

Taibah University

Deanery of Academic Services

Unified Scientific Track

CHEM 101 - Final Exam Info (1st Sem, 1441)

- Exam time: as announced in each campus

Allowed Time: 2 hoursCampuses: all (M&F)

- Included chapters: 3, 4, 5 and 7

- Number of questions: 40 MCQ's (Electronic)

Marks: 40 (of a total of 100)Scientific calculator: allowedTranslation aid: not allowed

- Periodic table & suppl. data: provided

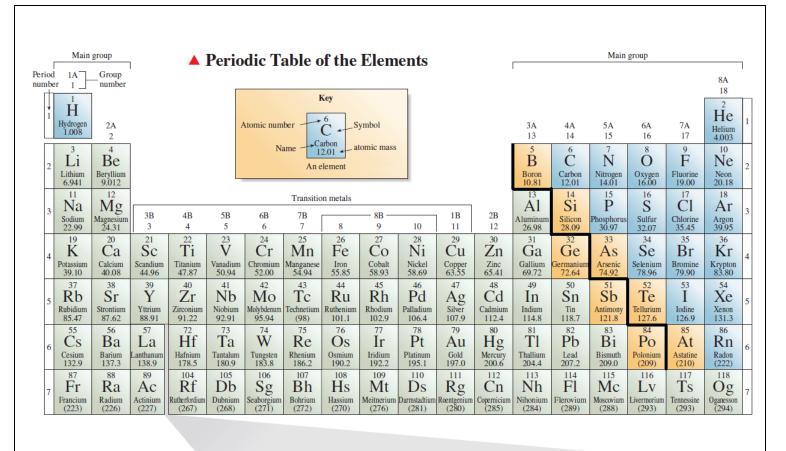
Mock Test For

Final Exam

Introduction to Chemistry (CHEM 101)

(Chapters 3, 4, 5 & 7)

Topics: 08 – 17 & 19 – 21


For

Unified Scientific Track Students

(All Campuses)

1st Semester

1441 | 2019 – 2020

Lanthanides 6	Ce Ce	Pr	Nd	Pm	Sm^{62}	Eu	Gd Gd	Tb	Dy Dy	Ho	Er	Tm	Y^{70} b	Lu	6
	Cerium 140.1	Praseodymium 140.9	Neodymium 144.2	Promethium (145)	Samarium 150.4	Europium 152.0	Gadolinium 157.3	Terbium 158.9	Dysprosium 162.5	Holmium 164.9	Erbium 167.3	Thulium 168.9	Ytterbium 173.0	Lutetium 175.0	
Actinides 7	Th	Pa	$\overset{92}{\mathbf{U}}$	$\stackrel{93}{\mathrm{Np}}$	Pu	Am	Cm	\mathbf{B}^{97}	Cf	Es	$\stackrel{\scriptscriptstyle{100}}{\mathrm{Fm}}$	Md	No	Lr	7
	Thorium 232.0	Protactinium 231.0	Uranium 238.0	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)	Ш

▲ CHEM 101 Supplemental Information

$d = \frac{\mathbf{m}}{\mathbf{V}}$	$^{\circ}\text{C} = \frac{(^{\circ}\text{F} - 32)}{1.8}$	°F = 1.	8 (°C) + 32	°C = <i>K</i> − 273	$K = (^{\circ}C) + 273$	
$M = \frac{\mathbf{n}}{\mathbf{V}}$	$\mathbf{M}_1 \ \mathbf{V}_1 = \mathbf{M}_2 \ \mathbf{V}_2$		$\mathbf{K}_{\mathbf{W}} = [\mathbf{H}_{3}\mathbf{O}^{+}]$	$\times [\mathrm{OH^{-}}] = 1 \times 10^{-14}$	$pH = -\log [H_3O^+]$	
molar mass	$n = \text{empirical formula} \times n$ of molecular formula of empirical formula	% mass of element X = $\frac{\text{mass of element X in 1 mol of compound}}{\text{mass of 1 mol of the compound}} \times 100\%$		element X in 1 mol of compound ss of 1 mol of the compound $\times 100\%$	$\% yield = \frac{\text{actual yield}}{\text{theoretical yield}} X 100$	
$\mathbf{q} = \mathbf{C} \times \Delta \mathbf{T}$	$\mathbf{q} = \mathbf{C} \times \Delta \mathbf{T}$ $\mathbf{w} = -\mathbf{P} \Delta \mathbf{V}$ $\mathbf{q} = \mathbf{m}$		$= \mathbf{m} \times \mathbf{C_s} \times \Delta \mathbf{T}$ 1 L.atm = 101.3 J		Avogadro's No. = 6.022×10^{23}	
Atomic mass = \sum_{n} (fraction of isotope n) × (mass of isotope n) = (fraction of isotope 1 × mass of isotope 1) + (fraction of isotope 2 × mass of isotope 2)+			Mole Conversion	Grams of Substance × Molar Mass Mole Subst	an Malasulas	

Answer The Following Questions:							
1. Which type of chemelement in a compound	_	only the relative numl	ber of atoms of each				
🗖 a. Molecular formula		☐ b. Empirical formula					
☐ c. Structural formula		☐ d. Ball-and-stick mod	el				
2. If we have 9.03×10^{24}	aluminum atoms, h	ow many moles of alumin	um do we have?				
□ a. 5.4 mol	☐ b. 10 mol	☐ c. 15 mol	☐ d. 2.7 mol				
3. The systematic name	of CuNO ₂ is						
☐ a. copper(II) nitrate		☐ b. copper(I) nitrate					
☐ c. copper(I) nitrite		☐ d. copper(II) nitrate					
4. What is the formula for	or the ionic compour	nd formed by barium and	phosphate ions?				
\Box a. Ba ₂ (PO ₄) ₃	☐ b. Ba ₃ (PO ₄) ₂	\Box c. Ba ₃ (PO ₃) ₂	☐ d. BaPO ₄				
5. How many grams are	5. How many grams are in a sample containing 2.71×10^{24} atoms of iron?						
☐ a. 160.2 g	□ b. 251.3 g	☐ c. 449.9 g	☐ d. 292.2 g				
6. What are the coefficient	ents (a, b, c and d) ne	eded to balance the follo	wing equation?				
<u>a</u> F	$PbCl_3 + \underline{b} Ca(OH)_2$	\rightarrow <u>c</u> CaCl ₂ + <u>d</u> Pb(OH)	3				
□ a. 3, 2, 2, 2	□ b. 2, 3, 3, 2	□ c. 4, 2, 2, 4	□ d. 4, 3, 3, 2				
7. When the following e	quation is balanced,	the coefficient of O ₂ woul	ld be				
	$\dots C_2H_4 + \dots O_2$	$\rightarrow \dots CO_2 + \dots H_2O$					
□ a. 1	□ b. 2	□ c. 3	☐ d. 4				
8. What is the mass perc	cent of calcium in cal	cium acetate, Ca(C ₂ H ₃ O ₂)	2?				
□ a. 34.6%	☐ b. 25.3%	□ c. 41.1%	☐ d. 35.2%				
9. The correct chemical	formula for iron(II)	oxide is					
\square a. Fe ₂ O ₃	☐ b. Fe ₂ O	☐ c. FeO ₂	☐ d. FeO				
10. Calculate the molar	mass of aluminum ta	artrate, Al ₂ (C ₄ H ₄ O ₆) ₃ .					
□ a. 59 g/mol	☐ b. 71 g/mol	☐ c. 119 g/mol	☐ d. 498.1 g/mol				

11. How many covalent bonds will a nitrogen atom normally make?					
□ a. 1	□ b. 2	□ c. 3	□ d. 0		
12. Group 1A metals always have an oxidation state of in their compounds.					
□ a. +2	□ b2	□ c. 0	□ d. +1		
13. The oxidation num	ber of nitrogen in Ca(N	(0 ₃) ₂ is			
□ a. +6	□ b. +5	□ c. +3	□ d3		
14. Identify the reduci	ng agent in the followir	ng reaction:			
	$Fe_2O_3 + 2Al$	\rightarrow Al ₂ O ₃ + 2Fe			
☐ a. Fe ₂ O ₃	□ b. Al	\Box c. Al ₂ O ₃	☐ d. Fe		
15. The oxidation num	ber of bicarbonate ion	in its compounds is			
□ a. −1	□ b. −2	□ c3	□ d. +1		
16. What is the emp	oirical formula of glyc	colylurea which has th	ne molecular formula		
$C_3H_4N_2O_2$?					
☐ a. CH ₂ NO	☐ b. CH ₄ N ₂ O	☐ c. C ₃ H ₄ N ₂ O ₂	☐ d. C ₂ H ₂ NO		
17. If the empirical fo	rmula of a compound	is C ₂ HCl and its molar	mass is 181.44 g/mol,		
what is the molecular	formula of this compou	nd?			
☐ a. C ₄ H ₃ Cl ₃	☐ b. C ₅ H ₃ Cl ₃	☐ c. C ₆ H ₄ Cl ₄	☐ d. C ₆ H ₃ Cl ₃		
18. A compound cont	ains 74.03 % C, 8.70	% H, and 17.27 % N.	What is the empirical		
formula of this compo	und?				
□ a. C ₅ H ₇ N	☐ b. C ₄ H ₈ N ₂	□ c. C ₆ H ₉ N ₃	☐ d. C ₄ H ₇ N		
19. How many moles	of magnesium nitrid	e, Mg ₃ N ₂ , would be p	roduced when 3 g of		
magnesium completel	y react with excess N ₂ a	according to the following	ng equation?		
	$3 Mg_{(s)} + N_{2}$	$(g) \rightarrow Mg_3N_2(s)$			
☐ a. 4.11 mol	☐ b. 0.041 mol	☐ c. 3.21 mol	☐ d. 14.02 mol		
a. 4.11 moi	2 6. 0.0 11 moi	= c. 5.21 mor			
		prepare 200 mL of 0.150			

3.5 g of Al_2O_3 . The % y	•	eaction of 2.5 g of Al v	with 2.5 g of O_2 produced
	$4 \text{ Al}_{(s)} + 3 \text{ O}_2$	$_{2(\mathrm{g})}$ \rightarrow $2\mathrm{Al_2O_3(s)}$	
□ a. 74 %	□ b. 37 %	□ c. 47 %	☐ d. 66 %
22. To what volume (i	n mL) shall we dilute 5	0.0 mL of a 12 M stocl	k HNO3 solution to obtain
a 0.10 M HNO ₃ solutio	n?		
☐ a. 416 mL	☐ b. 6000 mL	☐ c. 3200 mL	☐ d. 2.45 mL
23. What is the final	molarity of an HCl so	lution, if 40 mL of a	2.5 M HCl solution wer
diluted to a final volu	me of 500 mL?		
☐ a. 5.0 M	□ b. 31.25 M	□ c. 0.20 M	☐ d. 2.45 M
24. What mass (g) of N	NaF is contained in 0.3!	5 L of a NaF solution tl	hat has a molarity of 2.2
M?			
☐ a. 32.34 g	☐ b. 25.41 g	□ c. 0.77 g	☐ d. 7.70 g
25. The Lewis dot stru	ıcture for nitrogen mol	ecule is	
□ a. •N∷N:	□ b. •N ••N•	□ c.	□ d. :N∷N:
26. The Lewis dot stru	acture of H ₂ S molecule	has bonding pai	rs and lone pairs o
electrons.			
☐ a. 2, 4	□ b. 2, 2	□ c. 4, 2	□ d. 4,4
27. What is the [OH-]	in a solution that has a	$[H_3O^+] = 1.0 \times 10^{-3} M$?	
□ a. 1.0×10^{-3} M	□ b. 1.0×10^{-6} M	\Box c. 1.0 × 10 ⁻⁸ M	\Box d. 1.0 × 10 ⁻¹¹ M
28. Calculate the pH o	f a solution that has [H	$_{3}0^{+}] = 2.33 \times 10^{-9} \text{ M}.$	
□ a. 2.67	□ b. 6.81	□ c. 8.63	☐ d. 4.34
29. The compound HF	'is		
☐ a. a strong acid	☐ b. a weak base	☐ c. a weak acid	☐ d. an ionic compound
30. Which of the fo	llowing substances w	ould give a solution	that does not conduc
electricity, when disso	olved in distilled water	?	
\square a. Ca(NO ₂) ₂	☐ b. NaOH	☐ c. NH ₄ OH	\Box d. $C_6H_{12}O_6$

31. A strong electrolyt	e solution will be form	ned whenis dis	ssolved in water.			
☐ a. Mg(NO ₂) ₂	□ b. CH ₃ COOH	☐ c. NH4OH	□ d. C ₁₂ H ₂₂ O ₁₁			
32. Which of the following acids will partially dissociates in aqueous solutions?						
\square a. H_2SO_4	☐ b. HCl	☐ c. CH ₃ COOH	☐ d. HNO ₃			
33. Which of the follow	ving substances is a Le	wis acid?				
☐ a. NH ₃	□ b. CO ₂	□ c. H ₂ O	□ d. F-			
34. Which of the follow	ving pairs of species is	NOT a conjugate acid-ba	ise pair?			
☐ a. H ₂ O/OH-	☐ b. HSO ₄ -/SO ₄ ² -	☐ c. H ₂ SO ₄ /HSO ₄ -	\Box d. H ₂ SO ₄ /SO ₄ ²⁻			
35. Identify the Bronst	ed-Lowry conjugate a	cid in the following react	tion:			
$CH_3COOH + HSO_4^- \rightleftharpoons H_2SO_4 + CH_3COO^-$						
\square a. H_2SO_4	☐ b. CH ₃ COOH	☐ c. HSO ₄	☐ d. CH ₃ COO-			
36. Consider the follo	wing reaction at equ	ilibrium. What is the ef	ffect of increasing the			
pressure of the reaction	on mixture?					
	$2\;H_2S_{(g)}\;\;+\;\;3\;O_{2(g)}\;\;;$	\rightleftharpoons 2 H ₂ O _(g) + 2 SO _{2 (g)}				
\square a. the reaction will sh	ift to the left	lue b. the reaction will sh	ift to the right			
☐ c. the equilibrium con	istant will decrease	☐ d. no effect will be ob	served			
37. According to Brons	sted-Lowry concept of	acids and bases, H ₂ O can	be considered as			
☐ a. a neutral substance	•	☐ b. an acid				
☐ c. a base		☐ d. an amphoteric sub	stance			
38. What is the effect of	of lowering the temper	cature on the following e	xothermic reaction?			
	$CaO_{(s)} + H_2O_{(l)}$	Arr Ca(OH) _{2 (s)} + heat				
lacksquare a. the reaction will sh	ift forward	lue b. the reaction will sh	ift reverse			
☐ c. Ca(OH) ₂ will decrea	ase	☐ d. no effect will be ob	served			
39 are co	39 are compounds that have the same molecular formula but with different					
structures.						

40. Choose the correct expression for equilibrium constant, K_{eq} , for the following reaction:

$$16 \; CH_{3}Cl_{\,(g)} \;\; + \;\; 8 \; Cl_{2\,(g)} \;\; \rightleftarrows \;\; 16 \; CH_{2}Cl_{2\,(g)} \;\; + \;\; 8 \; H_{2\,(g)}$$


 \Box a. $K_{eq} = \frac{[CH_2Cl_2][H_2]}{[CH_3Cl][Cl_2]}$

 $\Box \text{ b. } K_{eq} = \frac{[CH_2Cl_2]^{16} [H_2]^8}{[CH_3Cl]^{16} [Cl_2]^8}$

 \Box c. $K_{eq} = \frac{[CH_3Cl]^{16} [Cl_2]^8}{[CH_2Cl_2]^{16} [H_2]^8}$

 \Box d. $K_{eq} = \frac{[CH_3Cl][Cl_2]}{[CH_2Cl_2][H_2]}$

41. How many hydrogen atoms, H, shall be bonded to the carbon atom marked with (*) in the following compound?

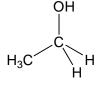
□ a. 0

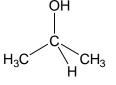
□ b. 1

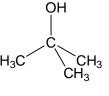
□ c. 2

□ d. 3

42. Identify the families of the following organic formulas:

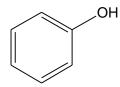



$$R_1$$
 $C = C_{R_4}$


43. Identify the class of the organic compound whose molecular formula is C₁₈H₃₈.

- ☐ a. Alkane
- ☐ b. Alkene
- ☐ c. Alkyne
- ☐ d. Cycloalkane

44, Identify the class of each alcohol (primary, secondary, tertiary):



45. Write both "common" and "IUPAC" names of the following compounds:

Compound

$$C = C$$

IUPAC name

Common n	ame	

46. To which family does this compound belong?

- ☐ a. esters
- ☐ b. aldehydes
- ☐ c. ketones
- ☐ d. carboxylic acids

47. What is the family of this organic compound?

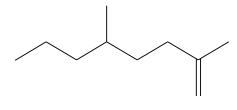
- ☐ a. ethers
- ☐ b. ketones
- ☐ c. esters
- lacksquare d. carboxylic acids

48. Choose the correct name of the following organic compound?

$$CH_{2}$$
— CH_{3}
 CH_{3} — C — C
 CH_{3}

□ a. 3,3-dimethyl-4-pentyne

□ b. 3,3-dimethyl-1-pentyne


□ c. 3-ethyl-3-methyl-1-butyne

☐ d. 3-methyl-3-ethyl-1-butyne

49. Identify the aldehyde:

$$\square$$
 d. CH_3 — C — CH_3

EΛ	Cirro tha	HIDAC name	c for the	following	organic con	mounde
ου.	Give the	: IUPAC name	S lor the	: IOHOWHIIG	organic con	ipouiius:

$$CH_3$$
 CH_3 CH_3 CH_3

51. Which of the following suffixes refers to an organic compound that includes a C≡C?

🗖 a. ane

☐ b. ene

☐ c. yne

☐ d. one

52. Which class of hydrocarbons has the general formula C_nH_{2n-2} ?

- a. alkanes
- ☐ b. alkenes
- ☐ c. alkynes
- ☐ d. cycloalkanes

53. What functional group(s) are present in the following compound?

$$H_2N$$
— CH_2 — C — CH_3

- a. amine
- ☐ b. ketone
- ☐ c. amide
- ☐ d. amine and ketone

Best Wishes

Al-Madinah, 2nd of December, 2019