Taibah University
Deanery of Academic Services
Unified Scientific Track

Mock Test For

Final Exam

Introduction to Chemistry (CHEM 101)

(Chapters 3, 4, 5 \& 7)
Topics 08-17 \& 19-21

For
Unified Scientific Track Students
(All Campuses)
$1^{\text {st }}$ Semester

1441 | 2019-2020

\triangle CHEM 101 Supplemental Information

$d=\frac{\mathrm{m}}{\mathrm{V}}$	${ }^{\circ} \mathrm{C}=\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8}$	${ }^{\circ} \mathrm{F}=1.8\left({ }^{\circ} \mathrm{C}\right)+32$		${ }^{\circ} \mathrm{C}=K-273$		$K=\left({ }^{\circ} \mathrm{C}\right)+273$
$M=\frac{\mathrm{n}}{\mathrm{V}}$	$\mathbf{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{\mathbf{2}}$	$\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=\mathbf{1} \times 10^{-14}$				$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\begin{aligned} & \text { Molecular formula }=\text { empirical formula } \times n \\ & n=\frac{\text { molar mass of molecular formula }}{\text { molar mass of empirical formula }} \end{aligned}$		$\% \text { mass of element } \mathrm{X}=\frac{\text { mass of element } \mathrm{X} \text { in } 1 \mathrm{~mol} \text { of compound }}{\text { mass of } 1 \mathrm{~mol} \text { of the compound }} \times 100 \%$				$\% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100$
$\boldsymbol{q}=\mathbf{C} \times \Delta \mathbf{T}$	$\mathbf{w}=\mathbf{- P} \Delta V$	$\mathbf{q}=\mathbf{m} \times \mathrm{C}_{\mathrm{s}} \times \Delta \mathrm{T}$		$1 \mathrm{~L} . \operatorname{atm}=101.3 \mathrm{~J}$		Avogadro's No. $=6.022 \times 10^{\mathbf{2 3}}$
$\begin{aligned} \hline \text { Atomic mass } & =\sum_{n}(\text { fraction of isotope } n) \times(\text { mass of isotope } n) \\ & =(\text { fraction of isotope } 1 \times \text { mass of isotope } 1) \\ & +(\text { fraction of isotope } 2 \times \text { mass of isotope } 2)+\cdots \end{aligned}$			Mole Conversions:			

Answer The Following Questions:

1. Which type of chemical formulas gives only the relative number of atoms of each element in a compound?
a. Molecular formula
∇ b. Empirical formula
\square c. Structural formula
d. Ball-and-stick model
2. If we have $9.03 \times 10^{\mathbf{2 4}}$ aluminum atoms, how many moles of aluminum do we have?
\square a. 5.4 mol
b. 10 mol
∇ c. 15 mol
$\square \mathrm{d} .2 .7 \mathrm{~mol}$
3. The systematic name of CuNO_{2} is \qquad
\square a. copper(II) nitrate
b. copper(I) nitrate

च c. copper(I) nitrite \square d. copper(II) nitrate
4. What is the formula for the ionic compound formed by barium and phosphate ions?
\square a. $\mathrm{Ba}_{2}\left(\mathrm{PO}_{4}\right)_{3}$
$\downarrow \mathrm{b} . \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
c. $\mathrm{Ba}_{3}\left(\mathrm{PO}_{3}\right)_{2}$
$\square \mathrm{d} . \mathrm{BaPO}_{4}$
5. How many grams are in a sample containing $2.71 \times \mathbf{1 0}^{24}$ atoms of iron?
a. 160.2 g
చ b. 251.3 g
\square c. 449.9 g
d. 292.2 g
6. What are the coefficients (a, b, c and d) needed to balance the following equation?

$$
\underline{\mathbf{a}} \mathrm{PbCl}_{3}+\underline{\mathbf{b}} \mathbf{C a}(\mathbf{O H})_{2} \rightarrow \underline{\mathbf{c}} \mathrm{CaCl}_{2}+\underline{\mathrm{d}} \mathrm{~Pb}(\mathrm{OH})_{3}
$$

-a. 3, 2, 2, 2
च b. 2, 3, 3, 2c. $4,2,2,4$
\square d. 4, 3, 3, 2
7. When the following equation is balanced, the coefficient of O_{2} would be \qquad
$\ldots \mathrm{C}_{2} \mathrm{H}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
\square a. 1
-b. 2
च c. 3
\square d. 4
8. What is the mass percent of calcium in calcium acetate, $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$?
\square a. 34.6\%
\downarrow b. 25.3\%

- c. 41.1%
\square d. 35.2%

9. The correct chemical formula for iron(II) oxide is
a. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
b. $\mathrm{Fe}_{2} \mathrm{O}$
c. FeO_{2}
d. FeO
10. Calculate the molar mass of aluminum tartrate, $\mathrm{Al}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)_{3}$.a. $59 \mathrm{~g} / \mathrm{mol}$
b. $71 \mathrm{~g} / \mathrm{mol}$
c. $119 \mathrm{~g} / \mathrm{mol}$
च d. $498.1 \mathrm{~g} / \mathrm{mol}$
11. How many covalent bonds will a nitrogen atom normally make?
\square a. 1
b. 2
च c. 3
\square d. 0
12. Group 1A metals always have an oxidation state of \qquad in their compounds.

- a. +2
b. -2
- c. 0
\quad d. +1

13. The oxidation number of nitrogen in $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is \qquad
a. +6
マ b. +5
\square c. +3

- d. -3

14. Identify the reducing agent in the following reaction:
$\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$
$\square \mathrm{a} . \mathrm{Fe}_{2} \mathrm{O}_{3}$
$\nabla \mathrm{b} . \mathrm{Al}$
\square
c. $\mathrm{Al}_{2} \mathrm{O}_{3}$
\square d. Fe
15. The oxidation number of bicarbonate ion in its compounds is \qquad
マ a. -1
b. ${ }^{\text {b. }}$

- c. -3
d. +1

16. What is the empirical formula of glycolylurea which has the molecular formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$?a. $\mathrm{CH}_{2} \mathrm{NO}$
b. $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
चc. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$
d. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{NO}$
17. If the empirical formula of a compound is $\mathrm{C}_{2} \mathrm{HCl}$ and its molar mass is $181.44 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula of this compound?
a. $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Cl}_{3}$
b. $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Cl}_{3}$
c. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{4}$
$\nabla d . \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$
18. A compound contains $74.03 \% \mathrm{C}, 8.70 \% \mathrm{H}$, and $17.27 \% \mathrm{~N}$. What is the empirical formula of this compound?
च a. $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$
b. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2}$
c. $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3}$
d. $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$
19. How many moles of magnesium nitride, $\operatorname{Mg}_{3} \mathrm{~N}_{2}$, would be produced when 3 g of magnesium completely react with excess N_{2} according to the following equation?

$$
3 \mathbf{M g}_{(\mathrm{s})}+\mathbf{N}_{2}(\mathrm{~g}) \rightarrow \mathbf{M g}_{3} \mathbf{N}_{2}(\mathrm{~s})
$$

\square a. 4.11 mol
b. 0.041 mol
c. 3.21 mol
\square d. 14.02 mol
20. How many grams of $\mathrm{K}_{2} \mathrm{CO}_{3}$ are needed to prepare 200 mL of $\mathbf{0 . 1 5 0} \mathrm{M}$ solution?
Va. 4.14 g
$\square \mathrm{b} .10 .4 \mathrm{~g}$
c. 13.8 g
\square d. 2.07 g

21．Consider the following reaction，if the reaction of 2.5 g of Al with 2.5 g of O_{2} produced 3.5 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$ ．The \％yield equals \qquad
$4 \mathrm{Al}_{(\mathrm{s})}+\mathbf{3 O}_{\mathbf{2}(\mathrm{g})} \rightarrow 2 \mathrm{Al}_{\mathbf{2}} \mathrm{O}_{\mathbf{3}(\mathrm{s})}$
マ a． 74 \％
b． 37 \％c． 47 \％
\square d． 66 \％

22．To what volume（in $\mathbf{m L}$ ）shall we dilute 50.0 mL of a 12 M stock HNO_{3} solution to obtain a $0.10 \mathrm{M} \mathrm{HNO}_{3}$ solution？
\square a． 416 mL
マ b． 6000 mL
c． 3200 mL
d． 2.45 mL

23．What is the final molarity of an HCl solution，if 40 mL of a 2.5 M HCl solution were diluted to a final volume of 500 mL ？
\square a． 5.0 M
b． 31.25 M
चc． 0.20 M
\square d． 2.45 M

24．What mass（g）of NaF is contained in 0.35 L of a NaF solution that has a molarity of $\mathbf{2 . 2 0}$ M？
$\nabla \mathrm{a} .32 .34 \mathrm{~g}$
b． 25.41 g
c． 0.77 g
d． 7.70 g

25．The Lewis dot structure for nitrogen molecule is \qquad
च a．$: N:$ ： $\mathrm{N}:$
b．$: \ddot{N} \cdot \cdot \ddot{N}$ ：
■ с．$: \ddot{N}:: \ddot{\mathrm{N}}:$
$\square \mathrm{d}$ ．

26．The Lewis dot structure of $\mathrm{H}_{2} \mathrm{~S}$ molecule has \qquad bonding pairs and \qquad lone pairs of electrons．
a．2， 4
『 b．2， 2
－c．4， 2
d．d． 4,4

27．What is the $\left[\mathrm{OH}^{-}\right]$in a solution that has $a\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-\mathbf{3}} \mathrm{M}$ ？
\square a． $1.0 \times 10^{-3} \mathrm{M}$
\square b． $1.0 \times 10^{-6} \mathrm{M}$
c． $1.0 \times 10^{-8} \mathrm{M}$
$\nabla \mathrm{d} .1 .0 \times 10^{-11} \mathrm{M}$

28．Calculate the $\mathbf{p H}$ of a solution that has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.33 \times 10^{-9} \mathrm{M}$ ．
\square a． 2.67
\square b． 6.81
マ c． 8.63
\square d． 4.34
29．The compound HF is \qquad
a．a strong acid
\square b．a weak base
∇ c．a weak acid
\square d．an ionic compound

30．Which of the following substances would give a solution that does not conduct electricity，when dissolved in distilled water？
a． $\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}$
b． NaOH
\square c． $\mathrm{NH}_{4} \mathrm{OH}$
V d． $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
31. A strong electrolyte solution will be formed when \qquad is dissolved in water.
∇ a. $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$
\square b. $\mathrm{CH}_{3} \mathrm{COOH}$
\square c. $\mathrm{NH}_{4} \mathrm{OH}$
\square d. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
32. Which of the following acids will partially dissociates in aqueous solutions?
∇ a. $\mathrm{H}_{2} \mathrm{SO}_{4}$
b. HCl
『 c. $\mathrm{CH}_{3} \mathrm{COOH}$
\square d. HNO_{3}
33. Which of the following substances is a Lewis acid?
\square a. NH_{3}
$\quad \mathrm{b} . \mathrm{CO}_{2}$

- c. $\mathrm{H}_{2} \mathrm{O}$
\square d. F^{-}

34. Which of the following pairs of species is NOT a conjugate acid-base pair?
a. $\mathrm{H}_{2} \mathrm{O}^{2} \mathrm{OH}^{-}$
b. $\mathrm{HSO}_{4}{ }^{-} / \mathrm{SO}_{4}{ }^{2-}$

- c. $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HSO}_{4}^{-}$
$\nabla \mathrm{d} . \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{SO}_{4}{ }^{2-}$

35. Identify the Bronsted-Lowry conjugate acid in the following reaction:

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{4}+\mathbf{C H}_{3} \mathrm{COO}^{-}
$$

च a. $\mathrm{H}_{2} \mathrm{SO}_{4}$
b. $\mathrm{CH}_{3} \mathrm{COOH}$
\square c. HSO_{4}
\square d. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
36. Consider the following reaction at equilibrium. What is the effect of increasing the pressure of the reaction mixture?

$$
2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

\square a. the reaction will shift to the left
$\nabla \mathrm{b}$. the reaction will shift to the right
\square c. the equilibrium constant will decrease
\square d. no effect will be observed
37. According to Bronsted-Lowry concept of acids and bases, $\mathrm{H}_{2} \mathrm{O}$ can be considered asa. a neutral substance
\square b. an acid
\square c. a base
∇ d. an amphoteric substance
38. What is the effect of lowering the temperature on the following exothermic reaction?

$$
\mathrm{CaO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}+\text { heat }
$$

∇ a. the reaction will shift forward
b. the reaction will shift reverse
c. $\mathrm{Ca}(\mathrm{OH})_{2}$ will decrease \square d. no effect will be observed
39. \qquad are compounds that have the same molecular formula but with different structures.
\square a. aromatics
\square b. cycloalkanes
c. isotopes

च d. isomers
40. Choose the correct expression for equilibrium constant, $K_{\text {eq }}$, for the following reaction:

$$
16 \mathrm{CH}_{3} \mathrm{Cl}_{(\mathrm{g})}+8 \mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons 16 \mathrm{CH}_{2} \mathrm{Cl}_{2(\mathrm{~g})}+8 \mathrm{H}_{2(\mathrm{~g})}
$$

\square a. $K_{\text {eq }}=\frac{\left[\mathrm{CH}_{2} \mathrm{Cl} l_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{Cl}\right]\left[\mathrm{Cl}_{2}\right]}$
∇ b. $K_{e q}=\frac{\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right]^{16}\left[\mathrm{H}_{2}\right]^{8}}{\left[\mathrm{CH}_{3} \mathrm{Cl}\right]^{16}\left[\mathrm{Cl}_{2}\right]^{8}}$
\square c. $K_{e q}=\frac{\left[\mathrm{CH}_{3} \mathrm{Cl}\right]^{16}\left[\mathrm{Cl}_{2}\right]^{8}}{\left.\left[\mathrm{CH}_{2} \mathrm{Cl}\right]_{2}\right]^{16}\left[\mathrm{H}_{2}\right]^{8}}$
\square d. $K_{e q}=\frac{\left[\mathrm{CH}_{3} \mathrm{Cl}\right]\left[\mathrm{Cl} \mathrm{l}_{2}\right]}{\left[\mathrm{CH}_{2} C l_{2}\right]\left[\mathrm{H}_{2}\right]}$
41. How many hydrogen atoms, H, shall be bonded to the carbon atom marked with (*) in the following compound?

\square a. 0
『 b. 1
\square c. 2
\square d. 3
42. Identify the families of the following organic formulas:

Amine

ether

carboxylic acid

alcohol

amide

Aldehyde

ketone

alkyne

ester

alkene
43. Identify the class of the organic compound whose molecular formula is $\mathrm{C}_{18} \mathbf{H}_{\mathbf{3 8}}$.
∇ a. Alkaneb. Alkene
c. Alkyne
\square d. Cycloalkane

44, Identify the class of each alcohol (primary, secondary, tertiary):

Primary alcohol

Secondary alcohol

Tertiary alcohol
45. Write both "common" and "IUPAC" names of the following compounds:

Compound

Phenol
Hydroxybenzene

Ethylene
Ethene

Acytelene
Ethyne
46. To which family does this compound belong?

\square a. esters
\square b. aldehydes
\square c. ketones
\boxtimes d. carboxylic acids
47. What is the family of this organic compound?

\square a. ethers
『 b. ketones
c. esters
\square d. carboxylic acids
48. Choose the correct name of the following organic compound?

a. 3,3-dimethyl-4-pentynec. 3-ethyl-3-methyl-1-butyne
च b. 3,3-dimethyl-1-pentyne
d. 3-methyl-3-ethyl-1-butyne
49. Identify the aldehyde:
\square a.

c.

$\square \mathrm{d}$.

50. Give the IUPAC names for the following organic compounds:

2,5-dimethyl-1-octene

4-methyl-1-pentyne

2,4,7-trimethyloctane

3-Chloro-1-hexyne

Butylcyclohexane

2,3-dimethyl-2-pentene
51. Which of the following suffixes refers to an organic compound that includes a $\mathrm{C} \equiv \mathrm{C}$?
\square a. ane
\square
b. ene
च c. yne
\square d. one
52. Which class of hydrocarbons has the general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n-2}$?
\square a. alkanes
\square b. alkenes
च c. alkynes
\square d. cycloalkanes
53. What functional group(s) are present in the following compound?

a. amine
\square b. ketone
\square c. amide
d. amine and ketone

Best Wishes

