## Chapter 3 Systems of Linear Equations and Introduction to Determinants (Summary) <br> Exercises / Section 3.1 (page 84)

- Solve the following systems of equations graphically.

Problem \# 1. $\begin{aligned} & 2 x-y=1 \\ & x-y=2\end{aligned}, \quad$ Problem \# 5. $\begin{aligned} & -x-3 y=4 \\ & 2 x+2 y=5\end{aligned} \quad$ Problem \#7. $\begin{aligned} & 2 x+3 y=2 \\ & 3 x+2 y=1\end{aligned}$
Problem \# 9 .

$$
\begin{aligned}
& 5 x-2 y=9 \\
& 4 x-3 y=4
\end{aligned}
$$

$$
\text { Problem \# 11. } \begin{aligned}
& x+y=0 \\
& x-2 y=20
\end{aligned}
$$

(Problems solved in class \# 1, 11)
HW: Problem \# 5, \# 7, \# 9

## Exercises / Section 3.2 (page 90-91)

- Solve the following systems of equations by the method of addition or subtraction.
$\begin{array}{lll}\text { Problem \# 1. } & x+y=4 \\ & 2 x-y=5 & \text { Problem \# 5. } \\ \text { Problem \# 7. } \\ 4 x-3 y=-11 \\ 12 x+25 y=69\end{array} \quad$ Problem \# 9. $\begin{aligned} & 3 x-5 y=42 \\ & 2 x+2 y=1 \\ & 5 x-5 y=1\end{aligned}$
- Solve the following systems of equations by the method of substitution.

Problem \# 15. $\begin{aligned} & 2 x+y=1 \\ & x+3 y=8\end{aligned}$ Problem \# 17. $\quad \begin{aligned} & 8 x-10 y=-13 \\ & x+2 y=0\end{aligned} \quad$ Problem \# 19. $\begin{aligned} & 5 x+2 y=3 \\ & 6 x+3 y=2\end{aligned}$

- Solve the following systems of equations by either method. Problem \# 23. $\begin{aligned} & 3 x-2 y=1 \\ & 6 x-4 y=5\end{aligned}$

Problem \# 27. $\begin{aligned} & \frac{2}{x}-\frac{3}{y}=1 \\ & \frac{3}{x}-\frac{2}{y}=2\end{aligned} \quad$ Problem \# 35. $\begin{aligned} & 2 w-3 z=5 \\ & 4 w-6 z=10\end{aligned}$
Problem \# 37. $\begin{gathered}-2 v+5 w=10 \\ 4 v-10 w=15\end{gathered}$
(Problems solved in class \# 1, 9, 15, 23, 35)
HW: Problem \# 5, 7, 17, 19, 27, 37

## Exercises / Section 3.3 (page 95-96)

- Expand each determinant. Problem \#3. $\left|\begin{array}{lr}-2 & 4 \\ 4 & -8\end{array}\right|$

Problem \# 9. $\left|\begin{array}{rr}-2 & -1 \\ 12 & 5\end{array}\right| \quad$ Problem \# 13. $\quad\left|\begin{array}{ll}32 & 21 \\ -17 & 16\end{array}\right|$
Problem \# 15. $\left|\begin{array}{rr}18 & -6 \\ 75 & 0\end{array}\right|$

- Solve the following systems of equations by using Cramer rule. Problem \# 17.

$$
3 x+4 y=1
$$

$$
2 x+3 y=4
$$

Problem \# 25. $\begin{aligned} & \frac{2}{x}-\frac{3}{y}=7 \\ & \frac{1}{x}+\frac{5}{y}=3\end{aligned} \quad$ Problem \# 31. $\begin{aligned} & F_{1}+2 F_{2}=5 \\ & 2 F_{1}+F_{2}=6\end{aligned}$ Problem \# 33. $\begin{aligned} & 3 R_{1}+4 R_{2}=20 \\ & 4 R_{1}+2 R_{2}=15\end{aligned}$
(Problems solved in class \# 3, 15, 17, 31)
HW: Problem \# 9, 13, 25, 33

## Exercises / Section 3.4 (page 99-101)

Problem \# 1. In figure 3.10 the moment of weight W is 5 . The lever balances when $d_{1}=2 \mathrm{ft}$ and $d_{2}=1 \mathrm{ft}$ and when $d_{1}=1 \mathrm{ft}$ and $d_{2}=3 \mathrm{ft}$. Determine the weights $w_{1}$ and $w_{2}$.


Problem \# 7. Two resistors connected in series have a combined resistance of $150 \Omega$. If the resistance of one resistor is $10 \Omega$ less than the other, find the resistance of each.
Problem \# 15. The sum of the voltages across two resistors is 55.1 V . It was found that 3 times the first voltage is 9.7 V less than 4 times the second. What are the two voltages?
Problem \# 17. Tickets for an industrial exhibit cost $\$ 5.00$ for regular admission and $\$ 4.00$ for senior citizens. On one day 215 tickets were sold for total intake of $\$ 1050$. How many tickets of each type were sold?
Problem \# 21. Two machines have a total of 62 moving parts. If one machine has 2 more than 3 times as many moving parts as the other, how many moving parts does each machine have?
Problem \# 25.
One consultant to a firm charges $\$ 200$ per day, and another consultant charges $\$ 250$ per day. After 13 days the total charged by the two consultants comes to $\$ 2950$. Assuming that only one of the two consultants was called in on any one day, how many days did each one work?
(Problems solved in class \# 1, 17)
HW: Problem \# 7, \# 15, \# 25

## Exercises / Section 3.5 (page 103)

- Solve the following systems of equations

$$
3 x+2 z=-1
$$

$$
2 x-y+3 z=16
$$

$$
\frac{2}{x}-\frac{1}{y}+\frac{2}{z}=2
$$

Problem \# 3. $4 x-y-2 z=7$
$x+y=2$
Problem \#7. $3 x+4 y+2 z=7$
$5 x-6 y+8 z=47$

$$
\frac{3}{x}-\frac{4}{y}+\frac{1}{z}=3
$$

(Problems solved in class \# 11)
HW: Problem \# 3, \# 7

## Exercises / Section 3.6 (page 111-114)

Problem \# 5. $\left|\begin{array}{lrl}2 & -1 & 3 \\ 3 & 0 & -5 \\ 10 & 5 & -10\end{array}\right| \quad$ Problem \# 7. $\left|\begin{array}{lrr}2 & 3 & 8 \\ -1 & 3 & -2 \\ 5 & -6 & -12\end{array}\right| \quad$ Problem \# 11. $\left|\begin{array}{lll}-3 & -4 & -7 \\ 3 & 0 & -6 \\ 10 & 15 & 18\end{array}\right|$

- $\quad$ Solve the system of equation by Cramer's rule:
$2 x-y+3 z=16$
Problem \# 19. $3 x+4 y+2 z=7$
$5 x-6 y+8 z=47$

Problem \# 21

$$
\begin{aligned}
& 2 x-3 y+z=1 \\
& x-2 y-3 z=1 \\
& x-4 y+2 z=2
\end{aligned}
$$

Problem \# 25 A portion of \$ 5950 was invested at $8 \%$, another portion at $10 \%$, and the rest at $12 \%$. The total interest income was $\$ 635$. If the sun of the second investment and twice the first investment was $\$ 750$ more than the third investment, find the amount invested in each rate.
Problem \# 27 Three machine parts cost a total of \$ 40. The first part costs as much as the other two together, while the cost of 6 times the second is $\$ 2$ more than the total cost of the other two. Find the cost of each part. Problem \# 31 Find the currents of the circuits by solving the system of equations given

Problem 31

(Problems solved in class \# 7, 27, 33).

$$
\begin{aligned}
& I_{1}-I_{2}+I_{3}=0 \\
& I_{1}+2 I_{2}=10 \\
& -2 I_{2}-I_{3}=-5
\end{aligned}
$$

Problem \# 33

$$
\begin{aligned}
& -I_{1}+I_{2}+I_{3}=0 \\
& -I_{1}-3 I_{2}=-10 \\
& 3 I_{2}-5 I_{3}=-6
\end{aligned}
$$

HW: Problem \# 5, 11, 19, 21, 25, 31

