

Great hopes require agreat efforts. ⓒ

محلولة

لا تنسوني من دعائكم

According to Newton's second law (F=ma), if F is kept constant, then: m is inversely proportional to the acceleration a m is directly proportional to the acceleration a 0 F = a/m 0 a=m

>

+966 56 689 0072 م ۱:٤٥ ،۲۰۱۹/۱۱/۱۹

Question No. 16 A net force of 6000 N causes a car to accelerate at 4 m/s/s. The mass of the car • 1500 kg F = 6000• 24000 kg a = 4• 6000 kg a = 4a = 4 a = 4 a = 4 m = 3 A F = ma a = 4 F = ma a = 4 F = ma a = 2 a = 4 a = 4 m = 3 a = 4 a = 4 a = 4 a = 4 a = 3 a = 4 a = 3 a = 4 a = 3 a = 4 a = 3 a = 4 a = 3 a = 4 a = 3 a = 4 a = 3 a = 4 a = 3 a = 5 a

A 15-N object is freely falling from a height of 100 m. Its kinetic
energy after it falls 25% of its initial height of 100 m. Its kinetic
$$175 J h = AS$$

 $2375 J F = LS$
 $150 J K_E = ?B $m = LS = 1.5$
 $U = \sqrt{2} \ 2h = 22.4$
 $M = L (LS) X (22.4)$$

Question No. 23

Temperature scales that give the same temperature difference AT are the:

k

- Kelvin and Celsius
- Celsius and Joule
- Fahrenheit and Kelvin
- Celsius and Fahrenheit

Physics_Quiz2_Sem1_2019 Total questions in exam. 28 (Answered 8 Question No. 19 A" A A" An object travels in straight line and increases its speed uniformly from 20 m/s to 30 m/s after covering 100 m. Its acceleration is: 0.4 m/s/s $v_{l}^{\circ} = 20$ * 2.5 m/s/s 0 0,25 m/s/s $v_{F} = 30$ S = 100a = ?© 1 m/s/s B $\begin{aligned} u &= \frac{1}{2} & -36 & \text{adsles} \\ 2as &= N_{F}^{2} - N_{F}^{2} \\ \text{addlessed} &= 30^{2} - 20^{2} \end{aligned}$ Sever & Next HP Compaq LE1711 0

Question No. 5 A car is moving with 110 km/h for two hours and then took a rest for 30 min. The car then continues A A with 120 km/h for an hour. The average speed for this journey is approximately: 0 85 km/h 10 km/h = d = 220110 km/h 97 km/h 75 km/h x Jh С $\frac{0 \, km/h}{\ln x \, \frac{1}{2}h} = d = 0$ x = d = 120220+0+120 = 97.14 2 Save & Next 2 + - + 1HP Compaq LE1711 6.964 FB 67 FØ. FS

questions in exam. 25 | Answered: 10 Question No. 22 A pile driver fails freely from a height of 5 m above a pile. Its velocity as it hits the pile is h=5 g=10 U=3 $U=\sqrt{2gh}$ © 10 m/s @ 8 m/s @ 2 m/s @ 4 m/s A

Question No. 3	balcony and hits the ground with the speed of 10 m/s, the balcony's hek
 10 m 5 m 40 m 20 m 	$V = lo$ $h = ?$ $g = lo$ $U = \sqrt{2gh}$ $lo = \sqrt{(2)(6)(x)}$
Save & N	J JUSU.
HP Compose	

(1) MKCL OES Physics_Quiz2_Sem2_20 Total questions in exam 25 | Answered 0 9 Question No. 8 54 How many kilocalories of heat must be added to 10 kg Tungsten to raise its temperature by 230 Fahrenheit? (The specific heat of Tungsten is c = 0.134 J/g.*C and $\Delta T_F = 1.8 \Delta T_C$) @ 4.09 kcal @ 409 kcal 9=? © 0.409 kcal @ 40.9 kcal C = 0, 134 $7 = \frac{230}{1.8}$ q=mCAT = 171222.22 لعدى كو Kca معربی نقسم عام al citic (000 K

Physics_Quiz2_Sem1_2019 Total questions in exam: 25 | Answered: 3 Question No. 3 A User AA4108512 A car is moving with 60 km/h for 20 min and then with 90 km/h for another 40 min and then look a rest for 30 min. The car then continues with 120 km/h for three hours. The average speed for this journey is approximately. Number of main question Number of questions : 25 @ 66.7 km/h d=20 @ 90 km/b 97.8 km/h @ 70 km/b 0730 16 17 18 19 d=60 24 25 +3 3 0 97.77 N d = OSave & Next d = 360P 11710 20

	Total questions in exam: 25 Answered: 0				
	0/0		0/		
Question No. 15		470450	10480		
If no net force acts o	n a moving object, it will have:				
increasing accele	ration				
 zero velocity increasing velocit 	v				
 no acceleration 	, 				
\mathbf{D}					
Here Really					
Carelland Careland					
A CONTRACTOR					
Save & Next					
	and the second se				

MKCL OES

Question No. 9

If no external forces act on a moving object, it will have:

- zero velocity
- increasing velocity
- increasing acceleration
- zero acceleration

Question No. 20

A rock falls from an edge of a mountain 45 m above the ground. Find its speed as it hits the ground? (use $g = 10 \text{ m/s}^2$)

40 m/s
20 m/s
10 m/s

30 m/s

Total questions in exam: 25 | Answered: 1

Question No. 2

As an object is freely falling its acceleration is:

increasing.

Q zero.

positive and constant.

O decreasing.

Constitution Constitution Constitution		
Question No. 2 A car is moving with 70 km/h for 45 min and the this journey is approximately:	en took a rest for 30 min. The car then co	AT A AT ontinues with 120 km/h for two hours. The average speed for
100 km/h 110 km/h 75 km/h 90 km/h χ 3 4 4 4 4 4 4 4 4 4 4 4 4 4	52.5	52-54-0-t240
X I Z	0 to	$\frac{3}{4} + \frac{1}{2} + 2$
20	240	

Question No. 20	OLATO OLATO	Que Ou	0, 0,	
The kinetic energy (KE) of a 1	5 ton car traveling at a speed	of 30 m/s can be obtained using the	following equation(s):	
1. $P = PE/t$ 4. 1 ton = 1000 kg	$2. E = PE + KE$ $5. KE = \frac{1}{2}mv^2$	3. P = W/t 6. 1 m/s = 3.96 km/h		
D				

During change of phase of a	substance, its ter	mperature 106	
Changes rapidly			
decreases			
increases			
remains constant			
197040 197040			
\bigcap			
V			

YP MKCL OES Physics_Quiz2_Sem1_2019 Total questions in exam: 25 | Answered: 9 D Question No. 19 User O A A+ An object travels in straight line and increases its speed uniformly from 20 m/s to 30 m/s after covering 100 m. Its acceleration is: Numbe Numbe 9 4 $V_{1}^{0} = 20$ $U_{F} = 30$ 0 = 7 0 = 7 6 = 1000 14 ● 4 m/s/s • 2.5 m/s/s © 0.25 m/s/s ◎ 1 m/s/s Save & Next MKCL DES Enni Clinit Vennis 2.0.0.1 HP Compag LE1711

OLA Question No. 3 Which of the following temperatures is NOT possible now to measure? ● -278 °C ● 7645 °C ● -200 °C ◎ -274 °F HP Compaq LE1711

۰ ۲۸٪ 🏹	۱۱:۵٦ ص	🗢 STC IIII
\odot	۹ من ۱۵	تم
		100
		BARRIER COMPANY
MKCL OES		and the second se
Question No. 15		
The kinetic energy	of a 2-kg object is 1 J. When this kind	tic energy in a
© 1.4 m/s		intry is doubled, the spe
© 2.4 m/s © 4.4 m/s	$R_{E} = 1$ m = 2	
© 3.4 m/s		,
Δ	kettemu2	/
	KET Y	
	X	
	X	
	· \ \	

≣

Privsics_Quiz2_Sem1 2019 Total questions in exam 25 | Answered 3 12 Question No. 25 A A A If a car's average speed is 40 m/s on a 5-hour trip, the total distance it covers is: • 540 km J=40 •450 km • 504 km += 5h-> 18000 •720 km 3=? as joint 2^{a} bill 2^{a} is a single $\frac{1}{2}$ is a single \frac{1}{2} is a single $\frac{1}{2}$ is a single $\frac{1}{2}$ is a single $\frac{1}{2}$ is a single \frac{1}{2} is a single \frac{1}{2} is a single \frac{1} HP Compag LE1711 257720000 hp F-163 1.6

Question No. 8

An object that has small inertia must have:

- o small mass
- I small volume
- 🔘 small area
- big mass

estion No. 5 If a net force of 100 N causes a crate to accelerate at 0.9 m/s/s, the crate's mass is @ 80 kg @ 11 kg # 111 kg @ 50 kg F=100 A=0.9 0 Dell (323 - 37. 1 414 1 10

Total questions in exam 25 | Answered 23 **Question No. 3** User O AL The kinetic energy of a 10,000-kg pile driver when it strikes a pile with velocity 10.0 Number m/s is: m = 10 000 KgV = 10 $K_E = 7$ $K_E = 7$ Number ● 50 J 0.5 kJ 50 kJ 0.5 MJ 16 2 1 mu KE= ىن دول Save & Next Desil CASIC

Question No. 5			
In the Celsius ter	nperature s	cale, the absolute	e zero is at:
 ○ -273 °C ○ 0 °C ○ -100 °C 			
© 273 °C			
Save & Next			
1012 (AK A 20)			
HP Compaq LE	171)		

= 83.33

Question No. 23	ar Qlas		04	0/
Gravitational potential energy of an ob	ject is due to its:	007 10	97 70-087	41040
internal structure				
acceleration				
speed				
position				
V				
D				

MKCL OES Physics_Quiz2_Sem1_2019 Total questions in exam: 25 | Answered: 0 Question No. 16 A large steel wrecking ball is raised to a height of 25 m in 20 s using a power of 3000 W. The mass of the ball is: $\begin{array}{c} h=2s \\ f=20 \\ f=3000 \\ m=3 \\ T \end{array} \right) \begin{array}{c} p=w \longrightarrow mgh \\ f \\ f \\ p=3000 \\ m=3 \\ T \end{array} = 3000 = (x) \times 10 \times 25 \\ \hline 20 \\ =240 \ Kg \end{array}$ ⊙ 100 kg ● 240 kg @ 20 kg ● 200 kg

Question No. 14

The law of conservation of mechanical energy when no resistant forces do work says

•

kinetic energy = the potential energy
 kinetic energy + the potential energy = power
 kinetic energy + the potential energy = constant
 (kinetic energy + the potential energy) is not constant

An opposite in stranger une with a constant speed of 40 m/s for 20 minutes, outmoutment Question No. 1 0.5 misis O D misis 0 2 misis 1 misis $V_{1}^{0} = 0$ $V_{1}^{0} = 40$ t = 20 1200 a^{2} $a = \frac{U_F - V_i}{f}$ a = 0,033 = 0Z