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Course Outline

• Image Processing Basics

 Image Formation

 Binary Image Processing

 Linear Filters

 Edge & Structure Extraction

 Color

• Segmentation

• Local Features & Matching

• Object Recognition and Categorization

• 3D Reconstruction

• Motion and Tracking
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Recap: Gaussian Smoothing

• Gaussian kernel

• Rotationally symmetric

• Weights nearby pixels more

than distant ones

 This makes sense as 

‘probabilistic’ inference 

about the signal

• A Gaussian gives a good model 

of a fuzzy blob
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Smoothing with a Gaussian

for sigma=1:3:10 

h = fspecial('gaussian‘, fsize, sigma);

out = imfilter(im, h); 

imshow(out);

pause; 

end

…

Parameter σ is the “scale” / “width” / “spread” of the 

Gaussian kernel, and controls the amount of smoothing.
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Recap: Derivatives and Edges…

1st derivative

2nd derivative



Recap: 2D Edge Detection Filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian Derivative of Gaussian



Topics of This Lecture

• Edge detection

 Recap: Gradients, scale influence

 Canny edge detector

• Fitting as template matching

 Distance transform

 Chamfer matching

 Application: traffic sign detection

• Fitting as parametric search

 Line detection

 Hough transform

 Extension to circles

 Generalized Hough transform



Edge Detection

• Goal: map image from 2D array of pixels to a set of 

curves or line segments or contours.

• Why?

• Main idea: look for strong gradients, post-process



What Can Cause an Edge?

Depth discontinuity: 

object boundary

Change in surface 

orientation: shape

Reflectance change: 

appearance 

information, texture

Cast shadows



Contrast and Invariance



Recall: Images as Functions

Edges look like steep cliffs



Gradients  Edges

Primary edge detection steps

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast

3. Edge localization

 Determine which local maxima from filter output are actually 

edges vs. noise

 Thresholding, thinning



Effect of  on Derivatives

• The apparent structures differ depending on Gaussian’s 

scale parameter.

 Larger values: larger scale edges detected

 Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels



So, What Scale to Choose?

• It depends on what we’re looking for…

• Too fine a scale… can’t see the forest for the trees.

• Too coarse a scale… can’t tell the maple from the cherry.



Recall: Thresholding

• Choose a threshold t

• Set any pixels less than t
to zero (off).

• Set any pixels greater than 

or equal t to one (on).

 
 1,    if ,

,
0,   otherwise

T

F i j t
F i j

 
 




Original Image



Gradient Magnitude Image



Thresholding with a lower threshold



Thresholding with a Higher Threshold



Designing an Edge Detector

• Criteria for an “optimal” edge detector:

 Good detection: the optimal detector must minimize the 

probability of false positives (detecting spurious edges caused by 

noise), as well as that of false negatives (missing real edges)

 Good localization: the edges detected must be as close as 

possible to the true edges

 Single response: the detector must return one point only for 

each true edge point; that is, minimize the number of local 

maxima around the true edge



Canny Edge Detector

• This is probably the most widely used edge detector in 

computer vision

• Theoretical model: step-edges corrupted by additive 

Gaussian noise

• Canny has shown that the first derivative of the 

Gaussian closely approximates the operator that 

optimizes the product of signal-to-noise ratio and 

localization



Canny Edge Detector

• Filter image with derivative of Gaussian 

• Find magnitude and orientation of gradient

• Non-maximum suppression:

 Thin multi-pixel wide “ridges” down to single pixel width

• Linking and thresholding (hysteresis):

 Define two thresholds: low and high

 Use the high threshold to start edge curves and the low 

threshold to continue them

• MATLAB:   
>> edge(image, ‘canny’);

>> help edge



The Canny Edge Detector

original image (Lena)



The Canny Edge Detector

Norm of the gradient



The Canny Edge Detector

Thresholding



Thresholding

The Canny Edge Detector

How to turn 

these thick 

regions of 

the gradient 

into curves?



Non-Maximum Suppression

• Check if pixel is local maximum along gradient direction, 

select single max across width of the edge

 requires checking interpolated pixels p and r



The Canny Edge Detector

Thinning

(non-maximum suppression)

Problem: 

pixels along 

this edge 

didn’t survive 

the 

thresholding



Hysteresis Thresholding

• Hysteresis: A lag or momentum factor

• Idea: Maintain two thresholds khigh and klow

 Use khigh to find strong edges to start edge chain

 Use klow to find weak edges which continue edge chain

• Typical ratio of thresholds is roughly

khigh / klow = 2



Hysteresis Thresholding

Original image

High threshold

(strong edges)

Low threshold

(weak edges)

Hysteresis threshold

courtesy of G. Loy



Object Boundaries vs. Edges

Background Texture Shadows



Edge Detection is Just the Beginning…

Image Human segmentation Gradient magnitude



Fitting

• Want to associate a model with observed features

For example, the model could be a line, a circle, or an arbitrary 

shape.



Topics of This Lecture

• Edge detection

 Recap: Gradients, scale influence

 Canny edge detector

• Fitting as template matching

 Distance transform

 Chamfer matching

 Application: traffic sign detection

• Fitting as parametric search

 Line detection

 Hough transform

 Extension to circles

 Generalized Hough transform



Fitting as Template Matching

• We’ve already seen that correlation filtering can be 

used for template matching in an image.

• Let’s try this idea with “edge templates”.

 Example: traffic sign detection in (grayvalue) video.

Templates



How Can This Be Made Efficient?

• Fast edge-based template matching 

 Distance transform of the edge image

Original Gradient Distance transform

Edges

Value at (x,y) tells how 

far that position is from 

the nearest edge point 

(or other binary mage 

structure) 

>> help bwdist



Distance Transform

• Image reflecting distance to nearest point in point set 

(e.g., edge pixels, or foreground pixels).

4-connected 

adjacency

8-connected 

adjacency



Distance Transform Algorithm (1D)

• Two-pass O(n) algorithm for 1D L1 norm

1. Initialize: For all j

 D[j]  1P[j] // 0 if j is in P, infinity otherwise

2. Forward: For j from 1 up to n-1

 D[j]  min( D[j], D[j-1]+1 )

3. Backward: For j from n-2 down to 0

 D[j]  min( D[j], D[j+1]+1 )



Distance Transform Algorithm (2D)

• 2D case analogous to 1D

 Initialization

 Forward and backward pass

– Fwd pass finds closest above and to the left

– Bwd pass finds closest below and to the right



Chamfer Matching

• Chamfer Distance

 Average distance to nearest feature

 This can be computed efficiently by correlating the edge 

template with the distance-transformed image

Edge image Distance transform image



Chamfer Matching

• Efficient implementation

 Instead of correlation, sample fixed number

of points on template contour.

 Chamfer score boils down to series of DT lookups.

 Computational effort independent of scale.

Edge image Distance transform image



Chamfer Matching Results

Edge image Distance transform image



Chamfer Matching for Pedestrian Detection

• Organize templates in tree structure for fast matching



Summary Chamfer Matching

• Pros

 Fast and simple method for matching edge-based templates.

 Works well for matching upright shapes with little intra-class 

variation.

 Good method for finding candidate matches in a longer 

recognition pipeline.

• Cons

 Chamfer score averages over entire contour, not very 

discriminative in practice.

 Further verification needed.

 Low matching cost in cluttered regions with many edges.

 Many false positive detections.

 In order to detect rotated & rescaled shapes, need to match 

with rotated & rescaled templates  can get very expensive.



Topics of This Lecture

• Edge detection

 Recap: Gradients, scale influence

 Canny edge detector

• Fitting as template matching

 Distance transform

 Chamfer matching

 Application: traffic sign detection

• Fitting as parametric search

 Line detection

 Hough transform

 Extension to circles

 Generalized Hough transform



Fitting as Search in Parametric Space

• Choose a parametric model to represent a set of 

features

• Membership criterion is not local

 Can’t tell whether a point belongs to a given model just by 

looking at that point.

• Three main questions:

 What model represents this set of features best?

 Which of several model instances gets which feature?

 How many model instances are there?

• Computational complexity is important

 It is infeasible to examine every possible set of parameters and 

every possible combination of features



Example: Line Fitting

• Why fit lines?  

Many objects characterized by presence of straight lines

• Wait, why aren’t we done just by running edge detection?



Difficulty of Line Fitting

• Extra edge points (clutter),

multiple models:

 Which points go with 

which line, if any?

• Only some parts of each 

line detected, and some 

parts are missing:

 How to find a line that

bridges missing evidence?

• Noise in measured edge 

points, orientations:

 How to detect true underlying 

parameters?



Voting

• It’s not feasible to check all combinations of features by 

fitting a model to each possible subset.

• Voting is a general technique where we let the features 

vote for all models that are compatible with it.

 Cycle through features, cast votes for model parameters.

 Look for model parameters that receive a lot of votes.

• Noise & clutter features will cast votes too, but typically 

their votes should be inconsistent with the majority of 

“good” features.

• Ok if some features not observed, as model can span 

multiple fragments.



Fitting Lines

• Given points that belong to a line, 

what is the line?

• How many lines are there?

• Which points belong to which lines?

• Hough Transform is a voting 

technique that can be used to answer 

all of these

• Main idea: 

1.  Record all possible lines on which each    

edge point lies.

2.  Look for lines that get many votes.



Finding Lines in an Image: Hough Space

• Connection between image (x,y) and Hough (m,b) spaces

 A line in the image corresponds to a point in Hough space.

 To go from image space to Hough space:

– Given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

Image space Hough (parameter) space



Finding Lines in an Image: Hough Space

• Connection between image (x,y) and Hough (m,b) spaces

 A line in the image corresponds to a point in Hough space.

 To go from image space to Hough space:

– Given a set of points (x,y), find all (m,b) such that y = mx + b

 What does a point (x0, y0) in the image space map to?

– Answer: the solutions of b = -x0m + y0

– This is a line in Hough space

x

y

m

b

Image space Hough (parameter) space

x0

y0



Finding Lines in an Image: Hough Space

• What are the line parameters for the line that contains 

both (x0, y0) and (x1, y1)?

 It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1

x

y

m

b

Image space Hough (parameter) space

x0

y0

b = –x1m + y1

(x0, y0)

(x1, y1)



Finding Lines in an Image: Hough Space

• How can we use this to find the most likely parameters 

(m,b) for the most prominent line in the image space?

 Let each edge point in image space vote for a set of possible 

parameters in Hough space

 Accumulate votes in discrete set of bins; parameters with the 

most votes indicate line in image space.

x

y

m

b

Image space Hough (parameter) space



Polar Representation for Lines

• Issues with usual (m,b) parameter space: can take on 

infinite values, undefined for vertical lines.

• Point in image space  sinusoid segment in Hough space

dyx   sincos

[0,0]

d



x

y

: perpendicular distance 

from line to origin

: angle the 

perpendicular makes with 

the x-axis

d





Hough Transform Algorithm

Using the polar parameterization:

Basic Hough transform algorithm

1. Initialize H[d,] = 0.

2. For each edge point (x,y) in the image

for  = 0 to 180 // some quantization

H[d, ] += 1

3. Find the value(s) of (d,) where H[d,] is maximum.

4. The detected line in the image is given by

• Time complexity (in terms of number of votes)?

 sincos yxd 

dyx   sincos

H: accumulator array (votes)

d



 sincos yxd 

Hough line demo

http://www.dis.uniroma1.it/~iocchi/slides/icra2001/java/hough.html


Example: HT for Straight Lines 

Image space

edge coordinates
Votes



d

x

y

Bright value = high vote count

Black = no votes



Example: HT for Straight Lines

Square:



Example: HT for Straight Lines



Real-World Examples



Showing longest segments found



Impact of Noise on Hough Transform

Image space

edge coordinates

Votes

x

y d

What difficulty does this present for an implementation?



Impact of Noise on Hough Transform

Image space

edge coordinates

Votes

Here, everything appears to be “noise”, or random edge 

points, but we still see peaks in the vote space.



Extensions

Extension 1:  Use the image gradient

1. same

2. for each edge point I[x,y] in the image

 = gradient at (x,y)

H[d,] += 1

3. same

4. same

(Reduces degrees of freedom)

 sincos yxd 



Extensions

Extension 1:  Use the image gradient

1. same

2. for each edge point I[x,y] in the image

compute unique (d,) based on image gradient at (x,y)

H[d,] += 1

3. same

4. same

(Reduces degrees of freedom)

Extension 2

 Give more votes for stronger edges (use magnitude of gradient)

Extension 3

 Change the sampling of (d,) to give more/less resolution

Extension 4

 The same procedure can be used with circles, squares, or any other 

shape…



Extension: Cascaded Hough Transform

• Let’s go back to the original (m,b) parametrization

• A line in the image maps to a pencil of lines in the 

Hough space

• What do we get with parallel lines or a pencil of lines?
 Collinear peaks in the Hough space!

• So we can apply a Hough transform to the output of the 

first Hough transform to find vanishing points



Finding Vanishing Points



Cascaded Hough Transform

• Issue: Dealing with the unbounded parameter space



Cascaded Hough Transform



Hough Transform for Circles

• Circle: center (a,b) and radius r

• For a fixed radius r, unknown gradient direction

222 )()( rbyax ii 

Image space Hough space
a

b



Hough Transform for Circles

• Circle: center (a,b) and radius r

• For a fixed radius r, unknown gradient direction

222 )()( rbyax ii 

Image space Hough space

Intersection: 

most votes for 

center occur 

here.



• Circle: center (a,b) and radius r

• For an unknown radius r, unknown gradient direction

Hough Transform for Circles

Hough spaceImage space

b

a

r

222 )()( rbyax ii 



• Circle: center (a,b) and radius r

• For an unknown radius r, unknown gradient direction

Hough Transform for Circles

Hough spaceImage space

b

r

a

222 )()( rbyax ii 



• Circle: center (a,b) and radius r

• For an unknown radius r, known gradient direction

Hough Transform for Circles

Hough spaceImage space

θ

x

222 )()( rbyax ii 



Hough Transform for Circles

For every edge pixel (x,y) : 

For each possible radius value r:

For each possible gradient direction θ: 

// or use estimated gradient

a = x – r cos(θ)

b = y + r sin(θ)

H[a,b,r] += 1

end

end



Example: Detecting Circles with Hough

Crosshair indicates results of Hough transform,

bounding box found via motion differencing.



Example: Detecting Circles with Hough

Original Edges Votes: Penny

Note: a different Hough transform (with separate accumu-

lators) was used for each circle radius (quarters vs. penny).



Example: Detecting Circles with Hough

Original Edges Votes: Quarter

Combined detections



Voting: Practical Tips

• Minimize irrelevant tokens first (take edge points with 

significant gradient magnitude)

• Choose a good grid / discretization

 Too coarse: large votes obtained when too many different lines 

correspond to a single bucket

 Too fine: miss lines because some points that are not exactly 

collinear cast votes for different buckets

• Vote for neighbors, also (smoothing in accumulator 

array)

• Utilize direction of edge to reduce free parameters by 1

• To read back which points voted for “winning” peaks, 

keep tags on the votes.



Hough Transform: Pros and Cons

Pros

• All points are processed independently, so can cope with 

occlusion

• Some robustness to noise: noise points unlikely to 

contribute consistently to any single bin

• Can detect multiple instances of a model in a single pass

Cons

• Complexity of search time increases exponentially with 

the number of model parameters 

• Non-target shapes can produce spurious peaks in 

parameter space

• Quantization: hard to pick a good grid size



Generalized Hough Transform

• What if want to detect arbitrary shapes defined by 

boundary points and a reference point?

Image space

x a

p1

θ

p2

θ

At each boundary point, 

compute displacement 

vector: r = a – pi.

For a given model shape: 

store these vectors in a 

table indexed by gradient 

orientation θ.

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]



Generalized Hough Transform

To detect the model shape in a new image:

• For each edge point

 Index into table with its gradient orientation θ

 Use retrieved r vectors to vote for position of reference point

• Peak in this Hough space is reference point with most 

supporting edges

Assuming translation is the only transformation here, 

i.e., orientation and scale are fixed.



Example: Generalized Hough Transform

Model shape

Say we’ve already 

stored a table of 

displacement vectors 

as a function of edge 

orientation for this 

model shape.



Example: Generalized Hough Transform

Displacement vectors for model points

Now we want to look 

at some edge points 

detected in a new

image, and vote on 

the position of that 

shape.



Example: Generalized Hough Transform

Range of voting locations for test point



Example: Generalized Hough Transform

Range of voting locations for test point



Example: Generalized Hough Transform

Votes for points with θ =



Example: Generalized Hough Transform

Displacement vectors for model points



Example: Generalized Hough Transform

Range of voting locations for test point



Example: Generalized Hough Transform

Votes for points with θ =



Application in Recognition

• Instead of indexing displacements by gradient 

orientation, index by “visual codeword”.

Training image

Visual codeword with

displacement vectors



Application in Recognition

• Instead of indexing displacements by gradient 

orientation, index by “visual codeword”.

• We’ll hear more about this method in lecture 14…

Test image
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