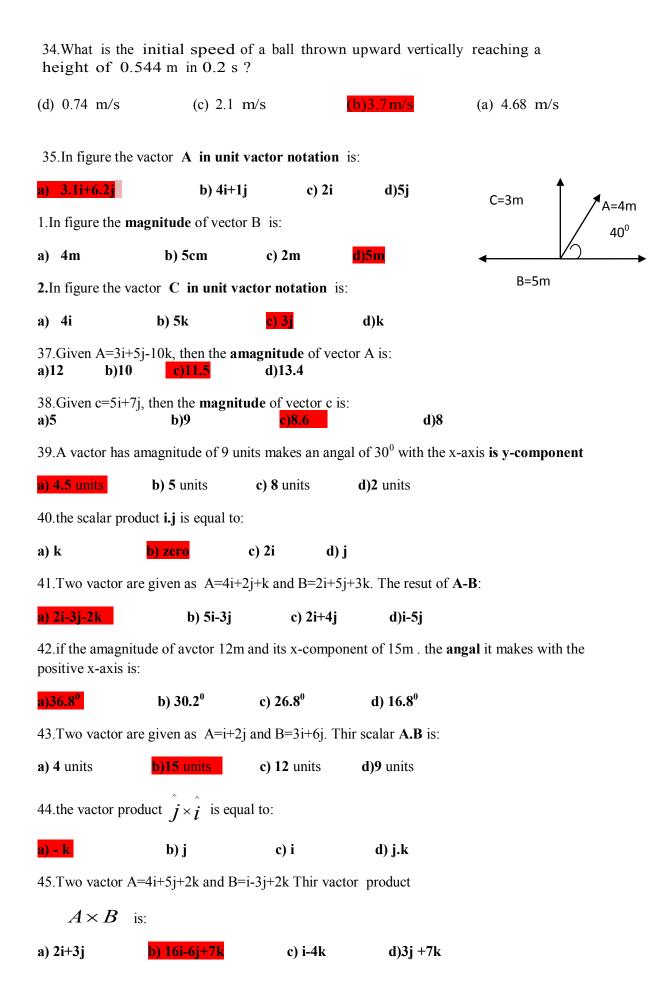
بنك اسئلة خاصة بمادة فيزياء 110

Private bank questions textured Physics 110


1. We can write the speed of light (c = 299,000,000 m/s) using the scientific

notation as:

(d)	299 x 10 ⁸	(c) 0.299×10^{-8}	(b) 29.9 x 10 ⁸	$(a)2.99 \times 10^8$	
2.	A car moving wit	th a speed of 100 km	m/h, what is its spee	d in m/s?	
(d)	167.7 m/s	(c) 277.8 m/s	(b) 16.7 m/s	(a)27.8 m/s	
	We can express ation as:	the very small numb	er (0.000 000 004	56) using the scientific	
(d)	4.56 x 10 ⁻¹¹	(c) 4.56×10^{-10}	(b) 4.56×10^{-9} (a)	a) 4.56 x 10 ⁻⁸	
4.	Which of the foll	lowing is not a base	e quantity?		
(d)	time	(c) length	(b) mass	(a)speed	
5.	How many centi	imeters in 1 km?			
		(c) 10 cm) then 1.5 ft/h equ	* *	$(a)10^5 \text{ cm}$	
(b)	$1.27 \times 10^{-4} \mathrm{m/s}$	e) 1645.8 m/s (d) 1	7717.4 m/s (a)	1.37 x 10 ⁻³ m/s	
7.	A square with a	n edge of 1 cm has	s an area of: (area	$= edge^2$)	
(d)	10^{-6} m^2	$(c)10^{-4} m^2$	(b) 10^4 m^2	(a) 10^2 m^2	
8.1	0 ³ gigawatts is	: .			
	10 ⁻³ watts (c) Which prefix is true) 10 ⁻⁶ watts (b)) 10 ⁹ watts (a)10 ¹² watts	
(d)	$pico = 10^9$	$(c)mega=10^6$	(b) micro = 10^{-9}	(a) milli = 10^3	
10.	$1 \text{ mm}^2 =$				
(d)	10 ^{- 12} m ²	(c) 10^{-9} m ²	$(b)10^{-6} m^2$	(a) 10^{-3} m^2	
12.If 1 mi = 1609m then 55mi/h is					
(d)	88.1 m/s	(c) 66.3 m/s	(b)24.6 m/s	(a) 15.4 m/s	

13.A nanosecon	d is: .					
(d) 10^{-10} s	(c) 10^{10} s	$(b)10^{-9}s$	(a) 10 ⁹ s			
14.A gram is:						
(d) 10^3 kg	(c) 10^6 kg	$(b)10^{-3} kg$	(a) 10^{-6} kg			
15.The SI base v	unit for mass is:					
(d) kilopound	(c)kilogram	(b) pound	(a) gran	n		
16.There are 100	0 meters in					
(d) 10,000 cm	(c) 100 cm	(b) 10 kilometer	(a)1kilomet	er		
4	ntimeters in 1 km (c) 10 cm	•	(a)10	⁵ cm		
18.Are the follow	wing statements	(True) or (Fals	se)?			
19.The SI base un	it for mass is gran	n.				
(b)False	(a) True					
20.There are 1209	9600 seconds in on	e week.				
(b)False (a) True 21. Suppose the motion of a particle is described by the equation: $X = 20 + 4 t^{2}$. Find the instantaneous velocity at t =5 s						
(d) 36 m	/s (c)4	<mark>0m/s</mark> (b)) 60 m/s	(a) 16 m/s		
	n vertically upwar aximum height?	d with an initial	velocity of 12 n	n/s, what		
(d) 1.22 m	(c) 0.61 m	(b) 14.7 m	(a)7.	35 m		
23. A body moves along the x-axis with constant acceleration $a=4 \text{ m/s}^2$. At t=0 the body is at $x_0=5$ m and has velocity $v_0=3$ m/s. Find its (d) 18 m (c) 15 m position at $t=2$ s? (a) 14 m						
is in m/s and t is	24. Suppose the velocity of the particle is given by the: $v = 10 + 2 t^2$ where v is in m/s and t is in s. Find the change in velocity of the particle in the time interval between $t_1 = 2$ s and $t_2 = 5$ s?					
$(d)42 \mathrm{m/s}$	(c) 24 m/s	(b) 14 m/s	(a) 41 ı	m/s		

25. In question 24, Find the instantaneous acceleration when $t = 2 s$?						
(d) 18 m/s^2	$(c)8\mathrm{m/s}^2$	(b) 14 m/s^2	(a) 4 m/s^2			
26. You walk a distance 1.22 m in 1 s and then run a distance 3.05 m in 1 s, what is your average speed?						
(d) 1.83 m/s	(c)2.14m/s	(b) 4.27 m/s	(a) 0.92 m/s			
	are equations of the acceleration is con		a particle, in			
(a) $v = 5 t^3 - 3$	(b) $v = 3 t^2 - 4 t$	(c) $v = 4 t^2$	(d) $v = 3t + 6$			
	ed from rest from the all the first 50 m?	top of a 100 m tall	building, how long			
(d) 4.5 s	(c) 20.4 s	(b) 10.2	s (a)3.2s			
•	e equations of the pose particle is constan		n which situation .			
(d) $x = 4 t^{-2}$	(c)x = -3t - 2	(b) $x = -2 t^3$	(a) $x = 4 t^2 - 2$			
30.A ball thrown vertically upward with an initial velocity of 12 m/s, what is the ball's maximum height?						
(d) 1.22 m	(c) 0.61 m	(b) 14.7 m	$(a)7.35 \mathrm{m}$			
31. What is the initial speed of a car moving a distance of 60 m in 6 s if the final speed was 15 m/s?						
(d) 17.5 m/s	(c)5 m/s	(b) -5 m/s	(a) -10 m/s			
32.If the total distance moved by a bus before stopping was 56.7 m with . initial speed of 22.36 m/s. What is the magnitude of the acceleration?						
(d) 2.21 m/s^2	(c) 17.63 m/s^2	(b) 4.41 m/s^2	(a) 8.82 m/s^2			
33.A pipe dropped from a building struck the ground with a speed of 24 m/s. what height was it dropped from?						
(d)29.4m	(c) 1.22 m	(b) 2.44 m	(a) 58.8 m			

46.if the angle between A and B Is 90° and A=7units,B=3units then the magnitude of the vector product $A \times B$ is:					
a) 4	b) 8	c) 21	d) 12		
47. Give vector equation A - B		and $B = 4\hat{\imath} + 4\hat{\jmath} +$	$4\hat{k}$. The value of Vector C which makes the		
a) 12i-5j	b) 2i+2j+6k	c) 3i+4j	d) 2j-5k		
48.Two vectors	s are given $A = -3\hat{i}$	$+2\hat{j}+5\hat{k}$ and			
$B = 4\hat{\imath} + 5\hat{\jmath}$	$-2\hat{k}$. The results of	of $2\bar{A} - \bar{B}$ is:			
a) 9i-3j+3k	b) i+4j+3k	c) 5i+7j	d) -10j-j+12k		
49. Vector Ā ha	s x-component of 2	2.0 and y-compone	ent of 21.0. The magnitude of this vector is		
a) 22.7	b) 22.09	c) 19.15	d) 17.4		
50.if A=i+5j+6	ok and B=-i+4j-8k t	he sum $\stackrel{}{A}$ + $\stackrel{}{B}$:		
a) 5i+2j+4K	b) 9j-2k	c) 2i-4k	d)6j+J+7k		
51.The SI unit	of kinetic energy is	s: kg.m/s ²			
	y is defined as the o	b) True change in position	from initial position to final		
position. a) False	1. 7.1	,	Γrue		
53. Watt is equal to: Joule per second a) False b) True					
54-The magnitude of the gravitational force is equal to the product (ma). a) False b) True					
55-The horizontal range R is maximum for a launch angle of 90 a) False b) True					
56-The SI base unit for mass is gram. a) False b) True					
57-A 5kg object moving at a speed of 6 m/s, its kinetic energy is 80 Joule. a) False b) True 58.amicrosecond is:					
a) 10 ⁶ s	b) 10 ⁻⁶ s	c) 10 ⁹ s	d) 10 ⁻⁹ s		
59. A gram is:					
a) 10 ⁻⁶ kg	b <u>) 10⁻³ kg</u> c) 1 kg d) 1	03		
60.The SI base unit for mass is:					

(a) kilopound	(b)kilogram	(c) pound	(d) gram		
61.Object moves with a constant velocity of 9.8 m/s, its acceleration in m/s ² is:					
(a) 9.8 m/s ² (b)z	ero_ (c) 0.98 m/s	² (d) 98 m/s ²			
62.A rope from the cer	lling suspends a ball of w	veight 419 N. The tensi	on in the rope is:		
a. 419 N b) 20	99N c) 412N	d)654N			
63. A particle of mass 1	34 kg at a point where				
$g = 9.8 \text{ m/s}^2$, its weight	at a point where $g = 0$ is:				
a) 134 N b)	zero N c) 13132N	d) 654N			
	ass is attached to a compeleration of 12.7 m/s ² , th				
a) 12.7 N b) 7	.9 N c) 11.7N d)	9.8N			
65. When a force of 56	N is applied to a body, its	s acceleration is 6 m/s ²	. The mass of the body is:		
a) 9.3 kg b) 7.	3 kg c) 1.7kg d)	2.8kg			
66.A 13 kg box is movin	ng with a constant speed	of 30 m/s. The net for	ce on the box is:		
a) 1.7N b) zeroN	c) 390N d) 11N			
	2. ======				
67. A 22 kg mass is sliding horizontally on a frictionless surface, the normal force FN is :					
a) 215.6N b) 2041	N c) 334N d)	121N			
	3. =========				
68. A man of mass 58 kg stand on elevator, if the elevator is going upward with acceleration of 2 m/s^2 , the normal force on the man from the elevator is:					
a) 215.6N b) 68.4	4N c) 32N d) 4	121N			
69.A force of 50N is:					
a-50 kg. m/s ² b) 100 kg.m/s ² c) 54 kg. m/s ² d) 5.8 kg.m/s ²					
70. thre forc an partical of mass $F_1 = 30i + 10j$ $F_2 = 3i + 50j$ if the partical constant speed 4m/s^2 if F_3 :					

a)
$$F_3 = -33i - 60j$$

b)
$$F_3 = -33i + 60j$$

e)
$$F_3 = 33i - 60j$$

d)
$$F_3 = 33i + 60j$$

71. the direction of accelertion of the body is.

- a) the same direction of net force
- b) opposite to the net force.
- c) the same of the initial velocity.
- d) perpendicular to the direction of the net force

72-If the position of an object changes from $r_1 = -2\hat{i} + 3\hat{j}$ to $r_2 = \hat{i} - 2\hat{j}$, the displacement

A)
$$\Delta r = 3\hat{i} + 5\hat{j}$$

B)
$$\Delta r = -3\hat{i} - 5\hat{j}$$

A)
$$\Delta r = 3\hat{i} + 5j$$
 B) $\Delta r = -3\hat{i} - 5\hat{j}$ C) $\Delta r = -3\hat{i} - 5j$

73.A man throws a stone horizontally off a cliff that is 40 m above the sea level. If the velocity of the stone is 30 m/s, the time it takes to hit the sea level is:

B) 4 s

74. An object is in equilibrium, the acceleration of the object is:

D) Constant

B) -9.8 m/s^2

A) 9.8 m/s²

75.A projectile is launched at an angle of 30° to the horizontal with a speed of 100 m/s. The maximum height of the projectile is:

D) 44.0 m

C) 250 m

A) 100m

76. In the projectile motion, the angle for the maximum range is:

(c) 180^0

(b) 75^0

 77 -A ball is thrown with a velocity of 15 m/s at an angle of 30° . The y-component of the velocity is:

(d)

(c)15 m/s

(a)30 m/s

13m/s

78- In question (77), the x-component of the velocity is:

(b) 7.5 m/s

(c)15 m/s

(d) 13 m/s

(a)30 m/s

79- In question (77), the maximum height is:

(d) 28.7 m

(b)287m

(a)2870m

80- In question (77), the range is:

(b)198.8 m

(c) 1988 m

(d) 1.988 m

(c) 15 s

(b)0.15 s

(a)0.015 s

82. Coefficient of kinetic friction

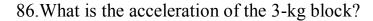
a.
$$\mu_s = \frac{f_s}{F_g}$$

b) $\mu_k = \frac{f_k}{F_N}$ $c) \mu_s = \frac{f_s}{F_N}$ $d) \mu_k = \frac{f_k}{F_g}$

83. The ratio of the change of displacement to the time interval: .b

- a) average velocity
- b) speed
- c) acceleration
- d) position

84. In projectile motion, the Y-component of the velocity at maximum height is:

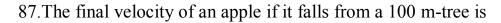

- a) Constant
- b) The maximum Value
- d) negative

85. The direction of the acceleration of body is

a) opposite to the net force.

b) the same direction of the net force.

- c) perpendicular to the direction of the net force.
- d) the same of the initial velocity



b) 3.9 m/s²

c) 6.9 m/s^2

d) 9.8 m/s^2

b. 10 m/s

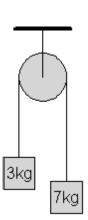
c. 12m/s

d.

54 m/s

88. The direction of vector
$$A^- = (-25m)i^+ + (55m)^- j$$
 is

- a) -113^0
- b) 29^0
- c) 151 ⁰


89. The position of a body moving along the x axis is given by

$$x = 5 t - 2 t^2 + t^3$$
, then The position at $t = 2 s$ is:

- a) 36 m
- b) 18 m
- c) 8 m

90.Convert
$$5.86 \times 10^6$$
 cm to km

- a) 58.6 km
- b) 5.86 km
- d) 0.586 km

a) 33.32 m/s b) 35.3 m/s c) 43.31 m/s d) 30.32 m/s							
92. A spring moves from position 5 m to zero, how much work is done by the spring if the spring constant is 100 N/M a) 250 J b) 1250 J c) 500 d) 0.05 J							
93. A 2 Kg mass moving with initial velocity of 5 m/s, its velocity increased to 8 m/s, find the change in its Kinetic energy a) 78 J c) 19.5 J d) 6 J							
94. A nano meter = a) 10^9 m b) 10^{-6} m c) 10^{-3} m							
95.A projectile is fired at an angle of 30 above the horizontal with an initial speed of \mathbf{v}_0 , If the maximum range it reaches is 140 m, what its initial speed?							
a) 20 m/s c) 60 m/s d) 80 m/s							
96. Coefficient of kinetic friction							
d. $\mu_s = \frac{f_s}{F_g}$ b) $\mu_k = \frac{f_k}{F_N}$ c) $\mu_s = \frac{f_s}{F_N}$ d) $\mu_k = \frac{f_k}{F_g}$							
97. A baseball is thrown vertically into the air. the acceleration of the ball at its highest point is:							
a) zero b) -g c) g d) none							
98. The horizontal range R maximum is reached when θ is: a) 180° b) 90° c) 45° d) 0°							
99. A bicycle complete 4 revolutions around a circular path of radius 10 m							
in 120 ses. The centripetal acceleration is							

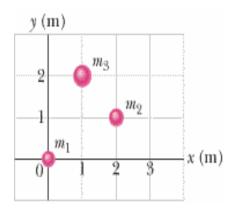
91. An object is thrown straight up from ground level and reached its highest point after 3.4 s . Its initial velocity is:

b) 0.33 m/s^2 c) 0.65 m/s^2 d) 3.5 m/s^2					
100. The ratio of the change of displacement to the time interval:					
a) average velocity b) speed c) acceleration d) position					
101.In projectile motion, the Y-component of the velocity at maximum height is:					
a) Constant b) The maximum Value c) Zero d) negative					
102. The direction of the acceleration of body is					
a) opposite to the net force.					
b) the same direction of the net force					
c) perpendicular to the direction of the net force.					
d) the same of the initial velocity					
103.At the maximum height, what of the followings is correct? a)Its velocity is zero b)Its y-component velocity is zero c)Its x-component velocity is zero d)Its acceleration is zero					
104. To have the maximum range, a projectile must be launched at an angle of a)25 b)35 c)45 d)60					
105.Ignoring air resistance, the acceleration of any projectile along the x-direction is(SI units) a)9.8 b)0					
c)varied from one to another d)less than zero					
106.Ignoring air resistance, the acceleration of any projectile along the y-direction is (SI units)					

b)0

c)varied from one to another d)less than zero

107-Three particles of masses m_1 =1 kg, m_2 =2 kg, and m_3 =3 kg are located in xy plane as (3,2), (-1,1), and (3,-2), respectively. Find the coordinate of the center of mass?


b-(.67,0.3) c-(1,0.4) d-(-1.67,0.34)

108-A motorcycle of mass 120 kg moves with a fixed speed of 15 m/s. Calculate the magnitude of its linear momentum?

 $b-1600 \ kg.m/s$ $c-1800 \ kg.m/s$

 $d-180 \, kg.m/s$

109-Three particles of masses m_1 =2 kg, m_2 =3 kg, and m_3 =5 kg are arranged in the xy plane, as shown in the figure below. Find the position vector of the center of mass.?

c- $r_{cm} = 1.4 i + 1.3 j$ d- $r_{cm} = 1.1 i - 1.3 j$

b-
$$r_{cm} = -1.1 i + 1.2 j$$

110- car is moving with a constant speed of 27 m/s. If its momentum is 21600 kg.m/s, what is its mass?

a-80kg b-1200kg c- 500kg

d-800ks

the spring if the	spring constant	is 100 N/M		th work is done by		
a) 250 J	b) 1250 J	c) 500	d) 0.05 J			
_	112- A 2 Kg mass moving with initial velocity of 5 m/s, its velocity increased to 8 m/s, find the change in its Kinetic energy					
a) 78 J	b) 39 J		c) 19.5 J	d) 6 J		
113-CHOOSE TH	E CORRECT ANS	SWER				
1. When the object a) True	is stationary, its k b) False	inetic energy is zer	0.			
2-woork of 1 J = 1 a) True	kg. m/s² b) False					
		omentum is (P _i =P _f)			
a) True 4-The instantaneou	b) False as Power $P = \frac{W}{AT}$					
	Δ <i>I</i> b) False					
5-Watt is equal to:	Joule per second:					
a) True b)	False					
114-Kilowatt-hou	r is the unit of	_				
a) momentum	b) work	c) Power	d)	spring constant		
115-What is the speed of a 55 kg woman running with a kinetic energy of 412.7 J?						
a) 15 m/s	b) 3.87 m/s	c) 2.7 m/s	d) [,]	4 m/s		
116-A force was applied on an object of mass 50 kg with speed 32 m/s, the linear momentumis:						
a) 1600 kg.m/s	b)1900 kg.m/s	c) 1500 kg.m/s	d)1700 kg.	.m/s		
أستاذة المادة سميدة القحطاني						
