

ŻŻŻŻ

مدونة المناهج السعودية https://eduschool40.blog الموقع التعليمي لجميع المراحل الدر اسية في المملكة العربية السعودية

Topics Covered by <u>Chemistry</u> Aptitude Test for Admission and Placement

Subject	Items
1- Atomic structure for chemical compounds and their physical properties	Elements, compounds and mixtures - State of Matter and Properties - Chemical symbols - Predicting the number of elements in a compound - Predicting the number of atoms in a compound - Density - Periodic table - Atomic structure - Eelectronic configuration - Predicting the number of protons, neutrons and electrons - Chemical bonds .
2- Chemical equations and naming of inorganic compounds-chemical calculations	Chemical formulae - Naming of inorganic compounds – Ionic compounds - Calculating the formula mass - Calculating the number of moles - Calculating the number of grams - Calculating the mass of one atom - Atom and mole ratio in a compound - Calculating the number of atoms and molecules - Balancing chemical equations - Predicting the products of chemical reactions - Predicting the mole ratio from a balanced chemical equation - Predicting the type of chemical reaction.
3- Chemical equilibrium for acids, bases, salts and oxidation - reduction reactions	Predicting the number of ions in a formula unit - Assigning oxidation numbers - Assigning atoms changing their oxidation state in redox reactions - Acids and bases - Acid-base reactions - Calculating the $[H^+]$ and pH - Calculating the $[OH^-]$ and pOH - Acid dissociation constants (K _a) - Base dissociation constants (K _b) - Buffer solutions - Acid - base titration - Equilibrium expressions - Equilibrium constants - The solubility and solubility product (K _{sp}).
4- Solution chemistry	Molarity.
5- Organic compounds and functional groups	Hydrocarbon compounds - Aromatic hydrocarbons – Functional groups.

Details of the Test Topics

The students should be able to understand the following basic concepts in chemistry and solve problems related to items for each concept.

1-	Atomic Structure fo	or Chemical Compou	inds and Their Physic	cal Properties:	
	Example 1.1: Vi anemia. Vitamin I present in Vitamir	tamin B_{12} is necessa B_{12} has the molecular	ry for proper health. formula, C ₆₃ H ₈₈ CoN14	It is used in the treatment of O ₁₄ P. How <u>many elements</u> are	
	A) 5	B) 181	C) 6	D) 7	
	Example 1.2: Wh A) Water	ich of the following is B) A pure gold coi	s classified as <u>a mixtur</u> n C) Table salt	<u>e</u> ? D) Air	
	ii) State of Matter a Example 1.3: Wh of temperature and	nd Properties: hich of the following s d pressure?	substances exist <u>as a li</u>	quid under ordinary conditions	
	A) Sodium carb	onate	B) Carbon m	onoxide	
	C) Mercury		D) Hydrogen		
	Example 1.4: Ho salt + sugar + wat	w many phases are p er + gasoline]	present in the followin	g well-mixed system: [sand +	
	A) 5	B) 3	C) 2	D) 4	
	Example 1.5: All of the following are properties of oxygen. Which one represents a chemical property?				
	A) It is a gas at 25°C		B) It causes i	B) It causes iron to form rust	
	C) It can be compressed		D) It freezes	D) It freezes at -219°C	
	Example 1.6: A water, can be mad responsible for this	safety razor blade, m le to <u>float on water</u> if j s phenomenon?	nade of iron and with placed carefully. Whic	a density greater than that of h of the following properties is	
	A) Specific heat	B) Surface ten	sion C) Melting p	oint D) Viscosity	
	iii) Chemical Symbo Example 1.7: Wh A) Silver - Ag C) Magnesium	ols: ich of the following e - Mg	lements is paired with B) Nitrogen - D) Lithium -	the wrong symbol? · Ni Li	
	iv) Predicting the Atoms in a Comp Example 1.8: Wh four oxygen atom	Number of Element bound: nich of the following	es in a Compound & oxyanions (anion con	c Predicting the Number of taining oxygen atoms) contain	
	A) Nitrate See example 1.1	B) Sulfate	C) Carbonate	D) Bicarbonate	

v) Density:

Example 1.9: A graduated cylinder contains 50.0 mL of water. Uniform stones, each weighing 5.000 g and having a density of 2.5 g/mL, are placed into the graduated cylinder until the water level rises to 130.0 mL. How many stones are in the cylinder? A) 60 B) 40 C) 32 D) 25

vi) Periodic Table, Atomic Structure and Electronic Configuration-Predicting the Number of Protons, Number of Neutrons and Electrons:

Example 1.10: The electron configuration of the magnesium atom (Mg) in the outermost shell (last energy level) is:

A) $2s^22p^5$ B) $3s^2$ C) $2s^22p^1$ D) $3s^23p^1$

Example 1.11: How many neutrons are in the ion $\frac{52}{24}$ Cr³⁺?

A) 24 B) 28 C) 25 D) 27

vii) Chemical Bonds:

Example 1.12: The bond formed between ammonia molecule (NH₃) and hydrogen ion (H⁺) is known as:

A) Ionic bond

- B) Covalent bond
- C) Coordinate covalent bond (dative bond) D) Metallic bond

2- Chemical Equations and Naming of Inorganic Compounds-Chemical Calculations:i) Chemical Formulae & Naming of Inorganic Compounds:

Example 2.1: Choose the pair of name and formula that <u>do not match</u>?

<u>Formula</u>	Name
A) AlCl ₃	Aluminium chloride
B) NaNO ₃	Sodium nitrate
C) CaO	Carbon monoxide
D) H_2SO_4	Sulfuric acid

ii) Ionic Compounds:

Example 2.2: How many ions per formula unit would you find if you dissolve $(NH_4)_2[Ce(NO_3)_6]$ in water?

iii) Calculating the Formula Mass:

Example 2.3: Calculate the molar mass of MgSO₄.7H₂O.

A)	120.37 g/mole	B)	126.14 g/mole
C)	246.54 g/mole	D)	222.57 g/mole

iv) Calculating the Number of Moles:

Example 2.4: How many moles of nitrogen (N) atoms are in 75.0 g of penicillin,
 $C_{16}H_{18}O_4N_2S?$ [molar mass of penicillin = 334.28 g/mole]
A) 0.224D) 0.296

Example 2.5: Which of the following contains 2.00 moles of carbon atoms?

- A) 60.0 g ethane (C₂H₆)
- B) 26.0 g benzene (C_6H_6) D) 5.00 g methane (CH_4)
- C) 2.00 moles oxalic acid ($H_2C_2O_4$) D) 5.00 g methane (CH₄)

	v) Calculating the Number of Gran	ns:	
	Example 2.6: Which of the followi	ng substances contains the greatest mass of chlorine (Cl_2) ?	
	A) 5.0 g Cl_2	B) 0.50 mole Cl ₂	
	C) 0.10 mole KCl	D) 30.0 g MgCl_2	
	vi) Calculating the Mass of one Ato)m:	
	Example 2.7: What is the mass of	f one atom of carbon, C?	
	A) 1.99 x 10 ⁻²³ g	B) $0.502 \times 10^{23} \text{ g}$	
	C) $0.502 \times 10^{-23} \text{ g}$	D) $1.99 \times 10^{23} \text{ g}$	
	vii) Atoms and Mole Ratio in a Co	mpound:	
	Example 2.8: For baking soda, N	aHCO ₃ , what is the molar ratio of C to O?	
	A) 1:1 B) 3:1	C) 1:2 D) 1:3	
	viii) Calculating the Number of At	oms and Molecules:	
	Example 2.9: One mole of any el	ement contains:	
	A) 3.011×10^{23} atoms	B) 6.022×10^{23} atoms	
	C) 1.506×10^{23} atoms	D) 12.04×10^{23} atoms	
	ix) Balancing Chemical Equations:		
	Example 2.10: Considering the fo	blowing reaction:	
	$AgNO_3(aq) + CaBr_2(aq)$	\rightarrow AgBr(s) + Ca(NO ₃) ₂ (aq)	
	the coefficient before AgBr is:		
	A) 1 B) 2	C) 4 D) 5	
	x) Predicting the Products of Cher Example 2.11: Sodium carbonate water and	nical Reactions: reacts with hydrochloric acid to form three products; salt,	
	A) Hydrogen	B) Carbon monoxide	
	C) Chlorine	D) Carbon dioxide	
	c) chief		
	xi) Predicting the Mole Ratio from	a Balanced Chemical Equation:	
	Example 2.12. Of the balance $2NH_2(\alpha) + 3O_2(\alpha) + 2C$	$H_{\alpha}(\alpha) \longrightarrow 2HCN(\alpha) + 6H_{\alpha}O(1)$	
	the proper polar ratio for the polar $ratio = 1000$	$H_{4}(g) \longrightarrow 2HCN(g) + 0H_{2}O(1)$	
	(A) 2 malas $\Omega_2/1$ mala HCN	P) 2 molos $\Omega_2/2$ molos HCN	
	A) $3 \text{ moles } O_2/1 \text{ moles } O_1$	D) 2 moles $O_2/2$ moles HCN	
	C) 2 moles HCN /3 moles O_2	D) 3 moles $O_2/2$ moles HCN	
	xii) Predicting the Type of Chemic	al Reaction:	
	Example 2.13: What type of react	tion is the following?	
	$2KClO_3(s) \xrightarrow{Heat}$	$2KCl(s) + 3O_2(g)$	
	A) Single displacement	B) Decomposition	
	C) Double displacement	D) Combustion	
3-	Chemical Equilibrium for Acids. F	Bases. Salts and Oxidation-Reduction Reactions:	
	i) Predicting the Number of Jons in a Formula Unit:		
	Example 3.1: How many ions per	formula unit would you find if you dissolve KClO3 in wate	er?
	A) 3 B) 9	C) 2 D) 6	
	See example 2.2	, , , , , , , , , , , , , , , , , , ,	
	•		

ii) Assigning Oxidation Numbers and Atoms Reactions: Example 3.2: Which of the following is an oxid	changing their Oxidation State in Redox dation-reduction reaction?
A) $HC_2H_3O_2(aq) + H_2O(1) \longrightarrow H_3O(2)$ B) $Zn^{2+}(aq) + H_2(g) \longrightarrow Zn(s) + 2H_2O(1) \longrightarrow H_3O^+(aq)$ C) $HNO_2(aq) + H_2O(1) \longrightarrow H_3O^+(aq)$ D) $2H_2O(g) \longrightarrow 2H_2(g) + O_2(g)$	$ \begin{array}{l} \overset{\dagger}{(aq)} + C_2 H_3 O_2(aq) \\ I(aq) \\ I + NO_2(aq) \end{array} $
Example 3.3: The oxidation number of nitroge A) +3 B) -2	n atom in NaNO ₂ is: C) -3 D) +1
iii) Acids and Bases, and Acid-Base Reactions: Example 3.4: A neutral solution can be obtained concentration of:	ed by mixing equal volumes of the same
A) HCl and NH₃C) HCOOH and KOH	B) CH₃COOH and NaOHD) HCl and NaOH
 iv) Calculating the [H⁺] and pH, and Calculatin Example 3.5: The pH is defined as: A) pH = -log [H⁺] C) pH = [H⁺] 	 b pH = 1 og [H⁺] b pH = [H⁺]²
Example 3.6: A solution in which $[H^+] = 10^{-6} H^{-6}$ A) -6 B) +6	nas a pH of C) -8 D) +8
Example 3.7: Lemon juice has a $[H^+]$ of 0.01 M A) $1.0x10^{-14}$ M B) $1.0x10^{-7}$ M	A. What is the [OH ⁻]? C) 1.0x10 ⁻¹² M D) 1.0x10 ² M
v) Acid Dissociation Constants (K _a) and base D Example 3.8: Given the following equilibrium $HC_2H_3O_2(aq) + H_2O(I) \longrightarrow C_2H_3O_2(aq)$	issociation Constants (K _b): system, what is the expression of K_a ? aq) + H ₃ O ⁺ (aq)
A) $K_a = \frac{[C_2H_3O_2^-][H_3O^+]}{[HC_2H_3O_2]}$ C) $K_a = \frac{[C_2H_3O_2^-][H_3O^+]}{[HC_2H_3O_2][H_2O]}$	B) $K_a = \frac{[HC_2H_3O_2]}{[C_2H_3O_2^-][H_3O^+]}$ D) $K_a = \frac{[HC_2H_3O_2^-][H_2O]}{[C_2H_3O_2^-][H_3O^+]}$

vi) Buffer Solutions:

Example 3.9: Which of the following constitute a buffer?

Example 3.7. Which of the following	g constitute a buffer.
A) HCl and NaCl	B) KOH and HCl
C) NH ₃ and NH ₄ Cl	D) BaCl ₂ and AgNO ₃

vii) Acid-Base Titration:

Example 3.10: What volume of 1.80 M of an automobile sulfuric acid, (H₂SO₄) neutralizes 42.10 cm³ of 1.90 M NaOH?

A) 22.2 cm³ B) 42.1 cm³ C) 44.4 cm³ D) 39.9 cm³

viii) Equilibrium Expressions and Equilibrium Constants:

Example 3.11: Given the following equilibrium system, what is the expression of K_c ? N₂(g) + 3H₂(g) \implies 2NH₃(g)

A) $K_c = [NH_3]^2 / [N_2] + 3[H_2]$	B) $K_c = [NH_3]^2 / [N_2][H_2]^3$
C) $K_c = [N_2][H_2]^3 / [NH_3]^2$	D) $K_c = 2[NH_3] / [N_2] + 3[H_2]$

ix) The Solubility and Solubility Product (K_{sp}):

Example 3.12: The solubility product (K _{sp}) of	Ag ₂ CrO ₄ is given by:
A) $K_{sp} = 2[Ag^+][CrO_4^{2^-}]$	B) $K_{sp} = 1/[Ag^+]^2 [CrO_4^2^-]$
C) $K_{sp} = [2Ag^+][CrO_4^{2-}]$	D) $K_{sp} = [Ag^+]^2 [CrO_4^{2-}]$

4- Solution Chemistry:

- Molarity:

Example 4.1: What is the molarity of a solution made by dissolving 2.40 mole of KI in enough water to make 2.75 L of solution?

A) 0.200 M B) 0.873 M C) 0.255 M D) 0.542 M

5- Organic Compounds and Functional Groups:

- Hydrocarbon Compounds, Aromatic Hydrocarbons, and Functional Groups:

Example 5.1: Not all carbon containing compounds are organic compounds. Which one of the following compounds is an <u>inorganic compound</u>?

A) CH4(methane)B) CH3OH(methanol)C) CH2Cl2(dichloromethane)D) CaCO3(calcium carbonate)

Example 5.2: Which of the following is an <u>aromatic compound</u>?

A) Methane B) Ethanol C) Benzene D) Acetaldehyde

Example 5.3: What is the functional group (-C-) in CH_3 -C-CH₃.

- A) Carbonyl group
- C) Carboxylic acid group

B) Hydroxyl groupD) Aldehyde group

Data You May Need

Physical Constants: Avogadro's number = 6.022×10^{23} objects/mole

Atomic Masses:

 $\begin{array}{ll} H = 1.01; & C = 12.0; \\ Cl = 35.5; & K = 39.1 \end{array}$ N = 14.0; O = 16.0; Mg = 24.3; S = 32.1

Atomic Number:

H = 1; N = 7; Mg = 12