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SUMMARY Linear Programming Definitions

A linear programming problem (LP) consists of three parts:

1 A linear function (the objective function) of decision variables (say, x, x5, .. ., x,,)
that is to be maximized or minimized.

2 A set of constraints (each of which must be a linear equality or linear inequality) that
restrict the values that may be assumed by the decision variables.

3 The sign restrictions, which specify for each decision variable x; either (1) variable
x; must be nonnegative—x; = 0; or (2) variable x; may be positive, zero, or negative—x;
is unrestricted in sign (urs).

The coeflicient of a variable in the objective function is the variable’s objective func-
tion coefficient. The coefficient of a variable in a constraint is a technological coefficient.
The right-hand side of each constraint is called a right-hand side (rhs).

A point is simply a specification of the values of each decision variable. The feasible
region of an LP consists of all points satisfying the LP’s constraints and sign restrictions.
Any point in the feasible region that has the largest z-value of all points in the feasible re-
gion (for a max problem) is an optimal solution to the LP. An LP may have no optimal
solution, one optimal solution, or an infinite number of optimal solutions.

A constraint in an LP is binding if the lefi-hand side and the right-hand side are equal
when the values of the variables in the optimal solution are substituted into the constraint.

Graphical Solution of Linear Programming Problems

The feasible region for any LP is a convex set. If an LP has an optimal solution, there is
an extreme (or corner) point of the feasible region that is an optimal solution to the LP.
We may graphically solve an LP (max problem) with two decision variables as follows:

Step 1 Graph the feasible region.
Step 2 Draw an isoprofit line.

Step 3 Move parallel to the isoprofit line in the direction of increasing z. The last point
in the feasible region that contacts an isoprofit line is an optimal solution to the LP

LP Solutions: Four Cases

When an LP is solved, one of the following four cases will occur:
Case 1 The LP has a unique solution.

Case 2 The LP has more than one (actually an infinite number of) optimal solutions.
This is the case of alternative optimal solutions. Graphically, we recognize this case
when the isoprofit line last hits an entire line segment before leaving the feasible region.

Case 3 The LP is infeasible (it has no feasible solution). This means that the feasible re-
gion contains no points.

Case 4 The LP is unbounded. This means (in a max problem) that there are points in the
feasible region with arbitrarily large z-values. Graphically, we recognize this case by the
fact that when we mowve parallel to an isoprofit line in the direction of increasing z, we
never lose contact with the LP’s feasible region.
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Linear Programming: A Geometrical Approach
Homework

1) MAXIMIZATION APPLICATIONS

For the following maximization problems, choose your variables, write the objective function and the constraints,
graph the constraints, shade the feasibility region, label all critical points, and determine the solution
that optimizes the objective function.

Exercise (1)

A farmer has 100 acres of land on which she plans to grow wheat and corn. Each acre of wheat
requires 4 hours of labor and $20 of capital, and each acre of corn requires 16 hours of labor and
$40 of capital. The farmer has at most 800 hours of labor and $2400 of capital available. If the
profit from an acre of wheat is $80 and from an acre of corn is $100, how many acres of each crop
should she plant to maximize her profit?

Exercise (2)

Mr. Tran has $24,000 to invest, some in bonds and the rest in stocks. He has decided that the
money invested in bonds must be at least twice as much as that in stocks. But the money invested
in bonds must not be greater than $18,000. If the bonds earn 6%, and the stocks earn 8%, how
much money should he invest in each to maximize profit?

Exercise (3)

A factory manufactures chairs and tables, each requiring the use of three operations: Cutting,
Assembly, and Finishing. The first operation can be used at most 40 hours; the second at most 42
hours; and the third at most 25 hours. A chair requires 1 hour of cutting, 2 hours of assembly, and
1 hour of finishing; a table needs 2 hours of cutting, 1 hour of assembly, and 1 hour of finishing.

If the profit is $20 per unit for a chair and $30 for a table, how many units of each should be
manufactured to maximize revenue?

Exercise (4)

The Silly Nut Company makes two mixtures of nuts: Mixture A and Mixture B. A pound of

Mixture A contains 12 oz of peanuts, 3 0z of almonds and 1 oz of cashews and sells for $4. A pound
of Mixture B contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. The
company has 1080 Ib. of peanuts, 240 Ib. of almonds, 160 Ib. of cashews. How many pounds of
each of mixtures A and B should the company make to maximize profit?

2) MINIMIZATION APPLICATIONS

For each of the following minimization problems, choose your variables, write the objective function and the
constraints, graph the constraints, shade the feasibility region, label all critical points, and determine the
solution that optimizes the objective function.

Exercise (5)

A diet is to contain at least 2400 units of vitamins, 1800 units of minerals, and 1200 calories. Two
foods, Food A and Food B are to be purchased. Each unit of Food A provides 50 units of vitamins,
30 units of minerals, and 10 calories. Each unit of Food B provides 20 units of vitamins, 20 units
of minerals, and 40 calories. If Food A costs $2 per unit and Food B cost $1 per unit, how many
units of each food should be purchased to keep costs at a minimum?

Exercise (6)

A computer store sells two types of computers, desktops and laptops. The supplier demands that
at least 150 computers be sold a month. In order to keep profits up, the number of desktops sold
must be at least twice of laptops. The store pays its sales sta_ a $75 commission for each desk
top, and a $50 commission for each lap top. How many of each type of computers must be sold to
minimize commission to its sales people? What is the minimum commission?
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Exercise (7)

An oil company has two refineries. Each day, Refinery A produces 200 barrels of high-grade oil,
300 barrels of medium-grade oil, and 200 barrels of low-grade oil and costs $12,000 to operate.
Each day, Refinery B produces 100 barrels of high-grade oil, 100 barrels of medium-grade oil, and
200 barrels of low-grade oil and costs $10,000 to operate. The company must produce at least 800
barrels of high-grade oil, 900 barrels of medium-grade oil, and 1,000 barrels of low-grade oil. How
many days should each Refinery be operated to meet the goals at a minimum cost?

Exercise (8)

A print shop at a community college in Cupertino, California, employs two different contractors

to maintain its copying machines. The print shop needs to have 12 IBM, 18 Xerox, and 20 Canon
copying machines serviced. Contractor A can repair 2 IBM, 1 Xerox, and 2 Canon machines at a
cost of $800 per month, while Contractor B can repair 1 IBM, 3 Xerox, and 2 Canon machines at
a cost of $1000 per month. How many months should each of the two contractors be employed to
minimize the cost?

3) REVIEW EXERCISES

Solve the following linear programming problems by the graphical method.

Exercise (9)

Mr. Shoemacher has $20,000 to invest in two types of mutual funds, Coleman High-yield Fund,
and Coleman Equity Fund. The High-yield fund gives an annual yield of 12%, while the Equity
fund earns 8%. Mr. Shoemacher would like to invest at least $3000 in the High-yield fund and at
least $4000 in the Equity fund. How much money should he invest in each to maximize his annual
yield, and what is the maximum yield?

Exercise (10)

Dr. Lum teaches part-time at two different community colleges, Hilltop College and Serra College.
Dr. Lum can teach up to 5 classes per semester. For every class taught by him at Hilltop College,

he needs to spend 3 hours per week preparing lessons and grading papers, and for each class at
Serra College, he must do 4 hours of work per week. He has determined that he cannot spend more
than 18 hours per week preparing lessons and grading papers. If he earns $4,000 per class at Hilltop
College and $5,000 per class at Serra College, how many classes should he teach at each college to
maximize his income, and what will be his income?

Exercise (11)

Mr. Shamir employs two part-time typists, Inna and Jim for his typing needs. Inna charges $10

an hour and can type 6 pages an hour, while Jim charges $12 an hour and can type 8 pages per
hour. Each typist must be employed at least 8 hours per week to keep them on the payroll. If

Mr. Shamir has at least 208 pages to be typed, how many hours per week should he employ each
student to minimize his typing costs, and what will be the total cost?

Exercise (12)

Mr. Boutros wants to invest up to $20,000 in two stocks, Cal Computers and Texas Tools. The Cal
Computers stock is expected to yield a 16% annual return, while the Texas Tools stock promises

a 12% vyield. Mr. Boutros would like to earn at least $2,880 this year. According to Value Line
Magazine's safety index (1 highest to 5 lowest), Cal Computers has a safety number of 3 and Texas
Tools has a safety number of 2. How much money should he invest in each to minimize the safety
number? Note: A lower safety number means less risk.

Exercise (13)

A department store sells two types of televisions: Regular and Big Screen. The store can sell up

to 90 sets a month. A Regular television requires 6 cubic feet of storage space, and a Big Screen
television requires 18 cubic feet of space, and a maximum of 1080 cubic feet of storage space is
available. The Regular and Big Screen televisions take up, respectively, 2 and 3 sales hours of
labor, and a maximum of 198 hours of labor is available. If the profit made from each of these
types is $60 and $80, respectively, how many of each type of television should be sold to maximize
pro_t, and what is the maximum profit?
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Exercise (14)

A company manufactures two types of printers, the Inkjet and the Laser. The Inkjet generates a
pro_t of $100 per printer and the Laser a profit of $150. On the assembly line the Inkjet requires 7
hours, while the Laser takes 11 hours. Both printers require one hour for testing. The Inkjet requires
one hour and the Laser needs 3 hours for finishing. On a particular production run the company
has available 1,540 work hours on the assembly line, 200 work hours in the testing department, and
360 work hours for finishing. How many sets of each type should the company produce to maximize
pro_t, and what is that maximum profit?

Exercise (15)

John wishes to choose a combination of two types of cereals for breakfast - Cereal A and Cereal
B. A small box(one serving) of Cereal A costs $0.50 and contains 10 units of vitamins, 5 units of
minerals, and 15 calories. A small box(one serving) of Cereal B costs $0.40 and contains 5 units

of vitamins, 10 units of minerals, and 15 calories. John wants to buy enough boxes to have at

least 500 units of vitamins, 600 units of minerals, and 1200 calories. How many boxes of each food
should he buy to minimize his cost, and what is the minimum cost?

Exercise (16)

Jessica needs at least 60 units of vitamin A, 40 units of vitamin B, and 140 units of vitamin C

each week. She can choose between Costless brand or Save more brand tablets. A Costless tablet
costs 5 cents and contains 3 units of vitamin A, 1 unit of vitamin B, and 2 units of vitamin C, and

a Save more tablet costs 7 cents and contains 1 unit of A, 1 of B, and 5 of C. How many tablets of
each kind should she buy to minimize cost, and what is the minimum cost?

Exercise (17)

A small company manufactures two types of radios- regular and short-wave. The manufacturing of
each radio requires three operations: Assembly, Finishing and Testing. The regular radios require
1 hour of Assembly, 3 hours of Finishing, and 1 hour of Testing. The short-wave radios require 3
hours of Assembly, 1 hour of Finishing, and 1 hour of Testing. The total work-hours available per
week in the Assembly division is 60, in the Finishing division is 60, and in the Testing is 24. If a
pro_t of $50 is realized for every regular radio, and $75 for every short-wave radio, how many of
each should be manufactured to maximize profit, and what is the maximum profit?

Exercise (18)

A factory manufactures two products, A and B. Each product requires the use of three machines,
Machine I, Machine I, and Machine Ill. The time requirements and total hours available on each
machine are listed below.

Machine | Machine 1l Machine 1lI

ProductA124

ProductB 22 2

Total hours 70 90 160

Table 6.1

If product A generates a profit of $60 per unit and product B a profit of $50 per unit, how many units
of each product should be manufactured to maximize profit and what is the maximum profit?

Exercise (19)

A company produces three types of shoes, formal, casual, and athletic, at its two factories, Factory
| and Factory II. Daily production of each factory for each type of shoe is listed below.

Factory | Factory Il

Formal 100 100

Casual 100 200

Athletic 300 100

The company must produce at least 6000 pairs of formal shoes, 8000 pairs of casual shoes, and
9000 pairs of athletic shoes. If the cost of operating Factory | is $1500 per day and the cost of
operating Factory Il is $2000, how many days should each factory operate to complete the order at
a minimum cost, and what is the minimum cost?
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Exercise (20)

A professor gives two types of quizzes, objective and recall. He is planning to give at least 15
quizzes this quarter. The student preparation time for an objective quiz is 15 minutes and for a
recall quiz 30 minutes. The professor would like a student to spend at least 5 hours (300 minutes)
preparing for these quizzes above and beyond the normal study time. The average score on an
objective quiz is 7, and on a recall type 5, and the professor would like the students to score at
least 85 points on all quizzes. It takes the professor one minute to grade an objective quiz, and 1.5
minutes to grade a recall type quiz. How many of each type should he give in order to minimize
his grading time?

Exercise (21)

A company makes two mixtures of nuts: Mixture A and Mixture B. Mixture A contains 30%

peanuts, 30% almonds and 40% cashews and sells for $5 per pound. Mixture B contains 30%
peanuts, 60% almonds and 10% cashews and sells for $3 a pound. The company has 540 pounds
of peanuts, 900 pounds of almonds, 480 pounds of cashews. How many pounds of each of mixtures
A and B should the company make to maximize profit, and what is the maximum profit?

Solutions to Exercises

Solutions to Linear Programming: A Geometrical Approach:
Homework

Solution to Exercise (1)

80 acres of wheat and 20 acres of corn should be planted to maximize profit to $8,400
Solution to Exercise (2)

(16000, 8000); $1600

Solution to Exercise (3)

10 chairs and 15 tables should be manufactured to maximize profit to $650.

Solution to Exercise (4)

(1320, 1120); $6880

Solution to Exercise (5)

30 units of Food A and 45 units of Food B should be purchased to keep costs at a minimum of $105.
Solution to Exercise (6)

(100, 50); $10000

Solution to Exercise (7)

Min: Z = 12000.x1 + 10000.x2

I. 200x1 + 100x2 > 800 high-grade oil

[I. 300x1 + 100x2 > 900 medium-grade oil

[1l. 200x1+ 200x2 > 1000 low-grade oil

Refinery A should be operated for 3 days, while Refinery B should be operated for 2 days to keep a
minimum cost of $56,000.

Solution to Exercise (8)

(6, 4);, $8800

Solution to Exercise (9) (16000, 4000); $2240
Solution to Exercise (10) (2, 3); $23,000
Solution to Exercise (11) (8, 20); $320
Solution to Exercise (12) (12000, 8000)
Solution to Exercise (13) (72, 180); $5760
Solution to Exercise (14) (165, 35); $21,750
Solution to Exercise (15) (20, 60); $34
Solution to Exercise (16) (20, 20); $2.40
Solution to Exercise (17) (6, 18); $1650
Solution to Exercise (18) (35, 100); $2600
Solution to Exercise (19) (40, 20); $100,000
Solution to Exercise (20) (10, 5): 17.5 minutes

Solution to Exercise (21) (1000, 800); $7400
GOOD LUCK

Prof. Dn. ohrwan AH- Lakham
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Formulating LPs

The most important step in formulating most LPs is to determine the decision variables

correctly.

In any constraint, the terms must have the same units. For example, one term cannot
have the units “pounds of raw material” while another term has the units “ounces of raw

matenal”

SUMMARY

Preparing an LP for Solution by the Simplex

An LP is in standard form if all constraints are equality constraints and all variables are
nonnegative. To place an LP in standard form, we do the following:

Step 1  If the ith constraint is a = constraint, then we convert it to an equality constraint
by adding a slack variable s; and the sign restriction 5; = 0.

Step 2 If the ith constraint is a = constraint, then we convert if to an equality constraint
by subtracting an excess variable e; and adding the sign restriction e; = 0.

Step 3 If the variable x; is unrestricted in sign (urs), replace x; in both the objective func-
tion and constraints by x; — x;, where x; = 0 and x = 0.

Suppose that once an LP is placed in standard form, it has m constraints and n variables.

A basic solution to Ax = b is obtained by setting # — m variables equal to 0 and solv-
ing for the values of the remaining m variables. Any basic solution in which all variables
are nonnegative is a basic feasible solution (bfs) to the LP.

For any LP, there is a unique extreme point of the LP’s feasible region corresponding to
each bfs. Also, at least one bfs corresponds to each extreme point of the feasible region.

If an LP has an optimal solution, then there is an extreme point that is optimal. Thus,
in searching for an optimal solution to an LP, we may restrict our search to the LP’s ba-
sic feasible solutions.




The Simplex Algorithm

1) Solving Maximization Problems

If the LP is in standard form and a bfs is readily apparent, then the simplex algorithm (for
a max problem) proceeds as follows:

Step 1 If all nonbasic variables have nonnegative coefficients in row 0, then the current
bfs i1s optimal. If any variables in row 0 have negative coefficients, then choose the vari-
able with the most negative coefficient in row 0 to enter the basis.

Step 2 For each constraint in which the entering variable has a positive coefficient, com-
pute the following ratio:

Right-hand side of constraint

Coeffficient of entering variable in constraint

The Big M Method

Step 1 Modify the constraints so that the right-hand side of each constraint is nonnegative.

Step 1" Identify each constraint that is now (after step 1) an = or = constraint. In step
3, we will add an artificial variable to each of these constraints.

Step 2 Convert each inequality constraint to standard form.

Step 3 If (after step 1 has been completed) constraint 7 is a = or = constraint, then add
an artificial variable a; and the sign restriction 4; = 0.

Step 4 Let M denote a very large positive number. If the LP is a min problem, then add
(for each artificial variable) Ma; to the objective function. For a max problem, add —Ma;.

Step 5 Because each artificial variable will be in the starting basis, each must be eliminated
from row 0 before beginning the simplex. If all artificial variables are equal to 0 in the opfi-
mal solution, then we have found the optimal solution to the original problem. If any artifi-
cial variables are positive in the optimal solution, then the original problem is infeasible.




2) Solving Minimization Problems

To solve a minimization problem by the simplex, choose as the entering variable the non-
basic variable in row 0 with the most positive coefficient. A tableau or canonical form is
optimal if each variable in row 0 has a nonpositive coefficient.

Alternative Optimal Solutions

If a nonbasic variable has a zero coefficient in row 0 of an optimal tableau and the non-
basic variable can be pivoted into the basis, the LP may have alternative optimal solu-
tions. If two basic feasible solutions are optimal, then any point on the line segment join-
ing the two optimal basic feasible solutions is also an optimal solution to the LP.

Unrestricted-in-Sign Variables

If we replace a urs variable x; with x; — x;, the LPs optimal solution will have x;, x] or
both x; and x} equal to zero.

GOOD LUCK
Phof-. Dn. oAmwan - Lakham
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(1) Jstaa Jlia
Max Z =X, +2X, + X,
st. 2% +3%, =% <5 |['BasicV. | X1 | X2 [ X3 [ S1 [ S2 [ S3 | RHS
X =X, + 2X3 <4 Z -1 -2 -1 0 O 0 0
3X, +2X, + X3 <7 S1 2 3 -1 1 0 0 5
X, , Xy, X320 S2 1 -1 2 0 1 0 4
_ o S3 3 2 1 0 0 1 7
)T(qe_oopt'mg(';jj'zugon;é ) Z 13 0 [ -5/3]23] 0 ] 0 [10/3
The Opt’imal Valueis: Z=7 X2 213 11 1313 0 0 5/3
0 0 1 S3 53 0 53 -2/3 0 1 11/3
The Ranges of C; are: Z 2 0] 0 0|01 7
- 521 <3 X2 1 1 0 15 0 15| 24
v C3<] S2 0 0 0 1 1 -1 2
- X3 1 0 1 =-25 0 3/5 2.2
(2) Jslaa Jla
Basic | X1 X2 X3 s1 s2 A2 A3 | RHS
Max Z=X%, +2X, +Xq V.
st. z -1 2 1 0 0 M M 0
X, —%,+2%, >4 A2 1 1 2 0 -1 1 0 4
3% 4 9% 4y —7 A3 3 2 1 0 0 0 1 7
X eXe t% = z | 13| o [53]23] 0o | M | m [10/3
Xpo X0 X3 20 X2 | 2/3 1 -1/3 1/3 0 0 0 | 5/3
A2 | 5/3 0 5/3 1/3 -1 1 0 | 17/3
The Optimal solution is: A3 | 53 0 o3 23 0 0 1|13
X1=0 , X2=2 ,X3=3 20 2 [ o JofoJofm]ma] 7
The Optimal Value is:  Z=7 X211 1 o 15 0 0 15 | 12/5
The Dual Prices Are: A2 0 0 0 1 -1 1 -1 2
0 0 1 X3 1 0 1 -2/5 0 0 3/5 | 11/5
The Ranges of C; are: Z 2 | o | o 0 0 | M [ M| 7
Cl<3 X2 1 1 0 0 1/5 -1/5 2/5 2
2=C2 s1 | o 0 0 1 1 1 1 2
-1<C3<1
X3 1 1 1 o -2/5 2/5 1/5 3

<
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(3) Jslaa Jia

The Standard (Canonical) Form: The Mathematical Model:
Z—X, —2X, —X; +0S;, +0S,—MA, —MA, =0 Min Z=X +2X, + X,
S.t.
2%, +3X, —1x; +1S,; =5 2X, +3X, = X3 <5
IX, =X, +2X, -1S, +1A, =4 X, =X, +2X; =24
3X, +2X, +1x, +1A, =7 3X, +2X, + X, =7
X X0, 51,5, Ay, Ay 20 X, X, 20
Basic V. X1 X2 X3 S1 S2 A2 A3 RHS
z -1 ) -1 0 0 -M -M 0
S1 2 3 -1 1 0 0 0 5
A2 1 -1 2 0 -1 1 0 4
A3 3 2 1 0 0 0 1 7
z 2 0 0 0 0 -M 1-M 7
S1 5 5 0 1 0 0 1 12
A2 5 5 0 0 1 -1 2 10
X3 3 2 1 0 0 0 1 7
Z 0 -2 0 0 \ -2/5 \ 2/5-M \ 1/5-M 3
S1 0 0 0 1 -1 1 -1 2
X1 1 1 0 0 1/5 -1/5 2/5 2
X3 0 -1 1 0 -3/5 3/5 -1/5 1
X1 =2 X2=0 X3=1  The Optimal Solution 1 JiaY) Jal)
Z=3 The Optimal value sliall dagdl
0.2 @Al 04 SEaEl 0 JMaEl The Dual Prices s Ay ol ey
C1<3 0<C2 1/3<C3 The Optimal Ranges s Ciagd) Al QUi el
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(4) Jslaa Jlsa

The Primal Problem:
Min Z =3x, +5X,

The Dual Problem:
Max Z =6y, —-10y, +2y,

st. X, +X =6 st. Y, —Y, <3
X1+2X2S10 y1_2y2+y3 <5
X, 22 Y Y2 Y320
X, X, =20
B.V.| X1 | X2| S1 |S2| s3 Al A3
z 83 |5 0,070} -M | -M B.V.|YL|Y2] Y3 | sI |S2] HS
Al 1 -1 0 0 1 0 Z -6 | 10 ) 0 0 0
s2 | 1 1 0 0 0 |10 ST T 1 1 o 3
A3 0 1 0 -1 0 1 2 S2 1 -2 1 0 1 5
z [oJ2[3JoJofs-m[ ™M || 2 |O]4]=2] ¢ |01
X1 1 1 -1 0 O 1 0 6 Y1l 1 1 0 1 0 3
A3 0 1 0 -1 0 1 2 z 0 ‘ 2 ‘ 0 ‘ 4 ‘ 2 22
Y1l -
Z [oo[3[0]2[3-M[2-M| 22 1o r 0
X1 1 0 -1 o0 1 1 -1 el o 1Al 1 !
S2 0 0 1 1 -1 -1
X2 0 1 0 -1 0 1
The Optimal Solutionls: Y1=3 Y2=0 Y3=2
The Optimal Solution Is: The Optimal Value is: 72=22
X1=4 X2=2 The Dual Prices are:
The Optimal Value is: for the first constraint 4
Z2=22 for the Second constraint 2
The Optimal Ranges are: The Optimal Ranges are:
0<C1=<5 3<C2 2<C1<8 C2<-8 0<C3<4
The Graphical Method:
X2
6
] {2.4)
4: A\
] (6,2)
2] (4.2)°B p
I:I_ T T 17T T T T T T T 171 T T T T 1T T 17 T T T=I_ 711 x-l
\'2\ 4 B 8 10
Note :

1) The Optimal Solution of The Primal Problem is
The absolute value of the Dual Prices Of The Dual Problem.

2) The Optimal Value of The Primal Problem is The Optimal Value Of The Dual Problem
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(5)

Max Z =2x, +1x,

s.t. X, —X, <10

2X, <40

X , X, 20
B.V.[| X1 [x2][ s1 [ s2 | HS
Z 2 [-1] 0 0 0
S1 1 -1 1 0 10
S2 2 0 0 1 40
Z 0 ‘ -3 ‘ 2 ‘ 0 20
X1 1 -1 1 0 10
S2 0 -2 1 20
Z 0 ‘ 0 ‘ -1 ‘ 32 | 50
X1 1 -1 0 12| 20
X2 0 1 -1 12 | 10

10

Feasible Region /

A0 = = X

(6 + 5) alglia &lial

(6)

Max Z =4x, +1x,

st. 3X, +%x, =15
4x, +3x, 230
Ix, +2x, <20

X, , X, 20

B.V.| X1 | X2 | S2 | s3 Al A2 RHS
Z -4 | -1 0 M M 0
Al 3 1 0 0 1 0 15
A2 4 3 -1 0 0 1 30
S3 1 2 0 1 0 0 20
z 0‘1/3‘0‘0‘M+4/3‘M 20
X1 1 1/3 0 0 1/3 0 5
A2 0 53 -1 0 -4/3 1 10
S3 0 5/3 0 1 -1/3 0 15
7 0 ‘ 0 ‘ 1/5 ‘ 0 ‘ M+8/5 ‘ M+1/5 18
X1 1 0 1/5 0 3/5 1/5

X2 0 1 -3/5 0 -4/5 3/5

S3 0 0 1 1 1 -1

The Optimal Solution Is: X1=3 X2=6
The Dual Prices are: for the first constrain
for the Second constrain - 0.2
for the Third constrain 0
The Optimal Ranges are :
4-1=3<C, Czﬁﬂzl—(—l)

3 3
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(7) Jslaa Jia

The Mathematical Model The Standard (canonical) Form is
Max Z = 6x, +4X, +3X; +2X, Z — 6%, —4X, —3X; —2x, +0S; +0S, +0S, +0S, =0
Subject to  2x, +3x, +1x; +2x, <400 2%, +3X, +1X, + 2X, +1S,; =400
1x, +1x, +2x, +1x, <150 Ix, +1x, + 2%, +1X, +1S, =150
2%, +1x, +1x, +0.5x, < 200 2%, +1x, +1x, +0.5X%, +1S, =200
3, +1x, + +1x, <250 3%, +1x, + +1X, +1S, =250
X X, X3, X, 20 X0 X, X3, %,,5,,S,,5;,5,20
Basic V. X1 X2 X3 X4 S1 S2 S3 S4 RHS
Z -6 -4 -3 -2 0 0 0 0 0
S1 2 3 1 2 1 0 0 0 400
S2 1 1 2 1 0 1 0 0 150
S3 2 1 1 0.5 0 0 1 0 200
S4 3 1 0 1 0 0 0 1 250
Z o | 2 | 3 | o | o 0 o | 2 500
S1 0 7/3 1 4/3 1 0 0 -2/3 700/3
S2 0 2/3 2 2/3 0 1 0 -1/3 200/3
S3 0 1/3 1 -1/6 0 0 1 -2/3 100/3
X1 1 1/3 0 1/3 0 0 0 1/3 250/3
z o | 1 | o | 1 | o | 15 | o | 15 600
S1 0 2 0 1 1 -1/2 0 -1/2 200
X3 0 1/3 1 1/3 0 1/2 0 -1/6 100/3
S3 0 0 0 -1/2 0 -1/2 1 -1/2 0
X1 1 1/3 0 1/3 0 0 0 1/3 250/3
z o | o | o | 15 | o5 | 125 | o | 125 700
X2 0 1 0 1/2 1/2 -1/4 0 -1/4 100
X3 0 0 1 1/6 -1/6 7/12 0 -1/12 0
S3 0 0 0 -1/2 0 -1/2 1 -1/2 0
X1 1 0 0 1/6 -1/6 1/12 0 5/12 50
The Optimal Solution is: X1 =50 X2 =100 X3=0 X4=0  The Optimal Value is: Z=700
The Dual Prices are: For the First Constrainis 0.5 For the Second Constrainis 1.25
For the Third Constrainis 0 For the Fourth Constrainis 1.25
The Ranges of the CI ( The Coefficients of the objective function ) are: 3=6-3<C,<6-(-3)=9
3=4-1<C, S4—(—5)=9g:3—§£C3 <3-(-3)=6C, $2+g:%

S X; B 4 JMML’QMM\YM X; O 1y YL\ 1_Ci s gl AJaada

(aseglijual el C; &) <C, < (luglipsl oaii C, 4ad)
C,< (Z fouple X caiyydiand + C. 4ad) ¢l (Max) Uluwally ubal o Ysate X, ols1y (Gt
(Z shugle X catydaad + C, i) <C, i (Min) Aledd s A L
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(8) Jslaa Jia

dbla)| dyjeuul] deslal|

wilogleolly cvoulal] wwaid als

Min z = 2x, +3X, BasicV. | X1 X2 s1 S2 A2 A3 RHS
st. z -2 -3 0 0 -M -M 0
2x, +X, <16 s1 2 1 1 0 0 0 16
X, +3x, >20 A2 1 3 0 -1 0 20
X,+X, =10 A3 1 1 0 0 0 1 10
X,, X, >0 z -1 ‘ 0 ‘ 0 ‘ -1 ‘ 1-M ‘ -M 20
The Optimal solution is: s1 5/3 0 1 1/3 -1/3 0 28/ 3
X1=5 , X2=5 X2 1/3 1 0o -1/3 1/3 0 20/3
The Optima_l Valueis: Z=25 A3 2/3 0 0 1/3 1/3 1 10/3
The Dual Prices Are:
0 0515 z 0 0 0 -1/2 | 1/2-m | 3/2-m | 25
The Ranges of C; are: S1 0 0 1 -1/2 1/2 -5/2 1
Cl<3 X2 0 1 0o -1/2 1/2 -1/2 5
2=C2 X1 1 0 0 1/2  -1/2 3/2 5
w2
16

107

2013

Graphical Solution




(9) Jslaa Jia

Min Z =8x, +12x, +16X,
s.t.
—1x, +1X, +2%X, 29
2%, +2X, +1x, 212

X,y X% =20

Aahdl) Ao ) Alaead S5 Jadt aagl 1 Y
The Dual Prices L 45l jad) aa gl oLl
(Ci <¥w) diagd) Al JUaY AdiaY) cflae aa gl (LIS
The Dual Problem 45l Alluall a2 el
The Opt. Sol. (Graphical) Lok L Jia¥) Jall aa i luals

BasicV. | X1 | X2 | X3 | s1 S2 Al A2 | RHS
The Optimal solution is: Z -8 | -12 | -16 0 0 -M -M 0
X1=0 , X2=5 = X3=2 Al 11 2 1 o0 1 0 9
The Optimal Value is: A2 ’ ) 1 0 1 0 1 12
Z=92
The Dual Prices Are: z 6] 4]0 ] 8]0]8M | -M 72
20 3 X3 -1/2 1/2 1 -1/2 o0 1/2 0 9/2
E) ~3 A2 5/2  3/2 0 12 -1 -1/2 1 15/2
Z - 0 0 - | -8/3 | 20/3-M | 8/3-M | 92
The Ranges of C; are: 28/3 20/3
X3 -4/3 0 1 -2/3 1/3 2/3 -1/3
4 - -
-3 c1 X2 5/3 1 0 1/3  -2/3 1/3 2/3
8<C2 £17.6 9<(C3<24
The Dual Problem is:

Max z =9x, +12x,
s.t.
-1x, +2x, <8
1x, +2x, <12
2x, +1x, <16
X, X, =20
20 8
A(0,0) B(80) D(T,7) E(2,5)
F(0,4)
The Optimal Solution is:
20 8
X1= ? Xo= ;
The Optimal Value is:
Z=92

The Ranges of C; are:

6 C2 <24 4<(C3<18

(1)

D i6.67,2.67)
X1

-
mTTTTTTTTTTO rT1rr17T1r1T1rT1TTTTTTTTTT

42 'flz 4 6

Graphical Solution

-106-




(10) Jslaa Jia

Max Z =9x, +2x, —12x,
st. 1x, +1x, =1x, <5
—1Ix, +1x, + 3%, >3
Xy Xy, X3 20

Aobal) dgca ) Al JiaY) Jadt aagl 1 Y

The Dual Prices

b iy 21 o) 2l <L

(Ci c¥lae) Cingh) al JUaY Ltiad) cilae 2 sl G

The Dual Problem

Aol Alcad) aagl Ly

The Opt. Sol. (Graphical)

Ll L Jia¥) Jall aa gl slaals

The Optimal solution is:

X1=9 , X2=0,X3=4

The Optimal Value is:

Z=33

The Dual Prices Are:

For the first constrain is: 75
For the second constrain is: 1.5
The Ranges of C; are:

7<C1<12

C2 <6 —16<(C3<-9

BasicV. | X1 | x2 | X3 s1 s2 A2 | RHS
Z -9 -2 12 0 0 M 0
s1 1 1 -1 1 0 0 5
A2 -1 1 3 0 -1 1
z o | 7] 3] 9] 0] ™ 45
X1 1 1 -1 1 0 0 5
A2 0 2 2 1 -1 1
Z o | 4 | o [152] 32 |m32] 33
X1 1 2 0 32 12 12 9
X3 0 1 1 12 -1/2 1/2 4

The Dual Problem is:

Min z =5X%, —3X,
st.

Ix, +1x, 29

1x, -1x, 2 2

Ix, +3x, <12

X, X, 20
A(9,0) B(12,0) D(-,2
The Optimal Solution is:
X1= 175 X;= ;

The Optimal Value is:
Z=33
The Ranges of C; are:

-1<C1
C2 <5

)

X2

(1)

[un}

(2)

o

=

D(7.5,1.5)

B(12.0)
12 X1

2 4 5 A(9,0)

L=

S

Graphical Solution
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(11) Jslsa Jisa

Min  Z =2x, +3X, +4Xx,

st. =1x, +2x, +1x, > 24
Ix, +2x, —2x, <18
Xy, X5, X3 20

Aahdl) Ao ) Alaead S5 Jadt aagl 1 Y
The Dual Prices L 45l jad) aa gl oLl
(Ci <¥w) diagd) Al JUaY AdiaY) cflae aa gl (LIS
The Dual Problem 45l Alluall a2 el
The Opt. Sol. (Graphical) Lok L Jia¥) Jall aa i luals

BasicV. | X1 X2 X3 s1 S2 Al RHS
The Optimal solution is: z 2 | 3] 4 0 0 M 0
X1=0 , X2=11,X3=2 Al -1 2 1 -1 0 1 24
The Optimal Value is: S2 1 2 -2 0 1 18
Z=41 z 6 | 5 | o] 4] 0o | am 96
The Dual Prices Are: X3 1 2 1 1 0 24
For the first constrain is: g 52 1 6 0 2 1 2 66
For the second constrain is: Z z 31/6] 0 [ 0 |-73]|-5/6[73-M ] 41
The Ranges of C; are: X3 2/3 0 1 /313 1/3 2
X2 -1/6 1 0 -1/3  1/6 1/3 11
19
ry <Cl1
4<C2 <8 1.5<C3
The Dual Problem is: X2
Jh
Max z =24x, -18x, |
st. (3) -] D(0,2) /
Ix, +1x, > 2 ]
| B(7/3,5/6)
2%, —2X,<3 2 1 1 4
R N N R N A IE L1111 11 L1111 1 1 11 L1 1 1 5 x1
1Xl + 2)(2 <4 Al:'lﬁ,ﬂ]
X, , X, 20

A(0,0) B(1.5,0) D(g,z) E(0,2)

The Optimal Solution is:

=7 =5
X1= 3 o=~
The Optimal Value is:
Z=41

The Ranges of C; are:

18<C1 , —-24<C2 <48

I

(1)

Graphical Solution

-18-




(12) Jslaa Jia

Min  z =3x, +2X, +1x,
st. 3%, +1x, +1x, >3
—3X, +3X, +1X; =26
1x, +1x, +1x, <3
X, X5, X3 20

Abadl) daa ) Alaal J1aY) Jal) aa gl 1 Y
The Dual Prices ‘g 458l jlaud) aa gl oLl

.....

The Dual Problem 435 Al aa gl la

The Opt. Sol. (Graphical) & Jia¥) Jal) aagf laald

BasicV. | X1 X2 X3 s1 S2 | s3 Al A2 RHS
The Optlmal solution is: V4 -3 2 -1 0 0 0 M M 0
X1=0 , X2=15,X3=15
' ' Al 3 1 1 -1 0 0 1 3
The Optimal Value is:
_ A2 -3 3 1 0 -1 0 0 1 6
Z=45
S3 1 1 1 0 0 1 0 3
The Dual Prices Are: z 0o [ A o[ a2aJoJo[im] wm 3
1/2 -1/2 0 X3 3 1 1 -1 0 0 1 0 3
A2 -6 2 0 1 -1 0 -1 1 3
The Ranges of C; are: S3 2 0 0 1 0 1 -1 0 0
z 3] o | o |[a2]-12]0 |1/2M]12M]| 92
23 <0CSzCi g X3 6 0 1 32 12 0 32 12 | 32
9<(3<24 X2 -3 1 0 1/2  -1/2 0 -1/2 1/2 3/2
S3 -2 0 0 1 0 1 -1 0 0
The Dual Problem is: Basicv. | X1 X2 X3 S1 S2 S3 RHS
Max z =3x, +6X, —3X, z -3 -6 3 0 0 0 0
st. 3%, —3X, —1x, <3 51 3 3 1 ! 0 0 3
S2 1 3 -1 0 1 0 2
Ix, +3x, =1x, <2
S3 1 1 -1 0 0 1 1
1x, +1x, —=1x, <1 7 2] 0 | 1] 0] 2 | o 4
X,y Xp, X3 20 s1 4 0 -2 1 1 0 5
X2 1/3 1 -1/3 0 1/3 0 2/3
The Optimal solution is: s3 2/3 0 -2/3 0 -1/3 1 1/3
X1:1/2, X2: 1/2, X3:0 y4 0 ‘ 0 ‘ 0 ’ 0 ’ 3/2 ’ 3/2 9/2
The Opgn:aé!r ?S/alue Is: 1 0 0 > 1 3 6 3
o X2 0 1 0 0 /2 -1/2 | 1/2
The Dual Prices Are: X1 1 0 -1 0 -1/2 3/2 1/2

0 3/2 3/2
The Ranges of C; are:
2<(C1<3

3<(C2 <9
C3<-3

-79-




(15 - 14 - 13) tlgha gyslas

Max z= 1x, +2x, +1x, Aail) Aaa ) s el ol 225l 2 Yl
3 The Dual Prices ! 4ol jadl) aa gl L3
st. 2X, +3X, =1x, <25 (C Vlas) cingd) ald JRY ia) e s gl <05
Ix —1x; +3x; 220 The Dual Problem 435l dlall 23 Ll
3%, +2X, +1x, <35 Solve The Dual Problem ;i) dlluall o @ Lualdy
X; s X,y Xg 20
The Optimal solution is: BasicV. | X1 |X2| X3 S1 S2 | S3 A2 RHS
X1=0, X2=12, X3=11 7 1 12 1 0 0 M 0
The Optimal Value is: 51 2 3 A 1 0 0 0 =
Z=35 A2 -1 03 0 -1 0 1 20
The Dual Prices Are: S3 3 2 1 0 1 0 35
0 0 1 z 1/3 ‘ 0 ‘ -5/3 ‘ 2/3 ‘ 0 ‘ 0 ‘ M 50/3
X2 2/3 11 -1/3 1/3 0 0 25/3
The Ranges of C; are: A2 53 0 8/3 1/3 -1 0 1 85/3
S3 53 0 5/3 -2/3 0 1 0 55/3
C1<3,
0<C2 , —2/3<C3 y4 11/8| 0 | © 7/8 | 5/8 | 0 | M+5/8 | 275/8
X2 7/8 1 0 3/8 -1/8 0 1/8 95/8
The Dual Problem is: X3 5/8 0 1 1/8  -3/8 0 3/8 85/8
. S3 5/8 0o 0 -7/8 5/8 1 -5/8 5/8
Min z= 25x%, —20x, + 35X, / / / / /
y4 2 |o| o 0 0 1 M 35
st. 2x, —=1x, +3x, =1
X2 1 1 o0 1/5 0 1/5 0 12
3X, +1x, +2%, =2
X3 1 0 1 -2/5 0 3/5 0 11
-1x, —=3x,+1x, 21
S2 1 0 0 -7/5 1  8/5 -1 1
X,y X,, X3 20
BasicV. | X1 |X2| X3 S1 S2 | S3 A2 RHS
X
(1) dss da y4 112 1 0 0 M 0
The Optimal solution is: s1 2 3 4 1 o 0 0 25
X1=0, X2=85/7, X3=75/7 A2 1 -1 3 0 -1 0 1 20
The Ootimal Value i S3 3 2 1 0 1 0 35
e Optimal Value is:
7= 135 z 2 ‘ 0 ‘ 0 ‘ 0 ‘ ‘ 1 ‘ M 35
A2 25 0 35 -1 05 1 37.5
0 0 1 X2 |15 1 05 0 05 0 17.5
The Ranges of C; are: z 2 |0]0 0 ! M 3
Ss1 57 0 0 -1 5/7 8/7  -5/7 5/7
. (1<3, X3 57 0 1 0 2/7 17 2/7 75/7
=€ ,-9/5=C3 X2 87 1 0 o 17 87 -7 85/7




BasicV. | X1 |[X2| X3 S1 S2 | S3 A2 RHS
(2) ds da y4 12 1 0 0 0 M 0
S1 2 3 A 1 0 0 25
The Optimal solution is: A2 1 -1 3 0 -1 0 1 20
X1=0, X2=0, X3=35 s3 3 2 1 0 0 1 0 35
The Optimal Value is: z 2 ‘ 0 ‘ 0 ‘ 0 ‘ 0 | ! | M 35
7 =135 S1 5 5 0 1 0 1 0 60
The Dual Prices Are: A2 8 7 0 0 1 3 -1 85
X3 3 2 1 0 0 1 0 35
0 0 1
z 2 o] o 0 0 1 M 35
The Ranges of C; are: s1 > 5 0 1 0 1 0 60
S2 8 7 0 0 1 3 -1 85
CZSZCl,SB’C3S1 X3 3 2 1 0o 0 1 0 35
The Dual Prolicsn
BasicV. | X1 | X2 | X3 | S1 | S2 | S3 Al A2 A3 RHS
z 25| 20 | 35| O 0 0 -M -M -M 0
Al 2 -1 -1 0 0 1
A2 3 1 0 -1 0 2
A3 -1 3 1 0 0 -1 0 0 1 1
z -55 ‘ -85 o‘ o‘ o‘ -35 ‘ -M -M -M+35 | 35
Al -5 -8 0 1 0 -3 -1 0 3 2
A2 5 -7 -2 0 -1 2 4
X3 -1 3 0 -1 0 0 1
z -55 | -85 0 0 0| -35 -M -M - M+35 35
A1l 5 -8 0 -3 -1 0 3
S2 5 -7 -2 0 -1 2 4
X3 -1 3 1 0 0 -1 0 0 1 1
z -55 | -85 0 0 0| -35 -M -M - M+35 35
s1 5 -8 0 1 0 -3 -1 0 3 2
S2 5 -7 0 -2 -1 2 4
X3 -1 3 0 -1 0 1
The Optimal Solution is: X1 = X2=0 X3=1 The Optimal Value is: Z =35
The Dual Prices are: 0 -35
The Optimal Ranges are: —-35<(C1 , 105<c2 , - % <3

-27-




9(16)
Max z =5X%, —3X,
st. X, +X, <6
4%, +X,>8
X, — X, <4
X, X, 20
(i) Draw the feasible region.
(ii)  Find the optimal solution.
(iii)  Find the Dual Problem .
(iv)  Solve the Dual Problem.
The Solution
U
A
1 \,\
st '.l‘"-.
.\-_-':hv._
T N
4 E

e
.
.

. -
.
1 \\ Feaslhkle Reglon

Tno (W, A)

Y — 1 =
_ \}\k
Il ) The Optimal Solutionis:  X1=5 , X2=1
The Optimal Value is: Z=22
iii ) The Dual Problem is:
Min  Z =6x, —8X, +4x,
i st. Ix, —4x, +1x;, 25
1
=1x, +1x, +1x, <3
X1y Xpy X3 =0
BV.| X1 X2 X3 S1 S2 Al | RHS
Z -6 8 -4 0 0 -M 0
Al 1 -4 1 -1 0 1 5
S2 -1 1 1 0 1 0 3
z 0 [-16] 2 | 6] 0 [6M] 30
X1 1 -4 1 -1 0 1 5
S2 0 -3 2 -1 1 1 8
Z 0 [-13] 0] 5] -1][5M]| 22
X1 1 -5/2 0 12 -12 12 1
X3 0 -3/2 1 12 12 112 4
The Optimal Solutionis: X1=1 , X2=0, X3=4
The Optimal Value is: =22
The Dual Prices are: ( -5 , 1)
The Optimal Ranges are:
14
4<C1 , -21C2 , —?SC3$6

207

Min Z =4x, +6x, +8Xx,

st. 1x +1x, =2
Ix, +1x; =5
Xyy Xpy X3 20
(i) Find the optimal solution.
(ii)  Find the Dual Problem .
(iii)  Solve the Dual Problem (Graphical).
Jhe Solution
@)
X1l | X2 | X3 | S1 S2 Al A2 RHS
Z -4 -6 -8 0 0 -M -M 0
Al 0 1 -1 0 1 0 2
A2 0 1 1 0 -1 0 1 5
z -4‘0‘-2‘0‘-6‘-M ‘G-M 30
Al 1 0 1 -1 0 1 0 2
X2 0 1 1 0 -1 0 1 5
z -2‘0‘0‘-2‘-6‘2-M‘6-M 34
X3 1 0 1 -1 0 1 0 2
X2 -1 1 0 1 -1 -1 1 3
The Optimal Solutionis: X1=0 , X2=3 , X3=2
The Optimal Value is: Z=34
The Dual Prices are: ( -2 : -6 )
The Optimal Ranges are:
2<(Cl ,45(C2<8 , 6<Z£(C3<10
(22) The Dual Problem is:
Max z =2x, +5X,
st. X, <4
X, <6
X, + X, <8
X, X, 20
Ynxz
8
Je™D@.6
E.
4 B(4.4)
Feasible
9] Region
A 1
3 4 & &
_2:
The Optimal Solution is: X1=2 , X2=6
The Optimal Value is: Z=34

-929.




Rala ayllaalla

(1) daadka

:SIC; JEad(The Optimal Ranges) 4:tia¥) c¥laal) ¢yl
s Gabad Yoada ) oY Yl

. X b Jo Z b i (Y

(Gose gl sl el €, Aad) <C < (Wil odi ¢ Aad) (o

Q985 L ga LU 2 a1 13) (2
Co < (Wluglissl el C; 4ad)
19S5 Ll LASU 2 o113
C 2(wase @l sal (el C. 4ad)
OB bl € Ygata x O oLl
Max Al b C< (Z shuyle x caiyighanl + C 4ad) (1

Min 4 3 C,2 (Z Jbhujle x caiyglanll + c 4ad) (2

() aaaMa

s Aubadl) daa il Al (The Standard Form) bsal) Jsdd 41t (1
S; Ysake il " gl gl ual” | Byl s Ala b ([
A, Ysaiadinais S Ygatag ki Msley gl oS | daudl S A B (o
A, Ysaleciuial Mg i dpdl S A (g

(3) ke
souSliasad) 48y ylay Adadl) A ) Allas Ja A (The Optimal Solution) Jia¥) Jadi ) Juai (1
"ol Al 7 bl e alae ¥ IS el g A L) Ysate dlia o al 13 ;. Min( A i) (1
"hagiha gt 7 bl o e IS el A Ly Y gatia dlia 0% 4l 13 sMax( A A) (@
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SYRIAN PRIVATE UNIVERSITY

FACULTYOF COMPUTER & INFORMATICS EBGI NEERING

B ol i il

diilogleslly cuqulal| dwaid dls

Opecnations Redcarnch dlomewanti(l)

1) Minimize z = 5x; + 2x;
subject to X1 X, =3
:‘_x. ¥ 3'[1 =5

X, X, =0

the opt. s0l. (3,0}, Z=15, DP. (-50), 0= C1 , -5 =C2

2) Maximize z = x; + 5xz + 3x3
subject Lo Xy + 2y + Xy = 3
21[ .'.': == 4

Xy, X3, X3 = 0

The Opt. Sol. (2,0, 1), Z=5, D.P. (3-1),C1=5, C2<7, 2.2<C3

3) Maximize z = 3x; + 2x;
subject Lo 2+ xS 3
3x, + dx; = 12
x,x=0
The Opt. Sol. (0,3), Z=6, D.P (1.2,0.2), 1.5=C1<4 , 1.5<C2=4
5) Max Z =3x, +4x, +5X,
st. 2X, +3X, +1x, <5
1x, +2x, + 3%, <10
3x, +1X, +2X; <15
X, Xy, X320
The Opt. Sol. (1,0,3), Z=18, DP (0.8, 1.4, 0)
The Opt. Ran. 2.143<C1<10, C2<5, 15=C3=9
6)  Maximize Z=2x; + 513 + Ay + 4y + X,

subjectto M+ I+ 2+ +as= 6
' 4x; + 6y + Sxy + Ty + x5 = 15

1} 20, I-I:Il-I.I. =] 2 3 4 5.

The Opt. Sol. (1.5,1.5,0,0,0) Z=10.5 DP(4/3,0.167)
5/3<C1<3,4<(C2<6, C3<53.5, C4<5.167, C5515

7) Maximize z = =5x; + 2x,
subjectto —x, - x, = -2

?..-J.'1 + 3.1’3 = S

Xy, X3 = ]

The Opt. Sol. (1, 1) , Z=-3, DP(-19, 7)
Cl< 4/3, 52

8) Minimize z = 6x, + 31,
subjectto 6x; — 3x; + x; =
3..(-'] . "-'.’I.'I + X3 =
X, %, %3 =0

The Opt. Sol. (0,0,5) , Z=0, DP (0, 0)
0= (1, 0<C2, 0=C1<3/4

9) Minimize z = 5x; + 2x; + 3xy

5.t
X, + 5x7 + 2x3 =30

X, — 5x; — 6x3 = 40

_11_ 'le 13- = ﬂ

The Opt. Sol. (0, 6,0) , Z=12, DP(-0.4,0)
04< (1, C2<75 08=<C3
10)  Minimize 2 = 3x; + 2x;3 + x5
s.t 3xp ¢ B+ =3
=3r, +3 + ;=26
N+t n+tan=3

.I}_..Ij...r_g-‘:'ﬁ

The Opt. Sol. (0, 1.5, 1.5) , Z=4.5, DP (-0.5,-0.5, 0)
0< C1, 1<C1<3, 2/3<C1<3)2

-2




12) Minimize z = 6x; + Tx; + 3xy + 5x,

subjectto  Sxy + 6x; = 3xy + 4x, = 12
Xy = S5x3—6xy = 10
Qg+ 50+ 3+ x =8

Xy, Xa, Xy, Xy 20

The Opt. Sol. (0,10,0,0) Z=70 DP(0,-7,0)
0<Cl, 0SC2, C3<-35 CA<-42

13) Maximize z = 30x; + 20x;
subjectto 2x; + x; 58  (Machine 1)
n+3x;, =8  (Machine2)
=0

The Opt. Sol. (3.2,1.6) Z=128 DP(14,2)
20/3<C1<40, 15<C2<90

14)

st

Maximize z = 3x, + 2x; + Sx;

©; + x; = 430 (Operation 1)

+ 2xy = 460 (Operation 2)
= 420 (Operation 3)

-

rd

X +
3.!.1
11 + "1.1'}

Xje X3, X3 = 0

The Opt. Sol. (0,100,230) Z=1350 DP(1,2,0)

Cl1<7, 0<C2<10, 7/3sC3
15) Maximize z = 3x; + 2xy + 3x3
5.t ?_'[1 + X3 + X3 = ?_

I!+3I1+ ..?Cg:ﬁ
x, + dx; + 2x3;=8

Xy, %2, %3 =0

The Opt. Sol. (0,2,0) Z=4 DP(3,-1,0.5)
Cl1<6.5, C2<9, 16 =<C3
16) Maximize z = 3x; + 2x; + 3x3
s.t. 26+ X3+ x3=12
31'] + 4x, + 213 =8
Xy, X2, X3 - u
The Opt.Sol. (4,2,0) Z=4 DP(3,-1,1/2)
C1<6.5 (=<9, 16=<C3

17) Minimize z = 5x; + 6x;
subject to Xy + Xy =2
4,{] + X3 = 4
Xy, X3 = 0
The Opt. Sol. (2,0) Z=10 DP(-5,0)
0<Cl1<6, 5=<C2
18) Minimize z = 4x; + 2x;
subject to xp + xp =1
3xy = x3 =2
Xy, Xg = 0

The Opt. Sol. (3/4,1/4) Z=7/2 DP(-5/2,-1/2)
2<Cl, 254

Minimize z = 2x, + 3x;
subject to 2y, + x-

19)

=

3

X+ x3=12

.rt..r;-‘-".ﬂ

The Opt.Sol. (2,0) Z=4 DP(0,-2)
Cl<3, 2=

Maximize z = 2x,
subject to —xy +2x3 — 2x3= 8

20)
=it xt+t x3= 4
2..1'1 = X3 + 4.1'3 = 10

Xis X3, X9y =0

The Opt. Sol. (14, 18,0) Z=28 DP(0,2,2)
0<(C1, -1<C2, C3=<4
1) Maximize z = xy; — 3x;
subject to X — x;=12
xn+ x;=4
2X| - 2.!’--} =3
X, xs =0
TheOpt.Sol. (3,1) Z=0 DP(2,-1,0)
-3 (C1<s3, (C2=<-1
12 Minimize z = —x| + x
subject to x)—4x; =5

I|_31251
ZJ.'l_.S_IJ-E]

.r'|..lf_]: = [.'F

No Feasible Solution
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23) Maximize z =80x; + 100 x; 26) Maximize Z=1x, - 3x+ 2,

subject to 4 x, + 16 x, = 800 subjectlo 2y, + 2_:: : E:‘ 4: T_’:lﬂ:'{u 1:
=T S (resource -

20 xy +40 x; = 2400 f 20, 20 nE0

neEo, n=o
n+t x = 100 _

The Opt.Sol. (5,0,2) Z=9 DP(1/2,3/2)

_ 0=scC1, C2=s-1/2, -1<C3s7

X X3 = ]

The Opt. Sol. (80,20)  Z=8400 DP(0,1,60) 27) Muimin 7= - 2on,

50< C1<100, 80=< C2<160 SUBECL WS g 4o+ Ay =0
Tits= T= |
=0 s, Ty 2 (N
14)  Maximize z = 2x
subject to The Opt. Sol. (14/3,0,11/3) Z=25/3
-+ 3 - Tn=s DP(2/3,1/3), 1/2<C1, €21, -1<(C3<2
Xt np- xn=sl
28) Minimize W= 5y + 4y,
g+ -l =35
subject to dy, + 3In, =4
X],II,Xlaﬂ :"‘.'l b \:L'_Tl
No Feasible Solution Vi+t2nael
Vit =2
25) Maximize L = 2x; + 6x + 9xy, v =0 Vo 2= 0
1 =0 =0,
subjectto x, + xy =3  (resource 1) The Opt. Sol. (1,1) Z=9 DP(0,-1,0,-3)
Xz + 20y, = 5 (resource 2) T 4'< c1<8 7 < C’2<:?> '
0 =0, xs =0, vy = 0.

29) Maximize Z=2r =X+ X,
Unbounded
subject o W+ N+ S0
317) Y- X+ 2% 10
NG+ = 0520

Max z =60x; +30x, +20x,

nel, neld nai
s.t. 8x, +6X, +1x, <48
The Opt. Sol. (0,110/3,30/3) Z=100/3
<
8x, +4x, +3x; <40 DP(1/3,4/3,0)
4%, +3X, +1x, <16 C1<7/3, -12<C2<3, 11/4<C3
X, <10
>
X1 Xa0 X =0 30) Maximize Z=2x;+ T + 41,
subject o n+22n+ =10
The Opt. Sol. (2,0,8) Z=280 DP(0,5,5,0) 3 4+ 30+ 2uy= 10
56 <C1< 80, €235, 15=(C3=<22 Y =0, s 2= 0, 3 2= 0.

The Opt. Sol. (0,4/3,0) Z=70/3 DP(0,7/3)
C1<7, 65C2, C3<14/3
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(d) Minimize z = bx; + Txy ~5xy + 54
subject to 3y = 6xy = 3x3 + dxg =15
n-Sn-bue 12
2y + 50+ it =16

Xl = ]

Max The Opt. Sol.is (0,0,0,16) Z=80
Min The Opt. Sol.is (0,0,7,9y Z~10

(e) Mimimize z = 3x; + 2x; + X3

subjectle 3x; + xn+xn=3
=3x +ig+xn=6
n+ pntrnsi
i x=0

{f) Minimize z = Gxy + Ty + iy + 5xy
subject 0 Sy, 4 fix, — 3xy 4 dxg = 12
Xy =5y = by = 10
+in+ nt g=§

I:‘ Iz. I}, Xy = D

(g0  Maximize z = 30x; + 20x,

subject 1o
2ty 4+ x;s8  (Machine 1)
x; +3x,=8  (Machine2)
nx=0

Max z =20x, +30x, +60x,
s.t. 1x, +6X, +8x, <48
3X, +4X, +8x, <40
1x, +3x, +4x, <16

X, <10
Xy X, X3 20

The Opt. Sol. (8,0,2) Z=280 DP(O0,5,5,0)
15<C1<225 (2535, 56< C3<80

(a) Maximize z = —5x; + 2x,
subject to
—J:l + Xy = =2

2..1:' + j.fj = 5

Xy, X9 =40

The Opt.Sol. (2,0)  Z=-10 DP(-5, 0)
C1<-2, (€255

(b) Minimize z = 6x; + 3x,
subject to
6x; —3x; + x5=2
3y +dA + x5=5
X1, X3, x3 =0

Max Z =6X, + 71X, +9X,
st. 3%, +0Xx, +3%, <90
0x, +2X, +1x; <80
2%, +1x, +0x, <70
Ix, +5x, +1x, <70
X, X,,%X; 20
Opt.Sol.is: x, =0 ,x,=8 ,X;=30
TneOpt.Valis : Z =326
DualPricesare: [2533, 0, 0, 14]
C, <9 0<C,<45 6<C,

(d) Maximize z = 5x, + 2x; + 3x3
subjectto Xy + 5xz + 2xy = 30
x; — 5x; = 6x3 = 40

X, X x3 20

The Opt. Sol. (30,0, 0)  Z=150
15<cC1,

DP(5, 0)
€225, €3<10
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(a) Maximize z = 2x,

subject to —x; + 20— 263 = 8

A
ES

=t x;t+t x,
2.1.’1 - X3 + 4X3 =10
Xy, X3, X3 = 0
(b) Maximize z = x: — 3x»
subject to X~ Xp=2

I|+ ,1,'12'4

2¥, = 25,23
X1, X2 = ﬂ
¥c) Minimire z = —x; + 13
subject to X =45 =5

x =3 =1
2xy = S =1
x,x: =0
(d) Maximize z = 2xy
subject to —xy+3x; — Tx;=35
-yt - xrn=1l
i+ xnp-10x; =8

Xy; Xy, Xg = 0‘

() Maximize z = 3x, + 2x, + 5x,

subject to

x + 2x; + xy = 430 (Operation 1)
3x b 2xy = 460 (Operation 2)
X+ dx = 420 (Operation 3)

Xy x3, x5 20

[g} Maximize 5 = ?,x-l + ﬁ-r!

subject to 3 b o =6
2xy b ap = 2

.e=0

-28-

*(a) Minimize z = 5x; + 2x;
subjectto X =3
I'_x. ' o 3.\?1 =5

Xy, X7 =0

(b) Maximize z = x, + 5x; + 3x3
subject to N+ +txa=3
23’[ = X3 =4

Xy, X3, X3 = 0

() Maximize z = 2x; + X3
subjecttc x; —x; =10

2x, = 40

x,x=0

(d) Maximize z = 3x; + 2x;
subject 0 2y 4 x, = 3
3x; + 4x; s 12

X, xp =0

(e) Max z=60x, +30x, +20x,
s.t. 8X, +6X, +1x, <48
8X, +4X, +3x; <40
4x, +3x, +1x, <16
X, <10
X, X5, % 20

The Opt. Sol. (2,0,8) Z=280 DP(0,5,5,0)
56 <C1< 80, C2<35, 155 (C3=<225

(f) Maximize Z=2x + 502 + Ay + 4y + x5,
subjectto X+ 3+ I+ ig+is= 6
4y + 60y + Sy + Txg + x5 = 15

5=0, forj=1,234.5.
Max z=60x, +30Xx, + 20X,
s.t. 8% +6x, +1x; <48

8x, +4Xx, +3x, <40
4%, +3x, +1x, <16
X1y Xpy Xg >0

The Opt. Sol. (2,0,8) Z=280 DP(0,5,5)
56 <C1< 80, C2<35, 15=<(C3=<225




6.1-5. Consider the following problem.

Maximize Z=—-x0—-20— X,

subject to

n+x+2n=]12
Ht+n-—- n= |

and
=0, Xa=10, Ty= 0.
I 4.6-1%. Consider the following problem.
Maximize — Z£=4x + 515 + 35,

subject to

n+ n+p=20
153 + 6ra — 5xy = 50
I+ 30+ 5 =30

and
I=0, Xz, =0,
-5, Consider the following problem.

Maximize — Z=1x-Tn+ 35,
subject to

i+ h-n=4 (resource 1)
dy -3 =2 (resource 2)
=it t+n =3 (resource 3)

and

4.6-10.* Consider the following problem.
(a) Minimize  Z=3x% + 20 + 45,
subject to

i+ H+in= 60
M+ in+inz2

and

L1} F “, 'I.'J = ':ll, Iy = {l,

f.1-6. Consider the following problem.
Maximize =725 + 6% + 9x;,

subject to

X o+ =3 {resource 1)
Xz + 2a =5 {resource 2
and
X = Q, Xy = Q, Xy = 0.

6.1-7. Follow the instructions of Prob. 6.1-6 for the following
problem.

Maximize Z=x — 30 + 2%,
subject o

20 + 2xz — 2 =6 (resource 1)
—Xz + 2xy =4 (resource 2)

and
xp =10, Xa =10, Xy =0,
f3-0. Consider the following problem.
Maxirmize Z=2x + T + 43,
suhject to

X+ 23+ xz = 10
3xy + 3% + 23 = 10D

and
xp =10, Xa =10, Xy =0,
DI 6.6-3 Consider the following problem.
Mlinimize W= 5v; + 4va.

subject to

4:‘|'| + .?_".'_2 == 4

3:‘:'| + Y= 3
Y1+ 2y =1
Y+ V= 2

and
¥y =0, ¥a =0

Bl #.7-3, Consider the following problem.
Maximize Z=2x = Xz + Xy,

subject o 3x; + 12 + 13 = 60

Iy — X+ ;=10
'Il + 'I:— _'l'_'!_'_: :[H]
T &0 Ty &= 10 Ty &= 0

4.6-1.* Consider the following problem.
(a)  Maximize  Z=2x;#+ 31

subject to - Xy +21; =4
N+ =3

n = i, Is =10,




{’h} Minimize F=in + 26 + T

subject to —x; + X3 = 10
:.1'. —ntn= 10
a0, rs &0, Iy &0,
{C} M Z=x +x
5t 33 +2x, =10

2, +3x, =10

X, % =0

6.1-5. Consider the following problem.

Maimmine

subject w o+ x4+ 2w =12
n+xx— xN= |
T =10, r; =0, rya= 0

fi.1-6. Consider the following problem.

Maximize Z=2x + 6X3 + 9Ny,

subjectio x + m =3 {resource 1)
n+2n=3>5 (resource 2)
=0, Ty a= 0, Ty = 0,

6.1-7. Follow the instructions of Prob. 6.1-6 for the following
problem.

Maximize Z=x; = 3n + 2x,

subject 1o 2y + 25— 253 =6 (resource 1)
—X3+ 253 =4 (resource 2)

=0, x=0 x=0

636, Consider the following problem.
Maximize Z=2x; + T + 4x3,

I + 2%+ x3= 10

subject 1o
3x; + 3x2 + 2x3 = 10

o= 0, Ty &= 0, L

Dl 6.6-1, Consider the following problem,

Minimize W= 5y, + 4w,
subject o Iy + 3 =4
v+ va=3
i+ 2va=1
i+ =2
v =0, Vs &0
ol 6.7-3. Maximize Z=2x; — 0+ X,

subject to 33 + X2 + X3 = 60

X} — Xz + 2x3 = 10

_'I'l —_= _'I': — _T} = :0

=0 r; &0 Ity 2= 0

ihy Minimize £=3x + 8 + 5,

subject to

3 + 4x; =70
30 + 504+ 203=T70

and
X =0, Xa =10, X3 =

4.46-13. Comsider the following problem.

{:;1} Maximize F= =21 + X — 45 + 3ng,

subject o
N+ X+ 3+ 2= 4
Xj = X3 -+ Xy = =]
2% + X2 = 2
O+ s+ o+ ly= 2
and
X a0, Xy =0, ;=0

(b) Minimize Z=35x; + Tx,
subject to

2 + 3 = 42
3x + 4x; = 60
X+ Xa = I8

and
=0 Xp=10.
4.4-7. Consider the following problem.
Maximize Z=13x + 515 + 613,

subject to
20+ 4+ =4
+2a+ =4
I+ o+ 2i;=4
I+ X+ x3=3
and
=10, Xy =10, Iy= 0,

4.6-4.% Consider the following problem.

Minimize Z=2x 4+ 35 + X3,
subject o

I+ 4+ 2= 8

i + 2o =6
and

T =0, rs =0, Ty =0




1) Max Z =3x, +2X, +5X%,

st. X, +3X, +2X; <345
2X, —X; 2115
2X, + X, —5x;, =230

Xy Xy, X5, X, 20
Opt. Sol. is : x, =120, x, =65, x, =15, Z =565

-0412<C, -235<C,<844 -6.6<C,
1) Max Z =3x,—3x,+5x,
st. X, +3X, +5X; <345
S5X, —2x, 2115
X, +3X, +5%X;, =230

Xps Xy, X5, X, 20
Opt. Sol.is: x; =161, X, =23, X, =0, Z =414
0.613<C, C,<9 (C,;<198

3) Max Z =5x, —3X, +5X,
st. 1x, +3x, +5x, <345
S5X, —2x, 2115
2%, +4x, +5x;, =230

Xy Xy, X5, X, 20
Opt. Sol.is: x, =69, x, =23, X, =0,Z =276
1.152<C, C, <10 C, <177

4) Min Z =8x, —3X, +2X,

st. X, +3X, +5X; <345
3X, +5x, —2%x, =115
2X, + X, +2X, =230

X1 Xy, X3, X, 20
Opt. Sol.is: x, =69, x, =92, x, =0, Z =276

-6<C, <34 (C,<025 -32<C,
5 Min Z =8x, —3x, +2Xx,
st. X, +3X, +5X%, >115
3%, +5X, =2x, <325

X1y X5, X3, X, 20
Opt. Sol.is: x, =0, x, =69, X, =0, Z=-207
-18<C, -125<C,<0 12<C,

alalll 34845 seil yei2anll Blgall

Primal Problem

Dual Problem

in Algebraic Form in Algebraic Form
Maximize  Z=3x + 5x,, Minimize — W=4y, + 12y, + 18y
subject to subject to
Ed = 4 [CER
=12 2+ 2pa =5
I+ =18 and
and  x =0, k=0 el pEl k=l

TABLE 6.13 Constructing the dual of the dual probles|

Dual Problem

Comverted to Standard Form

Minimize W=yh,
subject to
YA EC

and

y=0

Maximize (— W) =—yh,
wibject to

yA = =¢
and

y=0.

Converted to
Standard Form

l

fts Dual Problem

Maximize L= CN, Minimize (=Z)= —Cx,
subject to subgect to
Ax =h — —Ax = —-b
and and
x=0 x=0
TABLE 6.14 Corresponding primal-dual forms
Primal Problam Dual Problem
Label {or Dual Problem) (or Primal Problem)
Maximize  Z(or W) Minimize W (or £)
Constraint i; Variable y, {or x):
Sensible = farm w0
Odd = form Unconstrained
Bizame = form p=0
Variable x, {or y): Constraint J:
Sensible n=z0 z fom
Odd Unconstrained = form
Bizamre =0 = fom
Primal Dual

Maximize z = 3. cx;
=1
subject to

Eau_t‘, =h,i=12 ... m

™
x=0/=12...,n

Minimize w = > by,
i=]

subject to

L]

Ay z =120
i=l|

yebi=12,.,m

alailly gl (@3

ey gual ga
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Max Z =2X, +3X, + X; +2X,
st. 3X, +2X, + X5 + 2%, <17
3X; + X, —X; +3X, <10

Xps Xy, X5, X, 20
Opt.Sol.is:x, =x, =x, =0, x, =85, Z=255

C, <45 2<C, C,<15 (C,<3
Max Z =X -2X,+X, Min
st. 2% +3X, =X, <8 X =X=0 Xx,=2

X =X, +2X;, <7 Z-4
X +2X,+X, <4 -3<C, C,<0 -1<C,
X, X, % 20
Opt.Sol.is:x, =0.2, x, =0, X;=34, Z=3.6
05<C, <3 C,<0 1<C, <2
Max Z =X, +2X,+X, Min
st. 2%, -X,+3X; <8 X =X,=0 x,=2
X —X,+2X; <7 Z-4
M +2x,+X, <10 -3<C, C,<0 -1<C,
X, Xp, X3 20
Opt.Sol.is:x, =0.2, X, =0, x,=34, Z=36

05<C, <3 C,<0 2<C, <2
Min  Z =2x, —5x, Max
st. 3x, +8x, <12 x =3 x,=0 Z=6
2%, +3X, <6 0<C, ¢(C,<3
X;, X, 20
Opt. Sol.is:x, =0, x, =15 Z=-75
-1875<C, C,<0
Min Z=-x—X,
st. X —X, <1
X, +X, <2
X, X, 20
Opt. Sol.is:x, =15, x, =05, Z=-2
C, -1 -1<C, <1

Max Z =5x, +3X,

st. 4x, +2x, <12
4%, + X, <10
X +X, <4
X, X, 20
Opt.Sol.is:x, =2, X, =2, Z=16
3<C, <6 2<C,<5

Max Z =60x, +30x, + 20x,

st. 8X, +6X, + X, <48
4x, +2x, +1.5x, <20
2%, +1.5x, +0.5x, <8

X, <5
Xy Xy, Xg 20
Opt.Sol.is:x, =2, X, =0, x;=8 Z =280
56<C, <80 C,<35 15<(C,<225
Min Z =4x, - X, Max
st. 2%, +X, <8 X, =4 Xx,=0 Z=16
X, <5 0<C, C,<3
X, —X, <4
X, X, 20
Opt.Sol.is:x, =0, x, =5, Z=-5
0<C, C,<0
Min  Z =-3x, +8X,
st. 4x, +2x, <12
2%, +3X, <6
X, X, 20
Opt. Sol.is:x, =3, x, =0, Z=-9
C, <0 -15<C,
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Max Z =X, +2X, + X, Min  Z =X, —8X, +3X,
st. 2X, + X, +3x; <12 st. X, + X, + Xq =7
3X, +4X, +2X; 26 2X; —5X, + X, >10
X +2X,+X;, =15 2X, + X, + 3%, <30
X, Xy, X3 20 X1 X5, X3 20
Opt.Sol.is:x, =0, X, =75, x;=0, Z=15 Opt. Sol.is: x, =6.429, x, =0.571, x, =0,
C <1 2<C, C,; <1 The Optimal Valueis :  Z =1.857
If the objective functionis Min Then: -8<C, <4.833 C,<1 -0.286 < C,
=0 X, =75 X;,=0 Z=15 If the objective functionis Max Then:
1<C, 2<C, C,<1 X, =3 X,=0 x,=4 Z =15
C,<3 C(C,<15 1<C,
Max Z =X, +2X, + X,
sit. 2X, +3X, —X; <5 Min  Z =4x, +4x, +X,
X, — X, +2X; =4 st. X, + X, 4+ Xg <2
X, +2X, + X, =7 2%, + X, <3
X, X,, X3 20 2%, +1x, +3x; >3
Opt.Sol.is:x, =0, X, =2, x,=3, Z=7 X, <5
C, <3 C,>2 -1<C, <1 X1, %y, X3 20
If the objective functionis Min Then: Opt.Sol.is:x, =0, x, =0, X, =1 Z=1
=2 x,=8 x,=1 Z=3 2<C, 1<C, 0<C,<6
C <3 C, 20 3<C, If the objective functionis Max Then:
=1 X,=1 X;=0 Z=8
25<C, <7 25<C,>7 C,<4
Max Z =4x, +X,
st. 10x, +2x, <40 Max Z =X, —2X, — X,
3x, +2%, 212 st. 2%, + X, —3x, <9
2%, +2x, =10 X —X, +2%, =14
XXz 20 3, +2X, +x =27
Opt. Sol.is: x, =3.75, x, =125, Z=16.25 X, Xy, X, = 0
1=C C, <4 Opt.Sol.is: x, =8, X, =0, X;=3, Z=5
If the objective functionis Min Then: _3<c, C, <2 C, <1
x, =2 x,=3 Z=11 If the objective functionis Min Then:
1<C, C, <4 =0 x,=8 x;=11 Z=-27
-3<C, C,<-2 -1<C,<3

Prof. Dn. crwan cH- Lahham
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Finding the Dual of an LP

A normal max problem may be written as
max z = ¢jx; + Cxxp + **+ + ¢,.X,
S.t. anxy + apxy; + -+ a X, = b]

anxy + apxy + <+  QypxXp = b {1}

a,;lx| + a,,.,zxz + o + a,,,,;r,, = b,
x=20 (j=L142,...,n)
The dual of a normal max problem such as (1 ) is defined to be
min w = by, + by, + - + b,x,,
s.t. any + any: + - + Gmiym = €1

awy, + any> + e + Ap2Vm = Cr ( 2)

A1) F @y + 0t AppYm = Cp
¥ =0 (i=1,2...,m)

A min problem such as ( 2 ) that has all = constraints and all variables nonnegative is
called a normal min problem. If the primal is a normal min problem such as( 2 ) then
we define the dual of ( 2) to be (1 ).

For example

The Primal Prolem The Dual Problem

max z = 60x; + 30x; + 20x3

min w = 48y; + 20y + Byy

s.t. 8x; + 6x + x3; =48 s.t. 8y + 4+ 2y = 60
4x, + 2x, + 1.5x; =20 6y + 2y, + 1.5y3 = 30
2x%1 + 1.5x> + 0.5x3 = 8 y1 + 1.5y + 0.5y: = 20
Xis X9, X3 = 0 ¥y, ¥y3=10
The Primal Prolem The Dual Problem

min w = 50y, + 20y, + 30y; + 80wy

max = 50(11'1 + 61'2 + IDI3 + 8;1'4

s.t. 400y, + 200y, + 150y; + 500y, = 500 s.t. 400x) + 3x; + 2x; + 2xy = 50
3y + 2w =6 200xy + 2x2 + 2x3 + dxy = 20
2y + 2w+ Ay + dpy =10 150, + dxs + x4 = 30
2y + A+ yas+ Spa =8 500x; + 4x3 + 5x4 = 80
Yi:¥2: V3 Ya =0 Xy, X3, X3, X4 = 0
The Primal Prolem The Dual Problem

min z= x,— 2x
max z = 3x; + x, ! 2

s.t. nt+trn=l1 5.t ntn o=
—x +x=2 n—mxm»n =
X.x2 =0 x, ¥ =0
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Review Phoblcems

Find the duals of the following LPs

and find the optimal solutions of

the two problems

1 maxz=2x;, + x,

s.t —nt =1
I+ x=3
.xl—ng£4

XL.xx=10
2 minw=y, — ¥y,

s.t. 2y + =4
nt mw=l
n+tiyp=3

Y. y2 =0
3 maxz=4x — x3 + Ixs
s.t. x + x2 =5
2 + x; =7
2 +x3=6
x + x; =4

x; = 0, x5, X3 urs

4 minw=4y; +2y; — 3

s.k. 1+ 2y =68
- y2t2y3=8
Y12 ¥2 = 0, y3 urs

5) maxz = —2x;, — x; + x5
s.t. n+txtrn=3
N txn=2

X +x3=1

.1'1.1'2. X3 T-_*ﬂ

6) max z = 3x; + 2x
st. 2% + xp = 100

x; +x, =80

) max z = 3x; + a2
&.1. 2y, —xp =2
—-ntn=4
X x =0

9) maxz = —x; + x
a1 v +x=4
X tax=2
X, x =0

10) min z = 2x; + 3x»
s.1. %xl + %Ig =4
x; + 3x, = 36
n+ x=10

X1s X2 =0

11) mun z = 3x,
s.L. 2+ X2 =6
3Ixy + 2xy = 4
X, X =10

12) minz = x + x
5.1 2o+t xn=4
X+ xy+ ;=2
X X3, X3 =10

13) minz = x;, + x;
s.t. X+ x»x=2
11'] + 2.1'3 =4
X, x2=10

14) minz = 4x; + 4x; + x5
s.t. X+ X+ x3=2
2x) + x5 =3
2y + X+ 3y =3
X, X, X3 =0

15) minz = 2x; + 3x2
s.1. 2 +x=4
X — X, =—1
X,x =0

16) maxz = 3x; + x
s.t. X+x=3
X+ x=4
X+ ax = 3
X1, X2 =0
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Transportaion Problems  Jll Lo

EXAMPLE 1 Powerco Formulation

Solution

Powerco has three electric power plants that supply the needs of four cities." Each power
plant can supply the following numbers of kilowatt-hours (kwh) of electricity: plant 1—
35 million; plant 2—50 million; plant 3—40 million (see Table 1). The peak power de-
mands in these cities, which occur at the same time (2 pm.), are as follows (in kwh): city
1—45 million; city 2—20 million; city 3—30 million; city 4—30 million. The costs of
sending 1 million kwh of electricity from plant to city depend on the distance the elec-
tricity must travel. Formulate an LP to minimize the cost of meeting each citys peak
power demand.

To formulate Powercos problem as an LP, we begin by defining a variable for each deci-
sion that Powerco must make. Because Powerco must determine how much power is sent
from each plant to each city, we define (fori = 1,2,3andj =1, 2, 3, 4)

x; = number of (million) kwh produced at plant i and sent to city j

In terms of these variables, the total cost of supplying the peak power demands to cities
1-4 may be written as
8x1p + 6x;2 4+ 10x;3 + 94 (Cost of shipping power from plant 1)
+ 9uyp + 12x55 + 13357 + Txoy (Cost of shipping power from plant 2)
+ 1dx3; + 9x3p + 16x37 + Sxy (Cost of shipping power from plant 3)

Powerco faces two types of constraints. First, the total power supplied by each plant
cannot exceed the plant’s capacity. For example, the total amount of power sent from plant

Formulating Transportation Problems

We begin our discussion of transportation problems by formulating a linear programming
mode] of the following situation.

TABLE 1
Shipping Costs, Supply, and Demand for Powerco

L Supply
From City 1 City 2 City 3 City 4 (million kwh)
Plast 1 $8 $6 $10 $9 35
Plast 2 $9 $12 $13 $7 50
Plast 3 $14 $9 $16 $5 40
Demand 45 20 30 30
(million kwh)
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1 to the four cities cannot exceed 35 million kwh. Each variable with first subscript 1 rep-
resents a shipment of power from plant 1, so we may express this restriction by the LP
constraint

X1 ‘|‘.1'12 ‘|‘.1'13 ‘|‘I14 =135

In a similar fashion, we can find constraints that reflect plant 2’ and plant 3 capacities.
Because power is supplied by the power plants, each is a supply point. Analogously, a
constraint that ensures that the total quantity shipped from a plant does not exceed plant
capacity is a supply constraint. The LP formulation of Powerco’s problem contains the
following three supply constraints:
Xjp X xg Hxy =35 (Plant 1 supply constraint)
X31 + X33 + Xo3 + X34 = 50 (Plant 2 supply constraint)
X3+ xp +xntxu=40 (Plant 3 supply constraint)
Second, we need constraints that ensure that each city will receive sufficient power to
meet its peak demand. Each city demands power, so each is a demand point. For exam-

ple, city 1 must receive at least 45 million kwh. Each variable with second subscript 1
represents a shipment of power to city 1, so we obtain the following constraint:

X1 + X1 + X231 = 45

Similarly, we obtain a constraint for each of cities 2, 3, and 4. A constraint that ensures
that a location receives its demand is a demand constraint. Powerco must satisfy the fol-
lowing four demand constraints:
X;y + X%y +x33=45  (City 1 demand constraint)
X;2 + X + x3p, =20  (City 2 demand constraint)
X;3 + X3 + x33 =30  (City 3 demand constraint)
X14 + X24 + X33 = 30 (City 4 demand constraint)
Because all the x;s must be nonnegative, we add the sign restrictions x; = 0 (i = 1, 2,
3;/=1,2,3,4)
Combining the objective function, supply constraints, demand constraints, and sign re-
strictions yields the following LP formulation of Powerco’ problem:
min z = Rr“ + 61'12 + 10.1'13 + 9.1'14 + 9.1'21 + 12.1'22 + 13.1'2 + ?Iz_gf
+ 141'31 + 91’32 + 1&1’33 + 5.1’34
st. x;; + x5 +x3+x4=35  (Supply constraints)
Xa1 + X7 + Xog + Xoq = 50

X131 ‘|‘.1'32‘|‘.1'33 ‘|‘I3454D
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Supply points Demand points

xn +xm +oxm = 45 (Demand constraints)
X132 + X329 + xas = 20
X13 + X33 + X33 =10
X1g + X4 + X2y =30

=0 ((=1,235=1234)

General Description of a Transportation Problem

In general, a transportation problem 1s specified by the following information:

1 A set of m supply points from which a good 1s shipped. Supply point i can supply at
most s; umits. In the Powerco example, m = 3, 5, = 35, 5, = 50, and s = 40,

2 A set of n demand points to which the good 1s shipped. Demand point j must receive
at least d; umits of the shipped good. In the Powerco example, n = 4, d, = 45, 4, = 20,
dy = 30, and d; = 30,

3 Each umt produced at supply point / and shipped to demand point j incurs a variable
cost of c;;. In the Powerco example, ¢, = 6.
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Let

xy = number of units shipped from supply pomnt i to demand point j

then the general formulation of a transportation problem 1s

i=mj=n

min Z Z Cifij

i=] j=1

j=n
a.t. Z %<5 (i=12...,m)  (Supply constraints)
i=1 (1

Z 2d (j=12...,n)  (Demand constraints)

i=]

=20 (i=1L2....,mj=12...,n)

f >s=24
=1 =
then total supplv equals total demand, and the problem 1z said to be a balanced trans-
portation problem.

For a balanced transportation problem, (1) may be wrtten as
i=m_j=n
min Z Z Cii
i=1 j=1
f=n .
s.t. Z ;=5 ((=12...,m)  (Supply constraints)
=1 2)

Z xi=d (j=12,...,m  (Demand constraints)

i=1

=0 (i=12...,mj=12...,n)

M £ L 9
1%
15
- - - - - - - -
g 12 13 7 (3)
L d L d L 1 L 1
] il il <0
14 v 1. 5
| W a0
45 M L01] L]




We find the 15 and v)'s by solving

w =0 )
w+v, =8 (7
Uy + v, =9 0
wytw= 12 (V)
wytv, =13 (W)
ot =16 )
Htv=5 ()

From (7), v, = & From (8), w, = 1. Then (9) yrelds v, = 11, and (10) vields v, = 12
From (11), v, = 4. Finally, (12) yrelds v, = 1. For each nonbasic vaniable, we now com-
pute & = w; + v, = ¢, We obtain

8y =0+1l-6=35 Cn=0+12-10=2

& =4+8-4==-2 Z,=4+11-9=6

Because &;, 1s the most positive &, we would next enter x, mto the basis. Each umit of
X3, that 1s entered into the basis will decrease Powercos cost by $6

= ] B i) 2 n= B B 10 F
T[] [ [ I B TR
n=0 | 25 10 13 =1 10 25 3
G [ = [ EX I I Y R
1] |20 30 50 1| 45 5 50
14 g 16 5 14 9 16 5
3 | 10 | I_ 30 I_ 40 ;) I_ 10 \_ I_ 30 \_45
45 20 30 0 45 20 30 30

2 = 6(10) + 10(25) + 9(45) + 13(5) + 9(10) + 5(30) = $1,020

We can now summanze the procedure for using the transportation simplex to solve a

transportation (min) problem.
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Summary and lllustration
of the Transportation Simplex Method

Step 1 If the problem is unbalanced, balance it

Step 2 Use one of the methods described i Section 7.2 to find a bis

Step 3 Use the fact that w, = 0 and », + v, = ¢, for all basic vanables to find the

W, w ... uy v, v ... v]forthe current bfs

Stepd Ifw, + v, = ¢, S 0 for all nonbasic vanables, then the current bfs 1s optimal

f this 1s not the case, then we enter the vanable with the most positive w, + v, = ¢, into

the basis using the pivoting procedure. This vields a new bis

Slep § Using the new bfs, retumn to steps 3 and 4.

For a maximization problem, proceed as stated, but replace step 4 by step 4

Stop &' Ifw, + v, = ¢;; 2 0 for all nonbasic vanables, then the current bfs is optimal.

Otherwise, enter the variable with the most negative u, + v, = ¢, into the basis using the

pivoting procedure descnbed carlier.
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SOLVE THE FOLLOWING TRANSPORTATION PROBLEMS

ity 1 City 2 Eity 3 City 4 Supply
§= i § 1] 2
Ll Le 10 ’
Plant 1 g=1 36
|L 12 13 7
Plant 2 3 50
[14] [ ] 16 5
Plant 3 3 40
Demand 46 20 30 30
The Total Cost is: 1026 The Total Revenue is: 1508
TABLE 2 TABLE 3
Ta Ta
Eram Customer 1 Customar 2 Customsr 3 m Fram Customer 1 Customar 2 Customsr 3 m
Plast 1 £55 $65 $80 50 Phaat 1 £55 $65 SR80 45
Plaat 2 £10 15 35 15 Plaat 2 $10 $15 525 50
Dmund 15 35 15 ) Demand 30 35 30
The T. Costis: 3475 TheT.Rev.is: 3625 The T. Costis: 3675 The T.Rev.is: 3975
TABLE B TABLE T
‘ E 2 4 ‘ [+ ] [2 ] [ ]
15 15
‘ 12 8 4 ‘ 12 8 4
15 15
10 10 10 10 10 o
The T. Costis: 130 The T. Rev.is: 210 The T.Costis: 160 The T.Rev.is: 250
TABLE A4 TABLE 5
12 14 16 12 | 14 ] 16
(=] (=]
14 13 19 14 | 13 | 19 20
17 1S 1= 17 [ 1s [[1=
40 40
50 TO 20 S0 TJO 1
The T. Costis: 1910 TheT.Rev.is: 2170 The T. Costis: 1750 The T. Rev.is: 1980
TABLE & TAHLE 9
[ 20 [11 [ = G 20 [ [ 3 &
E 1] 5
[ = [ @ [ 10 [ 2 5 [ = [0 2
10 10
| 18 | 7 | 4 | 1 18 | 7 [ 4 1
20 15
5 3 12 50 3 12 12
The T. Costis: 274 The T.Rev.is: 469 The T.Costis: 98 The T. Rev.is: 220
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Customers Min Max
1 2 3 4 Supply 0 10 26 0 6 0 0 30
Plant 1 8 6 10 9 36 46 |0 4 0 0 20 | 30 0
Plant 2 9 | 12 | 13 7 50 0 10 |0 30 40 0 0 0
Plant 3 14 9 16 5 40
Demand | 46 | 20 30 30 The Optimal cost is 1026 The Optimal revenue is 1508
Customers Min Max
1 2 3 | 4 Supply 10 |0 0 20 10 | 10 | 10 0
Plant1 | 55 | 65 | 80 | 69 30 0 10 |10 |O 0 0 i
Plant 2 10 15 24 45 20
Demand 10 10 | 10 | 20 The Optimal cost is 2330 The Optimal revenue is 2900
Customers Min Max
c1 ) c3 ca Supply 3500 | 1500 | © 0 0 1500 | 2000 | 1500
P1 3 2 7 6 5000 0 2500 | 2000 | 1500 6000 0 0 0
P2 7 5 2 3 6000 2500 0 0 0 0 2500 0 0
P3 2 5 4 5 2500
Demand | 6000 | 4000 | 2000 | 1500 The Optimal cost is 39500 | The Optimal revenue is
80500
TV Pictures Tubes Min Max
C1 C2 C3 Supply 0 65 0 0 65 0
Plant 1 10 16 32 65 80 20 0 0 0 100
Plant 2 14 22 40 100 0 5 100 80 25 0
Plant 3 22 24 34 105
Demand 80 90 100 The Optimal cost is 6120 The Optimal revenue is 7400
Customers Min Max
Cc1 C2 C3 Supply 0 300 0 0 0 300
Plant 1 20 16 24 300 100 | 100 300 200 300 0
Plant 2 10 10 8 500 100 0 0 0 100 0
Plant 3 12 18 10 100
Demand 200 400 300 The Optimal cost is 10400 | The Optimal revenue is
14000
Customers Min Max
Cc1 C2 C3 Supply 0 4 3 7 0 0
Plant 1 14 5 8 7 5 0 0 0 4 1
Plant 2 2 12 6 5 3 0 6 1 0 8
Plant 3 7 8 3 9
Demand 8 4 9 The Optimal costis 93 The Optimal revenue is
183
Customers Min Max
c1 C2 C3 Supply 21 5 36 15 47 0
Plant 1 15 13 10 62 0 65 0 65 0 0
Plant 2 8 6 8 65 59 0 0 0 23 36
Plant 3 7 6 9 59
Demand 80 70 36 The Optimal cost is 1543 The Optimal revenue is 1818
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TABL

E 1

Min Max
4] L2 ] [4] 0] 5[0 5 5 5
15 o | o s 5 0 0
12 3 4
5 The Optimal cost is 70 The Optimal revenue is 110
10 5 5
TABLE 2 Min Max
4 2 4 10 0 5 0 10 5
15 0 10 5 10 0 5
8 3 5
I— I— I— 15 The Optimal cost is 115 The Optimal revenue is 145
10 10 10
TABLE 3
Fr Customer 1 tllll:':fl Cust 2 Min Max
- _ L 30 ] 15 | 0 0 | 15 | 30
Piaat 1 §55 $65 $80 45 0 | 20 | 30 30 20 0
Plaat 2 $10 515 325 50
Domand 30 35 30 ) i . .
The Optimal cost is 3675 The Optimal revenue is 3975
TABLE 4
T Min Max
Fram Cuzlomer 1 Customar 2 Customer 3 Supgily 15 35 0 0 35 15
Plaat 1 $55 F65 JB0 30 0 0 15 15 0 0
Plaat 2 $10 $15 525 15
Demand 15 35 15 The Optimal costis 3475 | The Optimal revenueis 3625
TABLE 5 Min Max
. e T;' . ; 50 0 10 0 60 0
Fram usta mer 13 1] 1t mEr - 0 40 0 10 10 20
PRt 1 12 14 15 &0 0 30 10 20 o 0
Pant 2 14 13 14 a0
Flant 3 17 15 13 40
— 50 0 0 The Optimal cost is 1900 The Optimal revenue is 2170
TABLE ©§
Min Max
To
From Costomerl  Costomer 2 Customer 3 50 0 10 0 60 0
Planit 1 12 14 16 &0 0 30 0 10 10 10
Pl 2 14 13 17 30 0 40 0 40 0 0
Plnt 3 18 15 1% a0
e @l 50 70 10

The Optimal costis 1750

The Optimal revenue is 2040

GOOD LUCK PROF. DR, ANWAR AL-LAHHAN
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Balancing a Transportation Problem
If Total Supply Exceeds Total Demand

If total supply exceeds total demand, we can balance a transportation problem by creat-
ing a dummy demand point that has a demand equal to the amount of excess supply.
Because shipments to the dummy demand point are not real shipments, they are assigned
a cost of zero. Shipments to the dummy demand point indicate unused supply capacity.
To understand the use of a dummy demand point, suppose that in the Powerco problem,
the demand for city 1 were reduced to 40 million kwh. To balance the Powerco problem,
we would add a dummy demand point (point 5) with a demand of 125 — 120 = 5 mil-
lion kwh. From each plant, the cost of shipping 1 million kwh to the dummy is 0. The op-
timal solution to this balanced transportation problem is z = 975, xj3 = 20, xj3 = 15,
x31 = 40, x23 = 10, x3p = 5, x34 = 30, and x35 = 5. Because xas = 5, 5 million kwh of
plant 3 capacity will be unused (see Figure 2).

A transportation problem is specified by the supply, the demand, and the shipping
costs, so the relevant data can be summarized in a transportation tableau (see Table 2).
The square, or cell, in row { and column j of a transportation tableau corresponds to the

variable x;. If x; is a basic variable, its value is placed in the lower left-hand corner of
the ifth cell of the tableau. For example, the balanced Powerco problem and its optimal
solution could be displayed as shown in Table 3. The tableau format implicitly expresses
the supply and demand constraints through the fact that the sum of the variables in row i
must equal s; and the sum of the variables in column j must equal d.

Balancing a Transportation Problem
If Total Supply Is Less Than Total Demand

If a transportation problem has a total supply that is strictly less than total demand, then
the problem has no feasible solution. For example, if plant 1 had only 30 million kwh of
capacity, then a total of only 120 million kwh would be available. This amount of power
would be insufficient to meet the total demand of 125 million kwh, and the Powerco prob-
lem would no longer have a feasible solution.

When total supply is less than total demand, it is sometimes desirable to allow the pos-
sibility of leaving some demand unmet. In such a situation, a penalty is often associated
with unmet demand. Example 2 illustrates how such a situation can yield a balanced trans-
portation problem.
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be

Openations Redcanch
Homecwank

Max
S.t.

Find the Dual Prices.

d » Find the Dual Problem.

Q1) Consider the following linear program:

z=60x, +30x, +20x,

ae* Find the optimal solution (

<48
<40
<16

<10

8X, +6X, +1x,
8X, +4X, +3X,
4%, + 3%, +1x,

X, X;,%, andz ).

¢ * Find the Optimal Ranges of C.

-248-

) Find the optimal solution.
i)  Find the Dual Prices.
i)  Find the Optimal Ranges of C.
Q2 ) consider the following two transportation problems:
1) 2)
CUSTOMERS CUSTOMERS
C1|C2|C3|C3| Supply Cl|C2|C3|C3| supply
E P1 31719 4| 25 E P1 3|79 4 )| 7o
Z
S| P2 (9|47 |5]| 45 S| P2 (9|47 |5]| 45
%) w
P3 11| 3 | 6 |10 | 7160 P3 1113 | 6 |10| 115
Demand | 37| 52| 84| 57 Demand | 37| 52| 84| 57
i) Find the optimum solution ( The Maximal Revenue_ ) for each one.
ii)  Find the optimum solution ( The Minimal Cost ) for each one.

GOOD LUCK @M DB, Aeverr S-Sk




Assignment Problems

Although the transportation simplex appears to be very efficient, there is a certain class
of transportation problems, called assignment problems, for which the transportation sim-
plex is often very inefficient. In this section, we define assignment problems and discuss
an efficient method that can be used to solve them.

EXAMPLE 1 Maximizing Wozac Yield

Solution

Machineco has four machines and four jobs to be completed. Each machine must be as-
signed to complete one job. The time required to set up each machine for completing each
job is shown in Table 43. Machineco wants to minimize the total setup time needed to
complete the four jobs. Use linear programming to solve this problem.

Machineco must determine which machine should be assigned to each job. We define (for
ih,j=1,2,3,4)

x; = 1 if machine 7 is assigned to meet the demands of job j

x; = 0 if machine 7 is not assigned to meet the demands of job j

Then Machineco’ problem may be formulated as

min z = 14.1'11 + 5.1'12 + 81'13 + 7.1'14 + 21'21 + 12.1'22 + 61'3 + 5.1'24
+ TIZI + 8.1'32 + 3.1’33 + 9.1'34 + 21'41 + 4‘1'42 + 61'43 + 10144

5.t Xpp H X txstxy=1 (Machine constraints)
X21 t X220 + X013+ X4 =1
X131 + X3z + Xa3 + X3q4 = 1 “3]
Xq1 +x42 +X43 +x_44 =1
Xpp Tt Xy Xy Fxy =1 (Job constraints)
X2 + Xoo +X32 + Xq2 = 1
X113 + Xo3 +I33 + Xq3 = 1
X14 +.1'24 +J.’34+J.’44 =1

X; =0 or =1
The first four constraints in (13) ensure that each machine is assigned to a job, and the
last four ensure that each job is completed. If x;; = 1, then the objective function will pick
up the time required to set up machine i for job j; if x; = 0, then the objective function
will not pick up the time required.

Ignoring for the moment the x; = 0 or x;; = 1 restrictions, we see that Machineco faces
a balanced transportation problem in which each supply point has a supply of 1 and each

TABLE 43
Setup Times for Machineco

Time (Hours)
Machine Jub 1 Job 2 Joh 3 Job 4
1 14 5 8 7
2 2 12 6 35
3 7 8 3 9
4 2 - [ 10
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TABLE 44
Rasir: Feasible §olutian
for Machineco

TABLE 45

Xy; Has Entered the Basis

demand point has a demand of 1. In general, an assignment problem is a balanced trans-
portation problem in which all supplies and demands are equal to 1. Thus, an assignment
problem is characterized by knowledge of the cost of assigning each supply point to each
demand point. The assignment problem’s matrix of costs is its cost matrix.

All the supplies and demands for the Machineco problem (and for any assignment
problem) are integers, so our discussion in Section 7.3 implies that all variables in Ma-
chineco’s optimal solution must be integers. Because the right-hand side of each con-
straint is equal to 1, each x; must be a nonnegative integer that is no larger than 1, so
each x; must equal O or 1. This means that we can ignore the restrictions that x; = 0 or
1 and solve (13) as a balanced transportation problem. By the minimum cost method, we
obtain the bfs in Table 44. The current bfs is highly degenerate. (In any bfs to an m X m
assignment problem, there will always be m basic variables that equal 1 and m — 1 basic
variables that equal 0.)

We find that €43 = 1 is the only positive ¢;;. We therefore enter x43 into the basis. The
loop involving x43; and some of the basic variables is (4, 3)(1, 3}1, 2){(4, 2). The odd
variables in the loop are x;; and x4;. Because x;; = x4 = 0, either x5 or x4, will leave

Jab 1 Jab 2 Jab 3 Joh 4
V= 3 [ 8 T
[14 ] [5 ] L8] L7
Machine 1 =10 1 0 0 1
[ ] o L] =
Machine 2 -2 1 L
| 7 K | B
Machine 3 -6 1 1
EX EN Lo | Lo
Maching 4 -1 1 0 1
1 1 1 1
Jdah 1 Jdah 2 Jdah 3 Joh 4
= ] 5 7 1
[ 14 | L5 [ 8 | L7 |
Machine 1 w—10 1 0 |
[2 ] 12 L6 ] En
Machine ? =2 1 1
L7 ] KR KN EN
Machine 3 -4 1 1
L2 [+ L6 [0
Machine 4 -1 1 0 0 |
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the basis. We arbitrarily choose x,; to leave the basis. After performing the pivot, we ob-
tain the bfs in Table 45. All ¢;’s are now nonpositive, so we have obtained an optimal as-
signment: x;; = 1, xp4 = 1, x33 = 1, and x4; = 1. Thus, machine 1 is assigned to job 2,
machine 2 is assigned to job 4, machine 3 is assigned to job 3, and machine 4 is assigned
to job 1. A total setup time of 5 + 5 + 3 + 2 = 15 hours is required.

The Hungarian Method

Looking back at our initial bfs, we see that it was an optimal solution. We did not know
that it was optimal, however, until performing one iteration of the transportation simplex.
This suggests that the high degree of degeneracy in an assignment problem may cause the
transportation simplex to be an inefficient way of solving assignment problems. For this
reason (and the fact that the algorithm is even simpler than the transportation simplex),
the Hungarian method is usually used to solve assignment (min) problems:

Step 1 Find the minimum element in each row of the m X m cost matrix. Construct a
new matrix by subtracting from each cost the minimum cost in its row. For this new ma-
trix, find the minimum cost in each column. Construct a new matrix (called the reduced
cost matrix) by subtracting from each cost the minimum cost in its column.

Step 2 Draw the minimum number of lines (horizontal, vertical, or both) that are needed
to cover all the zeros in the reduced cost mafrix. If m lines are required, then an optimal
solution is available among the covered zeros in the matrix. If fewer than m lines are
needed, then proceed to step 3.

Step 3 Find the smallest nonzero element (call its value £) in the reduced cost matrix
that is uncovered by the lines drawn in step 2. Now subtract k¥ from each uncovered ele-
ment of the reduced cost matrix and add £ to each element that is covered by two lines.
Return to step 2.

REMARKS 1 To solve an assignment problem in which the goal is to maximize the objective function, mul-
tiply the profits matrix through by —1 and solve the problem as a minimization problem.
2 If the number of rows and columns in the cost matrix are unequal, then the assignment problem
is unbalanced. The Hungarian method may yield an incorrect solution if the problem is unbalanced.
Thus, any assignment problem should be balanced (by the addition of one or more dummy points)
before it is solved by the Hungarian method.
3 In a large problem, it may not be easy to find the minimum number of lines needed to cover all
zeros in the current cost matrix. For a discussion of how to find the minimum number of lines
needed, see Gillett (1976). It can be shown that if j lines are required, then only j “jobs™ can be as-
signed to zero costs in the current matrix. This explains why the algorithm terminates when m lines
are required.

Solution of Machineco Example by the Hungarian Method
We illustrate the Hungarian method by solving the Machineco problem (see Table 46).

Step 1 For each row, we subtract the row minimum from each element in the row, ob-
taining Table 47. We now subtract 2 from each cost in column 4, obtaining Table 48.

Step 2 As shown, lines through row 1, row 3, and column 1 cover all the zeros in the re-
duced cost matrix. From remark 3, it follows that only three jobs can be assigned to zero
costs in the current cost matrix. Fewer than four lines are required to cover all the zeros,
s0 we proceed to step 3.
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TABLE 46 Row Minimum
Gost Matrix for Machineco 14 5 8 7 5
2 12 (] 5 2
T 2 3 9 3
2 4 i) 10 2
TABLE 47
Gost Matrix After Row 0 0 3 b
Minimums Are Subtracied
0 10 4 3
4 5 0 ]
0 2 4 8
Columa Minimam W] 0 2
TABLE 48
Cost Matrix After Golumn ) o 3 &
Minimums Are Subiracted
[ 10 4 1
= B 4
lf 2 4 6

Step 3 The smallest uncovered element equals 1, so we now subtract | from each uncov-
ered element in the reduced cost matrix and add 1 to each twice-covered element. The
resulting matrix is Table 49. Four lines are now required to cover all the zeros. Thus, an op-
timal solution is available. To find an optimal assignment, observe that the only covered 0 in
column 3 is X33, 50 we must have x;3 = 1. Also, the only available covered zero in column
2 15 xy3, 50 we set x); = | and observe that neither row 1 nor column 2 can be used again.
Now the only available covered zero in column 4 is x34. Thus, we choose x34 = 1 (which now
excludes both row 2 and column 4 from further use). Finally, we choose x5, = 1.
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TABLE 49
Four Lines Required: Optimal
Solution Is Available

1 8 3 A»—
9 3
5 8

: | ; .

Thus, we have found the optimal assignment xj2 = 1, x34 = 1, x33 = 1, and x4y = 1.
Of course, this agrees with the result obtained by the transportation simplex.

Intuitive Justification of the Hungarian Method

To give an intuitive explanation of why the Hungarian algorithm works, we need to dis-
cuss the following result: If a constant is added to each cost in a row (or column) of a
balanced transportation problem, then the optimal solution to the problem is unchanged.
To show why the result is true, suppose we add k to each cost in the first row of the Ma-
chineco problem. Then

New objective function = old objective function + k(x;, + x;; + x33 + x14)

Because any feasible solution to the Machineco problem must have x;; + xj, + x5 +
X4 = 1,

New objective function = old objective function + &

Thus, the optimal solution to the Machineco problem remains unchanged if a constant £ is
added to each cost in the first row. A similar argument applies to any other row or column.

Step 1 of the Hungarian method consists (for each row and column) of subtracting a
constant from each element in the row or column. Thus, step 1 creates a new cost matrix
having the same optimal solution as the original problem. Step 3 of the Hungarian method
is equivalent (see Problem 7 at the end of this section) to adding  to each cost that lies
in a covered row and subtracting & from each cost that lies in an uncovered column (or
vice versa). Thus, step 3 creates a new cost matrix with the same optimal solution as the
initial assignment problem. Each time step 3 is performed, at least one new zero is cre-
ated in the cost matrix.

Steps 1 and 3 also ensure that all costs remain nonnegative. Thus, the net effect of steps
1 and 3 of the Hungarian method is to create a sequence of assignment problems (with
nonnegative costs) that all have the same optimal solution as the original assignment prob-
lem. Now consider an assignment problem in which all costs are nonnegative. Any feasi-
ble assignment in which all the x;s that equal 1 have zero costs must be optimal for such
an assignment problem. Thus, when step 2 indicates that m lines are required to cover all
the zeros in the cost matrix, an optimal solution to the original problem has been found.
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The Hungarian Method: (MIN Problem)

Step L. For the onginal cost matrix, identify each row’s minimum, and subtract it from all the
entries of the row

Step 2. For the matrix resulting (rom step 1, identify each columa’s minimum and subtract it
from all the entries of the column

Step 3.  Identify the optimal solution as the feasible assignment associated with the zero ele-
ments of the matrix oblained in step 2.

Step 2a. If no feasible assignment (with all zero entries) can be secured from steps 1 and 2,

(1} Draw the nzinimum number of horizontal and vertical lines in the last reduced
matrix that will cover ali the zero entries.

Example(1): (MIN Problem)

1 2 3 1 2 3 1 2 3
L5 10 9 A 6 i 0 6 0 0
M 9 15 10 M 0 6 i M | g 5 1
K 10 b 8 K 2 4 0 K |2 3 ]
(1) 2} 3)
The Optimal Solution is: A->2 M->1 K->3
The Total Cost is : 10+ 9 + 8 =27
Example(1): (MIN Problem)
1 2 3 4 1 2 1 4 1T 2 3 4 1 2 3 4
A |1 4 5 3 A |0 3 2 2 A |0 3 2 2 A0 2 11
B (& 7 7 8 B |2 0 0 2 B |2 0 0 2 B |3 0 0 2
cC |4 5 8 7 c o 1 3 2 c (01 3 2 c (0 0 21
D I T 1] T 2 0 0 D 3 2 0 0 D 4 2 0 E
{1} 2} 2) 3)
The Optimal Solution is: A>1 B->3 C>2 D->4
The Total Cost is : 1+7+5+5 =18

The Hungarian Method: (MAX Problem)

Step (1): Identify each Column's maximum , and subtract all the entries of the column from it.
The problem becomes (MIN Problem). Go on as steps before . (1)
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Assignment Problems

The Assignment Problem Max Min
15]10]9 1>1 15 251 9
9 |15]10 252 15 152 10
110|128 3>3 8 3>3 8

38 27

10 |6 12 |8 4>1 14 151 10
15 |18 |5 11 252 18 2>3 5
17 |10 |13 |16 153 12 352 10
14 |12 |13 |10 3>4 16 434 10
60 35

1 4 |6 3 4>1 8 151 1
9 7 10 |9 152 4 253 10
4 5 11 |7 353 11 352 5
8 7 8 5 254 9 434 5
32 21

4>1 8 551 9

3 |8 12 11083 252 7 352 4
8 |7 |2 |3 |7 353 2 253 2
6 [4 |2 |7 |5 1>4 10 4>4 3
8 |4 |2 |3 |s 555 10 155 3
9 |10 |6 |9 |10 37 21
551 9 4>1 2

3 19 |2 |3 |7 152 9 252 1
6 1 5 6 6 4>3 4 553 2
o |4 |7 |10 |3 354 10 154 3
2 /> 14 12 1 255 6 3>5 3
9 6 2 4 5 38 1
152 10 351 5

9 10 |11 |10 253 17 252 7
11 |7 17 |11 354 13 154 10
5 13 |12 |13 40 22
4>1 16 251 5

14 8 14 |15 |13 252 22 552 7
5 22 |11 |9 10 3>3 15 153 14
11 15 |15 |10 |11 154 15 4>4 8
16 11 |12 |8 15 555 12 355 11
12 7 14 |12 |12 80 45
251 6 4>1 4

> 4 / 9 / 552 9 152 4
6 > |5 |4 |7 353 9 553 8
5 7 9 8 8 154 9 234 4
4 6 18 |7 |9 455 9 355 8
7 9 8 9 8 o 58
4>4 12 351 4

> |9 |4 |3 |5 152 9 252 8
7 |8 |7 |8 |9 353 8 453 4
4 |11 |8 |10 |8 155 9 1~4 3
109 |4 |12 |5 38 19




Solve The Following Assignment Problems:

Job Min Max
Engineer 1 2 3 122 16 12 16
Ahmad 10 16 32 251 14 2> 3 40
Walid 14 22 40 32> 3 34 321 22
John 22 24 34 64 78
Job Min Max
Enginee 1 2 3 4 321 3 451 5
r 12 5 252 8
1 7 5 8 2 4- 3 6 1> 3 8
2 7 8 9 4 254 4 324 9
3 3 5 7 9 18 30
4 5 5 6 7
Job Min Max
Engineer 1 2 3 151 10 351 22
Ahmad 10 16 32 353 34 4- 2 18
Walid 14 22 40 4> 2 18 253 40
John 22 24 34 62 80
Samer 14 18 36 Walid unassigned Ahmad unassigned
Time( Seconds ) Min Max
Swimme  Freestyl | Breaststroke | Backstroke | Butterfly 321 50 1->1 54
r e 4- 2 54 252 57
1 54 54 51 53 1> 3 51 43 55
2 51 57 52 52 2> 4 52 324 56
3 50 53 54 56 207 222
4 56 54 55 53
Job Min Max
Enginee 1 2 3 4 451 21 321 26
r 2> 2 20 4- 2 27
1 22 18 30 18 3> 3 24 1-3 30
2 18 20 27 22 1> 4 18 2> 4 22
3 26 22 24 28 83 105
4 21 27 25 28
Job Min Max
Enginee 1 2 3 4 1> 2 2 1> 1 14
r 2> 4 5 252 12
1 14 5 8 7 353 3 4- 3 6
2 2 12 6 5 41 5 324 9
3 7 8 3 9 15 41
4 2 4 9 10
Job Min Max
Enginee 1 2 3 151 65 153 62
r 3> 2 60 252 67
1 65 63 62 4- 3 60 41 67
2 68 67 65 185 196
3 63 60 59 2 unassigned Ahmad unassigned
4 67 62 60
GOOD LUCK Phof. Dn. cbruvan - Lahham
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PROBLEMS

TAEBLE 51 TAEBLE b2
Time (seconds) JA HH EP JR
Swimmer Frae Breast Fy Back 1 7 5 8 2
Gary Hall 54 54 51 53 FP 7 ) 9 4
Mark Spitz 51 57 52 52 HF 3 5 7 o
Jim Montgomery 50 53 54 56 ML 5 5 6 7
TABLE 55
= TABLE 69
Ally Geargia Jane Rene Nell
- g P 4 7 s Distance (Blocks)
i
Jobn 5 7 6 4 9 Car Call 1 Call 2 Call 3
Fish 10 [ 5 2 10 1 10 11 18
Glen 1 7 5 8 11 2 [ 7 7
Lamy 5 7 9 8 6 3 7 8 5
TABLE 65 TABLE 67
Time (Hours) — Time “"llfl;l —
Worker Jub 1 Joh 2 Jub 3 Job 4 Maid Vacum Kitahoy Hathiatan “‘,’fp
1 10 15 10 15 1 6 5 2 1
2 12 & 20 16 9 0 8 7 3
3 12 9 12 18 3 8 5 9 4
4 6 12 15 18 4 7 7 8 3
5 16 12 & 12 5 5 5 6 4
TABLE 68 TAELE 89
Time (Minutes) Company Fire 1 Fire 2 Fire 3
Storage Werd Packaged | 6 7 g
Medium Pracessing Pragram Data 5 5 ] 11
Hard disk 5 4 4 3 6 Q 10
Memory 2 1 1
Tape 10 2 6
4
GOOD LUCK PROF. DR. ANWAR AL-LAHHAM
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SUMMARY

Notation

m = number of supply points

n = number of demand points

x; = number of units shipped from supply point i to demand point j
¢;; = cost of shipping 1 unit from supply point i to demand point j
5; = supply at supply point i

d; = demand at demand point j

= coefficient of x; in row 0 of a given tableau

a; = column for x; in transportation constraints

A transportation problem is balanced if total supply equals total demand. To use the
methods of this chapter to solve a transportation problem, the problem must first be bal-
anced by use of a dummy supply or a dummy demand point. A balanced transportation
problem may be written as

i=m j=n

min 3, >, ¢
i=1 j=1
j=n
s.t. =58 (=12,...,m) (Supply constraints)
=

Zl xz=d; (j=1,2,...,n) (Demand constraints)

x =0 (i=1,2,...,.mj=1,2,...,n)

Finding Basic Feasible Solutions
for Balanced Transportation Problems

We can find a bfs for a balanced transportation problem by the northwest corner method,
the minimum-cost method, or Vogel’s method. To find a bfs by the northwest corner
method, begin in the upper left-hand (or northwest) corner of the transportation tableau
and set x;, as large as possible. Clearly, x,, can be no larger than the smaller of s, and
dy. If x;, = s, then cross out the first row of the transportation tableau; this indicates that
no more basic variables will come from row 1 of the tableau. Also change 4, to d, — ;.
If x;; = d,, then cross out the first column of the transportation tableau and change s, to
sy — d,. If x;; = §; = d,, cross out either row 1 or column 1 (but not both) of the trans-
portation tableau. If you cross out row 1, change d, to O; if you cross out column 1, change
51 to 0. Continue applying this procedure to the most northwest cell in the tableau that
does not lie in a crossed-out row or column. Eventually, you will come to a point where
there is only one cell that can be assigned a value. Assign this cell a value equal to its
row or column demand, and cross out both the cell’s row and its column. A basic feasi-
ble solution has now been obtained.
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Finding the Optimal Solution
for a Transportation Problem

Step 1 If the problem is unbalanced, balance it.
Step 2 Use one of the methods described in Section 7.2 to find a bfs.

Step 3 Use the fact that u, = 0 and u, + v, = ¢, for all basic variables to find the
[y uy...uy vy vy...v,] forthe current bfs.

Stepd4 Ifw, + v, — ¢, = 0 for all nonbasic vaniables, then the current bfs is optimal. If
this is not the case, then we enter the variable with the most positive ¥, + v, — ¢, into
the basis. To do this, find the loop. Then, counting only cells in the loop, label the even
cells. Also label the odd cells. Now find the odd cell whose variable assumes the small-
est value, 6. The variable corresponding to this odd cell will leave the basis. To perform
the pivot, decrease the value of each odd cell by 6 and increase the value of each even
cell by 6. The values of vanables not in the loop remain unchanged. The pivot is now
complete. If & = 0, then the entering vanable will equal 0, and an odd variable that has
a current value of O will leave the basis. In this case, a degenerate bfs will result. If more
than one odd cell in the loop equals 6, you may arbitrarily choose one of these odd cells
to leave the basis; again, a degenerate bfs will result. The pivoting yields a new bfs,

Step 5 Using the new bfs, return to steps 3 and 4.
For a maximization problem, proceed as stated, but replace step 4 by step 4'.
Step 4’ Ifw, + v, — ¢, = 0 for all nonbasic variables, the current bfs is optimal. Other-

wise, enter the variable with the most negative u, + v, — ¢, into the basis using the piv-
oting procedure.

Assignment Problems

An assignment problem is a balanced transportation problem in which all supplies and
demands equal 1. An m X m assignment problem may be efficiently solved by the Hun-
garian method:

Step 1 Find the minimum element in each row of the cost matrix. Construct a new ma-
trix by subtracting from each cost the minimum cost in its row. For this new matrix, find
the minimum cost in each column. Construct a new matrix (reduced cost matrix) by sub-
tracting from each cost the minimum cost in its column.

Step 2 Cover all the zeros in the reduced cost matrix using the minimum number of lines
needed. If m lines are required, then an optimal solution is available among the covered
zeros in the matrix. If fewer than m lines are needed, then proceed to step 3.

Step 3 Find the smallest nonzero element (&) in the reduced cost matrix that is uncov-
ered by the lines drawn in step 2. Now subtract £ from each uncovered element and add
k to each element that is covered by two lines. Return to step 2.

GOOD LUCK

Prof. Dn. ruwan AH- Lahham
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Find : () The Optimal Solutions of the following Linear Programing Problems

(ii) The Dual Problems , and their Optimal Solutions.

Min  z =3x, +1x, Min z=-11x, +1x, Min  z=3x,+7X,
st. 3%, +2x, =15 st. -3X, +2X, st. 2x, +3x, =13
Ix, +3x, <12 5x, +3x, < 5x, —2x, <23
X, X, =20 X, X, =20 X, X, 20
The optimal solution is The optimal solution is The optimal solution is
=3  x,=3, Z=12 x, = 0053, x,=1579, Z=1 X =5, x=1, Z=22
The optimal Ranges are : The optimal Ranges are : The optimal Ranges are :
1.5<Cy, C,<2 C,<-15, —-66<C,<22/3 -175< €, £10/3, 45< C,
Max z=14x, —9x, Max z=3x, —5X, Max z=3x, —5X,
st. 3%, —-2x, <1 st. 3%, +5x, <11 st. 3, +5x, =11
2x, —-1x, < 2x, —-3x, <1 2x, —-3x, <1
X, X, 20 X, X, 20 X, X, 20
The optimal solution is The optimal solution is The optimal solution is
x =1, x, =1, Z=5 x; =05, x,=0, Z=15 X1 =2,%x=1, Z=1
The optimal Ranges are : The optimal Ranges are : The optimal Ranges are :
135<C, <18, —28/3<C, <7 0<C, <10/3, C,<—45 -3<(, <10/3, C, <45
Min  z=3x,+2x, Min z =1x, +2X, Min z =10x, +9x,
st. X +X, <8 st. -3, +2Xx, =3 st. 3x, +x, <20
3% +X, =12 5x,  +3x, <20 2%, +5x, =35
X, +3X, =212 2X, +3Xx, =5 4%, +3x, <75
X, X, 20 X, X, 20 X, X, 20
The optimal solution is The optimal solution is The optimal solution is
X, =3, x,=3, 7 =15 x, =1/13, x, =21/13,  Z=43/13 x,=0,%=7, Z=63
The optimal Ranges are : The optimal Ranges are : The optimal Ranges are :
2/3<C, <6, 1<C,<9 —-3<(¢,<4/3, Cc,=3/2 €, =36, C, £25
Min z=2x, +5X, Max Z =5X%, —3X, Max z=5x, +3X,
st. 2%, +1x, <15 st. 3x, +x, <20 st. X, + X, 21
3%, —1x, 2X, +5x, =35 3%, +7x, <10
5x, +2x, =30 4%, +3X,<75 7%, +3x,<10
X, X, 20 X, X, =20 X, X, 20
The optimal solution is The optimal solution is The optimal solution is
x, = 3.636, x, =5.909, Z=36.818 x =5, x=5, Z=10 =1, x=1, Z7=8
The optimal Ranges are : The optimal Ranges are : The optimal Ranges are :
-15<¢, <125, 08 <¢C, -12<¢, C,<5/3 1.286<C <7, 2143 <, <35/3

GOOD LUCK
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Max z =15x, —12x, Max z=3x, —5X, Max z=27x, —45X,
st. 3%, —2x, <3 st. 3x, +5x, =11 st. -2X, +5x, =22
2x, —=3x, <1 2x, -3x, <1 3%, —2x, <7
X, X, 20 X, X, 20 X, X, 20
The optimal solution is The optimal solution is The optimal solution is
x; =14, x, =0.6, Z =138 X =2, x,=1, Z=1 X;=6, x,=5, Z =23
The optimal Ranges are : The optimal Ranges are : The optimal Ranges are :
8<(C <18, —-225< C,<-10 -3<(¢<10/3, C<—45 C, <14/3, C,=-12
Max z=1x, +5X, Max z =3x; +4x, Max z=18x, +18Xx,
st. Ix, +2x, <30 st. 3X, +2x, <20 st. 1x, +3x, <28
2%, —1x, =20 2x, +3x, <20 3x, +1x, <12
X, X, 20 X, X, 20 X, X, 20
The optimal solution is The optimal solution is The optimal solution is
x =14, x,=8, 7 =54 X, =4, x,=4, Z=28 =1, x,=9, Z=180
The optimal Ranges are : The optimal Ranges are : The optimal Ranges are :
-10<C, <25, 2<G 2667<C, <6, 2<C,<45 6 <C, <54, 6<C, <54
Max z =3x, +6X, Min  z=2x,+7X, Min z =3x, +5X,
st. 4X,+5x, <22 st. 2%, +3X, =24 st. 2%, +3X, 2
X, +X, =1 S5x, +2x, =220 5X, +2x, =6
X, —2X, <2 X, + X, 215 X, + X, =5
X <3 , X,<2 —2X, +3X, <6 , X,>3 —-2X +3X, <2 , X, 21
X, X, 20 X, X, 20 X, X, 20
The optimal solution is : The optimal solution is : The optimal solution is :
x, =3, x,=2, Z =21 x, =12, x, =3, Z =45 X, =4, x,=1, Z =17
The optimal Ranges are : The optimal Ranges are : The optimal Ranges are :
0<(C <48, 3.75<C, 0< ¢ <7, C, =2 0< G <5 ¢, =3
Max z =3x, +4Xx, Min z=4x, +1x, Max z =1x, +2X,
st. 2x, +3x, <1200 st. 3%, +x, =15 st. X + 2X, <10
2%, +1x, <1000 4x, +3x, =30 Ix, + Ix, =25
4x, <800 1x, +2x,<20 Ix, + Ix, <3
X, X, 20 X, X, 20 X, X, 20
The optimal solution is The optimal solution is The optimal solution is
x; =450 , x, =100 , Z =1750 X, =2, x, =9, Z =17 x, =2, x,=1, Z=4
The optimal Ranges are : The optimal Ranges are : The optimal Ranges are :
8/3<(; <8, 15<¢(C, <45 3<¢, C<4/3 <2, 1<6¢C,

Prof. Dn. crwan H- Lahham
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Find : (i) The Optimal Solutions of the following Linear Programing Problems.

2x; + 1x; + 3x3 <9
X1,%,x3 20

(i) The Dual Prices & The Optimal Ranges of GC;. (iii) The Dual Problems , and their Optimal Solutions.
Min Z = x; + 2x, + 4x; Max Z = 14x; —9x,
s.t 3xy+2x, —1x3 = 14 s.t 3x;—2x, <1

2x; — 1x, <2
1x; +3x, =212

X1,%, 20
The optimal solution is: The optimal solution is
x, =4, x, =1, x3=0, Z=6 x, =3, X, =4, Z=6
The Dual Prices are; ( -3, 4, -1) The Dual Pricesare; (4, 1, 0)
The optimal Ranges are : The optimal Ranges are :
2 _ 28
(1=3, =G, —-15<G 135<(, <18, - T <(<-7
Min Z = 5x; — 1x, + 2x54 Max 7 = 4x; — 1x, + 2x3
s.t 3xy+1x, +2x3 <9 s.t  1xy +1x, +0x3 <15

1x, + 2x, + 3x3 =10
2x1 +3x, +1x3 =8
X;,%,,%3 20

The optimal solution is:

0x; + 2x, + 1x3 =18
1x; + 0x, + 1x; = 12
X1,%5,%3 20

The optimal solution is:

x, =0, X,=2, x3=2, Z=2 x, =8, x, =7, x3=4, Z=33
The Dual Pricesare; ( 0, -1, 1) The Dual Pricesare; (1, -1, 3)
The optimal Ranges are : The optimal Ranges are :
-1<¢, 6<6, -1/3 £(; 25<5C, —-4<5(, <2, (3535
Min Z = 3x; — 2x, + 5x4 Max 7 = 5x; —2x, + 1x3
s.t 3x;+2x, —1x3 <15 s.t 3xy+ 1x, +2x3 <15

2xq + 1x, + 3x5 =18

1x, + 1x, =10
+2x, + 1x3 =12

X1,%5,%3 20

The optimal solution is:

1xy + 2x, + 1x3 212
le + 3x2 + 1X3 = 18
X1,%5,%3 20

The optimal solution is:

x, =0, x, =10, x3=5, Z=5 x; = 2.25, x, =375, x3=225, Z=6
The Dual Pricesare; ( 5, 0, -8, 0) The Dual Pricesare; ( 2, -5, 2)
The optimal Ranges are : The optimal Ranges are :
-7<C(Cy, C, <8, 0506 1<(, C, <6, —7 <(;<3.857
Max Z = 2x; +1x, — 1x; Max Z = 3x; +4x, + 2x3
s.t 2x +1x, +1x3 <8 s.t 1xy +3x, +2x; < 42
1x, + 2x, — 2x3 <10 3x; + 2x, + 1x3 <36
2x1 + 1x, + 3x3 = 12 2x1 + 1x, + 3x3 > 48
X1,%,%3 20 Xq,%5,%3 20
The optimal solution is: The optimal solution is:
x;, =3, X,=0, x3=2, Z=4 x; =5, x, =5, x3=11, Z =57
The Dual Pricesare; ( 2, 0, -1 ) The Dual Prices are; ( 5/6, 5/6 , -1/6 )
The optimal Ranges are : The optimal Ranges are :
2<5C, GC<1, (<1 0857<(C, <6, 34<(C, , —13 <(C3<2429
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Max Z = 5x; —2x, + 3x3
s.t 3xy+ 2x, +1x3 <125
4x; — 2x, + 1x3 =45
5x; + 1x,; — 1x3 =275
X1,%p,%3 20
The optimal solution is:
x, =16, x,=24, x3=29, Z=119
The Dual Prices are; ( 0.829, 1.486 , -0.686 )
The optimal Ranges are :

—24<(C, <11, —5222< C, <22, 1286 <C,

Max Z = 5x; —2x, + 1x3

s.t  3xy+ 1x, +2x3 <15
1xy + 2x, + 1x3 212
2%y + 2x, + 1x3 = 18
X1,%,%3 20

The optimal solution is:
x, =3, X, =6, x3=0, Z=3
The Dual Prices are; ( 3.5, 0, -0.2)
The optimal Ranges are :
2/3<C,, C,<5, (C3<425

Min Z = 2x; —3x, + 5x3
s.t 1xg + 1x, + 2x3 =20
1x; — 3x, + 1x3 <40
3x; + 1x, + 1x5; =50
X;,%,,%3 20
The optimal solution is:
x, =15, x, =5, x3=0, Z=15
The Dual Prices are; ( 5.5, 0, -25)
The optimal Ranges are :
-3<¢, (<2, —85<(

Max Z = 2x; —3x, + 5x3
s.t Ixg+ 1x, +2x3 =20
1x; — 3x, + 1x3 <40
3x; + 1x, + 1x3 =50
X1,%5,%3 20
The optimal solution is:
x, =16, X, =0, x3=2, Z=42
The Dual Prices are; ( 26, 0, -2.75)
The optimal Ranges are :
2556, 25, (G524, 4 <0

Min Z = 3x; — 2x, + 5x4
s.t 1xg + 1x, +2x3 =30
1x; — 3x, + 1x3 <40
3x; + 1x, + 1x3 =50
X1,%y,%3 20
The optimal solution is:
x, =10, x, =20, x3=0, Z=-10
The Dual Prices are; ( 4.5, 0, -25)
The optimal Ranges are :
—2<C, (<26, —65<C;

Max Z = 3x; —2x, + 5x3
s.t 1xy + 1x, + 2x3 = 30
1x; — 3x, + 1x3 <40
3x; + 1x, + 1x3 =50
X1,%5,%3 20
The optimal solution is:
x; =30, x,=0, x3=0, Z=90
The Dual Pricesare; ( 3, 0, 0)
The optimal Ranges are :
25<5C, (<3, (<6

Max 7 = 5x; 4+ 3x, + 2x3
s.t 3x;+1x, —1x3 <30
2xq + 4x, + 3x3 245
4x, +3x, + 5x3 =75
X1,%5,%3 20
The optimal solution is:
x, =3, x, =21, x3=0, Z=178
The Dual Prices are; ( 0.6, 0, 0.8)
The optimal Ranges are :
4<(C <5875, 2632< (,<375, (3534

Max Z = 5x; —3x, + 2x3
s.t 3x;+1x, —1x3 <30
2x, + 0x, + 3x3 =45
4x; + 3x, + 5x3 =75
X1,%5,%3 20
The optimal solution is:
x =0, x,=0, x3=15, Z =30
The Dual Pricesare; ( 0, -85, 55)
The optimal Ranges are :

Max Z = 5x; —3x, + 2x3
s.t 3x;+1x, —1x3 <30
2xq + 4x, + 3x3 245
4x, + 3x, + 5x3 =75
X1,%y,%3 20
The optimal solution is:
x, =11, X, =2, x3=5, Z=59
The Dual Prices are; ( 0.644, -2.378 , 1.956 )
The optimal Ranges are :

2364<C, —175< (,<2.632,-194< (3549

1.6<(C, C, <165, (3<6.25
Min Z = 2x; + 3x, + 5x5
s.t Ix, — 1x; <16
2x1 + 4x, =24

4x; + 5x3 =40
X1,%5,%3 20
The optimal solution is:
x; =10, x, =1, x3=0, Z=23
The Dual Prices are; ( 0, -3/4, -1/8)
The optimal Ranges are :

C,<55, (C,>0, C3>5/8
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Max Z = 5xq + 7x, —4x;
s.t  2x;+3x,—1x3 <75
1x; — 1x, + 1x3 = 15
2x; + 1x, — 3x3 =50
X1,%,,%3 20
The optimal solution is:
x; = 24, X =9, x3=0, Z=183
The Dual Prices are; ( 24, 02, 0)
The optimal Ranges are :
-05<¢(¢, -5 (,£10, C(3<<-22

Max Z = 5x; —2x, + 1x3

s.t  3xy+ 1x, +2x3 <15
1x; + 2%, + 1x53 =12
2%y + 2x, + 1x3 = 18
X1,%,%3 20

The optimal solution is:
x, =3, X, =6, x3=0, Z=3
The Dual Pricesare; ( 3, 0, -2.75)
The optimal Ranges are :
2/3<C, C,<5, C3<425

Min Z = 2x; — 3x, + 5x3
s.t 1xg +1x, + 2x3 =20
1x; — 3x, + 1x3 <40
3x; + 1x, + 1x53 =50
X;,%,,%3 20
The optimal solution is:
x, =15, x, =5, x3=0, Z=15
The Dual Prices are; ( 5.5, 0, -25)
The optimal Ranges are :
-3<¢, (<2, —85<(

Min Z = 5x; + 7x, + 4x;
s.t 2x;+3x, —1x3 <45
1x; — 1x, + 1x3 =9
2x1 + 1x, — 3x3 =30
X;1,%5,%3 20
The optimal solution is:
x; =13, x, =4, x3=0, Z=093
The Dual Pricesare; ( 0, 3, -4)
The optimal Ranges are :
—-7<5C, -4 C,, —15 <(,

Min Z = 3x; — 2x, + 5x4
s.t 1xy +1x, +2x3 = 30
1x; — 3x, + 1x3 <40
3x; + 1x, + 1x53 =50
X;,%,,%3 20
The optimal solution is:
x, =10, x, =20, x3=0, Z=-10
The Dual Prices are; ( 45, 0, -25)
The optimal Ranges are :
-2<¢, (526, —65<C

Max Z = 3x; —2x, + 5x3
s.t  1xy +1x, + 2x3 = 30
1x; — 3x, + 1x3 <40
3x; + 1x, + 1x3 =50
X1,%5,%3 20
The optimal solution is:
x; = 30, x,=0, x3=0, Z=90
The Dual Pricesare; (3, 0, 0)
The optimal Ranges are :
25<¢C, (<3, (356

Max Z = 5x; + 3x, + 2x3
s.t 3x;+1x, —1x3 <30
2xq + 4x, + 3x3 245
4x, + 3x, + 5x3 =75
X1,%5,%3 20
The optimal solution is:
x, =3, x, =21, x3=0, Z=178
The Dual Prices are; ( 0.6, 0, 0.8)
The optimal Ranges are :
4<(C, <5875, 2632< (,<375, C(;<34

Max Z = 5x; —3x, + 2x3
s.t 3x;+1x, —1x3 <30
2x, + 0x, + 3x3 =45
4%, + 3x, + 5x3 =75
X1,%5,%3 20
The optimal solution is:
x =0, x,=0, x3=15, Z =30
The Dual Pricesare; ( 0, -85, 55)
The optimal Ranges are :

Max Z = 5x; —3x, + 2x3
s.t 3x;+1x, —1x3 < 30
2xq + 4x, + 3x3 =45
4x, + 3x, + 5x3 =75
X1,%y,%3 20
The optimal solution is:
x, =11, X, =2, x3=5, Z=59
The Dual Prices are; ( 0.644, -2.378 , 1.956 )
The optimal Ranges are :

2364<(C,, —175< (,<2632,-194< (3549

1.6 <C(y, C, <165, (3<6.25
Min Z = 2x; + 3x, + 5x5
s.t Ix, — 1x; <16
2xq + 4x, >24

4x; + 5x3 =40
X1,%5,%3 20
The optimal solution is:
x; =10, x, =1, x3=0, Z=23
The Dual Pricesare; ( 0, -3/4 , -1/4)
The optimal Ranges are :

€, <55, C,>0, C3>5/8
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