بنك اسئلة خاصة بمادة فيزياء 110
 Private bank questions textured Physics 110

1. We can write the speed of light $(c=299,000,000 \mathrm{~m} / \mathrm{s})$ using the scientific notation as:
(d) 299×10^{8}
(c) 0.299×10^{8}
(b) 29.9×10^{8}
(a) 2.99×10^{8}
2. A car moving with a speed of $100 \mathrm{~km} / \mathrm{h}$, what is its speed in m / s ?
(d) $167.7 \mathrm{~m} / \mathrm{s}$
(c) $277.8 \mathrm{~m} / \mathrm{s}$
(b) $16.7 \mathrm{~m} / \mathrm{s}$
(a) $27.8 \mathrm{~m} / \mathrm{s}$
3. We can express the very small number (0.00000000456) using the scientific notation as:
(d) 4.56×10^{-11}
(c) 4.56×10^{-10}
b) 4.56×10^{-9}
(a) 4.56×10^{-8}
4. Which of the following is not a base quantity ?
(d) time
(c) length
(b) mass
(a) speed
5. How many centimeters in 1 km ?
(d) $10^{4} \mathrm{~cm}$
(c) 10 cm
(b) $10^{2} \mathrm{~cm}$
(a) $10^{5} \mathrm{~cm}$
6. $(1 \mathrm{~m}=3.281 \mathrm{ft})$ then $1.5 \mathrm{ft} / \mathrm{h}$ equals:
(b) $1.27 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
(c) $1645.8 \mathrm{~m} / \mathrm{s}$
(d) $17717.4 \mathrm{~m} / \mathrm{s}$
(a) $1.37 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
7. A square with an edge of 1 cm has an area of: (area $=$ edge 2)
(d) $10^{-6} \mathrm{~m}^{2}$
(c) $10^{-4} \mathrm{~m}^{2}$
(b) $10^{4} \mathrm{~m}^{2}$
(a) $10^{2} \mathrm{~m}^{2}$
8.10^{3} gigawatts is:
(d) 10^{-3} watts
(c) 10^{-6} watts
(b) 10^{9} watts
(a) 10^{12} watts
8. Which prefix is true?
(d) pico $=10^{9}$
(c) $\mathrm{mega}=10^{6}$
(b) micro $=10^{-9}$
(a) milli $=10^{3}$
$10.1 \mathrm{~mm}^{2}=$
(d) $10^{-12} \mathrm{~m}^{2}$
(c) $10^{-9} \mathrm{~m}^{2}$
(b) $10^{-6} \mathrm{~m}^{2}$
(a) $10^{-3} \mathrm{~m}^{2}$
12.If $1 \mathrm{mi}=1609 \mathrm{~m}$ then $55 \mathrm{mi} / \mathrm{h}$ is
(d) $88.1 \mathrm{~m} / \mathrm{s}$
(c) $66.3 \mathrm{~m} / \mathrm{s}$
(b) $24.6 \mathrm{~m} / \mathrm{s}$
(a) $15.4 \mathrm{~m} / \mathrm{s}$
9. A nanosecond is:
(d) $10^{-10} \mathrm{~s}$
(c) $10{ }^{10} \mathrm{~s}$
(b) 10^{-9}
(a) $10^{9} \mathrm{~s}$
10. A gram is:
(d) $10^{3} \mathrm{~kg}$
(c) $10{ }^{6} \mathrm{~kg}$
(b) $10^{-3} \mathrm{~kg}$
(a) $10^{-6} \mathrm{~kg}$
15.The SI base unit for mass is:
(d) kilopound
(c)kilogram
(b) pound
(a) gram
16.There are 1000 meters in
(d) $10,000 \mathrm{~cm}$
(c) 100 cm
(b) 10 kilometer
(a) 1 kilometer
17.How many centimeters in 1 km ?
(d) $10^{4} \mathrm{~cm}$
(c) 10 cm
(b) $10^{2} \mathrm{~cm}$
(a) $10^{5} \mathrm{~cm}$
18.Are the following statements (True) or (False) ?
19.The SI base unit for mass is gram.
(b)False (a) True
20.There are 1209600 seconds in one week.
(b)False
(a) True
11. Suppose the motion of a particle is described by the equation: $X=20+4 t^{2}$. Find the instantaneous velocity at $t=5 \mathrm{~s}$
(d) $36 \mathrm{~m} / \mathrm{s}$
(c) $40 \mathrm{~m} / \mathrm{s}$
(b) $60 \mathrm{~m} / \mathrm{s}$
(a) $16 \mathrm{~m} / \mathrm{s}$
22.A ball thrown vertically upward with an initial velocity of $12 \mathrm{~m} / \mathrm{s}$, what is the ball's maximum height?
(d) 1.22 m
(c) 0.61 m
(b) 14.7 m
(a) 7.35 m
12. A body moves along the x-axis with constant acceleration $a=4 \mathrm{~m} / \mathrm{s}^{2}$. At $\mathrm{t}=\mathrm{O}$ the body is at $\mathrm{x}_{0}=5 \mathrm{~m}$ and has velocity $\mathrm{v}_{0}=3 \mathrm{~m} / \mathrm{s}$. Find its
(d) 18 m
(c) 15 m
(b) 19 m
positionat $\mathrm{t}=2 \mathrm{~s}$? (a) 14 m
13. Suppose the velocity of the particle is given by the: $v=10+2 t^{2}$ where v is in m / s and t is in s . Find the change in velocity of the particle in the time interval between $\mathrm{t}_{1}=2 \mathrm{~s}$ and $\mathrm{t}_{2}=5 \mathrm{~s}$?
d) $42 \mathrm{~m} / \mathrm{s}$
(c) $24 \mathrm{~m} / \mathrm{s}$
(b) $14 \mathrm{~m} / \mathrm{s}$
(a) $41 \mathrm{~m} / \mathrm{s}$
14. In question 24 , Find the instantaneous acceleration when $t=2 \mathrm{~s}$?
(d) $18 \mathrm{~m} / \mathrm{s}^{2}$
(c) $8 \mathrm{~m} / \mathrm{s}^{2}$
(b) $14 \mathrm{~m} / \mathrm{s}^{2}$
(a) $4 \mathrm{~m} / \mathrm{s}^{2}$
15. You walk a distance 1.22 m in 1 s and then run a distance 3.05 m in 1 s , what is your average speed?
(d) $1.83 \mathrm{~m} / \mathrm{s}$
(c) $2.14 \mathrm{~m} / \mathrm{s}$
(b) $4.27 \mathrm{~m} / \mathrm{s}$
(a) $0.92 \mathrm{~m} / \mathrm{s}$
16. The following are equations of the velocity $\mathrm{v}(\mathrm{t})$ of a particle, in which situation the acceleration is constant?
(a) $v=5 t^{3}-3$
(b) $v=3 t^{2}-4 t$
(c) $v=4 t^{2}$
(d) $v=3 t+6$
.28.A rock is dropped from rest from the top of a 100 m tall building, how long does it take to fall the first 50 m ?
(d) 4.5 s
(c) 20.4 s
(b) 10.2 s
(a) 3.2 s
29.The following are equations of the position of a particle, in which situation the velocity of the particle is constant?
(d) $\mathrm{x}=4 \mathrm{t}^{-2}$
(c) $x=-3 t-2$
(b) $x=-2 t^{3}$
(a) $\mathrm{x}=4 \mathrm{t}^{2}-2$
30.A ball thrown vertically upward with an initial velocity of $12 \mathrm{~m} / \mathrm{s}$, what is the ball's maximum height?
(d) 1.22 m
(c) 0.61 m
(b) 14.7 m
(a) 7.35 m
17. What is the initial speed of a car moving a distance of 60 m in 6 s if the final speed was $15 \mathrm{~m} / \mathrm{s}$?
(d) $17.5 \mathrm{~m} / \mathrm{s}$
(c) $5 \mathrm{~m} / \mathrm{s}$
(b) $-5 \mathrm{~m} / \mathrm{s}$
(a) $-10 \mathrm{~m} / \mathrm{s}$
32.If the total distance moved by a bus before stopping was 56.7 m with . initial speed of $22.36 \mathrm{~m} / \mathrm{s}$. What is the magnitude of the acceleration?
(d) $2.21 \mathrm{~m} / \mathrm{s}^{2}$
(c) $17.63 \mathrm{~m} / \mathrm{s}^{2}$
(b) $4.41 \mathrm{~m} / \mathrm{s}^{2}$
(a) $8.82 \mathrm{~m} / \mathrm{s}^{2}$
33.A pipe dropped from a building struck the ground with a speed of 24 m / s. what height was it dropped from?
(d) 29.4 m
(c) 1.22 m
(b) 2.44 m
(a) 58.8 m
18. What is the initial speed of a ball thrown upward vertically reaching a height of 0.544 m in 0.2 s ?
(d) $0.74 \mathrm{~m} / \mathrm{s}$
(c) $2.1 \mathrm{~m} / \mathrm{s}$
(b) $3.7 \mathrm{~m} / \mathrm{s}$
(a) $4.68 \mathrm{~m} / \mathrm{s}$
35.In figure the vactor \mathbf{A} in unit vactor notation is:

a) $3.1 \mathrm{i}+6.2 \mathrm{j}$

b) $\mathbf{4 i}+1 \mathbf{j}$
c) 2 i
d) $\mathbf{5 j}$
1.In figure the magnitude of vector B is:
a) 4 m
b) 5 cm
c) $\mathbf{2 m}$
d) 5 m
2.In figure the vactor \mathbf{C} in unit vactor notation is:

a) $4 i$
b) $\mathbf{5 k}$
c) 3 j
d)k
37. Given $\mathrm{A}=3 \mathrm{i}+5 \mathrm{j}-10 \mathrm{k}$, then the amagnitude of vector A is:
a) 12
b) 10
c) 11.5
d) 13.4
38. Given $\mathrm{c}=5 \mathrm{i}+7 \mathrm{j}$, then the magnitude of vector c is:
a) 5
b) 9
c) 8.6 d) 8
39.A vactor has amagnitude of 9 units makes an angal of 30° with the x -axis is y -component
a) 4.5 units
b) 5 units
c) 8 units
d)2 units
40.the scalar product i.j is equal to:
a) k
b) zero
c) 2 i
d) j
41.Two vactor are given as $\mathrm{A}=4 \mathrm{i}+2 \mathrm{j}+\mathrm{k}$ and $\mathrm{B}=2 \mathrm{i}+5 \mathrm{j}+3 \mathrm{k}$. The resut of $\mathbf{A}-\mathbf{B}$:
a) $2 \mathrm{i}-3 \mathrm{j}-2 \mathrm{k}$
b) $\mathbf{5 i - 3 j}$
c) $\mathbf{2 i}+\mathbf{j} \mathbf{j}$
d) $\mathbf{i} 5 \mathrm{j}$
42.if the amagnitude of avctor 12 m and its x -component of 15 m . the angal it makes with the positive x -axis is:
a) 36.8^{0}
b) 30.2^{0}
c) 26.8^{0}
d) 16.8^{0}
43.Two vactor are given as $\mathrm{A}=\mathrm{i}+2 \mathrm{j}$ and $\mathrm{B}=3 \mathrm{i}+6 \mathrm{j}$. Thir scalar $\mathbf{A} . \mathrm{B}$ is:
a) 4 units
b) 15 units
c) 12 units
d) 9 units
44.the vactor product $\hat{\boldsymbol{j}} \times \hat{\boldsymbol{i}}$ is equal to:
a) $-k$
b) \mathbf{j}
c) i
d) j.k
45.Two vactor $\mathrm{A}=4 \mathrm{i}+5 \mathrm{j}+2 \mathrm{k}$ and $\mathrm{B}=\mathrm{i}-3 \mathrm{j}+2 \mathrm{k}$ Thir vactor product

$$
A \times B \quad \text { is: }
$$

a) $\mathbf{2 i}+\mathbf{3 j}$
b) $16 \mathrm{i}-6 \mathrm{j}+7 \mathrm{k}$
c) $i-4 k$
d) $\mathbf{3 j}+7 \mathbf{k}$
46.if the angle between A and B Is 90° and $\mathrm{A}=7$ units, $\mathrm{B}=3$ units then the magnitude of the vector product $A \times B$ is:
a) 4
b) 8
c) 21
d) 12
47. Give vector $A=2 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}$ and $B=4 \hat{\imath}+4 \hat{\jmath}+4 \hat{k}$. The value of Vector C which makes the equation $\mathbf{A}-\mathbf{B}+\mathbf{C}=\mathbf{0}$
a) $\mathbf{1 2 i} \mathbf{i} \mathbf{5 j}$
b) $2 i+2 j+6 k$
c) $\mathbf{3 i}+\mathbf{4} \mathbf{j}$
d) $2 \mathrm{j}-5 \mathrm{k}$
48.Two vectors are given $A=-3 \hat{i}+2 \hat{\jmath}+5 \hat{k}$ and
$\mathbf{B}=4 \hat{\imath}+5 \hat{\jmath}-2 \hat{k}$. The results of $2 \overline{\mathbf{A}}-\overline{\mathbf{B}}$ is:
a) $\mathbf{9 i} \mathbf{- 3 j}+\mathbf{3 k}$
b) $\mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$
c) $\mathbf{5 i}+7 \mathbf{j}$
d) $-10 j-j+12 k$
49.Vector $\overline{\mathrm{A}}$ has x -component of 2.0 and y-component of 21.0. The magnitude of this vector is
a) 22.7
b) 22.09
c) $\mathbf{1 9 . 1 5}$
d) 17.4
50.if $\mathrm{A}=\mathrm{i}+5 \mathrm{j}+6 \mathrm{k}$ and $\mathrm{B}=-\mathrm{i}+4 \mathrm{j}-8 \mathrm{k}$ the sum $A+B$:
a) $\mathbf{5 i}+\mathbf{2} \mathbf{j}+\mathbf{4 K}$
b) $9 \mathrm{j}-2 \mathrm{k}$
c) $2 \mathrm{i}-4 \mathrm{k}$
d) $\mathbf{6 j}+\mathbf{J}+\mathbf{7 k}$
51.The SI unit of kinetic energy is: $\mathrm{kg} . \mathrm{m} / \mathrm{s}^{2}$
a) False
b) True
52.The velocity is defined as the change in position from initial position to final position.
a) False
b) True
53. Watt is equal to: Joule per second
a) False
b) True

54-The magnitude of the gravitational force is equal to the product (ma).
a) False
b) True

55-The horizontal range R is maximum for a launch angle of 90
a) False
b) True

56-The SI base unit for mass is gram.
a) False
b) True
$57-\mathrm{A} 5 \mathrm{~kg}$ object moving at a speed of $6 \mathrm{~m} / \mathrm{s}$, its kinetic energy is 80 Joule.
a) False
b) True
58.amicrosecond is:
a) $10^{6} \mathrm{~s}$
b) $10^{-6} \mathrm{~s}$
c) $10^{9} \mathrm{~s}$
d) $10^{-9} \mathrm{~s}$
59. A gram is:
a) $10^{-6} \mathrm{~kg}$
b) $10^{-3} \mathrm{~kg}$
c) 1 kg
d) 103
60.The SI base unit for mass is:
(a) kilopound
(b)kilogram
(c) pound
(d) gram
61.Object moves with a constant velocity of $9.8 \mathrm{~m} / \mathrm{s}$, its acceleration in $\mathrm{m} / \mathrm{s}^{2}$ is:
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(b)zero
(c) $0.98 \mathrm{~m} / \mathrm{s}^{2}$
(d) $98 \mathrm{~m} / \mathrm{s}^{2}$
62.A rope from the ceiling suspends a ball of weight 419 N . The tension in the rope is:
a. 419 N
b) 209 N
c) 412 N
d) 654 N
63. A particle of mass 134 kg at a point where
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$, its weight at a point where $\mathrm{g}=0$ is:
a) $\quad 134 \mathrm{~N}$
b) zero N
c) 13132 N
d) 654 N
64.The standard $1-\mathrm{kg}$ mass is attached to a compressed spring and the spring is released. If the mass initially has an acceleration of $12.7 \mathrm{~m} / \mathrm{s}^{2}$, the force of the spring has a magnitude of:
a) $\quad 12.7 \mathrm{~N}$
b) 7.9 N
c) 11.7 N
d) 9.8 N
65. When a force of 56 N is applied to a body, its acceleration is $6 \mathrm{~m} / \mathrm{s}^{2}$. The mass of the body is:
a) $\quad 9.3 \mathrm{~kg}$
b) 7.3 kg
c) 1.7 kg
d) 2.8 kg
66.A 13 kg box is moving with a constant speed of $30 \mathrm{~m} / \mathrm{s}$. The net force on the box is:
a) 1.7 N
b) zeroN
c) 390 N
d) 11 N

2.

67. A 22 kg mass is sliding horizontally on a frictionless surface, the normal force FN is :
a) 215.6 N
b) 204 N
c) 334 N
d) 121 N

3.

68. A man of mass 58 kg stand on elevator, if the elevator is going upward with acceleration of 2 $\mathrm{m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
a) 215.6 N
b) 68.44 N
c) 32 N
d) 421 N
69.A force of 50 N is:
$\mathrm{a}-50 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}$
b) $100 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
c) $54 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}$
d) $5.8 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}$
70.thre forc an partical of mass $F_{1}=30 i+10 j \quad F_{2}=3 i+50 j$ if the partical constant speed $4 \mathrm{~m} / \mathrm{s}^{2}$ if F_{3} :
a) $\quad F_{3}=-33 i-60 j$
b) $F_{3}=-33 i+60 j$
c) $\quad F_{3}=33 i-60 j$
d) $F_{3}=33 i+60 j$
71.the direction of accelertion of the body is.
a) the same direction of net force
b) opposite to the net force.
c) the same of the initial velocity.
d) perpendicular to the direction of the net force

72-If the position of an object changes from $r_{1}=-2 \hat{i}+3 \hat{j}$ to $r_{2}=\hat{i}-2 \hat{j}$, the displacement is:
A) $\Delta r=3 \hat{i}+5 j$
B) $\Delta r=-3 \hat{i}-5 \hat{j}$
C) $\Delta r=-3 \hat{i}-5 j$
D) $\Delta r=3 \hat{i}-5 \hat{j}$
73.A man throws a stone horizontally off a cliff that is 40 m above the sea level. If the velocity of the stone is $30 \mathrm{~m} / \mathrm{s}$, the time it takes to hit the sea level is:
A) 3.49 s
B) 4 s
C) 2.85 s
D) 6 s
74.An object is in equilibrium, the acceleration of the object is:
D) Constant
C) Zero
B) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
A) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
75.A projectile is launched at an angle of 30^{0} to the horizontal with a speed of $100 \mathrm{~m} / \mathrm{s}$. The maximum height of the projectile is :
A) 100 m
B) 127.55 m
C) 250 m
D) 44.0 m
76.In the projectile motion, the angle for the maximum range is:
(c) 180°
(b) 75^{0}
(a) 90^{0}
${ }^{77}-$-A ball is thrown with a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 30^{0}. The y -component of the velocity is :
(d)
(c) $15 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(a) $30 \mathrm{~m} / \mathrm{s}$
$13 \mathrm{~m} / \mathrm{s}$
78- In question (77), the x-component of the velocity is:
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$
(a) $30 \mathrm{~m} / \mathrm{s}$

79- In question (77), the maximum height is :
(d) 28.7 m
(b) 287 m
(c) 2.87 m
(a) 2870 m

80 - In question (77), the range is:

$$
\text { (b) } 198.8 \mathrm{~m}
$$

(d) 1.988 m

81- In question (77), the time of flight is:
(d) 1.5 s
(c) 15 s
(b) 0.15 s
(a) 0.015 s
82.Coefficient of kinetic friction
a. $\quad \mu_{s}=\frac{f_{s}}{F_{g}}$
b) $\mu_{k}=\frac{f_{k}}{F_{N}}$
c) $\mu_{s}=\frac{f_{s}}{F_{N}}$
d) $\mu_{k}=\frac{f_{k}}{F_{g}}$
83. The ratio of the change of displacement to the time interval: .b
a) average velocity
b) speed
c) acceleration
d) position
84. In projectile motion, the Y - component of the velocity at maximum height is:
a) Constant
b) The maximum Value
c) Zero
d) negative
85.The direction of the acceleration of body is
a) opposite to the net force.

b) the same direction of the net force.

c) perpendicular to the direction of the net force.
d) the same of the initial velocity
.c
86.What is the acceleration of the $3-\mathrm{kg}$ block?
a) $2.9 \mathrm{~m} / \mathrm{s}^{2}$
b) $3.9 \mathrm{~m} / \mathrm{s}^{2}$
c) $6.9 \mathrm{~m} / \mathrm{s}^{2}$
d) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
87.The final velocity of an apple if it falls from a 100 m -tree is

. $44.3 \mathrm{~m} / \mathrm{s}$
b. $10 \mathrm{~m} / \mathrm{s}$
c. $12 \mathrm{~m} / \mathrm{s}$
d.
$54 \mathrm{~m} / \mathrm{s}$
88. The direction of vector $\mathrm{A}^{-}=(-25 \mathrm{~m}) \mathrm{i}^{\wedge}+(55 \mathrm{~m}){ }^{\wedge} \mathrm{j} \quad$ is :
a) -113^{0}
b) 29^{0}
c) $151{ }^{0}$
d) -65.6^{0}
89. The position of a body moving along the x axis is given by $\mathrm{x}=5 \mathrm{t}-2 \mathrm{t}^{2}+\mathrm{t}^{3}$, then The position at $\mathrm{t}=2 \mathrm{~s}$ is:
a) 36 m
b) 18 m
c) 8 m
d) 10 m
90. Convert $5.86 \times 10^{6} \mathrm{~cm}$ to km
a) 58.6 km
b) 5.86 km
d) 0.586 km
91. An object is thrown straight up from ground level and reached its highest point after 3.4 s . Its initial velocity is:
a) $33.32 \mathrm{~m} / \mathrm{s}$
b) $35.3 \mathrm{~m} / \mathrm{s}$
c) $43.31 \mathrm{~m} / \mathrm{s}$
d) $30.32 \mathrm{~m} / \mathrm{s}$
92. A spring moves from position 5 m to zero, how much work is done by the spring if the spring constant is $100 \mathrm{~N} / \mathrm{M}$
a) 250 J
c) 500
d) 0.05 J
93. A 2 Kg mass moving with initial velocity of $5 \mathrm{~m} / \mathrm{s}$, its velocity increased to $8 \mathrm{~m} / \mathrm{s}$, find the change in its Kinetic energy
a) 78 J
c) 19.5 J
d) 6 J
94. A nano meter $=$
a) $10^{9} \mathrm{~m}$
b) $10^{-6} \mathrm{~m}$
c) $10^{-3} \mathrm{~m}$

95.A projectile is fired at an angle of 30 above the horizontal with an initial speed of v_{0}, If the maximum range it reaches is 140 m , what its initial speed?
a) $20 \mathrm{~m} / \mathrm{s}$
b) $40 \mathrm{~m} / \mathrm{s}$
c) $60 \mathrm{~m} / \mathrm{s}$
d) $80 \mathrm{~m} / \mathrm{s}$
96. Coefficient of kinetic friction
d. $\mu_{s}=\frac{f_{s}}{F_{g}}$
b)
c) $\mu_{s}=\frac{f_{S}}{F_{N}}$
d) $\mu_{k}=\frac{f_{k}}{F_{g}}$
97. A baseball is thrown vertically into the air. the acceleration of the ball at its highest point is:
a) zero
b) $-g$
c) g
d) none
98. The horizontal range R maximum is reached when θ is :
a) 180°
b) 90°
d) 0°
99. A bicycle complete 4 revolutions around a circular path of radius 10 m in 120 ses. The centripetal acceleration is
b) $0.33 \mathrm{~m} / \mathrm{s}^{2}$
c) $0.65 \mathrm{~m} / \mathrm{s}^{2}$
d) $3.5 \mathrm{~m} / \mathrm{s}^{2}$
100. The ratio of the change of displacement to the time interval:
b) speed
c) acceleration
d) position
101.In projectile motion, the Y - component of the velocity at maximum height is:
a) Constant
b) The maximum Value
c) Zero
d) negative
102.The direction of the acceleration of body is
a) opposite to the net force.
c) perpendicular to the direction of the net force.
d) the same of the initial velocity
103.At the maximum height, what of the followings is correct?
a)Its velocity is zero
b)Its y-component velocity is zero
c)Its x-component velocity is zero
d)Its acceleration is zero
104.To have the maximum range, a projectile must be launched at an angle of
a) 25
b) 35
c) 45
d) 60
105.Ignoring air resistance, the acceleration of any projectile along the x direction is(SI units)
a) 9.8
b) 0
c)varied from one to another
d)less than zero
106.Ignoring air resistance, the acceleration of any projectile along the y direction is (SI units)

a) 9.8

b) 0
c) varied from one to another
d)less than zero

107-Three particles of masses $m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}$, and $m_{3}=3 \mathrm{~kg}$ are located in $x y$ plane as $(3,2),(-1,1)$, and $(3,-2)$, respectively. Find the coordinate of the center of mass?

108-A motorcycle of mass 120 kg moves with a fixed speed of 15 m / s. Calculate the magnitude of its linear momentum?
a-1700 kg.m/s
b-1600 kg.m/s
c- $1800 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
d-180 kg.m/s

109-Three particles of masses $m_{1}=2 \mathrm{~kg}, m_{2}=3 \mathrm{~kg}$, and $m_{3}=5 \mathrm{~kg}$ are arranged in the $x y$ plane, as shown in the figure below. Find the position vector of the center of mass.?

$$
\text { c- } r_{c m}=1.4 i+1.3 j \quad \text { d- } r_{c m}=1.1 i-1.3 j{ }^{a-r_{c m}=1.1 i+1.3 j} \quad \text { b- } r_{c m}=-1.1 i+1.2 j
$$

110- car is moving with a constant speed of $27 \mathrm{~m} / \mathrm{s}$. If its momentum is $21600 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$, what is its mass?

$$
\text { a-80kg b-1200kg c- } 500 \mathrm{~kg} \quad \text { d-800kg }
$$

111- A spring moves from position 5 m to zero, how much work is done by the spring if the spring constant is $100 \mathrm{~N} / \mathrm{M}$
a) 250 J
b) 1250
c) 500
d) 0.05 J

112- A 2 Kg mass moving with initial velocity of $5 \mathrm{~m} / \mathrm{s}$, its velocity increased to $8 \mathrm{~m} / \mathrm{s}$, find the change in its Kinetic energy
a) 78 J
b) 39 J
c) 19.5 J
d) 6 J

113-CHOOSE THE CORRECT ANSWER

1. When the object is stationary, its kinetic energy is zero.
a) True
b) False

2 -woork of $1 \mathrm{~J}=1 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}$
a) True
b) False

3-The law of conservation of liner momentum is $\left(\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}}\right)$
a) True
b) False

4-The instantaneous Power $P=\frac{W}{\Delta T}$
a) True
b) False

5-Watt is equal to: Joule per second:
a) True
b) False

114-Kilowatt-hour is the unit of
a) momentum
b) work
c) Power
d) spring constant
$115-\mathrm{What}$ is the speed of a 55 kg woman running with a kinetic energy of 412.7 J ?
a) $15 \mathrm{~m} / \mathrm{s}$
b) $3.87 \mathrm{~m} / \mathrm{s}$
c) $2.7 \mathrm{~m} / \mathrm{s}$
d) $4 \mathrm{~m} / \mathrm{s}$

116-A force was applied on an object of mass 50 kg with speed $32 \mathrm{~m} / \mathrm{s}$, the linear momentumis:
a) $1600 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
b) $1900 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
c) $1500 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
d) $1700 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$

أستاذة المادة

سميرة القحطني

