceleration; only x component F3, x

is. (Force is two-dimensional but the motion is only one-
dimensional.) Thus, we write Eq. 5-4 as

F3, x " F2 ! max. (5-5)

From the figure, we see that F3,x ! F3 cos u. Solving for the
acceleration and substituting for F3,x yield

(Answer)
Thus, the net force accelerates the puck in the negative di-
rection of the x axis.

!
(1.0 N)(cos 30#) " 2.0 N

0.20 kg
! "5.7 m/s2.

ax !
F3,x " F2

m
!

F3 cos $ " F2

m

F
:

3

F
:

3

ax !
F1 " F2

m
!

4.0 N " 2.0 N
0.20 kg

! 10 m/s2.

F
:

2F
:

1

ax !
F1

m
!

4.0 N
0.20 kg

! 20 m/s2.

One- and two-dimensional forces, puck

Parts A, B, and C of Fig. 5-3 show three situations in which
one or two forces act on a puck that moves over frictionless
ice along an x axis, in one-dimensional motion. The puck’s
mass is m ! 0.20 kg. Forces and are directed along the
axis and have magnitudes F1 4.0 N and F2 2.0 N. Force

is directed at angle u ! 30° and has magnitude F3 ! 1.0
N. In each situation, what is the acceleration of the puck?

KEY I DEA

In each situation we can relate the acceleration to the net
force acting on the puck with Newton’s second law,

. However, because the motion is along only the xF
:

net ! ma:
F
:

net

a:

F
:

3

!!
F
:

2F
:

1

Fig. 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.
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(e)

C

( f )

θ

θ

F3

F2

F3

The horizontal force
causes a horizontal
acceleration.

This is a free-body
diagram.

These forces compete.
Their net force causes
a horizontal acceleration.

This is a free-body
diagram.

Only the horizontal
component of F3
competes with F2.

This is a free-body
diagram.

Additional examples, video, and practice available at WileyPLUS
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force acting on the puck with Newton’s second law,

. However, because the motion is along only the xF
:

net ! ma:
F
:

net

a:

F
:

3

!!
F
:

2F
:

1

Fig. 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.
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Sample Problem

axis, we can simplify each situation by writing the second
law for x components only:

Fnet, x ! max. (5-4)

The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.

Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F1 ! max,

which, with given data, yields

(Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, in the positive direction of x and in the negative
direction. Now Eq. 5-4 gives us

F1 " F2 ! max,

which, with given data, yields

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force is not directed along the
direction of the puck’s acceleration; only x component F3, x

is. (Force is two-dimensional but the motion is only one-
dimensional.) Thus, we write Eq. 5-4 as

F3, x " F2 ! max. (5-5)

From the figure, we see that F3,x ! F3 cos u. Solving for the
acceleration and substituting for F3,x yield

(Answer)
Thus, the net force accelerates the puck in the negative di-
rection of the x axis.

!
(1.0 N)(cos 30#) " 2.0 N

0.20 kg
! "5.7 m/s2.

ax !
F3,x " F2

m
!

F3 cos $ " F2

m

F
:

3

F
:

3

ax !
F1 " F2

m
!

4.0 N " 2.0 N
0.20 kg

! 10 m/s2.

F
:

2F
:

1

ax !
F1

m
!

4.0 N
0.20 kg

! 20 m/s2.

One- and two-dimensional forces, puck

Parts A, B, and C of Fig. 5-3 show three situations in which
one or two forces act on a puck that moves over frictionless
ice along an x axis, in one-dimensional motion. The puck’s
mass is m ! 0.20 kg. Forces and are directed along the
axis and have magnitudes F1 4.0 N and F2 2.0 N. Force

is directed at angle u ! 30° and has magnitude F3 ! 1.0
N. In each situation, what is the acceleration of the puck?

KEY I DEA

In each situation we can relate the acceleration to the net
force acting on the puck with Newton’s second law,

. However, because the motion is along only the xF
:

net ! ma:
F
:

net

a:

F
:

3

!!
F
:

2F
:

1

Fig. 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.
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m = 0.20kg,    F1 = 4N ,    F2 = 2N ,    F3 = 1N ,    θ = 30o

a) Fnet ,x = max
F1 = max

ax =
F1
m

= 4N
0.20Kg

= 20m / s2

935-6 N EWTON’S S ECON D LAW
PART 1

Sample Problem

axis, we can simplify each situation by writing the second
law for x components only:

Fnet, x ! max. (5-4)

The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.

Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F1 ! max,

which, with given data, yields

(Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, in the positive direction of x and in the negative
direction. Now Eq. 5-4 gives us

F1 " F2 ! max,

which, with given data, yields

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force is not directed along the
direction of the puck’s acceleration; only x component F3, x

is. (Force is two-dimensional but the motion is only one-
dimensional.) Thus, we write Eq. 5-4 as

F3, x " F2 ! max. (5-5)

From the figure, we see that F3,x ! F3 cos u. Solving for the
acceleration and substituting for F3,x yield

(Answer)
Thus, the net force accelerates the puck in the negative di-
rection of the x axis.

!
(1.0 N)(cos 30#) " 2.0 N

0.20 kg
! "5.7 m/s2.

ax !
F3,x " F2

m
!

F3 cos $ " F2

m

F
:

3

F
:

3

ax !
F1 " F2

m
!

4.0 N " 2.0 N
0.20 kg

! 10 m/s2.

F
:

2F
:

1

ax !
F1

m
!

4.0 N
0.20 kg

! 20 m/s2.

One- and two-dimensional forces, puck

Parts A, B, and C of Fig. 5-3 show three situations in which
one or two forces act on a puck that moves over frictionless
ice along an x axis, in one-dimensional motion. The puck’s
mass is m ! 0.20 kg. Forces and are directed along the
axis and have magnitudes F1 4.0 N and F2 2.0 N. Force

is directed at angle u ! 30° and has magnitude F3 ! 1.0
N. In each situation, what is the acceleration of the puck?

KEY I DEA

In each situation we can relate the acceleration to the net
force acting on the puck with Newton’s second law,

. However, because the motion is along only the xF
:

net ! ma:
F
:

net

a:

F
:

3

!!
F
:

2F
:

1

Fig. 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.
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F1 − F2 = max

ax =
F1 − F2
m

= 4N − 2N
0.20Kg

= 10m / s2
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Sample Problem

axis, we can simplify each situation by writing the second
law for x components only:

Fnet, x ! max. (5-4)

The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.

Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F1 ! max,

which, with given data, yields

(Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, in the positive direction of x and in the negative
direction. Now Eq. 5-4 gives us

F1 " F2 ! max,

which, with given data, yields

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force is not directed along the
direction of the puck’s acceleration; only x component F3, x

is. (Force is two-dimensional but the motion is only one-
dimensional.) Thus, we write Eq. 5-4 as

F3, x " F2 ! max. (5-5)

From the figure, we see that F3,x ! F3 cos u. Solving for the
acceleration and substituting for F3,x yield

(Answer)
Thus, the net force accelerates the puck in the negative di-
rection of the x axis.

!
(1.0 N)(cos 30#) " 2.0 N

0.20 kg
! "5.7 m/s2.

ax !
F3,x " F2

m
!

F3 cos $ " F2

m

F
:

3

F
:

3

ax !
F1 " F2

m
!

4.0 N " 2.0 N
0.20 kg

! 10 m/s2.

F
:

2F
:

1

ax !
F1

m
!

4.0 N
0.20 kg

! 20 m/s2.

One- and two-dimensional forces, puck

Parts A, B, and C of Fig. 5-3 show three situations in which
one or two forces act on a puck that moves over frictionless
ice along an x axis, in one-dimensional motion. The puck’s
mass is m ! 0.20 kg. Forces and are directed along the
axis and have magnitudes F1 4.0 N and F2 2.0 N. Force

is directed at angle u ! 30° and has magnitude F3 ! 1.0
N. In each situation, what is the acceleration of the puck?

KEY I DEA

In each situation we can relate the acceleration to the net
force acting on the puck with Newton’s second law,

. However, because the motion is along only the xF
:

net ! ma:
F
:

net

a:

F
:

3

!!
F
:

2F
:

1

Fig. 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.
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b)

935-6 N EWTON’S S ECON D LAW
PART 1

Sample Problem

axis, we can simplify each situation by writing the second
law for x components only:

Fnet, x ! max. (5-4)

The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.

Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F1 ! max,

which, with given data, yields

(Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, in the positive direction of x and in the negative
direction. Now Eq. 5-4 gives us

F1 " F2 ! max,

which, with given data, yields

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force is not directed along the
direction of the puck’s acceleration; only x component F3, x

is. (Force is two-dimensional but the motion is only one-
dimensional.) Thus, we write Eq. 5-4 as

F3, x " F2 ! max. (5-5)

From the figure, we see that F3,x ! F3 cos u. Solving for the
acceleration and substituting for F3,x yield

(Answer)
Thus, the net force accelerates the puck in the negative di-
rection of the x axis.

!
(1.0 N)(cos 30#) " 2.0 N

0.20 kg
! "5.7 m/s2.

ax !
F3,x " F2

m
!

F3 cos $ " F2

m

F
:

3

F
:

3

ax !
F1 " F2

m
!

4.0 N " 2.0 N
0.20 kg

! 10 m/s2.

F
:

2F
:

1

ax !
F1

m
!

4.0 N
0.20 kg

! 20 m/s2.

One- and two-dimensional forces, puck

Parts A, B, and C of Fig. 5-3 show three situations in which
one or two forces act on a puck that moves over frictionless
ice along an x axis, in one-dimensional motion. The puck’s
mass is m ! 0.20 kg. Forces and are directed along the
axis and have magnitudes F1 4.0 N and F2 2.0 N. Force

is directed at angle u ! 30° and has magnitude F3 ! 1.0
N. In each situation, what is the acceleration of the puck?

KEY I DEA

In each situation we can relate the acceleration to the net
force acting on the puck with Newton’s second law,

. However, because the motion is along only the xF
:

net ! ma:
F
:

net

a:

F
:

3

!!
F
:

2F
:

1

Fig. 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.
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This is a free-body
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Additional examples, video, and practice available at WileyPLUS

Fnet ,x = max
F3,x − F2 = max

ax =
F3,x − F2
m

= F3 cosθ − F2
m

=

ax =
(1)cos(−30o )− 2

0.20kg
= −5.7m / s2

c)
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Sample Problem

x components: Along the x axis we have

F3,x ! max " F1, x " F2,x

! m(a cos 50°) " F1 cos("150°) " F2 cos 90°.

Then, substituting known data, we find

F3,x ! (2.0 kg)(3.0 m/s2) cos 50° " (10 N) cos("150°)
" (20 N) cos 90°

! 12.5 N.

y components: Similarly, along the y axis we find
F3, y ! may " F1, y " F2, y

! m(a sin 50°) " F1 sin("150°) " F2 sin 90°
! (2.0 kg)(3.0 m/s2) sin 50° " (10 N) sin("150°)

" (20 N) sin 90°
! "10.4 N.

Vector: In unit-vector notation, we can write

! F3, x # F3, y ! (12.5 N) " (10.4 N)
! (13 N) " (10 N) . (Answer)

We can now use a vector-capable calculator to get the mag-
nitude and the angle of .We can also use Eq. 3-6 to obtain
the magnitude and the angle (from the positive direction of
the x axis) as

and (Answer)$ ! tan"1
F3,y

F3, x
! "40%.

F3 ! 2F 3,x
2 # F 2

3,y ! 16 N

F
:

3

ĵî
ĵîĵîF

:
3

Two-dimensional forces, cookie tin

In the overhead view of Fig. 5-4a, a 2.0 kg cookie tin is accel-
erated at 3.0 m/s2 in the direction shown by , over a fric-
tionless horizontal surface. The acceleration is caused by
three horizontal forces, only two of which are shown: of
magnitude 10 N and of magnitude 20 N.What is the third
force in unit-vector notation and in magnitude-angle
notation?

KEY I DEA

The net force on the tin is the sum of the three forces
and is related to the acceleration via Newton’s second law

.Thus,

, (5-6)

which gives us

(5-7)

Calculations: Because this is a two-dimensional problem,
we cannot find merely by substituting the magnitudes
for the vector quantities on the right side of Eq. 5-7. Instead,
we must vectorially add , (the reverse of ), and

(the reverse of ), as shown in Fig. 5-4b. This addition
can be done directly on a vector-capable calculator because
we know both magnitude and angle for all three vectors.
However, here we shall evaluate the right side of Eq. 5-7 in
terms of components, first along the x axis and then along
the y axis.

F
:

2"F
:

2

F
:

1"F
:

1ma:

F
:

3

F 3
:

! ma: " F
:

1 " F 2
:

.

F
:

1 # F 2
:

# F 3
:

! ma:

(F
:

net ! ma: )
a:

F
:

net

F
:

3

F
:

2

F
:

1

a:

Fig. 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie tin,
resulting in acceleration . is not shown. (b) An arrangement of vectors , , and

to find force .F
:

3"F
:

2

"F
:

1ma:F
:

3a:

y 

(a) 

30° 
x 

y

(b)

x

F2 

F3

F2

F1 

a 

a
50° 

m
–

F1–

These are two
of the three
horizontal force
vectors.

This is the resulting
horizontal acceleration
vector.

We draw the product
of mass and acceleration
as a vector.

Then we can add the three
vectors to find the missing
third force vector.

Additional examples, video, and practice available at WileyPLUS
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Sample Problem

axis, we can simplify each situation by writing the second
law for x components only:

Fnet, x ! max. (5-4)

The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.

Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F1 ! max,

which, with given data, yields

(Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, in the positive direction of x and in the negative
direction. Now Eq. 5-4 gives us

F1 " F2 ! max,

which, with given data, yields

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force is not directed along the
direction of the puck’s acceleration; only x component F3, x

is. (Force is two-dimensional but the motion is only one-
dimensional.) Thus, we write Eq. 5-4 as

F3, x " F2 ! max. (5-5)

From the figure, we see that F3,x ! F3 cos u. Solving for the
acceleration and substituting for F3,x yield

(Answer)
Thus, the net force accelerates the puck in the negative di-
rection of the x axis.

!
(1.0 N)(cos 30#) " 2.0 N

0.20 kg
! "5.7 m/s2.

ax !
F3,x " F2

m
!

F3 cos $ " F2

m

F
:

3

F
:

3

ax !
F1 " F2

m
!

4.0 N " 2.0 N
0.20 kg

! 10 m/s2.

F
:

2F
:

1

ax !
F1

m
!

4.0 N
0.20 kg

! 20 m/s2.

One- and two-dimensional forces, puck

Parts A, B, and C of Fig. 5-3 show three situations in which
one or two forces act on a puck that moves over frictionless
ice along an x axis, in one-dimensional motion. The puck’s
mass is m ! 0.20 kg. Forces and are directed along the
axis and have magnitudes F1 4.0 N and F2 2.0 N. Force

is directed at angle u ! 30° and has magnitude F3 ! 1.0
N. In each situation, what is the acceleration of the puck?

KEY I DEA

In each situation we can relate the acceleration to the net
force acting on the puck with Newton’s second law,

. However, because the motion is along only the xF
:

net ! ma:
F
:

net

a:

F
:

3

!!
F
:

2F
:

1

Fig. 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.
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Sample Problem

x components: Along the x axis we have

F3,x ! max " F1, x " F2,x

! m(a cos 50°) " F1 cos("150°) " F2 cos 90°.

Then, substituting known data, we find

F3,x ! (2.0 kg)(3.0 m/s2) cos 50° " (10 N) cos("150°)
" (20 N) cos 90°

! 12.5 N.

y components: Similarly, along the y axis we find
F3, y ! may " F1, y " F2, y

! m(a sin 50°) " F1 sin("150°) " F2 sin 90°
! (2.0 kg)(3.0 m/s2) sin 50° " (10 N) sin("150°)

" (20 N) sin 90°
! "10.4 N.

Vector: In unit-vector notation, we can write

! F3, x # F3, y ! (12.5 N) " (10.4 N)
! (13 N) " (10 N) . (Answer)

We can now use a vector-capable calculator to get the mag-
nitude and the angle of .We can also use Eq. 3-6 to obtain
the magnitude and the angle (from the positive direction of
the x axis) as

and (Answer)$ ! tan"1
F3,y

F3, x
! "40%.

F3 ! 2F 3,x
2 # F 2

3,y ! 16 N

F
:

3

ĵî
ĵîĵîF

:
3

Two-dimensional forces, cookie tin

In the overhead view of Fig. 5-4a, a 2.0 kg cookie tin is accel-
erated at 3.0 m/s2 in the direction shown by , over a fric-
tionless horizontal surface. The acceleration is caused by
three horizontal forces, only two of which are shown: of
magnitude 10 N and of magnitude 20 N.What is the third
force in unit-vector notation and in magnitude-angle
notation?

KEY I DEA

The net force on the tin is the sum of the three forces
and is related to the acceleration via Newton’s second law

.Thus,

, (5-6)

which gives us

(5-7)

Calculations: Because this is a two-dimensional problem,
we cannot find merely by substituting the magnitudes
for the vector quantities on the right side of Eq. 5-7. Instead,
we must vectorially add , (the reverse of ), and

(the reverse of ), as shown in Fig. 5-4b. This addition
can be done directly on a vector-capable calculator because
we know both magnitude and angle for all three vectors.
However, here we shall evaluate the right side of Eq. 5-7 in
terms of components, first along the x axis and then along
the y axis.
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1ma:
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:
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Fig. 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie tin,
resulting in acceleration . is not shown. (b) An arrangement of vectors , , and

to find force .F
:

3"F
:

2

"F
:

1ma:F
:

3a:
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These are two
of the three
horizontal force
vectors.

This is the resulting
horizontal acceleration
vector.

We draw the product
of mass and acceleration
as a vector.

Then we can add the three
vectors to find the missing
third force vector.

Additional examples, video, and practice available at WileyPLUS



m = 2kg,    a = 3m / s2 ,    F1 =10N ,    F2 = 20N

F = ma
F1 + F2 + F3 = ma
F3 = ma − F1 − F2

For x component
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Sample Problem

x components: Along the x axis we have

F3,x ! max " F1, x " F2,x

! m(a cos 50°) " F1 cos("150°) " F2 cos 90°.

Then, substituting known data, we find

F3,x ! (2.0 kg)(3.0 m/s2) cos 50° " (10 N) cos("150°)
" (20 N) cos 90°

! 12.5 N.

y components: Similarly, along the y axis we find
F3, y ! may " F1, y " F2, y

! m(a sin 50°) " F1 sin("150°) " F2 sin 90°
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nitude and the angle of .We can also use Eq. 3-6 to obtain
the magnitude and the angle (from the positive direction of
the x axis) as

and (Answer)$ ! tan"1
F3,y

F3, x
! "40%.

F3 ! 2F 3,x
2 # F 2

3,y ! 16 N
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ĵîĵîF

:
3

Two-dimensional forces, cookie tin

In the overhead view of Fig. 5-4a, a 2.0 kg cookie tin is accel-
erated at 3.0 m/s2 in the direction shown by , over a fric-
tionless horizontal surface. The acceleration is caused by
three horizontal forces, only two of which are shown: of
magnitude 10 N and of magnitude 20 N.What is the third
force in unit-vector notation and in magnitude-angle
notation?

KEY I DEA

The net force on the tin is the sum of the three forces
and is related to the acceleration via Newton’s second law

.Thus,

, (5-6)

which gives us

(5-7)

Calculations: Because this is a two-dimensional problem,
we cannot find merely by substituting the magnitudes
for the vector quantities on the right side of Eq. 5-7. Instead,
we must vectorially add , (the reverse of ), and

(the reverse of ), as shown in Fig. 5-4b. This addition
can be done directly on a vector-capable calculator because
we know both magnitude and angle for all three vectors.
However, here we shall evaluate the right side of Eq. 5-7 in
terms of components, first along the x axis and then along
the y axis.
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Fig. 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie tin,
resulting in acceleration . is not shown. (b) An arrangement of vectors , , and

to find force .F
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F3
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F1 

a 

a
50° 

m
–

F1–

These are two
of the three
horizontal force
vectors.

This is the resulting
horizontal acceleration
vector.

We draw the product
of mass and acceleration
as a vector.

Then we can add the three
vectors to find the missing
third force vector.

Additional examples, video, and practice available at WileyPLUS

F3,x = max − F1,x − F2,x
F3,x = m(acos50) − (F1 cos(30−180)) − (F2 cos90)

F3,x = 2(3cos50) −10cos(−150) − 20cos90

F3,x =12.5N

F3,y = may − F1,y − F2,y
F3,y = m(asin50)− (F1 sin(−150))− (F2 sin90)
F3,y = 2(3sin50)−10sin(−150)− 20sin90
F3,y = −10.4N

For y component



 


F3 = F3,xî + F3,y ĵ

F3 = 12.5î −10.4 ĵ

F3 in unit vector

F3 = (12.502 + (−10.4)2

F3 =16N

The magnitude

The angle

θ = tan−1 F3. y
F3,x

= tan−1 −10.4
12.5

θ = −40o



Examples:
Q.1: One Newton equals:
(a) Kg.m (b) kg.m/s2 (c) kg/s2 (d) m/s2

F = ma à N = kg.m/s2

Q.2: The basic SI unit of the force is:
(a) Kg.m (b) kg.m/s2 (c) kg/s2 (d) m/s2

Q.3: A box is moving with a constant speed of 24.7 m/s. The net 
force on the box is:

(a) Zero (b) 4N (c) 5N (d) 45N

If ΣF = 0 à a = 0



Q.4: Three forces act on a particle of mass m, F1 = 80i + 60j,
F2 = 40i + 100j. If the particle moves with a constant speed of 
4m/s, then F3 is:
(a) 80i + 60j (b) 80i − 60j   (c) −80i + 60j   (d) −120i−160j

v constant à a = 0 àΣF = 0

F1 + F2 + F3 = 0 à F3 = − (F1 + F2 ) = −120i − 160j

Q.5: Two forces act on a particle that moves with constant 
velocity. If F1 = 6i − 2j, then F2 is:
(a) 6i − 2k (b) − 2i + 6k (c) − 6i + 2j (d) − 2i + 6j 

v constant à a = 0 à ΣF = 0

F1 + F2 = 0 à F2 = − F1 = − 6i + 2j



Chapter 5
FORCE AND MOTION -I

Sections 5-7

Some Particular Forces



� Important skills from this lecture:
1. Define the gravitational force & write it in unit vector 

notation and magnitude and angle notation

2. Define the weight and differentiate between mass and 
weight

3. Define the normal force and calculate it

4. Define the frictional force
5. Calculate the tension force 



The Gravitational Force
� A gravitational force    on a body: a force that pulls on the body 

directly toward the center of Earth (downward ê)

� In free fall motion, when the effects of air is neglected, the only force 
acting on a body of mass m is the gravitational force Fg

From Newton’s 2nd law à , or

� Using unit vector notation:

� The gravitational force acts on the body even when the body is not in 
the free fall situation

� For the gravitational force to disappear, Earth has to disappear
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5-7 Some Particular Forces
The Gravitational Force
A gravitational force on a body is a certain type of pull that is directed toward
a second body. In these early chapters, we do not discuss the nature of this force
and usually consider situations in which the second body is Earth. Thus, when we
speak of the gravitational force on a body, we usually mean a force that pulls
on it directly toward the center of Earth—that is, directly down toward the
ground.We shall assume that the ground is an inertial frame.

Suppose a body of mass m is in free fall with the free-fall acceleration of
magnitude g.Then, if we neglect the effects of the air, the only force acting on the
body is the gravitational force . We can relate this downward force and
downward acceleration with Newton’s second law . We place a vertical
y axis along the body’s path, with the positive direction upward. For this axis,
Newton’s second law can be written in the form Fnet,y ! may, which, in our
situation, becomes

"Fg ! m("g)

or Fg ! mg. (5-8)

In words, the magnitude of the gravitational force is equal to the product mg.
This same gravitational force, with the same magnitude, still acts on the body

even when the body is not in free fall but is, say, at rest on a pool table or moving
across the table. (For the gravitational force to disappear, Earth would have to
disappear.)

We can write Newton’s second law for the gravitational force in these vector
forms:

! "Fg ĵ ! "mg ĵ ! (5-9)

where ĵ is the unit vector that points upward along a y axis, directly away from the
ground, and is the free-fall acceleration (written as a vector), directed downward.

Weight
The weight W of a body is the magnitude of the net force required to prevent the
body from falling freely, as measured by someone on the ground. For example, to
keep a ball at rest in your hand while you stand on the ground, you must provide
an upward force to balance the gravitational force on the ball from Earth.
Suppose the magnitude of the gravitational force is 2.0 N. Then the magnitude of
your upward force must be 2.0 N, and thus the weight W of the ball is 2.0 N. We
also say that the ball weighs 2.0 N and speak about the ball weighing 2.0 N.

A ball with a weight of 3.0 N would require a greater force from you—
namely, a 3.0 N force—to keep it at rest.The reason is that the gravitational force
you must balance has a greater magnitude—namely, 3.0 N. We say that this sec-
ond ball is heavier than the first ball.

Now let us generalize the situation. Consider a body that has an acceleration
of zero relative to the ground, which we again assume to be an inertial frame.

Two forces act on the body: a downward gravitational force and a balancing
upward force of magnitude W. We can write Newton’s second law for a vertical y
axis, with the positive direction upward, as

Fnet,y ! may.

In our situation, this becomes

W " Fg ! m(0) (5-10)
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! "Fg ĵ ! "mg ĵ ! (5-9)
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W

Weight
� The weight (W) of a body: is the magnitude of the net force required 

to prevent the body from falling freely, as measured by someone on 
the ground

� e.g., if the magnitude of the gravitational force on a ball is 2.0 N. 
To keep a ball at rest, an upward force with magnitude of 2.0 N 
has to be applied to balance the gravitational one
à the weight W of the ball is 2.0 N

� If another ball requires a greater force to keep it at rest
à the 2nd ball is heavier than the 1st one

� If two forces act on a body;    (downward) &  a balancing upward 
force of magnitude W 
à from Newton’s 2nd law:

à à

à à
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Suppose a body of mass m is in free fall with the free-fall acceleration of
magnitude g.Then, if we neglect the effects of the air, the only force acting on the
body is the gravitational force . We can relate this downward force and
downward acceleration with Newton’s second law . We place a vertical
y axis along the body’s path, with the positive direction upward. For this axis,
Newton’s second law can be written in the form Fnet,y ! may, which, in our
situation, becomes

"Fg ! m("g)

or Fg ! mg. (5-8)

In words, the magnitude of the gravitational force is equal to the product mg.
This same gravitational force, with the same magnitude, still acts on the body

even when the body is not in free fall but is, say, at rest on a pool table or moving
across the table. (For the gravitational force to disappear, Earth would have to
disappear.)

We can write Newton’s second law for the gravitational force in these vector
forms:

! "Fg ĵ ! "mg ĵ ! (5-9)

where ĵ is the unit vector that points upward along a y axis, directly away from the
ground, and is the free-fall acceleration (written as a vector), directed downward.

Weight
The weight W of a body is the magnitude of the net force required to prevent the
body from falling freely, as measured by someone on the ground. For example, to
keep a ball at rest in your hand while you stand on the ground, you must provide
an upward force to balance the gravitational force on the ball from Earth.
Suppose the magnitude of the gravitational force is 2.0 N. Then the magnitude of
your upward force must be 2.0 N, and thus the weight W of the ball is 2.0 N. We
also say that the ball weighs 2.0 N and speak about the ball weighing 2.0 N.

A ball with a weight of 3.0 N would require a greater force from you—
namely, a 3.0 N force—to keep it at rest.The reason is that the gravitational force
you must balance has a greater magnitude—namely, 3.0 N. We say that this sec-
ond ball is heavier than the first ball.

Now let us generalize the situation. Consider a body that has an acceleration
of zero relative to the ground, which we again assume to be an inertial frame.

Two forces act on the body: a downward gravitational force and a balancing
upward force of magnitude W. We can write Newton’s second law for a vertical y
axis, with the positive direction upward, as

Fnet,y ! may.

In our situation, this becomes

W " Fg ! m(0) (5-10)
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across the table. (For the gravitational force to disappear, Earth would have to
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forms:
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Suppose the magnitude of the gravitational force is 2.0 N. Then the magnitude of
your upward force must be 2.0 N, and thus the weight W of the ball is 2.0 N. We
also say that the ball weighs 2.0 N and speak about the ball weighing 2.0 N.

A ball with a weight of 3.0 N would require a greater force from you—
namely, a 3.0 N force—to keep it at rest.The reason is that the gravitational force
you must balance has a greater magnitude—namely, 3.0 N. We say that this sec-
ond ball is heavier than the first ball.

Now let us generalize the situation. Consider a body that has an acceleration
of zero relative to the ground, which we again assume to be an inertial frame.

Two forces act on the body: a downward gravitational force and a balancing
upward force of magnitude W. We can write Newton’s second law for a vertical y
axis, with the positive direction upward, as

Fnet,y ! may.
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or W ! Fg (weight, with ground as inertial frame). (5-11)

This equation tells us (assuming the ground is an inertial frame) that

The weight W of a body is equal to the magnitude Fg of the gravitational force on the
body.

Substituting mg for Fg from Eq. 5-8, we find

W ! mg (weight), (5-12)

which relates a body’s weight to its mass.
To weigh a body means to measure its weight. One way to do this is to place

the body on one of the pans of an equal-arm balance (Fig. 5-5) and then place ref-
erence bodies (whose masses are known) on the other pan until we strike a bal-
ance (so that the gravitational forces on the two sides match). The masses on the
pans then match, and we know the mass of the body. If we know the value of g for
the location of the balance, we can also find the weight of the body with Eq. 5-12.

We can also weigh a body with a spring scale (Fig. 5-6). The body stretches
a spring, moving a pointer along a scale that has been calibrated and marked in
either mass or weight units. (Most bathroom scales in the United States work this
way and are marked in the force unit pounds.) If the scale is marked in
mass units, it is accurate only where the value of g is the same as where the scale
was calibrated.

The weight of a body must be measured when the body is not accelerating
vertically relative to the ground. For example, you can measure your weight on a
scale in your bathroom or on a fast train. However, if you repeat the measure-
ment with the scale in an accelerating elevator, the reading differs from your
weight because of the acceleration. Such a measurement is called an apparent
weight.

Caution: A body’s weight is not its mass. Weight is the magnitude of a force
and is related to mass by Eq. 5-12. If you move a body to a point where the value
of g is different, the body’s mass (an intrinsic property) is not different but the
weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 71 N
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon,
but the free-fall acceleration on the Moon is only 1.6 m/s2.

The Normal Force
If you stand on a mattress, Earth pulls you downward, but you remain stationary.
The reason is that the mattress, because it deforms downward due to you, pushes
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete
floor does this (if it is not sitting directly on the ground, enough people on the
floor could break it).

The push on you from the mattress or floor is a normal force . The name
comes from the mathematical term normal, meaning perpendicular:The force on
you from, say, the floor is perpendicular to the floor.

F
:

N

When a body presses against a surface, the surface (even a seemingly rigid 
one) deforms and pushes on the body with a normal force that is perpendicular to
the surface.

F
:

N

Fig. 5-5 An equal-arm balance.When
the device is in balance, the gravitational
force on the body being weighed (on
the left pan) and the total gravitational
force on the reference bodies (on the
right pan) are equal.Thus, the mass mL of
the body being weighed is equal to the total
mass mR of the reference bodies.

F
:

gR

F
:

gL

Fig. 5-6 A spring scale.The reading is
proportional to the weight of the object on
the pan, and the scale gives that weight if
marked in weight units. If, instead, it is
marked in mass units, the reading is the
object’s weight only if the value of g at the
location where the scale is being used is
the same as the value of g at the location
where the scale was calibrated.

FgL = mLg FgR = mRg

mRmL

Fg = mg

Scale marked
in either
weight or
mass units
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or W ! Fg (weight, with ground as inertial frame). (5-11)

This equation tells us (assuming the ground is an inertial frame) that

The weight W of a body is equal to the magnitude Fg of the gravitational force on the
body.

Substituting mg for Fg from Eq. 5-8, we find

W ! mg (weight), (5-12)

which relates a body’s weight to its mass.
To weigh a body means to measure its weight. One way to do this is to place
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pans then match, and we know the mass of the body. If we know the value of g for
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either mass or weight units. (Most bathroom scales in the United States work this
way and are marked in the force unit pounds.) If the scale is marked in
mass units, it is accurate only where the value of g is the same as where the scale
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The weight of a body must be measured when the body is not accelerating
vertically relative to the ground. For example, you can measure your weight on a
scale in your bathroom or on a fast train. However, if you repeat the measure-
ment with the scale in an accelerating elevator, the reading differs from your
weight because of the acceleration. Such a measurement is called an apparent
weight.

Caution: A body’s weight is not its mass. Weight is the magnitude of a force
and is related to mass by Eq. 5-12. If you move a body to a point where the value
of g is different, the body’s mass (an intrinsic property) is not different but the
weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 71 N
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon,
but the free-fall acceleration on the Moon is only 1.6 m/s2.

The Normal Force
If you stand on a mattress, Earth pulls you downward, but you remain stationary.
The reason is that the mattress, because it deforms downward due to you, pushes
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete
floor does this (if it is not sitting directly on the ground, enough people on the
floor could break it).

The push on you from the mattress or floor is a normal force . The name
comes from the mathematical term normal, meaning perpendicular:The force on
you from, say, the floor is perpendicular to the floor.
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or W ! Fg (weight, with ground as inertial frame). (5-11)

This equation tells us (assuming the ground is an inertial frame) that

The weight W of a body is equal to the magnitude Fg of the gravitational force on the
body.

Substituting mg for Fg from Eq. 5-8, we find

W ! mg (weight), (5-12)

which relates a body’s weight to its mass.
To weigh a body means to measure its weight. One way to do this is to place

the body on one of the pans of an equal-arm balance (Fig. 5-5) and then place ref-
erence bodies (whose masses are known) on the other pan until we strike a bal-
ance (so that the gravitational forces on the two sides match). The masses on the
pans then match, and we know the mass of the body. If we know the value of g for
the location of the balance, we can also find the weight of the body with Eq. 5-12.

We can also weigh a body with a spring scale (Fig. 5-6). The body stretches
a spring, moving a pointer along a scale that has been calibrated and marked in
either mass or weight units. (Most bathroom scales in the United States work this
way and are marked in the force unit pounds.) If the scale is marked in
mass units, it is accurate only where the value of g is the same as where the scale
was calibrated.

The weight of a body must be measured when the body is not accelerating
vertically relative to the ground. For example, you can measure your weight on a
scale in your bathroom or on a fast train. However, if you repeat the measure-
ment with the scale in an accelerating elevator, the reading differs from your
weight because of the acceleration. Such a measurement is called an apparent
weight.

Caution: A body’s weight is not its mass. Weight is the magnitude of a force
and is related to mass by Eq. 5-12. If you move a body to a point where the value
of g is different, the body’s mass (an intrinsic property) is not different but the
weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 71 N
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon,
but the free-fall acceleration on the Moon is only 1.6 m/s2.

The Normal Force
If you stand on a mattress, Earth pulls you downward, but you remain stationary.
The reason is that the mattress, because it deforms downward due to you, pushes
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete
floor does this (if it is not sitting directly on the ground, enough people on the
floor could break it).

The push on you from the mattress or floor is a normal force . The name
comes from the mathematical term normal, meaning perpendicular:The force on
you from, say, the floor is perpendicular to the floor.
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the body being weighed is equal to the total
mass mR of the reference bodies.

F
:

gR

F
:

gL

Fig. 5-6 A spring scale.The reading is
proportional to the weight of the object on
the pan, and the scale gives that weight if
marked in weight units. If, instead, it is
marked in mass units, the reading is the
object’s weight only if the value of g at the
location where the scale is being used is
the same as the value of g at the location
where the scale was calibrated.

FgL = mLg FgR = mRg

mRmL

Fg = mg

Scale marked
in either
weight or
mass units



How to weight a body
Two ways for weighting a body:

1. Equal-arm balance: the body is placed on one of 
the pans, a reference bodies (with known masses) 
is placed on the other pan
when a balance is obtained: 
à the gravitational forces on the two sides match
à the masses on the pans match
à we know the mass of the body

1. Spring scale: the body stretches a spring, which 
causes a movement of a pointer along a scale. The 
scale has been calibrated & marked in either mass 
or weight units

It is accurate only when the value of g is the same 
as when the scale was calibrated
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or W ! Fg (weight, with ground as inertial frame). (5-11)

This equation tells us (assuming the ground is an inertial frame) that

The weight W of a body is equal to the magnitude Fg of the gravitational force on the
body.

Substituting mg for Fg from Eq. 5-8, we find

W ! mg (weight), (5-12)

which relates a body’s weight to its mass.
To weigh a body means to measure its weight. One way to do this is to place

the body on one of the pans of an equal-arm balance (Fig. 5-5) and then place ref-
erence bodies (whose masses are known) on the other pan until we strike a bal-
ance (so that the gravitational forces on the two sides match). The masses on the
pans then match, and we know the mass of the body. If we know the value of g for
the location of the balance, we can also find the weight of the body with Eq. 5-12.
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way and are marked in the force unit pounds.) If the scale is marked in
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and is related to mass by Eq. 5-12. If you move a body to a point where the value
of g is different, the body’s mass (an intrinsic property) is not different but the
weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 71 N
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon,
but the free-fall acceleration on the Moon is only 1.6 m/s2.
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If you stand on a mattress, Earth pulls you downward, but you remain stationary.
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up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete
floor does this (if it is not sitting directly on the ground, enough people on the
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or W ! Fg (weight, with ground as inertial frame). (5-11)

This equation tells us (assuming the ground is an inertial frame) that

The weight W of a body is equal to the magnitude Fg of the gravitational force on the
body.

Substituting mg for Fg from Eq. 5-8, we find

W ! mg (weight), (5-12)

which relates a body’s weight to its mass.
To weigh a body means to measure its weight. One way to do this is to place

the body on one of the pans of an equal-arm balance (Fig. 5-5) and then place ref-
erence bodies (whose masses are known) on the other pan until we strike a bal-
ance (so that the gravitational forces on the two sides match). The masses on the
pans then match, and we know the mass of the body. If we know the value of g for
the location of the balance, we can also find the weight of the body with Eq. 5-12.

We can also weigh a body with a spring scale (Fig. 5-6). The body stretches
a spring, moving a pointer along a scale that has been calibrated and marked in
either mass or weight units. (Most bathroom scales in the United States work this
way and are marked in the force unit pounds.) If the scale is marked in
mass units, it is accurate only where the value of g is the same as where the scale
was calibrated.

The weight of a body must be measured when the body is not accelerating
vertically relative to the ground. For example, you can measure your weight on a
scale in your bathroom or on a fast train. However, if you repeat the measure-
ment with the scale in an accelerating elevator, the reading differs from your
weight because of the acceleration. Such a measurement is called an apparent
weight.

Caution: A body’s weight is not its mass. Weight is the magnitude of a force
and is related to mass by Eq. 5-12. If you move a body to a point where the value
of g is different, the body’s mass (an intrinsic property) is not different but the
weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 71 N
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon,
but the free-fall acceleration on the Moon is only 1.6 m/s2.

The Normal Force
If you stand on a mattress, Earth pulls you downward, but you remain stationary.
The reason is that the mattress, because it deforms downward due to you, pushes
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete
floor does this (if it is not sitting directly on the ground, enough people on the
floor could break it).

The push on you from the mattress or floor is a normal force . The name
comes from the mathematical term normal, meaning perpendicular:The force on
you from, say, the floor is perpendicular to the floor.
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� The weight of a body must be measured when the body is not 
accelerating vertically relative to the ground

� A body’s weight is not its mass

� Weight is the magnitude of a force

� Weight is related to mass by Newton’s 2nd law

� If a body is moved to a point where the value of g is 
different:

� The body’s mass will not differ

� The body’s weight will differ

e.g., for a bowling ball of mass 0.3 kg

On Earth On Moon

M = 0.3 Kg M = 0.3 Kg 

g =  9.8 m/s2 g =  1.6 m/s2

W= (0.3) (9.8) = 2.9 N W= (0.3) (1.6) = 0.49 N



The Normal Force
e.g., if you stand on a floor or a mattress
à they deform (compressed, bent, or buckled slightly)
Earth pulls you down, and they pushes you up
à you remain stationary

are the only forces on the block
they are both vertical
à Newton’s 2nd law in y axis:
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or W ! Fg (weight, with ground as inertial frame). (5-11)

This equation tells us (assuming the ground is an inertial frame) that

The weight W of a body is equal to the magnitude Fg of the gravitational force on the
body.

Substituting mg for Fg from Eq. 5-8, we find

W ! mg (weight), (5-12)

which relates a body’s weight to its mass.
To weigh a body means to measure its weight. One way to do this is to place

the body on one of the pans of an equal-arm balance (Fig. 5-5) and then place ref-
erence bodies (whose masses are known) on the other pan until we strike a bal-
ance (so that the gravitational forces on the two sides match). The masses on the
pans then match, and we know the mass of the body. If we know the value of g for
the location of the balance, we can also find the weight of the body with Eq. 5-12.

We can also weigh a body with a spring scale (Fig. 5-6). The body stretches
a spring, moving a pointer along a scale that has been calibrated and marked in
either mass or weight units. (Most bathroom scales in the United States work this
way and are marked in the force unit pounds.) If the scale is marked in
mass units, it is accurate only where the value of g is the same as where the scale
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The weight of a body must be measured when the body is not accelerating
vertically relative to the ground. For example, you can measure your weight on a
scale in your bathroom or on a fast train. However, if you repeat the measure-
ment with the scale in an accelerating elevator, the reading differs from your
weight because of the acceleration. Such a measurement is called an apparent
weight.

Caution: A body’s weight is not its mass. Weight is the magnitude of a force
and is related to mass by Eq. 5-12. If you move a body to a point where the value
of g is different, the body’s mass (an intrinsic property) is not different but the
weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 71 N
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon,
but the free-fall acceleration on the Moon is only 1.6 m/s2.

The Normal Force
If you stand on a mattress, Earth pulls you downward, but you remain stationary.
The reason is that the mattress, because it deforms downward due to you, pushes
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete
floor does this (if it is not sitting directly on the ground, enough people on the
floor could break it).

The push on you from the mattress or floor is a normal force . The name
comes from the mathematical term normal, meaning perpendicular:The force on
you from, say, the floor is perpendicular to the floor.
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marked in mass units, the reading is the
object’s weight only if the value of g at the
location where the scale is being used is
the same as the value of g at the location
where the scale was calibrated.

FgL = mLg FgR = mRg

mRmL

Fg = mg

Scale marked
in either
weight or
mass units

975-7 SOM E PARTICU LAR FORCE S
PART 1

Figure 5-7a shows an example. A block of mass m presses down on a table,
deforming it somewhat because of the gravitational force on the block. The
table pushes up on the block with normal force .The free-body diagram for the
block is given in Fig. 5-7b. Forces and are the only two forces on the block
and they are both vertical. Thus, for the block we can write Newton’s second law
for a positive-upward y axis (Fnet, y ! may) as

FN " Fg ! may.

From Eq. 5-8, we substitute mg for Fg, finding

FN " mg ! may.

Then the magnitude of the normal force is

FN ! mg # may ! m(g # ay) (5-13)

for any vertical acceleration ay of the table and block (they might be in an accel-
erating elevator). If the table and block are not accelerating relative to the
ground, then ay ! 0 and Eq. 5-13 yields

FN ! mg. (5-14)
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by a bonding between the body and the surface. (We discuss this bonding more in
the next chapter.) The resistance is considered to be a single force called either
the frictional force or simply friction. This force is directed along the surface, op-
posite the direction of the intended motion (Fig. 5-8). Sometimes, to simplify a sit-
uation, friction is assumed to be negligible (the surface is frictionless).

Tension
When a cord (or a rope, cable, or other such object) is attached to a body and
pulled taut, the cord pulls on the body with a force directed away from theT
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The Normal Force

1. If the table and block are not accelerating relative to the ground, 
à ay = 0  à

2. If the table and block are accelerating up-ward relative to the ground, 
à ay is +ve à

3. If the table and block are accelerating down-ward relative to the ground, 
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Friction
� If a body is slid over a surface, the motion is resisted by a 

bonding between the body and the surface

� This resistance is a single force , called frictional force or 
simply friction

� Frictional force is directed along the surface, opposite the 
direction of the motion 

� To simplify a situation, sometimes a friction is assumed to be 
negligible (the surface is frictionless)
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Tension
� Tension force (   ): If a cord is attached to a body and 

pulled, the cord pulls on the body with tension force
� The direction of is along the cord, away from the body 

� Tension (T): is the magnitude of the force 
e.g., if has magnitude T = 50 N 
à the tension in the cord is 50 N

� The cord properties:

� Unstretchable 

� Massless (its mass is negligible compared to the body’s mass)

� Exists only as a connection between 2 bodies 

� Pulls on both bodies with the same force magnitude T

� If the cord wraps halfway around a pulley, the net force on 
the pulley from the cord has the magnitude 2T
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body and along the cord (Fig. 5-9a). The force is often called a tension force
because the cord is said to be in a state of tension (or to be under tension), which
means that it is being pulled taut.The tension in the cord is the magnitude T of the
force on the body. For example, if the force on the body from the cord has magni-
tude T ! 50 N, the tension in the cord is 50 N.

A cord is often said to be massless (meaning its mass is negligible compared
to the body’s mass) and unstretchable. The cord then exists only as a connection
between two bodies. It pulls on both bodies with the same force magnitude T,
even if the bodies and the cord are accelerating and even if the cord runs around
a massless, frictionless pulley (Figs. 5-9b and c). Such a pulley has negligible mass
compared to the bodies and negligible friction on its axle opposing its rotation. If
the cord wraps halfway around a pulley, as in Fig. 5-9c, the net force on the pulley
from the cord has the magnitude 2T.

T 

(a) (b) (c) 

T T 

T 

T 

T The forces at the two ends of
the cord are equal in magnitude.

Fig. 5-9 (a) The cord, pulled taut, is
under tension. If its mass is negligible,
the cord pulls on the body and the hand
with force , even if the cord runs
around a massless, frictionless pulley as
in (b) and (c).

T
:

CHECKPOINT 4

The suspended body in Fig. 5-9c weighs 75 N. Is T equal to, greater than, or less than 75
N when the body is moving upward (a) at constant speed, (b) at increasing speed, and
(c) at decreasing speed?

5-8 Newton’s Third Law
Two bodies are said to interact when they push or pull on each other—that is,
when a force acts on each body due to the other body. For example, suppose you
position a book B so it leans against a crate C (Fig. 5-10a). Then the book and
crate interact: There is a horizontal force on the book from the crate (or due
to the crate) and a horizontal force on the crate from the book (or due to the
book).This pair of forces is shown in Fig. 5-10b. Newton’s third law states that

F
:

CB

F
:

BC

Newton’s Third Law: When two bodies interact, the forces on the bodies from each
other are always equal in magnitude and opposite in direction.

For the book and crate, we can write this law as the scalar relation

FBC ! FCB (equal magnitudes)

or as the vector relation

(equal magnitudes and opposite directions), (5-15)

where the minus sign means that these two forces are in opposite directions. We
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Figure 5-7a shows an example. A block of mass m presses down on a table,
deforming it somewhat because of the gravitational force on the block. The
table pushes up on the block with normal force .The free-body diagram for the
block is given in Fig. 5-7b. Forces and are the only two forces on the block
and they are both vertical. Thus, for the block we can write Newton’s second law
for a positive-upward y axis (Fnet, y ! may) as

FN " Fg ! may.

From Eq. 5-8, we substitute mg for Fg, finding

FN " mg ! may.

Then the magnitude of the normal force is

FN ! mg # may ! m(g # ay) (5-13)

for any vertical acceleration ay of the table and block (they might be in an accel-
erating elevator). If the table and block are not accelerating relative to the
ground, then ay ! 0 and Eq. 5-13 yields

FN ! mg. (5-14)
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CHECKPOINT 3

In Fig. 5-7, is the magnitude of the normal force greater than, less than, or equal to
mg if the block and table are in an elevator moving upward (a) at constant speed and
(b) at increasing speed?

F
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Friction
If we either slide or attempt to slide a body over a surface, the motion is resisted
by a bonding between the body and the surface. (We discuss this bonding more in
the next chapter.) The resistance is considered to be a single force called either
the frictional force or simply friction. This force is directed along the surface, op-
posite the direction of the intended motion (Fig. 5-8). Sometimes, to simplify a sit-
uation, friction is assumed to be negligible (the surface is frictionless).

Tension
When a cord (or a rope, cable, or other such object) is attached to a body and
pulled taut, the cord pulls on the body with a force directed away from theT

:

f
:

,

Fig. 5-7 (a) A block resting on a table experiences a normal force perpendicular to
the tabletop. (b) The free-body diagram for the block.
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Fig. 5-8 A frictional force opposes the
attempted slide of a body over a surface.
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body and along the cord (Fig. 5-9a). The force is often called a tension force
because the cord is said to be in a state of tension (or to be under tension), which
means that it is being pulled taut.The tension in the cord is the magnitude T of the
force on the body. For example, if the force on the body from the cord has magni-
tude T ! 50 N, the tension in the cord is 50 N.

A cord is often said to be massless (meaning its mass is negligible compared
to the body’s mass) and unstretchable. The cord then exists only as a connection
between two bodies. It pulls on both bodies with the same force magnitude T,
even if the bodies and the cord are accelerating and even if the cord runs around
a massless, frictionless pulley (Figs. 5-9b and c). Such a pulley has negligible mass
compared to the bodies and negligible friction on its axle opposing its rotation. If
the cord wraps halfway around a pulley, as in Fig. 5-9c, the net force on the pulley
from the cord has the magnitude 2T.

T 

(a) (b) (c) 

T T 

T 

T 

T The forces at the two ends of
the cord are equal in magnitude.

Fig. 5-9 (a) The cord, pulled taut, is
under tension. If its mass is negligible,
the cord pulls on the body and the hand
with force , even if the cord runs
around a massless, frictionless pulley as
in (b) and (c).

T
:

CHECKPOINT 4

The suspended body in Fig. 5-9c weighs 75 N. Is T equal to, greater than, or less than 75
N when the body is moving upward (a) at constant speed, (b) at increasing speed, and
(c) at decreasing speed?

5-8 Newton’s Third Law
Two bodies are said to interact when they push or pull on each other—that is,
when a force acts on each body due to the other body. For example, suppose you
position a book B so it leans against a crate C (Fig. 5-10a). Then the book and
crate interact: There is a horizontal force on the book from the crate (or due
to the crate) and a horizontal force on the crate from the book (or due to the
book).This pair of forces is shown in Fig. 5-10b. Newton’s third law states that
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Newton’s Third Law: When two bodies interact, the forces on the bodies from each
other are always equal in magnitude and opposite in direction.

For the book and crate, we can write this law as the scalar relation

FBC ! FCB (equal magnitudes)

or as the vector relation

(equal magnitudes and opposite directions), (5-15)

where the minus sign means that these two forces are in opposite directions. We
can call the forces between two interacting bodies a third-law force pair. When
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Fig. 5-10 (a) Book B leans against crate
C. (b) Forces (the force on the book
from the crate) and (the force on the
crate from the book) have the same magni-
tude and are opposite in direction.
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Examples:
Q.1: In which figure of the following the y-component of the net force is zero?

(a) (b) (c) (d)

Q.2: In which figure of the following the particle moves with a constant velocity?

(a) (b) (c) (d)

ΣFx = 0, ΣFy = 0
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Q.3: A particle of mass 2kg at a point where g = 9.8m/s2, the weight of this 
particle at point where g = 0 is:
(a) 49N (b) 98N (c) zero (d) 9.8N

W = mg = 2 X 0 = 0

Q.4: The direction of the acceleration of a body is:
(a) Opposite to the net force
(b) The same direction of the net force
(c) Perpendicular to the direction of the net force
(d) The same of the initial velocity

Q.5: In which figure of the following the particle moves up if it starts from rest?

(a) (b) (c) (d)

ΣFx = 0, ΣFy=+ve
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Q.6: In which figure of the following the acceleration of the particle 
moves to right?

(a) (b) (c) (d)

(a) ΣFx = 1, ΣFy = 0 (b) ΣFx = 0, ΣFy = −1
(c) ΣFx = 0, ΣFy = 0 (d) ΣFx = −2, ΣFy = 1
the correct answer is (a) because the direction of a has to be as the 
same direction as Fnet

Q.7: In the figure, the net force on the block is:
(a) 1N right (b) 6N up (c) 2N left (d) 4N down

ΣFx = 3 − 2 = 1N, ΣFy = 6 − 2 − 4 = 0N
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Q.8: When a force of 10N is applied to a body, the body accelerates 
with 2m/s2. The mass of the body is:
(a) 20kg (b) 10kg (c) 0.5kg (d) 5kg

m = F/a = 10/2 = 5kg

Q.9: From the figure, the acceleration of the block of mass = 0.5kg 
moving along the x-axis on a horizontal frictionless table is:
(a) 10m/s2 (b) − 10m/s2 (c) − 6.3m/s2 (d) −
8.3m/s2

a = F/m =− 5/0.5 = −10m/s2

Q.10: A force of 7N is applied to a mass of 7kg, the resulting 
acceleration is:
(a) 3m/s2 (b) 1m/s2 (c) 2m/s2 (d) 4m/s2

a = F/m =7/7 = 1m/s2

F=5N

Motion direction



Q.11: A force accelerate a 5kg particle from rest to a speed of 
12m/s in 4s. The magnitude of this force is:
(a) 10N (b) zero (c) 20N (d) 15N

Q.12: A body of mass 1kg is accelerating by a = 3i + 4jm/s2, the 
magnitude of the acting force F on the body is:
(a) 2.5N (b) 7.5N (c) 12N (d) 5N  

M = 5kg,   vo = 0,   v = 12m / s,   t = 4s
v = vo + at⇒ a = 3m / s2

F = Ma = 3(5) = 15N


F = ma = (1)(3i + 4 j) = 3i + 4 j

F = 9 +16 = 5N



Q.13: A net force of 15N acts on a body of weight 29.4N. The 
acceleration of the body is:
(a) 9.8m/s2 (b) 5m/s2 (c) 6.5m/s2 (d) 2.4m/s2

Q.14: Only two forces are acing on a particle of mass 2kg that moves 
with an acceleration of 3m/s2 in the positive direction of y axis. If F1

= 8i N, the magnitude of F2 is:
(a) 12N (b) 10N (c) 17N (d) 15N 

W = mg⇒ m = W
g

= 29.4
9.8

= 3kg

a = F
m

= 15
3
= 5m / s2


F1 +

F2 = ma

8i +

F2 = 2(3 j)⇒


F2 = −8i + 6 j


F2 = 64 + 36 = 10N



Chapter 5
FORCE AND MOTION -I

Sections 5-8, 5-9
Newton’s Third Law

Applying Newton’s Laws



� Important skills from this lecture:
1. Explain Newton’s third law and apply it to different 

cases

2. Apply Newton’s laws to solve problems for one and 
two body system 



Newton’s Third Law

� Both book & crate in the figure interact: 
There is a horizontal force      on the book from 
the crate and a horizontal force on the crate 
from the book

� These two forces are called action & reaction forces

� A third-law force pair: the forces between two 
interacting bodies

� When any two bodies interact in any situation (stationary, 
moving, accelerating), a third-law force pair is present
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body and along the cord (Fig. 5-9a). The force is often called a tension force
because the cord is said to be in a state of tension (or to be under tension), which
means that it is being pulled taut.The tension in the cord is the magnitude T of the
force on the body. For example, if the force on the body from the cord has magni-
tude T ! 50 N, the tension in the cord is 50 N.

A cord is often said to be massless (meaning its mass is negligible compared
to the body’s mass) and unstretchable. The cord then exists only as a connection
between two bodies. It pulls on both bodies with the same force magnitude T,
even if the bodies and the cord are accelerating and even if the cord runs around
a massless, frictionless pulley (Figs. 5-9b and c). Such a pulley has negligible mass
compared to the bodies and negligible friction on its axle opposing its rotation. If
the cord wraps halfway around a pulley, as in Fig. 5-9c, the net force on the pulley
from the cord has the magnitude 2T.

T 

(a) (b) (c) 

T T 

T 

T 

T The forces at the two ends of
the cord are equal in magnitude.

Fig. 5-9 (a) The cord, pulled taut, is
under tension. If its mass is negligible,
the cord pulls on the body and the hand
with force , even if the cord runs
around a massless, frictionless pulley as
in (b) and (c).

T
:

CHECKPOINT 4

The suspended body in Fig. 5-9c weighs 75 N. Is T equal to, greater than, or less than 75
N when the body is moving upward (a) at constant speed, (b) at increasing speed, and
(c) at decreasing speed?

5-8 Newton’s Third Law
Two bodies are said to interact when they push or pull on each other—that is,
when a force acts on each body due to the other body. For example, suppose you
position a book B so it leans against a crate C (Fig. 5-10a). Then the book and
crate interact: There is a horizontal force on the book from the crate (or due
to the crate) and a horizontal force on the crate from the book (or due to the
book).This pair of forces is shown in Fig. 5-10b. Newton’s third law states that

F
:

CB

F
:

BC

Newton’s Third Law: When two bodies interact, the forces on the bodies from each
other are always equal in magnitude and opposite in direction.

For the book and crate, we can write this law as the scalar relation

FBC ! FCB (equal magnitudes)

or as the vector relation

(equal magnitudes and opposite directions), (5-15)

where the minus sign means that these two forces are in opposite directions. We
can call the forces between two interacting bodies a third-law force pair. When

F
:

BC ! "F
:

CB

Fig. 5-10 (a) Book B leans against crate
C. (b) Forces (the force on the book
from the crate) and (the force on the
crate from the book) have the same magni-
tude and are opposite in direction.

F
:

CB

F
:

BC

Crate C Book B 

(a) 

(b) 
C 

FCB FBC 

B 

The force on B 
due to C has the same 
magnitude as the 
force on C due to B.
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compared to the bodies and negligible friction on its axle opposing its rotation. If
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even if the bodies and the cord are accelerating and even if the cord runs around
a massless, frictionless pulley (Figs. 5-9b and c). Such a pulley has negligible mass
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because the cord is said to be in a state of tension (or to be under tension), which
means that it is being pulled taut.The tension in the cord is the magnitude T of the
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even if the bodies and the cord are accelerating and even if the cord runs around
a massless, frictionless pulley (Figs. 5-9b and c). Such a pulley has negligible mass
compared to the bodies and negligible friction on its axle opposing its rotation. If
the cord wraps halfway around a pulley, as in Fig. 5-9c, the net force on the pulley
from the cord has the magnitude 2T.
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book and crate in Fig. 5-10a are stationary, but the third law would still hold if
they were moving and even if they were accelerating.

As another example, let us find the third-law force pairs involving the can-
taloupe in Fig. 5-11a, which lies on a table that stands on Earth. The cantaloupe
interacts with the table and with Earth (this time, there are three bodies whose
interactions we must sort out).

Let’s first focus on the forces acting on the cantaloupe (Fig. 5-11b). Force
is the normal force on the cantaloupe from the table, and force is the

gravitational force on the cantaloupe due to Earth. Are they a third-law force
pair? No, because they are forces on a single body, the cantaloupe, and not on
two interacting bodies.

To find a third-law pair, we must focus not on the cantaloupe but on the
interaction between the cantaloupe and one other body. In the cantaloupe–
Earth interaction (Fig. 5-11c), Earth pulls on the cantaloupe with a gravitational
force and the cantaloupe pulls on Earth with a gravitational force . Are
these forces a third-law force pair? Yes, because they are forces on two interact-
ing bodies, the force on each due to the other.Thus, by Newton’s third law,

(cantaloupe!Earth interaction).

Next, in the cantaloupe–table interaction, the force on the cantaloupe from
the table is and, conversely, the force on the table from the cantaloupe is 
(Fig. 5-11d).These forces are also a third-law force pair, and so
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Fig. 5-11 (a) A cantaloupe lies on a table that stands on Earth. (b) The forces on
the cantaloupe are and . (c) The third-law force pair for the cantaloupe–Earth 
interaction. (d) The third-law force pair for the cantaloupe–table interaction.
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Suppose that the cantaloupe and table of Fig. 5-11 are in an elevator cab that begins to
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same? (b) Are those two forces still equal in magnitude and opposite in direction? (c)
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Example:
Q.1: A book rests on a table, exerting a downward force on it. The 
reaction to this force is:
(a) Force from the Earth on the table
(b) Force from the book on Earth
(c) Force from the Earth on the book
(d) Force from the the table on the book
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Sample Problem

There is another thing you should note. We assume that
the cord does not stretch, so that if block H falls 1 mm in a
certain time, block S moves 1 mm to the right in that same
time. This means that the blocks move together and their
accelerations have the same magnitude a.

Q How do I classify this problem? Should it suggest a par-
ticular law of physics to me?
Yes. Forces, masses, and accelerations are involved, and

they should suggest Newton’s second law of motion,
.That is our starting Key Idea.

Q If I apply Newton’s second law to this problem, to which
body should I apply it?
We focus on two bodies, the sliding block and the hanging

block. Although they are extended objects (they are not
points), we can still treat each block as a particle because
every part of it moves in exactly the same way. A second Key
Idea is to apply Newton’s second law separately to each block.

Q What about the pulley?
We cannot represent the pulley as a particle because

different parts of it move in different ways.When we discuss
rotation, we shall deal with pulleys in detail. Meanwhile, we
eliminate the pulley from consideration by assuming its
mass to be negligible compared with the masses of the two
blocks. Its only function is to change the cord’s orientation.

Q OK. Now how do I apply to the sliding block?
Represent block S as a particle of mass M and draw all

the forces that act on it, as in Fig. 5-14a. This is the block’s

F
:

net ! ma:

ma:
F
:

net !

Block on table, block hanging

Figure 5-12 shows a block S (the sliding block) with mass
M ! 3.3 kg. The block is free to move along a horizontal
frictionless surface and connected, by a cord that wraps over
a frictionless pulley, to a second block H (the hanging
block), with mass m ! 2.1 kg.The cord and pulley have neg-
ligible masses compared to the blocks (they are “massless”).
The hanging block H falls as the sliding block S accelerates
to the right. Find (a) the acceleration of block S, (b) the ac-
celeration of block H, and (c) the tension in the cord.

Q What is this problem all about?
You are given two bodies—sliding block and hanging

block—but must also consider Earth, which pulls on both
bodies. (Without Earth, nothing would happen here.) A to-
tal of five forces act on the blocks, as shown in Fig. 5-13:

1. The cord pulls to the right on sliding block S with a force
of magnitude T.

2. The cord pulls upward on hanging block H with a force
of the same magnitude T. This upward force keeps block
H from falling freely.

3. Earth pulls down on block S with the gravitational force
which has a magnitude equal to Mg.

4. Earth pulls down on block H with the gravitational force
which has a magnitude equal to mg.

5. The table pushes up on block S with a normal force .F
:

N

F
:

gH,

F
:

gS,

Fig. 5-12 A block S of mass M is connected to a block H of mass
m by a cord that wraps over a pulley.
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Fig. 5-13 The forces
acting on the two
blocks of Fig. 5-12.

5-9 Applying Newton’s Laws
The rest of this chapter consists of sample problems. You should pore over 
them, learning their procedures for attacking a problem. Especially important is
knowing how to translate a sketch of a situation into a free-body diagram with
appropriate axes, so that Newton’s laws can be applied.
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� We need to find Fnet in x & y directions for both 
blocks of masses M & m

� For block S of mass M:

� For block H of mass m:

The −a because block H accelerates in the negative 
direction of the y axis

Both blocks M & m accelerate with the same 
magnitude a

By substituting 1 into 3:
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We can now substitute mg for FgH and !a for ay (negative
because block H accelerates in the negative direction of the
y axis).We find

T ! mg " !ma. (5-20)

Now note that Eqs. 5-18 and 5-20 are simultaneous equa-
tions with the same two unknowns, T and a. Subtracting
these equations eliminates T.Then solving for a yields

(5-21)

Substituting this result into Eq. 5-18 yields

(5-22)

Putting in the numbers gives, for these two quantities,

(Answer)

and

" 13 N. (Answer)
Q The problem is now solved, right?

That’s a fair question, but the problem is not really fin-
ished until we have examined the results to see whether they
make sense. (If you made these calculations on the job,
wouldn’t you want to see whether they made sense before
you turned them in?)

Look first at Eq. 5-21. Note that it is dimensionally
correct and that the acceleration a will always be less than g.
This is as it must be, because the hanging block is not in free
fall.The cord pulls upward on it.

Look now at Eq. 5-22, which we can rewrite in the form

(5-23)

In this form, it is easier to see that this equation is also
dimensionally correct, because both T and mg have dimen-
sions of forces. Equation 5-23 also lets us see that the tension
in the cord is always less than mg, and thus is always less
than the gravitational force on the hanging block. That is
a comforting thought because, if T were greater than mg,
the hanging block would accelerate upward.

We can also check the results by studying special cases,
in which we can guess what the answers must be. A simple
example is to put g " 0, as if the experiment were carried
out in interstellar space. We know that in that case, the
blocks would not move from rest, there would be no forces
on the ends of the cord, and so there would be no tension in
the cord. Do the formulas predict this? Yes, they do. If you
put g " 0 in Eqs. 5-21 and 5-22, you find a " 0 and T " 0.
Two more special cases you might try are M " 0 and .m : #

T "
M

M $ m
 mg.

T "
Mm

M $ m
 g "

(3.3 kg)(2.1 kg)
3.3 kg $ 2.1 kg

 (9.8 m/s2)

" 3.8 m/s2

a "
m

M $ m
 g "

2.1 kg
3.3 kg $ 2.1 kg

 (9.8 m/s2)

T "
Mm

M $ m
 g.

a "
m

M $ m
 g.

free-body diagram. Next, draw a set of axes. It makes sense
to draw the x axis parallel to the table, in the direction in
which the block moves.

Q Thanks, but you still haven’t told me how to apply
to the sliding block.All you’ve done is explain

how to draw a free-body diagram.
You are right, and here’s the third Key Idea: The

expression is a vector equation, so we can write
it as three component equations:

Fnet, x " Max Fnet, y " May Fnet, z " Maz (5-16)

in which Fnet, x, Fnet,y, and Fnet, z are the components of the net
force along the three axes. Now we apply each component
equation to its corresponding direction. Because block S
does not accelerate vertically, Fnet, y " May becomes

FN ! FgS " 0 or FN " FgS. (5-17)

Thus in the y direction, the magnitude of the normal force is
equal to the magnitude of the gravitational force.

No force acts in the z direction, which is perpendicular
to the page.

In the x direction, there is only one force component,
which is T.Thus, Fnet, x " Max becomes

T " Ma. (5-18)

This equation contains two unknowns, T and a; so we cannot
yet solve it. Recall, however, that we have not said anything
about the hanging block.
Q I agree. How do I apply to the hanging block?

We apply it just as we did for block S: Draw a free-body
diagram for block H, as in Fig. 5-14b. Then apply 
in component form. This time, because the acceleration is
along the y axis, we use the y part of Eq. 5-16 (Fnet, y " may)
to write

T ! FgH " may. (5-19)

F
:

net " ma:

F
:

net " ma:

F
:

net " Ma:

F
:

net " ma:
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Fig. 5-14 (a) A free-body diagram for block S of Fig. 5-12.
(b) A free-body diagram for block H of Fig. 5-12.

M

Sliding 
block S

x

y

m

Hanging 
block H

x

y

FgH

T

FgS

T

a

a

(a) (b)

FN

Additional examples, video, and practice available at WileyPLUS

Fnet ,x = Max ⇒T = Max = Ma
Fnet ,y = May ⇒ FN − FgS = M (0) = 0
                  ⇒ FN = FgS = Mg

Fnet ,x = 0
Fnet ,y = may ⇒T − FgS = may
                 ⇒T −mg = −ma

(1)

(2)

(3)

Ma −mg = −ma⇒ a = m
M +m

g (4)



By substituting 4 into 1:

Putting in the values of M, m, and g from the problem, we obtain:

T = Mm
M +m

g

We can now substitute mg for FgH and !a for ay (negative
because block H accelerates in the negative direction of the
y axis).We find

T ! mg " !ma. (5-20)
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equal to the magnitude of the gravitational force.

No force acts in the z direction, which is perpendicular
to the page.
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This equation contains two unknowns, T and a; so we cannot
yet solve it. Recall, however, that we have not said anything
about the hanging block.
Q I agree. How do I apply to the hanging block?

We apply it just as we did for block S: Draw a free-body
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in component form. This time, because the acceleration is
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Fig. 5-14 (a) A free-body diagram for block S of Fig. 5-12.
(b) A free-body diagram for block H of Fig. 5-12.
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Sample Problem

component along the plane is down the plane and has mag-
nitude mg sin u as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15c to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as !mg sin u. The normal force

is perpendicular to the plane (Fig. 5-15i) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (
m ) for motion along the x axis as

T ! mg sin u " ma. (5-24)

Substituting data and solving for a, we find

a " 0.100 m/s2, (Answer)

where the positive result indicates that the box accelerates
up the plane.

a:
"F

:

net

F
:

N

Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at u " 30°. The box has mass m "
5.00 kg, and the force from the cord has magnitude T " 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY I DEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force 
from the cord is up the plane and has magnitude T 25.0
N. The gravitational force is downward and has magni-
tude mg (5.00 kg)(9.8 m/s2) 49.0 N. More important, its""
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(e)

Fg

(d)(c)

90° −  

θ

θ 90° −  θ

θ θ

( f )

θ

This is a right
triangle.

Parallel
component of
Fg

This is also.

Hypotenuse

Adjacent leg
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Fig. 5-15 (a) A box is pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force the gravitational force and the normal
force (c)–(i) Finding the force components along
the plane and perpendicular to it.
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There is another thing you should note. We assume that
the cord does not stretch, so that if block H falls 1 mm in a
certain time, block S moves 1 mm to the right in that same
time. This means that the blocks move together and their
accelerations have the same magnitude a.

Q How do I classify this problem? Should it suggest a par-
ticular law of physics to me?
Yes. Forces, masses, and accelerations are involved, and

they should suggest Newton’s second law of motion,
.That is our starting Key Idea.

Q If I apply Newton’s second law to this problem, to which
body should I apply it?
We focus on two bodies, the sliding block and the hanging

block. Although they are extended objects (they are not
points), we can still treat each block as a particle because
every part of it moves in exactly the same way. A second Key
Idea is to apply Newton’s second law separately to each block.

Q What about the pulley?
We cannot represent the pulley as a particle because

different parts of it move in different ways.When we discuss
rotation, we shall deal with pulleys in detail. Meanwhile, we
eliminate the pulley from consideration by assuming its
mass to be negligible compared with the masses of the two
blocks. Its only function is to change the cord’s orientation.

Q OK. Now how do I apply to the sliding block?
Represent block S as a particle of mass M and draw all

the forces that act on it, as in Fig. 5-14a. This is the block’s

F
:

net ! ma:

ma:
F
:

net !

Block on table, block hanging

Figure 5-12 shows a block S (the sliding block) with mass
M ! 3.3 kg. The block is free to move along a horizontal
frictionless surface and connected, by a cord that wraps over
a frictionless pulley, to a second block H (the hanging
block), with mass m ! 2.1 kg.The cord and pulley have neg-
ligible masses compared to the blocks (they are “massless”).
The hanging block H falls as the sliding block S accelerates
to the right. Find (a) the acceleration of block S, (b) the ac-
celeration of block H, and (c) the tension in the cord.

Q What is this problem all about?
You are given two bodies—sliding block and hanging

block—but must also consider Earth, which pulls on both
bodies. (Without Earth, nothing would happen here.) A to-
tal of five forces act on the blocks, as shown in Fig. 5-13:

1. The cord pulls to the right on sliding block S with a force
of magnitude T.

2. The cord pulls upward on hanging block H with a force
of the same magnitude T. This upward force keeps block
H from falling freely.

3. Earth pulls down on block S with the gravitational force
which has a magnitude equal to Mg.

4. Earth pulls down on block H with the gravitational force
which has a magnitude equal to mg.

5. The table pushes up on block S with a normal force .F
:

N

F
:

gH,

F
:

gS,

Fig. 5-12 A block S of mass M is connected to a block H of mass
m by a cord that wraps over a pulley.

Sliding 
block S

Hanging 
block H

Frictionless
surface

M

m

FgH

T

T

FgS

Block H

Block S

m

M

FN

Fig. 5-13 The forces
acting on the two
blocks of Fig. 5-12.

5-9 Applying Newton’s Laws
The rest of this chapter consists of sample problems. You should pore over 
them, learning their procedures for attacking a problem. Especially important is
knowing how to translate a sketch of a situation into a free-body diagram with
appropriate axes, so that Newton’s laws can be applied.
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component along the plane is down the plane and has mag-
nitude mg sin u as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15c to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as !mg sin u. The normal force

is perpendicular to the plane (Fig. 5-15i) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (
m ) for motion along the x axis as

T ! mg sin u " ma. (5-24)

Substituting data and solving for a, we find

a " 0.100 m/s2, (Answer)

where the positive result indicates that the box accelerates
up the plane.

a:
"F

:

net

F
:

N

Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at u " 30°. The box has mass m "
5.00 kg, and the force from the cord has magnitude T " 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY I DEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force 
from the cord is up the plane and has magnitude T 25.0
N. The gravitational force is downward and has magni-
tude mg (5.00 kg)(9.8 m/s2) 49.0 N. More important, its""
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The net of these
forces determines
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These forces
merely balance.
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( f )
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This is a right
triangle.
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(use cos   )θ

Opposite leg
(use sin   )θ

Perpendicular
component of
Fg

A

Fig. 5-15 (a) A box is pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force the gravitational force and the normal
force (c)–(i) Finding the force components along
the plane and perpendicular to it.
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component along the plane is down the plane and has mag-
nitude mg sin u as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15c to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as !mg sin u. The normal force

is perpendicular to the plane (Fig. 5-15i) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (
m ) for motion along the x axis as

T ! mg sin u " ma. (5-24)

Substituting data and solving for a, we find

a " 0.100 m/s2, (Answer)

where the positive result indicates that the box accelerates
up the plane.

a:
"F

:

net

F
:

N

Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at u " 30°. The box has mass m "
5.00 kg, and the force from the cord has magnitude T " 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY I DEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force 
from the cord is up the plane and has magnitude T 25.0
N. The gravitational force is downward and has magni-
tude mg (5.00 kg)(9.8 m/s2) 49.0 N. More important, its""
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The net of these
forces determines
the acceleration.

These forces
merely balance.
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Fig. 5-15 (a) A box is pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force the gravitational force and the normal
force (c)–(i) Finding the force components along
the plane and perpendicular to it.
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component along the plane is down the plane and has mag-
nitude mg sin u as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15c to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as !mg sin u. The normal force

is perpendicular to the plane (Fig. 5-15i) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (
m ) for motion along the x axis as

T ! mg sin u " ma. (5-24)

Substituting data and solving for a, we find

a " 0.100 m/s2, (Answer)

where the positive result indicates that the box accelerates
up the plane.

a:
"F

:

net

F
:

N

Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at u " 30°. The box has mass m "
5.00 kg, and the force from the cord has magnitude T " 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY I DEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force 
from the cord is up the plane and has magnitude T 25.0
N. The gravitational force is downward and has magni-
tude mg (5.00 kg)(9.8 m/s2) 49.0 N. More important, its""
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The net of these
forces determines
the acceleration.
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merely balance.
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Fig. 5-15 (a) A box is pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force the gravitational force and the normal
force (c)–(i) Finding the force components along
the plane and perpendicular to it.
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component along the plane is down the plane and has mag-
nitude mg sin u as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15c to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as !mg sin u. The normal force

is perpendicular to the plane (Fig. 5-15i) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (
m ) for motion along the x axis as

T ! mg sin u " ma. (5-24)

Substituting data and solving for a, we find

a " 0.100 m/s2, (Answer)

where the positive result indicates that the box accelerates
up the plane.

a:
"F

:

net

F
:

N

Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at u " 30°. The box has mass m "
5.00 kg, and the force from the cord has magnitude T " 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY I DEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force 
from the cord is up the plane and has magnitude T 25.0
N. The gravitational force is downward and has magni-
tude mg (5.00 kg)(9.8 m/s2) 49.0 N. More important, its""
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The net of these
forces determines
the acceleration.
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merely balance.
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Fig. 5-15 (a) A box is pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force the gravitational force and the normal
force (c)–(i) Finding the force components along
the plane and perpendicular to it.
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component along the plane is down the plane and has mag-
nitude mg sin u as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15c to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as !mg sin u. The normal force

is perpendicular to the plane (Fig. 5-15i) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (
m ) for motion along the x axis as

T ! mg sin u " ma. (5-24)

Substituting data and solving for a, we find

a " 0.100 m/s2, (Answer)

where the positive result indicates that the box accelerates
up the plane.

a:
"F

:

net

F
:

N

Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at u " 30°. The box has mass m "
5.00 kg, and the force from the cord has magnitude T " 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY I DEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force 
from the cord is up the plane and has magnitude T 25.0
N. The gravitational force is downward and has magni-
tude mg (5.00 kg)(9.8 m/s2) 49.0 N. More important, its""

F
:

g

"
T
:

θ

y

xFN

Fg

T

(b)

Cord

θ

(a)

The box accelerates.

Normal force

Cord's pull

Gravitational
force

x

T

mg sinθ

(g) (h)

θ mg cos
mg 

θ

mg sinθ

y

xFN

(i)

mg cos θ

The net of these
forces determines
the acceleration.

These forces
merely balance.

(e)

Fg

(d)(c)

90° −  

θ

θ 90° −  θ

θ θ

( f )

θ

This is a right
triangle.

Parallel
component of
Fg

This is also.

Hypotenuse

Adjacent leg
(use cos   )θ

Opposite leg
(use sin   )θ

Perpendicular
component of
Fg

A

Fig. 5-15 (a) A box is pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force the gravitational force and the normal
force (c)–(i) Finding the force components along
the plane and perpendicular to it.
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component along the plane is down the plane and has mag-
nitude mg sin u as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15c to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as !mg sin u. The normal force

is perpendicular to the plane (Fig. 5-15i) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (
m ) for motion along the x axis as

T ! mg sin u " ma. (5-24)

Substituting data and solving for a, we find

a " 0.100 m/s2, (Answer)

where the positive result indicates that the box accelerates
up the plane.

a:
"F

:

net

F
:

N

Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at u " 30°. The box has mass m "
5.00 kg, and the force from the cord has magnitude T " 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY I DEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force 
from the cord is up the plane and has magnitude T 25.0
N. The gravitational force is downward and has magni-
tude mg (5.00 kg)(9.8 m/s2) 49.0 N. More important, its""
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Fig. 5-15 (a) A box is pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force the gravitational force and the normal
force (c)–(i) Finding the force components along
the plane and perpendicular to it.
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component along the plane is down the plane and has mag-
nitude mg sin u as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15c to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as !mg sin u. The normal force

is perpendicular to the plane (Fig. 5-15i) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (
m ) for motion along the x axis as

T ! mg sin u " ma. (5-24)

Substituting data and solving for a, we find

a " 0.100 m/s2, (Answer)

where the positive result indicates that the box accelerates
up the plane.
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"F

:

net
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:
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Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at u " 30°. The box has mass m "
5.00 kg, and the force from the cord has magnitude T " 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY I DEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force 
from the cord is up the plane and has magnitude T 25.0
N. The gravitational force is downward and has magni-
tude mg (5.00 kg)(9.8 m/s2) 49.0 N. More important, its""
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(b) The three forces acting on the box: the cord’s
force the gravitational force and the normal
force (c)–(i) Finding the force components along
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component along the plane is down the plane and has mag-
nitude mg sin u as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15c to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as !mg sin u. The normal force

is perpendicular to the plane (Fig. 5-15i) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (
m ) for motion along the x axis as

T ! mg sin u " ma. (5-24)

Substituting data and solving for a, we find

a " 0.100 m/s2, (Answer)

where the positive result indicates that the box accelerates
up the plane.

a:
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:

net

F
:

N

Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at u " 30°. The box has mass m "
5.00 kg, and the force from the cord has magnitude T " 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY I DEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force 
from the cord is up the plane and has magnitude T 25.0
N. The gravitational force is downward and has magni-
tude mg (5.00 kg)(9.8 m/s2) 49.0 N. More important, its""
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Perpendicular
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Fig. 5-15 (a) A box is pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force the gravitational force and the normal
force (c)–(i) Finding the force components along
the plane and perpendicular to it.
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.
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:
,
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component along the plane is down the plane and has mag-
nitude mg sin u as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15c to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as !mg sin u. The normal force

is perpendicular to the plane (Fig. 5-15i) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (
m ) for motion along the x axis as

T ! mg sin u " ma. (5-24)

Substituting data and solving for a, we find

a " 0.100 m/s2, (Answer)

where the positive result indicates that the box accelerates
up the plane.
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N. What is the box’s acceleration component a along the in-
clined plane?

KEY I DEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force 
from the cord is up the plane and has magnitude T 25.0
N. The gravitational force is downward and has magni-
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Fig. 5-15 (a) A box is pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force the gravitational force and the normal
force (c)–(i) Finding the force components along
the plane and perpendicular to it.
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Fnet ,x = max
⇒T −mgsinθ = ma

a = T
m
− gsinθ

  = 25
5

(9.8)sin 30 = 0.1m / s2

The box is moving in the +ve direction of x axes 

The acceleration component along the inclined plain 
is required
à We need to find Fnet in the x direction
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From Eq. 5-25, we find that when u ! 0°,

F1 cos 0° " 2.00 ! 4.00ax. (5-26)

From the graph we see that the corresponding acceleration
is 3.0 m/s2. From Eq. 5-26, we then find that F1 ! 10 N.

Substituting F1 ! 10 N, F2 ! 2.00 N, and u ! 180° into
Eq. 5-25 leads to

ax ! #2.00 m/s2. (Answer)

Reading a force graph

Figure 5-16a shows the general arrangement in which two
forces are applied to a 4.00 kg block on a frictionless floor,
but only force is indicated. That force has a fixed magni-
tude but can be applied at an adjustable angle to the posi-
tive direction of the x axis. Force is horizontal and fixed in
both magnitude and angle. Figure 5-16b gives the horizontal
acceleration ax of the block for any given value of u from 0°
to 90°.What is the value of ax for u ! 180°?

KEY I DEAS

(1) The horizontal acceleration ax depends on the net hori-
zontal force Fnet, x, as given by Newton’s second law. (2) The
net horizontal force is the sum of the horizontal compo-
nents of forces and .

Calculations: The x component of is F2 because the
vector is horizontal.The x component of is F1 cos . Using
these expressions and a mass m of 4.00 kg, we can write
Newton’s second law ( m ) for motion along the x
axis as

F1 cos u " F2 ! 4.00ax. (5-25)

From this equation we see that when u ! 90°, F1 cos u
is zero and F2 ! 4.00ax. From the graph we see that the cor-
responding acceleration is 0.50 m/s2. Thus, F2 ! 2.00 N and

must be in the positive direction of the x axis.F
:

2

a:F
:

net !

$F
:

1

F
:

2

F
:

2F
:

1

F
:

2

$
F
:

1

Fig. 5-16 (a) One of the two forces applied to a block is shown.
Its angle u can be varied. (b) The block’s acceleration component
ax versus u.

When F1 is horizontal,
the acceleration is
3.0 m/s2.
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When F1 is vertical,
the acceleration is
0.50 m/s2.

Sample Problem

Forces within an elevator cab

In Fig. 5-17a, a passenger of mass m 72.2 kg stands on
a platform scale in an elevator cab. We are concerned with
the scale readings when the cab is stationary and when it is
moving up or down.

(a) Find a general solution for the scale reading, whatever
the vertical motion of the cab.

KEY I DEAS

(1) The reading is equal to the magnitude of the normal force
on the passenger from the scale. The only other force act-

ing on the passenger is the gravitational force , as shown in
the free-body diagram of Fig. 5-17b. (2) We can relate the
forces on the passenger to his acceleration by using
Newton’s second law . However, recall that we
can use this law only in an inertial frame. If the cab acceler-
ates, then it is not an inertial frame. So we choose the ground

(F
:

net ! ma:)
a:

F
:

g

F
:

N

!

FN 

y 

(b)  (a)  

Passenger 

Fg 

These forces 
compete.
Their net force 
causes a vertical 
acceleration.

Fig. 5-17 (a) A passenger stands on a platform scale that in-
dicates either his weight or his apparent weight. (b) The free-
body diagram for the passenger, showing the normal force 
on him from the scale and the gravitational force .F

:
g

F
:

N
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There is another thing you should note. We assume that
the cord does not stretch, so that if block H falls 1 mm in a
certain time, block S moves 1 mm to the right in that same
time. This means that the blocks move together and their
accelerations have the same magnitude a.

Q How do I classify this problem? Should it suggest a par-
ticular law of physics to me?
Yes. Forces, masses, and accelerations are involved, and

they should suggest Newton’s second law of motion,
.That is our starting Key Idea.

Q If I apply Newton’s second law to this problem, to which
body should I apply it?
We focus on two bodies, the sliding block and the hanging

block. Although they are extended objects (they are not
points), we can still treat each block as a particle because
every part of it moves in exactly the same way. A second Key
Idea is to apply Newton’s second law separately to each block.

Q What about the pulley?
We cannot represent the pulley as a particle because

different parts of it move in different ways.When we discuss
rotation, we shall deal with pulleys in detail. Meanwhile, we
eliminate the pulley from consideration by assuming its
mass to be negligible compared with the masses of the two
blocks. Its only function is to change the cord’s orientation.

Q OK. Now how do I apply to the sliding block?
Represent block S as a particle of mass M and draw all

the forces that act on it, as in Fig. 5-14a. This is the block’s

F
:

net ! ma:

ma:
F
:

net !

Block on table, block hanging

Figure 5-12 shows a block S (the sliding block) with mass
M ! 3.3 kg. The block is free to move along a horizontal
frictionless surface and connected, by a cord that wraps over
a frictionless pulley, to a second block H (the hanging
block), with mass m ! 2.1 kg.The cord and pulley have neg-
ligible masses compared to the blocks (they are “massless”).
The hanging block H falls as the sliding block S accelerates
to the right. Find (a) the acceleration of block S, (b) the ac-
celeration of block H, and (c) the tension in the cord.

Q What is this problem all about?
You are given two bodies—sliding block and hanging

block—but must also consider Earth, which pulls on both
bodies. (Without Earth, nothing would happen here.) A to-
tal of five forces act on the blocks, as shown in Fig. 5-13:

1. The cord pulls to the right on sliding block S with a force
of magnitude T.

2. The cord pulls upward on hanging block H with a force
of the same magnitude T. This upward force keeps block
H from falling freely.

3. Earth pulls down on block S with the gravitational force
which has a magnitude equal to Mg.

4. Earth pulls down on block H with the gravitational force
which has a magnitude equal to mg.

5. The table pushes up on block S with a normal force .F
:

N

F
:

gH,

F
:

gS,

Fig. 5-12 A block S of mass M is connected to a block H of mass
m by a cord that wraps over a pulley.

Sliding 
block S

Hanging 
block H

Frictionless
surface

M

m

FgH

T

T

FgS

Block H

Block S

m

M

FN

Fig. 5-13 The forces
acting on the two
blocks of Fig. 5-12.

5-9 Applying Newton’s Laws
The rest of this chapter consists of sample problems. You should pore over 
them, learning their procedures for attacking a problem. Especially important is
knowing how to translate a sketch of a situation into a free-body diagram with
appropriate axes, so that Newton’s laws can be applied.
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Sample Problem

From Eq. 5-25, we find that when u ! 0°,

F1 cos 0° " 2.00 ! 4.00ax. (5-26)

From the graph we see that the corresponding acceleration
is 3.0 m/s2. From Eq. 5-26, we then find that F1 ! 10 N.

Substituting F1 ! 10 N, F2 ! 2.00 N, and u ! 180° into
Eq. 5-25 leads to

ax ! #2.00 m/s2. (Answer)

Reading a force graph

Figure 5-16a shows the general arrangement in which two
forces are applied to a 4.00 kg block on a frictionless floor,
but only force is indicated. That force has a fixed magni-
tude but can be applied at an adjustable angle to the posi-
tive direction of the x axis. Force is horizontal and fixed in
both magnitude and angle. Figure 5-16b gives the horizontal
acceleration ax of the block for any given value of u from 0°
to 90°.What is the value of ax for u ! 180°?

KEY I DEAS

(1) The horizontal acceleration ax depends on the net hori-
zontal force Fnet, x, as given by Newton’s second law. (2) The
net horizontal force is the sum of the horizontal compo-
nents of forces and .

Calculations: The x component of is F2 because the
vector is horizontal.The x component of is F1 cos . Using
these expressions and a mass m of 4.00 kg, we can write
Newton’s second law ( m ) for motion along the x
axis as

F1 cos u " F2 ! 4.00ax. (5-25)

From this equation we see that when u ! 90°, F1 cos u
is zero and F2 ! 4.00ax. From the graph we see that the cor-
responding acceleration is 0.50 m/s2. Thus, F2 ! 2.00 N and

must be in the positive direction of the x axis.F
:

2

a:F
:

net !
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Fig. 5-16 (a) One of the two forces applied to a block is shown.
Its angle u can be varied. (b) The block’s acceleration component
ax versus u.
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3.0 m/s2.

F1

x 
θ 

(a) 

(b) 

3 
 

2 
 

1 
 

0 
 0° 
 

90°
θ 
 

a x
 (

m
/s

2 ) 
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Sample Problem

Forces within an elevator cab

In Fig. 5-17a, a passenger of mass m 72.2 kg stands on
a platform scale in an elevator cab. We are concerned with
the scale readings when the cab is stationary and when it is
moving up or down.

(a) Find a general solution for the scale reading, whatever
the vertical motion of the cab.

KEY I DEAS

(1) The reading is equal to the magnitude of the normal force
on the passenger from the scale. The only other force act-

ing on the passenger is the gravitational force , as shown in
the free-body diagram of Fig. 5-17b. (2) We can relate the
forces on the passenger to his acceleration by using
Newton’s second law . However, recall that we
can use this law only in an inertial frame. If the cab acceler-
ates, then it is not an inertial frame. So we choose the ground
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(b)  (a)  

Passenger 

Fg 

These forces 
compete.
Their net force 
causes a vertical 
acceleration.

Fig. 5-17 (a) A passenger stands on a platform scale that in-
dicates either his weight or his apparent weight. (b) The free-
body diagram for the passenger, showing the normal force 
on him from the scale and the gravitational force .F

:
g

F
:

N

assenger
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From Eq. 5-25, we find that when u ! 0°,

F1 cos 0° " 2.00 ! 4.00ax. (5-26)

From the graph we see that the corresponding acceleration
is 3.0 m/s2. From Eq. 5-26, we then find that F1 ! 10 N.

Substituting F1 ! 10 N, F2 ! 2.00 N, and u ! 180° into
Eq. 5-25 leads to

ax ! #2.00 m/s2. (Answer)

Reading a force graph

Figure 5-16a shows the general arrangement in which two
forces are applied to a 4.00 kg block on a frictionless floor,
but only force is indicated. That force has a fixed magni-
tude but can be applied at an adjustable angle to the posi-
tive direction of the x axis. Force is horizontal and fixed in
both magnitude and angle. Figure 5-16b gives the horizontal
acceleration ax of the block for any given value of u from 0°
to 90°.What is the value of ax for u ! 180°?

KEY I DEAS

(1) The horizontal acceleration ax depends on the net hori-
zontal force Fnet, x, as given by Newton’s second law. (2) The
net horizontal force is the sum of the horizontal compo-
nents of forces and .

Calculations: The x component of is F2 because the
vector is horizontal.The x component of is F1 cos . Using
these expressions and a mass m of 4.00 kg, we can write
Newton’s second law ( m ) for motion along the x
axis as

F1 cos u " F2 ! 4.00ax. (5-25)

From this equation we see that when u ! 90°, F1 cos u
is zero and F2 ! 4.00ax. From the graph we see that the cor-
responding acceleration is 0.50 m/s2. Thus, F2 ! 2.00 N and

must be in the positive direction of the x axis.F
:
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Fig. 5-16 (a) One of the two forces applied to a block is shown.
Its angle u can be varied. (b) The block’s acceleration component
ax versus u.
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Sample Problem

Forces within an elevator cab

In Fig. 5-17a, a passenger of mass m 72.2 kg stands on
a platform scale in an elevator cab. We are concerned with
the scale readings when the cab is stationary and when it is
moving up or down.

(a) Find a general solution for the scale reading, whatever
the vertical motion of the cab.

KEY I DEAS

(1) The reading is equal to the magnitude of the normal force
on the passenger from the scale. The only other force act-

ing on the passenger is the gravitational force , as shown in
the free-body diagram of Fig. 5-17b. (2) We can relate the
forces on the passenger to his acceleration by using
Newton’s second law . However, recall that we
can use this law only in an inertial frame. If the cab acceler-
ates, then it is not an inertial frame. So we choose the ground
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These forces 
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Their net force 
causes a vertical 
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Fig. 5-17 (a) A passenger stands on a platform scale that in-
dicates either his weight or his apparent weight. (b) The free-
body diagram for the passenger, showing the normal force 
on him from the scale and the gravitational force .F

:
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only horizontal force acting on block A. There is also the
force from block B (Fig. 5-18b).

Dead-End Solution: Let us now include force by writ-
ing, again for the x axis,

Fapp ! FAB " mAa.

(We use the minus sign to include the direction of .)
Because FAB is a second unknown, we cannot solve this
equation for a.

Successful Solution: Because of the direction in which
force is applied, the two blocks form a rigidly connected
system. We can relate the net force on the system to the accel-

F
:

app

F
:
AB

F
:
AB

F
:
AB

Acceleration of block pushing on block

In Fig. 5-18a, a constant horizontal force of magnitude
20 N is applied to block A of mass mA 4.0 kg, which
pushes against block B of mass mB " 6.0 kg. The blocks
slide over a frictionless surface, along an x axis.

(a) What is the acceleration of the blocks?

Serious Error: Because force is applied directly
to block A, we use Newton’s second law to relate that
force to the acceleration of block A. Because the motion
is along the x axis, we use that law for x components 
(Fnet, x " max), writing it as

Fapp " mAa.

However, this is seriously wrong because is not theF
:

app

a:

F
:

app

"
F
:

app

to be our inertial frame and make any measure of the passen-
ger’s acceleration relative to it.

Calculations: Because the two forces on the passenger
and his acceleration are all directed vertically, along the y
axis in Fig. 5-17b, we can use Newton’s second law written
for y components (Fnet, y " may) to get

FN ! Fg " ma
or FN " Fg # ma. (5-27)

This tells us that the scale reading, which is equal to FN,
depends on the vertical acceleration. Substituting mg for Fg

gives us
FN " m(g # a) (Answer) (5-28)

for any choice of acceleration a.

(b) What does the scale read if the cab is stationary or
moving upward at a constant 0.50 m/s?

KEY I DEA

For any constant velocity (zero or otherwise), the accelera-
tion a of the passenger is zero.

Calculation: Substituting this and other known values into
Eq. 5-28, we find

FN " (72.2 kg)(9.8 m/s2 # 0) " 708 N.
(Answer)

This is the weight of the passenger and is equal to the mag-
nitude Fg of the gravitational force on him.

(c) What does the scale read if the cab accelerates upward
at 3.20 m/s2 and downward at 3.20 m/s2?

Calculations: For a " 3.20 m/s2, Eq. 5-28 gives

FN " (72.2 kg)(9.8 m/s2 # 3.20 m/s2)
" 939 N, (Answer)

and for a " !3.20 m/s2, it gives

FN " (72.2 kg)(9.8 m/s2 ! 3.20 m/s2)
" 477 N. (Answer)

For an upward acceleration (either the cab’s upward speed
is increasing or its downward speed is decreasing), the scale
reading is greater than the passenger’s weight. That reading
is a measurement of an apparent weight, because it is made
in a noninertial frame. For a downward acceleration (either
decreasing upward speed or increasing downward speed),
the scale reading is less than the passenger’s weight.

(d) During the upward acceleration in part (c), what is the
magnitude Fnet of the net force on the passenger, and what is
the magnitude ap,cab of his acceleration as measured in the
frame of the cab? Does ?

Calculation: The magnitude Fg of the gravitational force
on the passenger does not depend on the motion of the pas-
senger or the cab; so, from part (b), Fg is 708 N. From part (c),
the magnitude FN of the normal force on the passenger during
the upward acceleration is the 939 N reading on the scale.Thus,
the net force on the passenger is

Fnet " FN ! Fg " 939 N ! 708 N " 231 N, (Answer)

during the upward acceleration. However, his acceleration
ap,cab relative to the frame of the cab is zero. Thus, in the non-
inertial frame of the accelerating cab, Fnet is not equal to
map,cab, and Newton’s second law does not hold.

F
:

net " ma:p,cab

Fnet ,y = may ⇒ FN − Fg = ma⇒ FN = mg +ma
                                           ⇒ FN = m(a + g)

FN = m(a + g)→ FN = mg = (72.2)(9.8) = 708N

When the cab is stationary or moving with a constant speed, a = 0
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only horizontal force acting on block A. There is also the
force from block B (Fig. 5-18b).

Dead-End Solution: Let us now include force by writ-
ing, again for the x axis,

Fapp ! FAB " mAa.

(We use the minus sign to include the direction of .)
Because FAB is a second unknown, we cannot solve this
equation for a.

Successful Solution: Because of the direction in which
force is applied, the two blocks form a rigidly connected
system. We can relate the net force on the system to the accel-
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In Fig. 5-18a, a constant horizontal force of magnitude
20 N is applied to block A of mass mA 4.0 kg, which
pushes against block B of mass mB " 6.0 kg. The blocks
slide over a frictionless surface, along an x axis.

(a) What is the acceleration of the blocks?

Serious Error: Because force is applied directly
to block A, we use Newton’s second law to relate that
force to the acceleration of block A. Because the motion
is along the x axis, we use that law for x components 
(Fnet, x " max), writing it as

Fapp " mAa.

However, this is seriously wrong because is not theF
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to be our inertial frame and make any measure of the passen-
ger’s acceleration relative to it.

Calculations: Because the two forces on the passenger
and his acceleration are all directed vertically, along the y
axis in Fig. 5-17b, we can use Newton’s second law written
for y components (Fnet, y " may) to get

FN ! Fg " ma
or FN " Fg # ma. (5-27)

This tells us that the scale reading, which is equal to FN,
depends on the vertical acceleration. Substituting mg for Fg

gives us
FN " m(g # a) (Answer) (5-28)

for any choice of acceleration a.

(b) What does the scale read if the cab is stationary or
moving upward at a constant 0.50 m/s?

KEY I DEA

For any constant velocity (zero or otherwise), the accelera-
tion a of the passenger is zero.

Calculation: Substituting this and other known values into
Eq. 5-28, we find

FN " (72.2 kg)(9.8 m/s2 # 0) " 708 N.
(Answer)

This is the weight of the passenger and is equal to the mag-
nitude Fg of the gravitational force on him.

(c) What does the scale read if the cab accelerates upward
at 3.20 m/s2 and downward at 3.20 m/s2?

Calculations: For a " 3.20 m/s2, Eq. 5-28 gives

FN " (72.2 kg)(9.8 m/s2 # 3.20 m/s2)
" 939 N, (Answer)

and for a " !3.20 m/s2, it gives

FN " (72.2 kg)(9.8 m/s2 ! 3.20 m/s2)
" 477 N. (Answer)

For an upward acceleration (either the cab’s upward speed
is increasing or its downward speed is decreasing), the scale
reading is greater than the passenger’s weight. That reading
is a measurement of an apparent weight, because it is made
in a noninertial frame. For a downward acceleration (either
decreasing upward speed or increasing downward speed),
the scale reading is less than the passenger’s weight.

(d) During the upward acceleration in part (c), what is the
magnitude Fnet of the net force on the passenger, and what is
the magnitude ap,cab of his acceleration as measured in the
frame of the cab? Does ?

Calculation: The magnitude Fg of the gravitational force
on the passenger does not depend on the motion of the pas-
senger or the cab; so, from part (b), Fg is 708 N. From part (c),
the magnitude FN of the normal force on the passenger during
the upward acceleration is the 939 N reading on the scale.Thus,
the net force on the passenger is

Fnet " FN ! Fg " 939 N ! 708 N " 231 N, (Answer)

during the upward acceleration. However, his acceleration
ap,cab relative to the frame of the cab is zero. Thus, in the non-
inertial frame of the accelerating cab, Fnet is not equal to
map,cab, and Newton’s second law does not hold.

F
:

net " ma:p,cab

FN = m(a + g)→ FN = 72.2(3.2 + 9.8) = 939N

FN = m(−a + g)→ FN = 72.2(−3.2 + 9.8) = 476.52N
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only horizontal force acting on block A. There is also the
force from block B (Fig. 5-18b).

Dead-End Solution: Let us now include force by writ-
ing, again for the x axis,

Fapp ! FAB " mAa.

(We use the minus sign to include the direction of .)
Because FAB is a second unknown, we cannot solve this
equation for a.

Successful Solution: Because of the direction in which
force is applied, the two blocks form a rigidly connected
system. We can relate the net force on the system to the accel-

F
:

app

F
:
AB

F
:
AB

F
:
AB

Acceleration of block pushing on block

In Fig. 5-18a, a constant horizontal force of magnitude
20 N is applied to block A of mass mA 4.0 kg, which
pushes against block B of mass mB " 6.0 kg. The blocks
slide over a frictionless surface, along an x axis.

(a) What is the acceleration of the blocks?

Serious Error: Because force is applied directly
to block A, we use Newton’s second law to relate that
force to the acceleration of block A. Because the motion
is along the x axis, we use that law for x components 
(Fnet, x " max), writing it as

Fapp " mAa.

However, this is seriously wrong because is not theF
:

app

a:

F
:

app

"
F
:

app

to be our inertial frame and make any measure of the passen-
ger’s acceleration relative to it.

Calculations: Because the two forces on the passenger
and his acceleration are all directed vertically, along the y
axis in Fig. 5-17b, we can use Newton’s second law written
for y components (Fnet, y " may) to get

FN ! Fg " ma
or FN " Fg # ma. (5-27)

This tells us that the scale reading, which is equal to FN,
depends on the vertical acceleration. Substituting mg for Fg

gives us
FN " m(g # a) (Answer) (5-28)

for any choice of acceleration a.

(b) What does the scale read if the cab is stationary or
moving upward at a constant 0.50 m/s?

KEY I DEA

For any constant velocity (zero or otherwise), the accelera-
tion a of the passenger is zero.

Calculation: Substituting this and other known values into
Eq. 5-28, we find

FN " (72.2 kg)(9.8 m/s2 # 0) " 708 N.
(Answer)

This is the weight of the passenger and is equal to the mag-
nitude Fg of the gravitational force on him.

(c) What does the scale read if the cab accelerates upward
at 3.20 m/s2 and downward at 3.20 m/s2?

Calculations: For a " 3.20 m/s2, Eq. 5-28 gives

FN " (72.2 kg)(9.8 m/s2 # 3.20 m/s2)
" 939 N, (Answer)

and for a " !3.20 m/s2, it gives

FN " (72.2 kg)(9.8 m/s2 ! 3.20 m/s2)
" 477 N. (Answer)

For an upward acceleration (either the cab’s upward speed
is increasing or its downward speed is decreasing), the scale
reading is greater than the passenger’s weight. That reading
is a measurement of an apparent weight, because it is made
in a noninertial frame. For a downward acceleration (either
decreasing upward speed or increasing downward speed),
the scale reading is less than the passenger’s weight.

(d) During the upward acceleration in part (c), what is the
magnitude Fnet of the net force on the passenger, and what is
the magnitude ap,cab of his acceleration as measured in the
frame of the cab? Does ?

Calculation: The magnitude Fg of the gravitational force
on the passenger does not depend on the motion of the pas-
senger or the cab; so, from part (b), Fg is 708 N. From part (c),
the magnitude FN of the normal force on the passenger during
the upward acceleration is the 939 N reading on the scale.Thus,
the net force on the passenger is

Fnet " FN ! Fg " 939 N ! 708 N " 231 N, (Answer)

during the upward acceleration. However, his acceleration
ap,cab relative to the frame of the cab is zero. Thus, in the non-
inertial frame of the accelerating cab, Fnet is not equal to
map,cab, and Newton’s second law does not hold.

F
:

net " ma:p,cab

NF
F

FFF

net

net

gNnet
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)8.9)(2.72(939
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Accelerates upward

Accelerates downward
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only horizontal force acting on block A. There is also the
force from block B (Fig. 5-18b).

Dead-End Solution: Let us now include force by writ-
ing, again for the x axis,

Fapp ! FAB " mAa.

(We use the minus sign to include the direction of .)
Because FAB is a second unknown, we cannot solve this
equation for a.

Successful Solution: Because of the direction in which
force is applied, the two blocks form a rigidly connected
system. We can relate the net force on the system to the accel-

F
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AB
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Acceleration of block pushing on block

In Fig. 5-18a, a constant horizontal force of magnitude
20 N is applied to block A of mass mA 4.0 kg, which
pushes against block B of mass mB " 6.0 kg. The blocks
slide over a frictionless surface, along an x axis.

(a) What is the acceleration of the blocks?

Serious Error: Because force is applied directly
to block A, we use Newton’s second law to relate that
force to the acceleration of block A. Because the motion
is along the x axis, we use that law for x components 
(Fnet, x " max), writing it as

Fapp " mAa.

However, this is seriously wrong because is not theF
:

app

a:

F
:

app

"
F
:

app

to be our inertial frame and make any measure of the passen-
ger’s acceleration relative to it.

Calculations: Because the two forces on the passenger
and his acceleration are all directed vertically, along the y
axis in Fig. 5-17b, we can use Newton’s second law written
for y components (Fnet, y " may) to get

FN ! Fg " ma
or FN " Fg # ma. (5-27)

This tells us that the scale reading, which is equal to FN,
depends on the vertical acceleration. Substituting mg for Fg

gives us
FN " m(g # a) (Answer) (5-28)

for any choice of acceleration a.

(b) What does the scale read if the cab is stationary or
moving upward at a constant 0.50 m/s?

KEY I DEA

For any constant velocity (zero or otherwise), the accelera-
tion a of the passenger is zero.

Calculation: Substituting this and other known values into
Eq. 5-28, we find

FN " (72.2 kg)(9.8 m/s2 # 0) " 708 N.
(Answer)

This is the weight of the passenger and is equal to the mag-
nitude Fg of the gravitational force on him.

(c) What does the scale read if the cab accelerates upward
at 3.20 m/s2 and downward at 3.20 m/s2?

Calculations: For a " 3.20 m/s2, Eq. 5-28 gives

FN " (72.2 kg)(9.8 m/s2 # 3.20 m/s2)
" 939 N, (Answer)

and for a " !3.20 m/s2, it gives

FN " (72.2 kg)(9.8 m/s2 ! 3.20 m/s2)
" 477 N. (Answer)

For an upward acceleration (either the cab’s upward speed
is increasing or its downward speed is decreasing), the scale
reading is greater than the passenger’s weight. That reading
is a measurement of an apparent weight, because it is made
in a noninertial frame. For a downward acceleration (either
decreasing upward speed or increasing downward speed),
the scale reading is less than the passenger’s weight.

(d) During the upward acceleration in part (c), what is the
magnitude Fnet of the net force on the passenger, and what is
the magnitude ap,cab of his acceleration as measured in the
frame of the cab? Does ?

Calculation: The magnitude Fg of the gravitational force
on the passenger does not depend on the motion of the pas-
senger or the cab; so, from part (b), Fg is 708 N. From part (c),
the magnitude FN of the normal force on the passenger during
the upward acceleration is the 939 N reading on the scale.Thus,
the net force on the passenger is

Fnet " FN ! Fg " 939 N ! 708 N " 231 N, (Answer)

during the upward acceleration. However, his acceleration
ap,cab relative to the frame of the cab is zero. Thus, in the non-
inertial frame of the accelerating cab, Fnet is not equal to
map,cab, and Newton’s second law does not hold.

F
:

net " ma:p,cab
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There is another thing you should note. We assume that
the cord does not stretch, so that if block H falls 1 mm in a
certain time, block S moves 1 mm to the right in that same
time. This means that the blocks move together and their
accelerations have the same magnitude a.

Q How do I classify this problem? Should it suggest a par-
ticular law of physics to me?
Yes. Forces, masses, and accelerations are involved, and

they should suggest Newton’s second law of motion,
.That is our starting Key Idea.

Q If I apply Newton’s second law to this problem, to which
body should I apply it?
We focus on two bodies, the sliding block and the hanging

block. Although they are extended objects (they are not
points), we can still treat each block as a particle because
every part of it moves in exactly the same way. A second Key
Idea is to apply Newton’s second law separately to each block.

Q What about the pulley?
We cannot represent the pulley as a particle because

different parts of it move in different ways.When we discuss
rotation, we shall deal with pulleys in detail. Meanwhile, we
eliminate the pulley from consideration by assuming its
mass to be negligible compared with the masses of the two
blocks. Its only function is to change the cord’s orientation.

Q OK. Now how do I apply to the sliding block?
Represent block S as a particle of mass M and draw all

the forces that act on it, as in Fig. 5-14a. This is the block’s

F
:

net ! ma:

ma:
F
:

net !

Block on table, block hanging

Figure 5-12 shows a block S (the sliding block) with mass
M ! 3.3 kg. The block is free to move along a horizontal
frictionless surface and connected, by a cord that wraps over
a frictionless pulley, to a second block H (the hanging
block), with mass m ! 2.1 kg.The cord and pulley have neg-
ligible masses compared to the blocks (they are “massless”).
The hanging block H falls as the sliding block S accelerates
to the right. Find (a) the acceleration of block S, (b) the ac-
celeration of block H, and (c) the tension in the cord.

Q What is this problem all about?
You are given two bodies—sliding block and hanging

block—but must also consider Earth, which pulls on both
bodies. (Without Earth, nothing would happen here.) A to-
tal of five forces act on the blocks, as shown in Fig. 5-13:

1. The cord pulls to the right on sliding block S with a force
of magnitude T.

2. The cord pulls upward on hanging block H with a force
of the same magnitude T. This upward force keeps block
H from falling freely.

3. Earth pulls down on block S with the gravitational force
which has a magnitude equal to Mg.

4. Earth pulls down on block H with the gravitational force
which has a magnitude equal to mg.

5. The table pushes up on block S with a normal force .F
:

N

F
:

gH,

F
:

gS,

Fig. 5-12 A block S of mass M is connected to a block H of mass
m by a cord that wraps over a pulley.

Sliding 
block S

Hanging 
block H

Frictionless
surface

M

m

FgH

T

T

FgS

Block H

Block S

m

M

FN

Fig. 5-13 The forces
acting on the two
blocks of Fig. 5-12.

5-9 Applying Newton’s Laws
The rest of this chapter consists of sample problems. You should pore over 
them, learning their procedures for attacking a problem. Especially important is
knowing how to translate a sketch of a situation into a free-body diagram with
appropriate axes, so that Newton’s laws can be applied.
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Fig. 5-18 (a) A constant horizontal force is applied to block
A, which pushes against block B. (b) Two horizontal forces act on
block A. (c) Only one horizontal force acts on block B.

F
:

app

FBA

(c)

x

B

(a) 

x 
A 

B 

Fapp 

(b)

xA FABFapp

This force causes the
acceleration of the full
two-block system.

This is the only force
causing the acceleration
of block B.

These are the two forces
acting on just block A.
Their net force causes
its acceleration.

eration of the system with Newton’s second law. Here, once
again for the x axis, we can write that law as

Fapp ! (mA " mB)a,

where now we properly apply to the system withF
:

app

total mass mA mB. Solving for a and substituting known
values, we find

(Answer)

Thus, the acceleration of the system and of each block is
in the positive direction of the x axis and has the magnitude
2.0 m/s2.

(b) What is the (horizontal) force on block B from
block A (Fig. 5-18c)?

KEY I DEA 

We can relate the net force on block B to the block’s accel-
eration with Newton’s second law.

Calculation: Here we can write that law, still for compo-
nents along the x axis, as

FBA ! mBa,

which, with known values, gives

FBA ! (6.0 kg)(2.0 m/s2) ! 12 N. (Answer)

Thus, force is in the positive direction of the x axis and
has a magnitude of 12 N.

F
:

BA

F
:

BA

a !
Fapp

mA " mB
!

20 N
4.0 kg " 6.0 kg

! 2.0 m/s2.

"

Newtonian Mechanics The velocity of an object can change
(the object can accelerate) when the object is acted on by one or
more forces (pushes or pulls) from other objects. Newtonian me-
chanics relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are de-
fined in terms of the acceleration they would give the standard
kilogram. A force that accelerates that standard body by exactly 1
m/s2 is defined to have a magnitude of 1 N. The direction of a force
is the direction of the acceleration it causes. Forces are combined
according to the rules of vector algebra. The net force on a body is
the vector sum of all the forces acting on the body.

Newton’s First Law If there is no net force on a body, the
body remains at rest if it is initially at rest or moves in a straight
line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which
Newtonian mechanics holds are called inertial reference frames or in-
ertial frames. Reference frames in which Newtonian mechanics does
not hold are called noninertial reference frames or noninertial frames.

Mass The mass of a body is the characteristic of that body that

relates the body’s acceleration to the net force causing the acceler-
ation. Masses are scalar quantities.

Newton’s Second Law The net force on a body with
mass m is related to the body’s acceleration by

(5-1)

which may be written in the component versions

Fnet, x ! max Fnet, y ! may and Fnet, z ! maz. (5-2)

The second law indicates that in SI units

1 N ! 1 kg # m/s2. (5-3)

A free-body diagram is a stripped-down diagram in which only
one body is considered. That body is represented by either a sketch
or a dot. The external forces on the body are drawn, and a coordi-
nate system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force on a body
is a pull by another body. In most situations in this book, the other
body is Earth or some other astronomical body. For Earth, the
force is directed down toward the ground, which is assumed to be

F
:

g

F
:

net ! ma:,

a:
F
:

net

Additional examples, video, and practice available at WileyPLUS
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only horizontal force acting on block A. There is also the
force from block B (Fig. 5-18b).

Dead-End Solution: Let us now include force by writ-
ing, again for the x axis,

Fapp ! FAB " mAa.

(We use the minus sign to include the direction of .)
Because FAB is a second unknown, we cannot solve this
equation for a.

Successful Solution: Because of the direction in which
force is applied, the two blocks form a rigidly connected
system. We can relate the net force on the system to the accel-

F
:

app

F
:
AB

F
:
AB

F
:
AB

Acceleration of block pushing on block

In Fig. 5-18a, a constant horizontal force of magnitude
20 N is applied to block A of mass mA 4.0 kg, which
pushes against block B of mass mB " 6.0 kg. The blocks
slide over a frictionless surface, along an x axis.

(a) What is the acceleration of the blocks?

Serious Error: Because force is applied directly
to block A, we use Newton’s second law to relate that
force to the acceleration of block A. Because the motion
is along the x axis, we use that law for x components 
(Fnet, x " max), writing it as

Fapp " mAa.

However, this is seriously wrong because is not theF
:

app

a:

F
:

app

"
F
:

app

to be our inertial frame and make any measure of the passen-
ger’s acceleration relative to it.

Calculations: Because the two forces on the passenger
and his acceleration are all directed vertically, along the y
axis in Fig. 5-17b, we can use Newton’s second law written
for y components (Fnet, y " may) to get

FN ! Fg " ma
or FN " Fg # ma. (5-27)

This tells us that the scale reading, which is equal to FN,
depends on the vertical acceleration. Substituting mg for Fg

gives us
FN " m(g # a) (Answer) (5-28)

for any choice of acceleration a.

(b) What does the scale read if the cab is stationary or
moving upward at a constant 0.50 m/s?

KEY I DEA

For any constant velocity (zero or otherwise), the accelera-
tion a of the passenger is zero.

Calculation: Substituting this and other known values into
Eq. 5-28, we find

FN " (72.2 kg)(9.8 m/s2 # 0) " 708 N.
(Answer)

This is the weight of the passenger and is equal to the mag-
nitude Fg of the gravitational force on him.

(c) What does the scale read if the cab accelerates upward
at 3.20 m/s2 and downward at 3.20 m/s2?

Calculations: For a " 3.20 m/s2, Eq. 5-28 gives

FN " (72.2 kg)(9.8 m/s2 # 3.20 m/s2)
" 939 N, (Answer)

and for a " !3.20 m/s2, it gives

FN " (72.2 kg)(9.8 m/s2 ! 3.20 m/s2)
" 477 N. (Answer)

For an upward acceleration (either the cab’s upward speed
is increasing or its downward speed is decreasing), the scale
reading is greater than the passenger’s weight. That reading
is a measurement of an apparent weight, because it is made
in a noninertial frame. For a downward acceleration (either
decreasing upward speed or increasing downward speed),
the scale reading is less than the passenger’s weight.

(d) During the upward acceleration in part (c), what is the
magnitude Fnet of the net force on the passenger, and what is
the magnitude ap,cab of his acceleration as measured in the
frame of the cab? Does ?

Calculation: The magnitude Fg of the gravitational force
on the passenger does not depend on the motion of the pas-
senger or the cab; so, from part (b), Fg is 708 N. From part (c),
the magnitude FN of the normal force on the passenger during
the upward acceleration is the 939 N reading on the scale.Thus,
the net force on the passenger is

Fnet " FN ! Fg " 939 N ! 708 N " 231 N, (Answer)

during the upward acceleration. However, his acceleration
ap,cab relative to the frame of the cab is zero. Thus, in the non-
inertial frame of the accelerating cab, Fnet is not equal to
map,cab, and Newton’s second law does not hold.

F
:

net " ma:p,cab
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Fig. 5-18 (a) A constant horizontal force is applied to block
A, which pushes against block B. (b) Two horizontal forces act on
block A. (c) Only one horizontal force acts on block B.
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(b)
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This force causes the
acceleration of the full
two-block system.

This is the only force
causing the acceleration
of block B.

These are the two forces
acting on just block A.
Their net force causes
its acceleration.

eration of the system with Newton’s second law. Here, once
again for the x axis, we can write that law as

Fapp ! (mA " mB)a,

where now we properly apply to the system withF
:

app

total mass mA mB. Solving for a and substituting known
values, we find

(Answer)

Thus, the acceleration of the system and of each block is
in the positive direction of the x axis and has the magnitude
2.0 m/s2.

(b) What is the (horizontal) force on block B from
block A (Fig. 5-18c)?

KEY I DEA 

We can relate the net force on block B to the block’s accel-
eration with Newton’s second law.

Calculation: Here we can write that law, still for compo-
nents along the x axis, as

FBA ! mBa,

which, with known values, gives

FBA ! (6.0 kg)(2.0 m/s2) ! 12 N. (Answer)

Thus, force is in the positive direction of the x axis and
has a magnitude of 12 N.

F
:

BA

F
:

BA

a !
Fapp

mA " mB
!

20 N
4.0 kg " 6.0 kg

! 2.0 m/s2.

"

Newtonian Mechanics The velocity of an object can change
(the object can accelerate) when the object is acted on by one or
more forces (pushes or pulls) from other objects. Newtonian me-
chanics relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are de-
fined in terms of the acceleration they would give the standard
kilogram. A force that accelerates that standard body by exactly 1
m/s2 is defined to have a magnitude of 1 N. The direction of a force
is the direction of the acceleration it causes. Forces are combined
according to the rules of vector algebra. The net force on a body is
the vector sum of all the forces acting on the body.

Newton’s First Law If there is no net force on a body, the
body remains at rest if it is initially at rest or moves in a straight
line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which
Newtonian mechanics holds are called inertial reference frames or in-
ertial frames. Reference frames in which Newtonian mechanics does
not hold are called noninertial reference frames or noninertial frames.

Mass The mass of a body is the characteristic of that body that

relates the body’s acceleration to the net force causing the acceler-
ation. Masses are scalar quantities.

Newton’s Second Law The net force on a body with
mass m is related to the body’s acceleration by

(5-1)

which may be written in the component versions

Fnet, x ! max Fnet, y ! may and Fnet, z ! maz. (5-2)

The second law indicates that in SI units

1 N ! 1 kg # m/s2. (5-3)

A free-body diagram is a stripped-down diagram in which only
one body is considered. That body is represented by either a sketch
or a dot. The external forces on the body are drawn, and a coordi-
nate system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force on a body
is a pull by another body. In most situations in this book, the other
body is Earth or some other astronomical body. For Earth, the
force is directed down toward the ground, which is assumed to be

F
:

g

F
:

net ! ma:,

a:
F
:

net

Additional examples, video, and practice available at WileyPLUS

Fapp = 20N ,    mA = 4Kg,    mB = 6Kg
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Fig. 5-18 (a) A constant horizontal force is applied to block
A, which pushes against block B. (b) Two horizontal forces act on
block A. (c) Only one horizontal force acts on block B.
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eration of the system with Newton’s second law. Here, once
again for the x axis, we can write that law as

Fapp ! (mA " mB)a,

where now we properly apply to the system withF
:

app

total mass mA mB. Solving for a and substituting known
values, we find

(Answer)

Thus, the acceleration of the system and of each block is
in the positive direction of the x axis and has the magnitude
2.0 m/s2.

(b) What is the (horizontal) force on block B from
block A (Fig. 5-18c)?

KEY I DEA 

We can relate the net force on block B to the block’s accel-
eration with Newton’s second law.

Calculation: Here we can write that law, still for compo-
nents along the x axis, as

FBA ! mBa,

which, with known values, gives

FBA ! (6.0 kg)(2.0 m/s2) ! 12 N. (Answer)

Thus, force is in the positive direction of the x axis and
has a magnitude of 12 N.

F
:

BA

F
:

BA

a !
Fapp

mA " mB
!

20 N
4.0 kg " 6.0 kg

! 2.0 m/s2.

"

Newtonian Mechanics The velocity of an object can change
(the object can accelerate) when the object is acted on by one or
more forces (pushes or pulls) from other objects. Newtonian me-
chanics relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are de-
fined in terms of the acceleration they would give the standard
kilogram. A force that accelerates that standard body by exactly 1
m/s2 is defined to have a magnitude of 1 N. The direction of a force
is the direction of the acceleration it causes. Forces are combined
according to the rules of vector algebra. The net force on a body is
the vector sum of all the forces acting on the body.

Newton’s First Law If there is no net force on a body, the
body remains at rest if it is initially at rest or moves in a straight
line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which
Newtonian mechanics holds are called inertial reference frames or in-
ertial frames. Reference frames in which Newtonian mechanics does
not hold are called noninertial reference frames or noninertial frames.

Mass The mass of a body is the characteristic of that body that

relates the body’s acceleration to the net force causing the acceler-
ation. Masses are scalar quantities.

Newton’s Second Law The net force on a body with
mass m is related to the body’s acceleration by

(5-1)

which may be written in the component versions

Fnet, x ! max Fnet, y ! may and Fnet, z ! maz. (5-2)

The second law indicates that in SI units

1 N ! 1 kg # m/s2. (5-3)

A free-body diagram is a stripped-down diagram in which only
one body is considered. That body is represented by either a sketch
or a dot. The external forces on the body are drawn, and a coordi-
nate system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force on a body
is a pull by another body. In most situations in this book, the other
body is Earth or some other astronomical body. For Earth, the
force is directed down toward the ground, which is assumed to be

F
:

g

F
:

net ! ma:,

a:
F
:

net

Additional examples, video, and practice available at WileyPLUS

Fnet ,x = (mA +mB )a
Fapp + FBA − FAB = (mA +mB )a
20 + 0 = (4 + 6)a
a = 2m / s2

FBA = mBa = 6 × 2 = 12N



Examples:
Q.1: A constant force of 46N is applied at an angle 
of 60o to a block A of a mass 10kg as shown in the 
figure. Block A pushes another block B of mass 
36kg. Assuming a frictionless surface, the total 
acceleration of the blocks along the x-axes is: 
(a) 1.5m/s2 (b) 0.25m/s2 (c) 0.5m/s2 (d) 2m/s2

Fnet ,x = (mA +mB )a

a = F cosθ
mA +mB

= 46cos60
o

10 + 36
= 0.5m / s2

A B

F

θ

A B
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Fcosθ

Fsinθ

FNA

FNB

mAg mBg

Motion 
direction



Q.2: A 3kg box is placed in the top of a 10kg box. 
The bottom box is pushed with a force F. The two 
boxes moves together with an acceleration of 
2m/s2. The horizontal force F is:
(a) 3N (b) 26N (c) 1N (d) 5N

Q.3 In the figure, two blocks are connected and pulled 
on a horizontal table by a force with a magnitude of 
20N. If the m1 =3kg, m2 = 2kg, then T and a are:
(a) 5N, 4m/s2 (b) 8N, 4m/s2 (c) 5N, 4m/s2 (d) 10N, 3m/s2

To find T we apply Newton's 2nd law on one of the mass:

Fnet ,x = (mA +mB )a = (10 + 3)2 = 26N

Fnet ,x = (m1 +m2 )a   ⇒ a = F
m1 +m2

= 20
5

= 4m / s2

      F −T = m1a⇒T = F −m1a = 20 −12 = 8N
or   T = m2a = 2(4) = 8N

A

B
F

Motion 
direction

m2
F

Motion direction

m1
T T



Q.4: An elevator of total mass 2000kg moves upward. The tension 
in the cable pulling it is 24000N. The acceleration of the elevator 
is:
(a) 2.2m/s2 (b) 9.8m/s2 (c) 12m/s2 (d) 3.6m/s2

Q.5: A 70kg man stands on a spring scale in an elevator that has a 
downward acceleration of 2.8m/s2. The scale will read:
(a) 980N (b) 680N (c) 490N (d) 343N

Fnet ,y = ma   

T −mg = ma   ⇒ a = T −mg
m

= 24000 − 2000(9.8)
2000

= 2.2m / s2

Fnet ,y = ma   
T −mg = −ma   ⇒T = m(g − a) = 70(9.8 − 2.8) = 490N

a

T

mg

a

T

mg



Q.6: An elevator has a body of 10kg. The tension in the cable when 
the elevator is moving upward at a constant speed of 10m/s is:
(a) zero (b) 98N (c) 1.5N (d) 7.3N

Q.7: Two masses m1 = 4kg and m2 = 6kg are connected to a rope of a 
negligible mass. An upward force of 198N is applied as shown. The 
magnitude of the acceleration of the system is:
(a) 10m/s2 (b) 40.2m/s2 (c) 50.2m/s2 (d) 70.2/s2

Fnet ,y = ma   
T −mg = 0   ⇒T = ma = 10(9.8) = 98N

Fnet,y = Ma   

T − (m1 +m2 )g = (m1 +m2 )a   ⇒ a = T − (m1 +m2 )g
m1 +m2

= 198− (10)9.8
10

=10m / s2

v

T
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Q.8: A block slides down a frictionless inclined plane with an 
acceleration of 4.9m/s2. The angle between the plane and the 
horizontal is:
(a) 30o (b) 26o (c) 21.55o (d)14.32o

Q.9: A 40kg crate is held at rest on a frictionless incline by a force 
parallel to the incline. If the incline is 30o above the horizontal, the 
magnitude of the applied force is:
(a) 20N     (b) 40N (c) 23.5N     (d) 10N

at rest à a = 0

Fnet ,x = max
⇒−mgsinθ = −ma  ⇒ a = gsinθ

⇒θ = sin−1 a
g
= 30o

Fnet,x = max
⇒ F −mgsinθ = 0  ⇒ F = mgsinθ = 40(9.8)sin30o = 20N

mg sinθ

mg cosθ

FN

θ

mg sinθ

mg cosθ

F
FN

30o



Q.10: A block of mass 4kg is pushed up a smooth 30o inclined 
plane by a constant force of magnitude 40N and parallel to the 
incline. The magnitude of the acceleration of the block is:
(a) zero (b) 9.8m/s2 (c) 1.2m/s2 (d) 5.1m/s2

Q.11: If the mass of the block is 5kg. Find T if 
the block moves with a constant velocity upward 
the smooth inclined plane (or at rest).
(a) 45N (b) 24.5N (c) 42N       (d) 25N

Fnet ,x = max ⇒ F −mgsinθ = ma 

⇒ a = F −mgsinθ
m

= 40 − 4(9.8)sin 30o

4
= 5.1m / s2  

Fnet ,x = max ⇒T −mgsinθ = 0 

⇒T = mgsinθ = 5(9.8)sin 30o = 24.5N
mg sinθ

mg cosθ

F
FN

30o

mg sinθ

mg cosθ

F
FN

30o



Q.12: A 5kg block is pushed upward 30o inclined 
plane with initial velocity of 14m/s. The distance 
that the block goes is:
(a) 20m (b) 10m (c) 18m(d) 24m

Q.13: From the figure, the normal force FN on a 
block of weight 60N sliding down a frictionless 
plane is:
(a) 50N     (b) 30N    (c) 25N (d) 40N

Fnet ,x = max ⇒ ma = −mgsinθ  

⇒ a = −gsinθ = −4.4m / s2

vo = 14m / s,    v = 0

Δx = − vo
2

a
 =142

4.4
= 20m

  

232-7 CON STANT ACCE LE RATION: A S PECIAL CAS E
PART 1

Table 2-1

Equations for Motion with Constant 
Accelerationa

Equation Missing
Number Equation Quantity

2-11 v ! v0 " at x # x0

2-15 v
2-16 t
2-17 a
2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x # x0 ! vt # 1
2at2

x # x0 ! 1
2(v0 " v)t

v2 ! v0
2 " 2a(x # x0)

x # x0 ! v0t " 1
2at2

and then as
x ! x0 " vavg t, (2-12)

in which x0 is the position of the particle at t ! 0 and vavg is the average velocity
between t ! 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t ! 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (! v0) and the velocity at the end of the interval (! v). For
the interval from t ! 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t ! 0 yields x ! x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x # x0, v, t, a, and v0. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x # x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Eqs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

x # x0 ! vt # 1
2 at 2.

x # x0 ! 1
2(v0 " v)t.

v2 ! v0
2 " 2a(x # x0).

x # x0 ! v0t " 1
2 at 2.

vavg ! v0 " 1
2 at.

vavg ! 1
2 (v0 " v).

CHECKPOINT 4

The following equations give the position x(t) of a particle in four situations: (1) x !
3t # 4; (2) x ! #5t3 " 4t2 " 6; (3) x ! 2/t2 # 4/t; (4) x ! 5t2 # 3. To which of these
situations do the equations of Table 2-1 apply?
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Fnet ,y = may ⇒ FN −mgcosθ = 0

⇒ FN = mgcosθ = 60cos60o = 30N
  

mg sinθ

mg cosθ

FN

30o

mg sinθ

mg cosθ

FN

60o



Q.14: Show the correct direction of the tension force T:

(a) (b) (c)                       (d)

Q.15: A block of mass m is connected to a block of 
mass M as shown. The normal force on the block m is:
(a) mg − T (b) mg (c) Mg − T (d) Mg 

A

B X

M

m X

mg

Mg

FN

T

T

M

m X

A

B X

A

B X

A

B X



Q.16: Referring to the last example, if the block M is moving 
downward, the net force acting on it is:
(a) Ma − T = Mg (b) T = Ma (c)T = Mg    (d) T − Mg = − Ma

Fnet ,y = Ma   ⇒T −Mg = −Ma   

M

m X

mg

Mg

FN

T

T Motion 
direction



108 CHAPTE R 5 FORCE AN D MOTION—I

sec. 5-6 Newton’s Second Law
•1 Only two horizontal forces act on a 3.0 kg body that can move
over a frictionless floor. One force is 9.0 N, acting due east, and the
other is 8.0 N, acting 62° north of west. What is the magnitude of
the body’s acceleration?

•2 Two horizontal forces act on a 2.0 kg chopping block that can
slide over a frictionless kitchen counter, which lies in an xy plane.
One force is Find the acceleration of the
chopping block in unit-vector notation when the other force is (a)

(b) and
(c) .

•3 If the 1 kg standard body has an acceleration of 2.00 m/s2 at
20.0° to the positive direction of an x axis, what are (a) the x com-
ponent and (b) the y component of the net force acting on the
body, and (c) what is the net force in unit-vector notation?

••4 While two forces act on it, a par-
ticle is to move at the constant veloc-
ity One of
the forces is 
What is the other force?

••5 Three astronauts, propelled
by jet backpacks, push and guide a
120 kg asteroid toward a processing
dock, exerting the forces shown in
Fig. 5-29, with F1 ! 32 N, F2 ! 55 N,
F3 ! 41 N, u1 ! 30°, and u3 ! 60°.
What is the asteroid’s acceleration (a)
in unit-vector notation and as (b) a
magnitude and (c) a direction relative
to the positive direction of the x axis?

••6 In a two-dimensional tug-of-
war, Alex, Betty, and Charles pull
horizontally on an automobile tire
at the angles shown in the overhead
view of Fig. 5-30. The tire remains
stationary in spite of the three pulls.
Alex pulls with force of magni-
tude 220 N, and Charles pulls with
force of magnitude 170 N. Note
that the direction of is not given.
What is the magnitude of Betty’s
force ?

••7 There are two forces on
the 2.00 kg box in the overhead view
of Fig. 5-31, but only one is shown.
For F1 20.0 N, a 12.0 m/s2, and 
u ! 30.0°, find the second force (a) in
unit-vector notation and as (b) a
magnitude and (c) an angle relative
to the positive direction of the x axis.
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••8 A 2.00 kg object is subjected to three forces that give it an accel-
eration . If two of the three forces
are and 
find the third force.

••9 A 0.340 kg particle moves in an xy plane according 
to x(t) ! "15.00 # 2.00t " 4.00t3 and y(t) ! 25.00 # 7.00t " 9.00t2,
with x and y in meters and t in seconds. At t ! 0.700 s, what are (a)
the magnitude and (b) the angle (relative to the positive direction
of the x axis) of the net force on the particle, and (c) what is the an-
gle of the particle’s direction of travel?

••10 A 0.150 kg particle moves along an x axis according 
to x(t) ! "13.00 # 2.00t # 4.00t2 " 3.00t3, with x in meters and t in
seconds. In unit-vector notation, what is the net force acting on the
particle at t ! 3.40 s?

••11 A 2.0 kg particle moves along an x axis, being propelled by a
variable force directed along that axis. Its position is given by x !
3.0 m # (4.0 m/s)t # ct2 " (2.0 m/s3)t3, with x in meters and t in
seconds.The factor c is a constant.At t ! 3.0 s, the force on the par-
ticle has a magnitude of 36 N and is in the negative direction of the
axis.What is c?

•••12 Two horizontal forces and act on a 4.0 kg disk that
slides over frictionless ice, on
which an xy coordinate system
is laid out. Force is in the
positive direction of the x axis
and has a magnitude of 7.0 N.
Force has a magnitude of 9.0
N. Figure 5-32 gives the x com-
ponent vx of the velocity of the
disk as a function of time t dur-
ing the sliding. What is the an-
gle between the constant direc-
tions of forces and ?

sec. 5-7 Some Particular Forces
•13 Figure 5-33 shows an arrangement in which four disks are sus-
pended by cords. The longer, top cord loops
over a frictionless pulley and pulls with a
force of magnitude 98 N on the wall to which
it is attached. The tensions in the three
shorter cords are T1 ! 58.8 N, T2 ! 49.0 N,
and T3 ! 9.8 N. What are the masses of (a)
disk A, (b) disk B, (c) disk C, and (d) disk D?

•14 A block with a weight of 3.0 N is at
rest on a horizontal surface.A 1.0 N upward
force is applied to the block by means of an
attached vertical string. What are the (a)
magnitude and (b) direction of the force of
the block on the horizontal surface?

•15 (a) An 11.0 kg salami is sup-
ported by a cord that runs to a spring scale,
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Fig. 5-31 Problem 7.

Fig. 5-32 Problem 12.
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Fig. 5-33
Problem 13.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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F
:

1 ! (3.0 N)î # (4.0 N)ĵ.
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What is the magnitude of Betty’s
force ?

••7 There are two forces on
the 2.00 kg box in the overhead view
of Fig. 5-31, but only one is shown.
For F1 20.0 N, a 12.0 m/s2, and 
u ! 30.0°, find the second force (a) in
unit-vector notation and as (b) a
magnitude and (c) an angle relative
to the positive direction of the x axis.
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v: ! (3 m/s)î " (4 m/s)ĵ.
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••8 A 2.00 kg object is subjected to three forces that give it an accel-
eration . If two of the three forces
are and 
find the third force.

••9 A 0.340 kg particle moves in an xy plane according 
to x(t) ! "15.00 # 2.00t " 4.00t3 and y(t) ! 25.00 # 7.00t " 9.00t2,
with x and y in meters and t in seconds. At t ! 0.700 s, what are (a)
the magnitude and (b) the angle (relative to the positive direction
of the x axis) of the net force on the particle, and (c) what is the an-
gle of the particle’s direction of travel?

••10 A 0.150 kg particle moves along an x axis according 
to x(t) ! "13.00 # 2.00t # 4.00t2 " 3.00t3, with x in meters and t in
seconds. In unit-vector notation, what is the net force acting on the
particle at t ! 3.40 s?

••11 A 2.0 kg particle moves along an x axis, being propelled by a
variable force directed along that axis. Its position is given by x !
3.0 m # (4.0 m/s)t # ct2 " (2.0 m/s3)t3, with x in meters and t in
seconds.The factor c is a constant.At t ! 3.0 s, the force on the par-
ticle has a magnitude of 36 N and is in the negative direction of the
axis.What is c?

•••12 Two horizontal forces and act on a 4.0 kg disk that
slides over frictionless ice, on
which an xy coordinate system
is laid out. Force is in the
positive direction of the x axis
and has a magnitude of 7.0 N.
Force has a magnitude of 9.0
N. Figure 5-32 gives the x com-
ponent vx of the velocity of the
disk as a function of time t dur-
ing the sliding. What is the an-
gle between the constant direc-
tions of forces and ?

sec. 5-7 Some Particular Forces
•13 Figure 5-33 shows an arrangement in which four disks are sus-
pended by cords. The longer, top cord loops
over a frictionless pulley and pulls with a
force of magnitude 98 N on the wall to which
it is attached. The tensions in the three
shorter cords are T1 ! 58.8 N, T2 ! 49.0 N,
and T3 ! 9.8 N. What are the masses of (a)
disk A, (b) disk B, (c) disk C, and (d) disk D?

•14 A block with a weight of 3.0 N is at
rest on a horizontal surface.A 1.0 N upward
force is applied to the block by means of an
attached vertical string. What are the (a)
magnitude and (b) direction of the force of
the block on the horizontal surface?

•15 (a) An 11.0 kg salami is sup-
ported by a cord that runs to a spring scale,
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Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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••50 In Fig. 5-46, three ballot
boxes are connected by cords, one of
which wraps over a pulley having
negligible friction on its axle and
negligible mass.The three masses are
mA ! 30.0 kg, mB ! 40.0 kg, and 
mC ! 10.0 kg. When the assembly is
released from rest, (a) what is the tension in the
cord connecting B and C, and (b) how far does A
move in the first 0.250 s (assuming it does not reach
the pulley)?

••51 Figure 5-47 shows two blocks connected
by a cord (of negligible mass) that passes over a fric-
tionless pulley (also of negligible mass). The
arrangement is known as Atwood’s machine. One
block has mass m1 ! 1.30 kg; the other has mass m2 !
2.80 kg.What are (a) the magnitude of the blocks’ ac-
celeration and (b) the tension in the cord?

••52 An 85 kg man lowers himself to the ground
from a height of 10.0 m by holding onto a rope that
runs over a frictionless pulley to a 65 kg sandbag.
With what speed does the man hit the ground if he
started from rest?

••53 In Fig. 5-48, three connected blocks are pulled to the right on
a horizontal frictionless table by a force of magnitude 65.0 N.
If m1 12.0 kg, m2 24.0 kg, and m3 31.0 kg, calculate (a) the
magnitude of the system’s acceleration, (b) the tension T1, and (c)
the tension T2.

!!!
T3 !

111PROB LE M S
PART 1

θ

Fig. 5-42 Problem 42.

above cab A. Cab A has mass 1700 kg; cab B has mass
1300 kg. A 12.0 kg box of catnip lies on the floor of
cab A. The tension in the cable connecting the cabs is
1.91 " 104 N. What is the magnitude of the normal
force on the box from the floor?

••49 In Fig. 5-45, a block of mass m ! 5.00 kg is
pulled along a horizontal frictionless floor by a cord
that exerts a force of magnitude F ! 12.0 N at an an-
gle u ! 25.0°. (a) What is the magnitude of the
block’s acceleration? (b) The force magnitude F is
slowly increased. What is its value just before the
block is lifted (completely) off the floor? (c) What is
the magnitude of the block’s acceleration just before
it is lifted (completely) off the floor?

Figure 5-41 gives, as a function of time t, the component vx of the box’s
velocity along an x axis that extends directly up the ramp.What is the
magnitude of the normal force on the box from the ramp?

••41 Using a rope that will snap if the tension in it exceeds 387 N,
you need to lower a bundle of old roofing material weighing 449 N
from a point 6.1 m above the ground. (a) What magnitude of the bun-
dle’s acceleration will put the rope on the verge of snapping? (b) At
that acceleration, with what speed would the bundle hit the ground?

••42 In earlier days, horses pulled barges down canals in the
manner shown in Fig. 5-42. Suppose the horse pulls on the rope
with a force of 7900 N at an angle of u ! 18° to the direction of
motion of the barge, which is headed straight along the positive
direction of an x axis. The mass of the barge is 9500 kg, and the
magnitude of its acceleration is 0.12 m/s2. What are the (a) magni-
tude and (b) direction (relative to positive x) of the force on the
barge from the water?

••43 In Fig. 5-43, a chain consisting of five
links, each of mass 0.100 kg, is lifted vertically
with constant acceleration of magnitude a ! 2.50
m/s2. Find the magnitudes of (a) the force on link
1 from link 2, (b) the force on link 2 from link 3,
(c) the force on link 3 from link 4, and (d) the
force on link 4 from link 5. Then find the magni-
tudes of (e) the force on the top link from the
person lifting the chain and (f) the net force accel-
erating each link.

••44 A lamp hangs vertically from a cord in a de-
scending elevator that decelerates at 2.4 m/s2. (a) If
the tension in the cord is 89 N, what is the lamp’s
mass? (b) What is the cord’s tension when the elevator ascends with
an upward acceleration of 2.4 m/s2?

••45 An elevator cab that weighs 27.8 kN moves upward. What is
the tension in the cable if the cab’s speed is (a) increasing at a rate
of 1.22 m/s2 and (b) decreasing at a rate of 1.22 m/s2?

••46 An elevator cab is pulled upward by a cable. The cab and its
single occupant have a combined mass of 2000 kg.When that occu-
pant drops a coin, its acceleration relative to the cab is 8.00 m/s2

downward.What is the tension in the cable?

••47 The Zacchini family was renowned for their human-
cannonball act in which a family member was shot from a cannon
using either elastic bands or compressed air. In one version of the
act, Emanuel Zacchini was shot over three Ferris wheels to land in
a net at the same height as the open end of the cannon and at a
range of 69 m. He was propelled inside the barrel for 5.2 m and
launched at an angle of 53°. If his mass was 85 kg and he underwent
constant acceleration inside the barrel, what was the magnitude of
the force propelling him? (Hint: Treat the launch as though it were
along a ramp at 53°. Neglect air drag.)

••48 In Fig. 5-44, elevator cabs A and B are connected by
a short cable and can be pulled upward or lowered by the cable
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108 CHAPTE R 5 FORCE AN D MOTION—I

sec. 5-6 Newton’s Second Law
•1 Only two horizontal forces act on a 3.0 kg body that can move
over a frictionless floor. One force is 9.0 N, acting due east, and the
other is 8.0 N, acting 62° north of west. What is the magnitude of
the body’s acceleration?

•2 Two horizontal forces act on a 2.0 kg chopping block that can
slide over a frictionless kitchen counter, which lies in an xy plane.
One force is Find the acceleration of the
chopping block in unit-vector notation when the other force is (a)

(b) and
(c) .

•3 If the 1 kg standard body has an acceleration of 2.00 m/s2 at
20.0° to the positive direction of an x axis, what are (a) the x com-
ponent and (b) the y component of the net force acting on the
body, and (c) what is the net force in unit-vector notation?

••4 While two forces act on it, a par-
ticle is to move at the constant veloc-
ity One of
the forces is 
What is the other force?

••5 Three astronauts, propelled
by jet backpacks, push and guide a
120 kg asteroid toward a processing
dock, exerting the forces shown in
Fig. 5-29, with F1 ! 32 N, F2 ! 55 N,
F3 ! 41 N, u1 ! 30°, and u3 ! 60°.
What is the asteroid’s acceleration (a)
in unit-vector notation and as (b) a
magnitude and (c) a direction relative
to the positive direction of the x axis?

••6 In a two-dimensional tug-of-
war, Alex, Betty, and Charles pull
horizontally on an automobile tire
at the angles shown in the overhead
view of Fig. 5-30. The tire remains
stationary in spite of the three pulls.
Alex pulls with force of magni-
tude 220 N, and Charles pulls with
force of magnitude 170 N. Note
that the direction of is not given.
What is the magnitude of Betty’s
force ?

••7 There are two forces on
the 2.00 kg box in the overhead view
of Fig. 5-31, but only one is shown.
For F1 20.0 N, a 12.0 m/s2, and 
u ! 30.0°, find the second force (a) in
unit-vector notation and as (b) a
magnitude and (c) an angle relative
to the positive direction of the x axis.
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F
:

1 ! (3.0 N)î # (4.0 N)ĵ.

••8 A 2.00 kg object is subjected to three forces that give it an accel-
eration . If two of the three forces
are and 
find the third force.

••9 A 0.340 kg particle moves in an xy plane according 
to x(t) ! "15.00 # 2.00t " 4.00t3 and y(t) ! 25.00 # 7.00t " 9.00t2,
with x and y in meters and t in seconds. At t ! 0.700 s, what are (a)
the magnitude and (b) the angle (relative to the positive direction
of the x axis) of the net force on the particle, and (c) what is the an-
gle of the particle’s direction of travel?

••10 A 0.150 kg particle moves along an x axis according 
to x(t) ! "13.00 # 2.00t # 4.00t2 " 3.00t3, with x in meters and t in
seconds. In unit-vector notation, what is the net force acting on the
particle at t ! 3.40 s?

••11 A 2.0 kg particle moves along an x axis, being propelled by a
variable force directed along that axis. Its position is given by x !
3.0 m # (4.0 m/s)t # ct2 " (2.0 m/s3)t3, with x in meters and t in
seconds.The factor c is a constant.At t ! 3.0 s, the force on the par-
ticle has a magnitude of 36 N and is in the negative direction of the
axis.What is c?

•••12 Two horizontal forces and act on a 4.0 kg disk that
slides over frictionless ice, on
which an xy coordinate system
is laid out. Force is in the
positive direction of the x axis
and has a magnitude of 7.0 N.
Force has a magnitude of 9.0
N. Figure 5-32 gives the x com-
ponent vx of the velocity of the
disk as a function of time t dur-
ing the sliding. What is the an-
gle between the constant direc-
tions of forces and ?

sec. 5-7 Some Particular Forces
•13 Figure 5-33 shows an arrangement in which four disks are sus-
pended by cords. The longer, top cord loops
over a frictionless pulley and pulls with a
force of magnitude 98 N on the wall to which
it is attached. The tensions in the three
shorter cords are T1 ! 58.8 N, T2 ! 49.0 N,
and T3 ! 9.8 N. What are the masses of (a)
disk A, (b) disk B, (c) disk C, and (d) disk D?

•14 A block with a weight of 3.0 N is at
rest on a horizontal surface.A 1.0 N upward
force is applied to the block by means of an
attached vertical string. What are the (a)
magnitude and (b) direction of the force of
the block on the horizontal surface?

•15 (a) An 11.0 kg salami is sup-
ported by a cord that runs to a spring scale,
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WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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Chapter 5 
 
 
1. We are only concerned with horizontal forces in this problem (gravity plays no direct 
role). We take East as the +x direction and North as +y. This calculation is efficiently 
implemented on a vector-capable calculator, using magnitude-angle notation (with SI 
units understood). 
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30
2 9 53

. .
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Therefore, the acceleration has a magnitude of 2.9 m/s2. 
 
2. We apply Newton’s second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force 
applied on the chopping block is 

� � �
F F Fnet � �1 2 , where the vector addition is done using 

unit-vector notation. The acceleration of the block is given by 
� � �
a F F m� �1 2d i / .  

 
(a) In the first case 
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so 
�
a � 0. 

 
(b) In the second case, the acceleration  

�
a  equals 
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(c) In this final situation, 

�
a  is 
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3. We apply Newton’s second law (specifically, Eq. 5-2). 
 
(a) We find the x component of the force is 
 

� � � �2cos 20.0 1.00kg 2.00m/s cos 20.0 1.88N.x xF ma ma� � �� ��  
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sec. 5-6 Newton’s Second Law
•1 Only two horizontal forces act on a 3.0 kg body that can move
over a frictionless floor. One force is 9.0 N, acting due east, and the
other is 8.0 N, acting 62° north of west. What is the magnitude of
the body’s acceleration?

•2 Two horizontal forces act on a 2.0 kg chopping block that can
slide over a frictionless kitchen counter, which lies in an xy plane.
One force is Find the acceleration of the
chopping block in unit-vector notation when the other force is (a)

(b) and
(c) .

•3 If the 1 kg standard body has an acceleration of 2.00 m/s2 at
20.0° to the positive direction of an x axis, what are (a) the x com-
ponent and (b) the y component of the net force acting on the
body, and (c) what is the net force in unit-vector notation?

••4 While two forces act on it, a par-
ticle is to move at the constant veloc-
ity One of
the forces is 
What is the other force?

••5 Three astronauts, propelled
by jet backpacks, push and guide a
120 kg asteroid toward a processing
dock, exerting the forces shown in
Fig. 5-29, with F1 ! 32 N, F2 ! 55 N,
F3 ! 41 N, u1 ! 30°, and u3 ! 60°.
What is the asteroid’s acceleration (a)
in unit-vector notation and as (b) a
magnitude and (c) a direction relative
to the positive direction of the x axis?

••6 In a two-dimensional tug-of-
war, Alex, Betty, and Charles pull
horizontally on an automobile tire
at the angles shown in the overhead
view of Fig. 5-30. The tire remains
stationary in spite of the three pulls.
Alex pulls with force of magni-
tude 220 N, and Charles pulls with
force of magnitude 170 N. Note
that the direction of is not given.
What is the magnitude of Betty’s
force ?

••7 There are two forces on
the 2.00 kg box in the overhead view
of Fig. 5-31, but only one is shown.
For F1 20.0 N, a 12.0 m/s2, and 
u ! 30.0°, find the second force (a) in
unit-vector notation and as (b) a
magnitude and (c) an angle relative
to the positive direction of the x axis.
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("4.0 N)ĵF
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••8 A 2.00 kg object is subjected to three forces that give it an accel-
eration . If two of the three forces
are and 
find the third force.

••9 A 0.340 kg particle moves in an xy plane according 
to x(t) ! "15.00 # 2.00t " 4.00t3 and y(t) ! 25.00 # 7.00t " 9.00t2,
with x and y in meters and t in seconds. At t ! 0.700 s, what are (a)
the magnitude and (b) the angle (relative to the positive direction
of the x axis) of the net force on the particle, and (c) what is the an-
gle of the particle’s direction of travel?

••10 A 0.150 kg particle moves along an x axis according 
to x(t) ! "13.00 # 2.00t # 4.00t2 " 3.00t3, with x in meters and t in
seconds. In unit-vector notation, what is the net force acting on the
particle at t ! 3.40 s?

••11 A 2.0 kg particle moves along an x axis, being propelled by a
variable force directed along that axis. Its position is given by x !
3.0 m # (4.0 m/s)t # ct2 " (2.0 m/s3)t3, with x in meters and t in
seconds.The factor c is a constant.At t ! 3.0 s, the force on the par-
ticle has a magnitude of 36 N and is in the negative direction of the
axis.What is c?

•••12 Two horizontal forces and act on a 4.0 kg disk that
slides over frictionless ice, on
which an xy coordinate system
is laid out. Force is in the
positive direction of the x axis
and has a magnitude of 7.0 N.
Force has a magnitude of 9.0
N. Figure 5-32 gives the x com-
ponent vx of the velocity of the
disk as a function of time t dur-
ing the sliding. What is the an-
gle between the constant direc-
tions of forces and ?

sec. 5-7 Some Particular Forces
•13 Figure 5-33 shows an arrangement in which four disks are sus-
pended by cords. The longer, top cord loops
over a frictionless pulley and pulls with a
force of magnitude 98 N on the wall to which
it is attached. The tensions in the three
shorter cords are T1 ! 58.8 N, T2 ! 49.0 N,
and T3 ! 9.8 N. What are the masses of (a)
disk A, (b) disk B, (c) disk C, and (d) disk D?

•14 A block with a weight of 3.0 N is at
rest on a horizontal surface.A 1.0 N upward
force is applied to the block by means of an
attached vertical string. What are the (a)
magnitude and (b) direction of the force of
the block on the horizontal surface?

•15 (a) An 11.0 kg salami is sup-
ported by a cord that runs to a spring scale,
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! (30.0 N)î # (16.0 N)ĵ
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1. We are only concerned with horizontal forces in this problem (gravity plays no direct 
role). We take East as the +x direction and North as +y. This calculation is efficiently 
implemented on a vector-capable calculator, using magnitude-angle notation (with SI 
units understood). 
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Therefore, the acceleration has a magnitude of 2.9 m/s2. 
 
2. We apply Newton’s second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force 
applied on the chopping block is 

� � �
F F Fnet � �1 2 , where the vector addition is done using 

unit-vector notation. The acceleration of the block is given by 
� � �
a F F m� �1 2d i / .  

 
(a) In the first case 
 

� � � � � � � �1 2
ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j 0F F � 
 � 
� � � � � � � �	 � 	 �

� �
 

 
so 
�
a � 0. 

 
(b) In the second case, the acceleration  

�
a  equals 

 

� � � �� � � � � �� � 21 2
ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j

ˆ(4.0m/s ) j.
2.0kg

F F
m

� � � ��
� �

� �
 

 
(c) In this final situation, 

�
a  is 

 

� � � �� � � � � �� � 21 2
ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j

ˆ(3.0m/s )i.
2.0 kg

F F
m

� � � ��
� �

� �
 

 
3. We apply Newton’s second law (specifically, Eq. 5-2). 
 
(a) We find the x component of the force is 
 

� � � �2cos 20.0 1.00kg 2.00m/s cos 20.0 1.88N.x xF ma ma� � �� ��  
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(b) The y component of the force is 
 

� � � �2sin 20.0 1.0kg 2.00m/s sin 20.0 0.684N.y yF ma ma� � �� ��  

 
(c) In unit-vector notation, the force vector is 
 

ˆ ˆ ˆ ˆi j (1.88 N)i (0.684 N) j .x yF F F� � � �
�

 
 
4. Since 

�v  = constant, we have 
�a = 0, which implies 

 � � � �F F F manet � � � �1 2 0 .  
 
Thus, the other force must be 
 

2 1
ˆ ˆ( 2 N) i ( 6 N) j .F F� � � � �

� �
 

 
5. The net force applied on the chopping block is 

� � � �
F F F Fnet � � �1 2 3 , where the vector 

addition is done using unit-vector notation. The acceleration of the block is given by 
� � � �
a F F F m� � �1 2 3d i / .  

 
(a) The forces exerted by the three astronauts can be expressed in unit-vector notation as 
follows: 
 

� �
� �

� � � �� �

1

2

3

ˆ ˆ ˆˆ(32 N) cos 30 i sin 30 (27.7 N) i (16 N ) jj
ˆ ˆˆ(55 N) cos 0 i sin 0 (55 N) ij

ˆ ˆ ˆˆ(41 N) cos 60 i sin 60 (20.5 N) i (35.5 N ) j.j

F

F

F

� � � � � �

� � � � �

� � � � � � � �

�

�

�
 

 
The resultant acceleration of the asteroid of mass m = 120 kg is therefore 
 

� � � � � � 2 2
ˆ ˆ ˆ ˆ ˆ27.7 i 16 j N 55i N 20.5i 35.5j N

ˆ ˆ(0.86m/s )i (0.16m/s )j .
120 kg

a
� � � �

� � �
�  

 
(b) The magnitude of the acceleration vector is 
 

� �22 2 2 2 2 2(0.86 m/s ) 0.16 m/s 0.88 m/s .x ya a a� � � � � �
�  

 
(c) The vector 

�a  makes an angle � with the +x axis, where 
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sec. 5-6 Newton’s Second Law
•1 Only two horizontal forces act on a 3.0 kg body that can move
over a frictionless floor. One force is 9.0 N, acting due east, and the
other is 8.0 N, acting 62° north of west. What is the magnitude of
the body’s acceleration?

•2 Two horizontal forces act on a 2.0 kg chopping block that can
slide over a frictionless kitchen counter, which lies in an xy plane.
One force is Find the acceleration of the
chopping block in unit-vector notation when the other force is (a)

(b) and
(c) .

•3 If the 1 kg standard body has an acceleration of 2.00 m/s2 at
20.0° to the positive direction of an x axis, what are (a) the x com-
ponent and (b) the y component of the net force acting on the
body, and (c) what is the net force in unit-vector notation?

••4 While two forces act on it, a par-
ticle is to move at the constant veloc-
ity One of
the forces is 
What is the other force?

••5 Three astronauts, propelled
by jet backpacks, push and guide a
120 kg asteroid toward a processing
dock, exerting the forces shown in
Fig. 5-29, with F1 ! 32 N, F2 ! 55 N,
F3 ! 41 N, u1 ! 30°, and u3 ! 60°.
What is the asteroid’s acceleration (a)
in unit-vector notation and as (b) a
magnitude and (c) a direction relative
to the positive direction of the x axis?

••6 In a two-dimensional tug-of-
war, Alex, Betty, and Charles pull
horizontally on an automobile tire
at the angles shown in the overhead
view of Fig. 5-30. The tire remains
stationary in spite of the three pulls.
Alex pulls with force of magni-
tude 220 N, and Charles pulls with
force of magnitude 170 N. Note
that the direction of is not given.
What is the magnitude of Betty’s
force ?

••7 There are two forces on
the 2.00 kg box in the overhead view
of Fig. 5-31, but only one is shown.
For F1 20.0 N, a 12.0 m/s2, and 
u ! 30.0°, find the second force (a) in
unit-vector notation and as (b) a
magnitude and (c) an angle relative
to the positive direction of the x axis.

!!

SSM

F
:

B

F
:

C

F
:

C

F
:

A

("6 N)ĵ.F1
:

! (2 N)î #
v: ! (3 m/s)î " (4 m/s)ĵ.

("4.0 N)ĵF
:

2 ! (3.0 N)î #
("3.0 N)î # (4.0 N)ĵ,F

:
2 !F

:
2 ! ("3.0 N)î # ("4.0 N)ĵ,

F
:

1 ! (3.0 N)î # (4.0 N)ĵ.

••8 A 2.00 kg object is subjected to three forces that give it an accel-
eration . If two of the three forces
are and 
find the third force.

••9 A 0.340 kg particle moves in an xy plane according 
to x(t) ! "15.00 # 2.00t " 4.00t3 and y(t) ! 25.00 # 7.00t " 9.00t2,
with x and y in meters and t in seconds. At t ! 0.700 s, what are (a)
the magnitude and (b) the angle (relative to the positive direction
of the x axis) of the net force on the particle, and (c) what is the an-
gle of the particle’s direction of travel?

••10 A 0.150 kg particle moves along an x axis according 
to x(t) ! "13.00 # 2.00t # 4.00t2 " 3.00t3, with x in meters and t in
seconds. In unit-vector notation, what is the net force acting on the
particle at t ! 3.40 s?

••11 A 2.0 kg particle moves along an x axis, being propelled by a
variable force directed along that axis. Its position is given by x !
3.0 m # (4.0 m/s)t # ct2 " (2.0 m/s3)t3, with x in meters and t in
seconds.The factor c is a constant.At t ! 3.0 s, the force on the par-
ticle has a magnitude of 36 N and is in the negative direction of the
axis.What is c?

•••12 Two horizontal forces and act on a 4.0 kg disk that
slides over frictionless ice, on
which an xy coordinate system
is laid out. Force is in the
positive direction of the x axis
and has a magnitude of 7.0 N.
Force has a magnitude of 9.0
N. Figure 5-32 gives the x com-
ponent vx of the velocity of the
disk as a function of time t dur-
ing the sliding. What is the an-
gle between the constant direc-
tions of forces and ?

sec. 5-7 Some Particular Forces
•13 Figure 5-33 shows an arrangement in which four disks are sus-
pended by cords. The longer, top cord loops
over a frictionless pulley and pulls with a
force of magnitude 98 N on the wall to which
it is attached. The tensions in the three
shorter cords are T1 ! 58.8 N, T2 ! 49.0 N,
and T3 ! 9.8 N. What are the masses of (a)
disk A, (b) disk B, (c) disk C, and (d) disk D?

•14 A block with a weight of 3.0 N is at
rest on a horizontal surface.A 1.0 N upward
force is applied to the block by means of an
attached vertical string. What are the (a)
magnitude and (b) direction of the force of
the block on the horizontal surface?

•15 (a) An 11.0 kg salami is sup-
ported by a cord that runs to a spring scale,

SSM

F
:

2F
:

1

F
:

2

F
:

1

F
:

2F
:

1

"(12.0 N)î # (8.00 N)ĵ,F2
:

!F1
:

! (30.0 N)î # (16.0 N)ĵ
a: ! "(8.00 m/s2)î # (6.00 m/s2)ĵ

x

y

θ

F1

a

x

y

F1

F2

F3

1θ

3θ

Fig. 5-30 Problem 6.

!x (m/s)

t (s)

4

2

0 1 2 3
–2

–4

Fig. 5-29 Problem 5.

Fig. 5-31 Problem 7.

Fig. 5-32 Problem 12.

Alex
Charles

Betty137°

A

B

C

D

T1

T2

T3

Fig. 5-33
Problem 13.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

!!"#$%&"'((")*(+,$*-."/%0%"!!
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(b) The y component of the force is 
 

� � � �2sin 20.0 1.0kg 2.00m/s sin 20.0 0.684N.y yF ma ma� � �� ��  

 
(c) In unit-vector notation, the force vector is 
 

ˆ ˆ ˆ ˆi j (1.88 N)i (0.684 N) j .x yF F F� � � �
�

 
 
4. Since 

�v  = constant, we have 
�a = 0, which implies 

 � � � �F F F manet � � � �1 2 0 .  
 
Thus, the other force must be 
 

2 1
ˆ ˆ( 2 N) i ( 6 N) j .F F� � � � �

� �
 

 
5. The net force applied on the chopping block is 

� � � �
F F F Fnet � � �1 2 3 , where the vector 

addition is done using unit-vector notation. The acceleration of the block is given by 
� � � �
a F F F m� � �1 2 3d i / .  

 
(a) The forces exerted by the three astronauts can be expressed in unit-vector notation as 
follows: 
 

� �
� �

� � � �� �

1

2

3

ˆ ˆ ˆˆ(32 N) cos 30 i sin 30 (27.7 N) i (16 N ) jj
ˆ ˆˆ(55 N) cos 0 i sin 0 (55 N) ij

ˆ ˆ ˆˆ(41 N) cos 60 i sin 60 (20.5 N) i (35.5 N ) j.j

F

F

F

� � � � � �

� � � � �

� � � � � � � �

�

�

�
 

 
The resultant acceleration of the asteroid of mass m = 120 kg is therefore 
 

� � � � � � 2 2
ˆ ˆ ˆ ˆ ˆ27.7 i 16 j N 55i N 20.5i 35.5j N

ˆ ˆ(0.86m/s )i (0.16m/s )j .
120 kg

a
� � � �

� � �
�  

 
(b) The magnitude of the acceleration vector is 
 

� �22 2 2 2 2 2(0.86 m/s ) 0.16 m/s 0.88 m/s .x ya a a� � � � � �
�  

 
(c) The vector 

�a  makes an angle � with the +x axis, where 
 



••50 In Fig. 5-46, three ballot
boxes are connected by cords, one of
which wraps over a pulley having
negligible friction on its axle and
negligible mass.The three masses are
mA ! 30.0 kg, mB ! 40.0 kg, and 
mC ! 10.0 kg. When the assembly is
released from rest, (a) what is the tension in the
cord connecting B and C, and (b) how far does A
move in the first 0.250 s (assuming it does not reach
the pulley)?

••51 Figure 5-47 shows two blocks connected
by a cord (of negligible mass) that passes over a fric-
tionless pulley (also of negligible mass). The
arrangement is known as Atwood’s machine. One
block has mass m1 ! 1.30 kg; the other has mass m2 !
2.80 kg.What are (a) the magnitude of the blocks’ ac-
celeration and (b) the tension in the cord?

••52 An 85 kg man lowers himself to the ground
from a height of 10.0 m by holding onto a rope that
runs over a frictionless pulley to a 65 kg sandbag.
With what speed does the man hit the ground if he
started from rest?

••53 In Fig. 5-48, three connected blocks are pulled to the right on
a horizontal frictionless table by a force of magnitude 65.0 N.
If m1 12.0 kg, m2 24.0 kg, and m3 31.0 kg, calculate (a) the
magnitude of the system’s acceleration, (b) the tension T1, and (c)
the tension T2.

!!!
T3 !

111PROB LE M S
PART 1

θ

Fig. 5-42 Problem 42.

above cab A. Cab A has mass 1700 kg; cab B has mass
1300 kg. A 12.0 kg box of catnip lies on the floor of
cab A. The tension in the cable connecting the cabs is
1.91 " 104 N. What is the magnitude of the normal
force on the box from the floor?

••49 In Fig. 5-45, a block of mass m ! 5.00 kg is
pulled along a horizontal frictionless floor by a cord
that exerts a force of magnitude F ! 12.0 N at an an-
gle u ! 25.0°. (a) What is the magnitude of the
block’s acceleration? (b) The force magnitude F is
slowly increased. What is its value just before the
block is lifted (completely) off the floor? (c) What is
the magnitude of the block’s acceleration just before
it is lifted (completely) off the floor?

Figure 5-41 gives, as a function of time t, the component vx of the box’s
velocity along an x axis that extends directly up the ramp.What is the
magnitude of the normal force on the box from the ramp?

••41 Using a rope that will snap if the tension in it exceeds 387 N,
you need to lower a bundle of old roofing material weighing 449 N
from a point 6.1 m above the ground. (a) What magnitude of the bun-
dle’s acceleration will put the rope on the verge of snapping? (b) At
that acceleration, with what speed would the bundle hit the ground?

••42 In earlier days, horses pulled barges down canals in the
manner shown in Fig. 5-42. Suppose the horse pulls on the rope
with a force of 7900 N at an angle of u ! 18° to the direction of
motion of the barge, which is headed straight along the positive
direction of an x axis. The mass of the barge is 9500 kg, and the
magnitude of its acceleration is 0.12 m/s2. What are the (a) magni-
tude and (b) direction (relative to positive x) of the force on the
barge from the water?

••43 In Fig. 5-43, a chain consisting of five
links, each of mass 0.100 kg, is lifted vertically
with constant acceleration of magnitude a ! 2.50
m/s2. Find the magnitudes of (a) the force on link
1 from link 2, (b) the force on link 2 from link 3,
(c) the force on link 3 from link 4, and (d) the
force on link 4 from link 5. Then find the magni-
tudes of (e) the force on the top link from the
person lifting the chain and (f) the net force accel-
erating each link.

••44 A lamp hangs vertically from a cord in a de-
scending elevator that decelerates at 2.4 m/s2. (a) If
the tension in the cord is 89 N, what is the lamp’s
mass? (b) What is the cord’s tension when the elevator ascends with
an upward acceleration of 2.4 m/s2?

••45 An elevator cab that weighs 27.8 kN moves upward. What is
the tension in the cable if the cab’s speed is (a) increasing at a rate
of 1.22 m/s2 and (b) decreasing at a rate of 1.22 m/s2?

••46 An elevator cab is pulled upward by a cable. The cab and its
single occupant have a combined mass of 2000 kg.When that occu-
pant drops a coin, its acceleration relative to the cab is 8.00 m/s2

downward.What is the tension in the cable?

••47 The Zacchini family was renowned for their human-
cannonball act in which a family member was shot from a cannon
using either elastic bands or compressed air. In one version of the
act, Emanuel Zacchini was shot over three Ferris wheels to land in
a net at the same height as the open end of the cannon and at a
range of 69 m. He was propelled inside the barrel for 5.2 m and
launched at an angle of 53°. If his mass was 85 kg and he underwent
constant acceleration inside the barrel, what was the magnitude of
the force propelling him? (Hint: Treat the launch as though it were
along a ramp at 53°. Neglect air drag.)

••48 In Fig. 5-44, elevator cabs A and B are connected by
a short cable and can be pulled upward or lowered by the cable

F
:

SSM F
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3

4
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a

Fig. 5-43
Problem 43.
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B

Fig. 5-44
Problem 48.

Fθm

Fig. 5-45
Problems 49 and 60.

A

B

C

Fig. 5-46 Problem 50.

m1

m2

Fig. 5-47
Problems 51 

and 65.

m1 m2 m3
T1 T2 T3

Fig. 5-48 Problem 53.
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which yields a = 1.3 m/s2. Since the system starts from rest, Eq. 2-16 determines the 
speed (after traveling � y = 10 m) as follows: 
 

22 2(1.3 m/s )(10 m) 5.1 m/s.v a y� � � �  
 
53. We apply Newton’s second law first to the three blocks as a single system and then to 
the individual blocks. The +x direction is to the right in Fig. 5-48. 
 
(a) With msys = m1 + m2 + m3 = 67.0 kg, we apply Eq. 5-2 to the x motion of the system, 
in which case, there is only one force

� �
T T3 3� � �i . Therefore,  

 
 3 sys 65.0 N (67.0kg)T m a a� � �  
 
which yields a = 0.970 m/s2 for the system (and for each of the blocks individually). 
 
(b) Applying Eq. 5-2 to block 1, we find 
 

� �� �2
1 1 12.0kg 0.970m/s 11.6N.T m a� � �  

 
(c) In order to find T2, we can either analyze the forces on block 3 or we can treat blocks 
1 and 2 as a system and examine its forces. We choose the latter. 
 

� � � �� �2
2 1 2 12.0 kg 24.0 kg 0.970 m/s 34.9 N .T m m a� � � � �  

 
54. First, we consider all the penguins (1 through 4, counting left to right) as one system, 
to which we apply Newton’s second law: 
 

� � � �4 1 2 3 4 2222N 12kg 15kg 20kg .T m m m m a m a� � � � � � � � �  
 
Second, we consider penguins 3 and 4 as one system, for which we have 
 

� �
� �

4 2 3 4
2111N 15 kg 20kg    3.2 m/s .

T T m m a
a a

� � �
� � � �

 

 
Substituting the value, we obtain m2 = 23 kg.  
 
55. The free-body diagrams for the two blocks in (a) are shown below. 

�
F  is the applied 

force and 1on2F
�

 is the force exerted by block 1 on block 2. We note that 
�
F  is applied 

directly to block 1 and that block 2 exerts a force 2on1 1on2F F� �
� �

 on block 1 (taking 
Newton’s third law into account). 
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Chapter 6
FORCE AND MOTION -II

Sections 6-2, 6-3

Friction
Properties of Friction



� Important skills from this lecture:
1. Identify the friction force and its cause

2. Identify the static friction force and the kinetic one
3. Calculate the value of both kinds of friction force

4. Applying Newton’s laws to solve problems including 
friction force



Friction
� Frictional force: a force that opposes motion, it is 

caused by rough surfaces of all materials 
� It is unavoidable force

� If it was not counteracted
à it would stop every moving & rotating objects 

� About 20% of the gasoline used in an automobile is needed to 
counteract friction in the engine 

� If frictions were absent
àwe could not walk, hold a pencil, and, if we could, it would 
not write 

� This chapter deals with the frictional forces that exist between 
dry solid surfaces, either stationary or moving

975-7 SOM E PARTICU LAR FORCE S
PART 1

Figure 5-7a shows an example. A block of mass m presses down on a table,
deforming it somewhat because of the gravitational force on the block. The
table pushes up on the block with normal force .The free-body diagram for the
block is given in Fig. 5-7b. Forces and are the only two forces on the block
and they are both vertical. Thus, for the block we can write Newton’s second law
for a positive-upward y axis (Fnet, y ! may) as

FN " Fg ! may.

From Eq. 5-8, we substitute mg for Fg, finding

FN " mg ! may.

Then the magnitude of the normal force is

FN ! mg # may ! m(g # ay) (5-13)

for any vertical acceleration ay of the table and block (they might be in an accel-
erating elevator). If the table and block are not accelerating relative to the
ground, then ay ! 0 and Eq. 5-13 yields

FN ! mg. (5-14)

F
:

NF
:

g

F
:

N

F
:

g

CHECKPOINT 3

In Fig. 5-7, is the magnitude of the normal force greater than, less than, or equal to
mg if the block and table are in an elevator moving upward (a) at constant speed and
(b) at increasing speed?

F
:

N

Friction
If we either slide or attempt to slide a body over a surface, the motion is resisted
by a bonding between the body and the surface. (We discuss this bonding more in
the next chapter.) The resistance is considered to be a single force called either
the frictional force or simply friction. This force is directed along the surface, op-
posite the direction of the intended motion (Fig. 5-8). Sometimes, to simplify a sit-
uation, friction is assumed to be negligible (the surface is frictionless).

Tension
When a cord (or a rope, cable, or other such object) is attached to a body and
pulled taut, the cord pulls on the body with a force directed away from theT

:

f
:

,

Fig. 5-7 (a) A block resting on a table experiences a normal force perpendicular to
the tabletop. (b) The free-body diagram for the block.

F
:

N

Fig. 5-8 A frictional force opposes the
attempted slide of a body over a surface.

f
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Block

Normal force FN

(a) (b)

y

x

Block

Fg
Fg

FN

The normal force
is the force on
the block from the
supporting table.

The gravitational
force on the block
is due to Earth's
downward pull.

The forces
balance.

f

Direction of
attempted 

slide
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(a)
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(c)

(d)

(e)
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FN

FN

FN

FN

FN

FNThere is no attempt
at sliding. Thus,
no friction and
no motion.

Frictional force = 0

Force F  attempts
sliding but is balanced
by the frictional force.
No motion.

Force F  is now 
stronger but is still
balanced by the
frictional force.
No motion.

Force F  is now even 
stronger but is still
balanced by the
frictional force.
No motion.

Finally, the applied force
has overwhelmed the
static frictional force.
Block slides and
accelerates.

Static frictional force
can only match growing
applied force.

Frictional force = F

Frictional force = F

Frictional force = F

Weak kinetic
frictional force

Same weak kinetic
frictional force

Kinetic frictional force
has only one value
(no matching).

To maintain the speed,
weaken force F  to match
the weak frictional force.

A

Fig. 6-1 (a) The forces on a
stationary block. (b–d) An external
force , applied to the block, is
balanced by a static frictional force .
As F is increased, fs also increases, un-
til fs reaches a certain maximum value.
(e) The block then “breaks away,” ac-
celerating suddenly in the direction of

. (f ) If the block is now to move
with constant velocity, F must be
reduced from the maximum value it
had just before the block broke away.
(g) Some experimental results for the
sequence (a) through (f ).

F
:

f
:

s

F
:

forces still balance. Now push with all your strength. The crate begins to slide.
Evidently, there is a maximum magnitude of the frictional force. When you
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celerating suddenly in the direction of
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sequence (a) through (f ).
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There is no attempt at sliding 
à no friction & no motion

fs = 0

Force F attempts sliding but is 
balanced by the frictional force
à no motion F = fs

Force F is increased, but F is still 
balanced by the frictional
à no motion F = fs

The block is stationary à
F = fs

fs :static frictional force

Force F has overwhelmed the 
static frictional force
àblock slides & accelerates

The block is moving à
fk < F

fk: kinetic frictional force 
To maintain the speed, force F 
is weakened to match the 
weak fk



Kinds of Friction force
� Static frictional force    : friction force between a stationary object 

and the surface

� Its magnitude increases with increasing the applied force until it 
reaches a maximum

� kinetic frictional force    : friction force between a moving object and 
the surface

� Its magnitude is constant

� It is always true that 

� To maintain a speed of a block moving across 
a surface, the magnitude of the applied force 
has to be decreased once the block begins to 
move

Fig. 6-2 The mechanism of sliding friction. (a)
The upper surface is sliding to the right over the
lower surface in this enlarged view. (b) A detail,
showing two spots where cold-welding has oc-
curred. Force is required to break the welds and
maintain the motion.

(a)

(b)
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frictional force is directed to the right, exactly balancing your force. The force
is called the static frictional force. The block does not move.
Figures 6-1c and 6-1d show that as you increase the magnitude of your

applied force, the magnitude of the static frictional force also increases and
the block remains at rest. When the applied force reaches a certain magnitude,
however, the block “breaks away” from its intimate contact with the tabletop and
accelerates leftward (Fig. 6-1e). The frictional force that then opposes the motion
is called the kinetic frictional force .

Usually, the magnitude of the kinetic frictional force, which acts when there
is motion, is less than the maximum magnitude of the static frictional force, which
acts when there is no motion. Thus, if you wish the block to move across the sur-
face with a constant speed, you must usually decrease the magnitude of the
applied force once the block begins to move, as in Fig. 6-1f. As an example,
Fig. 6-1g shows the results of an experiment in which the force on a block was
slowly increased until breakaway occurred. Note the reduced force needed to
keep the block moving at constant speed after breakaway.

A frictional force is, in essence, the vector sum of many forces acting between
the surface atoms of one body and those of another body. If two highly polished
and carefully cleaned metal surfaces are brought together in a very good vacuum
(to keep them clean), they cannot be made to slide over each other. Because the
surfaces are so smooth, many atoms of one surface contact many atoms of the
other surface, and the surfaces cold-weld together instantly, forming a single
piece of metal. If a machinist’s specially polished gage blocks are brought
together in air, there is less atom-to-atom contact, but the blocks stick firmly to
each other and can be separated only by means of a wrenching motion. Usually,
however, this much atom-to-atom contact is not possible. Even a highly polished
metal surface is far from being flat on the atomic scale. Moreover, the surfaces
of everyday objects have layers of oxides and other contaminants that reduce
cold-welding.

When two ordinary surfaces are placed together, only the high points touch
each other. (It is like having the Alps of Switzerland turned over and placed down
on the Alps of Austria.) The actual microscopic area of contact is much less than
the apparent macroscopic contact area, perhaps by a factor of 104. Nonetheless,
many contact points do cold-weld together. These welds produce static friction
when an applied force attempts to slide the surfaces relative to each other.

If the applied force is great enough to pull one surface across the other, there
is first a tearing of welds (at breakaway) and then a continuous re-forming and
tearing of welds as movement occurs and chance contacts are made (Fig. 6-2).
The kinetic frictional force that opposes the motion is the vector sum of the
forces at those many chance contacts.

If the two surfaces are pressed together harder, many more points cold-
weld. Now getting the surfaces to slide relative to each other requires a greater
applied force: The static frictional force has a greater maximum value. Oncef
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(to keep them clean), they cannot be made to slide over each other. Because the
surfaces are so smooth, many atoms of one surface contact many atoms of the
other surface, and the surfaces cold-weld together instantly, forming a single
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each other and can be separated only by means of a wrenching motion. Usually,
however, this much atom-to-atom contact is not possible. Even a highly polished
metal surface is far from being flat on the atomic scale. Moreover, the surfaces
of everyday objects have layers of oxides and other contaminants that reduce
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When two ordinary surfaces are placed together, only the high points touch
each other. (It is like having the Alps of Switzerland turned over and placed down
on the Alps of Austria.) The actual microscopic area of contact is much less than
the apparent macroscopic contact area, perhaps by a factor of 104. Nonetheless,
many contact points do cold-weld together. These welds produce static friction
when an applied force attempts to slide the surfaces relative to each other.

If the applied force is great enough to pull one surface across the other, there
is first a tearing of welds (at breakaway) and then a continuous re-forming and
tearing of welds as movement occurs and chance contacts are made (Fig. 6-2).
The kinetic frictional force that opposes the motion is the vector sum of the
forces at those many chance contacts.

If the two surfaces are pressed together harder, many more points cold-
weld. Now getting the surfaces to slide relative to each other requires a greater
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Fig. 6-1 (a) The forces on a
stationary block. (b–d) An external
force , applied to the block, is
balanced by a static frictional force .
As F is increased, fs also increases, un-
til fs reaches a certain maximum value.
(e) The block then “breaks away,” ac-
celerating suddenly in the direction of

. (f ) If the block is now to move
with constant velocity, F must be
reduced from the maximum value it
had just before the block broke away.
(g) Some experimental results for the
sequence (a) through (f ).
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fk < fs

Experimental results for 
the block situation from 

(a) to ( f )



Properties of Friction

If a body presses against a surface and a force attempts to slide it
à the frictional force has three properties:

1. If the body does not move 
à fs and F component that is parallel to the surface balance each other 
(equal in magnitude and opposite in direction)

2. The magnitude of fs has a maximum value fs,max:

μs is the coefficient of static friction 
FN  is the magnitude of the normal force on the body from the surface

3. If the body begins to slide along the surface (F > fs,max)
à the magnitude of the frictional force decreases to a value fk :

μk is the coefficient of kinetic friction

the surfaces are sliding, there are many more points of momentary cold-welding,
so the kinetic frictional force also has a greater magnitude.

Often, the sliding motion of one surface over another is “jerky” because the
two surfaces alternately stick together and then slip. Such repetitive stick-and-
slip can produce squeaking or squealing, as when tires skid on dry pavement,
fingernails scratch along a chalkboard, or a rusty hinge is opened. It can also
produce beautiful and captivating sounds, as in music when a bow is drawn
properly across a violin string.

6-3 Properties of Friction
Experiment shows that when a dry and unlubricated body presses against a sur-
face in the same condition and a force attempts to slide the body along the sur-
face, the resulting frictional force has three properties:

Property 1. If the body does not move, then the static frictional force and 
the component of that is parallel to the surface balance each other. They
are equal in magnitude, and is directed opposite that component of .

Property 2. The magnitude of has a maximum value fs,max that is given by

fs,max ! msFN, (6-1)

where ms is the coefficient of static friction and FN is the magnitude of the
normal force on the body from the surface. If the magnitude of the compo-
nent of that is parallel to the surface exceeds fs,max, then the body begins to
slide along the surface.

Property 3. If the body begins to slide along the surface, the magnitude of the
frictional force rapidly decreases to a value fk given by

fk ! mkFN, (6-2)

where mk is the coefficient of kinetic friction. Thereafter, during the sliding, a ki-
netic frictional force with magnitude given by Eq. 6-2 opposes the motion.

The magnitude FN of the normal force appears in properties 2 and 3 as a
measure of how firmly the body presses against the surface. If the body presses
harder, then, by Newton’s third law, FN is greater. Properties 1 and 2 are worded
in terms of a single applied force , but they also hold for the net force of several
applied forces acting on the body. Equations 6-1 and 6-2 are not vector equations;
the direction of or is always parallel to the surface and opposed to the at-
tempted sliding, and the normal force is perpendicular to the surface.

The coefficients ms and mk are dimensionless and must be determined experi-
mentally. Their values depend on certain properties of both the body and the
surface; hence, they are usually referred to with the preposition “between,” as in
“the value of ms between an egg and a Teflon-coated skillet is 0.04, but that between
rock-climbing shoes and rock is as much as 1.2.” We assume that the value of mk

does not depend on the speed at which the body slides along the surface.
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CHECKPOINT 1

A block lies on a floor. (a) What is the magnitude of the frictional force on it from the
floor? (b) If a horizontal force of 5 N is now applied to the block, but the block does not
move, what is the magnitude of the frictional force on it? (c) If the maximum value fs,max

of the static frictional force on the block is 10 N, will the block move if the magnitude of
the horizontally applied force is 8 N? (d) If it is 12 N? (e) What is the magnitude of the
frictional force in part (c)?
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where mk is the coefficient of kinetic friction. Thereafter, during the sliding, a ki-
netic frictional force with magnitude given by Eq. 6-2 opposes the motion.

The magnitude FN of the normal force appears in properties 2 and 3 as a
measure of how firmly the body presses against the surface. If the body presses
harder, then, by Newton’s third law, FN is greater. Properties 1 and 2 are worded
in terms of a single applied force , but they also hold for the net force of several
applied forces acting on the body. Equations 6-1 and 6-2 are not vector equations;
the direction of or is always parallel to the surface and opposed to the at-
tempted sliding, and the normal force is perpendicular to the surface.

The coefficients ms and mk are dimensionless and must be determined experi-
mentally. Their values depend on certain properties of both the body and the
surface; hence, they are usually referred to with the preposition “between,” as in
“the value of ms between an egg and a Teflon-coated skillet is 0.04, but that between
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(not a vector equation)

(not a vector equation)



Properties of Friction
� The strength of friction depends on:

� How hard surfaces push together

� Types of surfaces involved

� The direction of  or    is always parallel to the surface and 
opposed to the attempted sliding

� The coefficients μs & μk are dimensionless and must be 
determined experimentally

� The values of μs & μk depend on the properties of both the 
body & the surface

� It is assumed that the value of μk does not depend on the 
speed at which the body slides along the surface

Fig. 6-2 The mechanism of sliding friction. (a)
The upper surface is sliding to the right over the
lower surface in this enlarged view. (b) A detail,
showing two spots where cold-welding has oc-
curred. Force is required to break the welds and
maintain the motion.

(a)

(b)
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frictional force is directed to the right, exactly balancing your force. The force
is called the static frictional force. The block does not move.
Figures 6-1c and 6-1d show that as you increase the magnitude of your

applied force, the magnitude of the static frictional force also increases and
the block remains at rest. When the applied force reaches a certain magnitude,
however, the block “breaks away” from its intimate contact with the tabletop and
accelerates leftward (Fig. 6-1e). The frictional force that then opposes the motion
is called the kinetic frictional force .

Usually, the magnitude of the kinetic frictional force, which acts when there
is motion, is less than the maximum magnitude of the static frictional force, which
acts when there is no motion. Thus, if you wish the block to move across the sur-
face with a constant speed, you must usually decrease the magnitude of the
applied force once the block begins to move, as in Fig. 6-1f. As an example,
Fig. 6-1g shows the results of an experiment in which the force on a block was
slowly increased until breakaway occurred. Note the reduced force needed to
keep the block moving at constant speed after breakaway.

A frictional force is, in essence, the vector sum of many forces acting between
the surface atoms of one body and those of another body. If two highly polished
and carefully cleaned metal surfaces are brought together in a very good vacuum
(to keep them clean), they cannot be made to slide over each other. Because the
surfaces are so smooth, many atoms of one surface contact many atoms of the
other surface, and the surfaces cold-weld together instantly, forming a single
piece of metal. If a machinist’s specially polished gage blocks are brought
together in air, there is less atom-to-atom contact, but the blocks stick firmly to
each other and can be separated only by means of a wrenching motion. Usually,
however, this much atom-to-atom contact is not possible. Even a highly polished
metal surface is far from being flat on the atomic scale. Moreover, the surfaces
of everyday objects have layers of oxides and other contaminants that reduce
cold-welding.

When two ordinary surfaces are placed together, only the high points touch
each other. (It is like having the Alps of Switzerland turned over and placed down
on the Alps of Austria.) The actual microscopic area of contact is much less than
the apparent macroscopic contact area, perhaps by a factor of 104. Nonetheless,
many contact points do cold-weld together. These welds produce static friction
when an applied force attempts to slide the surfaces relative to each other.

If the applied force is great enough to pull one surface across the other, there
is first a tearing of welds (at breakaway) and then a continuous re-forming and
tearing of welds as movement occurs and chance contacts are made (Fig. 6-2).
The kinetic frictional force that opposes the motion is the vector sum of the
forces at those many chance contacts.

If the two surfaces are pressed together harder, many more points cold-
weld. Now getting the surfaces to slide relative to each other requires a greater
applied force: The static frictional force has a greater maximum value. Oncef
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face with a constant speed, you must usually decrease the magnitude of the
applied force once the block begins to move, as in Fig. 6-1f. As an example,
Fig. 6-1g shows the results of an experiment in which the force on a block was
slowly increased until breakaway occurred. Note the reduced force needed to
keep the block moving at constant speed after breakaway.
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and carefully cleaned metal surfaces are brought together in a very good vacuum
(to keep them clean), they cannot be made to slide over each other. Because the
surfaces are so smooth, many atoms of one surface contact many atoms of the
other surface, and the surfaces cold-weld together instantly, forming a single
piece of metal. If a machinist’s specially polished gage blocks are brought
together in air, there is less atom-to-atom contact, but the blocks stick firmly to
each other and can be separated only by means of a wrenching motion. Usually,
however, this much atom-to-atom contact is not possible. Even a highly polished
metal surface is far from being flat on the atomic scale. Moreover, the surfaces
of everyday objects have layers of oxides and other contaminants that reduce
cold-welding.

When two ordinary surfaces are placed together, only the high points touch
each other. (It is like having the Alps of Switzerland turned over and placed down
on the Alps of Austria.) The actual microscopic area of contact is much less than
the apparent macroscopic contact area, perhaps by a factor of 104. Nonetheless,
many contact points do cold-weld together. These welds produce static friction
when an applied force attempts to slide the surfaces relative to each other.

If the applied force is great enough to pull one surface across the other, there
is first a tearing of welds (at breakaway) and then a continuous re-forming and
tearing of welds as movement occurs and chance contacts are made (Fig. 6-2).
The kinetic frictional force that opposes the motion is the vector sum of the
forces at those many chance contacts.

If the two surfaces are pressed together harder, many more points cold-
weld. Now getting the surfaces to slide relative to each other requires a greater
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the surfaces are sliding, there are many more points of momentary cold-welding,
so the kinetic frictional force also has a greater magnitude.

Often, the sliding motion of one surface over another is “jerky” because the
two surfaces alternately stick together and then slip. Such repetitive stick-and-
slip can produce squeaking or squealing, as when tires skid on dry pavement,
fingernails scratch along a chalkboard, or a rusty hinge is opened. It can also
produce beautiful and captivating sounds, as in music when a bow is drawn
properly across a violin string.

6-3 Properties of Friction
Experiment shows that when a dry and unlubricated body presses against a sur-
face in the same condition and a force attempts to slide the body along the sur-
face, the resulting frictional force has three properties:

Property 1. If the body does not move, then the static frictional force and 
the component of that is parallel to the surface balance each other. They
are equal in magnitude, and is directed opposite that component of .

Property 2. The magnitude of has a maximum value fs,max that is given by

fs,max ! msFN, (6-1)

where ms is the coefficient of static friction and FN is the magnitude of the
normal force on the body from the surface. If the magnitude of the compo-
nent of that is parallel to the surface exceeds fs,max, then the body begins to
slide along the surface.

Property 3. If the body begins to slide along the surface, the magnitude of the
frictional force rapidly decreases to a value fk given by

fk ! mkFN, (6-2)

where mk is the coefficient of kinetic friction. Thereafter, during the sliding, a ki-
netic frictional force with magnitude given by Eq. 6-2 opposes the motion.

The magnitude FN of the normal force appears in properties 2 and 3 as a
measure of how firmly the body presses against the surface. If the body presses
harder, then, by Newton’s third law, FN is greater. Properties 1 and 2 are worded
in terms of a single applied force , but they also hold for the net force of several
applied forces acting on the body. Equations 6-1 and 6-2 are not vector equations;
the direction of or is always parallel to the surface and opposed to the at-
tempted sliding, and the normal force is perpendicular to the surface.

The coefficients ms and mk are dimensionless and must be determined experi-
mentally. Their values depend on certain properties of both the body and the
surface; hence, they are usually referred to with the preposition “between,” as in
“the value of ms between an egg and a Teflon-coated skillet is 0.04, but that between
rock-climbing shoes and rock is as much as 1.2.” We assume that the value of mk

does not depend on the speed at which the body slides along the surface.
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CHECKPOINT 1

A block lies on a floor. (a) What is the magnitude of the frictional force on it from the
floor? (b) If a horizontal force of 5 N is now applied to the block, but the block does not
move, what is the magnitude of the frictional force on it? (c) If the maximum value fs,max

of the static frictional force on the block is 10 N, will the block move if the magnitude of
the horizontally applied force is 8 N? (d) If it is 12 N? (e) What is the magnitude of the
frictional force in part (c)?
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(a)

fs = 0

(b)

fs = −5N ⇒ fs = 5N

(c)No, it will not move
(d)Yes, it will move

(e)

fs = −8N ⇒ fs = 8N



Sample Problem

KEY I DEAS

Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
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Sample Problem

where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
! #

$kmg
m

! #$kg,
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F
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f
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k

fk 

Fg 

FN 

290 m 

v0 

= 0.60 

(a) 

Car 
x 

(b) 

y 

µ 

v = 0 

This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
! #

$kmg
m

! #$kg,
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This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.
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pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Sample Problem
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
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$kmg
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! #$kg,
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diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield
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Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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� The acceleration is constant à we can apply 
equations of motion

� Because the car is moving along x-axes, there is no 
acceleration component along y-axes

� To find ax:

Sample Problem

KEY I DEAS

Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield
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Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield
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Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
! #

$kmg
m

! #$kg,
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This is a free-body
diagram of the
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Frictional force
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supports the car.

Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
:
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
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$kmg
m

! #$kg,
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diagram of the
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Frictional force
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Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
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m
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! #$kg,
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diagram of the
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Frictional force
opposes the sliding.

Normal force
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pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
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m
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$kmg
m

! #$kg,
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This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
:
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield
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m
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This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
:
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield
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diagram of the
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Frictional force
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pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield
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Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
:

!
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
! #

$kmg
m

! #$kg,

F
:

g

F
:

N

f
:

k

fk 

Fg 

FN 

290 m 

v0 

= 0.60 

(a) 

Car 
x 

(b) 

y 

µ 

v = 0 

This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
:
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
! #

$kmg
m

! #$kg,
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This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.
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Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
:
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
! #

$kmg
m

! #$kg,

F
:
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Car 
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This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
:

!
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
! #

$kmg
m

! #$kg,
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This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Sample Problem

KEY I DEAS

Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
:

!
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
! #

$kmg
m

! #$kg,
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This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
:
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where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield
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m
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Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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Calculating FN: Because we need the magnitude fk of the
frictional force, we first must calculate the magnitude FN of
the normal force. Figure 6-4b is a free-body diagram show-
ing the forces along the vertical y axis. The normal force is
upward, the gravitational force with magnitude mg is
downward, and (note) the vertical component Fy of the ap-
plied force is upward. That component is shown in Fig. 6-4c,
where we can see that Fy ! F sin u. We can write Newton’s
second law ( ) for those forces along the y axis as

FN " F sin u # mg ! m(0), (6-7)

where we substituted zero for the acceleration along the y
axis (the block does not even move along that axis).Thus,

FN ! mg # F sin u. (6-8)

Calculating acceleration a: Figure 6-4d is a free-body di-
agram for motion along the x axis. The horizontal compo-
nent Fx of the applied force is rightward; from Fig. 6-4c, we
see that Fx ! F cos u. The frictional force has magnitude fk

(! mkFN) and is leftward. Writing Newton’s second law for
motion along the x axis gives us

F cos u # mkFN ! ma. (6-9)

Substituting for FN from Eq. 6-8 and solving for a lead to

(6-10)a !
F
m

 cos $ # %k!g #
F
m

 sin $".

ma:F
:

net !

Fg
:

Fig. 6-4 (a) A force is applied to a moving
block. (b) The vertical forces. (c) The components
of the applied force. (d) The horizontal forces and
acceleration.
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(a) (b)

(c) (d)

Fg 

Fy 

Fy

Fx Fx

FN 
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fk

The applied force
has these components.

These vertical forces
balance.

These two horizontal
forces determine the
acceleration.

This applied force
accelerates block
and helps support it.

1216-4 TH E DRAG FORCE AN D TE R M I NAL S PE E D
PART 1

Finding a maximum: To find the value of u that maximizes
a, we take the derivative of a with respect to u and set the
result equal to zero:

(6-11)

Rearranging and using the identity (sin u)/(cos u) ! tan u
give us

tan u ! mk. (6-12)

Solving for u and substituting the given mk ! 0.40, we find
that the acceleration will be maximum if

u ! tan#1 mk (6-13)

! 21.8° 22°. (Answer)

Comment: As we increase u from 0, the acceleration
tends to change in two opposing ways. First, more of the
applied force is upward, relieving the normal force. The
decrease in the normal force causes a decrease in the fric-
tional force, which opposes the block’s motion. Thus, with
the increase in u, the block’s acceleration tends to increase.
However, second, the increase in u also decreases the hori-
zontal component of , and so the block’s acceleration
tends to decrease. These opposing tendencies produce a
maximum acceleration at u ! 22°.

F
:

F
:

#

da
d$

! #
F
m

 sin $ " %k 
F
m

 cos $ ! 0.

6-4 The Drag Force and Terminal Speed
A fluid is anything that can flow—generally either a gas or a liquid.When there is
a relative velocity between a fluid and a body (either because the body moves
through the fluid or because the fluid moves past the body), the body experiences
a drag force that opposes the relative motion and points in the direction in
which the fluid flows relative to the body.

Here we examine only cases in which air is the fluid, the body is blunt (like
a baseball) rather than slender (like a javelin), and the relative motion is fast
enough so that the air becomes turbulent (breaks up into swirls) behind the body.

D
:

Additional examples, video, and practice available at WileyPLUS
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m = 3.0kg,    F = 12N ,    µk = 0.4,    θ = ?

Fnet ,x = max
F cosθ − fk = max
fk = µkFN
F cosθ − µkFN = ma

Fnet ,y = may
FN + F sinθ − Fg = may
Fg = mg,    ay = 0
FN + F sinθ −mg = 0
FN = mg − F sinθ

(1)

(2)

Calculating FN: Because we need the magnitude fk of the
frictional force, we first must calculate the magnitude FN of
the normal force. Figure 6-4b is a free-body diagram show-
ing the forces along the vertical y axis. The normal force is
upward, the gravitational force with magnitude mg is
downward, and (note) the vertical component Fy of the ap-
plied force is upward. That component is shown in Fig. 6-4c,
where we can see that Fy ! F sin u. We can write Newton’s
second law ( ) for those forces along the y axis as

FN " F sin u # mg ! m(0), (6-7)

where we substituted zero for the acceleration along the y
axis (the block does not even move along that axis).Thus,

FN ! mg # F sin u. (6-8)

Calculating acceleration a: Figure 6-4d is a free-body di-
agram for motion along the x axis. The horizontal compo-
nent Fx of the applied force is rightward; from Fig. 6-4c, we
see that Fx ! F cos u. The frictional force has magnitude fk

(! mkFN) and is leftward. Writing Newton’s second law for
motion along the x axis gives us

F cos u # mkFN ! ma. (6-9)

Substituting for FN from Eq. 6-8 and solving for a lead to

(6-10)a !
F
m

 cos $ # %k!g #
F
m

 sin $".

ma:F
:

net !

Fg
:

Fig. 6-4 (a) A force is applied to a moving
block. (b) The vertical forces. (c) The components
of the applied force. (d) The horizontal forces and
acceleration.

F 

θ

F
θ

y

x

(a) (b)

(c) (d)

Fg 

Fy 

Fy

Fx Fx

FN 

a

fk

The applied force
has these components.

These vertical forces
balance.

These two horizontal
forces determine the
acceleration.

This applied force
accelerates block
and helps support it.
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Finding a maximum: To find the value of u that maximizes
a, we take the derivative of a with respect to u and set the
result equal to zero:

(6-11)

Rearranging and using the identity (sin u)/(cos u) ! tan u
give us

tan u ! mk. (6-12)

Solving for u and substituting the given mk ! 0.40, we find
that the acceleration will be maximum if

u ! tan#1 mk (6-13)

! 21.8° 22°. (Answer)

Comment: As we increase u from 0, the acceleration
tends to change in two opposing ways. First, more of the
applied force is upward, relieving the normal force. The
decrease in the normal force causes a decrease in the fric-
tional force, which opposes the block’s motion. Thus, with
the increase in u, the block’s acceleration tends to increase.
However, second, the increase in u also decreases the hori-
zontal component of , and so the block’s acceleration
tends to decrease. These opposing tendencies produce a
maximum acceleration at u ! 22°.

F
:

F
:

#

da
d$

! #
F
m

 sin $ " %k 
F
m

 cos $ ! 0.

6-4 The Drag Force and Terminal Speed
A fluid is anything that can flow—generally either a gas or a liquid.When there is
a relative velocity between a fluid and a body (either because the body moves
through the fluid or because the fluid moves past the body), the body experiences
a drag force that opposes the relative motion and points in the direction in
which the fluid flows relative to the body.

Here we examine only cases in which air is the fluid, the body is blunt (like
a baseball) rather than slender (like a javelin), and the relative motion is fast
enough so that the air becomes turbulent (breaks up into swirls) behind the body.

D
:

Additional examples, video, and practice available at WileyPLUS
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Substituting from 2 into 1 and solve for a:

F cosθ − µk (mg − F sinθ ) = ma

a = F
m
cosθ − µkg +

F
m
µk sinθ

To find the value of θ that maximizes a, we take the derivative of a
with respect to θ and set the result equal to zero

da
dθ

= − F
m
sinθ − 0 + F

m
µk cosθ = 0

⇒ sinθ = µk cosθ

⇒ sinθ
cosθ

= tanθ = µk

⇒θ = tan−1 µk = tan
−1(0.4) = 21.8o

d
dθ
sinθ = cosθ

d
dθ
cosθ = −sinθ



Chapter 6
FORCE AND MOTION -II

Section 6-5

Uniform Circular Motion



� Important skills from this lecture:
1. Explain centripetal force and its direction

2. Calculate the centripetal force



Uniform Circular Motion
� Uniform circular motion: motion of a body that moves in a 

circle (or a circular arc) at constant speed v

� The centripetal acceleration (has a constant magnitude given 
by (R is the radius of the circle):

� a is directed toward the center of the circle

� Centripetal force: a force that causes the centripetal 
acceleration, and is directed toward the center of the circle
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6-5 Uniform Circular Motion
From Section 4-7, recall that when a body moves in a circle (or a circular arc) at
constant speed v, it is said to be in uniform circular motion. Also recall that the
body has a centripetal acceleration (directed toward the center of the circle) of
constant magnitude given by

(centripetal acceleration), (6-17)

where R is the radius of the circle.
Let us examine two examples of uniform circular motion:

1. Rounding a curve in a car. You are sitting in the center of the rear seat of a car
moving at a constant high speed along a flat road. When the driver suddenly
turns left, rounding a corner in a circular arc, you slide across the seat toward
the right and then jam against the car wall for the rest of the turn. What is
going on?

While the car moves in the circular arc, it is in uniform circular motion;
that is, it has an acceleration that is directed toward the center of the circle.
By Newton’s second law, a force must cause this acceleration. Moreover, the
force must also be directed toward the center of the circle. Thus, it is a cen-
tripetal force, where the adjective indicates the direction. In this example, the
centripetal force is a frictional force on the tires from the road; it makes the
turn possible.

If you are to move in uniform circular motion along with the car, there
must also be a centripetal force on you. However, apparently the frictional
force on you from the seat was not great enough to make you go in a circle
with the car. Thus, the seat slid beneath you, until the right wall of the car
jammed into you. Then its push on you provided the needed centripetal force
on you, and you joined the car’s uniform circular motion.

2. Orbiting Earth. This time you are a passenger in the space shuttle Atlantis. As
it and you orbit Earth, you float through your cabin.What is going on?

Both you and the shuttle are in uniform circular motion and have acceler-
ations directed toward the center of the circle. Again by Newton’s second law,
centripetal forces must cause these accelerations. This time the centripetal
forces are gravitational pulls (the pull on you and the pull on the shuttle) ex-
erted by Earth and directed radially inward, toward the center of Earth.

In both car and shuttle you are in uniform circular motion, acted on by a cen-
tripetal force—yet your sensations in the two situations are quite different. In
the car, jammed up against the wall, you are aware of being compressed by the
wall. In the orbiting shuttle, however, you are floating around with no sensation
of any force acting on you.Why this difference?

The difference is due to the nature of the two centripetal forces. In the car,
the centripetal force is the push on the part of your body touching the car wall.
You can sense the compression on that part of your body. In the shuttle, the
centripetal force is Earth’s gravitational pull on every atom of your body. Thus,
there is no compression (or pull) on any one part of your body and no sensation
of a force acting on you. (The sensation is said to be one of “weightlessness,” but
that description is tricky. The pull on you by Earth has certainly not disappeared
and, in fact, is only a little less than it would be with you on the ground.)

Another example of a centripetal force is shown in Fig. 6-8. There a hockey
puck moves around in a circle at constant speed v while tied to a string looped
around a central peg. This time the centripetal force is the radially inward pull on
the puck from the string. Without that force, the puck would slide off in a straight
line instead of moving in a circle.

a !
v2

R
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� Example for a centripetal force: 
An object is rotating around a circle at 
constant speed v while tied to a string 
looped around a central stone

� The centripetal force is the radially inward 
pull on the object from the string

� Without that force, the object would slide off 
in a straight line instead of moving in a circle

� The magnitude of centripetal force:

� Because v is constant à the magnitudes of the centripetal a & F are 
constant
The directions of the centripetal a & F are not constant 
(always directed toward the center of curvature of the particle’s path)

1256-5 U N I FOR M CI RCU LAR MOTION
PART 1

Note again that a centripetal force is not a new kind of force.The name merely
indicates the direction of the force. It can, in fact, be a frictional force, a gravitational
force, the force from a car wall or a string, or any other force. For any situation:

Fig. 6-8 An overhead view of a hockey puck moving with constant speed v in a circular
path of radius R on a horizontal frictionless surface.The centripetal force on the puck is ,
the pull from the string, directed inward along the radial axis r extending through the puck.

T
:

A centripetal force accelerates a body by changing the direction of the body’s
velocity without changing the body’s speed.

String 

Puck 

R 

v r 

T The puck moves
in uniform
circular motion
only because
of a toward-the-
center force.

From Newton’s second law and Eq. 6-17 (a ! v2/R), we can write the magnitude
F of a centripetal force (or a net centripetal force) as

(magnitude of centripetal force). (6-18)

Because the speed v here is constant, the magnitudes of the acceleration and the
force are also constant.

However, the directions of the centripetal acceleration and force are not con-
stant; they vary continuously so as to always point toward the center of the circle.
For this reason, the force and acceleration vectors are sometimes drawn along a
radial axis r that moves with the body and always extends from the center of the
circle to the body, as in Fig. 6-8. The positive direction of the axis is radially out-
ward, but the acceleration and force vectors point radially inward.

F ! m 
v2

R

CHECKPOINT 2

When you ride in a Ferris wheel at constant speed, what are the directions of your ac-
celeration and the normal force on you (from the always upright seat) as you pass
through (a) the highest point and (b) the lowest point of the ride?

F
:

Na:

Vertical circular loop, Diavolo

In a 1901 circus performance, Allo “Dare Devil” Diavolo
introduced the stunt of riding a bicycle in a loop-the-loop
(Fig. 6-9a). Assuming that the loop is a circle with radius
R ! 2.7 m, what is the least speed v that Diavolo and his
bicycle could have at the top of the loop to remain in con-
tact with it there?

Sample Problem

KEY I DEA

We can assume that Diavolo and his bicycle travel through
the top of the loop as a single particle in uniform circular
motion. Thus, at the top, the acceleration of this particle
must have the magnitude a ! v2/R given by Eq. 6-17 and be
directed downward, toward the center of the circular loop.

a:
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Fig. 6-8 An overhead view of a hockey puck moving with constant speed v in a circular
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From Newton’s second law and Eq. 6-17 (a ! v2/R), we can write the magnitude
F of a centripetal force (or a net centripetal force) as

(magnitude of centripetal force). (6-18)

Because the speed v here is constant, the magnitudes of the acceleration and the
force are also constant.

However, the directions of the centripetal acceleration and force are not con-
stant; they vary continuously so as to always point toward the center of the circle.
For this reason, the force and acceleration vectors are sometimes drawn along a
radial axis r that moves with the body and always extends from the center of the
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Vertical circular loop, Diavolo

In a 1901 circus performance, Allo “Dare Devil” Diavolo
introduced the stunt of riding a bicycle in a loop-the-loop
(Fig. 6-9a). Assuming that the loop is a circle with radius
R ! 2.7 m, what is the least speed v that Diavolo and his
bicycle could have at the top of the loop to remain in con-
tact with it there?

Sample Problem

KEY I DEA

We can assume that Diavolo and his bicycle travel through
the top of the loop as a single particle in uniform circular
motion. Thus, at the top, the acceleration of this particle
must have the magnitude a ! v2/R given by Eq. 6-17 and be
directed downward, toward the center of the circular loop.

a:
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However, the directions of the centripetal acceleration and force are not con-
stant; they vary continuously so as to always point toward the center of the circle.
For this reason, the force and acceleration vectors are sometimes drawn along a
radial axis r that moves with the body and always extends from the center of the
circle to the body, as in Fig. 6-8. The positive direction of the axis is radially out-
ward, but the acceleration and force vectors point radially inward.

F ! m 
v2

R

CHECKPOINT 2

When you ride in a Ferris wheel at constant speed, what are the directions of your ac-
celeration and the normal force on you (from the always upright seat) as you pass
through (a) the highest point and (b) the lowest point of the ride?

F
:

Na:

Vertical circular loop, Diavolo

In a 1901 circus performance, Allo “Dare Devil” Diavolo
introduced the stunt of riding a bicycle in a loop-the-loop
(Fig. 6-9a). Assuming that the loop is a circle with radius
R ! 2.7 m, what is the least speed v that Diavolo and his
bicycle could have at the top of the loop to remain in con-
tact with it there?
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We can assume that Diavolo and his bicycle travel through
the top of the loop as a single particle in uniform circular
motion. Thus, at the top, the acceleration of this particle
must have the magnitude a ! v2/R given by Eq. 6-17 and be
directed downward, toward the center of the circular loop.
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A centripetal force could be a gravitational force, a frictional force, a 
tension in a string and the force from a car wall or any other force

A man is rotating a 
stone tied to a string 

Tension force is 
a centripetal force

T

An object 
is orbiting Earth

Gravitational force is a 
centripetal 

force

Fg

A car is moving 
in a rounded road

Friction force is 
a centripetal force



Igor is a cosmonaut on International Space Station, in a circular orbit around
Earth, at an altitude h of 520 km and with a constant speed v of 7.6 km/s. Igor’s
mass m is 79 kg.
(a) What is his acceleration. (b) What force does Earth exert on Igor?

Sample Problem

KEY I DEAS

Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 ( fk ! mkFN, where
FN is the normal force).The direction is opposite the motion
(the friction opposes the sliding).

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m 3.0 kg slides along a floor
while a force of magnitude 12.0 N is applied to it at an up-
ward angle u. The coefficient of kinetic friction between the
block and the floor is mk ! 0.40. We can vary u from 0 to 90°
(the block remains on the floor).What u gives the maximum
value of the block’s acceleration magnitude a?

F
:

!
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Sample Problem

where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

v2 ! v2
0 " 2a(x # x0), (6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x # x0 was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v0 give

(6-6)

(Answer)

We assumed that v ! 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v0 was at least 210 km/h.

 ! 58 m/s ! 210 km/h.
 ! 2(2)(0.60)(9.8 m/s2)(290 m)

 v0 ! 22$kg(x # x0)

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a)—the marks were 290 m long! Assuming
that mk ! 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked?

KEY I DEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v0. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b).We can relate this force
to the acceleration by writing Newton’s second law for x
components (Fnet,x ! max) as

#fk ! ma, (6-3)

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude fk ! mkFN, where FN is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of is equal to
the magnitude of the gravitational force on the car,
which is mg. Thus, FN ! mg.

Now solving Eq. 6-3 for a and substituting fk ! mkFN !
mkmg for fk yield

(6-4)a ! #
fk

m
! #

$kmg
m

! #$kg,

F
:

g

F
:

N

f
:

k

fk 

Fg 

FN 

290 m 

v0 

= 0.60 

(a) 

Car 
x 

(b) 

y 

µ 

v = 0 

This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.
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h

RE

a = v
2

R
= v2

RE + h
=

7.6 ×103( )2
6.37 ×106 + 0.52 ×106

= 8.38m / s2

F = ma = (79)(8.38) = 662N

(a)

(b)



Q.1: A 3.5kg block is pulled at a constant velocity along a horizontal 
floor by a force F = 15N that makes an angle of 40o with the 
horizontal. The coefficient of kinetic friction is:
(a) 0.34 (b) zero (c) 0.47 (d) 0.1

Constant speed à a = 0

Fnet ,y = may ⇒ FN + F sinθ −mg = 0 ⇒ FN = mg − F sinθ
Fnet ,x = max ⇒ F cosθ − fk = 0 ⇒ fk = F cosθ
                                              fk = µkFN

                                             µk =  F cosθ
mg − F sinθ

= 15cos 40o

(3.5 × 9.8 −15sin 40o )
= 0.47

F

Fcosθ

Fsinθ

FN

mg

Motion 
direction

fk

Examples:



Q.2: A block of weight 5N moves with a constant speed by a 
force of 2N. The value of the coefficient of friction is:
(a) 0.3 (b) 0.4 (c) 0.5 (d) 0.6

Constant speed à a = 0

Fnet ,y = may ⇒ FN −mg = 0 ⇒ FN = mg
Fnet ,x = max ⇒ F − fk = 0 ⇒ fk = F
                                              fk = µkFN

                                             µk =  fk
FN

= fk
mg

= 2
5
= 0.4

F

FN

mg

Motion 
direction

fk



Q.3: The coefficient of static friction between a 5kg block and the 
horizontal surface is 0.1. The maximum horizontal force that can be 
applied to the block just before starting to move is:
(a) 19.6N (b) 24.5N (c) 4.9N (d) 9.8N 

Fnet ,y = ma
⇒ FN −mg = 0
Fnet ,x = ma = 0
F − fs = 0
⇒ F = fs = µsFN = 0.1× 5 × 9.8 = 4.9N

F

FN

mg

fs
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PART 1

the coefficient of kinetic friction mk between the player and the
ground?

•7 A person pushes horizontally with a force of 220 N
on a 55 kg crate to move it across a level floor.The coefficient of ki-
netic friction is 0.35. What is the magnitude of (a) the frictional
force and (b) the crate’s acceleration?

•8 The mysterious sliding stones. Along the remote
Racetrack Playa in Death Valley, California, stones sometimes
gouge out prominent trails in the desert floor, as if the stones
had been migrating (Fig. 6-18). For years curiosity mounted
about why the stones moved. One explanation was that strong
winds during occasional rainstorms would drag the rough stones
over ground softened by rain. When the desert dried out, the
trails behind the stones were hard-baked in place. According to
measurements, the coefficient of kinetic friction between the
stones and the wet playa ground is about 0.80. What horizontal
force must act on a 20 kg stone (a typical mass) to maintain the
stone’s motion once a gust has started it moving? (Story contin-
ues with Problem 37.)

ILWSSM

•11 A 68 kg crate is dragged across a floor by pulling on
a rope attached to the crate and inclined 15° above the horizontal.
(a) If the coefficient of static friction is 0.50, what minimum force
magnitude is required from the rope to start the crate moving? (b)
If mk ! 0.35, what is the magnitude of the initial acceleration of the
crate?

•12 In about 1915, Henry Sincosky of Philadelphia suspended
himself from a rafter by gripping the rafter with the thumb of each
hand on one side and the fingers on the opposite
side (Fig. 6-21). Sincosky’s mass was 79 kg. If the
coefficient of static friction between hand and
rafter was 0.70, what was the least magnitude of
the normal force on the rafter from each thumb or
opposite fingers? (After suspending himself,
Sincosky chinned himself on the rafter and then
moved hand-over-hand along the rafter. If you do
not think Sincosky’s grip was remarkable, try to
repeat his stunt.)

•13 A worker pushes horizontally on a 35 kg
crate with a force of magnitude 110 N. The coeffi-
cient of static friction between the crate and the
floor is 0.37. (a) What is the value of fs,max under
the circumstances? (b) Does the crate move?
(c) What is the frictional force on the crate from
the floor? (d) Suppose, next, that a second worker
pulls directly upward on the crate to help out.
What is the least vertical pull that will allow the
first worker’s 110 N push to move the crate? (e) If,
instead, the second worker pulls horizontally to
help out, what is the least pull that will get the crate moving?

•14 Figure 6-22 shows the cross section of a road cut into the side
of a mountain.The solid line AA" represents a weak bedding plane
along which sliding is possible. Block B directly above the highway
is separated from uphill rock by a large crack (called a joint), so
that only friction between the block and the bedding plane pre-
vents sliding. The mass of the block is 1.8 # 107 kg, the dip angle u
of the bedding plane is 24°, and the coefficient of static friction be-
tween block and plane is 0.63. (a) Show that the block will not slide
under these circumstances. (b) Next, water seeps into the joint and
expands upon freezing, exerting on the block a force parallel to
AA".What minimum value of force magnitude F will trigger a slide
down the plane?

F
:

SSM

Fig. 6-21
Problem 12.

Fig. 6-18 Problem 8. What moved the stone? (Jerry Schad/
Photo Researchers)

•9 A 3.5 kg block is pushed
along a horizontal floor by a force

of magnitude 15 N at an angle
40° with the horizontal

(Fig. 6-19). The coefficient of ki-
netic friction between the block
and the floor is 0.25. Calculate the
magnitudes of (a) the frictional
force on the block from the floor
and (b) the block’s acceleration.

•10 Figure 6-20 shows an initially
stationary block of mass m on a
floor. A force of magnitude
0.500mg is then applied at upward
angle u ! 20°. What is the magni-
tude of the acceleration of the
block across the floor if the friction coefficients are (a) ms ! 0.600
and mk ! 0.500 and (b) ms ! 0.400 and mk ! 0.300?

$ !
F
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Fig. 6-22 Problem 14.
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Fig. 6-20 Problem 10.

θ

F

Fig. 6-19
Problems 9 and 32.

•15 The coefficient of static friction between Teflon and scram-
bled eggs is about 0.04. What is the smallest angle from the hori-
zontal that will cause the eggs to slide across the bottom of a
Teflon-coated skillet?
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Fig. 6-39 Problem 49.

•••35 The two blocks (m ! 16 kg and M ! 88 kg) in Fig. 6-38
are not attached to each other.The co-
efficient of static friction between the
blocks is ms ! 0.38, but the surface
beneath the larger block is friction-
less. What is the minimum magnitude
of the horizontal force required to
keep the smaller block from slipping
down the larger block?

sec. 6-4 The Drag Force and Terminal Speed
•36 The terminal speed of a sky diver is 160 km/h in the spread-
eagle position and 310 km/h in the nosedive position. Assuming
that the diver’s drag coefficient C does not change from one posi-
tion to the other, find the ratio of the effective cross-sectional area
A in the slower position to that in the faster position.

••37 Continuation of Problem 8. Now assume that Eq. 6-14
gives the magnitude of the air drag force on the typical 20 kg stone,
which presents to the wind a vertical cross-sectional area of 0.040
m2 and has a drag coefficient C of 0.80. Take the air density to be
1.21 kg/m3, and the coefficient of kinetic friction to be 0.80. (a) In
kilometers per hour, what wind speed V along the ground is
needed to maintain the stone’s motion once it has started moving?
Because winds along the ground are retarded by the ground, the
wind speeds reported for storms are often measured at a height of
10 m. Assume wind speeds are 2.00 times those along the ground.
(b) For your answer to (a), what wind speed would be reported for
the storm? (c) Is that value reasonable for a high-speed wind in a
storm? (Story continues with Problem 65.)

••38 Assume Eq. 6-14 gives the drag force on a pilot plus ejection
seat just after they are ejected from a plane traveling horizontally
at 1300 km/h. Assume also that the mass of the seat is equal to the
mass of the pilot and that the drag coefficient is that of a sky diver.
Making a reasonable guess of the pilot’s mass and using the ap-
propriate vt value from Table 6-1, estimate the magnitudes of (a)
the drag force on the pilot " seat and (b) their horizontal deceler-
ation (in terms of g), both just after ejection. (The result of (a)
should indicate an engineering requirement: The seat must in-
clude a protective barrier to deflect the initial wind blast away
from the pilot’s head.)

••39 Calculate the ratio of the drag force on a jet flying at 1000
km/h at an altitude of 10 km to the drag force on a prop-driven
transport flying at half that speed and altitude. The density of air is
0.38 kg/m3 at 10 km and 0.67 kg/m3 at 5.0 km. Assume that the air-
planes have the same effective cross-sectional area and drag coeffi-
cient C.

••40 In downhill speed skiing a skier is retarded by both the
air drag force on the body and the kinetic frictional force on the
skis. (a) Suppose the slope angle is u ! 40.0°, the snow is dry snow
with a coefficient of kinetic friction mk ! 0.0400, the mass of the
skier and equipment is m ! 85.0 kg, the cross-sectional area of the
(tucked) skier is A ! 1.30 m2, the drag coefficient is C ! 0.150, and
the air density is 1.20 kg/m3. (a) What is the terminal speed? (b) If a
skier can vary C by a slight amount dC by adjusting, say, the hand
positions, what is the corresponding variation in the terminal
speed?

sec. 6-5 Uniform Circular Motion
•41 A cat dozes on a stationary merry-go-round, at a radius of 5.4
m from the center of the ride. Then the operator turns on the ride

F
:

ILW and brings it up to its proper turning rate of one complete rotation
every 6.0 s. What is the least coefficient of static friction between
the cat and the merry-go-round that will allow the cat to stay in
place, without sliding?

•42 Suppose the coefficient of static friction between the road
and the tires on a car is 0.60 and the car has no negative lift. What
speed will put the car on the verge of sliding as it rounds a level
curve of 30.5 m radius?

•43 What is the smallest radius of an unbanked (flat) track
around which a bicyclist can travel if her speed is 29 km/h and the
ms between tires and track is 0.32?

•44 During an Olympic bobsled run, the Jamaican team makes a
turn of radius 7.6 m at a speed of 96.6 km/h. What is their accelera-
tion in terms of g?

••45 A student of weight 667 N rides a steadily
rotating Ferris wheel (the student sits upright). At the highest
point, the magnitude of the normal force on the student from
the seat is 556 N. (a) Does the student feel “light” or “heavy”
there? (b) What is the magnitude of at the lowest point? If the
wheel’s speed is doubled, what is the magnitude FN at the (c) high-
est and (d) lowest point?

••46 A police officer in hot pursuit drives her car through a circular
turn of radius 300 m with a constant speed of 80.0 km/h. Her mass is
55.0 kg.What are (a) the magnitude and (b) the angle (relative to ver-
tical) of the net force of the officer on the car seat? (Hint: Consider
both horizontal and vertical forces.)

••47 A circular-motion addict of mass 80 kg rides a Ferris
wheel around in a vertical circle of radius 10 m at a constant speed
of 6.1 m/s. (a) What is the period of the motion? What is the mag-
nitude of the normal force on the addict from the seat when both
go through (b) the highest point of the circular path and (c) the
lowest point?

••48 A roller-coaster car has a mass of 1200 kg when fully
loaded with passengers. As the car passes over the top of a circu-
lar hill of radius 18 m, its speed is not changing. At the top of the
hill, what are the (a) magnitude FN and (b) direction (up or
down) of the normal force on the car from the track if the car’s
speed is v ! 11 m/s? What are (c) FN and (d) the direction if v !
14 m/s? 

••49 In Fig. 6-39, a car is driven at constant speed over a circular
hill and then into a circular valley with the same radius. At the top
of the hill, the normal force on the driver from the car seat is 0.The
driver’s mass is 70.0 kg. What is the magnitude of the normal force
on the driver from the seat when the car passes through the bottom
of the valley?

F
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••50 An 85.0 kg passenger is made to move along a circular path
of radius r ! 3.50 m in uniform circular motion. (a) Figure 6-40a is
a plot of the required magnitude F of the net centripetal force for a
range of possible values of the passenger’s speed v. What is the

Frictionless

m

M
F

Fig. 6-38 Problem 35.
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the coefficient of kinetic friction mk between the player and the
ground?

•7 A person pushes horizontally with a force of 220 N
on a 55 kg crate to move it across a level floor.The coefficient of ki-
netic friction is 0.35. What is the magnitude of (a) the frictional
force and (b) the crate’s acceleration?

•8 The mysterious sliding stones. Along the remote
Racetrack Playa in Death Valley, California, stones sometimes
gouge out prominent trails in the desert floor, as if the stones
had been migrating (Fig. 6-18). For years curiosity mounted
about why the stones moved. One explanation was that strong
winds during occasional rainstorms would drag the rough stones
over ground softened by rain. When the desert dried out, the
trails behind the stones were hard-baked in place. According to
measurements, the coefficient of kinetic friction between the
stones and the wet playa ground is about 0.80. What horizontal
force must act on a 20 kg stone (a typical mass) to maintain the
stone’s motion once a gust has started it moving? (Story contin-
ues with Problem 37.)

ILWSSM

•11 A 68 kg crate is dragged across a floor by pulling on
a rope attached to the crate and inclined 15° above the horizontal.
(a) If the coefficient of static friction is 0.50, what minimum force
magnitude is required from the rope to start the crate moving? (b)
If mk ! 0.35, what is the magnitude of the initial acceleration of the
crate?

•12 In about 1915, Henry Sincosky of Philadelphia suspended
himself from a rafter by gripping the rafter with the thumb of each
hand on one side and the fingers on the opposite
side (Fig. 6-21). Sincosky’s mass was 79 kg. If the
coefficient of static friction between hand and
rafter was 0.70, what was the least magnitude of
the normal force on the rafter from each thumb or
opposite fingers? (After suspending himself,
Sincosky chinned himself on the rafter and then
moved hand-over-hand along the rafter. If you do
not think Sincosky’s grip was remarkable, try to
repeat his stunt.)

•13 A worker pushes horizontally on a 35 kg
crate with a force of magnitude 110 N. The coeffi-
cient of static friction between the crate and the
floor is 0.37. (a) What is the value of fs,max under
the circumstances? (b) Does the crate move?
(c) What is the frictional force on the crate from
the floor? (d) Suppose, next, that a second worker
pulls directly upward on the crate to help out.
What is the least vertical pull that will allow the
first worker’s 110 N push to move the crate? (e) If,
instead, the second worker pulls horizontally to
help out, what is the least pull that will get the crate moving?

•14 Figure 6-22 shows the cross section of a road cut into the side
of a mountain.The solid line AA" represents a weak bedding plane
along which sliding is possible. Block B directly above the highway
is separated from uphill rock by a large crack (called a joint), so
that only friction between the block and the bedding plane pre-
vents sliding. The mass of the block is 1.8 # 107 kg, the dip angle u
of the bedding plane is 24°, and the coefficient of static friction be-
tween block and plane is 0.63. (a) Show that the block will not slide
under these circumstances. (b) Next, water seeps into the joint and
expands upon freezing, exerting on the block a force parallel to
AA".What minimum value of force magnitude F will trigger a slide
down the plane?

F
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SSM

Fig. 6-21
Problem 12.

Fig. 6-18 Problem 8. What moved the stone? (Jerry Schad/
Photo Researchers)

•9 A 3.5 kg block is pushed
along a horizontal floor by a force

of magnitude 15 N at an angle
40° with the horizontal

(Fig. 6-19). The coefficient of ki-
netic friction between the block
and the floor is 0.25. Calculate the
magnitudes of (a) the frictional
force on the block from the floor
and (b) the block’s acceleration.

•10 Figure 6-20 shows an initially
stationary block of mass m on a
floor. A force of magnitude
0.500mg is then applied at upward
angle u ! 20°. What is the magni-
tude of the acceleration of the
block across the floor if the friction coefficients are (a) ms ! 0.600
and mk ! 0.500 and (b) ms ! 0.400 and mk ! 0.300?

$ !
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Fig. 6-22 Problem 14.
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Fig. 6-20 Problem 10.
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Fig. 6-19
Problems 9 and 32.

•15 The coefficient of static friction between Teflon and scram-
bled eggs is about 0.04. What is the smallest angle from the hori-
zontal that will cause the eggs to slide across the bottom of a
Teflon-coated skillet?
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7. The free-body diagram for the crate is shown 
to the right. We denote 

�
F  as the horizontal force 

of the person exerted on the crate (in the +x 
direction), 

�
f k  is the force of kinetic friction (in 

the –x direction), NF  is the vertical normal force 
exerted by the floor (in the +y direction), and 
mg�  is the force of gravity. The magnitude of the 
force of friction is given by (Eq. 6-2):  
 

fk = �kFN .  
 
Applying Newton’s second law to the x and y axes, we obtain 
 

0
k

N

F f ma
F mg
� �
� �

 

respectively.  
 
(a) The second equation above yields the normal force FN = mg, so that the friction is 
 

� �� � 2 20.35 55 kg (9.8 m/s ) 1.9 10 N .k k N kf F mg� �� � � � �  
 
(b) The first equation becomes 

F mg mak� ��  
 
which (with F = 220 N) we solve to find 
 

a F
m

gk� � �� 056 2. .m / s  

 
Note: For the crate to accelerate, the condition k kF f mg�� �  must be met. As can be 
seen from the equation above, the greater the value of k� , the smaller the acceleration 
with the same applied force.  
 
8. To maintain the stone’s motion, a horizontal force (in the +x direction) is needed that 
cancels the retarding effect due to kinetic friction. Applying Newton’s second to the x 
and y axes, we obtain 

0
k

N

F f ma
F mg
� �
� �

 

 
respectively. The second equation yields the normal force FN = mg, so that (using Eq. 6-2) 
the kinetic friction becomes fk = �k mg. Thus, the first equation becomes 
 

F mg mak� � �� 0  
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Fig. 6-39 Problem 49.

•••35 The two blocks (m ! 16 kg and M ! 88 kg) in Fig. 6-38
are not attached to each other.The co-
efficient of static friction between the
blocks is ms ! 0.38, but the surface
beneath the larger block is friction-
less. What is the minimum magnitude
of the horizontal force required to
keep the smaller block from slipping
down the larger block?

sec. 6-4 The Drag Force and Terminal Speed
•36 The terminal speed of a sky diver is 160 km/h in the spread-
eagle position and 310 km/h in the nosedive position. Assuming
that the diver’s drag coefficient C does not change from one posi-
tion to the other, find the ratio of the effective cross-sectional area
A in the slower position to that in the faster position.

••37 Continuation of Problem 8. Now assume that Eq. 6-14
gives the magnitude of the air drag force on the typical 20 kg stone,
which presents to the wind a vertical cross-sectional area of 0.040
m2 and has a drag coefficient C of 0.80. Take the air density to be
1.21 kg/m3, and the coefficient of kinetic friction to be 0.80. (a) In
kilometers per hour, what wind speed V along the ground is
needed to maintain the stone’s motion once it has started moving?
Because winds along the ground are retarded by the ground, the
wind speeds reported for storms are often measured at a height of
10 m. Assume wind speeds are 2.00 times those along the ground.
(b) For your answer to (a), what wind speed would be reported for
the storm? (c) Is that value reasonable for a high-speed wind in a
storm? (Story continues with Problem 65.)

••38 Assume Eq. 6-14 gives the drag force on a pilot plus ejection
seat just after they are ejected from a plane traveling horizontally
at 1300 km/h. Assume also that the mass of the seat is equal to the
mass of the pilot and that the drag coefficient is that of a sky diver.
Making a reasonable guess of the pilot’s mass and using the ap-
propriate vt value from Table 6-1, estimate the magnitudes of (a)
the drag force on the pilot " seat and (b) their horizontal deceler-
ation (in terms of g), both just after ejection. (The result of (a)
should indicate an engineering requirement: The seat must in-
clude a protective barrier to deflect the initial wind blast away
from the pilot’s head.)

••39 Calculate the ratio of the drag force on a jet flying at 1000
km/h at an altitude of 10 km to the drag force on a prop-driven
transport flying at half that speed and altitude. The density of air is
0.38 kg/m3 at 10 km and 0.67 kg/m3 at 5.0 km. Assume that the air-
planes have the same effective cross-sectional area and drag coeffi-
cient C.

••40 In downhill speed skiing a skier is retarded by both the
air drag force on the body and the kinetic frictional force on the
skis. (a) Suppose the slope angle is u ! 40.0°, the snow is dry snow
with a coefficient of kinetic friction mk ! 0.0400, the mass of the
skier and equipment is m ! 85.0 kg, the cross-sectional area of the
(tucked) skier is A ! 1.30 m2, the drag coefficient is C ! 0.150, and
the air density is 1.20 kg/m3. (a) What is the terminal speed? (b) If a
skier can vary C by a slight amount dC by adjusting, say, the hand
positions, what is the corresponding variation in the terminal
speed?

sec. 6-5 Uniform Circular Motion
•41 A cat dozes on a stationary merry-go-round, at a radius of 5.4
m from the center of the ride. Then the operator turns on the ride

F
:

ILW and brings it up to its proper turning rate of one complete rotation
every 6.0 s. What is the least coefficient of static friction between
the cat and the merry-go-round that will allow the cat to stay in
place, without sliding?

•42 Suppose the coefficient of static friction between the road
and the tires on a car is 0.60 and the car has no negative lift. What
speed will put the car on the verge of sliding as it rounds a level
curve of 30.5 m radius?

•43 What is the smallest radius of an unbanked (flat) track
around which a bicyclist can travel if her speed is 29 km/h and the
ms between tires and track is 0.32?

•44 During an Olympic bobsled run, the Jamaican team makes a
turn of radius 7.6 m at a speed of 96.6 km/h. What is their accelera-
tion in terms of g?

••45 A student of weight 667 N rides a steadily
rotating Ferris wheel (the student sits upright). At the highest
point, the magnitude of the normal force on the student from
the seat is 556 N. (a) Does the student feel “light” or “heavy”
there? (b) What is the magnitude of at the lowest point? If the
wheel’s speed is doubled, what is the magnitude FN at the (c) high-
est and (d) lowest point?

••46 A police officer in hot pursuit drives her car through a circular
turn of radius 300 m with a constant speed of 80.0 km/h. Her mass is
55.0 kg.What are (a) the magnitude and (b) the angle (relative to ver-
tical) of the net force of the officer on the car seat? (Hint: Consider
both horizontal and vertical forces.)

••47 A circular-motion addict of mass 80 kg rides a Ferris
wheel around in a vertical circle of radius 10 m at a constant speed
of 6.1 m/s. (a) What is the period of the motion? What is the mag-
nitude of the normal force on the addict from the seat when both
go through (b) the highest point of the circular path and (c) the
lowest point?

••48 A roller-coaster car has a mass of 1200 kg when fully
loaded with passengers. As the car passes over the top of a circu-
lar hill of radius 18 m, its speed is not changing. At the top of the
hill, what are the (a) magnitude FN and (b) direction (up or
down) of the normal force on the car from the track if the car’s
speed is v ! 11 m/s? What are (c) FN and (d) the direction if v !
14 m/s? 

••49 In Fig. 6-39, a car is driven at constant speed over a circular
hill and then into a circular valley with the same radius. At the top
of the hill, the normal force on the driver from the car seat is 0.The
driver’s mass is 70.0 kg. What is the magnitude of the normal force
on the driver from the seat when the car passes through the bottom
of the valley?

F
:

N

F
:

N

ILWSSM

ILW

••50 An 85.0 kg passenger is made to move along a circular path
of radius r ! 3.50 m in uniform circular motion. (a) Figure 6-40a is
a plot of the required magnitude F of the net centripetal force for a
range of possible values of the passenger’s speed v. What is the

Frictionless

m

M
F

Fig. 6-38 Problem 35.
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Consequently, the maximum speed with which the car can round the curve without 
slipping is 
 

2
max (0.60)(30.5 m)(9.8 m/s ) 13 m/s 48 km/h.sv Rg�� � � �  

 
43. The magnitude of the acceleration of the cyclist as it rounds the curve is given by v2/R, 
where v is the speed of the cyclist and R is the radius of the curve. Since the road is 
horizontal, only the frictional force of the road on the tires makes this acceleration 
possible. The horizontal component of Newton’s second law is f = mv2/R. If FN is the 
normal force of the road on the bicycle and m is the mass of the bicycle and rider, the 
vertical component of Newton’s second law leads to FN = mg. Thus, using Eq. 6-1, the 
maximum value of static friction is fs,max = �s FN = �smg. If the bicycle does not slip, f � 
�smg. This means 

v
R

g R v
gs

s

2 2

� � ��
�

    .  

 
Consequently, the minimum radius with which a cyclist moving at 29 km/h = 8.1 m/s can 
round the curve without slipping is 
 

2 2

min 2

(8.1 m/s)
21 m.

(0.32)(9.8 m/s )s

vR
g�

� � �  

 
44. With v = 96.6 km/h = 26.8 m/s, Eq. 6-17 readily yields 
 

2 2
2(26.8 m/s)

94.7 m/s
7.6 m

va
R

� � �  

 
which we express as a multiple of g: 
 

2

2

94.7 m/s
 9.7 .

9.80 m/s
aa g g g
g

� �� �
� � �	 �	 �

 
 
 


 

 
45. The free-body diagrams of the student at the top and bottom of the Ferris wheel are 
shown below. At the top (the highest point in the circular motion) the seat pushes up on 
the student with a force of magnitude FN,top, while the Earth pulls down with a force of 
magnitude mg. Newton’s second law for the radial direction gives 
 

 
2

,topN
mvmg F

R
� � . 

At the bottom of the ride, ,bottomNF  is the magnitude of the upward force exerted by the 
seat. The net force toward the center of the circle is (choosing upward as the positive 
direction): 
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Chapter 7
KINETIC ENERGY AND WORK

Sections 7-2, 7-3, 7-4, 7-5

What is Energy?
Kinetic Energy

Work
Work and Kinetic Energy



� Important skills from this lecture:
1. Describe the kinetic energy and its relation with 

velocity

2. Calculate kinetic energy 

3. Define the unit of kinetic energy
4. Define work and its unit

5. Evaluate the work done by a constant force

6. Calculate the net work done by several forces
7. Identify the work-kinetic energy theorem



What Is Energy?
� Energy is a scalar quantity associated with the state (or 

condition) of one or more objects

� Energy is the ability to make things change

� A system that has energy has the ability to do work

� Living organisms need energy for growing & moving

� Some forms of energy:
� Thermal Energy

� Electrical Energy

� Chemical Energy

� Nuclear Energy

� Mechanical Energy (kinetic energy & potential energy)



� Principle of energy conservation: 
Energy can be transformed from one type to another, 
and transferred from one object to another, but the total 
amount is always the same (energy is conserved)

� Properties of Energy
� Scalar quantity

� Conserved 

� Transferred 

� Measured with Joule

� In this chapter we focus only on one type of energy 
(kinetic energy) and one way of transferring energy 
(work) 



Kinetic Energy
� Kinetic energy (K or K.E): the energy associated 

with the state of motion of an object 
� The faster the object moves, the greater its K.E

� When the object is stationary, K.E = 0

� For an object of mass m, and speed v
(v < speed of light)

� Energy unit in SI is joule (J)

1417-3 KI N ETIC E N E RGY
PART 1

7-3 Kinetic Energy
Kinetic energy K is energy associated with the state of motion of an object. The
faster the object moves, the greater is its kinetic energy. When the object is
stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

(kinetic energy). (7-1)

For example, a 3.0 kg duck flying past us at 2.0 m/s has a kinetic energy of 
6.0 kg ! m2/s2; that is, we associate that number with the duck’s motion.

The SI unit of kinetic energy (and every other type of energy) is the joule (J),
named for James Prescott Joule, an English scientist of the 1800s. It is defined
directly from Eq. 7-1 in terms of the units for mass and velocity:

1 joule " 1 J " 1 kg ! m2/s2. (7-2)

Thus, the flying duck has a kinetic energy of 6.0 J.

K " 1
2mv2 

Sample Problem

We can find the mass of each locomotive by dividing its
given weight by g:

Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as

(Answer)
This collision was like an exploding bomb.

 " 2.0 # 108 J.
 K " 2(1

2 mv2) " (1.22 # 105 kg)(40.8 m/s)2

m "
1.2 # 106 N

9.8 m/s2 " 1.22 # 105 kg.

Kinetic energy, train crash

In 1896 in Waco, Texas, William Crush parked two locomo-
tives at opposite ends of a 6.4-km-long track, fired them up,
tied their throttles open, and then allowed them to crash
head-on at full speed (Fig. 7-1) in front of 30,000 spectators.
Hundreds of people were hurt by flying debris; several were
killed. Assuming each locomotive weighed 1.2 # 106 N and
its acceleration was a constant 0.26 m/s2, what was the total
kinetic energy of the two locomotives just before the
collision?

KEY I DEAS

(1) We need to find the kinetic energy of each locomotive
with Eq. 7-1, but that means we need each locomotive’s
speed just before the collision and its mass. (2) Because we
can assume each locomotive had constant acceleration, we
can use the equations in Table 2-1 to find its speed v just be-
fore the collision.

Calculations: We choose Eq. 2-16 because we know values
for all the variables except v:

With v0 " 0 and x $ x0 " 3.2 # 103 m (half the initial sepa-
ration), this yields

v2 " 0 % 2(0.26 m/s2)(3.2 # 103 m),
or v " 40.8 m/s

(about 150 km/h).

v2 " v0
2 % 2a(x $ x 0).

Fig. 7-1 The aftermath of an 1896 crash of two locomotives.
(Courtesy Library of Congress)
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7-3 Kinetic Energy
Kinetic energy K is energy associated with the state of motion of an object. The
faster the object moves, the greater is its kinetic energy. When the object is
stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

(kinetic energy). (7-1)

For example, a 3.0 kg duck flying past us at 2.0 m/s has a kinetic energy of 
6.0 kg ! m2/s2; that is, we associate that number with the duck’s motion.

The SI unit of kinetic energy (and every other type of energy) is the joule (J),
named for James Prescott Joule, an English scientist of the 1800s. It is defined
directly from Eq. 7-1 in terms of the units for mass and velocity:

1 joule " 1 J " 1 kg ! m2/s2. (7-2)

Thus, the flying duck has a kinetic energy of 6.0 J.

K " 1
2mv2 

Sample Problem

We can find the mass of each locomotive by dividing its
given weight by g:

Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as

(Answer)
This collision was like an exploding bomb.

 " 2.0 # 108 J.
 K " 2(1

2 mv2) " (1.22 # 105 kg)(40.8 m/s)2

m "
1.2 # 106 N

9.8 m/s2 " 1.22 # 105 kg.
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tives at opposite ends of a 6.4-km-long track, fired them up,
tied their throttles open, and then allowed them to crash
head-on at full speed (Fig. 7-1) in front of 30,000 spectators.
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2 + 2a(x − x0 )

x − x0 = 6.4 ÷ 2 = 3.2km
v2 = 0 + 2(0.26m / s2 )(3.2 ×103) = 40.8m / s

m = 1.2 ×10
6N

9.8m / s2
= 1.22 ×105 kg
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2
mv2⎛
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⎞
⎠⎟ = (1.22 ×10
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Work
� If an object is accelerated à é K.E 

� Energy is transferred to the object

� If an object is decelerated à ê K.E
� Energy is transferred from the object 

� Energy transfer means that there is a work (W) done on the object 

� “Work”: the transferred energy 
“doing work”: the act of transferring the energy

� Work has the same units as energy 
It is a scalar quantity
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7-4 Work
If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

K (! 1
2 mv2)

Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.

7-5 Work and Kinetic Energy
Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force , directed at an angle f to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

Fx ! max, (7-3)

where m is the bead’s mass. As the bead moves through a displacement , the
force changes the bead’s velocity from an initial value to some other value .
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

(7-4)

Solving this equation for ax, substituting into Eq. 7-3, and rearranging then give us

(7-5)

The first term on the left side of the equation is the kinetic energy Kf of the bead
at the end of the displacement d, and the second term is the kinetic energy Ki of
the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us
the kinetic energy has been changed by the force, and the right side tells us the
change is equal to Fxd. Therefore, the work W done on the bead by the force

1
2 mv2 " 1

2 mv0
2 ! Fxd.

v2 ! v0
2 # 2axd.

v:v:0

d
:

F
:
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Work & Kinetic Energy
� A bead of mass m slides along a frictionless wire along a horizontal x

axis. A constant force  , directed at an angle Φ to the wire, accelerates 
the bead along the wire

� Applying Newton’s 2nd law along the x axis:

� The bead’s velocity changes from    to    as the bead 
moves through a displacement    

� Because F is constant à a is constant à we can use the equation of 
motion:

� Sub 1 into 2 gives:

� The 1st term on the left side gives the final kinetic energy Kf

� The 2nd term on the left gives the initial kinetic energy Ki

� à the left side gives the change ΔK.E by the force

� The right side of the equation shows that the change is equal to Fxd
� The work W done on the bead by the force:

A

(the energy transfer due to the force) is

W ! Fxd. (7-6)

If we know values for Fx and d, we can use this equation to calculate the work W
done on the bead by the force.

To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.The
force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can write Fx as F cos f, where f is the angle
between the directions of the displacement and the force .Thus,

W ! Fd cos f (work done by a constant force). (7-7)

Because the right side of this equation is equivalent to the scalar (dot) product
, we can also write

(work done by a constant force), (7-8)

where F is the magnitude of (You may wish to review the discussion of scalar
products in Section 3-8.) Equation 7-8 is especially useful for calculating the work
when and are given in unit-vector notation.d

:
F
:

F
:

.

W ! F
:

! d
:

F
:

! d
:

F
:

d
:

Cautions: There are two restrictions to using Eqs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for work. The work done on an object by a force can be either positive
work or negative work. For example, if angle f in Eq. 7-7 is less than 90°, then cos f is
positive and thus so is the work. If f is greater than 90° (up to 180°), then cos f is

Kf

v

Larger final
kinetic energy

φ

F

Displacement d
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Fig. 7-3 A contestant in a bed race.We
can approximate the bed and its occupant
as being a particle for the purpose of calcu-
lating the work done on them by the force
applied by the student.

F

xx
Bead

Wireφ

F

Ki

v0

This component
does no work.

Small initial
kinetic energy

This force does positive work
on the bead, increasing speed
and kinetic energy.

This component
does work.

φ

F

φ

F

φ

F

Fig. 7-2 A constant force directed at 
angle f to the displacement of a bead on a
wire accelerates the bead along the wire,
changing the velocity of the bead from to .
A “kinetic energy gauge” indicates the result-
ing change in the kinetic energy of the bead,
from the value Ki to the value Kf .

v:v:0

d
:
F
:
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7-4 Work
If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

K (! 1
2 mv2)

Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.

7-5 Work and Kinetic Energy
Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force , directed at an angle f to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

Fx ! max, (7-3)

where m is the bead’s mass. As the bead moves through a displacement , the
force changes the bead’s velocity from an initial value to some other value .
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

(7-4)

Solving this equation for ax, substituting into Eq. 7-3, and rearranging then give us

(7-5)

The first term on the left side of the equation is the kinetic energy Kf of the bead
at the end of the displacement d, and the second term is the kinetic energy Ki of
the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us
the kinetic energy has been changed by the force, and the right side tells us the
change is equal to Fxd. Therefore, the work W done on the bead by the force

1
2 mv2 " 1

2 mv0
2 ! Fxd.

v2 ! v0
2 # 2axd.

v:v:0

d
:
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:
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K (! 1
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thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
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at the end of the displacement d, and the second term is the kinetic energy Ki of
the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us
the kinetic energy has been changed by the force, and the right side tells us the
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7-4 Work
If you accelerate an object to a greater speed by applying a force to the object,
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K (! 1
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Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force , directed at an angle f to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

Fx ! max, (7-3)

where m is the bead’s mass. As the bead moves through a displacement , the
force changes the bead’s velocity from an initial value to some other value .
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

(7-4)

Solving this equation for ax, substituting into Eq. 7-3, and rearranging then give us

(7-5)

The first term on the left side of the equation is the kinetic energy Kf of the bead
at the end of the displacement d, and the second term is the kinetic energy Ki of
the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us
the kinetic energy has been changed by the force, and the right side tells us the
change is equal to Fxd. Therefore, the work W done on the bead by the force
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7-4 Work
If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

K (! 1
2 mv2)

Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.

7-5 Work and Kinetic Energy
Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force , directed at an angle f to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

Fx ! max, (7-3)

where m is the bead’s mass. As the bead moves through a displacement , the
force changes the bead’s velocity from an initial value to some other value .
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

(7-4)

Solving this equation for ax, substituting into Eq. 7-3, and rearranging then give us

(7-5)

The first term on the left side of the equation is the kinetic energy Kf of the bead
at the end of the displacement d, and the second term is the kinetic energy Ki of
the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us
the kinetic energy has been changed by the force, and the right side tells us the
change is equal to Fxd. Therefore, the work W done on the bead by the force
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7-4 Work
If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

K (! 1
2 mv2)

Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.

7-5 Work and Kinetic Energy
Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force , directed at an angle f to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

Fx ! max, (7-3)

where m is the bead’s mass. As the bead moves through a displacement , the
force changes the bead’s velocity from an initial value to some other value .
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

(7-4)

Solving this equation for ax, substituting into Eq. 7-3, and rearranging then give us

(7-5)

The first term on the left side of the equation is the kinetic energy Kf of the bead
at the end of the displacement d, and the second term is the kinetic energy Ki of
the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us
the kinetic energy has been changed by the force, and the right side tells us the
change is equal to Fxd. Therefore, the work W done on the bead by the force
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A

(the energy transfer due to the force) is

W ! Fxd. (7-6)

If we know values for Fx and d, we can use this equation to calculate the work W
done on the bead by the force.

To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.The
force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can write Fx as F cos f, where f is the angle
between the directions of the displacement and the force .Thus,

W ! Fd cos f (work done by a constant force). (7-7)

Because the right side of this equation is equivalent to the scalar (dot) product
, we can also write

(work done by a constant force), (7-8)

where F is the magnitude of (You may wish to review the discussion of scalar
products in Section 3-8.) Equation 7-8 is especially useful for calculating the work
when and are given in unit-vector notation.d

:
F
:

F
:

.

W ! F
:

! d
:

F
:

! d
:

F
:

d
:

Cautions: There are two restrictions to using Eqs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for work. The work done on an object by a force can be either positive
work or negative work. For example, if angle f in Eq. 7-7 is less than 90°, then cos f is
positive and thus so is the work. If f is greater than 90° (up to 180°), then cos f is
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7-4 Work
If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

K (! 1
2 mv2)

Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.

7-5 Work and Kinetic Energy
Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force , directed at an angle f to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

Fx ! max, (7-3)

where m is the bead’s mass. As the bead moves through a displacement , the
force changes the bead’s velocity from an initial value to some other value .
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

(7-4)

Solving this equation for ax, substituting into Eq. 7-3, and rearranging then give us

(7-5)

The first term on the left side of the equation is the kinetic energy Kf of the bead
at the end of the displacement d, and the second term is the kinetic energy Ki of
the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us
the kinetic energy has been changed by the force, and the right side tells us the
change is equal to Fxd. Therefore, the work W done on the bead by the force

1
2 mv2 " 1

2 mv0
2 ! Fxd.

v2 ! v0
2 # 2axd.

v:v:0

d
:

F
:

halliday_c07_140-165hr.qxd  17-09-2009  12:40  Page 142

(2)

(1)



� For using the above equations to calculate work done on an 
object by a force

� First, the force must be a constant force (no change in 
magnitude or direction as the object moves)

� Second, the object must be rigid (all its parts must move 
together, in the same direction)

A

(the energy transfer due to the force) is

W ! Fxd. (7-6)

If we know values for Fx and d, we can use this equation to calculate the work W
done on the bead by the force.

To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.The
force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can write Fx as F cos f, where f is the angle
between the directions of the displacement and the force .Thus,

W ! Fd cos f (work done by a constant force). (7-7)

Because the right side of this equation is equivalent to the scalar (dot) product
, we can also write

(work done by a constant force), (7-8)

where F is the magnitude of (You may wish to review the discussion of scalar
products in Section 3-8.) Equation 7-8 is especially useful for calculating the work
when and are given in unit-vector notation.d
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:
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:

Cautions: There are two restrictions to using Eqs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for work. The work done on an object by a force can be either positive
work or negative work. For example, if angle f in Eq. 7-7 is less than 90°, then cos f is
positive and thus so is the work. If f is greater than 90° (up to 180°), then cos f is
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A

(the energy transfer due to the force) is

W ! Fxd. (7-6)

If we know values for Fx and d, we can use this equation to calculate the work W
done on the bead by the force.

To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.The
force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can write Fx as F cos f, where f is the angle
between the directions of the displacement and the force .Thus,

W ! Fd cos f (work done by a constant force). (7-7)

Because the right side of this equation is equivalent to the scalar (dot) product
, we can also write

(work done by a constant force), (7-8)

where F is the magnitude of (You may wish to review the discussion of scalar
products in Section 3-8.) Equation 7-8 is especially useful for calculating the work
when and are given in unit-vector notation.d
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:
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F
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d
:

Cautions: There are two restrictions to using Eqs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for work. The work done on an object by a force can be either positive
work or negative work. For example, if angle f in Eq. 7-7 is less than 90°, then cos f is
positive and thus so is the work. If f is greater than 90° (up to 180°), then cos f is
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A

(the energy transfer due to the force) is

W ! Fxd. (7-6)

If we know values for Fx and d, we can use this equation to calculate the work W
done on the bead by the force.

To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.The
force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can write Fx as F cos f, where f is the angle
between the directions of the displacement and the force .Thus,

W ! Fd cos f (work done by a constant force). (7-7)

Because the right side of this equation is equivalent to the scalar (dot) product
, we can also write

(work done by a constant force), (7-8)

where F is the magnitude of (You may wish to review the discussion of scalar
products in Section 3-8.) Equation 7-8 is especially useful for calculating the work
when and are given in unit-vector notation.d

:
F
:

F
:

.

W ! F
:

! d
:

F
:

! d
:

F
:

d
:

Cautions: There are two restrictions to using Eqs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for work. The work done on an object by a force can be either positive
work or negative work. For example, if angle f in Eq. 7-7 is less than 90°, then cos f is
positive and thus so is the work. If f is greater than 90° (up to 180°), then cos f is
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A

(the energy transfer due to the force) is

W ! Fxd. (7-6)

If we know values for Fx and d, we can use this equation to calculate the work W
done on the bead by the force.

To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.The
force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can write Fx as F cos f, where f is the angle
between the directions of the displacement and the force .Thus,

W ! Fd cos f (work done by a constant force). (7-7)

Because the right side of this equation is equivalent to the scalar (dot) product
, we can also write

(work done by a constant force), (7-8)

where F is the magnitude of (You may wish to review the discussion of scalar
products in Section 3-8.) Equation 7-8 is especially useful for calculating the work
when and are given in unit-vector notation.d
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Cautions: There are two restrictions to using Eqs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for work. The work done on an object by a force can be either positive
work or negative work. For example, if angle f in Eq. 7-7 is less than 90°, then cos f is
positive and thus so is the work. If f is greater than 90° (up to 180°), then cos f is
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A

(the energy transfer due to the force) is

W ! Fxd. (7-6)

If we know values for Fx and d, we can use this equation to calculate the work W
done on the bead by the force.

To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.The
force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can write Fx as F cos f, where f is the angle
between the directions of the displacement and the force .Thus,

W ! Fd cos f (work done by a constant force). (7-7)

Because the right side of this equation is equivalent to the scalar (dot) product
, we can also write

(work done by a constant force), (7-8)

where F is the magnitude of (You may wish to review the discussion of scalar
products in Section 3-8.) Equation 7-8 is especially useful for calculating the work
when and are given in unit-vector notation.d
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Cautions: There are two restrictions to using Eqs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for work. The work done on an object by a force can be either positive
work or negative work. For example, if angle f in Eq. 7-7 is less than 90°, then cos f is
positive and thus so is the work. If f is greater than 90° (up to 180°), then cos f is
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A “kinetic energy gauge” indicates the result-
ing change in the kinetic energy of the bead,
from the value Ki to the value Kf .

v:v:0

d
:
F
:
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� Signs for work: 
To find the sign of the work done by a force, consider the force 
vector component that is parallel to the displacement (Eq. 3 )

� If 0 <Φ < 90° à cos Φ is +ve à W is + ve

� If 90° <Φ < 180° à cos Φ is − ve à W is − ve

� If Φ = 90o à W=0
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Units for work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N ! m). The corresponding unit in the British system is the foot-pound
(ft ! lb). Extending Eq. 7-2, we have

1 J " 1 kg ! m2/s2 " 1 N ! m " 0.738 ft ! lb. (7-9)

Net work done by several forces. When two or more forces act on an object,
the net work done on the object is the sum of the works done by the individual
forces. We can calculate the net work in two ways. (1) We can find the work
done by each force and then sum those works. (2) Alternatively, we can first
find the net force of those forces. Then we can use Eq. 7-7, substituting the
magnitude Fnet for F and also the angle between the directions of and 
for f. Similarly, we can use Eq. 7-8 with substituted for 

Work–Kinetic Energy Theorem
Equation 7-5 relates the change in kinetic energy of the bead (from an initial

to a later ) to the work W (" Fxd) done on the bead. For
such particle-like objects, we can generalize that equation. Let #K be the change
in the kinetic energy of the object, and let W be the net work done on it.Then 

#K " Kf $ Ki " W, (7-10)
which says that

We can also write
Kf " Ki % W, (7-11)

which says that

.

These statements are known traditionally as the work–kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

! kinetic energy after
the net work is done" " ! kinetic energy 

before the net work" % ! the net
work done"

!change in the kinetic
energy of a particle " " !net work done on

the particle ".

Kf " 1
2 mv2Ki " 1

2 mv2
0

F
:

.F
:

net

d
:

F
:

net

F
:

net

A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in the
opposite direction. It does zero work when it has no such vector component.

CHECKPOINT 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from $3 m/s to $2 m/s
and (b) from $2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

negative and thus so is the work. (Can you see that the work is zero when f " 90°?)
These results lead to a simple rule.To find the sign of the work done by a force, con-
sider the force vector component that is parallel to the displacement:
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� Units for work: 
� Work has the SI unit of the joule, 

� From Eq.3, an equivalent unit for joule is the newton.meter (N.m) 

� The corresponding unit in the British system is the foot.pound
(ft.lb). 

� Net work done by several forces: 
When two or more forces act on an object, Wnet = ΣW
Wnet is calculated in two ways: 
1. Find the work done by each force and then sum those works

2. Find Fnet of forces. Then use Eq. 3, substituting the magnitude Fnet for F 
and also the angle between the directions of Fnet and d for Φ
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Units for work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N ! m). The corresponding unit in the British system is the foot-pound
(ft ! lb). Extending Eq. 7-2, we have

1 J " 1 kg ! m2/s2 " 1 N ! m " 0.738 ft ! lb. (7-9)

Net work done by several forces. When two or more forces act on an object,
the net work done on the object is the sum of the works done by the individual
forces. We can calculate the net work in two ways. (1) We can find the work
done by each force and then sum those works. (2) Alternatively, we can first
find the net force of those forces. Then we can use Eq. 7-7, substituting the
magnitude Fnet for F and also the angle between the directions of and 
for f. Similarly, we can use Eq. 7-8 with substituted for 

Work–Kinetic Energy Theorem
Equation 7-5 relates the change in kinetic energy of the bead (from an initial

to a later ) to the work W (" Fxd) done on the bead. For
such particle-like objects, we can generalize that equation. Let #K be the change
in the kinetic energy of the object, and let W be the net work done on it.Then 

#K " Kf $ Ki " W, (7-10)
which says that

We can also write
Kf " Ki % W, (7-11)

which says that

.

These statements are known traditionally as the work–kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

! kinetic energy after
the net work is done" " ! kinetic energy 

before the net work" % ! the net
work done"

!change in the kinetic
energy of a particle " " !net work done on

the particle ".

Kf " 1
2 mv2Ki " 1

2 mv2
0

F
:

.F
:

net

d
:

F
:

net

F
:

net

A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in the
opposite direction. It does zero work when it has no such vector component.

CHECKPOINT 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from $3 m/s to $2 m/s
and (b) from $2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

negative and thus so is the work. (Can you see that the work is zero when f " 90°?)
These results lead to a simple rule.To find the sign of the work done by a force, con-
sider the force vector component that is parallel to the displacement:
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Work–Kinetic Energy Theorem

� These statements are known as the work–kinetic energy theorem for 
particles
� These statements are true for both +ve & −ve work

� If Wnet is +ve à é K.E of the particle’s by the work
� If Wnet is −ve à ê K.E of the particle’s by the work

� e.g., if ki = 5 J, and there is a net transfer of 2 J to the particle à (+ve Wnet)à
kf = 7 J. 
If there is a net transfer of 2 J from the particle à (−ve Wnet)à kf = 3 J
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Units for work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N ! m). The corresponding unit in the British system is the foot-pound
(ft ! lb). Extending Eq. 7-2, we have

1 J " 1 kg ! m2/s2 " 1 N ! m " 0.738 ft ! lb. (7-9)

Net work done by several forces. When two or more forces act on an object,
the net work done on the object is the sum of the works done by the individual
forces. We can calculate the net work in two ways. (1) We can find the work
done by each force and then sum those works. (2) Alternatively, we can first
find the net force of those forces. Then we can use Eq. 7-7, substituting the
magnitude Fnet for F and also the angle between the directions of and 
for f. Similarly, we can use Eq. 7-8 with substituted for 

Work–Kinetic Energy Theorem
Equation 7-5 relates the change in kinetic energy of the bead (from an initial

to a later ) to the work W (" Fxd) done on the bead. For
such particle-like objects, we can generalize that equation. Let #K be the change
in the kinetic energy of the object, and let W be the net work done on it.Then 

#K " Kf $ Ki " W, (7-10)
which says that

We can also write
Kf " Ki % W, (7-11)

which says that

.

These statements are known traditionally as the work–kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

! kinetic energy after
the net work is done" " ! kinetic energy 

before the net work" % ! the net
work done"

!change in the kinetic
energy of a particle " " !net work done on

the particle ".

Kf " 1
2 mv2Ki " 1

2 mv2
0

F
:

.F
:

net

d
:

F
:

net

F
:

net

A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in the
opposite direction. It does zero work when it has no such vector component.

CHECKPOINT 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from $3 m/s to $2 m/s
and (b) from $2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

negative and thus so is the work. (Can you see that the work is zero when f " 90°?)
These results lead to a simple rule.To find the sign of the work done by a force, con-
sider the force vector component that is parallel to the displacement:
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Units for work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N ! m). The corresponding unit in the British system is the foot-pound
(ft ! lb). Extending Eq. 7-2, we have

1 J " 1 kg ! m2/s2 " 1 N ! m " 0.738 ft ! lb. (7-9)

Net work done by several forces. When two or more forces act on an object,
the net work done on the object is the sum of the works done by the individual
forces. We can calculate the net work in two ways. (1) We can find the work
done by each force and then sum those works. (2) Alternatively, we can first
find the net force of those forces. Then we can use Eq. 7-7, substituting the
magnitude Fnet for F and also the angle between the directions of and 
for f. Similarly, we can use Eq. 7-8 with substituted for 

Work–Kinetic Energy Theorem
Equation 7-5 relates the change in kinetic energy of the bead (from an initial

to a later ) to the work W (" Fxd) done on the bead. For
such particle-like objects, we can generalize that equation. Let #K be the change
in the kinetic energy of the object, and let W be the net work done on it.Then 

#K " Kf $ Ki " W, (7-10)
which says that

We can also write
Kf " Ki % W, (7-11)

which says that

.

These statements are known traditionally as the work–kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

! kinetic energy after
the net work is done" " ! kinetic energy 

before the net work" % ! the net
work done"

!change in the kinetic
energy of a particle " " !net work done on

the particle ".

Kf " 1
2 mv2Ki " 1

2 mv2
0

F
:

.F
:

net

d
:

F
:

net

F
:

net

A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in the
opposite direction. It does zero work when it has no such vector component.

CHECKPOINT 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from $3 m/s to $2 m/s
and (b) from $2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

negative and thus so is the work. (Can you see that the work is zero when f " 90°?)
These results lead to a simple rule.To find the sign of the work done by a force, con-
sider the force vector component that is parallel to the displacement:
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Units for work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N ! m). The corresponding unit in the British system is the foot-pound
(ft ! lb). Extending Eq. 7-2, we have

1 J " 1 kg ! m2/s2 " 1 N ! m " 0.738 ft ! lb. (7-9)

Net work done by several forces. When two or more forces act on an object,
the net work done on the object is the sum of the works done by the individual
forces. We can calculate the net work in two ways. (1) We can find the work
done by each force and then sum those works. (2) Alternatively, we can first
find the net force of those forces. Then we can use Eq. 7-7, substituting the
magnitude Fnet for F and also the angle between the directions of and 
for f. Similarly, we can use Eq. 7-8 with substituted for 

Work–Kinetic Energy Theorem
Equation 7-5 relates the change in kinetic energy of the bead (from an initial

to a later ) to the work W (" Fxd) done on the bead. For
such particle-like objects, we can generalize that equation. Let #K be the change
in the kinetic energy of the object, and let W be the net work done on it.Then 

#K " Kf $ Ki " W, (7-10)
which says that

We can also write
Kf " Ki % W, (7-11)

which says that

.

These statements are known traditionally as the work–kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

! kinetic energy after
the net work is done" " ! kinetic energy 

before the net work" % ! the net
work done"

!change in the kinetic
energy of a particle " " !net work done on

the particle ".

Kf " 1
2 mv2Ki " 1
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A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in the
opposite direction. It does zero work when it has no such vector component.

CHECKPOINT 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from $3 m/s to $2 m/s
and (b) from $2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

negative and thus so is the work. (Can you see that the work is zero when f " 90°?)
These results lead to a simple rule.To find the sign of the work done by a force, con-
sider the force vector component that is parallel to the displacement:
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Units for work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N ! m). The corresponding unit in the British system is the foot-pound
(ft ! lb). Extending Eq. 7-2, we have

1 J " 1 kg ! m2/s2 " 1 N ! m " 0.738 ft ! lb. (7-9)

Net work done by several forces. When two or more forces act on an object,
the net work done on the object is the sum of the works done by the individual
forces. We can calculate the net work in two ways. (1) We can find the work
done by each force and then sum those works. (2) Alternatively, we can first
find the net force of those forces. Then we can use Eq. 7-7, substituting the
magnitude Fnet for F and also the angle between the directions of and 
for f. Similarly, we can use Eq. 7-8 with substituted for 

Work–Kinetic Energy Theorem
Equation 7-5 relates the change in kinetic energy of the bead (from an initial

to a later ) to the work W (" Fxd) done on the bead. For
such particle-like objects, we can generalize that equation. Let #K be the change
in the kinetic energy of the object, and let W be the net work done on it.Then 

#K " Kf $ Ki " W, (7-10)
which says that

We can also write
Kf " Ki % W, (7-11)

which says that

.

These statements are known traditionally as the work–kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

! kinetic energy after
the net work is done" " ! kinetic energy 

before the net work" % ! the net
work done"

!change in the kinetic
energy of a particle " " !net work done on

the particle ".

Kf " 1
2 mv2Ki " 1
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A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in the
opposite direction. It does zero work when it has no such vector component.

CHECKPOINT 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from $3 m/s to $2 m/s
and (b) from $2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

negative and thus so is the work. (Can you see that the work is zero when f " 90°?)
These results lead to a simple rule.To find the sign of the work done by a force, con-
sider the force vector component that is parallel to the displacement:
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7-4 Work
If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

K (! 1
2 mv2)

Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.

7-5 Work and Kinetic Energy
Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force , directed at an angle f to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

Fx ! max, (7-3)

where m is the bead’s mass. As the bead moves through a displacement , the
force changes the bead’s velocity from an initial value to some other value .
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

(7-4)

Solving this equation for ax, substituting into Eq. 7-3, and rearranging then give us

(7-5)

The first term on the left side of the equation is the kinetic energy Kf of the bead
at the end of the displacement d, and the second term is the kinetic energy Ki of
the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us
the kinetic energy has been changed by the force, and the right side tells us the
change is equal to Fxd. Therefore, the work W done on the bead by the force

1
2 mv2 " 1

2 mv0
2 ! Fxd.

v2 ! v0
2 # 2axd.

v:v:0

d
:

F
:
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Units for work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N ! m). The corresponding unit in the British system is the foot-pound
(ft ! lb). Extending Eq. 7-2, we have

1 J " 1 kg ! m2/s2 " 1 N ! m " 0.738 ft ! lb. (7-9)

Net work done by several forces. When two or more forces act on an object,
the net work done on the object is the sum of the works done by the individual
forces. We can calculate the net work in two ways. (1) We can find the work
done by each force and then sum those works. (2) Alternatively, we can first
find the net force of those forces. Then we can use Eq. 7-7, substituting the
magnitude Fnet for F and also the angle between the directions of and 
for f. Similarly, we can use Eq. 7-8 with substituted for 

Work–Kinetic Energy Theorem
Equation 7-5 relates the change in kinetic energy of the bead (from an initial

to a later ) to the work W (" Fxd) done on the bead. For
such particle-like objects, we can generalize that equation. Let #K be the change
in the kinetic energy of the object, and let W be the net work done on it.Then 

#K " Kf $ Ki " W, (7-10)
which says that

We can also write
Kf " Ki % W, (7-11)

which says that

.

These statements are known traditionally as the work–kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

! kinetic energy after
the net work is done" " ! kinetic energy 

before the net work" % ! the net
work done"

!change in the kinetic
energy of a particle " " !net work done on

the particle ".

Kf " 1
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A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in the
opposite direction. It does zero work when it has no such vector component.

CHECKPOINT 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from $3 m/s to $2 m/s
and (b) from $2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

negative and thus so is the work. (Can you see that the work is zero when f " 90°?)
These results lead to a simple rule.To find the sign of the work done by a force, con-
sider the force vector component that is parallel to the displacement:
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⇒ Ki = K f

W = K f − Ki = 2 − 4.5 = −2.5 W = K f − Ki = 2 − 2 = 0

(a) (b)

(c) (c)



Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.

F
:

2

F
:

1

(W ! F
:

! d
:

)

d
:

F
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F
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1

F
:

2

F
:

1

d
:

(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi

2.

F
:

2F
:

1

F
:

N

F
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.

F
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2

F
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1

(W ! F
:

! d
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)

d
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F
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2
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1
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.

F
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(W ! F
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! d
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d
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F
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi

2.

F
:

2F
:

1

F
:

N

F
:

g

1457-5 WOR K AN D KI N ETIC E N E RGY
PART 1

Additional examples, video, and practice available at WileyPLUS

halliday_c07_140-165hr.qxd  17-09-2009  12:40  Page 145

Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)

d
:

F
:

g

d
:

d
:

F
:

g

F
:

g

Ki ! 1
2 mv2

0

Sample Problem

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.

d
:

d
:

Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain

W ! (2.0 N)("3.0 m)î ! î # ("6.0 N)("3.0 m)ĵ ! î
! ("6.0 J)(1) # 0 ! "6.0 J. (Answer)

W ! F
:

! d
:

! [(2.0 N)î # ("6.0 N)ĵ] ! [("3.0 m)î].

d
:

F
:

(W ! F
:

! d
:

)

(2.0 N)î # ("6.0 N)ĵF
:

!

d
:

! ("3.0 m)î

Fig. 7-5 Force 
slows a crate during
displacement .d

:

F
:

y 

x 
F 

d 

The parallel force component does
negative work, slowing the crate.

Fig. 7-6 Because the gravitational force
acts on it, a particle-like tomato of mass

m thrown upward slows from velocity to
velocity during displacement .A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

to .Kf (!
1
2 mv2)Ki (!

1
2 mv2

0)

d
:

v:
v:0

F
:

g

Kf

Ki

Fg

Fg

Fg

v0

v

d

The force does negative
work, decreasing speed
and kinetic energy.
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Sample Problem

Work done by two constant forces, industrial spies

Fig. 7-4 (a) Two spies move a floor safe through a
displacement . (b) A free-body diagram for the safe.d

:
(a) 

Safe 

(b) 

40.0° 
30.0° 

Spy 001 
Spy 002 

Fg 

FN 

F1 

F2 

d 

Only force components
parallel to the displacement
do work.

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnitude
8.50 m, straight toward their truck. The push of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces and
during the displacement ?

KEY I DEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W ! Fd cos f) or Eq. 7-8 to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 ! F1d cos f1 ! (12.0 N)(8.50 m)(cos 30.0°)
! 88.33 J,

and the work done by is

W2 ! F2d cos f2 ! (10.0 N)(8.50 m)(cos 40.0°)
! 65.11 J.

Thus, the net work W is

W ! W1 " W2 ! 88.33 J " 65.11 J
! 153.4 J ! 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.
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(b) During the displacement, what is the work Wg done on
the safe by the gravitational force and what is the work
WN done on the safe by the normal force from the
floor?

KEY I DEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg ! mgd cos 90° ! mgd(0) ! 0 (Answer)

and WN ! FNd cos 90° ! FNd(0) ! 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY I DEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

The initial speed vi is zero, and we now know that the work
done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer) ! 1.17 m/s.

 vf ! A 2W
m

! A 2(153.4 J)
225 kg

W ! Kf # Ki ! 1
2 mvf

2 # 1
2 mvi
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)

d
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g
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g

Ki ! 1
2 mv2

0

Sample Problem

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.

d
:

d
:

Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain

W ! (2.0 N)("3.0 m)î ! î # ("6.0 N)("3.0 m)ĵ ! î
! ("6.0 J)(1) # 0 ! "6.0 J. (Answer)

W ! F
:

! d
:

! [(2.0 N)î # ("6.0 N)ĵ] ! [("3.0 m)î].

d
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F
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:

! d
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d
:

! ("3.0 m)î

Fig. 7-5 Force 
slows a crate during
displacement .d

:

F
:

y 

x 
F 
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The parallel force component does
negative work, slowing the crate.

Fig. 7-6 Because the gravitational force
acts on it, a particle-like tomato of mass

m thrown upward slows from velocity to
velocity during displacement .A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

to .Kf (!
1
2 mv2)Ki (!

1
2 mv2

0)

d
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The force does negative
work, decreasing speed
and kinetic energy.
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)
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Ki ! 1
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Sample Problem

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.

d
:

d
:

Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain

W ! (2.0 N)("3.0 m)î ! î # ("6.0 N)("3.0 m)ĵ ! î
! ("6.0 J)(1) # 0 ! "6.0 J. (Answer)

W ! F
:

! d
:

! [(2.0 N)î # ("6.0 N)ĵ] ! [("3.0 m)î].
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Fig. 7-5 Force 
slows a crate during
displacement .d
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The parallel force component does
negative work, slowing the crate.

Fig. 7-6 Because the gravitational force
acts on it, a particle-like tomato of mass

m thrown upward slows from velocity to
velocity during displacement .A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

to .Kf (!
1
2 mv2)Ki (!

1
2 mv2
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The force does negative
work, decreasing speed
and kinetic energy.

Additional examples, video, and practice available at WileyPLUS

halliday_c07_140-165hr.qxd  17-09-2009  12:40  Page 146

146 CHAPTE R 7 KI N ETIC E N E RGY AN D WOR K

7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)
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Sample Problem

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.

d
:

d
:

Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain

W ! (2.0 N)("3.0 m)î ! î # ("6.0 N)("3.0 m)ĵ ! î
! ("6.0 J)(1) # 0 ! "6.0 J. (Answer)

W ! F
:

! d
:

! [(2.0 N)î # ("6.0 N)ĵ] ! [("3.0 m)î].
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! d
:

)

(2.0 N)î # ("6.0 N)ĵF
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d
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! ("3.0 m)î
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The parallel force component does
negative work, slowing the crate.

Fig. 7-6 Because the gravitational force
acts on it, a particle-like tomato of mass

m thrown upward slows from velocity to
velocity during displacement .A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

to .Kf (!
1
2 mv2)Ki (!
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The force does negative
work, decreasing speed
and kinetic energy.

Additional examples, video, and practice available at WileyPLUS
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6.0 J of energy from the kinetic energy of the crate
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Examples:
Q.1: 5kg block moves with a speed of 72km/h. Its kinetic energy is:
(a) 900kg.m2/s2 (b) 1000kg.m2/s2 (c) 1200kg.m2/s2 (d) 50kg.m2/s2

Q.2: A 5kg block moves with velocity v=6i + 8j m/s. Its kinetic energy is:
(a) 250J     (b) 400J       (c) 540J      (d) 180J

Q.3: 1 joule is equal to:
(a) kg.m2/s      (b) kg.m/s3 (c) kg.m/s2 (d) kg.m2/s2

v = 72km / h = 72 ×10
3

3600
= 20m / s

K = 1
2
mv2 = 1

2
(5)(20)2 = 1000J

v = 62 + 82 = 10m / s

K = 1
2
mv2 = 1

2
(5)(10)2 = 250J



Q.4: A particle moves 5m in the positive x-direction while being 
acted upon by a constant force F = 2i + 2j. The work done on the 
particle by this force is:
(a) 20J     (b) 10J       (c) 30J      (d) − 15J

Q.5: A force acts on a 3kg particle in such away that the position 
of the object is x = 3t − 4t2 + t3, where x in meters and t in 
second. Find the work done on the object by the force from t = 0 
to t = 4s
(a) 528J     (b) 10J       (c) 50J      (d) 180J

 W =

F ⋅

d = (2î + 2 ĵ) ⋅5î = 10J

v(t) = dx
dt

= 3− 8t + 3t 2

v(0) = 3m / s,     v(4) = 3− 8(4)+ 3(16) = 19m / s

W = 1
2
m(v2

2 − v1
2 ) = 3

2
(361− 9) = 528J



Q.6: Force F acts on a particle of mass m making a displacement 
D. If F = 7i + 3j − 1.5k N, and D = 2i − 3j + 2.5k m. The work 
done by the force is: 
(a) 9.25J     (b) 7.25J       (c) 5.25J      (d) 1.25J

Q.7: A 5kg cart is moving horizontally at 6m/s. In order to 
change its speed to 10m/s, the net work done on the cart must 
be:
(a) 40J     (b) 90J       (c) 160J      (d) 400J

 W =

F ⋅

d = (7î + 3ĵ −1.5k̂) ⋅(2î − 3ĵ + 2.5k̂) = 14 − 9 − 3.75 = 1.25J

v1 = 6m / s,     v2 = 10m / s

W = 1
2
m(v2

2 − v1
2 ) = 5

2
(100 − 36) = 160J



Chapter 7
KINETIC ENERGY AND WORK

Sections 7-6, 7-7, 7-9

Work Done by the Gravitational Force
The Work Done by a Spring Force

Power 



� Important skills from this lecture:
1. Calculate the amount of work done by gravitational 

force in both raising and falling object

2. Define the spring force and its relationship with 
displacement of the spring

3. Calculate the spring force from Hook’s law

4. Define the power and its unit
5. Calculate the average and instantaneous power

6. Calculate the power in terms of force exerted on a 
body and its velocity 



Work Done by the Gravitational Force
If  tomato of mass m is thrown upward with initial speed vo

� Its speed is slowed to v by the  gravitational force Fg
à does work on the tomato 
à The tomato’s K.E decreases from

� The gravitational work is:

� For a rising object, the direction of  is opposite to the displacement 
àΦ = 180° à

� The − sign means:     transfers energy in the amount mgd from the object
à −ve work à slowing of the object as it rises

� For a falling object,    is in the same direction of the displacement 
àΦ = 0° à

� The + sign means:      transfers energy in the amount mgd to the object
à +ve work à speeding up of the object as it falls
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)
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g
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2 mv2
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Sample Problem

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.

d
:

d
:

Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain

W ! (2.0 N)("3.0 m)î ! î # ("6.0 N)("3.0 m)ĵ ! î
! ("6.0 J)(1) # 0 ! "6.0 J. (Answer)

W ! F
:

! d
:

! [(2.0 N)î # ("6.0 N)ĵ] ! [("3.0 m)î].

d
:

F
:

(W ! F
:

! d
:

)

(2.0 N)î # ("6.0 N)ĵF
:

!

d
:

! ("3.0 m)î

Fig. 7-5 Force 
slows a crate during
displacement .d
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F
:
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The parallel force component does
negative work, slowing the crate.

Fig. 7-6 Because the gravitational force
acts on it, a particle-like tomato of mass

m thrown upward slows from velocity to
velocity during displacement .A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

to .Kf (!
1
2 mv2)Ki (!

1
2 mv2

0)

d
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v:0

F
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The force does negative
work, decreasing speed
and kinetic energy.

Additional examples, video, and practice available at WileyPLUS
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! ("6.0 J)(1) # 0 ! "6.0 J. (Answer)

W ! F
:

! d
:
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Less kinetic energy means that the crate has been slowed.
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During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain
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d
:

F
:

(W ! F
:

! d
:

)
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)
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Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.
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During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.
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k̂ !k̂ are nonzero (see Appendix E). Here we obtain
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)
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Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.
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During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
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KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain
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d
:

F
:

(W ! F
:

! d
:

)
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)
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Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.
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During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain

W ! (2.0 N)("3.0 m)î ! î # ("6.0 N)("3.0 m)ĵ ! î
! ("6.0 J)(1) # 0 ! "6.0 J. (Answer)
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)
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Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.
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During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)
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Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.
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During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)
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Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)
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while a steady wind pushes against the crate with a force

. The situation and coordinate
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Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
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! ("6.0 J)(1) # 0 ! "6.0 J. (Answer)

W ! F
:

! d
:
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7-6 Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:
g.Thus, the work Wg done by the gravitational force F

:
g is

Wg ! mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus,f ! 180° and

Wg ! mgd cos 180° ! mgd("1) ! "mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg ! mgd cos 0° ! mgd(#1) ! #mgd. (7-14)
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Sample Problem

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY I DEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf ! Ki # W ! 10 J # ("6.0 J) ! 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.
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Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY I DEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W !
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î ! î, ĵ ! ĵ, and
k̂ !k̂ are nonzero (see Appendix E). Here we obtain

W ! (2.0 N)("3.0 m)î ! î # ("6.0 N)("3.0 m)ĵ ! î
! ("6.0 J)(1) # 0 ! "6.0 J. (Answer)
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We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W ! Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F
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g.Thus, the work Wg done by the gravitational force F
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g is

Wg ! mgd cos f (work done by gravitational force). (7-12)
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g is directed opposite the displacement , as indi-
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The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
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We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomato
rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energy
decreases because does work on the tomato as it rises. Because we can treat
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nitude of F
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g is directed opposite the displacement , as indi-
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The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
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Fig. 7-5 Force 
slows a crate during
displacement .d

:

F
:

y 

x 
F 

d 

The parallel force component does
negative work, slowing the crate.

Fig. 7-6 Because the gravitational force
acts on it, a particle-like tomato of mass

m thrown upward slows from velocity to
velocity during displacement .A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

to .Kf (!
1
2 mv2)Ki (!

1
2 mv2

0)

d
:

v:
v:0

F
:

g

Kf

Ki

Fg

Fg

Fg

v0

v

d

The force does negative
work, decreasing speed
and kinetic energy.

Additional examples, video, and practice available at WileyPLUS

� Rising:
1. Object’s kinetic energy decreases 

2. Object deceleration 
3. The gravitational force dose −ve work
4. Φ = 180°

5.

� Falling:
1. Object kinetic energy increases 
2. Object acceleration 

3. The gravitational force dose positive work on it 
4. Φ = 0°

5.

Work Done by the Gravitational Force



One of the lifts of Paul Anderson in the 1950s remains a record: Anderson 
stooped beneath a reinforced wood platform, placed his hands on a short stool 
to brace himself, and then pushed upward on the platform with his back, lifting 
the platform straight up by 1 cm. The platform held automobile parts and safe 
filled with lead, with a total weight of 27900N.

(a) As Anderson lifted the load, how much work was done on it by the 
gravitational force Fg?
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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Power, force, and velocity

Figure 7-14 shows constant forces and acting on a box
as the box slides rightward across a frictionless floor. Force 
is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have

P2 ! F2v cos f 2 ! (4.0 N)(3.0 m/s) cos 60°
! 6.0 W. (Answer)
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Fig. 7-14 Two forces and act on a box that slides rightward
across a frictionless floor.The velocity of the box is . v:
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2F
:

1

60° 
Frictionless F1 

F2 

v 

Negative power.
(This force is
removing energy.)

Positive power.
(This force is
supplying energy.)

We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.

F
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F
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v:
F
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P ! F
:

! v:

F
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! v:,

P !
dW
dt

!
F cos $ dx

dt
! F cos $ ! dx

dt ",

F
:

CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
rate at which that force does work on the
load. (REGLAIN FREDERIC/Gamma-
Presse, Inc.)

Additional examples, video, and practice available at WileyPLUS
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mg = 27900N ,    d = 1cm = 0.01m,    φ = 180
Wg = mgd cosφ = (27900)(0.01)cos180 = −289J



The Spring Force
� A spring force: is the force from a spring, 

� It is variable force 

� Many forces in nature have the same mathematical form as the 
spring force

� When an object (block) is attached to the spring free end, and 
a force acts on it à 3 states of a spring:

7-7 Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-9a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-9c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x ! 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq. 7-20 as

Fx ! "kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block’s initial
position be xi and its later position xf .Then divide the distance between those two

F
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d
:
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:

s

Fig. 7-9 (a) A spring in its relaxed state.
The origin of an x axis has been placed at
the end of the spring that is attached to a
block. (b) The block is displaced by , and
the spring is stretched by a positive amount
x. Note the restoring force exerted by the
spring. (c) The spring is compressed by a
negative amount x.Again, note the restor-
ing force.
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push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.
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We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.
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extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-9c, the
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portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x ! 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq. 7-20 as

Fx ! "kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block’s initial
position be xi and its later position xf .Then divide the distance between those two
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Relaxed 
(neither compressed nor 

extended)
x = 0 is called 

Equilibrium position

stretched 
By pulling the block to the 
right, the spring pulls on 

the block to the left 
(Restoring force) 

Compressed 
By pushing the block to 
the left, the spring now 

pushes on the block 
toward the right



� The spring force     is proportional to the displacement    of 
the free end from its equilibrium position

� The spring force is given by

� The −sign means:     is in the opposite direction of 

� The constant k is called the spring constant (or force 
constant) 
� k measures the stiffness of the spring
� The larger k is, the stiffer the spring

à the stronger the spring’s pull or push for a given 
� The SI unit for k is the N/m
� If the spring is stretched toward the right

à x is +ve à Fx is −ve (it is a pull toward the left)
� If the spring is compressed toward the left 

à x is −ve à Fx is +ve (it is a push toward the right)
� A spring force is a variable force because it is a function of x, 

à Fx is wrote as F(x)
� Hooke’s law is a linear relationship between Fx and x

7-7 Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-9a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-9c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x ! 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq. 7-20 as

Fx ! "kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block’s initial
position be xi and its later position xf .Then divide the distance between those two
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7-7 Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-9a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-9c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x ! 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq. 7-20 as

Fx ! "kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block’s initial
position be xi and its later position xf .Then divide the distance between those two
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7-7 Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-9a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-9c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x ! 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq. 7-20 as

Fx ! "kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block’s initial
position be xi and its later position xf .Then divide the distance between those two
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7-7 Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-9a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-9c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x ! 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq. 7-20 as

Fx ! "kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block’s initial
position be xi and its later position xf .Then divide the distance between those two
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7-7 Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-9a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-9c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x ! 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq. 7-20 as

Fx ! "kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block’s initial
position be xi and its later position xf .Then divide the distance between those two
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7-7 Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-9a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-9c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x ! 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq. 7-20 as

Fx ! "kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block’s initial
position be xi and its later position xf .Then divide the distance between those two
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The Work Done by a Spring Force

� To find the work done by the spring force we assume: 
� The spring is massless

� The spring is an ideal spring (obeys Hooke’s law) 

� The contact between the block and the floor is frictionless

� It is not possible to find the work by using W = Fd cos Φ ? 
Because Fx is not constant (variable force)

� To find the work done by the spring, we use calculus: 
1. If the block’s initial position is xi & later position is xf

2. The distance between those two positions is Divided into 
many segments of tiny length Δx

3. The force magnitude (Fx1 in the 1st segment, Fx2 in the 2ed

segment, and so on) is constant within each segment

4. à the work done within each segment is found using  
the relation W = Fd cos Φ, Φ = 180° à cos Φ = −1



5. The work done is −Fx1 Δx in segment 1, −Fx2 Δx in segment 2, and 
so on

6. The net work Ws done by the spring, from xi to xf , is the sum of all 
these works:

7. When Δx à 0 à

8. If xi = 0 and if we call the final position x,
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positions into many segments, each of tiny length !x. Label these segments, start-
ing from xi, as segments 1, 2, and so on. As the block moves through a segment,
the spring force hardly varies because the segment is so short that x hardly varies.
Thus, we can approximate the force magnitude as being constant within the seg-
ment. Label these magnitudes as Fx1 in segment 1, Fx2 in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here f " 180°, and so cos f " #1. Then
the work done is #Fx1 !x in segment 1, #Fx2 !x in segment 2, and so on. The net
work Ws done by the spring, from xi to xf , is the sum of all these works:

(7-22)

where j labels the segments. In the limit as !x goes to zero, Eq. 7-22 becomes

(7-23)

From Eq. 7-21, the force magnitude Fx is kx.Thus, substitution leads to

(7-24)

Multiplied out, this yields

(work by a spring force). (7-25)

This work Ws done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from xi to xf . Caution: The final position xf appears in the second
term on the right side of Eq. 7-25.Therefore, Eq. 7-25 tells us:

Ws " 1
2 kxi

2 # 1
2 kxf

2

 " (#1
2k)[x2]xi

xf " (#1
2 k)(xf

2 # xi
2).

 Ws " !xf

xi

#kx dx " #k !xf

xi

 x dx

Ws " !xf

xi

 #F x dx.

Ws " " #F xj !x,

Work Ws is positive if the block ends up closer to the relaxed position (x " 0) than
it was initially. It is negative if the block ends up farther away from x " 0. It is zero if
the block ends up at the same distance from x " 0.

If xi " 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force). (7-26)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to apply a
force to it. During the displacement, our applied force does work Wa on the blockF

:
a

Ws " #1
2 kx2

!K " Kf # Ki " Wa $ Ws, (7-27)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7-27 reduces to

Wa " #Ws. (7-28)

while the spring force does work Ws. By Eq. 7-10, the change !K in the kinetic en-
ergy of the block due to these two energy transfers is
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the spring force hardly varies because the segment is so short that x hardly varies.
Thus, we can approximate the force magnitude as being constant within the seg-
ment. Label these magnitudes as Fx1 in segment 1, Fx2 in segment 2, and so on.
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within each segment by using Eq. 7-7. Here f " 180°, and so cos f " #1. Then
the work done is #Fx1 !x in segment 1, #Fx2 !x in segment 2, and so on. The net
work Ws done by the spring, from xi to xf , is the sum of all these works:

(7-22)

where j labels the segments. In the limit as !x goes to zero, Eq. 7-22 becomes

(7-23)

From Eq. 7-21, the force magnitude Fx is kx.Thus, substitution leads to

(7-24)

Multiplied out, this yields

(work by a spring force). (7-25)

This work Ws done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from xi to xf . Caution: The final position xf appears in the second
term on the right side of Eq. 7-25.Therefore, Eq. 7-25 tells us:

Ws " 1
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2 kxf
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2k)[x2]xi
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2 k)(xf
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2).

 Ws " !xf

xi
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 x dx

Ws " !xf
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 #F x dx.

Ws " " #F xj !x,

Work Ws is positive if the block ends up closer to the relaxed position (x " 0) than
it was initially. It is negative if the block ends up farther away from x " 0. It is zero if
the block ends up at the same distance from x " 0.

If xi " 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force). (7-26)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to apply a
force to it. During the displacement, our applied force does work Wa on the blockF

:
a

Ws " #1
2 kx2

!K " Kf # Ki " Wa $ Ws, (7-27)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7-27 reduces to

Wa " #Ws. (7-28)

while the spring force does work Ws. By Eq. 7-10, the change !K in the kinetic en-
ergy of the block due to these two energy transfers is
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positions into many segments, each of tiny length !x. Label these segments, start-
ing from xi, as segments 1, 2, and so on. As the block moves through a segment,
the spring force hardly varies because the segment is so short that x hardly varies.
Thus, we can approximate the force magnitude as being constant within the seg-
ment. Label these magnitudes as Fx1 in segment 1, Fx2 in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here f " 180°, and so cos f " #1. Then
the work done is #Fx1 !x in segment 1, #Fx2 !x in segment 2, and so on. The net
work Ws done by the spring, from xi to xf , is the sum of all these works:
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where j labels the segments. In the limit as !x goes to zero, Eq. 7-22 becomes

(7-23)

From Eq. 7-21, the force magnitude Fx is kx.Thus, substitution leads to
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Multiplied out, this yields

(work by a spring force). (7-25)

This work Ws done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from xi to xf . Caution: The final position xf appears in the second
term on the right side of Eq. 7-25.Therefore, Eq. 7-25 tells us:

Ws " 1
2 kxi

2 # 1
2 kxf
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 " (#1
2k)[x2]xi

xf " (#1
2 k)(xf
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2).

 Ws " !xf
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Work Ws is positive if the block ends up closer to the relaxed position (x " 0) than
it was initially. It is negative if the block ends up farther away from x " 0. It is zero if
the block ends up at the same distance from x " 0.

If xi " 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force). (7-26)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to apply a
force to it. During the displacement, our applied force does work Wa on the blockF

:
a

Ws " #1
2 kx2

!K " Kf # Ki " Wa $ Ws, (7-27)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7-27 reduces to

Wa " #Ws. (7-28)

while the spring force does work Ws. By Eq. 7-10, the change !K in the kinetic en-
ergy of the block due to these two energy transfers is
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positions into many segments, each of tiny length !x. Label these segments, start-
ing from xi, as segments 1, 2, and so on. As the block moves through a segment,
the spring force hardly varies because the segment is so short that x hardly varies.
Thus, we can approximate the force magnitude as being constant within the seg-
ment. Label these magnitudes as Fx1 in segment 1, Fx2 in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here f " 180°, and so cos f " #1. Then
the work done is #Fx1 !x in segment 1, #Fx2 !x in segment 2, and so on. The net
work Ws done by the spring, from xi to xf , is the sum of all these works:

(7-22)

where j labels the segments. In the limit as !x goes to zero, Eq. 7-22 becomes
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From Eq. 7-21, the force magnitude Fx is kx.Thus, substitution leads to
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Multiplied out, this yields

(work by a spring force). (7-25)

This work Ws done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from xi to xf . Caution: The final position xf appears in the second
term on the right side of Eq. 7-25.Therefore, Eq. 7-25 tells us:

Ws " 1
2 kxi
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Work Ws is positive if the block ends up closer to the relaxed position (x " 0) than
it was initially. It is negative if the block ends up farther away from x " 0. It is zero if
the block ends up at the same distance from x " 0.

If xi " 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force). (7-26)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to apply a
force to it. During the displacement, our applied force does work Wa on the blockF

:
a

Ws " #1
2 kx2

!K " Kf # Ki " Wa $ Ws, (7-27)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7-27 reduces to

Wa " #Ws. (7-28)

while the spring force does work Ws. By Eq. 7-10, the change !K in the kinetic en-
ergy of the block due to these two energy transfers is
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positions into many segments, each of tiny length !x. Label these segments, start-
ing from xi, as segments 1, 2, and so on. As the block moves through a segment,
the spring force hardly varies because the segment is so short that x hardly varies.
Thus, we can approximate the force magnitude as being constant within the seg-
ment. Label these magnitudes as Fx1 in segment 1, Fx2 in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here f " 180°, and so cos f " #1. Then
the work done is #Fx1 !x in segment 1, #Fx2 !x in segment 2, and so on. The net
work Ws done by the spring, from xi to xf , is the sum of all these works:

(7-22)

where j labels the segments. In the limit as !x goes to zero, Eq. 7-22 becomes

(7-23)

From Eq. 7-21, the force magnitude Fx is kx.Thus, substitution leads to

(7-24)

Multiplied out, this yields

(work by a spring force). (7-25)

This work Ws done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from xi to xf . Caution: The final position xf appears in the second
term on the right side of Eq. 7-25.Therefore, Eq. 7-25 tells us:
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Work Ws is positive if the block ends up closer to the relaxed position (x " 0) than
it was initially. It is negative if the block ends up farther away from x " 0. It is zero if
the block ends up at the same distance from x " 0.

If xi " 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force). (7-26)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to apply a
force to it. During the displacement, our applied force does work Wa on the blockF

:
a

Ws " #1
2 kx2

!K " Kf # Ki " Wa $ Ws, (7-27)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7-27 reduces to

Wa " #Ws. (7-28)

while the spring force does work Ws. By Eq. 7-10, the change !K in the kinetic en-
ergy of the block due to these two energy transfers is
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positions into many segments, each of tiny length !x. Label these segments, start-
ing from xi, as segments 1, 2, and so on. As the block moves through a segment,
the spring force hardly varies because the segment is so short that x hardly varies.
Thus, we can approximate the force magnitude as being constant within the seg-
ment. Label these magnitudes as Fx1 in segment 1, Fx2 in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here f " 180°, and so cos f " #1. Then
the work done is #Fx1 !x in segment 1, #Fx2 !x in segment 2, and so on. The net
work Ws done by the spring, from xi to xf , is the sum of all these works:
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where j labels the segments. In the limit as !x goes to zero, Eq. 7-22 becomes
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From Eq. 7-21, the force magnitude Fx is kx.Thus, substitution leads to
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Multiplied out, this yields

(work by a spring force). (7-25)

This work Ws done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from xi to xf . Caution: The final position xf appears in the second
term on the right side of Eq. 7-25.Therefore, Eq. 7-25 tells us:
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Work Ws is positive if the block ends up closer to the relaxed position (x " 0) than
it was initially. It is negative if the block ends up farther away from x " 0. It is zero if
the block ends up at the same distance from x " 0.

If xi " 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force). (7-26)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to apply a
force to it. During the displacement, our applied force does work Wa on the blockF

:
a

Ws " #1
2 kx2

!K " Kf # Ki " Wa $ Ws, (7-27)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7-27 reduces to

Wa " #Ws. (7-28)

while the spring force does work Ws. By Eq. 7-10, the change !K in the kinetic en-
ergy of the block due to these two energy transfers is
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within each segment by using Eq. 7-7. Here f " 180°, and so cos f " #1. Then
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where j labels the segments. In the limit as !x goes to zero, Eq. 7-22 becomes

(7-23)

From Eq. 7-21, the force magnitude Fx is kx.Thus, substitution leads to
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Multiplied out, this yields

(work by a spring force). (7-25)

This work Ws done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from xi to xf . Caution: The final position xf appears in the second
term on the right side of Eq. 7-25.Therefore, Eq. 7-25 tells us:
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Work Ws is positive if the block ends up closer to the relaxed position (x " 0) than
it was initially. It is negative if the block ends up farther away from x " 0. It is zero if
the block ends up at the same distance from x " 0.

If xi " 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force). (7-26)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to apply a
force to it. During the displacement, our applied force does work Wa on the blockF

:
a

Ws " #1
2 kx2

!K " Kf # Ki " Wa $ Ws, (7-27)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7-27 reduces to

Wa " #Ws. (7-28)

while the spring force does work Ws. By Eq. 7-10, the change !K in the kinetic en-
ergy of the block due to these two energy transfers is
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If a block that is attached to a spring is stationary before and after a displacement,
then the work done on it by the applied force displacing it is the negative of the work
done on it by the spring force.

Caution: If the block is not stationary before and after the displacement, then this
statement is not true.

CHECKPOINT 2

For three situations, the initial and final positions, respectively, along the x axis for the
block in Fig. 7-9 are (a) !3 cm, 2 cm; (b) 2 cm, 3 cm; and (c) !2 cm, 2 cm. In each situa-
tion, is the work done by the spring force on the block positive, negative, or zero?

Sample Problem

Substituting according to the third key idea gives us this
expression

Simplifying, solving for d, and substituting known data then
give us

(Answer) " 1.2 # 10!2 m " 1.2 cm.

 d " vA m
k

" (0.50 m/s)A 0.40 kg
750 N/m

0 ! 1
2 mv2 " !1

2 kd 2.

Work done by spring to change kinetic energy

In Fig. 7-10, a cumin canister of mass m " 0.40 kg slides
across a horizontal frictionless counter with speed v " 0.50
m/s. It then runs into and compresses a spring of spring con-
stant k " 750 N/m. When the canister is momentarily
stopped by the spring, by what distance d is the spring
compressed?

KEY I DEAS

1. The work Ws done on the canister by the spring force is
related to the requested distance d by Eq. 7-26 (Ws "

, with d replacing x.
2. The work Ws is also related to the kinetic energy of the

canister by Eq. 7-10 (Kf ! Ki " W).
3. The canister’s kinetic energy has an initial value of K "

and a value of zero when the canister is momentar-
ily at rest.

Calculations: Putting the first two of these ideas together,
we write the work–kinetic energy theorem for the canister
as

Kf ! Ki " !1
2 kd 2.

1
2 mv2

!1
2 kx2)

Fig. 7-10 A canister of mass m moves at velocity toward a
spring that has spring constant k.

v:

k 
m Frictionless 

First touchStop

v 

d

The spring force does
negative work, decreasing
speed and kinetic energy.
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7-8 Work Done by a General Variable Force
One-Dimensional Analysis
Let us return to the situation of Fig. 7-2 but now consider the force to be in the
positive direction of the x axis and the force magnitude to vary with position x.
Thus, as the bead (particle) moves, the magnitude F(x) of the force doing work on
it changes. Only the magnitude of this variable force changes, not its direction,
and the magnitude at any position does not change with time.

Additional examples, video, and practice available at WileyPLUS
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7-7 Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-9a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-9c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x ! 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq. 7-20 as

Fx ! "kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block’s initial
position be xi and its later position xf .Then divide the distance between those two
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Fig. 7-9 (a) A spring in its relaxed state.
The origin of an x axis has been placed at
the end of the spring that is attached to a
block. (b) The block is displaced by , and
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x. Note the restoring force exerted by the
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A package of spicy Cajun pralines lies on a frictionless floor, attached to the free 
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To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W ! Fd cos f) because that equation assumes a con-
stant force.The spring force is a variable force.
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.

v:
F
:

2F
:

1

(K ! 1
2 mv2)

F
:

2

Power, force, and velocity

Figure 7-14 shows constant forces and acting on a box
as the box slides rightward across a frictionless floor. Force 
is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have

P2 ! F2v cos f 2 ! (4.0 N)(3.0 m/s) cos 60°
! 6.0 W. (Answer)
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Fig. 7-14 Two forces and act on a box that slides rightward
across a frictionless floor.The velocity of the box is . v:

F
:

2F
:

1

60° 
Frictionless F1 

F2 

v 

Negative power.
(This force is
removing energy.)

Positive power.
(This force is
supplying energy.)

We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.

F
:

F
:

v:
F
:

P ! F
:

! v:

F
:

! v:,

P !
dW
dt

!
F cos $ dx

dt
! F cos $ ! dx

dt ",

F
:

CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
rate at which that force does work on the
load. (REGLAIN FREDERIC/Gamma-
Presse, Inc.)
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(a) How much work does the spring force do on the 
package if the package is pulled rightward from x0 = 0 
to x2 = 17 mm?

FS = − k x⇒ k = − FS
x1

= − − 4.9 N
12 × 10−3 m

= 408 N /m

Ws = − 1
2 kx2

2 = − 1
2 (408 N /m)(17 x 10

−3 m)2

= − 0.059 J

12 −= 3xNext, the package is moved leftward to (b)
mm. How much work does the spring force do on the 
package during this displacement? Explain the sign of 
this work.

Ws = − 1
2 kx f

2 + 1
2 kxi

2

= 1
2 (408 N /m) − (−12 × 10−3 m)2 + (17 × 10−3m)2⎡⎣ ⎤⎦

= 0.030 J = 30 mJ



Power
� Power (P): the time rate at which work is done by a force 

� If a force does a work W in a time interval Δt
à the average power due to the force during that time interval is:

� The instantaneous power P is:

� The SI unit of power is: J/s, and called watt (W)

� Work can be expressed as power multiplied by time, as in the unit 
kilowatt-hour

7-9 Power
The time rate at which work is done by a force is said to be the power due to the
force. If a force does an amount of work W in an amount of time !t, the average
power due to the force during that time interval is

(average power). (7-42)

The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

(instantaneous power). (7-43)

Suppose we know the work W(t) done by a force as a function of time. Then to
get the instantaneous power P at, say, time t " 3.0 s during the work, we would
first take the time derivative of W(t) and then evaluate the result for t " 3.0 s.

The SI unit of power is the joule per second.This unit is used so often that it has a
special name, the watt (W), after James Watt, who greatly improved the rate at which
steam engines could do work. In the British system, the unit of power is the foot-
pound per second. Often the horsepower is used. These are related by

1 watt " 1 W " 1 J/s " 0.738 ft # lb/s (7-44)

and 1 horsepower " 1 hp " 550 ft # lb/s " 746 W. (7-45)

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied
by time, as in the common unit kilowatt-hour.Thus,

1 kilowatt-hour " 1 kW # h " (103 W)(3600 s)
" 3.60 $ 106 J " 3.60 MJ. (7-46)

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour
have become identified as electrical units. They can be used equally well as units
for other examples of power and energy. Thus, if you pick up a book from the
floor and put it on a tabletop, you are free to report the work that you have done
as, say, 4 $ 10%6 kW # h (or more conveniently as 4 mW # h).

P "
dW
dt

Pavg "
W
!t

Sample Problem

Calculation:We set up two integrals, one along each axis:

(Answer)

The positive result means that energy is transferred to the
particle by force . Thus, the kinetic energy of the particle
increases and, because , its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.

K " 1
2mv2

F
:

 " 7.0 J.
 " 3[1

3x
3]2

3 & 4[y]3
0 " [33 % 23] & 4[0 % 3]

 W " !3

2
 3x2 dx & !0

3
 4 dy " 3 !3

2
 x2 dx & 4 !0

3
 dy

Work, two-dimensional integration

Force " (3x2 N) & (4 N) , with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

KEY I DEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.

ĵîF
:
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force. If a force does an amount of work W in an amount of time !t, the average
power due to the force during that time interval is
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The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

(instantaneous power). (7-43)

Suppose we know the work W(t) done by a force as a function of time. Then to
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special name, the watt (W), after James Watt, who greatly improved the rate at which
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pound per second. Often the horsepower is used. These are related by

1 watt " 1 W " 1 J/s " 0.738 ft # lb/s (7-44)

and 1 horsepower " 1 hp " 550 ft # lb/s " 746 W. (7-45)

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied
by time, as in the common unit kilowatt-hour.Thus,

1 kilowatt-hour " 1 kW # h " (103 W)(3600 s)
" 3.60 $ 106 J " 3.60 MJ. (7-46)

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour
have become identified as electrical units. They can be used equally well as units
for other examples of power and energy. Thus, if you pick up a book from the
floor and put it on a tabletop, you are free to report the work that you have done
as, say, 4 $ 10%6 kW # h (or more conveniently as 4 mW # h).
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Sample Problem

Calculation:We set up two integrals, one along each axis:

(Answer)

The positive result means that energy is transferred to the
particle by force . Thus, the kinetic energy of the particle
increases and, because , its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.
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Work, two-dimensional integration

Force " (3x2 N) & (4 N) , with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

KEY I DEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.
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force. If a force does an amount of work W in an amount of time !t, the average
power due to the force during that time interval is

(average power). (7-42)

The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

(instantaneous power). (7-43)

Suppose we know the work W(t) done by a force as a function of time. Then to
get the instantaneous power P at, say, time t " 3.0 s during the work, we would
first take the time derivative of W(t) and then evaluate the result for t " 3.0 s.
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The positive result means that energy is transferred to the
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increases and, because , its speed must also
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How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?
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The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.
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The time rate at which work is done by a force is said to be the power due to the
force. If a force does an amount of work W in an amount of time !t, the average
power due to the force during that time interval is

(average power). (7-42)

The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

(instantaneous power). (7-43)

Suppose we know the work W(t) done by a force as a function of time. Then to
get the instantaneous power P at, say, time t " 3.0 s during the work, we would
first take the time derivative of W(t) and then evaluate the result for t " 3.0 s.

The SI unit of power is the joule per second.This unit is used so often that it has a
special name, the watt (W), after James Watt, who greatly improved the rate at which
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" 3.60 $ 106 J " 3.60 MJ. (7-46)
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for other examples of power and energy. Thus, if you pick up a book from the
floor and put it on a tabletop, you are free to report the work that you have done
as, say, 4 $ 10%6 kW # h (or more conveniently as 4 mW # h).
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The positive result means that energy is transferred to the
particle by force . Thus, the kinetic energy of the particle
increases and, because , its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.
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pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8
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as, say, 4 $ 10%6 kW # h (or more conveniently as 4 mW # h).

P "
dW
dt

Pavg "
W
!t

Sample Problem

Calculation:We set up two integrals, one along each axis:

(Answer)

The positive result means that energy is transferred to the
particle by force . Thus, the kinetic energy of the particle
increases and, because , its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.

K " 1
2mv2

F
:

 " 7.0 J.
 " 3[1

3x
3]2

3 & 4[y]3
0 " [33 % 23] & 4[0 % 3]

 W " !3

2
 3x2 dx & !0

3
 4 dy " 3 !3

2
 x2 dx & 4 !0

3
 dy

Work, two-dimensional integration

Force " (3x2 N) & (4 N) , with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

KEY I DEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.

ĵîF
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� For a particle moves along a straight line on an x axis, and a 
constant force F acted on it with an angle Φ
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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Power, force, and velocity

Figure 7-14 shows constant forces and acting on a box
as the box slides rightward across a frictionless floor. Force 
is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have

P2 ! F2v cos f 2 ! (4.0 N)(3.0 m/s) cos 60°
! 6.0 W. (Answer)
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Fig. 7-14 Two forces and act on a box that slides rightward
across a frictionless floor.The velocity of the box is . v:
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Negative power.
(This force is
removing energy.)

Positive power.
(This force is
supplying energy.)

We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
rate at which that force does work on the
load. (REGLAIN FREDERIC/Gamma-
Presse, Inc.)
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This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
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This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
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This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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over a time period. Also, we know the box’s velocity (rather
than the work done on it).
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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is horizontal, with magnitude 2.0 N; force is angled upward
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the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
rate at which that force does work on the
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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as the box slides rightward across a frictionless floor. Force 
is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
rate at which that force does work on the
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.

v:
F
:

2F
:

1

(K ! 1
2 mv2)

F
:

2

Power, force, and velocity
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the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)
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ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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A block moves with uniform circular motion because a cord tied to the block is an-
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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Figure 7-14 shows constant forces and acting on a box
as the box slides rightward across a frictionless floor. Force 
is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have

P2 ! F2v cos f 2 ! (4.0 N)(3.0 m/s) cos 60°
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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Power, force, and velocity

Figure 7-14 shows constant forces and acting on a box
as the box slides rightward across a frictionless floor. Force 
is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have

P2 ! F2v cos f 2 ! (4.0 N)(3.0 m/s) cos 60°
! 6.0 W. (Answer)
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
rate at which that force does work on the
load. (REGLAIN FREDERIC/Gamma-
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have

P2 ! F2v cos f 2 ! (4.0 N)(3.0 m/s) cos 60°
! 6.0 W. (Answer)
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
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Fig. 7-13 The power due to the truck’s
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.

v:
F
:

2F
:

1

(K ! 1
2 mv2)

F
:

2
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Figure 7-14 shows constant forces and acting on a box
as the box slides rightward across a frictionless floor. Force 
is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have

P2 ! F2v cos f 2 ! (4.0 N)(3.0 m/s) cos 60°
! 6.0 W. (Answer)
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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Figure 7-14 shows constant forces and acting on a box
as the box slides rightward across a frictionless floor. Force 
is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have

P2 ! F2v cos f 2 ! (4.0 N)(3.0 m/s) cos 60°
! 6.0 W. (Answer)
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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CHECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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Figure 7-14 shows constant forces and acting on a box
as the box slides rightward across a frictionless floor. Force 
is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have

P2 ! F2v cos f 2 ! (4.0 N)(3.0 m/s) cos 60°
! 6.0 W. (Answer)
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
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Fig. 7-13 The power due to the truck’s
applied force on the trailing load is the
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Sample Problem

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Pnet ! P1 " P2

! #6.0 W " 6.0 W ! 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.
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Figure 7-14 shows constant forces and acting on a box
as the box slides rightward across a frictionless floor. Force 
is horizontal, with magnitude 2.0 N; force is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY I DEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force ,
at angle f1 ! 180° to velocity , we have

P1 ! F1v cos f1 ! (2.0 N)(3.0 m/s) cos 180°
! #6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f 2 ! 60° to velocity , we have

P2 ! F2v cos f 2 ! (4.0 N)(3.0 m/s) cos 60°
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P ! Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-13 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.
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A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
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Examples: 
Q.1: A horizontal force of 180N used to pull a 50kg box on a rough horizontal 
surface to the right with a distance of 8m. If the box moves at a constant 
speed, find:
(a) The work done by the horizontal force F

(b) The work done by the friction force

Constant speed à ax = 0

(b) The work done by the force of gravity

(c) The work don by the normal force

W = Fd cosφ = (180)(8)cos0 = 1440J

Wg = mgd cos90 = 0

WN = mgd cos90 = 0

F

FN

mg

fk

Fnet ,x = max = 0⇒ F − fk = 0⇒ F = fk = 180N
W = fkd cos180 = 180(8)(−1) = −1440N



Q.2 A watt is equal to:
(a) kg.m2/s2 (b) kg.m2/s3 (c) kg.m/s3 (d) kg.m3/s2

Q.3: Horse-power (hp)=
(a) 1000W (b) 100W (c) 749W (d) 476W

Q.4: Which of the following group does not contain a scalar quantity?
(a) velocity, force, power
(b) displacement, acceleration, force
(c) acceleration, speed, work
(d) energy, work, distance

Q.5: An object of mass 1kg moves in a horizontal circle of radius 0.5m 
at a constant speed of 2m/s. The power done on the object during on 
revolution is:
(a) 1J (b) 2J (c) 4J (d) zero

P = W
t
= kg ⋅m

2 ⋅ s−2

s
= kg ⋅m

2

s3

φ = 90  ⇒ P = F.v = Fvcos90 = 0



Q.6: A block of mass 0.5kg is dropped from a height of 45m above 
the ground. The work done by the gravitational force is:
(a) 5J     (b) 40J       (c) 10J      (d) 220.5J

Q.7: In the previous question, the average power during the time 
interval of 10s is:
(a) 20W (b) 22W (c) 10W (d) −5W 

Q.8: A spring of k = 300N/m initially at x =0, and forced to move to 
x = 10cm. The work done by the spring force is:
(a) −1.5 J (b) −5.5 J (c) −1 J(d) 1.5 J

Wg = mgd cosφ = 0.5(9.8)(45)cos0 = 220J

m
o
ti
o
n

Fg

W = − 1
2
kx2 = − 1

2
(300)(0.1)2 = −1.5J

P = W
Δt

= 220
10

= 22W



Q.9: A mass of 100kg is pushed by a horizontal force across 
rough horizontal floor at a constant speed of 5m/s. If μk =0.2, at 
what rate is work being done by the horizontal force F?
(a) 50W (b) 980W (c) 392W (d) 400W

Constant speed à ax = 0

Fnet ,x = max = 0⇒ F − fk = 0
⇒ F = fk = µkFN = µkmg
⇒ F = 0.2(100)(9.8) = 196N
P = Fvcosφ = 196(5)(1) = 980W

F

FN

mg

fk
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Fig. 7-30 Problem 20.
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can by the constant horizontal force from the broom, versus the
can’s position x. The scale of the figure’s vertical axis is set by Ws !
6.0 J. (a) What is the magnitude of that force? (b) If the can had an
initial kinetic energy of 3.00 J, moving in the positive direction of
the x axis, what is its kinetic energy at the end of the 2.00 m?

••13 A luge and its rider, with a total mass of 85 kg, emerge from
a downhill track onto a horizontal straight track with an initial
speed of 37 m/s. If a force slows them to a stop at a constant rate of
2.0 m/s2, (a) what magnitude F is required for the force, (b) what
distance d do they travel while slowing, and (c) what work W is
done on them by the force? What are (d) F, (e) d, and (f) W if they,
instead, slow at 4.0 m/s2?

••14 Figure 7-26 shows an overhead view of three horizontal
forces acting on a cargo canister that was initially stationary but
now moves across a frictionless floor. The force magnitudes are 
F1 ! 3.00 N, F2 ! 4.00 N, and F3 ! 10.0 N, and the indicated angles
are u2 ! 50.0° and u3 ! 35.0°.What is the net work done on the can-
ister by the three forces during the first 4.00 m of displacement?

ergy K versus position x as it moves from x ! 0 to x ! 5.0 m; K0 !
30.0 J. The force continues to act. What is v when the object moves
back through x ! "3.0 m?

sec. 7-6 Work Done by the Gravitational Force
•17 A helicopter lifts a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by
(a) the force from the helicopter and (b) the gravitational force on
her? Just before she reaches the helicopter, what are her (c) kinetic
energy and (d) speed?

•18 (a) In 1975 the roof of Montreal’s Velodrome, with
a weight of 360 kN, was lifted by 10 cm so that it could be centered.
How much work was done on the roof by the forces making the
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one
end of a car that had fallen onto her son when a jack failed. If her
panic lift effectively raised 4000 N (about of the car’s weight) by
5.0 cm, how much work did her force do on the car?

••19 In Fig. 7-29, a block of ice slides down a frictionless ramp
at angle 50° while an ice worker pulls on the block (via a
rope) with a force that has a magnitude of 50 N and is directed
up the ramp.As the block slides through distance d 0.50 m along
the ramp, its kinetic energy increases by 80 J. How much greater
would its kinetic energy have been if the rope had not been at-
tached to the block?

!
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••15 Figure 7-27 shows three forces applied to a trunk that
moves leftward by 3.00 m over a frictionless floor.The force magni-
tudes are F1 ! 5.00 N, F2 ! 9.00 N, and F3 ! 3.00 N, and the indi-
cated angle is u ! 60.0°. During the displacement, (a) what is the net
work done on the trunk by the three forces and (b) does the kinetic
energy of the trunk increase or decrease?

θ
F1

F3

F2

Fig. 7-27 Problem 15.
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F3

y

x

2θ

3θ

Fig. 7-26 Problem 14.

••20 A block is sent up a frictionless ramp along which an x axis
extends upward. Figure 7-30 gives the kinetic energy of the block
as a function of position x; the scale of the figure’s vertical axis is
set by Ks ! 40.0 J. If the block’s initial speed is 4.00 m/s, what is the
normal force on the block?

••21 A cord is used to vertically lower an initially stationary
block of mass M at a constant downward acceleration of g/4. When
the block has fallen a distance d, find (a) the work done by the
cord’s force on the block, (b) the work done by the gravitational
force on the block, (c) the kinetic energy of the block, and (d) the
speed of the block.

••22 A cave rescue team lifts an injured spelunker directly up-
ward and out of a sinkhole by means of a motor-driven cable. The

SSM

θ

d

Fr

Fig. 7-29 Problem 19.

••16 An 8.0 kg object is moving in the positive direction of an
x axis. When it passes through x 0, a constant force directed
along the axis begins to act on it. Figure 7-28 gives its kinetic en-

!
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K0

0 5

K (J)

Fig. 7-28 Problem 16.
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sec. 7-9 Power
•43 A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

•44 A skier is pulled by a towrope up a frictionless ski slope that
makes an angle of 12° with the horizontal. The rope moves parallel
to the slope with a constant speed of 1.0 m/s. The force of the rope
does 900 J of work on the skier as the skier moves a distance of 8.0
m up the incline. (a) If the rope moved with a constant speed of 2.0
m/s, how much work would the force of the rope do on the skier as
the skier moved a distance of 8.0 m up the incline? At what rate is
the force of the rope doing work on the skier when the rope moves
with a speed of (b) 1.0 m/s and (c) 2.0 m/s?

•45 A 100 kg block is pulled at a constant speed of 5.0
m/s across a horizontal floor by an applied force of 122 N directed
37° above the horizontal. What is the rate at which the force does
work on the block?

•46 The loaded cab of an elevator has a mass of 3.0 ! 103 kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

••47 A machine carries a 4.0 kg package from an initial position
of at t " 0 to a final posi-
tion of at t 12 s. The
constant force applied by the machine on the package is

. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

••48 A 0.30 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k " 500 N/m) whose
other end is fixed.The ladle has a kinetic energy of 10 J as it passes
through its equilibrium position (the point at which the spring
force is zero). (a) At what rate is the spring doing work on the la-
dle as the ladle passes through its equilibrium position? (b) At
what rate is the spring doing work on the ladle when the spring is
compressed 0.10 m and the ladle is moving away from the equilib-
rium position?

••49 A fully loaded, slow-moving freight elevator has a cab
with a total mass of 1200 kg, which is required to travel upward 54
m in 3.0 min, starting and ending at rest. The elevator’s counter-
weight has a mass of only 950 kg, and so the elevator motor must
help. What average power is required of the force the motor exerts
on the cab via the cable?

••50 (a) At a certain instant, a particle-like object is acted on by a
force while the object’s veloc-
ity is . What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is #12 W, what is the veloc-
ity of the object?

••51 A force acts on a
2.00 kg mobile object that moves from an initial position of

to a final position of
in 4.00 s. Find (a) the

work done on the object by the force in the 4.00 s interval, (b) the
average power due to the force during that interval, and (c) the an-
gle between vectors and .d

:
fd

:
i

d
:

f " #(5.00 m)î $ (4.00 m)ĵ $ (7.00 m)k̂
di
:

" (3.00 m)î # (2.00 m)ĵ $ (5.00 m)k̂

F
:

" (3.00 N)î $ (7.00 N)ĵ $ (7.00 N)k̂

v: " #(2.0 m/s)î $ (4.0 m/s)k̂
F
:

" (4.0 N)î # (2.0 N)ĵ $ (9.0 N)k̂

SSM

F
:

" (2.00 N)î $ (4.00 N)ĵ $ (6.00 N)k̂

"d
:

f " (7.50 m)î $ (12.0 m)ĵ $ (7.20 m)k̂
d
:

i " (0.50 m)î $ (0.75 m)ĵ $ (0.20 m)k̂

ILWSSM

SSM

•••52 A funny car accelerates from rest through a measured track
distance in time T with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?

Additional Problems
53 Figure 7-41 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d " 20.0 cm
while three forces act on the package. Two of them are horizontal
and have the magnitudes F1 " 5.00 N and F2 " 1.00 N; the third is
angled down by u " 60.0° and has the magnitude F3 " 4.00 N. (a)
For the 20.0 cm displacement, what is the net work done on the
package by the three applied forces, the gravitational force on the
package, and the normal force on the package? (b) If the package
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its
speed at the end of the displacement?

163PROB LE M S
PART 1

Fig. 7-41 Problem 53.

F2 F1

d

F3

θ

54 The only force acting on a 2.0
kg body as the body moves along an
x axis varies as shown in Fig. 7-42.
The scale of the figure’s vertical axis
is set by Fs " 4.0 N.The velocity of the
body at x " 0 is 4.0 m/s. (a) What is
the kinetic energy of the body at x "
3.0 m? (b) At what value of x will the
body have a kinetic energy of 8.0 J?
(c) What is the maximum kinetic energy of the body between x " 0
and x " 5.0 m?

55 A horse pulls a cart with a force of 40 lb at an angle of 30°
above the horizontal and moves along at a speed of 6.0 mi/h. (a) How
much work does the force do in 10 min? (b) What is the average
power (in horsepower) of the force?

56 An initially stationary 2.0 kg object accelerates horizontally
and uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval,
how much work is done on the object by the force accelerating it?
What is the instantaneous power due to that force (b) at the end of
the interval and (c) at the end of the first half of the interval?

57 A 230 kg crate hangs from the end of a rope of length L " 12.0 m.
You push horizontally on the crate with a
varying force to move it distance d "
4.00 m to the side (Fig. 7-43). (a) What is
the magnitude of when the crate is
in this final position? During the crate’s
displacement, what are (b) the total
work done on it, (c) the work done
by the gravitational force on the crate,
and (d) the work done by the pull on
the crate from the rope? (e) Knowing
that the crate is motionless before and
after its displacement, use the answers to
(b), (c), and (d) to find the work your

F
:

F
:

SSM

Fx  (N)

0

–Fs

x  (m)
4321

Fs

5

Fig. 7-42 Problem 54.

L

d

F

Fig. 7-43 Problem 57.
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(c) Since 
�
F  is opposite to the direction of motion (so the angle �  between 

�
F  and 

�
d x� �  is 180°) then Eq. 7-7 gives the work done as 45.8 10 JW F x� � � � � 	 . 
 
(d) In this case, Newton’s second law yields � � � �285kg 4.0m/sF � �

�
 so that 

2| | 3.4 10 NF F� � 	
�

. 
 
(e) From Eq. 2-16, we now have 

� �
� �

2
2

2

37 m/s
1.7 10 m.

2 4.0m/s
x� � � � 	

�
 

 
(f) The force 

�
F  is again opposite to the direction of motion (so the angle � is again 180°) 

so that Eq. 7-7 leads to 45.8 10 J.W F x� � � � � 	  The fact that this agrees with the result 
of part (c) provides insight into the concept of work. 
 
14. The forces are all constant, so the total work done by them is given by W F x� net� , 
where Fnet is the magnitude of the net force and �x  is the magnitude of the displacement. 
We add the three vectors, finding the x and y components of the net force: 
 

net 1 2 3

net 2 3

sin 50.0 cos35.0 3.00 N (4.00 N)sin 35.0 (10.0 N)cos35.0
2.13 N

cos50.0 sin 35.0 (4.00 N) cos50.0 (10.0 N)sin 35.0
3.17 N.

x

y

F F F F

F F F

� � � �� � � � � �� �
�

� � �� � � � �� �
�

 

 
The magnitude of the net force is 
 

2 2 2 2
net net net (2.13 N) (3.17 N) 3.82 N.x yF F F� � � � �  

 
The work done by the net force is 
 

net (3.82 N) (4.00m) 15.3 JW F d� � �  
 
where we have used the fact that 

� �
d F net||  (which follows from the fact that the canister 

started from rest and moved horizontally under the action of horizontal forces — the 
resultant effect of which is expressed by 

�
Fnet ). 

 
15. (a) The forces are constant, so the work done by any one of them is given by 
W F d� 


� �
, where 

�
d  is the displacement. Force 

�
F1  is in the direction of the displacement, 

so 
1 1 1cos (5.00 N)(3.00 m)cos 0 15.0 J.W Fd �� � � �  
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Force 

�
F2  makes an angle of 120° with the displacement, so 

 
2 2 2cos (9.00 N) (3.00 m)cos120 13.5 J.W F d �� � � � �  

 
Force 

�
F3  is perpendicular to the displacement, so  

 
W3 = F3d cos �3 = 0 since cos 90° = 0. 

 
The net work done by the three forces is 
 

1 2 3 15.0 J 13.5 J 0 1.50 J.W W W W� � � � � � � �  
 
(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the 
displacement. 
 
16. The change in kinetic energy can be written as 
 

 2 21 1
( ) (2 )

2 2f iK m v v m a x ma x� � � � � � �  

 
where we have used  2 2 2f iv v a x� � �  from Table 2-1. From the figure, we see that 

(0 30) J 30 JK� � � � � when 5 mx� � � . The acceleration can then be obtained as 
 

 2( 30 J)
0.75 m/s .

(8.0 kg)(5.0 m)
Ka

m x
� �

� � � �
�

 

 
The negative sign indicates that the mass is decelerating. From the figure, we also see 
that when 5 mx � the kinetic energy becomes zero, implying that the mass comes to rest 
momentarily. Thus, 
 

2 2 2 2 2
0 2 0 2( 0.75 m/s )(5.0 m) 7.5 m /sv v a x� � � � � � � , 

 
or 0 2.7 m/sv � . The speed of the object when x = �3.0 m is  
 
 2 2 2 2

0 2 7.5 m /s 2( 0.75 m/s )( 3.0 m) 12 m/s 3.5 m/sv v a x� � � � � � � � � . 
 
17. We use 

�
F  to denote the upward force exerted by the cable on the astronaut. The 

force of the cable is upward and the force of gravity is mg downward. Furthermore, the 
acceleration of the astronaut is a = g/10 upward. According to Newton’s second law, the 
force is given by 

Ks

0 1
x (m)

K
 (

J)

2

Fig. 7-30 Problem 20.
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can by the constant horizontal force from the broom, versus the
can’s position x. The scale of the figure’s vertical axis is set by Ws !
6.0 J. (a) What is the magnitude of that force? (b) If the can had an
initial kinetic energy of 3.00 J, moving in the positive direction of
the x axis, what is its kinetic energy at the end of the 2.00 m?

••13 A luge and its rider, with a total mass of 85 kg, emerge from
a downhill track onto a horizontal straight track with an initial
speed of 37 m/s. If a force slows them to a stop at a constant rate of
2.0 m/s2, (a) what magnitude F is required for the force, (b) what
distance d do they travel while slowing, and (c) what work W is
done on them by the force? What are (d) F, (e) d, and (f) W if they,
instead, slow at 4.0 m/s2?

••14 Figure 7-26 shows an overhead view of three horizontal
forces acting on a cargo canister that was initially stationary but
now moves across a frictionless floor. The force magnitudes are 
F1 ! 3.00 N, F2 ! 4.00 N, and F3 ! 10.0 N, and the indicated angles
are u2 ! 50.0° and u3 ! 35.0°.What is the net work done on the can-
ister by the three forces during the first 4.00 m of displacement?

ergy K versus position x as it moves from x ! 0 to x ! 5.0 m; K0 !
30.0 J. The force continues to act. What is v when the object moves
back through x ! "3.0 m?

sec. 7-6 Work Done by the Gravitational Force
•17 A helicopter lifts a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by
(a) the force from the helicopter and (b) the gravitational force on
her? Just before she reaches the helicopter, what are her (c) kinetic
energy and (d) speed?

•18 (a) In 1975 the roof of Montreal’s Velodrome, with
a weight of 360 kN, was lifted by 10 cm so that it could be centered.
How much work was done on the roof by the forces making the
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one
end of a car that had fallen onto her son when a jack failed. If her
panic lift effectively raised 4000 N (about of the car’s weight) by
5.0 cm, how much work did her force do on the car?

••19 In Fig. 7-29, a block of ice slides down a frictionless ramp
at angle 50° while an ice worker pulls on the block (via a
rope) with a force that has a magnitude of 50 N and is directed
up the ramp.As the block slides through distance d 0.50 m along
the ramp, its kinetic energy increases by 80 J. How much greater
would its kinetic energy have been if the rope had not been at-
tached to the block?

!
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••15 Figure 7-27 shows three forces applied to a trunk that
moves leftward by 3.00 m over a frictionless floor.The force magni-
tudes are F1 ! 5.00 N, F2 ! 9.00 N, and F3 ! 3.00 N, and the indi-
cated angle is u ! 60.0°. During the displacement, (a) what is the net
work done on the trunk by the three forces and (b) does the kinetic
energy of the trunk increase or decrease?

θ
F1

F3

F2

Fig. 7-27 Problem 15.

F1

F2

F3

y

x

2θ

3θ

Fig. 7-26 Problem 14.

••20 A block is sent up a frictionless ramp along which an x axis
extends upward. Figure 7-30 gives the kinetic energy of the block
as a function of position x; the scale of the figure’s vertical axis is
set by Ks ! 40.0 J. If the block’s initial speed is 4.00 m/s, what is the
normal force on the block?

••21 A cord is used to vertically lower an initially stationary
block of mass M at a constant downward acceleration of g/4. When
the block has fallen a distance d, find (a) the work done by the
cord’s force on the block, (b) the work done by the gravitational
force on the block, (c) the kinetic energy of the block, and (d) the
speed of the block.

••22 A cave rescue team lifts an injured spelunker directly up-
ward and out of a sinkhole by means of a motor-driven cable. The

SSM

θ

d
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Fig. 7-29 Problem 19.

••16 An 8.0 kg object is moving in the positive direction of an
x axis. When it passes through x 0, a constant force directed
along the axis begins to act on it. Figure 7-28 gives its kinetic en-

!

x (m)

K0

0 5

K (J)

Fig. 7-28 Problem 16.
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Force 

�
F2  makes an angle of 120° with the displacement, so 

 
2 2 2cos (9.00 N) (3.00 m)cos120 13.5 J.W F d �� � � � �  

 
Force 

�
F3  is perpendicular to the displacement, so  

 
W3 = F3d cos �3 = 0 since cos 90° = 0. 

 
The net work done by the three forces is 
 

1 2 3 15.0 J 13.5 J 0 1.50 J.W W W W� � � � � � � �  
 
(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the 
displacement. 
 
16. The change in kinetic energy can be written as 
 

 2 21 1
( ) (2 )

2 2f iK m v v m a x ma x� � � � � � �  

 
where we have used  2 2 2f iv v a x� � �  from Table 2-1. From the figure, we see that 

(0 30) J 30 JK� � � � � when 5 mx� � � . The acceleration can then be obtained as 
 

 2( 30 J)
0.75 m/s .

(8.0 kg)(5.0 m)
Ka

m x
� �

� � � �
�

 

 
The negative sign indicates that the mass is decelerating. From the figure, we also see 
that when 5 mx � the kinetic energy becomes zero, implying that the mass comes to rest 
momentarily. Thus, 
 

2 2 2 2 2
0 2 0 2( 0.75 m/s )(5.0 m) 7.5 m /sv v a x� � � � � � � , 

 
or 0 2.7 m/sv � . The speed of the object when x = �3.0 m is  
 
 2 2 2 2

0 2 7.5 m /s 2( 0.75 m/s )( 3.0 m) 12 m/s 3.5 m/sv v a x� � � � � � � � � . 
 
17. We use 

�
F  to denote the upward force exerted by the cable on the astronaut. The 

force of the cable is upward and the force of gravity is mg downward. Furthermore, the 
acceleration of the astronaut is a = g/10 upward. According to Newton’s second law, the 
force is given by 
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Fig. 7-30 Problem 20.
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can by the constant horizontal force from the broom, versus the
can’s position x. The scale of the figure’s vertical axis is set by Ws !
6.0 J. (a) What is the magnitude of that force? (b) If the can had an
initial kinetic energy of 3.00 J, moving in the positive direction of
the x axis, what is its kinetic energy at the end of the 2.00 m?

••13 A luge and its rider, with a total mass of 85 kg, emerge from
a downhill track onto a horizontal straight track with an initial
speed of 37 m/s. If a force slows them to a stop at a constant rate of
2.0 m/s2, (a) what magnitude F is required for the force, (b) what
distance d do they travel while slowing, and (c) what work W is
done on them by the force? What are (d) F, (e) d, and (f) W if they,
instead, slow at 4.0 m/s2?

••14 Figure 7-26 shows an overhead view of three horizontal
forces acting on a cargo canister that was initially stationary but
now moves across a frictionless floor. The force magnitudes are 
F1 ! 3.00 N, F2 ! 4.00 N, and F3 ! 10.0 N, and the indicated angles
are u2 ! 50.0° and u3 ! 35.0°.What is the net work done on the can-
ister by the three forces during the first 4.00 m of displacement?

ergy K versus position x as it moves from x ! 0 to x ! 5.0 m; K0 !
30.0 J. The force continues to act. What is v when the object moves
back through x ! "3.0 m?

sec. 7-6 Work Done by the Gravitational Force
•17 A helicopter lifts a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by
(a) the force from the helicopter and (b) the gravitational force on
her? Just before she reaches the helicopter, what are her (c) kinetic
energy and (d) speed?

•18 (a) In 1975 the roof of Montreal’s Velodrome, with
a weight of 360 kN, was lifted by 10 cm so that it could be centered.
How much work was done on the roof by the forces making the
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one
end of a car that had fallen onto her son when a jack failed. If her
panic lift effectively raised 4000 N (about of the car’s weight) by
5.0 cm, how much work did her force do on the car?

••19 In Fig. 7-29, a block of ice slides down a frictionless ramp
at angle 50° while an ice worker pulls on the block (via a
rope) with a force that has a magnitude of 50 N and is directed
up the ramp.As the block slides through distance d 0.50 m along
the ramp, its kinetic energy increases by 80 J. How much greater
would its kinetic energy have been if the rope had not been at-
tached to the block?
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••15 Figure 7-27 shows three forces applied to a trunk that
moves leftward by 3.00 m over a frictionless floor.The force magni-
tudes are F1 ! 5.00 N, F2 ! 9.00 N, and F3 ! 3.00 N, and the indi-
cated angle is u ! 60.0°. During the displacement, (a) what is the net
work done on the trunk by the three forces and (b) does the kinetic
energy of the trunk increase or decrease?

θ
F1

F3

F2

Fig. 7-27 Problem 15.

F1

F2

F3

y

x

2θ

3θ

Fig. 7-26 Problem 14.

••20 A block is sent up a frictionless ramp along which an x axis
extends upward. Figure 7-30 gives the kinetic energy of the block
as a function of position x; the scale of the figure’s vertical axis is
set by Ks ! 40.0 J. If the block’s initial speed is 4.00 m/s, what is the
normal force on the block?

••21 A cord is used to vertically lower an initially stationary
block of mass M at a constant downward acceleration of g/4. When
the block has fallen a distance d, find (a) the work done by the
cord’s force on the block, (b) the work done by the gravitational
force on the block, (c) the kinetic energy of the block, and (d) the
speed of the block.

••22 A cave rescue team lifts an injured spelunker directly up-
ward and out of a sinkhole by means of a motor-driven cable. The

SSM

θ

d

Fr

Fig. 7-29 Problem 19.

••16 An 8.0 kg object is moving in the positive direction of an
x axis. When it passes through x 0, a constant force directed
along the axis begins to act on it. Figure 7-28 gives its kinetic en-

!

x (m)

K0

0 5

K (J)

Fig. 7-28 Problem 16.
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direction

ϕ2 = 180o − 60o

=120o

Problems for chapter 7



sec. 7-9 Power
•43 A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

•44 A skier is pulled by a towrope up a frictionless ski slope that
makes an angle of 12° with the horizontal. The rope moves parallel
to the slope with a constant speed of 1.0 m/s. The force of the rope
does 900 J of work on the skier as the skier moves a distance of 8.0
m up the incline. (a) If the rope moved with a constant speed of 2.0
m/s, how much work would the force of the rope do on the skier as
the skier moved a distance of 8.0 m up the incline? At what rate is
the force of the rope doing work on the skier when the rope moves
with a speed of (b) 1.0 m/s and (c) 2.0 m/s?

•45 A 100 kg block is pulled at a constant speed of 5.0
m/s across a horizontal floor by an applied force of 122 N directed
37° above the horizontal. What is the rate at which the force does
work on the block?

•46 The loaded cab of an elevator has a mass of 3.0 ! 103 kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

••47 A machine carries a 4.0 kg package from an initial position
of at t " 0 to a final posi-
tion of at t 12 s. The
constant force applied by the machine on the package is

. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

••48 A 0.30 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k " 500 N/m) whose
other end is fixed.The ladle has a kinetic energy of 10 J as it passes
through its equilibrium position (the point at which the spring
force is zero). (a) At what rate is the spring doing work on the la-
dle as the ladle passes through its equilibrium position? (b) At
what rate is the spring doing work on the ladle when the spring is
compressed 0.10 m and the ladle is moving away from the equilib-
rium position?

••49 A fully loaded, slow-moving freight elevator has a cab
with a total mass of 1200 kg, which is required to travel upward 54
m in 3.0 min, starting and ending at rest. The elevator’s counter-
weight has a mass of only 950 kg, and so the elevator motor must
help. What average power is required of the force the motor exerts
on the cab via the cable?

••50 (a) At a certain instant, a particle-like object is acted on by a
force while the object’s veloc-
ity is . What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is #12 W, what is the veloc-
ity of the object?

••51 A force acts on a
2.00 kg mobile object that moves from an initial position of

to a final position of
in 4.00 s. Find (a) the

work done on the object by the force in the 4.00 s interval, (b) the
average power due to the force during that interval, and (c) the an-
gle between vectors and .d

:
fd

:
i

d
:

f " #(5.00 m)î $ (4.00 m)ĵ $ (7.00 m)k̂
di
:

" (3.00 m)î # (2.00 m)ĵ $ (5.00 m)k̂

F
:

" (3.00 N)î $ (7.00 N)ĵ $ (7.00 N)k̂

v: " #(2.0 m/s)î $ (4.0 m/s)k̂
F
:

" (4.0 N)î # (2.0 N)ĵ $ (9.0 N)k̂

SSM

F
:

" (2.00 N)î $ (4.00 N)ĵ $ (6.00 N)k̂

"d
:

f " (7.50 m)î $ (12.0 m)ĵ $ (7.20 m)k̂
d
:

i " (0.50 m)î $ (0.75 m)ĵ $ (0.20 m)k̂

ILWSSM

SSM

•••52 A funny car accelerates from rest through a measured track
distance in time T with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?

Additional Problems
53 Figure 7-41 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d " 20.0 cm
while three forces act on the package. Two of them are horizontal
and have the magnitudes F1 " 5.00 N and F2 " 1.00 N; the third is
angled down by u " 60.0° and has the magnitude F3 " 4.00 N. (a)
For the 20.0 cm displacement, what is the net work done on the
package by the three applied forces, the gravitational force on the
package, and the normal force on the package? (b) If the package
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its
speed at the end of the displacement?

163PROB LE M S
PART 1

Fig. 7-41 Problem 53.

F2 F1

d

F3

θ

54 The only force acting on a 2.0
kg body as the body moves along an
x axis varies as shown in Fig. 7-42.
The scale of the figure’s vertical axis
is set by Fs " 4.0 N.The velocity of the
body at x " 0 is 4.0 m/s. (a) What is
the kinetic energy of the body at x "
3.0 m? (b) At what value of x will the
body have a kinetic energy of 8.0 J?
(c) What is the maximum kinetic energy of the body between x " 0
and x " 5.0 m?

55 A horse pulls a cart with a force of 40 lb at an angle of 30°
above the horizontal and moves along at a speed of 6.0 mi/h. (a) How
much work does the force do in 10 min? (b) What is the average
power (in horsepower) of the force?

56 An initially stationary 2.0 kg object accelerates horizontally
and uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval,
how much work is done on the object by the force accelerating it?
What is the instantaneous power due to that force (b) at the end of
the interval and (c) at the end of the first half of the interval?

57 A 230 kg crate hangs from the end of a rope of length L " 12.0 m.
You push horizontally on the crate with a
varying force to move it distance d "
4.00 m to the side (Fig. 7-43). (a) What is
the magnitude of when the crate is
in this final position? During the crate’s
displacement, what are (b) the total
work done on it, (c) the work done
by the gravitational force on the crate,
and (d) the work done by the pull on
the crate from the rope? (e) Knowing
that the crate is motionless before and
after its displacement, use the answers to
(b), (c), and (d) to find the work your

F
:

F
:

SSM

Fx  (N)

0

–Fs

x  (m)
4321

Fs

5

Fig. 7-42 Problem 54.

L

d

F

Fig. 7-43 Problem 57.
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P  
(5.0 N)  (3.0 s)

15 kg
  5.0 W.

2

�
F
HG

I
KJ �  

 
44. (a) Since constant speed implies �K  0,�  we require W Wa g� � , by Eq. 7-15. Since 

Wg  is the same in both cases (same weight and same path), then 29.0 10aW � �  J just as it 
was in the first case. 
 
(b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds. 
Using Eq. 7-42, and noting that average power is the power when the work is being done 
at a steady rate, we have 

2900 J
 1.1 10  W.

8.0 s
WP

t
� � � �
�

 

 
(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq. 
7-42, with average power replaced by power, we have 
 

900 J
4.0 s

WP
t

� �
�

= 225 W 22.3 10  W� � . 

 
45. The power associated with force 

�
F  is given by P F v    � 	

� �
,  where 

�v  is the velocity 
of the object on which the force acts. Thus, 
 

2cos (122 N)(5.0 m/s)cos37 4.9 10  W. P F v Fv �� 	 � � � � �
� �

 
 
46. Recognizing that the force in the cable must equal the total weight (since there is no 
acceleration), we employ Eq. 7-47: 

P Fv mg x
t

   cos    � � F
HG
I
KJ� �

�
 

 
where we have used the fact that � � �0  (both the force of the cable and the elevator’s 
motion are upward). Thus, 

3 2 5210 m
(3.0 10 kg)(9.8 m/s ) 2.7 10  W.

23 s
P 
 
� � � �� �

� �
 

 
47. (a) Equation 7-8 yields  
 
W =  Fx �x + Fy �y + Fz �z  
    = (2.00 N)(7.5 m – 0.50 m) + (4.00 N)(12.0 m – 0.75 m) + (6.00 N)(7.2m – 0.20 m)  
    =101 J �  1.0�  102 J. 
 
(b) Dividing this result by 12 s (see Eq. 7-42) yields P = 8.4 W. 
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Chapter 9
CENTER OF MASS AND LINEAR 

MOMENTUM
Sections 9-2, 9-3, 9-4, 9-5, 9-7

The Center of Mass
Newton’s Second Law for a System of Particles

Linear Momentum
The Linear Momentum of a System of Particles

Conservation of Linear Momentum



� Important skills from this lecture:
1. Define the center of mass of a system of particles
2. Calculate the center of mass for two particle in one dimension
3. Calculate the center of mass for many particles in one 

dimension
4. Calculate the center of mass for many particles in two and 

three dimensions
5. Identify Newton’s 2nd law for a system of particles
6. Apply Newton’s 2nd law to a system of particles to calculate 

the acceleration of the center of mass
7. Define the linear momentum and its unit
8. Derive Newton’s 2nd law in terms of momentum
9. Explain the conservation of linear momentum
10. Apply the conservation of momentum to solve problems



The Center of Mass
� The center of mass (com) of a system of particles: 

is the point that moves as though 
(1) all of the system’s mass were concentrated there 
(2) all external forces were applied there

� For 2 particles of masses m1 & m2 separated by 
distance d, the position of the com of this system is 
(the origin of an x axis was chosen to be at m1):

� If m2 = 0 à xcom= 0

If m1 = 0 à xcom = d
If m1 = m2 à xcom = ½ d
If neither m1 or  m2 ≠ 0 
à 0 <  xcom< d

HALLIDAY REVISED

9-1 W H AT  I S  P H YS I C S ?
Every mechanical engineer hired as an expert witness to reconstruct a

traffic accident uses physics. Every trainer who coaches a ballerina on how to
leap uses physics. Indeed, analyzing complicated motion of any sort requires sim-
plification via an understanding of physics. In this chapter we discuss how the
complicated motion of a system of objects, such as a car or a ballerina, can be
simplified if we determine a special point of the system—the center of mass of
that system.

Here is a quick example. If you toss a ball into the air without much spin on the
ball (Fig. 9-1a), its motion is simple—it follows a parabolic path, as we discussed in
Chapter 4, and the ball can be treated as a particle. If, instead, you flip a baseball bat
into the air (Fig. 9-1b), its motion is more complicated. Because every part of the bat
moves differently, along paths of many different shapes, you cannot represent the
bat as a particle. Instead, it is a system of particles each of which follows its own path
through the air. However, the bat has one special point—the center of mass—that
does move in a simple parabolic path. The other parts of the bat move around the
center of mass. (To locate the center of mass, balance the bat on an outstretched fin-
ger; the point is above your finger, on the bat’s central axis.)

You cannot make a career of flipping baseball bats into the air, but you can
make a career of advising long-jumpers or dancers on how to leap properly into
the air while either moving their arms and legs or rotating their torso. Your
starting point would be the person’s center of mass because of its simple motion.

9-2 The Center of Mass
We define the center of mass (com) of a system of particles (such as a person) in
order to predict the possible motion of the system.

C E N T E R  O F  M A S S
A N D  L I N E A R
M O M E N T U M 9

C H A P T E R

201

Fig. 9-1 (a) A ball tossed into the air
follows a parabolic path. (b) The center
of mass (black dot) of a baseball bat
flipped into the air follows a parabolic
path, but all other points of the bat fol-
low more complicated curved paths.
(a: Richard Megna/Fundamental
Photographs)

(a)

(b)The center of mass of a system of particles is the point that moves as though (1) all of the
system’s mass were concentrated there and (2) all external forces were applied there.

In this section we discuss how to determine where the center of mass of a system
of particles is located. We start with a system of only a few particles, and then we
consider a system of a great many particles (a solid body, such as a baseball bat).
Later in the chapter, we discuss how the center of mass of a system moves when
external forces act on the system.
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Systems of Particles
Figure 9-2a shows two particles of masses m1 and m2 separated by distance d.We have
arbitrarily chosen the origin of an x axis to coincide with the particle of mass m1. We
define the position of the center of mass (com) of this two-particle system to be

(9-1)

Suppose, as an example, that m2 ! 0. Then there is only one particle, of mass m1,
and the center of mass must lie at the position of that particle;Eq.9-1 dutifully reduces
to xcom ! 0. If m1 ! 0, there is again only one particle (of mass m2), and we have, as we
expect, xcom ! d. If m1 ! m2, the center of mass should be halfway between the two
particles; Eq. 9-1 reduces to again as we expect. Finally, Eq. 9-1 tells us that
if neither m1 nor m2 is zero, xcom can have only values that lie between zero and d; that
is, the center of mass must lie somewhere between the two particles.

Figure 9-2b shows a more generalized situation, in which the coordinate sys-
tem has been shifted leftward.The position of the center of mass is now defined

as (9-2)

Note that if we put x1 ! 0, then x2 becomes d and Eq. 9-2 reduces to Eq. 9-1, as
it must. Note also that in spite of the shift of the coordinate system, the center
of mass is still the same distance from each particle.

We can rewrite Eq. 9-2 as

(9-3)

in which M is the total mass of the system. (Here, M ! m1 " m2.) We can extend
this equation to a more general situation in which n particles are strung out along
the x axis.Then the total mass is M ! m1 " m2 " . . . " mn, and the location of the
center of mass is

(9-4)

The subscript i is an index that takes on all integer values from 1 to n.

 !
1
M

 !
n

i!1
 mi xi .

 xcom !
m1x1 " m2 x2 " m3x3 " # # # " mnxn

M

xcom !
m1x1 " m2x2

M
,

xcom !
m1x1 " m2x2

m1 " m2
.

xcom ! 1
2d,

xcom !
m2

m1 " m2
d.

Fig. 9-2 (a) Two particles of masses m1 and m2 are separated by distance d.The dot
labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The
same as (a) except that the origin is located farther from the particles.The position of the
center of mass is calculated from Eq. 9-2.The location of the center of mass with respect to
the particles is the same in both cases.

x

y

xcom

x1 d
com

m1 m2

x2

(b)

x

y

xcom

d
com

m1 m2

(a)

This is the center of mass
of the two-particle system.

Shifting the axis
does not change
the relative position
of the com.
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Systems of Particles
Figure 9-2a shows two particles of masses m1 and m2 separated by distance d.We have
arbitrarily chosen the origin of an x axis to coincide with the particle of mass m1. We
define the position of the center of mass (com) of this two-particle system to be

(9-1)

Suppose, as an example, that m2 ! 0. Then there is only one particle, of mass m1,
and the center of mass must lie at the position of that particle;Eq.9-1 dutifully reduces
to xcom ! 0. If m1 ! 0, there is again only one particle (of mass m2), and we have, as we
expect, xcom ! d. If m1 ! m2, the center of mass should be halfway between the two
particles; Eq. 9-1 reduces to again as we expect. Finally, Eq. 9-1 tells us that
if neither m1 nor m2 is zero, xcom can have only values that lie between zero and d; that
is, the center of mass must lie somewhere between the two particles.

Figure 9-2b shows a more generalized situation, in which the coordinate sys-
tem has been shifted leftward.The position of the center of mass is now defined

as (9-2)

Note that if we put x1 ! 0, then x2 becomes d and Eq. 9-2 reduces to Eq. 9-1, as
it must. Note also that in spite of the shift of the coordinate system, the center
of mass is still the same distance from each particle.

We can rewrite Eq. 9-2 as

(9-3)

in which M is the total mass of the system. (Here, M ! m1 " m2.) We can extend
this equation to a more general situation in which n particles are strung out along
the x axis.Then the total mass is M ! m1 " m2 " . . . " mn, and the location of the
center of mass is

(9-4)

The subscript i is an index that takes on all integer values from 1 to n.

 !
1
M

 !
n

i!1
 mi xi .

 xcom !
m1x1 " m2 x2 " m3x3 " # # # " mnxn

M

xcom !
m1x1 " m2x2

M
,

xcom !
m1x1 " m2x2

m1 " m2
.

xcom ! 1
2d,

xcom !
m2

m1 " m2
d.

Fig. 9-2 (a) Two particles of masses m1 and m2 are separated by distance d.The dot
labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The
same as (a) except that the origin is located farther from the particles.The position of the
center of mass is calculated from Eq. 9-2.The location of the center of mass with respect to
the particles is the same in both cases.
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xcom
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com

m1 m2
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(b)

x
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xcom

d
com

m1 m2

(a)

This is the center of mass
of the two-particle system.

Shifting the axis
does not change
the relative position
of the com.
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Systems of Particles
Figure 9-2a shows two particles of masses m1 and m2 separated by distance d.We have
arbitrarily chosen the origin of an x axis to coincide with the particle of mass m1. We
define the position of the center of mass (com) of this two-particle system to be

(9-1)

Suppose, as an example, that m2 ! 0. Then there is only one particle, of mass m1,
and the center of mass must lie at the position of that particle;Eq.9-1 dutifully reduces
to xcom ! 0. If m1 ! 0, there is again only one particle (of mass m2), and we have, as we
expect, xcom ! d. If m1 ! m2, the center of mass should be halfway between the two
particles; Eq. 9-1 reduces to again as we expect. Finally, Eq. 9-1 tells us that
if neither m1 nor m2 is zero, xcom can have only values that lie between zero and d; that
is, the center of mass must lie somewhere between the two particles.

Figure 9-2b shows a more generalized situation, in which the coordinate sys-
tem has been shifted leftward.The position of the center of mass is now defined

as (9-2)

Note that if we put x1 ! 0, then x2 becomes d and Eq. 9-2 reduces to Eq. 9-1, as
it must. Note also that in spite of the shift of the coordinate system, the center
of mass is still the same distance from each particle.

We can rewrite Eq. 9-2 as

(9-3)

in which M is the total mass of the system. (Here, M ! m1 " m2.) We can extend
this equation to a more general situation in which n particles are strung out along
the x axis.Then the total mass is M ! m1 " m2 " . . . " mn, and the location of the
center of mass is

(9-4)

The subscript i is an index that takes on all integer values from 1 to n.
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Fig. 9-2 (a) Two particles of masses m1 and m2 are separated by distance d.The dot
labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The
same as (a) except that the origin is located farther from the particles.The position of the
center of mass is calculated from Eq. 9-2.The location of the center of mass with respect to
the particles is the same in both cases.
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of the two-particle system.

Shifting the axis
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the relative position
of the com.
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� If the coordinate system is shifted leftward:

� If x1 = 0 à x2 = d (Eq.2 reduces to Eq.1)

� In spite of shifting the coordinate system, xcom
still has the same distance from each particle

� Eq.2 could be written as:

in which M: the total mass of the system (M = m1 + m2) 

� For a more general situation with n particles 
à M = m1 + m2 + …+ mn, and xcom will be:
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Figure 9-2a shows two particles of masses m1 and m2 separated by distance d.We have
arbitrarily chosen the origin of an x axis to coincide with the particle of mass m1. We
define the position of the center of mass (com) of this two-particle system to be

(9-1)

Suppose, as an example, that m2 ! 0. Then there is only one particle, of mass m1,
and the center of mass must lie at the position of that particle;Eq.9-1 dutifully reduces
to xcom ! 0. If m1 ! 0, there is again only one particle (of mass m2), and we have, as we
expect, xcom ! d. If m1 ! m2, the center of mass should be halfway between the two
particles; Eq. 9-1 reduces to again as we expect. Finally, Eq. 9-1 tells us that
if neither m1 nor m2 is zero, xcom can have only values that lie between zero and d; that
is, the center of mass must lie somewhere between the two particles.

Figure 9-2b shows a more generalized situation, in which the coordinate sys-
tem has been shifted leftward.The position of the center of mass is now defined

as (9-2)

Note that if we put x1 ! 0, then x2 becomes d and Eq. 9-2 reduces to Eq. 9-1, as
it must. Note also that in spite of the shift of the coordinate system, the center
of mass is still the same distance from each particle.

We can rewrite Eq. 9-2 as

(9-3)

in which M is the total mass of the system. (Here, M ! m1 " m2.) We can extend
this equation to a more general situation in which n particles are strung out along
the x axis.Then the total mass is M ! m1 " m2 " . . . " mn, and the location of the
center of mass is

(9-4)

The subscript i is an index that takes on all integer values from 1 to n.
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Fig. 9-2 (a) Two particles of masses m1 and m2 are separated by distance d.The dot
labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The
same as (a) except that the origin is located farther from the particles.The position of the
center of mass is calculated from Eq. 9-2.The location of the center of mass with respect to
the particles is the same in both cases.
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Systems of Particles
Figure 9-2a shows two particles of masses m1 and m2 separated by distance d.We have
arbitrarily chosen the origin of an x axis to coincide with the particle of mass m1. We
define the position of the center of mass (com) of this two-particle system to be

(9-1)

Suppose, as an example, that m2 ! 0. Then there is only one particle, of mass m1,
and the center of mass must lie at the position of that particle;Eq.9-1 dutifully reduces
to xcom ! 0. If m1 ! 0, there is again only one particle (of mass m2), and we have, as we
expect, xcom ! d. If m1 ! m2, the center of mass should be halfway between the two
particles; Eq. 9-1 reduces to again as we expect. Finally, Eq. 9-1 tells us that
if neither m1 nor m2 is zero, xcom can have only values that lie between zero and d; that
is, the center of mass must lie somewhere between the two particles.

Figure 9-2b shows a more generalized situation, in which the coordinate sys-
tem has been shifted leftward.The position of the center of mass is now defined

as (9-2)

Note that if we put x1 ! 0, then x2 becomes d and Eq. 9-2 reduces to Eq. 9-1, as
it must. Note also that in spite of the shift of the coordinate system, the center
of mass is still the same distance from each particle.

We can rewrite Eq. 9-2 as

(9-3)

in which M is the total mass of the system. (Here, M ! m1 " m2.) We can extend
this equation to a more general situation in which n particles are strung out along
the x axis.Then the total mass is M ! m1 " m2 " . . . " mn, and the location of the
center of mass is

(9-4)

The subscript i is an index that takes on all integer values from 1 to n.
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Fig. 9-2 (a) Two particles of masses m1 and m2 are separated by distance d.The dot
labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The
same as (a) except that the origin is located farther from the particles.The position of the
center of mass is calculated from Eq. 9-2.The location of the center of mass with respect to
the particles is the same in both cases.
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� In 3D system, the center of mass is identified by three 
coordinates as:

� We can also define the com using vectors: 
if the position of a particle at coordinates xi, yi, and zi is:

à the position of the center of mass of a system of particles 
is given by a position vector:
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If the particles are distributed in three dimensions, the center of mass must
be identified by three coordinates. By extension of Eq. 9-4, they are

(9-5)

We can also define the center of mass with the language of vectors. First
recall that the position of a particle at coordinates xi, yi, and zi is given by a posi-
tion vector:

(9-6)

Here the index identifies the particle, and î, ĵ, and k̂ are unit vectors pointing,
respectively, in the positive direction of the x, y, and z axes. Similarly, the position
of the center of mass of a system of particles is given by a position vector:

(9-7)

The three scalar equations of Eq. 9-5 can now be replaced by a single vector
equation,

(9-8)

where again M is the total mass of the system. You can check that this equation
is correct by substituting Eqs. 9-6 and 9-7 into it, and then separating out the x,
y, and z components.The scalar relations of Eq. 9-5 result.

Solid Bodies
An ordinary object, such as a baseball bat, contains so many particles (atoms)
that we can best treat it as a continuous distribution of matter. The “particles”
then become differential mass elements dm, the sums of Eq. 9-5 become inte-
grals, and the coordinates of the center of mass are defined as

(9-9)

where M is now the mass of the object.
Evaluating these integrals for most common objects (such as a television set or

a moose) would be difficult, so here we consider only uniform objects. Such objects
have uniform density, or mass per unit volume; that is, the density r (Greek letter
rho) is the same for any given element of an object as for the whole object. From Eq.
1-8, we can write

(9-10)

where dV is the volume occupied by a mass element dm, and V is the total vol-
ume of the object. Substituting dm ! (M /V) dV from Eq. 9-10 into Eq. 9-9 gives

(9-11)

You can bypass one or more of these integrals if an object has a point, a line,
or a plane of symmetry. The center of mass of such an object then lies at that
point, on that line, or in that plane. For example, the center of mass of a uniform
sphere (which has a point of symmetry) is at the center of the sphere (which is
the point of symmetry). The center of mass of a uniform cone (whose axis is a
line of symmetry) lies on the axis of the cone. The center of mass of a banana
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We can also define the center of mass with the language of vectors. First
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Here the index identifies the particle, and î, ĵ, and k̂ are unit vectors pointing,
respectively, in the positive direction of the x, y, and z axes. Similarly, the position
of the center of mass of a system of particles is given by a position vector:
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where again M is the total mass of the system. You can check that this equation
is correct by substituting Eqs. 9-6 and 9-7 into it, and then separating out the x,
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9-3 Newton’s Second Law for a System of Particles
Now that we know how to locate the center of mass of a system of particles, we
discuss how external forces can move a center of mass. Let us start with a simple
system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the
two-ball system will continue to have some forward motion after impact. You
would be surprised, for example, if both balls came back toward you or if both
moved to the right or to the left.

What continues to move forward, its steady motion completely unaffected by
the collision, is the center of mass of the two-ball system. If you focus on this
point—which is always halfway between these bodies because they have identi-

CHECKPOINT 1

The figure shows a uniform square plate from which four identical squares at the cor-
ners will be removed. (a) Where is the center of mass of the plate originally? Where is it
after the removal of (b) square 1; (c) squares 1 and 2; (d) squares 1 and 3; (e) squares 1,
2, and 3; (f) all four squares? Answer in terms of quadrants, axes, or points (without cal-
culation, of course).

y

x

1 2

4 3

Sample Problem

origin and the x axis coincides with one of the triangle’s
sides (Fig. 9-4). The three particles then have the following
coordinates:

Particle Mass (kg) x (cm) y (cm)

1 1.2 0 0
2 2.5 140 0
3 3.4 70 120

The total mass M of the system is 7.1 kg.
From Eq. 9-5, the coordinates of the center of mass are

(Answer)

and

(Answer)
In Fig. 9-4, the center of mass is located by the position vec-
tor , which has components xcom and ycom.r:com

! 58 cm.

!
(1.2 kg)(0) " (2.5 kg)(0) " (3.4 kg)(120 cm)

7.1 kg

 ycom !
1
M

 !
3

i!1
 miyi !

m1y1 " m2y2 " m3y3

M

 ! 83 cm

 !
(1.2 kg)(0) " (2.5 kg)(140 cm) " (3.4 kg)(70 cm)

7.1 kg

 xcom !
1
M

 !
3

i!1
 mixi !

m1x1 " m2x2 " m3x3

M

Additional examples, video, and practice available at WileyPLUS

com of three particles

Three particles of masses m1 ! 1.2 kg, m2 ! 2.5 kg, and
m3 ! 3.4 kg form an equilateral triangle of edge length
a ! 140 cm.Where is the center of mass of this system?

KEY I DEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the

Fig. 9-4 Three particles form an equilateral triangle of edge
length a.The center of mass is located by the position vector .r:com
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x 0 
50 100 150 
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ycom 

xcom m1 
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rcom 
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0 

This is the position
vector rcom for the
com (it points from
the origin to the com).
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Three particles of masses m1 ! 1.2 kg, m2 ! 2.5 kg, and
m3 ! 3.4 kg form an equilateral triangle of edge length
a ! 140 cm.Where is the center of mass of this system?

KEY I DEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the
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9-3 Newton’s Second Law for a System of Particles
Now that we know how to locate the center of mass of a system of particles, we
discuss how external forces can move a center of mass. Let us start with a simple
system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the
two-ball system will continue to have some forward motion after impact. You
would be surprised, for example, if both balls came back toward you or if both
moved to the right or to the left.

What continues to move forward, its steady motion completely unaffected by
the collision, is the center of mass of the two-ball system. If you focus on this
point—which is always halfway between these bodies because they have identi-

CHECKPOINT 1

The figure shows a uniform square plate from which four identical squares at the cor-
ners will be removed. (a) Where is the center of mass of the plate originally? Where is it
after the removal of (b) square 1; (c) squares 1 and 2; (d) squares 1 and 3; (e) squares 1,
2, and 3; (f) all four squares? Answer in terms of quadrants, axes, or points (without cal-
culation, of course).
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KEY I DEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the
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sides (Fig. 9-4). The three particles then have the following
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KEY I DEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the
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two-ball system will continue to have some forward motion after impact. You
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Three particles of masses m1 ! 1.2 kg, m2 ! 2.5 kg, and
m3 ! 3.4 kg form an equilateral triangle of edge length
a ! 140 cm.Where is the center of mass of this system?

KEY I DEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the
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Now that we know how to locate the center of mass of a system of particles, we
discuss how external forces can move a center of mass. Let us start with a simple
system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the
two-ball system will continue to have some forward motion after impact. You
would be surprised, for example, if both balls came back toward you or if both
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sides (Fig. 9-4). The three particles then have the following
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m3 ! 3.4 kg form an equilateral triangle of edge length
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KEY I DEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.
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the x and y axes so that one of the particles is located at the
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of Particles
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� If the motion is not affected by another collision, what 
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� The vector equation that governs the motion of the com of a 
system of particles is:
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cal masses—you can easily convince yourself by trial at a billiard table that this is
so. No matter whether the collision is glancing, head-on, or somewhere in
between, the center of mass continues to move forward, as if the collision had
never occurred. Let us look into this center-of-mass motion in more detail.

To do so, we replace the pair of billiard balls with an assemblage of n particles
of (possibly) different masses. We are interested not in the individual motions of
these particles but only in the motion of the center of mass of the assemblage.
Although the center of mass is just a point, it moves like a particle whose mass is
equal to the total mass of the system; we can assign a position, a velocity, and an ac-
celeration to it. We state (and shall prove next) that the vector equation that gov-
erns the motion of the center of mass of such a system of particles is

(system of particles). (9-14)

This equation is Newton’s second law for the motion of the center of mass of
a system of particles. Note that its form is the same as the form of the equation

for the motion of a single particle. However, the three quantities that
appear in Eq. 9-14 must be evaluated with some care:

1. is the net force of all external forces that act on the system. Forces on one
part of the system from another part of the system (internal forces) are not in-
cluded in Eq. 9-14.

2. M is the total mass of the system. We assume that no mass enters or leaves the
system as it moves, so that M remains constant. The system is said to be closed.

3. is the acceleration of the center of mass of the system. Equation 9-14 gives
no information about the acceleration of any other point of the system.

Equation 9-14 is equivalent to three equations involving the components of
and along the three coordinate axes.These equations are

Fnet, x ! Macom, x Fnet, y ! Macom, y Fnet, z ! Macom, z. (9-15)

Now we can go back and examine the behavior of the billiard balls. Once 
the cue ball has begun to roll, no net external force acts on the (two-ball) system.
Thus, because ! 0, Eq. 9-14 tells us that ! 0 also. Because accelera-
tion is the rate of change of velocity, we conclude that the velocity of the center of
mass of the system of two balls does not change. When the two balls collide, the
forces that come into play are internal forces, on one ball from the other. Such forces
do not contribute to the net force , which remains zero.Thus, the center of mass
of the system, which was moving forward before the collision, must continue to
move forward after the collision, with the same speed and in the same direction.

Equation 9-14 applies not only to a system of particles but also to a solid
body, such as the bat of Fig. 9-1b. In that case, M in Eq. 9-14 is the mass of the bat
and is the gravitational force on the bat. Equation 9-14 then tells us that

In other words, the center of mass of the bat moves as if the bat were a
single particle of mass M, with force acting on it.

Figure 9-5 shows another interesting case. Suppose that at a fireworks display, a
rocket is launched on a parabolic path. At a certain point, it explodes into frag-
ments. If the explosion had not occurred, the rocket would have continued along
the trajectory shown in the figure. The forces of the explosion are internal to the
system (at first the system is just the rocket, and later it is its fragments); that is, they
are forces on parts of the system from other parts. If we ignore air drag, the net ex-
ternal force acting on the system is the gravitational force on the system, re-
gardless of whether the rocket explodes. Thus, from Eq. 9-14, the acceleration 
of the center of mass of the fragments (while they are in flight) remains equal to 
This means that the center of mass of the fragments follows the same parabolic tra-
jectory that the rocket would have followed had it not exploded.
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Fig. 9-5 A fireworks rocket explodes in
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cal masses—you can easily convince yourself by trial at a billiard table that this is
so. No matter whether the collision is glancing, head-on, or somewhere in
between, the center of mass continues to move forward, as if the collision had
never occurred. Let us look into this center-of-mass motion in more detail.

To do so, we replace the pair of billiard balls with an assemblage of n particles
of (possibly) different masses. We are interested not in the individual motions of
these particles but only in the motion of the center of mass of the assemblage.
Although the center of mass is just a point, it moves like a particle whose mass is
equal to the total mass of the system; we can assign a position, a velocity, and an ac-
celeration to it. We state (and shall prove next) that the vector equation that gov-
erns the motion of the center of mass of such a system of particles is

(system of particles). (9-14)

This equation is Newton’s second law for the motion of the center of mass of
a system of particles. Note that its form is the same as the form of the equation

for the motion of a single particle. However, the three quantities that
appear in Eq. 9-14 must be evaluated with some care:

1. is the net force of all external forces that act on the system. Forces on one
part of the system from another part of the system (internal forces) are not in-
cluded in Eq. 9-14.

2. M is the total mass of the system. We assume that no mass enters or leaves the
system as it moves, so that M remains constant. The system is said to be closed.

3. is the acceleration of the center of mass of the system. Equation 9-14 gives
no information about the acceleration of any other point of the system.

Equation 9-14 is equivalent to three equations involving the components of
and along the three coordinate axes.These equations are

Fnet, x ! Macom, x Fnet, y ! Macom, y Fnet, z ! Macom, z. (9-15)

Now we can go back and examine the behavior of the billiard balls. Once 
the cue ball has begun to roll, no net external force acts on the (two-ball) system.
Thus, because ! 0, Eq. 9-14 tells us that ! 0 also. Because accelera-
tion is the rate of change of velocity, we conclude that the velocity of the center of
mass of the system of two balls does not change. When the two balls collide, the
forces that come into play are internal forces, on one ball from the other. Such forces
do not contribute to the net force , which remains zero.Thus, the center of mass
of the system, which was moving forward before the collision, must continue to
move forward after the collision, with the same speed and in the same direction.

Equation 9-14 applies not only to a system of particles but also to a solid
body, such as the bat of Fig. 9-1b. In that case, M in Eq. 9-14 is the mass of the bat
and is the gravitational force on the bat. Equation 9-14 then tells us that

In other words, the center of mass of the bat moves as if the bat were a
single particle of mass M, with force acting on it.

Figure 9-5 shows another interesting case. Suppose that at a fireworks display, a
rocket is launched on a parabolic path. At a certain point, it explodes into frag-
ments. If the explosion had not occurred, the rocket would have continued along
the trajectory shown in the figure. The forces of the explosion are internal to the
system (at first the system is just the rocket, and later it is its fragments); that is, they
are forces on parts of the system from other parts. If we ignore air drag, the net ex-
ternal force acting on the system is the gravitational force on the system, re-
gardless of whether the rocket explodes. Thus, from Eq. 9-14, the acceleration 
of the center of mass of the fragments (while they are in flight) remains equal to 
This means that the center of mass of the fragments follows the same parabolic tra-
jectory that the rocket would have followed had it not exploded.
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so. No matter whether the collision is glancing, head-on, or somewhere in
between, the center of mass continues to move forward, as if the collision had
never occurred. Let us look into this center-of-mass motion in more detail.

To do so, we replace the pair of billiard balls with an assemblage of n particles
of (possibly) different masses. We are interested not in the individual motions of
these particles but only in the motion of the center of mass of the assemblage.
Although the center of mass is just a point, it moves like a particle whose mass is
equal to the total mass of the system; we can assign a position, a velocity, and an ac-
celeration to it. We state (and shall prove next) that the vector equation that gov-
erns the motion of the center of mass of such a system of particles is
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2. M is the total mass of the system. We assume that no mass enters or leaves the
system as it moves, so that M remains constant. The system is said to be closed.

3. is the acceleration of the center of mass of the system. Equation 9-14 gives
no information about the acceleration of any other point of the system.

Equation 9-14 is equivalent to three equations involving the components of
and along the three coordinate axes.These equations are
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Now we can go back and examine the behavior of the billiard balls. Once 
the cue ball has begun to roll, no net external force acts on the (two-ball) system.
Thus, because ! 0, Eq. 9-14 tells us that ! 0 also. Because accelera-
tion is the rate of change of velocity, we conclude that the velocity of the center of
mass of the system of two balls does not change. When the two balls collide, the
forces that come into play are internal forces, on one ball from the other. Such forces
do not contribute to the net force , which remains zero.Thus, the center of mass
of the system, which was moving forward before the collision, must continue to
move forward after the collision, with the same speed and in the same direction.

Equation 9-14 applies not only to a system of particles but also to a solid
body, such as the bat of Fig. 9-1b. In that case, M in Eq. 9-14 is the mass of the bat
and is the gravitational force on the bat. Equation 9-14 then tells us that

In other words, the center of mass of the bat moves as if the bat were a
single particle of mass M, with force acting on it.

Figure 9-5 shows another interesting case. Suppose that at a fireworks display, a
rocket is launched on a parabolic path. At a certain point, it explodes into frag-
ments. If the explosion had not occurred, the rocket would have continued along
the trajectory shown in the figure. The forces of the explosion are internal to the
system (at first the system is just the rocket, and later it is its fragments); that is, they
are forces on parts of the system from other parts. If we ignore air drag, the net ex-
ternal force acting on the system is the gravitational force on the system, re-
gardless of whether the rocket explodes. Thus, from Eq. 9-14, the acceleration 
of the center of mass of the fragments (while they are in flight) remains equal to 
This means that the center of mass of the fragments follows the same parabolic tra-
jectory that the rocket would have followed had it not exploded.
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Fig. 9-5 A fireworks rocket explodes in
flight. In the absence of air drag, the center
of mass of the fragments would continue to
follow the original parabolic path, until
fragments began to hit the ground.

The internal forces of the
explosion cannot change
the path of the com.
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Sample Problem

We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
to the center of mass, writing

(9-20)

or

so (9-21)

Equation 9-20 tells us that the acceleration of the 
center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
component form, find the components of and then find

Along the x axis, we have

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)
and the angle (from the positive direction of the x axis)

(Answer)! " tan#1 
acom, y

acom, x
" 27$.

 " 1.16 m/s2 ! 1.2 m/s2

 acom " 2(acom, x)2 % (acom, y)2

a:com

 "
0 % (12 N) sin 45$ % 0

16 kg
" 0.530 m/s2.

 acom, y "
F1y % F2y % F3y

M

 "
#6.0 N % (12 N) cos 45$ % 14 N

16 kg
" 1.03 m/s2.

 acom, x "
F1x % F2x % F3x

M
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:
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Additional examples, video, and practice available at WileyPLUS

Motion of the com of three particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 " 6.0 N, F2 " 12 N, and F3 " 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY I DEAS

The position of the center of mass is marked by a dot in the
figure.We can treat the center of mass as if it were a real parti-
cle, with a mass equal to the system’s total mass M " 16 kg.

CHECKPOINT 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Fig. 9-7 (a) Three particles, initially at rest in the positions
shown, are acted on by the external forces shown.The center of
mass (com) of the system is marked. (b) The forces are now trans-
ferred to the center of mass of the system, which behaves like a
particle with a mass M equal to the total mass of the system.The
net external force and the acceleration of the center of
mass are shown.
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The com of the system
will move as if all the
mass were there and
the net force acted there.
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9-3 Newton’s Second Law for a System of Particles
Now that we know how to locate the center of mass of a system of particles, we
discuss how external forces can move a center of mass. Let us start with a simple
system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the
two-ball system will continue to have some forward motion after impact. You
would be surprised, for example, if both balls came back toward you or if both
moved to the right or to the left.

What continues to move forward, its steady motion completely unaffected by
the collision, is the center of mass of the two-ball system. If you focus on this
point—which is always halfway between these bodies because they have identi-

CHECKPOINT 1

The figure shows a uniform square plate from which four identical squares at the cor-
ners will be removed. (a) Where is the center of mass of the plate originally? Where is it
after the removal of (b) square 1; (c) squares 1 and 2; (d) squares 1 and 3; (e) squares 1,
2, and 3; (f) all four squares? Answer in terms of quadrants, axes, or points (without cal-
culation, of course).

y

x

1 2

4 3

Sample Problem

origin and the x axis coincides with one of the triangle’s
sides (Fig. 9-4). The three particles then have the following
coordinates:

Particle Mass (kg) x (cm) y (cm)

1 1.2 0 0
2 2.5 140 0
3 3.4 70 120

The total mass M of the system is 7.1 kg.
From Eq. 9-5, the coordinates of the center of mass are

(Answer)

and

(Answer)
In Fig. 9-4, the center of mass is located by the position vec-
tor , which has components xcom and ycom.r:com

! 58 cm.

!
(1.2 kg)(0) " (2.5 kg)(0) " (3.4 kg)(120 cm)

7.1 kg

 ycom !
1
M

 !
3

i!1
 miyi !

m1y1 " m2y2 " m3y3

M

 ! 83 cm

 !
(1.2 kg)(0) " (2.5 kg)(140 cm) " (3.4 kg)(70 cm)

7.1 kg

 xcom !
1
M

 !
3

i!1
 mixi !

m1x1 " m2x2 " m3x3

M

Additional examples, video, and practice available at WileyPLUS

com of three particles

Three particles of masses m1 ! 1.2 kg, m2 ! 2.5 kg, and
m3 ! 3.4 kg form an equilateral triangle of edge length
a ! 140 cm.Where is the center of mass of this system?

KEY I DEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the

Fig. 9-4 Three particles form an equilateral triangle of edge
length a.The center of mass is located by the position vector .r:com
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This is the position
vector rcom for the
com (it points from
the origin to the com).
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Sample Problem

We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
to the center of mass, writing

(9-20)

or

so (9-21)

Equation 9-20 tells us that the acceleration of the 
center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
component form, find the components of and then find

Along the x axis, we have

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)
and the angle (from the positive direction of the x axis)

(Answer)! " tan#1 
acom, y

acom, x
" 27$.

 " 1.16 m/s2 ! 1.2 m/s2

 acom " 2(acom, x)2 % (acom, y)2

a:com

 "
0 % (12 N) sin 45$ % 0

16 kg
" 0.530 m/s2.

 acom, y "
F1y % F2y % F3y

M

 "
#6.0 N % (12 N) cos 45$ % 14 N

16 kg
" 1.03 m/s2.

 acom, x "
F1x % F2x % F3x

M
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Motion of the com of three particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 " 6.0 N, F2 " 12 N, and F3 " 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY I DEAS

The position of the center of mass is marked by a dot in the
figure.We can treat the center of mass as if it were a real parti-
cle, with a mass equal to the system’s total mass M " 16 kg.

CHECKPOINT 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Fig. 9-7 (a) Three particles, initially at rest in the positions
shown, are acted on by the external forces shown.The center of
mass (com) of the system is marked. (b) The forces are now trans-
ferred to the center of mass of the system, which behaves like a
particle with a mass M equal to the total mass of the system.The
net external force and the acceleration of the center of
mass are shown.
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The com of the system
will move as if all the
mass were there and
the net force acted there.
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9-3 Newton’s Second Law for a System of Particles
Now that we know how to locate the center of mass of a system of particles, we
discuss how external forces can move a center of mass. Let us start with a simple
system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the
two-ball system will continue to have some forward motion after impact. You
would be surprised, for example, if both balls came back toward you or if both
moved to the right or to the left.

What continues to move forward, its steady motion completely unaffected by
the collision, is the center of mass of the two-ball system. If you focus on this
point—which is always halfway between these bodies because they have identi-

CHECKPOINT 1

The figure shows a uniform square plate from which four identical squares at the cor-
ners will be removed. (a) Where is the center of mass of the plate originally? Where is it
after the removal of (b) square 1; (c) squares 1 and 2; (d) squares 1 and 3; (e) squares 1,
2, and 3; (f) all four squares? Answer in terms of quadrants, axes, or points (without cal-
culation, of course).
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Sample Problem

origin and the x axis coincides with one of the triangle’s
sides (Fig. 9-4). The three particles then have the following
coordinates:

Particle Mass (kg) x (cm) y (cm)

1 1.2 0 0
2 2.5 140 0
3 3.4 70 120

The total mass M of the system is 7.1 kg.
From Eq. 9-5, the coordinates of the center of mass are

(Answer)

and

(Answer)
In Fig. 9-4, the center of mass is located by the position vec-
tor , which has components xcom and ycom.r:com

! 58 cm.

!
(1.2 kg)(0) " (2.5 kg)(0) " (3.4 kg)(120 cm)
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Additional examples, video, and practice available at WileyPLUS

com of three particles

Three particles of masses m1 ! 1.2 kg, m2 ! 2.5 kg, and
m3 ! 3.4 kg form an equilateral triangle of edge length
a ! 140 cm.Where is the center of mass of this system?

KEY I DEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the

Fig. 9-4 Three particles form an equilateral triangle of edge
length a.The center of mass is located by the position vector .r:com
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This is the position
vector rcom for the
com (it points from
the origin to the com).
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Sample Problem

We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
to the center of mass, writing

(9-20)

or

so (9-21)

Equation 9-20 tells us that the acceleration of the 
center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
component form, find the components of and then find

Along the x axis, we have

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)
and the angle (from the positive direction of the x axis)

(Answer)! " tan#1 
acom, y

acom, x
" 27$.

 " 1.16 m/s2 ! 1.2 m/s2

 acom " 2(acom, x)2 % (acom, y)2

a:com

 "
0 % (12 N) sin 45$ % 0

16 kg
" 0.530 m/s2.

 acom, y "
F1y % F2y % F3y

M

 "
#6.0 N % (12 N) cos 45$ % 14 N

16 kg
" 1.03 m/s2.

 acom, x "
F1x % F2x % F3x

M
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Additional examples, video, and practice available at WileyPLUS

Motion of the com of three particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 " 6.0 N, F2 " 12 N, and F3 " 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY I DEAS

The position of the center of mass is marked by a dot in the
figure.We can treat the center of mass as if it were a real parti-
cle, with a mass equal to the system’s total mass M " 16 kg.

CHECKPOINT 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Fig. 9-7 (a) Three particles, initially at rest in the positions
shown, are acted on by the external forces shown.The center of
mass (com) of the system is marked. (b) The forces are now trans-
ferred to the center of mass of the system, which behaves like a
particle with a mass M equal to the total mass of the system.The
net external force and the acceleration of the center of
mass are shown.
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Sample Problem

We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
to the center of mass, writing

(9-20)

or

so (9-21)

Equation 9-20 tells us that the acceleration of the 
center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
component form, find the components of and then find

Along the x axis, we have

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)
and the angle (from the positive direction of the x axis)

(Answer)! " tan#1 
acom, y

acom, x
" 27$.

 " 1.16 m/s2 ! 1.2 m/s2

 acom " 2(acom, x)2 % (acom, y)2

a:com

 "
0 % (12 N) sin 45$ % 0

16 kg
" 0.530 m/s2.

 acom, y "
F1y % F2y % F3y

M

 "
#6.0 N % (12 N) cos 45$ % 14 N

16 kg
" 1.03 m/s2.
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Motion of the com of three particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 " 6.0 N, F2 " 12 N, and F3 " 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY I DEAS

The position of the center of mass is marked by a dot in the
figure.We can treat the center of mass as if it were a real parti-
cle, with a mass equal to the system’s total mass M " 16 kg.

CHECKPOINT 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Fig. 9-7 (a) Three particles, initially at rest in the positions
shown, are acted on by the external forces shown.The center of
mass (com) of the system is marked. (b) The forces are now trans-
ferred to the center of mass of the system, which behaves like a
particle with a mass M equal to the total mass of the system.The
net external force and the acceleration of the center of
mass are shown.

a:com F
:

net

x 

y 

3 

2 

1 

0 

 –1 

 –2 

 –3 

–3    –2     –1             1      2       3      4      5 

x 

y 

3 

2 

1 

0 
–3    –2     –1             1      2       3      4      5 

45° 

8.0 kg com 

4.0 kg 

4.0 kg 

com 
θ 

M = 16 kg 

(b) 

(a) 

F1 F2 

F3 

F3 

F1 

F2 Fnet 

acom 

The com of the system
will move as if all the
mass were there and
the net force acted there.

halliday_c09_201-240v2.qxd  4-09-2009  17:13  Page 209

2099-3 N EWTON’S S ECON D LAW FOR A SYSTE M OF PARTICLE S
PART 1

HALLIDAY REVISED

Sample Problem

We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
to the center of mass, writing

(9-20)

or

so (9-21)

Equation 9-20 tells us that the acceleration of the 
center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
component form, find the components of and then find

Along the x axis, we have

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)
and the angle (from the positive direction of the x axis)

(Answer)! " tan#1 
acom, y

acom, x
" 27$.

 " 1.16 m/s2 ! 1.2 m/s2

 acom " 2(acom, x)2 % (acom, y)2
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 "
0 % (12 N) sin 45$ % 0

16 kg
" 0.530 m/s2.

 acom, y "
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16 kg
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Motion of the com of three particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 " 6.0 N, F2 " 12 N, and F3 " 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY I DEAS

The position of the center of mass is marked by a dot in the
figure.We can treat the center of mass as if it were a real parti-
cle, with a mass equal to the system’s total mass M " 16 kg.

CHECKPOINT 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Fig. 9-7 (a) Three particles, initially at rest in the positions
shown, are acted on by the external forces shown.The center of
mass (com) of the system is marked. (b) The forces are now trans-
ferred to the center of mass of the system, which behaves like a
particle with a mass M equal to the total mass of the system.The
net external force and the acceleration of the center of
mass are shown.
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mass were there and
the net force acted there.
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Sample Problem

We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
to the center of mass, writing

(9-20)

or

so (9-21)

Equation 9-20 tells us that the acceleration of the 
center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
component form, find the components of and then find

Along the x axis, we have

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)
and the angle (from the positive direction of the x axis)

(Answer)! " tan#1 
acom, y

acom, x
" 27$.

 " 1.16 m/s2 ! 1.2 m/s2

 acom " 2(acom, x)2 % (acom, y)2

a:com

 "
0 % (12 N) sin 45$ % 0

16 kg
" 0.530 m/s2.

 acom, y "
F1y % F2y % F3y

M

 "
#6.0 N % (12 N) cos 45$ % 14 N

16 kg
" 1.03 m/s2.

 acom, x "
F1x % F2x % F3x

M
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a:com,

F
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a:com
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% F2
:

% F3
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M
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:

% F2
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" Ma:com

F
:

net " Ma:com

(F
:

net " ma:)

Additional examples, video, and practice available at WileyPLUS

Motion of the com of three particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 " 6.0 N, F2 " 12 N, and F3 " 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY I DEAS

The position of the center of mass is marked by a dot in the
figure.We can treat the center of mass as if it were a real parti-
cle, with a mass equal to the system’s total mass M " 16 kg.

CHECKPOINT 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Fig. 9-7 (a) Three particles, initially at rest in the positions
shown, are acted on by the external forces shown.The center of
mass (com) of the system is marked. (b) The forces are now trans-
ferred to the center of mass of the system, which behaves like a
particle with a mass M equal to the total mass of the system.The
net external force and the acceleration of the center of
mass are shown.
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center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
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Motion of the com of three particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 " 6.0 N, F2 " 12 N, and F3 " 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY I DEAS

The position of the center of mass is marked by a dot in the
figure.We can treat the center of mass as if it were a real parti-
cle, with a mass equal to the system’s total mass M " 16 kg.

CHECKPOINT 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Fig. 9-7 (a) Three particles, initially at rest in the positions
shown, are acted on by the external forces shown.The center of
mass (com) of the system is marked. (b) The forces are now trans-
ferred to the center of mass of the system, which behaves like a
particle with a mass M equal to the total mass of the system.The
net external force and the acceleration of the center of
mass are shown.
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We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
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(9-20)

or

so (9-21)
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center of mass is in the same direction as the net external force
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tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
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We can evaluate the right side of Eq. 9-21 directly on
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Motion of the com of three particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 " 6.0 N, F2 " 12 N, and F3 " 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY I DEAS

The position of the center of mass is marked by a dot in the
figure.We can treat the center of mass as if it were a real parti-
cle, with a mass equal to the system’s total mass M " 16 kg.

CHECKPOINT 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Fig. 9-7 (a) Three particles, initially at rest in the positions
shown, are acted on by the external forces shown.The center of
mass (com) of the system is marked. (b) The forces are now trans-
ferred to the center of mass of the system, which behaves like a
particle with a mass M equal to the total mass of the system.The
net external force and the acceleration of the center of
mass are shown.
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Examples:
Q.1: A system consists of 3 particles as shown. The center of mass is:
(a) (2, 1) (b) (4.5, 1.3) (c) (2.1, 1.2) (d) (3, 6)

The com is located at (4.5, 1.3)

4m

3m3m

3kg

2kg

1kg

m x y

1 6 0

2 6 4

3 3 0

xcom = (1× 6)+ (2 × 6)+ (3× 3)
1+ 2 + 3

= 4.5

ycom = (1× 0)+ (2 × 4)+ (3× 0)
1+ 2 + 3

= 1.3



Q.2: A system consists of 4 particles as shown. The center of mass is:
(a) (0.8, 0.3) (b) (4.5, 1.3) (c) (2.1, 1.2) (d) (3, 6)

The com is located at (0.8, 0.3)

m x y

1 −2 −1

2 4 1

3 2 −2

4 −1 2

xcom = (1× −2)+ (2 × 4)+ (3× 2)+ (4 × −1)
1+ 2 + 3+ 4

= 0.8

ycom = (1× −1)+ (2 ×1)+ (3× −2)+ (4 × 2)
1+ 2 + 3+ 4

= 0.3

2kg

4kg

3kg

1kg

2

1

−1

−2

−1−2 2 4



Q.3: A s shown, if the radius of the circle is 1m, and the masses are 
m1=m2=m3=m4=3kg, and if F1=2N, F2=5N, F3=1N and F4=8N. The 
magnitude of the acceleration of the center of mass is:
(a) 0.6i+0.9j (b) 1.1m/s2 (c) 2.2m/s2 (d) 3m/s2

 


F∑ = 7.3Nî + 0.5Nĵ

m = 3(4) = 12kg∑

m1

m2

m3

m4

F1

F2

F3

F4

30o

 


F1 = 2cos0î + 2sin0 ĵ + 0k̂ = 2î + 0 ĵ + 0k̂

F2 = 5cos30î + 5sin30 ĵ + 0k̂ = 4.3î + 2.5 ĵ + 0k̂

F3 = 1cos0î +1sin0 ĵ + 0k̂ = 1î + 0 ĵ + 0k̂

F4 = 8cos90î + 8sin90 ĵ + 0k̂ = 0î + 8 ĵ + 0k̂

 

acom =

F∑
m∑ = 7.3Nî + 0.5Nĵ

12kg
= 0.6î + 0.9 ĵ

acom = 0.62 + 0.92 = 1.1m / s2



Q.4: In the previous question, the angle between x-axis and        is:
(a) 60o (b) 56o (c) 30o (d) 100o

Q.5 In the previous question, the acceleration of the center of mass        
at the direction of x-axis is:
(a) 0.7m/s2 (b) 3m/s2 (c) 0.6m/s2 (d) 5m/s2

θ = tan−1 ay
ax

= tan−1 0.9
0.6

= 56o

 
acom

 


F∑ x

= 7.3Nî

m = 3(4) = 12kg∑
acom,x =


Fx∑
m∑ = 7.3Nî

12kg
= 0.6î

acom,x = 0.6m / s
2



Q.6 In the previous question, the coordinate of the center of mass is:
(a) (0, 0) (b) (1, 1) (c) (2, 1) (d) (−1, 1)

The com is located at (0, 0)

m x y

3 0 1

3 1 0

3 0 −1

3 −1 0

xcom = (3× 0)+ (3×1)+ (3× 0)+ (3× −1)
3(4)

= 0

ycom = (3×1)+ (3× 0)+ (3× −1)+ (3× 0)
3(4)

= 0

m1

m2

m3

m4

F1

F2

F3

F4

30o



230 CHAPTE R 9 CE NTE R OF MASS AN D LI N EAR MOM E NTU M

HALLIDAY REVISED

N

L

H

H

H

d

x

y

Fig. 9-40 Problem 7.

Fig. 9-36 Problem 3.

Aluminum

Iron Midpoint

2d1

d2

d1

d1

d 3

y

z

x

••5 What are (a) the x coordinate and (b) the y coordinate of the
center of mass for the uniform plate shown in Fig. 9-38 if L 5.0 cm?!

3L

4L

2L

2L

2L

4L

L

x

y

Fig. 9-38 Problem 5.

sec. 9-2 The Center of Mass
•1 A 2.00 kg particle has the xy coordinates ("1.20 m, 0.500 m),
and a 4.00 kg particle has the xy coordinates (0.600 m, "0.750 m).
Both lie on a horizontal plane. At what (a) x and (b) y coordinates
must you place a 3.00 kg particle such that the center of mass of the
three-particle system has the coordinates ("0.500 m, "0.700 m)?

•2 Figure 9-35 shows a three-
particle system, with masses m1 !
3.0 kg, m2 ! 4.0 kg, and m3 ! 8.0
kg. The scales on the axes are set
by xs ! 2.0 m and ys ! 2.0 m.
What are (a) the x coordinate and
(b) the y coordinate of the sys-
tem’s center of mass? (c) If m3 is
gradually increased, does the cen-
ter of mass of the system shift to-
ward or away from that particle, or does it remain stationary?

••3 Figure 9-36 shows a  slab with dimensions d1 ! 11.0 cm,
d2 ! 2.80 cm, and d3 ! 13.0 cm. Half the slab consists of alu-
minum (density ! 2.70 g/cm3) and half consists of iron (density !
7.85 g/cm3).What are (a) the x coordinate, (b) the y coordinate, and
(c) the z coordinate of the slab’s center of mass?

y (m)

x (m)

ys

0 xs

m1

m3

m2

Fig. 9-35 Problem 2.

••4 In Fig. 9-37, three uniform thin rods, each of length L ! 22
cm, form an inverted U. The vertical rods each have a mass of 14 g;
the horizontal rod has a mass of 42 g.What are (a) the x coordinate
and (b) the y coordinate of the system’s center of mass?

L

x

y

L

L

Fig. 9-37 Problem 4.

••6 Figure 9-39 shows a cubical box that has been constructed
from uniform metal plate of negligible thickness. The box is open
at the top and has edge length L ! 40 cm. Find (a) the x coordi-
nate, (b) the y coordinate, and (c) the z coordinate of the center of
mass of the box.

L
O y

x

z

Fig. 9-39 Problem 6.

•••7 In the ammonia (NH3) molecule of Fig. 9-40, three
hydrogen (H) atoms form an equilateral triangle, with the center
of the triangle at distance d ! 9.40 # 10"11 m from each hydrogen
atom. The nitrogen (N) atom is at the apex of a pyramid, with the
three hydrogen atoms forming the base. The nitrogen-to-hydrogen
atomic mass ratio is 13.9, and the nitrogen-to-hydrogen distance is
L ! 10.14 # 10"11 m. What are the (a) x and (b) y coordinates of
the molecule’s center of mass?

ILW

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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Chapter 9 
 
 
 
1. We use Eq. 9-5 to solve for 3 3( , ).x y   
 
(a) The x coordinate of the system’s center of mass is: 
 

� �� � � � 31 1 2 2 3 3
com

1 2 3

(2.00 kg)( 1.20 m) 4.00 kg 0.600 m 3.00 kg
2.00 kg 4.00 kg 3.00 kg

0.500 m.

xm x m x m x
x

m m m
� � �� �

� �
� � � �

� �

 

 
Solving the equation yields x3 = –1.50 m. 
 
(b) The y coordinate of the system’s center of mass is: 
 

� �� � � � 31 1 2 2 3 3
com

1 2 3

(2.00 kg)(0.500 m) 4.00 kg 0.750 m 3.00 kg
2.00 kg 4.00 kg 3.00 kg

0.700 m.

ym y m y m y
y

m m m
� � �� �

� �
� � � �

� �

 

 
Solving the equation yields y3 = –1.43 m. 
 
2. Our notation is as follows: x1 = 0 and y1 = 0 are the coordinates of the m1 = 3.0 kg 
particle; x2 = 2.0 m and y2 = 1.0 m are the coordinates of the m2 = 4.0 kg particle; and x3 = 
1.0 m and y3 = 2.0 m are the coordinates of the m3 = 8.0 kg particle. 
 
(a) The x coordinate of the center of mass is 
 

� �� � � �� �1 1 2 2 3 3
com

1 2 3

0 4.0 kg 2.0 m 8.0 kg 1.0 m
1.1 m.

3.0 kg 4.0 kg 8.0 kg
m x m x m x

x
m m m

� �� �
� � �

� � � �
 

 
(b) The y coordinate of the center of mass is 
 

� �� � � �� �1 1 2 2 3 3
com

1 2 3

0 4.0 kg 1.0 m 8.0 kg 2.0 m
1.3 m.

3.0 kg 4.0 kg 8.0 kg
m y m y m y

y
m m m

� �� �
� � �

� � � �
 

 
(c) As the mass of m3, the topmost  particle,  is increased, the center of mass shifts toward 
that particle. As we approach the limit where m3 is infinitely more massive than the 
others, the center of mass becomes infinitesimally close to the position of m3. 
 
3. We use Eq. 9-5 to locate the coordinates. 
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(b) The y coordinate of the center of mass is 
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� � � �
 

 
(c) As the mass of m3, the topmost  particle,  is increased, the center of mass shifts toward 
that particle. As we approach the limit where m3 is infinitely more massive than the 
others, the center of mass becomes infinitesimally close to the position of m3. 
 
3. We use Eq. 9-5 to locate the coordinates. 



Linear Momentum
� The linear momentum of a particle (p):  is a vector quantity 

that is defined as:

in which m is the mass of the particle,    is its velocity
� Because m is +ve & scalar quantity à &    have the same direction

� The SI unit for momentum is (kg.m/s)

� Newton 2nd law in terms of momentum:

� The net external force on a particle changes its linear momentum 

� The linear momentum can be changed only by a net external force

� If there is no net external force,                 à cannot change (constant)

� From Eqs.1 & 2:
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9-4 Linear Momentum
In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second
(kg ! m/s).

Newton expressed his second law of motion in terms of momentum:

v:p:

p:
v:

p: " mv:

p:

The time rate of change of the momentum of a particle is equal to the net force 
acting on the particle and is in the direction of that force.

In equation form this becomes

(9-23)

In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.

Manipulating Eq. 9-23 by substituting for from Eq. 9-22 gives, for constant
mass m,

Thus, the relations and are equivalent expressions of
Newton’s second law of motion for a particle.
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CHECKPOINT 3

The figure gives the magnitude p of the linear momentum versus time t for a particle mov-
ing along an axis.A force directed along the axis acts on the particle. (a) Rank the four re-
gions indicated according to the magnitude of the force, greatest first. (b) In which region
is the particle slowing?
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In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.
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meanings in everyday language but only a single precise meaning in physics and
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(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second
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In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.
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In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
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acting on the particle and is in the direction of that force.
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In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.
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In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.
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engineering. The linear momentum of a particle is a vector quantity that is
defined as
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in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
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acting on the particle and is in the direction of that force.
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In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.
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In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second
(kg ! m/s).
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acting on the particle and is in the direction of that force.
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In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.
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In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second
(kg ! m/s).

Newton expressed his second law of motion in terms of momentum:
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The time rate of change of the momentum of a particle is equal to the net force 
acting on the particle and is in the direction of that force.

In equation form this becomes
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In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.

Manipulating Eq. 9-23 by substituting for from Eq. 9-22 gives, for constant
mass m,
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In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second
(kg ! m/s).

Newton expressed his second law of motion in terms of momentum:
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acting on the particle and is in the direction of that force.
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In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.

Manipulating Eq. 9-23 by substituting for from Eq. 9-22 gives, for constant
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In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second
(kg ! m/s).

Newton expressed his second law of motion in terms of momentum:
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The time rate of change of the momentum of a particle is equal to the net force 
acting on the particle and is in the direction of that force.

In equation form this becomes

(9-23)

In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.

Manipulating Eq. 9-23 by substituting for from Eq. 9-22 gives, for constant
mass m,
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In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second
(kg ! m/s).

Newton expressed his second law of motion in terms of momentum:
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The time rate of change of the momentum of a particle is equal to the net force 
acting on the particle and is in the direction of that force.

In equation form this becomes
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In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.

Manipulating Eq. 9-23 by substituting for from Eq. 9-22 gives, for constant
mass m,
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(à Newton’s 2nd law)
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The Linear Momentum of a 
System of Particles

� For a system of n particles, each has its own mass, velocity, & linear 
momentum, the total linear momentum of the system is the vector 
sum of the individual particles’ linear momenta:

� By taking the time derivative of Eq.3

� The net external force on a particle changes its linear momentum 
� The linear momentum can be changed only by a net external force
� If there is no net external force                 à cannot change (constant) 
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9-5 The Linear Momentum of a System of Particles
Let’s extend the definition of linear momentum to a system of particles. Consider
a system of n particles, each with its own mass, velocity, and linear momentum.
The particles may interact with each other, and external forces may act on them.
The system as a whole has a total linear momentum which is defined to be the
vector sum of the individual particles’ linear momenta.Thus,

(9-24)

If we compare this equation with Eq. 9-17, we see that

(linear momentum, system of particles), (9-25)

which is another way to define the linear momentum of a system of particles:

P
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 ! m1v:1 " m2v:2 " m3v:3 " # # # " mnv:n.
 P
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P
:

,

The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

If we take the time derivative of Eq. 9-25, we find

(9-26)

Comparing Eqs. 9-14 and 9-26 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form

(system of particles), (9-27)

where is the net external force acting on the system. This equation is the gen-
eralization of the single-particle equation to a system of many 
particles. In words, the equation says that the net external force on a system
of particles changes the linear momentum of the system. Conversely, the linear
momentum can be changed only by a net external force. If there is no net exter-
nal force, cannot change.

9-6 Collision and Impulse
The momentum of any particle-like body cannot change unless a net
external force changes it. For example, we could push on the body to change its
momentum. More dramatically, we could arrange for the body to collide with a
baseball bat. In such a collision (or crash), the external force on the body is brief,
has large magnitude, and suddenly changes the body’s momentum. Collisions oc-
cur commonly in our world, but before we get to them, we need to consider a sim-
ple collision in which a moving particle-like body (a projectile) collides with some
other body (a target).

Single Collision
Let the projectile be a ball and the target be a bat.The collision is brief, and the ball
experiences a force that is great enough to slow, stop, or even reverse its motion.
Figure 9-8 depicts the collision at one instant. The ball experiences a force thatF
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The collision of a ball with a bat collapses
part of the ball. (Photo by Harold E.
Edgerton. ©The Harold and Esther
Edgerton Family Trust, courtesy of Palm
Press, Inc.)

Fig. 9-8 Force acts on a ball
as the ball and a bat collide.
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9-5 The Linear Momentum of a System of Particles
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a system of n particles, each with its own mass, velocity, and linear momentum.
The particles may interact with each other, and external forces may act on them.
The system as a whole has a total linear momentum which is defined to be the
vector sum of the individual particles’ linear momenta.Thus,
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If we compare this equation with Eq. 9-17, we see that
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The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

If we take the time derivative of Eq. 9-25, we find
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Comparing Eqs. 9-14 and 9-26 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form

(system of particles), (9-27)

where is the net external force acting on the system. This equation is the gen-
eralization of the single-particle equation to a system of many 
particles. In words, the equation says that the net external force on a system
of particles changes the linear momentum of the system. Conversely, the linear
momentum can be changed only by a net external force. If there is no net exter-
nal force, cannot change.

9-6 Collision and Impulse
The momentum of any particle-like body cannot change unless a net
external force changes it. For example, we could push on the body to change its
momentum. More dramatically, we could arrange for the body to collide with a
baseball bat. In such a collision (or crash), the external force on the body is brief,
has large magnitude, and suddenly changes the body’s momentum. Collisions oc-
cur commonly in our world, but before we get to them, we need to consider a sim-
ple collision in which a moving particle-like body (a projectile) collides with some
other body (a target).

Single Collision
Let the projectile be a ball and the target be a bat.The collision is brief, and the ball
experiences a force that is great enough to slow, stop, or even reverse its motion.
Figure 9-8 depicts the collision at one instant. The ball experiences a force thatF
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9-5 The Linear Momentum of a System of Particles
Let’s extend the definition of linear momentum to a system of particles. Consider
a system of n particles, each with its own mass, velocity, and linear momentum.
The particles may interact with each other, and external forces may act on them.
The system as a whole has a total linear momentum which is defined to be the
vector sum of the individual particles’ linear momenta.Thus,

(9-24)

If we compare this equation with Eq. 9-17, we see that

(linear momentum, system of particles), (9-25)

which is another way to define the linear momentum of a system of particles:
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The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

If we take the time derivative of Eq. 9-25, we find

(9-26)

Comparing Eqs. 9-14 and 9-26 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form

(system of particles), (9-27)

where is the net external force acting on the system. This equation is the gen-
eralization of the single-particle equation to a system of many 
particles. In words, the equation says that the net external force on a system
of particles changes the linear momentum of the system. Conversely, the linear
momentum can be changed only by a net external force. If there is no net exter-
nal force, cannot change.

9-6 Collision and Impulse
The momentum of any particle-like body cannot change unless a net
external force changes it. For example, we could push on the body to change its
momentum. More dramatically, we could arrange for the body to collide with a
baseball bat. In such a collision (or crash), the external force on the body is brief,
has large magnitude, and suddenly changes the body’s momentum. Collisions oc-
cur commonly in our world, but before we get to them, we need to consider a sim-
ple collision in which a moving particle-like body (a projectile) collides with some
other body (a target).

Single Collision
Let the projectile be a ball and the target be a bat.The collision is brief, and the ball
experiences a force that is great enough to slow, stop, or even reverse its motion.
Figure 9-8 depicts the collision at one instant. The ball experiences a force thatF
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Let’s extend the definition of linear momentum to a system of particles. Consider
a system of n particles, each with its own mass, velocity, and linear momentum.
The particles may interact with each other, and external forces may act on them.
The system as a whole has a total linear momentum which is defined to be the
vector sum of the individual particles’ linear momenta.Thus,
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If we compare this equation with Eq. 9-17, we see that
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The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

If we take the time derivative of Eq. 9-25, we find
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Comparing Eqs. 9-14 and 9-26 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form
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where is the net external force acting on the system. This equation is the gen-
eralization of the single-particle equation to a system of many 
particles. In words, the equation says that the net external force on a system
of particles changes the linear momentum of the system. Conversely, the linear
momentum can be changed only by a net external force. If there is no net exter-
nal force, cannot change.

9-6 Collision and Impulse
The momentum of any particle-like body cannot change unless a net
external force changes it. For example, we could push on the body to change its
momentum. More dramatically, we could arrange for the body to collide with a
baseball bat. In such a collision (or crash), the external force on the body is brief,
has large magnitude, and suddenly changes the body’s momentum. Collisions oc-
cur commonly in our world, but before we get to them, we need to consider a sim-
ple collision in which a moving particle-like body (a projectile) collides with some
other body (a target).

Single Collision
Let the projectile be a ball and the target be a bat.The collision is brief, and the ball
experiences a force that is great enough to slow, stop, or even reverse its motion.
Figure 9-8 depicts the collision at one instant. The ball experiences a force thatF
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9-5 The Linear Momentum of a System of Particles
Let’s extend the definition of linear momentum to a system of particles. Consider
a system of n particles, each with its own mass, velocity, and linear momentum.
The particles may interact with each other, and external forces may act on them.
The system as a whole has a total linear momentum which is defined to be the
vector sum of the individual particles’ linear momenta.Thus,
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If we compare this equation with Eq. 9-17, we see that
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which is another way to define the linear momentum of a system of particles:
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The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

If we take the time derivative of Eq. 9-25, we find
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Comparing Eqs. 9-14 and 9-26 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form

(system of particles), (9-27)

where is the net external force acting on the system. This equation is the gen-
eralization of the single-particle equation to a system of many 
particles. In words, the equation says that the net external force on a system
of particles changes the linear momentum of the system. Conversely, the linear
momentum can be changed only by a net external force. If there is no net exter-
nal force, cannot change.

9-6 Collision and Impulse
The momentum of any particle-like body cannot change unless a net
external force changes it. For example, we could push on the body to change its
momentum. More dramatically, we could arrange for the body to collide with a
baseball bat. In such a collision (or crash), the external force on the body is brief,
has large magnitude, and suddenly changes the body’s momentum. Collisions oc-
cur commonly in our world, but before we get to them, we need to consider a sim-
ple collision in which a moving particle-like body (a projectile) collides with some
other body (a target).

Single Collision
Let the projectile be a ball and the target be a bat.The collision is brief, and the ball
experiences a force that is great enough to slow, stop, or even reverse its motion.
Figure 9-8 depicts the collision at one instant. The ball experiences a force thatF
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9-4 Linear Momentum
In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second
(kg ! m/s).

Newton expressed his second law of motion in terms of momentum:

v:p:

p:
v:
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The time rate of change of the momentum of a particle is equal to the net force 
acting on the particle and is in the direction of that force.

In equation form this becomes

(9-23)

In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.

Manipulating Eq. 9-23 by substituting for from Eq. 9-22 gives, for constant
mass m,

Thus, the relations and are equivalent expressions of
Newton’s second law of motion for a particle.
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CHECKPOINT 3

The figure gives the magnitude p of the linear momentum versus time t for a particle mov-
ing along an axis.A force directed along the axis acts on the particle. (a) Rank the four re-
gions indicated according to the magnitude of the force, greatest first. (b) In which region
is the particle slowing?
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Conservation of Linear Momentum
� If           for a system of particles (isolated system ) & no particles leave or 

enter the system (closed system ), Eq. 4 becomes:

� Note: momentum unit is also N.s

� The law of conservation of linear momentum: 
for a closed & isolated system,

� Note: the energy is not always conserved when the momentum is conserved 
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9-7 Conservation of Linear Momentum
Suppose that the net external force (and thus the net impulse ) acting on a
system of particles is zero (the system is isolated) and that no particles leave or
enter the system (the system is closed). Putting in Eq. 9-27 then yields

, or

(closed, isolated system). (9-42)

In words,
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dP
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/dt ! 0
F
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net ! 0

J
:

F
:

net

This result is called the law of conservation of linear momentum. It can also be
written as

(closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

.

Caution: Momentum should not be confused with energy. In the sample prob-
lems of this section, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,

!total linear momentum
at some initial time ti

" ! !total linear momentum
at some later time tf "

P
:

i ! P
:

f

If no net external force acts on a system of particles, the total linear momentum of
the system cannot change.

P
:

If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

As an example, suppose that you toss a grapefruit across a room. During its
flight, the only external force acting on the grapefruit (which we take as the
system) is the gravitational force , which is directed vertically downward. Thus,
the vertical component of the linear momentum of the grapefruit changes,
but since no horizontal external force acts on the grapefruit, the horizontal
component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system.
Although internal forces can change the linear momentum of portions of the sys-
tem, they cannot change the total linear momentum of the entire system.

The sample problems in this section involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along
a single axis) or two-dimensional (meaning that they are in a plane containing
two axes). In the following sections we consider collisions.

F
:

g

CHECKPOINT 6

An initially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the
second piece move at an angle to the x axis? (c) What is the direction of the momentum
of the second piece?
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9-7 Conservation of Linear Momentum
Suppose that the net external force (and thus the net impulse ) acting on a
system of particles is zero (the system is isolated) and that no particles leave or
enter the system (the system is closed). Putting in Eq. 9-27 then yields

, or

(closed, isolated system). (9-42)

In words,
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This result is called the law of conservation of linear momentum. It can also be
written as

(closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

.

Caution: Momentum should not be confused with energy. In the sample prob-
lems of this section, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,
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If no net external force acts on a system of particles, the total linear momentum of
the system cannot change.
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:

If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

As an example, suppose that you toss a grapefruit across a room. During its
flight, the only external force acting on the grapefruit (which we take as the
system) is the gravitational force , which is directed vertically downward. Thus,
the vertical component of the linear momentum of the grapefruit changes,
but since no horizontal external force acts on the grapefruit, the horizontal
component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system.
Although internal forces can change the linear momentum of portions of the sys-
tem, they cannot change the total linear momentum of the entire system.

The sample problems in this section involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along
a single axis) or two-dimensional (meaning that they are in a plane containing
two axes). In the following sections we consider collisions.
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CHECKPOINT 6

An initially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the
second piece move at an angle to the x axis? (c) What is the direction of the momentum
of the second piece?
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9-7 Conservation of Linear Momentum
Suppose that the net external force (and thus the net impulse ) acting on a
system of particles is zero (the system is isolated) and that no particles leave or
enter the system (the system is closed). Putting in Eq. 9-27 then yields

, or

(closed, isolated system). (9-42)

In words,
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This result is called the law of conservation of linear momentum. It can also be
written as

(closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

.

Caution: Momentum should not be confused with energy. In the sample prob-
lems of this section, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,
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at some later time tf "
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If no net external force acts on a system of particles, the total linear momentum of
the system cannot change.

P
:

If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

As an example, suppose that you toss a grapefruit across a room. During its
flight, the only external force acting on the grapefruit (which we take as the
system) is the gravitational force , which is directed vertically downward. Thus,
the vertical component of the linear momentum of the grapefruit changes,
but since no horizontal external force acts on the grapefruit, the horizontal
component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system.
Although internal forces can change the linear momentum of portions of the sys-
tem, they cannot change the total linear momentum of the entire system.

The sample problems in this section involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along
a single axis) or two-dimensional (meaning that they are in a plane containing
two axes). In the following sections we consider collisions.
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CHECKPOINT 6

An initially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the
second piece move at an angle to the x axis? (c) What is the direction of the momentum
of the second piece?
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9-7 Conservation of Linear Momentum
Suppose that the net external force (and thus the net impulse ) acting on a
system of particles is zero (the system is isolated) and that no particles leave or
enter the system (the system is closed). Putting in Eq. 9-27 then yields

, or

(closed, isolated system). (9-42)

In words,
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This result is called the law of conservation of linear momentum. It can also be
written as

(closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

.

Caution: Momentum should not be confused with energy. In the sample prob-
lems of this section, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,
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If no net external force acts on a system of particles, the total linear momentum of
the system cannot change.

P
:

If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

As an example, suppose that you toss a grapefruit across a room. During its
flight, the only external force acting on the grapefruit (which we take as the
system) is the gravitational force , which is directed vertically downward. Thus,
the vertical component of the linear momentum of the grapefruit changes,
but since no horizontal external force acts on the grapefruit, the horizontal
component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system.
Although internal forces can change the linear momentum of portions of the sys-
tem, they cannot change the total linear momentum of the entire system.

The sample problems in this section involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along
a single axis) or two-dimensional (meaning that they are in a plane containing
two axes). In the following sections we consider collisions.
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CHECKPOINT 6

An initially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the
second piece move at an angle to the x axis? (c) What is the direction of the momentum
of the second piece?
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� Eq.5 is a vector equation à could be written in to 3 equations in xyz
coordinates

� The linear momentum might be conserved in one or two directions 
but not in all directions

� e.g., a tossed grapefruit (projectile motion):
The only external force acting on it is the gravity Fg (downward force) 
� The vertical component of the tossed 

grapefruit linear momentum change

� The horizontal component of the tossed 
grapefruit linear momentum is constant
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9-7 Conservation of Linear Momentum
Suppose that the net external force (and thus the net impulse ) acting on a
system of particles is zero (the system is isolated) and that no particles leave or
enter the system (the system is closed). Putting in Eq. 9-27 then yields

, or

(closed, isolated system). (9-42)

In words,
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This result is called the law of conservation of linear momentum. It can also be
written as

(closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

.

Caution: Momentum should not be confused with energy. In the sample prob-
lems of this section, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,
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If no net external force acts on a system of particles, the total linear momentum of
the system cannot change.
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If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

As an example, suppose that you toss a grapefruit across a room. During its
flight, the only external force acting on the grapefruit (which we take as the
system) is the gravitational force , which is directed vertically downward. Thus,
the vertical component of the linear momentum of the grapefruit changes,
but since no horizontal external force acts on the grapefruit, the horizontal
component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system.
Although internal forces can change the linear momentum of portions of the sys-
tem, they cannot change the total linear momentum of the entire system.

The sample problems in this section involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along
a single axis) or two-dimensional (meaning that they are in a plane containing
two axes). In the following sections we consider collisions.
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An initially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the
second piece move at an angle to the x axis? (c) What is the direction of the momentum
of the second piece?
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9-7 Conservation of Linear Momentum
Suppose that the net external force (and thus the net impulse ) acting on a
system of particles is zero (the system is isolated) and that no particles leave or
enter the system (the system is closed). Putting in Eq. 9-27 then yields

, or

(closed, isolated system). (9-42)

In words,
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This result is called the law of conservation of linear momentum. It can also be
written as

(closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

.

Caution: Momentum should not be confused with energy. In the sample prob-
lems of this section, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,

!total linear momentum
at some initial time ti

" ! !total linear momentum
at some later time tf "

P
:

i ! P
:

f

If no net external force acts on a system of particles, the total linear momentum of
the system cannot change.

P
:

If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

As an example, suppose that you toss a grapefruit across a room. During its
flight, the only external force acting on the grapefruit (which we take as the
system) is the gravitational force , which is directed vertically downward. Thus,
the vertical component of the linear momentum of the grapefruit changes,
but since no horizontal external force acts on the grapefruit, the horizontal
component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system.
Although internal forces can change the linear momentum of portions of the sys-
tem, they cannot change the total linear momentum of the entire system.

The sample problems in this section involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along
a single axis) or two-dimensional (meaning that they are in a plane containing
two axes). In the following sections we consider collisions.

F
:

g

CHECKPOINT 6

An initially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the
second piece move at an angle to the x axis? (c) What is the direction of the momentum
of the second piece?
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A 6kg ballot box slides with a speed of 4m/s across a frictionless
floor in the positive direction of an x axis. It suddenly exploded into
two pieces. One piece of mass 2kg moves with 8m/s in the positive x
axis. What is the velocity of the second one with mass m2?

216 CHAPTE R 9 CE NTE R OF MASS AN D LI N EAR MOM E NTU M

HALLIDAY REVISED

where the subscripts i and f refer to values before and after
the ejection, respectively.

Calculations: Because the motion is along a single axis, we
can write momenta and velocities in terms of their x compo-
nents, using a sign to indicate direction. Before the ejection,
we have

Pi ! Mvi. (9-45)

Let vMS be the velocity of the ejected module relative to the
Sun.The total linear momentum of the system after the ejec-
tion is then

Pf ! (0.20M)vMS " (0.80M)vHS, (9-46)

where the first term on the right is the linear momentum of the
module and the second term is that of the hauler.

We do not know the velocity vMS of the module relative
to the Sun, but we can relate it to the known velocities with

.

In symbols, this gives us
vHS ! vrel " vMS (9-47)

or vMS ! vHS # vrel.

Substituting this expression for vMS into Eq. 9-46, and then
substituting Eqs. 9-45 and 9-46 into Eq. 9-44, we find

Mvi ! 0.20M(vHS # vrel) " 0.80MvHS,

which gives us
vHS ! vi " 0.20vrel,

or vHS ! 2100 km/h " (0.20)(500 km/h)

! 2200 km/h. (Answer)

! velocity of
hauler relative

to Sun " ! ! velocity of
hauler relative

to module " " ! velocity of
module relative

to Sun "

One-dimensional explosion, relative velocity, space hauler

One-dimensional explosion: Figure 9-12a shows a space hauler
and cargo module, of total mass M, traveling along an x axis in
deep space. They have an initial velocity of magnitude 2100
km/h relative to the Sun. With a small explosion, the hauler
ejects the cargo module, of mass 0.20M (Fig. 9-12b).The hauler
then travels 500 km/h faster than the module along the x axis;
that is, the relative speed vrel between the hauler and the mod-
ule is 500 km/h.What then is the velocity of the hauler rela-
tive to the Sun?

KEY I DEA

Because the hauler–module system is closed and isolated,
its total linear momentum is conserved; that is,

, (9-44)P
:

i ! P
:

f

v:HS

v:i

Sample Problem

Sample Problem

system, and (3) no net external force acts on the system.
Therefore, the linear momentum of the system is conserved.

Calculations: To get started, we superimpose an xy coordi-
nate system as shown in Fig. 9-13b, with the negative direction
of the x axis coinciding with the direction of The x axis is at
80° with the direction of and 50° with the direction of .

Linear momentum is conserved separately along each
axis. Let’s use the y axis and write

Piy ! Pfy, (9-48)

where subscript i refers to the initial value (before the explo-
sion), and subscript y refers to the y component of or .Pf

:
Pi
:

v:f Bv:f C

v:fA.

Two-dimensional explosion, momentum, coconut

Two-dimensional explosion: A firecracker placed inside a
coconut of mass M, initially at rest on a frictionless floor,
blows the coconut into three pieces that slide across the floor.
An overhead view is shown in Fig. 9-13a. Piece C, with mass
0.30M, has final speed vf C ! 5.0 m/s.

(a) What is the speed of piece B, with mass 0.20M?

KEY I DEA

First we need to see whether linear momentum is con-
served. We note that (1) the coconut and its pieces form a
closed system, (2) the explosion forces are internal to that

Fig. 9-12 (a) A space hauler, with a cargo module, moving at
initial velocity (b) The hauler has ejected the cargo module.
Now the velocities relative to the Sun are for the module and

for the hauler.v:HS

v:MS

v:i.

(a) (b) 

Cargo module 

Hauler 
0.20M 

vMS vHS vi 

0.80M 

x x 

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.
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p = p1 +
p2

mv = m1
v1 +m2

v2
m2 = m −m1 = 4

6(4î ) = 2(8î )+ 4v2
24î = 16î + 4v2
8î = 4v2
v2 = 2î ⇒

v2 = 2m / s in the +ve direction of x-axis



Examples: 
Q.1: A 2kg object is moving leftward with 20m/s. The object hits a 
wall then returns back in the opposite direction with the same 
velocity. The initial momentum of the ball is:
(a) −40 kg.m/s (b) −50 kg.m/s (c) 60 kg.m/s 

Q.2: The final momentum of the ball in the previous question is:
(a) 40 kg.m/s (b) −50 kg.m/s (c) 60 kg.m/s 

Q.3: The change in the momentum in the previous question is:
(a) 40 kg.m/s (b) 80 kg.m/s (c) 60 kg.m/s 

 
pi = m

vi = 2 × −20 = −40kg.m / s

 Δ
pi =
pf −
pi = 40 + 40 = 80kg.m / s



Q.4. A body of 2kg mass is moving with a kinetic energy of 25J. The 
momentum of the body is:
(a) 10 kg.m/s (b) 15kg.m/s (c) 18 kg.m/s

Q.5: A 5kg body has a momentum of 20kg.m/s. The kinetic energy 
of the body is:
(a) 50J (b) 40J (c) 20J  

k = 1
2
mv2 ⇒ 25 = v2 ⇒ v = 5

p = mv = 2 × 5 = 10kg.m / s

p = mv⇒ 20 = 5v⇒ v = 4m / s

k = 1
2
mv2 ⇒ 1

2
(5)(42 ) = 40J
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•••8 A uniform soda can of mass 0.140 kg
is 12.0 cm tall and filled with 0.354 kg of
soda (Fig. 9-41). Then small holes are
drilled in the top and bottom (with negligi-
ble loss of metal) to drain the soda.What is
the height h of the com of the can and con-
tents (a) initially and (b) after the can loses
all the soda? (c) What happens to h as the
soda drains out? (d) If x is the height of the
remaining soda at any given instant, find x
when the com reaches its lowest point.

sec. 9-3 Newton’s Second Law for a System of Particles
•9 A stone is dropped at t ! 0. A second stone, with twice the
mass of the first, is dropped from the same point at
t ! 100 ms. (a) How far below the release point is the center of
mass of the two stones at t ! 300 ms? (Neither stone has yet
reached the ground.) (b) How fast is the center of mass of the two-
stone system moving at that time?

•10 A 1000 kg automobile is at rest at a traffic signal. At the
instant the light turns green, the automobile starts to move with a
constant acceleration of 4.0 m/s2. At the same instant a 2000 kg
truck, traveling at a constant speed of 8.0 m/s, overtakes and passes
the automobile. (a) How far is the com of the automobile– truck
system from the traffic light at t ! 3.0 s? (b) What is the speed of
the com then?

•11 A big olive (m ! 0.50 kg) lies at the origin of an xy
coordinate system, and a big Brazil nut (M ! 1.5 kg) lies at the
point (1.0, 2.0) m. At t ! 0, a force begins to
act on the olive, and a force begins to act on
the nut. In unit-vector notation, what is the displacement of the
center of mass of the olive–nut system at t ! 4.0 s, with respect to
its position at t ! 0?

•12 Two skaters, one with mass 65 kg and the other with mass 40
kg, stand on an ice rink holding a pole of length 10 m and negligi-
ble mass. Starting from the ends of the pole, the skaters pull them-
selves along the pole until they meet. How far does the 40 kg
skater move?

••13 A shell is shot with an initial velocity of 20 m/s, at an
angle of with the horizontal.At the top of the trajectory, the
shell explodes into two fragments of equal mass (Fig. 9-42). One
fragment, whose speed immediately after the explosion is zero, falls
vertically. How far from the gun does the other fragment land, as-
suming that the terrain is level and that air drag is negligible?

"0 ! 60#
v:0SSM

F
:

n ! ($3.0î $ 2.0ĵ ) N
F
:

o ! (2.0î % 3.0ĵ ) N

ILW

directly above particle 1. (a) What is the
maximum height Hmax reached by the
com of the two-particle system? In
unit-vector notation, what are the (b)
velocity and (c) acceleration of the
com when the com reaches Hmax?

••15 Figure 9-44 shows an arrange-
ment with an air track, in which a cart is connected by a cord to a
hanging block. The cart has mass m1 ! 0.600 kg, and its center is ini-
tially at xy coordinates ($0.500 m, 0 m); the block has mass 
m2 !0.400 kg, and its center is initially at xy coordinates
(0, $0.100 m).The mass of the cord and pulley are negligible.The cart
is released from rest, and both cart and block move until the cart hits
the pulley. The friction between the cart and the air track and be-
tween the pulley and its axle is negligible. (a) In unit-vector notation,
what is the acceleration of the center of mass of the cart–block sys-
tem? (b) What is the velocity of the com as a function of time t? (c)
Sketch the path taken by the com. (d) If the path is curved, determine
whether it bulges upward to the right or downward to the left, and if
it is straight, find the angle between it and the x axis.

x

Fig. 9-41 Problem 8.

v0

0

Explosion

θ

Fig. 9-42 Problem 13.

•••16 Ricardo, of mass 80 kg, and Carmelita, who is lighter, are en-
joying Lake Merced at dusk in a 30 kg canoe. When the canoe is at
rest in the placid water, they exchange seats, which are 3.0 m apart
and symmetrically located with respect to the canoe’s center. If the
canoe moves 40 cm horizontally relative to a pier post, what is
Carmelita’s mass?

•••17 In Fig. 9-45a, a 4.5 kg dog
stands on an 18 kg flatboat at dis-
tance D ! 6.1 m from the shore. It
walks 2.4 m along the boat toward
shore and then stops. Assuming no
friction between the boat and the wa-
ter, find how far the dog is then from
the shore. (Hint: See Fig. 9-45b.)

sec. 9-5 The Linear Momentum
of a System of Particles
•18 A 0.70 kg ball moving hori-
zontally at 5.0 m/s strikes a vertical
wall and rebounds with speed 2.0
m/s. What is the magnitude of the change in its linear momentum?

•19 A 2100 kg truck traveling north at 41 km/h turns east and
accelerates to 51 km/h. (a) What is the change in the truck’s kinetic
energy? What are the (b) magnitude and (c) direction of the
change in its momentum?

••20 At time t ! 0, a ball is struck at ground level and sent
over level ground. The momentum p versus t during the flight is

ILW

Fig. 9-43 Problem 14.

x

y

1

2

••14 In Figure 9-43, two particles are launched from the origin of
the coordinate system at time t ! 0. Particle 1 of mass m1 ! 5.00 g is
shot directly along the x axis on a frictionless floor, with constant
speed 10.0 m/s. Particle 2 of mass m2 ! 3.00 g is shot with a velocity
of magnitude 20.0 m/s, at an upward angle such that it always stays

Fig. 9-44 Problem 15.

y

x

m2

m1

Dog's displacement dd

Boat's displacement db

(b)

D

(a)

Fig. 9-45 Problem 17.
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Δp = m vf − vi = 0.7 −2 − 5 = 0.7 −7 = 4.9kg.m / s
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(c) Since 
�
F  is opposite to the direction of motion (so the angle �  between 

�
F  and 

�
d x� �  is 180°) then Eq. 7-7 gives the work done as 45.8 10 JW F x� � � � � 	 . 
 
(d) In this case, Newton’s second law yields � � � �285kg 4.0m/sF � �

�
 so that 

2| | 3.4 10 NF F� � 	
�

. 
 
(e) From Eq. 2-16, we now have 

� �
� �

2
2

2

37 m/s
1.7 10 m.

2 4.0m/s
x� � � � 	

�
 

 
(f) The force 

�
F  is again opposite to the direction of motion (so the angle � is again 180°) 

so that Eq. 7-7 leads to 45.8 10 J.W F x� � � � � 	  The fact that this agrees with the result 
of part (c) provides insight into the concept of work. 
 
14. The forces are all constant, so the total work done by them is given by W F x� net� , 
where Fnet is the magnitude of the net force and �x  is the magnitude of the displacement. 
We add the three vectors, finding the x and y components of the net force: 
 

net 1 2 3

net 2 3

sin 50.0 cos35.0 3.00 N (4.00 N)sin 35.0 (10.0 N)cos35.0
2.13 N

cos50.0 sin 35.0 (4.00 N) cos50.0 (10.0 N)sin 35.0
3.17 N.

x

y

F F F F

F F F

� � � �� � � � � �� �
�

� � �� � � � �� �
�

 

 
The magnitude of the net force is 
 

2 2 2 2
net net net (2.13 N) (3.17 N) 3.82 N.x yF F F� � � � �  

 
The work done by the net force is 
 

net (3.82 N) (4.00m) 15.3 JW F d� � �  
 
where we have used the fact that 

� �
d F net||  (which follows from the fact that the canister 

started from rest and moved horizontally under the action of horizontal forces — the 
resultant effect of which is expressed by 

�
Fnet ). 

 
15. (a) The forces are constant, so the work done by any one of them is given by 
W F d� 


� �
, where 

�
d  is the displacement. Force 

�
F1  is in the direction of the displacement, 

so 
1 1 1cos (5.00 N)(3.00 m)cos 0 15.0 J.W Fd �� � � �  
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Force 

�
F2  makes an angle of 120° with the displacement, so 

 
2 2 2cos (9.00 N) (3.00 m)cos120 13.5 J.W F d �� � � � �  

 
Force 

�
F3  is perpendicular to the displacement, so  

 
W3 = F3d cos �3 = 0 since cos 90° = 0. 

 
The net work done by the three forces is 
 

1 2 3 15.0 J 13.5 J 0 1.50 J.W W W W� � � � � � � �  
 
(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the 
displacement. 
 
16. The change in kinetic energy can be written as 
 

 2 21 1
( ) (2 )

2 2f iK m v v m a x ma x� � � � � � �  

 
where we have used  2 2 2f iv v a x� � �  from Table 2-1. From the figure, we see that 

(0 30) J 30 JK� � � � � when 5 mx� � � . The acceleration can then be obtained as 
 

 2( 30 J)
0.75 m/s .

(8.0 kg)(5.0 m)
Ka

m x
� �

� � � �
�

 

 
The negative sign indicates that the mass is decelerating. From the figure, we also see 
that when 5 mx � the kinetic energy becomes zero, implying that the mass comes to rest 
momentarily. Thus, 
 

2 2 2 2 2
0 2 0 2( 0.75 m/s )(5.0 m) 7.5 m /sv v a x� � � � � � � , 

 
or 0 2.7 m/sv � . The speed of the object when x = �3.0 m is  
 
 2 2 2 2

0 2 7.5 m /s 2( 0.75 m/s )( 3.0 m) 12 m/s 3.5 m/sv v a x� � � � � � � � � . 
 
17. We use 

�
F  to denote the upward force exerted by the cable on the astronaut. The 

force of the cable is upward and the force of gravity is mg downward. Furthermore, the 
acceleration of the astronaut is a = g/10 upward. According to Newton’s second law, the 
force is given by 

Ks

0 1
x (m)

K
 (

J)

2

Fig. 7-30 Problem 20.
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can by the constant horizontal force from the broom, versus the
can’s position x. The scale of the figure’s vertical axis is set by Ws !
6.0 J. (a) What is the magnitude of that force? (b) If the can had an
initial kinetic energy of 3.00 J, moving in the positive direction of
the x axis, what is its kinetic energy at the end of the 2.00 m?

••13 A luge and its rider, with a total mass of 85 kg, emerge from
a downhill track onto a horizontal straight track with an initial
speed of 37 m/s. If a force slows them to a stop at a constant rate of
2.0 m/s2, (a) what magnitude F is required for the force, (b) what
distance d do they travel while slowing, and (c) what work W is
done on them by the force? What are (d) F, (e) d, and (f) W if they,
instead, slow at 4.0 m/s2?

••14 Figure 7-26 shows an overhead view of three horizontal
forces acting on a cargo canister that was initially stationary but
now moves across a frictionless floor. The force magnitudes are 
F1 ! 3.00 N, F2 ! 4.00 N, and F3 ! 10.0 N, and the indicated angles
are u2 ! 50.0° and u3 ! 35.0°.What is the net work done on the can-
ister by the three forces during the first 4.00 m of displacement?

ergy K versus position x as it moves from x ! 0 to x ! 5.0 m; K0 !
30.0 J. The force continues to act. What is v when the object moves
back through x ! "3.0 m?

sec. 7-6 Work Done by the Gravitational Force
•17 A helicopter lifts a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by
(a) the force from the helicopter and (b) the gravitational force on
her? Just before she reaches the helicopter, what are her (c) kinetic
energy and (d) speed?

•18 (a) In 1975 the roof of Montreal’s Velodrome, with
a weight of 360 kN, was lifted by 10 cm so that it could be centered.
How much work was done on the roof by the forces making the
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one
end of a car that had fallen onto her son when a jack failed. If her
panic lift effectively raised 4000 N (about of the car’s weight) by
5.0 cm, how much work did her force do on the car?

••19 In Fig. 7-29, a block of ice slides down a frictionless ramp
at angle 50° while an ice worker pulls on the block (via a
rope) with a force that has a magnitude of 50 N and is directed
up the ramp.As the block slides through distance d 0.50 m along
the ramp, its kinetic energy increases by 80 J. How much greater
would its kinetic energy have been if the rope had not been at-
tached to the block?

!
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••15 Figure 7-27 shows three forces applied to a trunk that
moves leftward by 3.00 m over a frictionless floor.The force magni-
tudes are F1 ! 5.00 N, F2 ! 9.00 N, and F3 ! 3.00 N, and the indi-
cated angle is u ! 60.0°. During the displacement, (a) what is the net
work done on the trunk by the three forces and (b) does the kinetic
energy of the trunk increase or decrease?

θ
F1

F3

F2

Fig. 7-27 Problem 15.
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Fig. 7-26 Problem 14.

••20 A block is sent up a frictionless ramp along which an x axis
extends upward. Figure 7-30 gives the kinetic energy of the block
as a function of position x; the scale of the figure’s vertical axis is
set by Ks ! 40.0 J. If the block’s initial speed is 4.00 m/s, what is the
normal force on the block?

••21 A cord is used to vertically lower an initially stationary
block of mass M at a constant downward acceleration of g/4. When
the block has fallen a distance d, find (a) the work done by the
cord’s force on the block, (b) the work done by the gravitational
force on the block, (c) the kinetic energy of the block, and (d) the
speed of the block.

••22 A cave rescue team lifts an injured spelunker directly up-
ward and out of a sinkhole by means of a motor-driven cable. The

SSM

θ

d
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Fig. 7-29 Problem 19.

••16 An 8.0 kg object is moving in the positive direction of an
x axis. When it passes through x 0, a constant force directed
along the axis begins to act on it. Figure 7-28 gives its kinetic en-

!

x (m)

K0

0 5

K (J)

Fig. 7-28 Problem 16.
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Force 

�
F2  makes an angle of 120° with the displacement, so 

 
2 2 2cos (9.00 N) (3.00 m)cos120 13.5 J.W F d �� � � � �  

 
Force 

�
F3  is perpendicular to the displacement, so  

 
W3 = F3d cos �3 = 0 since cos 90° = 0. 

 
The net work done by the three forces is 
 

1 2 3 15.0 J 13.5 J 0 1.50 J.W W W W� � � � � � � �  
 
(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the 
displacement. 
 
16. The change in kinetic energy can be written as 
 

 2 21 1
( ) (2 )

2 2f iK m v v m a x ma x� � � � � � �  

 
where we have used  2 2 2f iv v a x� � �  from Table 2-1. From the figure, we see that 

(0 30) J 30 JK� � � � � when 5 mx� � � . The acceleration can then be obtained as 
 

 2( 30 J)
0.75 m/s .

(8.0 kg)(5.0 m)
Ka

m x
� �

� � � �
�

 

 
The negative sign indicates that the mass is decelerating. From the figure, we also see 
that when 5 mx � the kinetic energy becomes zero, implying that the mass comes to rest 
momentarily. Thus, 
 

2 2 2 2 2
0 2 0 2( 0.75 m/s )(5.0 m) 7.5 m /sv v a x� � � � � � � , 

 
or 0 2.7 m/sv � . The speed of the object when x = �3.0 m is  
 
 2 2 2 2

0 2 7.5 m /s 2( 0.75 m/s )( 3.0 m) 12 m/s 3.5 m/sv v a x� � � � � � � � � . 
 
17. We use 

�
F  to denote the upward force exerted by the cable on the astronaut. The 

force of the cable is upward and the force of gravity is mg downward. Furthermore, the 
acceleration of the astronaut is a = g/10 upward. According to Newton’s second law, the 
force is given by 
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Fig. 7-30 Problem 20.
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can by the constant horizontal force from the broom, versus the
can’s position x. The scale of the figure’s vertical axis is set by Ws !
6.0 J. (a) What is the magnitude of that force? (b) If the can had an
initial kinetic energy of 3.00 J, moving in the positive direction of
the x axis, what is its kinetic energy at the end of the 2.00 m?

••13 A luge and its rider, with a total mass of 85 kg, emerge from
a downhill track onto a horizontal straight track with an initial
speed of 37 m/s. If a force slows them to a stop at a constant rate of
2.0 m/s2, (a) what magnitude F is required for the force, (b) what
distance d do they travel while slowing, and (c) what work W is
done on them by the force? What are (d) F, (e) d, and (f) W if they,
instead, slow at 4.0 m/s2?

••14 Figure 7-26 shows an overhead view of three horizontal
forces acting on a cargo canister that was initially stationary but
now moves across a frictionless floor. The force magnitudes are 
F1 ! 3.00 N, F2 ! 4.00 N, and F3 ! 10.0 N, and the indicated angles
are u2 ! 50.0° and u3 ! 35.0°.What is the net work done on the can-
ister by the three forces during the first 4.00 m of displacement?

ergy K versus position x as it moves from x ! 0 to x ! 5.0 m; K0 !
30.0 J. The force continues to act. What is v when the object moves
back through x ! "3.0 m?

sec. 7-6 Work Done by the Gravitational Force
•17 A helicopter lifts a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by
(a) the force from the helicopter and (b) the gravitational force on
her? Just before she reaches the helicopter, what are her (c) kinetic
energy and (d) speed?

•18 (a) In 1975 the roof of Montreal’s Velodrome, with
a weight of 360 kN, was lifted by 10 cm so that it could be centered.
How much work was done on the roof by the forces making the
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one
end of a car that had fallen onto her son when a jack failed. If her
panic lift effectively raised 4000 N (about of the car’s weight) by
5.0 cm, how much work did her force do on the car?

••19 In Fig. 7-29, a block of ice slides down a frictionless ramp
at angle 50° while an ice worker pulls on the block (via a
rope) with a force that has a magnitude of 50 N and is directed
up the ramp.As the block slides through distance d 0.50 m along
the ramp, its kinetic energy increases by 80 J. How much greater
would its kinetic energy have been if the rope had not been at-
tached to the block?
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••15 Figure 7-27 shows three forces applied to a trunk that
moves leftward by 3.00 m over a frictionless floor.The force magni-
tudes are F1 ! 5.00 N, F2 ! 9.00 N, and F3 ! 3.00 N, and the indi-
cated angle is u ! 60.0°. During the displacement, (a) what is the net
work done on the trunk by the three forces and (b) does the kinetic
energy of the trunk increase or decrease?
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Fig. 7-27 Problem 15.
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Fig. 7-26 Problem 14.

••20 A block is sent up a frictionless ramp along which an x axis
extends upward. Figure 7-30 gives the kinetic energy of the block
as a function of position x; the scale of the figure’s vertical axis is
set by Ks ! 40.0 J. If the block’s initial speed is 4.00 m/s, what is the
normal force on the block?

••21 A cord is used to vertically lower an initially stationary
block of mass M at a constant downward acceleration of g/4. When
the block has fallen a distance d, find (a) the work done by the
cord’s force on the block, (b) the work done by the gravitational
force on the block, (c) the kinetic energy of the block, and (d) the
speed of the block.

••22 A cave rescue team lifts an injured spelunker directly up-
ward and out of a sinkhole by means of a motor-driven cable. The
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Fig. 7-29 Problem 19.

••16 An 8.0 kg object is moving in the positive direction of an
x axis. When it passes through x 0, a constant force directed
along the axis begins to act on it. Figure 7-28 gives its kinetic en-
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Fig. 7-28 Problem 16.
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Motion 
direction

ϕ2 = 180o − 60o

=120o

Problems for chapter 7



sec. 7-9 Power
•43 A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

•44 A skier is pulled by a towrope up a frictionless ski slope that
makes an angle of 12° with the horizontal. The rope moves parallel
to the slope with a constant speed of 1.0 m/s. The force of the rope
does 900 J of work on the skier as the skier moves a distance of 8.0
m up the incline. (a) If the rope moved with a constant speed of 2.0
m/s, how much work would the force of the rope do on the skier as
the skier moved a distance of 8.0 m up the incline? At what rate is
the force of the rope doing work on the skier when the rope moves
with a speed of (b) 1.0 m/s and (c) 2.0 m/s?

•45 A 100 kg block is pulled at a constant speed of 5.0
m/s across a horizontal floor by an applied force of 122 N directed
37° above the horizontal. What is the rate at which the force does
work on the block?

•46 The loaded cab of an elevator has a mass of 3.0 ! 103 kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

••47 A machine carries a 4.0 kg package from an initial position
of at t " 0 to a final posi-
tion of at t 12 s. The
constant force applied by the machine on the package is

. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

••48 A 0.30 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k " 500 N/m) whose
other end is fixed.The ladle has a kinetic energy of 10 J as it passes
through its equilibrium position (the point at which the spring
force is zero). (a) At what rate is the spring doing work on the la-
dle as the ladle passes through its equilibrium position? (b) At
what rate is the spring doing work on the ladle when the spring is
compressed 0.10 m and the ladle is moving away from the equilib-
rium position?

••49 A fully loaded, slow-moving freight elevator has a cab
with a total mass of 1200 kg, which is required to travel upward 54
m in 3.0 min, starting and ending at rest. The elevator’s counter-
weight has a mass of only 950 kg, and so the elevator motor must
help. What average power is required of the force the motor exerts
on the cab via the cable?

••50 (a) At a certain instant, a particle-like object is acted on by a
force while the object’s veloc-
ity is . What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is #12 W, what is the veloc-
ity of the object?

••51 A force acts on a
2.00 kg mobile object that moves from an initial position of

to a final position of
in 4.00 s. Find (a) the

work done on the object by the force in the 4.00 s interval, (b) the
average power due to the force during that interval, and (c) the an-
gle between vectors and .d

:
fd

:
i

d
:

f " #(5.00 m)î $ (4.00 m)ĵ $ (7.00 m)k̂
di
:

" (3.00 m)î # (2.00 m)ĵ $ (5.00 m)k̂

F
:

" (3.00 N)î $ (7.00 N)ĵ $ (7.00 N)k̂

v: " #(2.0 m/s)î $ (4.0 m/s)k̂
F
:

" (4.0 N)î # (2.0 N)ĵ $ (9.0 N)k̂

SSM

F
:

" (2.00 N)î $ (4.00 N)ĵ $ (6.00 N)k̂

"d
:

f " (7.50 m)î $ (12.0 m)ĵ $ (7.20 m)k̂
d
:

i " (0.50 m)î $ (0.75 m)ĵ $ (0.20 m)k̂

ILWSSM

SSM

•••52 A funny car accelerates from rest through a measured track
distance in time T with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?

Additional Problems
53 Figure 7-41 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d " 20.0 cm
while three forces act on the package. Two of them are horizontal
and have the magnitudes F1 " 5.00 N and F2 " 1.00 N; the third is
angled down by u " 60.0° and has the magnitude F3 " 4.00 N. (a)
For the 20.0 cm displacement, what is the net work done on the
package by the three applied forces, the gravitational force on the
package, and the normal force on the package? (b) If the package
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its
speed at the end of the displacement?

163PROB LE M S
PART 1

Fig. 7-41 Problem 53.

F2 F1

d

F3

θ

54 The only force acting on a 2.0
kg body as the body moves along an
x axis varies as shown in Fig. 7-42.
The scale of the figure’s vertical axis
is set by Fs " 4.0 N.The velocity of the
body at x " 0 is 4.0 m/s. (a) What is
the kinetic energy of the body at x "
3.0 m? (b) At what value of x will the
body have a kinetic energy of 8.0 J?
(c) What is the maximum kinetic energy of the body between x " 0
and x " 5.0 m?

55 A horse pulls a cart with a force of 40 lb at an angle of 30°
above the horizontal and moves along at a speed of 6.0 mi/h. (a) How
much work does the force do in 10 min? (b) What is the average
power (in horsepower) of the force?

56 An initially stationary 2.0 kg object accelerates horizontally
and uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval,
how much work is done on the object by the force accelerating it?
What is the instantaneous power due to that force (b) at the end of
the interval and (c) at the end of the first half of the interval?

57 A 230 kg crate hangs from the end of a rope of length L " 12.0 m.
You push horizontally on the crate with a
varying force to move it distance d "
4.00 m to the side (Fig. 7-43). (a) What is
the magnitude of when the crate is
in this final position? During the crate’s
displacement, what are (b) the total
work done on it, (c) the work done
by the gravitational force on the crate,
and (d) the work done by the pull on
the crate from the rope? (e) Knowing
that the crate is motionless before and
after its displacement, use the answers to
(b), (c), and (d) to find the work your

F
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F
:
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Fig. 7-42 Problem 54.
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Fig. 7-43 Problem 57.
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P  
(5.0 N)  (3.0 s)

15 kg
  5.0 W.

2

�
F
HG

I
KJ �  

 
44. (a) Since constant speed implies �K  0,�  we require W Wa g� � , by Eq. 7-15. Since 

Wg  is the same in both cases (same weight and same path), then 29.0 10aW � �  J just as it 
was in the first case. 
 
(b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds. 
Using Eq. 7-42, and noting that average power is the power when the work is being done 
at a steady rate, we have 

2900 J
 1.1 10  W.

8.0 s
WP

t
� � � �
�

 

 
(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq. 
7-42, with average power replaced by power, we have 
 

900 J
4.0 s

WP
t

� �
�

= 225 W 22.3 10  W� � . 

 
45. The power associated with force 

�
F  is given by P F v    � 	

� �
,  where 

�v  is the velocity 
of the object on which the force acts. Thus, 
 

2cos (122 N)(5.0 m/s)cos37 4.9 10  W. P F v Fv �� 	 � � � � �
� �

 
 
46. Recognizing that the force in the cable must equal the total weight (since there is no 
acceleration), we employ Eq. 7-47: 

P Fv mg x
t

   cos    � � F
HG
I
KJ� �

�
 

 
where we have used the fact that � � �0  (both the force of the cable and the elevator’s 
motion are upward). Thus, 

3 2 5210 m
(3.0 10 kg)(9.8 m/s ) 2.7 10  W.

23 s
P 
 
� � � �� �

� �
 

 
47. (a) Equation 7-8 yields  
 
W =  Fx �x + Fy �y + Fz �z  
    = (2.00 N)(7.5 m – 0.50 m) + (4.00 N)(12.0 m – 0.75 m) + (6.00 N)(7.2m – 0.20 m)  
    =101 J �  1.0�  102 J. 
 
(b) Dividing this result by 12 s (see Eq. 7-42) yields P = 8.4 W. 
 


