Chapter 3

VECTORS

By Dr. Lubna Sindi
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Follow the rules of
ordinary algebra




Vectors Addition
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Adding Vectors Adding Vectors by
Geometrically Compcznents
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* Vector equation * Components e Unit Vectors
* Commutative Law * resolving the vector e writing a
magnitude- angle notation vector notation




Adding Vectors Geometrically

* Vector equation




e Commutative Law




e Associative Law




e \Vector Subtraction
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Sample Problem m

In an orienteering class, yvou have the goal of moving as
far (straight-line distance) from base camp as possible
by making three straight-ine moves. You may use the
following displacements in any order: (a) @. 2.0 km due
east (directly toward the east); (b) &, 2.0 km 30° north
of east {at an angle of 30° toward the north from due
east); (c) ¢, 1.0 km due west. Allernatwcly, you may
substitute either —& for & or —¢€ for €. What is the
greatest distance vou can be from base camp at the end
of the third displacement?
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North of east = toward the north from due east

West of south= = toward the west from due south



Components of Vectors

* Resolving the vector is the process of finding the components
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* Component is the projection of the vector on an axis
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a, =a cosd and a, = a sin®
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a, = acost and a, = asin®

a, =a sina and a, = acosa




* Writing a vector in magnitude- angle
notation
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Angle (Direction)
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* Finding the components.
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a, =a cosO

K

\

a., = a sin®

\
a, and a

!

y

* Writing a vector in magnitude-
angle notation
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Rem : When use these formulas to find the components,
the angle must be measured from positive X-axis, if
clockwise put 0 -ve if counterclockwise put 6 +ve.




How to find the components of a vector in different positions?
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When the angle is from the +ve When the angle is from any
X-aXIAS different axis
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To find the components, when the angle is measured from the
+ve X-axis use

a, = a cos@
a, = ;1 sin &
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Put 8 = —ve, When the angle is measured Put © = +ve, When the angle is measured
clockwise from the +ve x-axis Counter-clockwise from the +ve x-axis
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a, = a cos—0

a, = a cost
a, = a sin—6 a, = a sin @



To find the components , when the angle is measured from
any axis even the +ve x-axis

1- Take the given angle with the axis
2- put the signs of the components according to their positions on the axes
3- put sine or cosine according to the angle position.
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Sample Problem m

A small airplane leaves an airport on an overcast day
and is later sighted 215 km away, in a direction making
an angle of 22° east of due north. How far east and
north is the airplane from the airport when sighted?

Distance (km)

‘~ Distance (km)



Unit Vectors

* Unit vector is a vector of magnitude 1 and points in a particular
direction

Vector Components
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* Writing a vector in Unit vector notation —~=t _—p=t L---
l Scalar components




Adding vectors by Components




Sample Problem m

Figure 3-16a shows the following three vectors:

@ = (42m)i — (1.5 m)j,
b =(=1.6m) + (2.9 m)j,
N .

and * = (—3.7m)).

What is their vector sum 7 which is also shown? |
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Vectors Multiplication
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Multiplying a vector by a scalar

Multiplying a vector by a vector
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Scalar product Vector product
(or Dot product) (or cross product)
will produce a will produce a new
scalar vector

+ve scalar -ve scalar
will produce a new will produce a new
vector in the same vector in the
direction as the opposite direction
started vector of the started vector
a= 2t+ 3 a= 2i+ 3j

2&2 4T+ 6] _2{‘1‘:_4i‘_ 6}‘*




Scalar (or Dot product)
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If the two vectors are given in magnitude
and the angle between them
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If the two vectors are given in
unit vector notation




1- The scalar product is commutative == ;- ,E_;.: — E a

)

2- If the two vectors are parallel =% 9 =0 = a.b=ab

3- If the two vectors are perpendicular e= 6 =90 = a.b

o

4- If the two vectors are Antiparallel == 6 =180 > @.b=—ab

5- Multiplying Unit vectors
1.1=(1)(1)cos0=1

i.j=(1)(1)cos90=0




The scalar product is
commutative

— —

a-b=b-a

the angle between
two vectors can be
found

N

a-b=ab cosf| —

Properties
Of the scalar
product

any two similar unit
vectors

=i =kek=1

any two different
unit vectors

f 6 =0 = dG.b=ab ™= vectors are parallel

b=—ab mmpVectors are anti parallel
b =0 == yectors are perpendicular




Sample Problem

What is the angle ¢ between @ = 3.0i - 4.0] and b = —2.0f + 3.0k?




Vector (or Cross product)
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If the two vectors are given in magnitude
and angle between them
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la X b| = |c| = ab sin¢
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The direction of the result vector
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If the two vectors are given in
unit vector notation
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a= ayl+ ay,j+ azk

b= b+ byj+ b,k
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la x b| = |c| = ab sin¢

1- The vector product is Anti-commutative == a X b=—bx d

o
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2- If the two vectors are parallel = =0 = a x 0 >

3- If the two vectors are perpendiculares 8 =90 = |a X E| =ab

4- If the two vectors are Anti-parallel == 6 =180 = d@x b =0

5- Multiplying Unit vectors
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any two different Anti- commutative
unit vectors X b=—bxX a
kxi=j

The small angle
between the two
vectors must be used
because the odd

property of the sin
function /

Properties
of the Vector
product

any two similar unit
vectors

o

ixi=jxj=kxk=

0

lax b| = |c| = ab sing
If 0=0>axh=0 = vectors are parallel
8-180 > ax b=0 I vectors are anti parallel
=

§=90=|a xb|=ab

vectors are perpendicular




Sample Problem m

Ifd=231—4jand b = —2i + 3k, what is = @ X b?



The End



