Concentration
Molarity(M): number of moles of solute per liter of solution

$$
M=\frac{\# \text { moles of solute }}{\text { volume (liter) }}=\frac{n}{V}
$$

M.wt. $\mathrm{NaOH}=23+16+1=40 \mathrm{~g} / \mathrm{mol}$

To prepare 1M solution of NaOH
Take 40 grams of NaOH and add water to make exactly 1 liter of solution.
Notice that the definition is based on the total volume of the solution.

Example

How many grams of NaOH should be used to prepare 250 mL of 0.300 M NaOH ?

$$
M=0.300=\frac{n}{0.250} \Rightarrow n=0.250 \times 0.300=0.0750 \mathrm{~mol}
$$

$0.0750 \mathrm{~mol} \times 40.0 \mathrm{~g} / \mathrm{mol}=3.00 \mathrm{~g}$

Example
How many moles of AgNO_{3} are there in 25.0 mL solution of $\mathbf{0 . 6 0 0 M} \mathrm{AgNO}_{3}$?

$$
M=\frac{n}{V}
$$

$$
0.600=\frac{n}{0.025} \Rightarrow n=0.025 \times 0.600=0.0150 \mathrm{~mol}
$$

dilution of solutions

$$
\mathbf{M}_{1} \times \mathbf{V}_{1}=\mathbf{M}_{2} \times \mathbf{V}_{2}
$$

Example: What volume of $\mathbf{2 . 0 M}$ KOH should be used to prepare 4.0 L of 1.5 M KOH ?

$$
\begin{array}{cc}
M_{1}=2.0 & M_{2}=1.5 \\
\mathbf{V}_{1}=? & V_{2}=4.0 \mathrm{~L} \\
2.0 \times V_{1}=1.5 \times 4.0 \\
V_{1}=\frac{1.5 \times 4.0}{2.0}=3.0 \mathrm{~L}
\end{array}
$$

Example

What volume (mL) of 0.750 M NaOH is needed to react with 50.0 mL of $0.150 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

Moles of $\mathbf{H}_{2} \mathrm{SO}_{4}$ in 50.0 mL :
$0.050 \mathrm{~L} \times 0.150 \mathrm{M}=0.0075 \mathrm{~mol}$
form the equation: $\mathbf{2 m o l ~} \mathrm{NaOH}=\mathbf{1} \mathrm{mol} \mathrm{H}_{\mathbf{2}} \mathrm{SO}_{\mathbf{4}}$
from the problem: $\mathbf{x} \mathbf{~ m o l ~} \mathrm{NaOH}=\mathbf{0 . 0 0 7 5 m o l}$

$$
x=0.0150 \mathrm{~mol} \mathrm{NaOH}
$$

$$
\begin{aligned}
& M=\frac{n}{V} \Rightarrow 0.750=\frac{0.0150 \mathrm{~mol}}{V} \Rightarrow \\
& V=\frac{0.0150}{0.750}=0.020 \mathrm{~L}=20.0 \mathrm{~mL}
\end{aligned}
$$

