1) A block of weight 99 N moves on a horizontal surface with constant speed by a force of 40 N . The value of the coefficient of friction μ is:
a) 0.53
b) 0.17
c) 0.64
d) $\underline{0.40}$
2) A particle moving with initial velocity $\mathrm{v}_{\mathrm{e}}=-0.5 \mathrm{i}+3 \mathrm{j}(\mathrm{m} / \mathrm{s})$, and constant acceleration $a=-5 i+6 j\left(m / \mathrm{s}^{2}\right)$. The y-component of final velocity v_{y} at $t=3 \mathrm{~s}$ is:
a) $21 \mathrm{~m} / \mathrm{s}$
b) $-28 \mathrm{~m} / \mathrm{s}$
c) $84 \mathrm{~m} / \mathrm{s}$
d) $-47 \mathrm{~m} / \mathrm{s}$
3) A body of 55 kg running in a circular path of $R=3 \mathrm{~m}$ at a velocity of $6 \mathrm{~m} / \mathrm{s}$. The centripetal force:
a) 660 N
b) 110 N
c) 330 N
d) 165 N
4) A certain force is applied to a mass of $\mathrm{m}_{1}=3 \mathrm{~kg}$ with acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$. The same force is applied to another mass m_{2} and accelerated it by $3 \mathrm{~m} / \mathrm{s}^{2}$. The mass of the second object is:
a) 14.0 kg
b) 3.0 kg
c) 2.0 kg
d) 6.2 kg
5) A particle moves in the $x y$ plane. In which situation of the following a_{x} and a_{y} are both constant:
a) $V=\left(4 t^{3}-2\right) i+(3) j$
b) $V=(-3 t) i+\left(t^{2}-1\right) j$
c) $V=\left(2 t^{2}\right) i+(4 t+3) j$
d) $V=(10 t) i+(9 t+1) j$
6) A 40 kg box moves over a frictionless floor along the x -axis. The magnitude of the normal force on the box is:
a) 40 N
b) 9.8 N
c) 39.2 N
d) 392 N
7) A 810 N person is standing in an elevator. If the normal force on the person is 580 N , the person is:
a) Stationary
b) Moving up with a constant speed
c) Accelerating upward
d) Accelerating downward
8) A ball is thrown with an initial speed $15.6 \mathrm{~m} / \mathrm{s}$. The maximum range of the ball is:
a) 152.9 m
b) 24.8 m
c) 15.6 m
d) 42.6 m
9) A ball is fired horizontal from the top of a table. At $t=0.25 \mathrm{~s}$, the horizontal distance from table to the point that the ball reach the ground is 0.58 m . The ball's initial velocity is:
a) $17.3 \mathrm{~m} / \mathrm{s}$
b) $11.5 \mathrm{~m} / \mathrm{a}$
c) $2.3 \mathrm{~m} / \mathrm{s}$
d) $6.2 \mathrm{~m} / \mathrm{s}$
10) A body of mass 10 kg at a point where $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Its weight at a point where $\mathrm{g}=0$ is:
a) $\underline{0}$
b) 9.8 N
c) 98 N
d) 10 N
11) Two blocks are suspended by a rope. If $\mathrm{M}_{1}=10 \mathrm{~kg}$ and $\mathrm{M}_{2}=15 \mathrm{~kg}$, the tension in the top rope is:
a) 49.0 N
b) 245.0 N
c) 98.0 N
d) 147.0 N

12) A 1800 kg car is moving on a circular road as shown in the figure. If the radius of circular road is 379.2 m , and the coefficient of friction between the tires and the road is 0.7 , the speed of the car is:
a) $26 \mathrm{~m} / \mathrm{s}$
b) $51 \mathrm{~m} / \mathrm{s}$
c) $37 \mathrm{~m} / \mathrm{s}$
d) $62 \mathrm{~m} / \mathrm{s}$

13) A body is rotated in a horizontal circle of radius 2.3 m . If the centripetal acceleration has a magnitude of $7.0 \mathrm{~m} / \mathrm{s}^{2}$, the body's speed is:
a) $4 \mathrm{~m} / \mathrm{s}$
b) $7 \mathrm{~m} / \mathrm{s}$
c) $21 \mathrm{~m} / \mathrm{s}$
d) $10 \mathrm{~m} / \mathrm{s}$
14) Three force $F_{1}=3 i-4 j, F_{2}=-3 i+4 j$ and $F_{3}=-8 j$ acting on a body, the value of $\mathrm{F}_{\text {net. } \mathrm{x}}$ and $\mathrm{F}_{\text {net. } . y}$ are:
a) $\mathrm{F}_{\text {net. } \mathrm{x}}=-7 \mathrm{~N}$ and $\mathrm{F}_{\text {net. } \mathrm{y}}=8 \mathrm{~N}$
b) $\mathrm{F}_{\text {net. } \mathrm{x}}=9 \mathrm{~N}$ and $\mathrm{F}_{\text {net. } . ~}=11 \mathrm{~N}$
c) $\underline{F}_{\text {net. }}=0$ and $\mathrm{F}_{\text {net. } y}=-8 \mathrm{~N}$
d) $F_{\text {net. } x}=6 \mathrm{~N}$ and $\mathrm{F}_{\text {net. } y}=-7 \mathrm{~N}$
15) The gravitational force of earth acting on a 15 kg is:
a) 115 N
b) 9.8 N
c) 147.0 N
d) 15 N
16) A ball is thrown with initial velocity $\mathrm{V}_{0}=38 \mathrm{~m} / \mathrm{s}$ at an angle $\theta_{0}=60^{\circ}$ above the horizontal. The x component of the initial velocity $\left(\mathrm{V}_{0 \mathrm{x}}\right)$ is:
a) $19.0 \mathrm{~m} / \mathrm{s}$
b) $65 \mathrm{~m} / \mathrm{s}$
c) $50 \mathrm{~m} / \mathrm{s}$
d) $46 \mathrm{~m} / \mathrm{s}$
17) At the maximum height in projectile motion, the horizontal component of the acceleration is:
a) $a_{x}>-9.8 \mathrm{~m} / \mathrm{s}^{2}$
b) $\mathrm{a}_{\mathrm{x}}=\mathrm{a}_{\mathrm{y}}$
c) $\mathrm{a}_{\mathrm{x}}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
d) $\mathrm{a}_{\mathrm{x}}=0$
18) Two boxes slides on a rough horizontal surface, where $\mathrm{m}_{1}=12 \mathrm{~kg}$ and $\mathrm{m}_{2}=16$ kg with constant speed. Which statement is true:
a) $f_{k 1}=f_{k 2}$
b) $f_{k 1}>f_{k 2}$
c) $f_{k 1}=f_{k 2}=0$
d) $f_{k l}<f_{k \underline{ }}$
19) The position vector for a particle is initially $r=14 i-5 j+k$ and then later is $r=$ $5 \mathrm{i}-5 \mathrm{j}+6 \mathrm{k}$, all in meters. The particle's displacement vector is:
a) $-9 \mathrm{i}+5 \mathrm{k}$
b) $9 \mathrm{i}-10 \mathrm{j}-5 \mathrm{k}$
c) $-9 \mathrm{i}-5 \mathrm{k}$
d) $-9 \mathrm{i}-10 \mathrm{j}-5 \mathrm{k}$
20) The coefficient of static friction between a block and the surface is 0.2 . If the maximum horizontal force that can be applied to the block before it slides is 49 N , the block's mass is:
a) 25 kg
b) 69 kg
c) 70 kg
d) 20 kg
21) In the figure, two boxes of mass $\mathrm{m}_{1}=62 \mathrm{~kg}$ and $\mathrm{m}_{2}=19.4 \mathrm{~kg}$ are connected to each other by a massless cord. If m_{2} descends with constant velocity, the magnitude of the frictional force between the surface and m_{1} is:
a) 19.4 N
b) 190 N
c) 62 N
d) 608 N

22) A boy pulls a 58 N box along a friction horizontal floor by a force P as shown in the figure. The frictional force between box and floor is $f=29 \mathrm{~N}$. If the box does not move, which of the following is ture?
a) $\mathrm{P}>29 \mathrm{~N}$ and $\mathrm{F}_{\mathrm{N}}=58 \mathrm{~N}$
b) $\mathrm{P}<29 \mathrm{~N}$ and $\mathrm{F}_{\mathrm{N}}=58 \mathrm{~N}$
c) $\mathrm{P}=29 \mathrm{~N}$ and $\mathrm{F}_{\mathrm{N}}<58 \mathrm{~N}$
d) $\mathrm{P}=29 \mathrm{~N}$ and $\mathrm{F}_{\mathrm{N}}=58 \mathrm{~N}$

23) A projectile launched at an angle of 30° to the horizontal with a speed of 20 m / s. The maximum height of the projectile is:
a) 7.1 m
b) 5.1 m
c) 6.1 m
d) 4.1 m
24) A horizontal force of 98 N acts on a 50 kg box lying on the floor but the box does not move. The magnitude of static frictional force $\left(f_{s}\right)$ is:
a) 490 N
b) 98 N
c) 9.9 N
d) 50 N
25) A plane enters a horizontal circular turn with $\mathrm{v}_{1}=(200 i+600 \mathrm{j}) \mathrm{m} / \mathrm{s}$ and 23 s later leave the turn with $\mathrm{v}_{1}=(200 \mathrm{i}+600 \mathrm{j}) \mathrm{m} / \mathrm{s}$. The period of the plane is:
a) 600 s
b) 46 s
c) 200 s
d) 23 s
26) From the figure, if $\mathrm{m}_{1}=10 \mathrm{~kg} \mathrm{~m}_{2}=40 \mathrm{~kg}$, the force acting to acceleration the two bodies by $2 \mathrm{~m} / \mathrm{s}^{2}$ equals
a) 100 N
b) 80 N
c) 66 N
d) 410 N

27) A box of mass $m=62 \mathrm{~kg}$ is pushed up at constant speed over the frictionless inclined plane of angle $\theta=42^{\circ}$ by an applied force F as shown in the figure. The magnitude of applied force F is:
a) 46.1 N
b) 547.1 N
c) 607.6 N

d) 406.6 N
28) In the figure, If $\mathrm{F}_{1}=21 \mathrm{~N}$ and $\mathrm{F}_{2}=8 \mathrm{~N}$, the net force on the block is:
a) 29 N
b) -29 N
c) 13 N
d) -13 N

29) In the figure, a 10 kg block moves over a frictionless floor along the x axis pushed by a force $\mathrm{F}=96 \mathrm{~N}$ directed $\theta=20^{\circ}$ above +x -axis. The magnitude of the block's acceleration is:
a) $15.4 \mathrm{~m} / \mathrm{s}^{2}$
b) $38.9 \mathrm{~m} / \mathrm{s}^{2}$
c) $23.4 \mathrm{~m} / \mathrm{s}^{2}$
d) $9.0 \mathrm{~m} / \mathrm{s}^{2}$

30) A particle initially has $v=7 i+2 j(m / s)$ and then 2 s later has $\mathrm{v}=-2 \mathrm{i}+5 \mathrm{j}$ $(\mathrm{m} / \mathrm{s})$. The average acceleration ($\mathrm{a}_{\text {avg }}$) is:
a) $-0.3 \mathrm{i}+7 \mathrm{j}$
b) $i+2 j$
c) $0.4 i+5 j$
d) $-4.5 \mathrm{i}+1.5 \mathrm{j}$
31) Two force $F_{3}=3 i-4 j$ and $F_{4}=5 i+6 j$ acting on a body, from the free body diagram the vector that represent F_{3} and F_{4} are:
a) F_{3} is vector $3, F_{4}$ is vector 1
b) F_{3} is vector $1, F_{4}$ is vector 3
c) F_{3} is vector $2, F_{4}$ is vector 4
d) \underline{F}_{3} is vector $4, \mathrm{~F}_{4}$ is vector 1

32) A block of mass $m=10 \mathrm{~kg}$ is hanging by two ropes as shown in the figure. If $\theta_{1}=30^{\circ}$ and $\theta_{2}=45^{\circ}$, by using Newton's laws, the y-component of net force ($\mathrm{F}_{\text {net. } .}$) on the block is:
a) $\mathrm{T}_{1} \sin 45+\mathrm{T}_{2} \sin 30-\mathrm{mg}=0$
b) $\mathrm{T}_{1} \sin 30+\mathrm{T}_{2} \sin 45-\mathrm{mg}=0$
c) $\mathrm{T}_{1} \sin 30+\mathrm{T}_{2} \sin 45-\mathrm{mg}=\mathrm{m} \mathrm{a}_{\mathrm{y}}$
d) $\mathrm{T}_{1} \sin 45+\mathrm{T}_{2} \sin 30-\mathrm{mg}=\mathrm{m} \mathrm{a}_{\mathrm{y}}$

33) The components of a car's position as a function of time are given by $\mathrm{x}=5 \mathrm{t}^{2}-14, \mathrm{y}=-\mathrm{t}^{3}-4$. The velocity components are:
a) $V_{x}=10 \mathrm{t}-14$ and $v_{y}=-3 \mathrm{t}^{2}-4$
b) $\underline{V}_{x}=10 \mathrm{t}$ and $v_{2}=-3 \mathrm{t}^{2}$
c) $V_{x}=10 \mathrm{t}^{2}$ and $v_{y}=-3 \mathrm{t}^{2}$
d) $V_{x}=10 \mathrm{t}-14$ and $v_{y}=-3 \mathrm{t}^{2}$
