
1

Dr. George Karraz, Ph. D.

Viewing In 2D

Contents

Windowing Concepts

Clipping

– Introduction

– Brute Force

– Cohen-Sutherland Clipping Algorithm

Area Clipping

Windowing I

A scene is made up of a collection of objects

specified in world coordinates

World Coordinates

Windowing II

When we display a scene only those objects

within a particular window are displayed

wymax

wymin

wxmin wxmax

Window

World Coordinates

Windowing III

Because drawing things to a display takes

time we clip everything outside the window

wymax

wymin

wxmin wxmax

World Coordinates

Window

Coordinate Systems

 Screen Coordinate system

 World Coordinate system

 World window

 Viewport

 Window to viewport mapping

Screen Coordinate System

(0,0)

OpenGL

Glut

Screen Coordinate System

- 2D Regular Cartesian Grid
- Origin (0,0) at lower left

corner
- Horizontal axis – x

Vertical axis – y
- Pixels are defined at the grid

intersections
- This coordinate system is defined

relative to the display window origin
(OpenGL convention: the lower left corner
of the window)

(0,0)

y

x

(2,2)

World Coordinate System

 Screen coordinate system is not easy to
use

20 feet

10 feet

Define a world window

World Window

 World window – a rectangular region in
the world that limits our view

Define by

W_L, W_R, W_B, W_T

W_L W_R

W_B

W_T

Use OpenGL command:

gluOrtho2D(left, right, bottom,
top)

Viewport

 The rectangular region in the screen that
maps to our world window

 Defined in the window’s (or control’s)
coordinate system

V_L V_R

V_B

V_T

glViewport(int left, int bottom,
int (right-left),
int (top-bottom));

Graphics/myTests/lab1/lab1/Debug/lab1.exe

Window to viewport mapping

 The objects in the world window will
then be drawn onto the viewport

(x,y)

(Sx, Sy)
World window

viewport

Window to viewport mapping

 How to calculate (sx, sy) from (x,y)?

(x,y)

(Sx, Sy)

Window to viewport mapping

 First thing to remember – you don’t
need to do it by yourself. OpenGL will
do it for you

 You just need to define the viewport (with
glViewport()), and the world window (with
gluOrtho2D())

 But we will look ‘under the hood’

Also, one thing to remember …

 A practical OpenGL issue
 Before calling gluOrtho2D(), you need to

have the following two lines of code –

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(Left, Right, Bottom, Top);

Window to viewport mapping

 Things that are given:

 The world window (W_L, W_R, W_B, W_T)

 The viewport (V_L, V_R, V_B, V_T)

 A point (x,y) in the world coordinate
system

 Calculate the corresponding point (sx,
sy) in the screen coordinate system

Window to viewport mapping

 Basic principle: the mapping should be
proportional

(x,y) (sx,sy)

(x – W_L) / (W_R – W_L) = (sx – V_L) / (V_R – V_L)

(y - W_B) / (W_T – W_B) = (sy – V_B) / (V_T – V_B)

Window to viewport mapping

(x,y) (sx,sy)

(x – W_L) / (W_R – W_L) = (sx – V_L) / (V_R – V_L)

(y - W_B) / (W_T – W_B) = (sy – V_B) / (V_T – V_B)

sx = (x - W_L) * (V_R-V_L)/(W_R-W_L) + V_L

sy = (y - W_B) * (V_T-V_B)/(W_T-W_B) + V_B

Clipping

Point clipping is easy:

– For point (x,y) the point is not clipped if

wxmin ≤ x ≤ wxmax AND wymin ≤ y ≤ wymax

wymax

wymin

wxmin wxmax

Before Clipping

Window

P1

P2

P3

P6

P5P7

P10

P9

P4

P8

Clipping

For the image below consider which lines

and points should be kept and which ones

should be clipped

wymax

wymin

wxmin wxmax

Window

P1

P2

P3

P6

P5P7

P10

P9

P4

P8

Point Clipping

Easy - a point (x,y) is not clipped if:

wxmin ≤ x ≤ wxmax AND wymin ≤ y ≤ wymax

otherwise it is clipped

wymax

wymin

wxmin wxmax

Window

P1

P2

P5

P7

P10

P9

P4

P8

Clipped

Points Within the Window

are Not Clipped

Clipped

Clipped

Clipped

Line Clipping

Harder - examine the end-points of each line

to see if they are in the window or not

Situation Solution Example

Both end-points inside

the window
Don’t clip

One end-point inside

the window, one

outside

Must clip

Both end-points

outside the window
Don’t know!

Brute Force Line Clipping

Brute force line clipping can be performed as

follows:

– Don’t clip lines with both

end-points within the

window

– For lines with one end-

point inside the window

and one end-point

outside, calculate the

intersection point (using the equation of the

line) and clip from this point out

Brute Force Line Clipping (cont…)

– For lines with both end-

points outside the

window test the line for

intersection with all of

the window boundaries,

and clip appropriately

However, calculating line intersections is

computationally expensive

Because a scene can contain so many lines,

the brute force approach to clipping is much

too slow

Cohen-Sutherland: World Division

World space is divided into regions based

on the window boundaries

– Each region has a unique four bit region code

– Region codes indicate the position of the

regions with respect to the window

1001 1000 1010

0001
0000

Window
0010

0101 0100 0110

above below right left

3 2 1 0

Region Code Legend

Cohen-Sutherland: Labelling

Every end-point is labelled with the

appropriate region code

wymax

wymin

wxmin wxmax

Window

P3 [0001]
P6 [0000]

P5 [0000]

P7 [0001]

P10 [0100]

P9 [0000]

P4 [1000]

P8 [0010]

P12 [0010]

P11 [1010]

P13 [0101] P14 [0110]

Cohen-Sutherland: Lines In The Window

Lines completely contained within the

window boundaries have region code [0000]

for both end-points so are not clipped

wymax

wymin

wxmin wxmax

Window

P3 [0001]
P6 [0000]

P5 [0000]

P7 [0001]

P10 [0100]

P9 [0000]

P4 [1000]

P8 [0010]

P12 [0010]

P11 [1010]

P13 [0101] P14 [0110]

Cohen-Sutherland: Lines Outside The

Window

Any lines with a common set bit in the region

codes of both end-points can be clipped

– The AND operation can efficiently check this

wymax

wymin

wxmin wxmax

Window

P3 [0001]
P6 [0000]

P5 [0000]

P7 [0001]

P10 [0100]

P9 [0000]

P4 [1000]

P8 [0010]

P12 [0010]

P11 [1010]

P13 [0101] P14 [0110]

Cohen-Sutherland: Other Lines

Lines that cannot be identified as completely

inside or outside the window may or may not

cross the window interior

These lines are processed as follows:

– Compare an end-point outside the window to a

boundary (choose any order in which to

consider boundaries e.g. left, right, bottom, top)

and determine how much can be discarded

– If the remainder of the line is entirely inside or

outside the window, retain it or clip it

respectively

Cohen-Sutherland: Other Lines (cont…)

– Otherwise, compare the remainder of the line
against the other window boundaries

– Continue until the line is either discarded or a
segment inside the window is found

We can use the region codes to determine
which window boundaries should be
considered for intersection

– To check if a line crosses a particular
boundary we compare the appropriate bits in
the region codes of its end-points

– If one of these is a 1 and the other is a 0 then
the line crosses the boundary

Cohen-Sutherland Examples

Consider the line P9 to P10 below

– Start at P10

– From the region codes

of the two end-points we

know the line doesn’t

cross the left or right

boundary

– Calculate the

intersection of the line with the bottom boundary

to generate point P10’

– The line P9 to P10’ is completely inside the

window so is retained

wymax

wymin

wxmin wxmax

Window

P10 [0100]

P9 [0000]

P10’ [0000]

P9 [0000]

Cohen-Sutherland Examples (cont…)

Consider the line P3 to P4 below

– Start at P4

– From the region codes

of the two end-points

we know the line

crosses the left

boundary so calculate

the intersection point to

generate P4’

– The line P3 to P4’ is completely outside the

window so is clipped

wymax

wymin

wxmin wxmax

Window
P4’ [1001]

P3 [0001]

P4 [1000]

P3 [0001]

Cohen-Sutherland Examples (cont…)

Consider the line P7 to P8 below

– Start at P7

– From the two region

codes of the two

end-points we know

the line crosses the

left boundary so

calculate the

intersection point to

generate P7’

wymax

wymin

wxmin wxmax

Window

P7’ [0000]

P7 [0001] P8 [0010]

P8’ [0000]

Cohen-Sutherland Examples (cont…)

Consider the line P7’ to P8

– Start at P8

– Calculate the

intersection with the

right boundary to

generate P8’

– P7’ to P8’ is inside

the window so is

retained

wymax

wymin

wxmin wxmax

Window

P7’ [0000]

P7 [0001] P8 [0010]

P8’ [0000]

Calculating Line Intersections

Intersection points with the window

boundaries are calculated using the line-

equation parameters

– Consider a line with the end-points (x1, y1)

and (x2, y2)

– The y-coordinate of an intersection with a

vertical window boundary can be calculated

using:

y = y1 + m (xboundary - x1)

where xboundary can be set to either wxmin or

wxmax

Calculating Line Intersections (cont…)

– The x-coordinate of an intersection with a

horizontal window boundary can be

calculated using:

x = x1 + (yboundary - y1) / m

where yboundary can be set to either wymin or

wymax

– m is the slope of the line in question and can

be calculated as m = (y2 - y1) / (x2 - x1)

Area Clipping

Similarly to lines, areas

must be clipped to a

window boundary

Consideration must be

taken as to which

portions of the area must

be clipped

Sutherland-Hodgman Area Clipping

Algorithm

A technique for clipping areas

developed by Sutherland &

Hodgman

Put simply the polygon is clipped

by comparing it against each

boundary in turn

Original Area Clip Left Clip Right Clip Top Clip Bottom

Sutherland-Hodgman Area Clipping

Algorithm (cont…)

To clip an area against an individual boundary:

– Consider each vertex in turn against the

boundary

– Vertices inside the boundary are saved for

clipping against the next boundary

– Vertices outside the boundary are clipped

– If we proceed from a point inside the boundary

to one outside, the intersection of the line with

the boundary is saved

– If we cross from the outside to the inside

intersection point and the vertex are saved

Sutherland-Hodgman Example

Each example

shows the point

being processed (P)

and the previous

point (S)

Saved points define

area clipped to the

boundary in

question

S

P

Save Point P

S

P

Save Point I

I

P

S

No Points Saved

S

P

Save Points I & P

I

Summary

Objects within a scene must be clipped to

display the scene in a window

Because there are can be so many objects

clipping must be extremely efficient

The Cohen-Sutherland algorithm can be

used for line clipping

The Sutherland-Hodgman algorithm can be

used for area clipping

	Slide 1
	Viewing In 2D
	Contents
	Windowing I
	Windowing II
	Windowing III
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Coordinate Systems
	Screen Coordinate System
	Screen Coordinate System
	World Coordinate System
	Define a world window
	World Window
	Viewport
	Window to viewport mapping
	Window to viewport mapping
	Window to viewport mapping
	Also, one thing to remember …
	Window to viewport mapping
	Window to viewport mapping
	Window to viewport mapping
	Clipping
	Clipping
	Point Clipping
	Line Clipping
	Brute Force Line Clipping
	Brute Force Line Clipping (cont…)
	Cohen-Sutherland: World Division
	Cohen-Sutherland: Labelling
	Cohen-Sutherland: Lines In The Window
	Cohen-Sutherland: Lines Outside The Window
	Cohen-Sutherland: Other Lines
	Cohen-Sutherland: Other Lines (cont…)
	Cohen-Sutherland Examples
	Cohen-Sutherland Examples (cont…)
	Cohen-Sutherland Examples (cont…)
	Cohen-Sutherland Examples (cont…)
	Calculating Line Intersections
	Calculating Line Intersections (cont…)
	Area Clipping
	 Sutherland-Hodgman Area Clipping Algorithm
	 Sutherland-Hodgman Area Clipping Algorithm (cont…)
	Sutherland-Hodgman Example
	Summary

