

Unified Scientific Track

Answer Key

Mock Test For

Final Exam

Introduction to Chemistry (CHEM 101)

(Chapters 3, 4, 5 & 7)

Topics 08 - 17 & 19 - 21

For

Unified Scientific Track Students

(All Campuses)

1st Semester

1441 | 2019 – 2020

Lanthanides 6	Ce Ce	Pr	Nd	Pm	Sm^{62}	Eu	Gd Gd	Tb	Dy Dy	Ho	Er	Tm	Y^{70}	Lu	6
	Cerium 140.1	Praseodymium 140.9	Neodymium 144.2	Promethium (145)	Samarium 150.4	Europium 152.0	Gadolinium 157.3	Terbium 158.9	Dysprosium 162.5	Holmium 164.9	Erbium 167.3	Thulium 168.9	Ytterbium 173.0	Lutetium 175.0	
Actinides 7	Th	Pa	$\overset{92}{\mathbf{U}}$	$\stackrel{93}{\mathrm{Np}}$	Pu	Am	Cm	\mathbf{B}^{97}	Cf	Es	$\stackrel{\scriptscriptstyle{100}}{\mathrm{Fm}}$	Md	No	Lr	7
	Thorium 232.0	Protactinium 231.0	Uranium 238.0	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)	Ш

▲ CHEM 101 Supplemental Information

$d = \frac{\mathbf{m}}{\mathbf{V}}$	$^{\circ}\text{C} = \frac{(^{\circ}\text{F} - 32)}{1.8}$	°F = 1.8 (°C) + 32		°C = <i>K</i> − 273	$K = (^{\circ}C) + 273$	
$M = \frac{\mathbf{n}}{\mathbf{V}}$	$\mathbf{M}_1 \ \mathbf{V}_1 = \mathbf{M}_2 \ \mathbf{V}_2$		$\mathbf{K}_{\mathbf{W}} = [\mathbf{H}_{3}\mathbf{O}^{+}]$	$\times [\mathrm{OH^{-}}] = 1 \times 10^{-14}$	$pH = -\log [H_3O^+]$	
molar mass	$n = \text{empirical formula} \times n$ of molecular formula of empirical formula	% mass of element X = $\frac{\text{mass of element X in 1 mol of compound}}{\text{mass of 1 mol of the compound}} \times 100\%$		element X in 1 mol of compound ss of 1 mol of the compound $\times 100\%$	$\% yield = \frac{\text{actual yield}}{\text{theoretical yield}} X 100$	
$\mathbf{q} = \mathbf{C} \times \Delta \mathbf{T}$	$\mathbf{w} = -\mathbf{P} \Delta \mathbf{V}$	q = m	$\mathbf{m} \times \mathbf{C_s} \times \Delta \mathbf{T}$ 1 L.atm = 101.3 J		Avogadro's No. = 6.022×10^{23}	
Atomic mass = \sum_{n} (fraction of isotope n) × (mass of isotope n) = (fraction of isotope 1 × mass of isotope 1) + (fraction of isotope 2 × mass of isotope 2)+			Mole Conversion	Grams of Substance × Molar Mass Mole Subst	a n Mala auda a	

Answer The Following Q	uestions:							
1. Which type of chemelement in a compound?		only the relative numb	per of atoms of each					
a. Molecular formula		☑ b. Empirical formula						
🗖 c. Structural formula		☐ d. Ball-and-stick mode	el					
2. If we have 9.03×10^{24}	aluminum atoms, h	ow many moles of alumin	um do we have?					
□ a. 5.4 mol	□ b. 10 mol	☑ c. 15 mol	☐ d. 2.7 mol					
3. The systematic name	of CuNO ₂ is							
☐ a. copper(II) nitrate		☐ b. copper(I) nitrate						
☑ c. copper(I) nitrite		☐ d. copper(II) nitrate						
4. What is the formula for the ionic compound formed by barium and phosphate ions?								
\square a. Ba ₂ (PO ₄) ₃	☑ b. Ba ₃ (PO ₄) ₂	☐ c. Ba ₃ (PO ₃) ₂	☐ d. BaPO ₄					
5. How many grams are in a sample containing 2.71×10^{24} atoms of iron?								
☐ a. 160.2 g	☑ b. 251.3 g	☐ c. 449.9 g	☐ d. 292.2 g					
6. What are the coefficients (a, b, c and d) needed to balance the following equation?								
<u>a</u> P	bCl ₃ + <u>b</u> Ca(OH) ₂	\rightarrow <u>c</u> CaCl ₂ + <u>d</u> Pb(OH)	3					
□ a. 3, 2, 2, 2	☑ b. 2, 3, 3, 2	□ c. 4, 2, 2, 4	□ d. 4, 3, 3, 2					
7. When the following equation is balanced, the coefficient of O_2 would be								
	$C_2H_4 + O_2$	\rightarrow $CO_2 + H_2O$						
□ a. 1	□ b. 2	☑ c. 3	□ d. 4					
8. What is the mass percent of calcium in calcium acetate, Ca(C ₂ H ₃ O ₂) ₂ ?								
☐ a. 34.6%	☑ b. 25.3%	□ c. 41.1%	□ d. 35.2%					
9. The correct chemical formula for iron(II) oxide is								
☐ a. Fe ₂ O ₃	☐ b. Fe ₂ O	☐ c. FeO ₂	☑ d. FeO					
10. Calculate the molar mass of aluminum tartrate, Al ₂ (C ₄ H ₄ O ₆) ₃ .								
□ a. 59 g/mol	☐ b. 71 g/mol	☐ c. 119 g/mol	☑ d. 498.1 g/mol					

11. How many covaler	nt bonds will a nitrogen	atom normally make?						
□ a. 1	□ b. 2	☑ c. 3	□ d. 0					
12. Group 1A metals always have an oxidation state of in their compounds.								
□ a. +2	□ b2	□ c. 0	☑ d. +1					
13. The oxidation number of nitrogen in Ca(NO ₃) ₂ is								
□ a. +6	☑ b. +5	□ c. +3	□ d3					
14. Identify the reducing agent in the following reaction:								
	$Fe_2O_3 + 2Al -$	\rightarrow Al ₂ O ₃ + 2Fe						
☐ a. Fe ₂ O ₃	☑ b. Al	\Box c. Al ₂ O ₃	☐ d. Fe					
15. The oxidation number of bicarbonate ion in its compounds is								
☑ a. –1	□ b2	□ c3	□ d. +1					
16. What is the empirical formula of glycolylurea which has the molecular formula								
$C_3H_4N_2O_2$?								
□ a. CH ₂ NO	☐ b. CH ₄ N ₂ O	☑ c. C ₃ H ₄ N ₂ O ₂	☐ d. C ₂ H ₂ NO					
17. If the empirical fo	17. If the empirical formula of a compound is C ₂ HCl and its molar mass is 181.44 g/mol,							
what is the molecular	formula of this compou	nd?						
□ a. C ₄ H ₃ Cl ₃	☐ b. C ₅ H ₃ Cl ₃	☐ c. C ₆ H ₄ Cl ₄	☑ d. C ₆ H ₃ Cl ₃					
18. A compound contains 74.03 % C, 8.70 % H, and 17.27 % N. What is the empirical								
formula of this compo	ound?							
☑ a. C ₅ H ₇ N	\Box b. $C_4H_8N_2$	\Box c. $C_6H_9N_3$	\Box d. C ₄ H ₇ N					
19. How many moles of magnesium nitride, Mg ₃ N ₂ , would be produced when 3 g of								
magnesium complete	ly react with excess N ₂ a	ccording to the following	ng equation?					
$3 Mg_{(s)} + N_{2(g)} \rightarrow Mg_3N_{2(s)}$								
□ a. 4.11 mol	☑ b. 0.041 mol	☐ c. 3.21 mol	☐ d. 14.02 mol					
20. How many grams of K ₂ CO ₃ are needed to prepare 200 mL of 0.150 M solution?								
☑ a. 4.14 g	☐ b. 10.4 g	□ c. 13.8 g	☐ d. 2.07 g					

21. Consider the following reaction, if the reaction of 2.5 g of Al with 2.5 g of O_2 produced 3.5 g of Al_2O_3 . The % yield equals								
	$4 \text{ Al}_{(s)} + 3 \text{ O}_2$	$_{(g)} \ \rightarrow \ 2 \ Al_2O_{3 (s)}$						
☑ a. 74 %	□ b. 37 %	□ c. 47 %	☐ d. 66 %					
22. To what volume (in mL) shall we dilute 50.0 mL of a 12 M stock HNO ₃ solution to obtain								
a 0.10 M HNO ₃ solutio	n?							
☐ a. 416 mL	☑ b. 6000 mL	☐ c. 3200 mL	☐ d. 2.45 mL					
23. What is the final	23. What is the final molarity of an HCl solution, if 40 mL of a 2.5 M HCl solution were							
diluted to a final volu	me of 500 mL?							
☐ a. 5.0 M	☐ b. 31.25 M	☑ c. 0.20 M	☐ d. 2.45 M					
24. What mass (g) of N	24. What mass (g) of NaF is contained in 0.35 L of a NaF solution that has a molarity of 2.20							
M?								
☑ a. 32.34 g	☐ b. 25.41 g	☐ c. 0.77 g	□ d. 7.70 g					
25. The Lewis dot structure for nitrogen molecule is								
☑ a. •N∷N•	□ b. •N ••N•	□ c. :N::N:	□ d. ·N.·N.·					
			☐ d. :N::N: irs andlone pairs of					
26. The Lewis dot stru								
26. The Lewis dot struelectrons.	ıcture of H ₂ S molecule	has bonding pai	irs andlone pairs of					
26. The Lewis dot struelectrons. □ a. 2, 4	icture of H ₂ S molecule ☑ b. 2, 2 in a solution that has a	has bonding pai \Box c. 4, 2 $[H_3O^+] = 1.0 \times 10^{-3} \text{ M}?$	irs andlone pairs of					
26. The Lewis dot strue electrons. □ a. 2, 4 27. What is the [OH-] is □ a. 1.0 × 10 ⁻³ M	icture of H ₂ S molecule ☑ b. 2, 2 in a solution that has a	has bonding pai \Box c. 4, 2 $[H_3O^+] = 1.0 \times 10^{-3} \text{ M}?$ \Box c. $1.0 \times 10^{-8} \text{ M}$	irs andlone pairs of					
26. The Lewis dot strue electrons. □ a. 2, 4 27. What is the [OH-] is □ a. 1.0 × 10 ⁻³ M	icture of H ₂ S molecule ☑ b. 2, 2 in a solution that has a ☐ b. 1.0 × 10 ⁻⁶ M	has bonding pai \Box c. 4, 2 $[H_3O^+] = 1.0 \times 10^{-3} \text{ M}?$ \Box c. $1.0 \times 10^{-8} \text{ M}$	irs andlone pairs of					
26. The Lewis dot struelectrons. a. 2, 4 27. What is the [OH-] is a. 1.0 × 10 ⁻³ M 28. Calculate the pH o	icture of H ₂ S molecule ☑ b. 2, 2 in a solution that has a ☐ b. 1.0 × 10 ⁻⁶ M f a solution that has [H	has bonding pai \Box c. 4, 2 $[H_3O^+] = 1.0 \times 10^{-3} \text{ M}?$ \Box c. $1.0 \times 10^{-8} \text{ M}$ \Box c. $1.0 \times 10^{-9} \text{ M}.$	d. 4,4 ☑ d. 1.0 × 10 ⁻¹¹ M					
26. The Lewis dot strue electrons. □ a. 2, 4 27. What is the [OH-] is □ a. 1.0 × 10 ⁻³ M 28. Calculate the pH or □ a. 2.67	icture of H ₂ S molecule ☑ b. 2, 2 in a solution that has a ☐ b. 1.0 × 10 ⁻⁶ M f a solution that has [H	has bonding pai \Box c. 4, 2 $[H_3O^+] = 1.0 \times 10^{-3} \text{ M}?$ \Box c. $1.0 \times 10^{-8} \text{ M}$ \Box c. $1.0 \times 10^{-9} \text{ M}.$ \Box c. $1.0 \times 10^{-9} \text{ M}.$	d. 4,4 ☑ d. 1.0 × 10 ⁻¹¹ M					
26. The Lewis dot struelectrons. a. 2, 4 27. What is the [OH-] is a. 1.0 × 10 ⁻³ M 28. Calculate the pH or a. 2.67 29. The compound HF	in a solution that has a □ b. 1.0 × 10 ⁻⁶ M f a solution that has [H □ b. 6.81 is	has bonding paid c. 4, 2 $[H_3O^+] = 1.0 \times 10^{-3} \text{ M?}$ $\Box \text{ c. } 1.0 \times 10^{-8} \text{ M}$ $\exists O^+] = 2.33 \times 10^{-9} \text{ M.}$ $\Box \text{ c. } 8.63$ $\Box \text{ c. a weak acid}$	d. 4,4 ☑ d. 1.0 × 10 ⁻¹¹ M ☐ d. 4.34					
26. The Lewis dot strue electrons. a. 2, 4 27. What is the [OH-] is a. 1.0 × 10 ⁻³ M 28. Calculate the pH or a. 2.67 29. The compound HF a. a strong acid 30. Which of the following and a strong acid	in a solution that has a □ b. 1.0 × 10 ⁻⁶ M f a solution that has [H □ b. 6.81 is	has bonding paid c. 4, 2 [H ₃ O+] = 1.0 × 10 ⁻³ M? □ c. 1.0 × 10 ⁻⁸ M 3O+] = 2.33 × 10 ⁻⁹ M. □ c. 8.63 □ c. a weak acid ould give a solution	d. 4,4 ☐ d. 4,4 ☐ d. 4.34 ☐ d. an ionic compound					

31. A strong electrolyte solution will be formed when is dissolved in water.								
\square a. Mg(NO ₂) ₂	☐ b. CH ₃ COOH	☐ c. NH ₄ OH	\Box d. $C_{12}H_{22}O_{11}$					
32. Which of the following acids will partially dissociates in aqueous solutions?								
☑ a. H ₂ SO ₄	☐ b. HCl	☑ c. CH ₃ COOH	☐ d. HNO ₃					
33. Which of the following substances is a Lewis acid?								
☐ a. NH ₃	☑ b. CO ₂	☐ c. H ₂ O	□ d. F-					
34. Which of the following pairs of species is NOT a conjugate acid-base pair?								
☐ a. H ₂ O/OH-	☐ b. HSO ₄ -/SO ₄ ² -	☐ c. H ₂ SO ₄ /HSO ₄ -	☑ d. H ₂ SO ₄ /SO ₄ ²⁻					
35. Identify the Bronsted-Lowry conjugate acid in the following reaction:								
$CH_3COOH + HSO_4^- \rightleftharpoons H_2SO_4 + CH_3COO^-$								
☑ a. H ₂ SO ₄	☐ b. CH ₃ COOH	☐ c. HSO ₄	☐ d. CH ₃ COO-					
36. Consider the following reaction at equilibrium. What is the effect of increasing the								
pressure of the reaction mixture?								
$2\;H_2S_{\;(g)}\;\;+\;\;3\;O_{2\;(g)}\;\;\rightleftarrows\;\;2\;H_2O_{\;(g)}\;\;+\;\;2\;SO_{2\;(g)}$								
lacksquare a. the reaction will sh	\square a. the reaction will shift to the left \boxtimes b. the reaction will shift to the right							
\square c. the equilibrium constant will decrease \square d. no effect will be observed								
37. According to Bron	sted-Lowry concept of	acids and bases, H ₂ O car	n be considered as					
☐ a. a neutral substance	е	☐ b. an acid						
☐ c. a base		☑ d. an amphoteric substance						
38. What is the effect of	38. What is the effect of lowering the temperature on the following exothermic reaction?							
$CaO_{(s)} + H_2O_{(l)} \rightleftharpoons Ca(OH)_{2(s)} + heat$								
$oxedsymbol{\square}$ a. the reaction will shift forward $oxedsymbol{\square}$ b. the reaction will shift reverse								
☐ c. Ca(OH) ₂ will decre	ase	\square d. no effect will be observed						
39 are compounds that have the same molecular formula but with different								
atmi atumos								
structures.								

40. Choose the correct expression for equilibrium constant, $K_{\text{eq}}\text{,}$ for the following reaction:

$$16 CH_3Cl_{(g)} + 8 Cl_{2(g)} \rightleftharpoons 16 CH_2Cl_{2(g)} + 8 H_{2(g)}$$

 \Box a. $K_{eq} = \frac{[CH_2Cl_2][H_2]}{[CH_3Cl][Cl_2]}$

 $\Box \text{ c. } K_{eq} = \frac{[CH_3Cl]^{16} [Cl_2]^8}{[CH_2Cl_2]^{16} [H_2]^8}$

 \Box d. $K_{eq} = \frac{[CH_3Cl][Cl_2]}{[CH_2Cl_2][H_2]}$

41. How many hydrogen atoms, H, shall be bonded to the carbon atom marked with (*) in the following compound?

□ a. 0

☑ b. 1

□ c. 2

□ d. 3

42. Identify the families of the following organic formulas:

Amine

ether

carboxylic acid

- alcohol
- amide

- Aldehyde

- ketone
- alkyne
- ester
- alkene

43. Identify the class of the organic compound whose molecular formula is C₁₈H₃₈.

- ☑ a. Alkane
- ☐ b. Alkene
- ☐ c. Alkyne
- ☐ d. Cycloalkane

44, Identify the class of each alcohol (primary, secondary, tertiary):

Primary alcohol

Secondary alcohol

Tertiary alcohol

45. Write both "common" and "IUPAC" names of the following compounds:

Compound

$$C = C$$

Common name

Phenol

Ethylene

Acytelene

IUPAC name

Hydroxybenzene

Ethene

Ethyne

46. To which family does this compound belong?

- ☐ a. esters
- ☐ b. aldehydes
- ☐ c. ketones
- ☑ d. carboxylic acids

47. What is the family of this organic compound?

- a. ethers
- ☑ b. ketones
- ☐ c. esters
- lacksquare d. carboxylic acids

48. Choose the correct name of the following organic compound?

$$CH_{2}$$
— CH_{3}
 CH_{3} — C — C $\equiv CH_{3}$
 CH_{3}

□ a. 3,3-dimethyl-4-pentyne

☑ b. 3,3-dimethyl-1-pentyne

□ c. 3-ethyl-3-methyl-1-butyne

☐ d. 3-methyl-3-ethyl-1-butyne

49. Identify the aldehyde:

$$\square$$
 d. CH_3 — C — CH_3

50. Give the IUPAC names for the following organic compounds:						
2,5-dimeth	yl-1-octene	4-methyl	-1-pentyne			
2,4,7-trim	ethyloctane	Butylcy	clohexane			
CI	>	CH ₃	CH ₃			
3-Chloro	-1-hexyne	2,3-dimeth	yl-2-pentene			
51. Which of the follow	wing suffixes refers to a	n organic compound th	at includes a C≡C?			
☐ a. ane	☐ b. ene	☑ c. yne	☐ d. one			
52. Which class of hyd	lrocarbons has the gene	eral formula C _n H _{2n-2} ?	_			
☐ a. alkanes	☐ b. alkenes	☑ c. alkynes	☐ d. cycloalkanes			
53. What functional group(s) are present in the following compound?						
	H₂NCH₂	O 				
☐ a. amine	☐ b. ketone	☐ c. amide	☑ d. amine and ketone			

Best Wishes

Al-Madinah, 2nd of December, 2019