

PHYS 101

Ch. 3

Motion in Two or Three Dimensions

Chapter 3

Chapter Three Motion in Two or Three Dimensions

- Position and Velocity Vectors
- The Acceleration Vector
- Projectile Motion
- Motion in a Circle

Position and Velocity Vectors

Position and Displacement

Position

- The location of a particle relative to the origin of a coordinate system is given by:

$$
\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}},
$$

$$
\vec{r}=(-3 m) \hat{i}+(2 m) \hat{j}+(5 m) \hat{k}
$$

Position and Velocity Vectors

Displacement

- The displacement of a particle moves between two position vectors is given by:

$$
\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}
$$

$$
\Delta \vec{r}=\left(x_{2}-x_{1}\right) \hat{\mathrm{i}}+\left(y_{2}-y_{1}\right) \hat{\mathrm{j}}+\left(z_{2}-z_{1}\right) \hat{\mathbf{k}}
$$

$$
\Delta \vec{r}=\Delta x \hat{\mathrm{i}}+\Delta y \hat{\mathrm{j}}+\Delta z \hat{\mathrm{k}}
$$

Position and Velocity Vectors

Example 1:

A particle moving from $\overrightarrow{r_{1}}=2 \hat{i}+5 \hat{j}+8 \hat{k}$ to $\overrightarrow{r_{2}}=12 \hat{i}+$ $10 \hat{j}+8 \hat{\mathrm{k}}$, then the displacement is:

Solution:
(C)
(A) $10 \hat{i}-3 \hat{j}$
(B) $4 \hat{i}+6 \hat{\mathrm{j}}$
(C) $10 \hat{i}+5 \hat{j}$
(D) $5 \hat{j}$

Position and Velocity Vectors

Average Velocity and Instantaneous Velocity

Average Velocity

- The average velocity of a particle undergoes any displacement in a time is:

$$
\begin{gathered}
\vec{v}_{\text {avg }}=\frac{\Delta \vec{r}}{\Delta t} \\
\vec{v}_{\text {avg }}=\frac{\Delta x}{\Delta t} \hat{\mathrm{i}}+\frac{\Delta y}{\Delta t} \hat{\mathrm{j}}+\frac{\Delta z}{\Delta t} \hat{\mathrm{k}} .
\end{gathered}
$$

Position and Velocity Vectors

Instantaneous Velocity

- The instantaneous velocity of a particle is given by:

$$
\begin{gathered}
\vec{v}=\frac{d \vec{r}}{d t} . \\
\vec{v}=\frac{d}{d t}(x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}) \\
=\frac{d x}{d t} \hat{\mathrm{i}}+\frac{d y}{d t} \hat{\mathrm{j}}+\frac{d z}{d t} \hat{\mathrm{k}} .
\end{gathered}
$$

Position and Velocity Vectors

- It always directed along the tangent to the particle's path at the particle's position

Position and Velocity Vectors

Example 2:

A particle moves in xy plane as $x(t)=2 t(m)$ and $y(t)$
$=t^{2}-1(m)$. The velocity of the particle at $t=1 \mathrm{~s}$ is:

Solution:
(D)
(A) $\hat{i}+\hat{\mathrm{j}}(\mathrm{m} / \mathrm{s})$
(B) $2 \hat{i}+\hat{j}(\mathrm{~m} / \mathrm{s})$
(C) $2 \hat{i}-\hat{\mathrm{j}}(\mathrm{m} / \mathrm{s})$
(D) $2 \hat{i}+2 \hat{\mathrm{j}}(\mathrm{m} / \mathrm{s})$

The Acceleration Vector

Average Acceleration and Instantaneous Acceleration

Average Acceleration

- The average acceleration of a particle is velocity changes in a time interval and given by:

$$
\vec{a}_{\mathrm{avg}}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}=\frac{\Delta \vec{v}}{\Delta t}
$$

The Acceleration Vector

Instantaneous Acceleration

- The instantaneous acceleration of a particle is given by:

$$
\begin{gathered}
\vec{a}=\frac{d \vec{v}}{d t} . \\
\vec{a}=\frac{d}{d t}\left(v_{x} \hat{\mathrm{i}}+v_{y} \hat{\mathrm{j}}+v_{z} \hat{\mathrm{k}}\right) \\
=\frac{d v_{x}}{d t} \hat{\mathrm{i}}+\frac{d v_{y}}{d t} \hat{\mathrm{j}}+\frac{d v_{z}}{d t} \hat{\mathrm{k}} .
\end{gathered}
$$

The Acceleration Vector

Example 3:

At $\mathrm{t}=0$, a car moves with velocity $\overrightarrow{v_{0}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}(\mathrm{m} / \mathrm{s})$ and acceleration $\vec{a}=2 \hat{\mathrm{j}}\left(\mathrm{m} / \mathrm{s}^{2}\right)$. The velocity of the car at $\mathrm{t}=2$ is:

Solution:
(B)
(A) $6 \hat{i}+\hat{j}$
(B) $2 \hat{i}+5 \hat{j}$
(C) $2 \hat{i}+\hat{j}$
(D) $\hat{i}+5 \hat{j}$

Projectile Motion

Projectile Motion

- The projectile motion is the motion of a particle that is launched with an initial velocity \vec{v}_{0} and initial angle θ_{0}.
- The particle's horizontal acceleration is zero during its flight and free fall acceleration -g for its vertical acceleration.
- The projectile is launched with an initial velocity \vec{v}_{0} that can be written as

$$
\vec{v}_{0}=v_{0 x} \hat{i}+v_{0 y} \hat{j} .
$$

Projectile Motion

- The components $v_{0 x}$ and $v_{0 y}$ can then be found if we know the angle θ_{0} between \vec{v}_{0} and the positive x direction as follows:

$$
v_{0 x}=v_{0} \cos \theta_{0} \quad \text { and } \quad v_{0 y}=v_{0} \sin \theta_{0}
$$

Projectile Motion

- If \vec{v}_{0} is expressed as a magnitude v_{0} and angle θ_{0}, the particle's equations of motion along the horizontal x axis and vertical y axis are:

$$
\begin{aligned}
x-x_{0} & =\left(v_{0} \cos \theta_{0}\right) t, \\
y-y_{0} & =\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}, \\
v_{y} & =v_{0} \sin \theta_{0}-g t, \\
v_{y}^{2} & =\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) .
\end{aligned}
$$

Projectile Motion

Example 4:

A boy kicks a ball at an angle of 40° to the horizontal with speed of $14.0 \mathrm{~m} / \mathrm{s}$. The time it takes to reach the highest point is:

Solution:
(A)
(A) 0.92 s
(B) 0.77 s
(C) 0.15 s
(D) 1.12 s

Projectile Motion

The Equation of the Path

- The trajectory (path) of the particle in projectile motion is given by:

$$
y=\left(\tan \theta_{0}\right) x-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}}
$$

The Horizontal Range

- The particle horizontal range is given by:

$$
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0} .
$$

The horizontal range R is maximum for a launch angle of 45°.

Projectile Motion

Example 5:

A boy kicks a ball at an angle of 40° to the horizontal with speed of $14.0 \mathrm{~m} / \mathrm{s}$. The maximum height that the ball can reach is:

Solution:

(B)

(A) 9.87 m
(B) 4.13 m
(C) 15.33 m
(D) 12.68 m

Projectile Motion

Example 6:

Referring to question 5, the horizontal range that the ball can reach is:

Solution:

(D)
(A) 9.87 m
(B) 14.7 m
(C) 15.33 m
(D) 19.7 m

Projectile Motion

Example 7:

A projectile is launched to achieve a maximum range of 140 m , the speed of the projectile must be:

Solution:

> (C)
(A) $17 \mathrm{~m} / \mathrm{s}$
(B) $27 \mathrm{~m} / \mathrm{s}$
(C) $37 \mathrm{~m} / \mathrm{s}$
(D) $45 \mathrm{~m} / \mathrm{s}$

Projectile Motion

- The motion of an object which is thrown with initial velocity from a certain height,
- The angle $=0$.
-The following two equations can be used to find all variables in this case:

$$
\begin{aligned}
& x=v_{0} t \\
& y=\frac{1}{2} g t^{2}
\end{aligned}
$$

Projectile Motion

Example 8:

A toy car runs on a horizontal table with $3 \mathrm{~m} / \mathrm{s}$. The angle it makes with the horizontal when it leaves the table is:

Solution:

(A)

(A) Zero
(B) 45°
(C) 60°
(D) 90°

Projectile Motion

Example 9:

A stone is thrown horizontally from the top of a tall building. It follows a path that is:

Solution:

(D)

(A) circular
(B) two straight lines
(C) a straight line
(D) parabolic

Motion in a Circle

Uniform Circular Motion

- If a particle travels along a circular arc of radius at constant speed, it is in uniform circular motion.
- Its acceleration can be given by:

$$
a=\frac{v^{2}}{r}
$$

where r is the radius of the circle v is the speed of the particle.

```
(centripetal acceleration),
```

- The acceleration direction is toward the centre of the circular arc.

Motion in a Circle

- The particle period is the time for the particle to complete a circle can be given by:

$$
T=\frac{2 \pi r}{v}
$$

Motion in a Circle

Example 10:

The velocity and acceleration of a body in a uniform circular motion are:

Solution:

(B)

(A) differed by 45^{0}
(B) perpendicular
(C) differed by 135^{0}
(D) parallel

Motion in a Circle

Example 11:

A car rounds a 20 m radius curve at $10 \mathrm{~m} / \mathrm{s}$. The magnitude of its acceleration is:

Solution:
(D)
(A) zero
(B) $2 \mathrm{~m} / \mathrm{s}^{2}$
(C) $4 \mathrm{~m} / \mathrm{s}^{2}$
(D) $5 \mathrm{~m} / \mathrm{s}^{2}$

Motion in a Circle

Example 12:

A truck is traveling with a constant speed of $20 \mathrm{~m} / \mathrm{s}$. When the truck follows a curve in the road, its centripetal acceleration is $4.0 \mathrm{~m} / \mathrm{s}^{2}$. The radius of the curve is:

Solution:
(C)
(A) 225 m
(B) 144 m
(C) 100 m
(D) 81 m

