Dr. George Karraz, Ph. D.

Viewing In 2D

Contents

Windowing Concepts
Clipping

— Introduction
— Brute Force

— Cohen-Sutherland Clipping Algorithm
Area Clipping

A scene is made up of a collection of objects
specified in world coordinates

World Coordinates

When we display a scene only those objects

within a particular window are displayed

Window
Wymax T |m e ———— 1

WYmin T

World Coordinates

Because drawing things to a display takes

time we clip everything outside the window

Window
WYmax T |- - -"-"=-"=-=-"=-"=-"==== 1

VVymin - e e e e e == === ==

World Coordinates

Clipping Window

World Coordinates

Figure 6-2

y wmax .
Viewport
YVnax Ir _________ 1
[
l/\/\/\
' |
' |
|
1 [
Y wmin y vmin e
=
I I I I
xwmm xwmax xvmm xvmax

Viewport Coordinates

A clipping window and associated viewport, specified as rectangles
aligned with the coordinate axes.

Clipping Window 1+
W A mm—m—m—m———————— — .
Y ¥max : o | Normalization
| (xw, yw) | Viewport
| ! YVhax + e~
| | |
| | | (xo,yv) |
| ' |
: ! Ymin+ l——————~
y wmin T - === -
| | I —
XWhin XWmax 0 XVmin XVmax 1

Figure 6-7

A point (xw, yw) in a world-coordinate clipping window is mapped to viewport coordinates (xv, yv),
within a unit square, so that the relative positions of the two points in their respective rectangles
are the same.

ywmax

YWpin T

Clipping Window

Normalization Screen
(x norm> Y norm) 1 Square ViCWpOI‘ t

[| ! YVmax T r________'i
:) | : ° |
_ I v L N ___

ho | Yomin (xv, yv)
. | |

X /Umin xvmax
Figure 6-8

A point (xw yw) 1n a clipping window is mapped to a normalized coordinate
position (Xporm» Ynorm)» theén to a screen-coordinate position (xv, yv) in
a viewport. Objects are clipped against the normalization square before
the transformation to viewport coordinates.

y screen

\

%
\

Reg Triay le

I~
—
-~

Display
Window N

| g
|
N\ |
Vs |
N

~
S~
~
-..._“..‘-
~

[
!

Viewport

;//

~~—

xSCI’BEIl

Figure 6-9

A viewport at coordinate position (xg, yg)
within a display window.

i Coordinate Systems

= Screen Coordinate system

= World Coordinate system

= World window

= Viewport

= Window to viewport mapping

i Screen Coordinate System

-'-' v
e | o
A ,

E . il

. e 5 t‘
=

— -;5";.

OpenGL | SN
(0,0)

i Screen Coordinate System

- 2D Regular Cartesian Grid

- Origin (0,0) at lower left ®

corner o O

- Horizontal axis — X

Vertical axis —y

- Pixels are defined at the grid N

intersections (0,0) AN
- This coordinate system is defined

relative to the display window origin \

(OpenGL convention: the lower left corner

of the window) (2,2)

i World Coordinate System

= Screen coordinate system is not easy to
use

10 feet

. 20 feet

i Define a world window

—7

iy oall

i World Window

= World window — a rectangular region in
the world that limits our view

W_T

s

Define by

le] WLWRWDBWT

L

ot

W_L

Use OpenGL command:

gluOrtho2D(left, right, bottom,
top)

i Viewport

= The rectangular region in the screen that
maps to our world window

= Defined in the window’s (or control’s)
_coordinate system

glViewport(int left, int bottom,
int (right-left),
int (top-bottom));

Graphics/myTests/lab1/lab1/Debug/lab1.exe

i Window to viewport mapping

s in the world window will

= The objec

then be drawn onto the viewport

(X,y)

viewport

World window
ﬂi:f{ >

i Window to viewport mapping

= How to calculate (sx, sy) from (x,y)?

(X,y)

N
“)Q;:bq

o |

i Window to viewport mapping

= First thing to remember — you don't
need to do it by yourself. OpenGL will
do it for you

= You just need to define the viewport (with
glViewport()), and the world window (with
gluOrtho2D())

s But we will look ‘under the hood’

i Also, one thing to remember ...

= A practical OpenGL issue

= Before calling gluOrtho2D(), you need to
have the following two lines of code —

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

gluOrtho2D(Left, Right, Bottom, Top);

i Window to viewport mapping

= Things that are given:
« The world window (W_L, W_R, W_B, W_T)
« The viewport (V_L,V_R,V_B,V_T)

= A point (X,y) in the world coordinate
system

= Calculate the corresponding point (sX,
sy) in the screen coordinate system

i Window to viewport mapping

= Basic principle: the mapping should be
proportional

(%) 1 (sX,5Y)

|

(x-W.L)/ (WR-W.Ll = (sx-V.L) /(VR-VL)
(y- WB)/ WT-WB) = (sy-V.B)/(V.T-V_B)

—>
—>

i Window to viewport mapping

(%) 1 (%:5Y)
(x-W.L/ (WR-WL = (sx=V.L)/(VR=-VL
(y- WB)/ W.T-WB) = (sy-V_B)/(V_T-V_B)

sx= (x- W_L)* (V_RV_L/(W_RW L)+ V_L

l[: sy = (y-W_B) *(V_T-V_B)/(W_T-W_B) + V_B

Clipping

Point clipping Is easy:
— For point (x,y) the point is not clipped if
W¥min SX S meax AND WY min Sy = Wymax

I:)4
Window op
WY e / ----------- 2
|

WY min— N R N

Before Clipping

Clipping

For the image below consider which lines
and points should be kept and which ones
should be clipped

/.
Window
Wymax_‘ /=== =-=-===== |
I / Pe :
: op. |
I I:)5 ! |
\
I I
| Pg\ |
WY min— L -
| |
WX, WX,

Point Clipping

Easy - a point (x,y) Is not clipped If:
WXin =X < WXpax AND WYmin =V < WYnax
otherwise it Is clipped

Clipped
Clipped

Window @

WY max g

Clipped op
5

° |:>1
Points Within the Window

are Not Clipped
=

Weinr—— -~ —————-

Line Clipping

Harder - examine the end-points of each line
to see If they are In the window or not

Situation Solution Example
Both end-points inside e 1 o
the window Don't clip ™
One end-point inside T3
the window, one Must clip \\-//
outside v

_ .~
Both end-points Don’t know!)
outside the window —

Brute Force Line Clipping

Brute force line clipping can be performed as
follows:

— Don't clip lines with both 1
end-points within the

window /
— For lines with one end-

point inside the window
and one end-point
outside, calculate the
Intersection point (using the equation of the
line) and clip from this point out

Brute Force Line Clipping (cont...)

— For lines with both end-

points outside the
window test the line for

Intersection with all of

the window boundaries, /

and clip appropriately :
However, calculating line intersections Is
computationally expensive

Because a scene can contain so many lines,
the brute force approach to clipping is much
too slow

Cohen-Sutherland: World Division

World space is divided into regions based
on the window boundaries

— Each region has a unigue four bit region code

— Region codes indicate the position of the
regions with respect to the window

1001 { 1000 | 1010

3 2 1 0

above|below| right | left 0001 0000 0010
Window

0101 ;{ 0100 | 0110

Region Code Legend

Cohen-Sutherland: Labelling

Every end-point is labelled with the
appropriate region code

/ b, [1000] P,, [1010]
/ Window
WYmax | / P, [0000]
P, [0001]

P [0000] P, [0010]

*— |
P, [0001] \
Py [0000] ——e p_[0010]

.\
WYmin
\ P, [0100]

P,3[0101] —e P, [0110]
.—' -

Vmei n meax

Cohen-Sutherland: Lines In The Window

Lines completely contained within the
window boundaries have region code [0000]
for both end-points so are not clipped

///ﬁFujloOO] P,,[1010]
/ Window
WYmax | ¢ / P, [0000] \
P, [0001]
P, [0010]

P, [0000]

o— |
F>7[0001]L\\\\\\\\\\j
Py [0000] ——e p_[0010]

.\
Wymin
\' P10 [0100]

P,3[0101] —e P, [0110]
k -

WX WX

min max

Cohen-Sutherland: Lines Outside The

Window

Any lines with a common set bit in the region
codes of both end-points can be clipped

— The AND operation can efficiently check this

///~F5{10001 P,,[1010]
/ Window
WYmax | ¢ / P, [0000] \
P, [0001]
P,, [0010]

P, [0000]

o— |
F>7[0001]L\\\\\\\\\\j
Py [0000] ——e p_[0010]

WY min .\\

P53 [0101]
>~ —

P, [0100]

—e P, [0110]

WX WX

min max

Cohen-Sutherland: Other Lines

Lines that cannot be identified as completely
Inside or outside the window may or may not

cross the window interior

These lines are processed as follows:

— Compare an end-point outside the window to a
boundary (choose any order in which to

consider boundaries e.g. left, right, bottom, top)
and determine how much can be discarded

— If the remainder of the line is entirely inside or
outside the window, retain it or clip it
respectively

Cohen-Sutherland: Other Lines (cont...)

— Otherwise, compare the remainder of the line
against the other window boundaries

— Continue until the line i1s either discarded or a
segment inside the window is found

We can use the region codes to determine
which window boundaries should be
considered for intersection

— To check if a line crosses a particular

boundary we compare the appropriate bits in
the region codes of its end-points

— If one of these is a 1 and the other is a 0 then
the line crosses the boundary

Cohen-Sutherland Examples

Consider the line P4 to P, below
— Start at Py “

— From the region codes
of the two end-points we

know the line doesn’t p\[ooom

L e

cross the left or right Wmin P.o’ [0000]
boundary

— Calculate the Wiy Weiay
Intersection of the line with the bottom boundary
to generate point Py’

— The line P4 to P, iIs completely inside the
window Sso IS retained

P,, [0100]

Cohen-Sutherland Examples (cont...)

Consider the line P; to P, below

- Start at P4 1 P, [1000]
P, [1001] _
- Window
— From the region codes Wy B
of the two end-points P, [0001]

we know the line

crosses the left W,
boundary so calculate
the intersection point to :
generate P, Wi Wi

— The line P5 to P, is completely outside the
window so Is clipped

Cohen-Sutherland Examples (cont...)

Consider the line P, to P4 below
— Start at P

— From the two region wy__ __ Window _ _
codes of the two
P’ [0000]

end-points we know
: P, [0001] P, [0010]
the line crosses the

Pg’ [0000]
Wymin

left boundary so
calculate the
Intersection point to Wi W
generate P-

Cohen-Sutherland Examples (cont...)

Consider the line P, to Py
— Start at Pg

— Calculate the Wy, __ Window _ _
Intersection with the

right boundary to P, [0000]
y P, [Mm
generate Pg

Pg’ [0000]
VVymin

— P, to Py’ Is Inside
the window so Is :
retained Wi WX

Calculating Line Intersections

Intersection points with the window
boundaries are calculated using the line-
equation parameters

— Consider a line with the end-points (xy, y,)
and (X,, Y)
— The y-coordinate of an intersection with a

vertical window boundary can be calculated
using:
Y=Y +m (Xboundary B Xl)

where Xgo,ngary €N DE set to either wx;, or

WXmax

Calculating Line Intersections (cont...

— The x-coordinate of an intersection with a
horizontal window boundary can be
calculated using:

X=X + (yboundary) yl) /' m
where Yp,ngary 2N be set to either wy,,;, or
V\Nmax

— m Is the slope of the line in question and can
be calculated as m=(y, -y, / (X, -Xy)

Area Clipping

-

N

=)

Similarly to lines, areas
must be clipped to a
window boundary

Consideration must be
taken as to which
portions of the area must
be clipped

Sutherland-Hodgman Area Clipping

Algorithm

A technique for clipping areas

developed by Sutherland &
Hodgman

Put simply the polygon is clipped
by comparing it against each
boundary In turn

A A A
/A /A /A f A

S V0 (R VU { N VA { R VA
PN N N N

Original Area Clip Left Clip Right Clip Top Clip Bottom

Sutherland-Hodgman Area Clipping

Algorithm (cont...)

To clip an area against an individual boundary:

— Consider each vertex In turn against the
boundary

— Vertices inside the boundary are saved for
clipping against the next boundary

— Vertices outside the boundary are clipped

— If we proceed from a point inside the boundary
to one outside, the intersection of the line with
the boundary is saved

— If we cross from the outside to the inside
Intersection point and the vertex are saved

Sutherland-Hodgman Example

Each example . |
shows the point Y\\\ i i i
I S

being processed (P) | :
and the previous 1| T S

point (S) Save F . |point1
Saved points define T e i

area clipped to the

: P

boundary in po 1) ;
uestion : 5 : 5
q S/

No Points Saved Save Points | & P

Objects within a scene must be clipped to
display the scene in a window

Because there are can be so many objects
clipping must be extremely efficient

The Cohen-Sutherland algorithm can be

used for line cli

The Sutherland
used for area ¢

nping
-Hodgman algorithm can be

Ipping

	Slide 1
	Viewing In 2D
	Contents
	Windowing I
	Windowing II
	Windowing III
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Coordinate Systems
	Screen Coordinate System
	Screen Coordinate System
	World Coordinate System
	Define a world window
	World Window
	Viewport
	Window to viewport mapping
	Window to viewport mapping
	Window to viewport mapping
	Also, one thing to remember …
	Window to viewport mapping
	Window to viewport mapping
	Window to viewport mapping
	Clipping
	Clipping
	Point Clipping
	Line Clipping
	Brute Force Line Clipping
	Brute Force Line Clipping (cont…)
	Cohen-Sutherland: World Division
	Cohen-Sutherland: Labelling
	Cohen-Sutherland: Lines In The Window
	Cohen-Sutherland: Lines Outside The Window
	Cohen-Sutherland: Other Lines
	Cohen-Sutherland: Other Lines (cont…)
	Cohen-Sutherland Examples
	Cohen-Sutherland Examples (cont…)
	Cohen-Sutherland Examples (cont…)
	Cohen-Sutherland Examples (cont…)
	Calculating Line Intersections
	Calculating Line Intersections (cont…)
	Area Clipping
	 Sutherland-Hodgman Area Clipping Algorithm
	 Sutherland-Hodgman Area Clipping Algorithm (cont…)
	Sutherland-Hodgman Example
	Summary

