Maclaurin Series BMT-222 (September 2()I<§)

Power series
A function can be written as a power series:

f(x)=a+ax+a,x* +a,x et @, X" 4 )
We need to determine the coefficients a,,a,,a,,-- a,. For this we differentiate both sides of equation (1)
repeatedly and substitute zero for x. Recalling that n!=n(n-1)(n-2)-------- 2:1 (0r=1)
f(x)=a, + ax+ a,x+ ax’'+ ax'+ g X+

Flay= a+ 2a,x+ 3a,x7+ da,x'+  Saxt4ennnn
J'(0)=a= a =70

Flx)= 2-la,+ 3-2a,x+ 4-3a, X7+ 5-4a,x0cveeeiiiinnnnn
/(0) /()

"(0)=2-la, = a, =L =g =
7"(0) de =5 % .3

f'”(O): o rlily = =”}3‘N'”—(0):>a3 = f’”(O)

2-1 3!
_fl”(x): 4.3-2:-la,+  5:4:3:2a x4 e
(4) 0) ]r(‘ﬂ(o)
®(0)=4-3-21a SN A O ( gy =
770) : L AIEN W i 41
f(sj(x)z 5:4:3:2-0a + rrererrereeeeenns
(5) (5)
(s) 7(0) /7(0)
0)=5-4-3-2-1a NN AN g =217
77(0) ’ ¥ 5.4.3.2.1 ’ 51
) frr 0 f‘m 0 f(S) 0
we get g, = f(0), a =7"(0), az:#’ a‘vz#’ """ Mg = 5!( )
By substituting the values of the coefficients a,,4,.a;, a,, in equation (1) we get the desired form of the
Maclaurin series of f (x) :
: SO L 0 0
F(x)=7(0)+ 7 (0) x+ 2 X+ 2 X+ i xt e 2)
Maclaurin series (> —form)
o (n) 0
f(x)= zf ]( ) x"  where [ (x)=f(x) and 0!=1
n=0 n.
Maclaurin series
o The Maclaurin (Scottish 1698 - 1746) series formula enables us to find the value of the function at a
point, X, close to the origin.
° The Maclaurin series of a function is always unique.
° Maclaurin series
¥ x’
1= 1O+ f O+ O+ 51 (0)+-w@)
o This is an infinite series, although often we can approximate j'(x) by using just a finite number of

the terms as we shall show. O
\



Example 1.

Find the expansion of the function 7/(x)=cos2x.

Solution:
We make a list of derivatives and let x = 0:
f(x)=cos2x Fi)=1
f(x)=-2sin2x f(0)=0
[ (x)=-2%cos2x f(0)=-2°
[ (x)=-2%sin2x (0=
(x)=2"cos2x 7o)y =2*
FONx) =~2"sin 2x =0
SO (x)=-2%cos2x 0 =-2°
Substitution in equatioﬁ (Maclaurin series)
2 3
: / X
F()= F(O) 57 (04 25" (051 (0) 4o
2 74 6
cos2x=1-—x?+_x' - Z_xb
2! 4! 6!
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Verify the Maclaurin Series expansion for

3 5
T WY S— Evampds 42 foe 2
Problem 1 sinx=x 3!+5! ( f‘& rge®22)
Problem 2 ! =1+2x+4x* +8x" +-.-.o. Z 2rx
1-2x n=0

x2 x."- x4
Problem 3 m(l+x)=x——+——-—+-

2 3 4
Problem 4 Verify the series expansion (1-x)?%= Z(rz +1)x"

n=0
Operations with series

° Certain operations with series can be used to find new series from those already known, as shown in

the following examples.
Example 2.
Find Maclaurin series for sin x” .

Solution:
xS
Consider the series sinx =x— PR TR
6 x]O
. . 2
If we replace x by x°, we obtain sin x? = x2 5 + g
Example 3
Find Maclaurin series for xe”.
Solution:
2 3
. . x° X
From the series e =l X s
2! 3!
We obtained from direct multiplication
3 4
X 2
P P e R
2! 3!



Verify the Maclaurin Series for the functions

8x' 32x° B 128x7

Problem 5 L VAL L OGO s SO i T R
3! 5! 7!
4 6 8
PrOblem§ e_I-:I—XE_g.__x__*_x_‘ ....... e
20 31 4!
4 6
Problem?’ COSZ x=1—x2 +£_h2i+ .........
3 45
2 4 6
Problem § 1 COSX:i_x_+x__x_+ .........

Problem§ Expand the function In(1+x*)* in a Maclaurin series.

Example 4.

Show that (d/dx)e” =e* by the use of Maclaurin series.

Solution:

d . d ¥ ¥ ¥ 2x 3x? 4x° .
— e =— | 4+ X+ —F— i =) 7] [ TR S =
dx 2! o4l 3! 4!

Binomial Series
The Maclaurin series of (1+x)* is called the binomial series
(1+x) =1+ke+ k(kz’_D e k(k~13)l(k2)x3 + k(k_l)(k4_’2)(k_3) xt e [x](l

Example 1.

(1+x)2 =1=2x+3x" =4’ ++e0000 x[(1
Using equation (1) with k = -2
Example 2.

Using equation (1) with k = % and replaced x by -x

Example 3.
Show that

1 1 2 1 3
\/;=1+E(x-1)—§(x—1) +E(x—1) —ee x[(1

Write x =/1+ (x—1) and using equation (1) with k = % and x —1 in replace of x.

Example 4.
1 :1+lx2+§x4+ix(’+ ------ ’x|(1
1— x> 2 8 16

Using equation (1) with k = -% and x replaced by —x?.
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26.2  IMACLAURIN SERIES 8556

3 n
10 P
]+.-.+ I +.
10 PR

% ] o
10.22“1” 2 ﬁ2n+2

11. 2( 2 ])31’2

Test the series in Exercises 13-20 for convergence or divergence by the comparison test.

l+smn

P s

£ I % -

15 2 1‘? 2 (n + 2)(n +3)

—n=-35
2, S, =
AR

18.;::2”4_]

% 1
19.;2m

Test the series in Exercises 21-29 for convergence by the ratio test; if the test fails, use another test.

= 1 on

Z;l— 23.2'?

= ! 2% sn=1
25.@5 EI —

_‘

ke n!
i

26.3

Power series

flx) =
[l =
fx) =
fx) =
fO(x) =
fO(x) =

- (2n-1) ‘g

29. >

Maclaurin Series

While the infinite series considered so far contained only constant terms,
many useful series consist of variable terms. The most important of these are
series representing known functions. The main purpose of this section is to
study a method by which a function f(x) can be written as a power series:

fx) =ag + (26.11)

(Series expansions other than power series will be taken up in Section 26.6.)

To express a function as a power series. we need to determine the
coefficients in the form (26.11). This can be done by means of a simple trick: -
we differentiate both sides of (26.11) repeatedly. as if it were a regular
polynomial, and substitute zero for x. Hence f(x) must be differentiable near
x = 0, to start with. Moreover. it is shown in many books on advanced
calculus that a power series may be differentiated term by term. provided
that it converges for all x in some interval. We now get

PR e Gl S e R SHE

ap + aix + ax’ + axy’ + ax? otawxt
a + 2axx + 3a:x° + 4a,x3 + Saut v
2<las +3-2axw + 4 3apx’ + 5 daxt + - -
322 lax+4-3- 7(r4,\ + 54 3a.x + -
432 lay,+5-4-3-2q ~- - -

Ll

432 las+ e
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Colin Maclaurin -

INFINITE SERIES

If we let x = 0, all the terms on the right collapse to zero, except for the first
in each row. Thus f(0) = ag SO)=a), f"(O) =2 - lay, f"0)=3 - 2 - 1 a,,
SO0 =4-3.2. lag,and f™(0)=5 -4 -3 .2 . las. Solving for the
constants and recalling that

nl=n(n = I)n -2y
we have

, S10) S510)
ﬂq)=j(U),ﬂ;:f(0).ﬂ'2= 2| -."va.‘:T

The pattern is now clear:

" f(n)(o)
!

an

Finally, after substituting in series (26.11) we get the desired form of the
Maclaurin series .of f(x).

: e L .
Maclaurin series of f(x): |
(0) | “(0)
Ffx) = f0) = F0)x + f,,, e fT X
Fm{
4 v '+f”[0}_1'""f" Wl W (26]2)

The Maclaurin series is named after Colin Maclaurin (Scottish mathe-
matician, 1698-1746). Maclaurin made many contributions to geometry, par-
ticularly to the development of higher algebraic curves. It is ironic that his
name is now attached to a series which is only a special case of the Taylor
series (Section 26.5). The latter series was published by Brook Taylor (En-
glish mathematician. 1685-1731) in 1715 (long before Maclaurin's work) but
was known earlier to Johann Bernoull;,

The Maclaurin series can be written in particularly elegant form if we
define 0! = 1

— e ——— e
|

Maclaurin series (=-form):

o % f(nl(O} .
f('\)_?::} P (26.13)

where fO(x) = f(x) and 0! = |.

|
|

(The Maclaurin series of a function is always unique.)
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(26.13)
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26.3 tALCLAUBIN SERIES 857

Example 1 Expandf(x) = ¢* in a Maclaurin series.
Solution. We differentiate first and let x = 0:
flx) = ¢* f(O)—I
f'(x) = ¢ o))
f'(x) = e i (O} = l
and so on and so on
Direct substitution in series (26.12) yields J
ol xn
]+x+2|_3_!+...4.m_...
Suppose we take a peek ahead to Section 26.5 and replace x by 1; then
I | |
st R Rl B L AR TR
Using the convention 0! = |, we now get the following beautiful representa-
tion of the number e:
i &
=yn!
Example 2 (Optional) Show that the series

X = .1': Ei i ._E
e_l+X+§”3!+ ' n'

is convergent for all x.

Solution. Convergence may be proved by the ratio test: Since

xn q =t X" X
nop! T =D (n+ Doa!
we have
i s I 1 ot n!
im = lim |———— - — .
n—x | Ay —z {(n + 1) nl a7

1
W lim——==0=L <1

—x 1+ 1

Since L < | no matter what value we choose for x, the series is convergent
for all x by the ratio test.
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858 CHAPTER 26 INFINITE SERIES

Example 3  Find the Maclaurin expansion of the function f(x) = cos 2x.

Solution. As before, we make a list of derivatives and let x = O:

flx) = cos 2x flo) =1
f'(x) = =2 sin 2x ') =20
f(x) = —2% cos 2x 1) = =2°
f™(x) = 23 sin 2x ") =0
f@(x) = 2% cos 2x 40y = 2
% (x) = —25 sin 2x 79(0) = 0
¥ (x) = —26 cos 2x F90) = =2%

and so on and so on

Substitution in (26.12) vields the desired series:

2 2l 2
C082x=1—5x2+25_r4—-6-ix5+. 5

The following expansions are particularly important and are listed for
later reference. (The first has already been obtained and the rest will be left
as exercises.)

X X
e‘=1+x+i+§+m+---. for all x (26.14)
X X
sinx =x — 3 + 5T , for all x (26.15)
_ P K )
cosx =1 _E+4—!_ N for all x (26.16)
PRI ¢ —
n(l+x)—x—5+§-—? -1<x=1 (26.17) t
Exercises / Section 26.3
Verify the Maclaurin series expansions in Exercises 1-9.
1.Si§'\.\‘=-.‘€—%+‘%—°-' Z-COSI:l—%—l’—‘!—"-
Cery o, T = K‘j ¢
Fulion)
5 T ) )
= -2{ (‘ " =X 4 nE
e ————— ax Y JIEES
o "%L
. 5,
< 1=l A=
31 S .'
w  wEt
= 9 ’“_’L & L“
L] 2, h'.f,r.
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In(1 + AT i, ol =] = = = s s
LIl + = =5 TTg L B
X" XS 1 2
\fs.Arctanx=x-§+§—-" 6.coshx:§(e‘+e’)=!+i+n+
X 1 _ P2 . x P
7.51nhx=§(e‘—e‘)=x*'§+§+‘" 3.tanx=x+i+T5—+

9, Arcsnnx~x+] X, 13- -39 . 123:5.T
237245 2467 24689

~10. (Optional) Show that the series (26.15) and (26.16) converge for all x.

11. Verify the series expansion

(1-x2=2 (nt 11"

n=0

by (a) using the binomial series; (b) finding the Maclaurin series expansion: (c) dividing out 1 = x)*

26.4 Operations with Series

Certain operations with series can be used to find new series from those
already known, as shown in the following examples.

Example 1 Find the Maclaurin series for sin x*.

are listed for Solution. Consider the series

:st will be left 3 s
) x¥
51ux=.1'—-3—!-§—

from the last section. If we replace x by x*, we obtain

(26.14) ¥ 0
sinx3=x3—§-“—5—._—
(26.15) Since this series is a power series. it must be the Maclaurin series of sin X,
since such expansions are unique.
(26.16) :
' Example 2 Find the Maclaurin series for xe*.
(26.17) : Solution. From
- t &
=l xtg gt

we obtain by direct multiplication

_ NI
xe-‘=.\'+x~*?*?~'“-'
/)ﬁ i ) {(%) \l,a/\)_fg)+1{f(ﬁj+y\ }:{ j*":‘; f/(aj.»ff;‘)_‘/
L.H s (l*'?‘) 7 Yy ’5*&'
_ :ﬂ.-*-'?—}‘l“?z_(yb—#_}_‘_ )2l 2 R
-)fw)_ (y=- ~v() -=9§/> JIISEEERRRS—————— L — by T
oo g < ® (B T n T
¥ inde &L= *Wlmv l?s-.«_ :i M 41 _ o . 1 2 3
g " 5 4(0)= i n..-oé )K" = ”‘*“*“’”YM&V
i’ ~ 2k |"U : = b1l 2 1 -
/TUO ( ’é:)jrf@“ & : 7’1+j¥\ 4(4}‘?"'#}”]‘*\’_
/j{(“n}: 16 (1-n Ao\ S5~ KUY



860 CHAPTER 26  INFINITE SERILS
It has already been noted that convergent power series can be differenti-
ated termwise; the same is true of integration.

Example 3  Show that (d/dx) e* = ¢ by the use of Maclaurin series.

Solution.
d ,(__d(]+ +£+£+x_4
dx ¢ T dx S YR TR Ui
2x 314X :
=0+I+T+T‘+4—!+"--g’

Example 4 Find the Maclaurin series of Arctan x by integrating (d/dx) Arctan x
termwise.

Solution. We recall that

d
o Arctan x = T2
This expression can be written as a geometric series: Let r = —x2and a = 1:
then
1 2 + 4 6 + . = I _ 1 y 77‘f-
X X X = [ = (_x:) - T = P s
Consequently,
) dr x
— s _— 2 = A AL,
Arctan x T fn (], w0 = s ) dx
& & L . \r L. X % 4
B T A T

(It is actually poor practice to use x both for the variable of integration and
the upper limit, but the steps are so much easier to see this way.)

Remark. Our main application of the integration of series will be dis-
cussed in the next section.

The four fundamental operations—addition. subtraction, multiplication,
and division—can theoretically be carried out with series. Two of these
operations are demonstrated in the following examples.

R e Y




26.4 OQPERATIONS WITH SERIES 851

i bé differentj.
‘ . Example 5 Find the power series expansion of ef sin x by multiplying the series for e*
and sin x.

Solution. We first recall that

“
oo g
1 = St o il e B G B
sinx = x — ¢+ 55
and
=1+ +x2+x_3+x“+ s
R R S 7 R )/ _
We may now multiply each term in the second series by each term in the
first series in exactly the same way that we multiply polynomials. If we
decide to carry only powers up to the fifth power, we obtain
o
: 2 X3 )"5 ,
didx)y Arctan x e"51nx=x+X“+§-—Ef-

Example 6  Use the series in Exercises 3 and 4 of the last section to expand

1 +x
[ =%

In
:—x’anda =1;

Solution. We have

L oo X
| - r IH(I'F.?C):X——Z—T?—E—?—-"
and
i3 s
Ix - e BPEE R m B mn nei w  e e w
In(l — x) X= 3 3 g 3
x’ Hence
—— 7 + . e e
1 hﬁﬁu+}—11—w—( Lol gt )
f integration and 1 - Aol ==ty =Tty
s way.) v N SV 3. 48
rries will be dis- _(g _f__i_L_ﬁf__...): A0 E
3 be di X =5 3 3 3 2lx + 3 + s + )
oo g Euler's Identity
|, multiplication,
;. Two of these As a final exercise we are going to uncover a relationship between three of

our transcendental functions by making use of the basic imaginary unit j =




862 CHAPTER 26 INFINITE SERIES
. V —1. As a starting point, notice that the expansion of the sine function has 14. E
only odd powers and that of the cosine function only even powers. How- 15. U
ever, all the powers occur in the expansion of €%, 50 ¢ comes very close to 16. L
being the sum of the other two—if only the signs matched! Now, by intro- o
ducing j formally, we find that 7.
18. F
. ) J'EXZ j]xJ J4X4 j5I5
EJ=]+Jx+T+T+4_!+T+'-. 19. F
A Cot
oxr it xS
_]+JX_E—T+I!+§_ know
20. 1
¥ y ( X2
l"ﬁ+4_!_"'+1x_§i+§_")
=cos x +jsinx
The resulting formula is known as Euler's identity after the Swiss mathema-
tician Leonhard Euler (1707-1783).
Euler’s identity:
e = cos x + j sin x (26.18)
Euler’s identity arises in the study of differential equations and in the
theory of electrical circuits.
Although there is some room for opinion, it can be argued that the most
interesting numbers in mathematics are 0, 1,7, e, and . By Euler's identity,
em=coswT+jsinm = —1
or
elm+ 1 =0 (26.19)
which involves all five of these numbers. This astounding relationship has
been called the eutectic point of mathematics. for no matter how you try to
analyze it, it seems to retain an air of mystery not easily explained away.
Exercises / Section 26.4
Use the method of Examples 1 and 2 to find the Maclaurin series of the functions in Exercises 1-10,
1. sin 3x 2, cos 2x 3. s 4. % 5. cosVix :
B 7. x cos x 8. xlet 9. In(1 + x?) 10. In(1 = x) 5 5™
11. Show that (d/dx) sin ¥ = cos x by use of the Maclaurin series. (See Example 3.) S )
12, Show that (d/dx) cos x = —sin x by use of Maclaurin series.
¢13. Use the method of Example 4 to find the Maclaurin series of In(1 + x).
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14. Expand (sin x — x)/x* in a Maclaurin series.

15. Use the method of Example 5 to find the Maclaurin series of e * cos x.
16. Use the method of Example 6 to find the Maclaurin series of In(l + x)°
17. Expand the function In(1 + x?)* in a Maclaurin series.

18. Find the Maclaurin series of 4(e® + ¢ *) by addition of serics.

19. Find the Maclaurin series of In{1 + x) -~ Arctan x.

A compiex number a + hj can be written it pular form ricos § jsin B}, which by Euler's identity becomes re.
known as the exponential form. Change the complex numbers in Exercises 20-25 to exponential form.

20, 1+j 21,-V3i+; 22.1-V3j 233 24 -4 25 -2+

,,
N

Computations with Series

P
:(

In this section we are going to do numerical computations by means of
power series. By using a sufficiently large number of terms, we can obtain
the value of a transcendental function to any desired degree of accuracy. A
particularly important application of these numerical techniques is the evalu-
ation of certain definite integrals.

Before we consider computations involving series, we need to make a
few additional observations about series of constants. Suppose that a,, aa,

as, . . .,a, . . .is asequence of positive numbers such that each number
is less than the preceding one, that is, a,., < a, for all n, and consider the
series

e siies (-l =a —atar—agt o
n=l s e R (26.20)

called an alternating series since the signs alternate. If the series converges.
then the sum may be obtained to any desired degree of accuracy by adding
the first n terms and estimating the error made. To check this statement.
suppose we add the first four terms of series (26.20) and estimate the error by
writing the series as follows:

(a) —a» — a3 — ay) = as — (a. — az) — tag — ag) — + * -
Since the terms in the series are decreasing.

(ag — a7) = 0, (ag — ag) > 0 and so forth
Hence '

as — (ag — a;) — (ag —ag) —+ + - < as

So, by adding a; — a> + a; — ay. the error made is less than as.
If we wish to add the first five terms. then the error is estimated from

(@ — a»+ ay—as +as) — a. = (a; — ax) = (ay — ap) ++
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Again
(a7 — ag) > 0, (ag - uy) > 0, and so on
so that the error is no worse than —us.

The error made by adding the first n terms of a convergent alternat-
ing series

is numerically less than the first term omitted.
(We state without proof that an alternating series converges if

f
|
! ay—da; +dy —dgt+ o (i 20t Stly)
|
|
I limy—x a, = 0.)

T A T T

Example 1 Compute the value of e=%! by using the first four terms of the expansion of
e*; estimate the error.
Solution. From
¥ X3 x5

Ele+.r+§—!+§+m+§+
we get

. r X a X

€'=]".‘.’+§—!—§T+E—§—
Now let x = 0.1 and find the sum of the first four terms by using a calculator:

0.1 (0.1
e =1-01+ @1y _(0.1F = 0.9048333
. 3!

The error made is no worse than the next term.

0.1)*

(4|) = (1.0000042
Based on these calculations, the correct value to six decimal places could be
any one of the following: 0.904833. 0.904834. .-. . . or 0.904838. Conse-
quently,

e 0!l = (.9048, accurate to four decimal places

Example 2 Find an infinite-series representation of (a) e: (b) .

Solution.

a. The representation of ¢ was already obtained in Section 26.3:
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- 1
€="E=;ﬂm

b. Since

3 5
x X

g el P e v g o
Arctan x = x 3+5

we let x = | and obtain
T 1 1 1 1
Arctanl—z—1—§+§—ﬁ+§—
or
I 1 I ]
TT—4(1_§+'5'—?+§—' )

Although a striking relationship, series (b) does not provide us with a
practical method of computing =, since the series converges too slowly. A
better way is by means of the series for f{x) = Arcsin x (Exercise 7).

As noted in Chapter 25, many functions do not possess elementary
antiderivatives. Since a power series can be integrated termwise, many such
integrals can be worked out by means of Maclaurin series, leading to nonele-

mentary functions.

Example 3

Evaluate
jn sin x* dx
0 x

Solution. At x = 0 the integrand takes on the indeterminate form 0/0. Now,
by L'Hospital’s rule
sinx* . 2vcosxt

lim = lim
-0 X 1—0 1

so that the function is bounded on (0, 1). (Otherwise we would be dealing
with an improper integral.)

From
B ¥ W
sin x = = = + ? Sl +
we have
, o B wl0l
e i i e ren
Sin x X 1 30 7 N i




