
٣/٢/١٤٣٩

١

C++

Creating an Executable File with the Linker

 The steps to create an executable file are:
1. Create a source code file, with a .CPP extension.
2. Compile the source code into a file with the .OBJ

extension.
3. Link your OBJ file with any needed libraries to

produce an executable program.

٣/٢/١٤٣٩

٢

HELLO.CPP
Your First C++ Program

include <iostream.h>

int main()
{

cout <<"Hello World!\n";
return 0;

}

Q&A

 Q. What is the difference between a text editor
and a word processor?

 Q. If my compiler has a built-in editor, must I use
it?

 Q. Can I ignore warning messages from my
compiler?

 Q. What is compile time?

٣/٢/١٤٣٩

٣

Quiz

1. What is the difference between an interpreter and a
compiler?

2. How do you compile the source code with your
compiler?

3. What does the linker do?
4. What are the steps in the normal development cycle?

Listing 2.2.Using cout.

1: // Listing 2.2 using cout
2:
3: #include <iostream.h>
4: int main()
5: {
6: cout << "Hello there.\n";
7: cout << "Here is 5: " << 5 << "\n";
8: cout << "The manipulator endl writes a new line to the screen." << endl;
9: cout << "Here is a very big number:\t" << 70000 << endl;
10: cout << "Here is the sum of 8 and 5:\t" << 8+5 << endl;
11: cout << "Here's a fraction:\t\t" << (float) 5/8 << endl;
12: cout << "And a very very big number:\t" << (double) 7000* 7000 << endl;
13: cout << "Don't forget to replace Jesse Liberty with yourname...\n";
14: cout << "Jesse Liberty is a C++ programmer!\n";
15: return 0;
16: }

٣/٢/١٤٣٩

٤

Listing 2.2 Output
Hello there.
Here is 5: 5
The manipulator endl writes a new line to the screen.
Here is a very big number: 70000
Here is the sum of 8 and 5: 13
Here's a fraction: 0.625
And a very very big number: 4.9e+07
Don't forget to replace Jesse Liberty with your name...
Jesse Liberty is a C++ programmer!

Comments

 Types of Comments

C++ comments come in two flavors:
the double-slash (//) comment, and the slash-star (/*)
comment.

٣/٢/١٤٣٩

٥

Using Comments

As a general rule, the overall program should have
comments at the beginning, telling you what the
program does. Each function should also have
comments explaining what the function does and what
values it returns. Finally, any statement in your
program that is obscure or less than obvious should be
commented as well.

 The name of the function or program.
 The name of the file.
 What the function or program does.
 A description of how the program works.
 The author's name.
 A revision history (notes on each change made).
 What compilers, linkers, and other tools were used to

make the program.
 Additional notes as needed.

٣/٢/١٤٣٩

٦

Functions

While main() is a function, it is an unusual one.
Typical functions are called, or invoked, during the
course of your program. A program is executed line by
line in the order it appears in your source code, until a
function is reached. Then the program branches off to
execute the function. When the function finishes, it
returns control to the line of code immediately
following the call to the function.

Listing 2.4. Demonstrating a call to a
function.

1: #include <iostream.h>
2:
3: // function Demonstration Function
4: // prints out a useful message
5: void DemonstrationFunction()
6: {
7: cout << "In Demonstration Function\n";
8: }
9:
10: // function main - prints out a message, then
11: // calls DemonstrationFunction, then prints out
12: // a second message.
13: int main()
14: {
15: cout << "In main\n" ;
16: DemonstrationFunction();
17: cout << "Back in main\n";
18: return 0;
19: }

٣/٢/١٤٣٩

٧

Listing 2.4 Output

In main
In Demonstration Function
Back in main

Using Functions

Functions either return a value or they return void,
meaning they return nothing. A function that adds
two integers might return the sum, and thus would be
defined to return an integer value. A function that just
prints a message has nothing to return and would be
declared to return void.

٣/٢/١٤٣٩

٨

Using Functions

Functions consist of a header and a body. The header
consists, in turn, of the return type, the function
name, and the parameters to that function.
The parameters to a function allow values to be passed
into the function. Thus, if the function were to add
two numbers, the numbers would be the parameters to
the function. Here's a typical function header:

int Sum(int a, int b)

 The body of a function consists of an opening brace,
zero or more statements, and a closing brace.

 The statements constitute the work of the function. A
function may return a value, using a return statement.
This statement will also cause the function to exit. If
you don't put a return statement into your function, it
will automatically return void at the end of the
function. The value returned must be of the type
declared in the function header.

٣/٢/١٤٣٩

٩

Listing 2.5. FUNC.CPP demonstrates a simple
function.

1: #include <iostream.h>
2: int Add (int x, int y)
3: {
4:
5: cout << "In Add(), received " << x << " and " << y << "\n";
6: return (x+y);
7: }
8:
9: int main()
10: {
11: cout << "I'm in main()!\n";
12: int a, b, c;
13: cout << "Enter two numbers: ";
14: cin >> a;
15: cin >> b;
16: cout << "\nCalling Add()\n";
17: c=Add(a,b);
18: cout << "\nBack in main().\n";
19: cout << "c was set to " << c;
20: cout << "\nExiting...\n\n";
21: return 0;
22: }

Listing 2.5 Output

I'm in main()!
Enter two numbers: 3 5
Calling Add()
In Add(), received 3 and 5
Back in main().
c was set to 8
Exiting...

٣/٢/١٤٣٩

١٠

Q&A

 Q. What does #include do?
 Q. What is the difference between // comments

and /* style comments?
 Q. What differentiates a good comment from a

bad comment?

Quiz

1. What is the difference between the compiler and the
preprocessor?

2. Why is the function main() special?
3. What are the two types of comments, and how do they

differ?
4. Can comments be nested?
5. Can comments be longer than one line?

٣/٢/١٤٣٩

١١

Variables and Constants

Programs need a way to store the data they use.
Variables and constants offer various ways to represent
and manipulate that data.

 How to declare and define variables and constants.
 How to assign values to variables and manipulate those

values.
 How to write the value of a variable to the screen.

What Is a Variable?

In C++ a variable is a place to store information. A
variable is a location in your computer's memory in
which you can store a value and from which you can
later retrieve that value.

٣/٢/١٤٣٩

١٢

Size of Integers

On any one computer, each variable type takes up a
single, unchanging amount of room. That is, an
integer might be two bytes on one machine, and four
on another, but on either computer it is always the
same, day in and day out.

A char variable (used to hold characters) is most often
one byte long. A short integer is two bytes on most
computers, a long integer is usually four bytes, and an
integer (without the keyword short or long) can be two
or four bytes.

٣/٢/١٤٣٩

١٣

Listing 3.1. Determining the size of variable types on
your computer.

1: #include <iostream.h>
2:
3: int main()
4: {
5: cout << "The size of an int is:\t\t" << sizeof(int) << " bytes.\n";
6: cout << "The size of a short int is:\t" << sizeof(short) << " bytes.\n";
7: cout << "The size of a long int is:\t" << sizeof(long) << " bytes.\n";
8: cout << "The size of a char is:\t\t" << sizeof(char) << " bytes.\n";
9: cout << "The size of a float is:\t\t" << sizeof(float) << " bytes.\n";
10: cout << "The size of a double is:\t" << sizeof(double) << " bytes.\n";
11:
12: return 0;
13: }

Listing 3.1 Output

The size of an int is: 4 bytes.
The size of a short int is: 2 bytes.
The size of a long int is: 4 bytes.
The size of a char is: 1 bytes.
The size of a float is: 4 bytes.
The size of a double is: 8 bytes.

٣/٢/١٤٣٩

١٤

signed and unsigned

All integer types come in two varieties: signed and
unsigned.
The idea here is that sometimes you need negative
numbers, and sometimes you don't. Integers (short
and long) without the word "unsigned" are assumed to
be signed. Signed integers are either negative or
positive. Unsigned integers are always positive.

Because you have the same number of bytes for both
signed and unsigned integers, the largest number you
can store in an unsigned integer is twice as big as the
largest positive number you can store in a signed
integer.

٣/٢/١٤٣٩

١٥

An unsigned short integer can handle numbers from 0
to 65,535.
Half the numbers represented by a signed short are
negative, thus a signed short can only represent
numbers from -32,768 to 32,767.

Fundamental Variable Types

Type Size Values
unsigned short int 2 bytes 0 to 65,535
short int 2 bytes -32,768 to 32,767
unsigned long int 4 bytes 0 to 4,294,967,295
long int 4 bytes -2,147,483,648 to 2,147,483,647
int (16 bit) 2 bytes -32,768 to 32,767
int (32 bit) 4 bytes -2,147,483,648 to 2,147,483,647
unsigned int (16 bit) 2 bytes 0 to 65,535
unsigned int (32 bit) 2 bytes 0 to 4,294,967,295
char 1 byte 256 character values
float 4 bytes 1.2e-38 to 3.4e38
double 8 bytes 2.2e-308 to 1.8e308

٣/٢/١٤٣٩

١٦

Defining a Variable

You create or define a variable by stating its type,
followed by one or more spaces, followed by the
variable name and a semicolon. The variable name can
be virtually any combination of letters, but cannot
contain spaces.
As a general programming practice, avoid such horrific
names as J23qrsnf, and restrict single letter variable
names (such as x or i) to variables that are used only
very briefly.
Try to use expressive names such as myAge or
howMany.

Case Sensitivity

C++ is case-sensitive. In other words, uppercase and
lowercase letters are considered to be different.

A variable named age is different from Age, which is
different from AGE.

٣/٢/١٤٣٩

١٧

Keywords

Some words are reserved by C++, and you may not use
them as variable names.
These are keywords used by the compiler to control
your program.

Keywords include if, while, for, and main.

Creating More Than One Variable at a Time

You can create more than one variable of the same type
in one statement by writing the type and then the
variable names, separated by commas.

For example:
unsigned int myAge, myWeight; // two unsigned int variables
long area, width, length; // three longs

٣/٢/١٤٣٩

١٨

Assigning Values to Your Variables

You assign a value to a variable by using the assignment operator (=). Thus, you would
assign 5 to Width by writing:
unsigned short Width;
Width = 5;

You can combine these steps and initialize Width when you define it by writing
unsigned short Width = 5;

Just as you can define more than one variable at a time, you can initialize more than one
variable at creation. For example:
// create two long variables and initialize them
long width = 5, length = 7;

This example initializes the long integer variable width to the value 5 and the long integer
variable length to the value 7.
You can even mix definitions and initializations:
int myAge = 39, yourAge, hisAge = 40;

typedef

It can become tedious, repetitious, and, most important,
error-prone to keep writing unsigned short int.
C++ enables you to create an alias for this phrase by using
the keyword typedef, which stands for type definition.
In effect, you are creating a synonym, and it is important to
distinguish this from creating a new type.
typedef is used by writing the keyword typedef, followed by
the existing type and then the new name. For example:

typedef unsigned short int USHORT

٣/٢/١٤٣٩

١٩

Listing 3.3. A demonstration of
typedef.

1: // *****************
2: // Demonstrates typedef keyword
3: #include <iostream.h>
4:
5: typedef unsigned short int USHORT; //typedef defined
6:
7: void main()
8: {
9: USHORT Width = 5;
10: USHORT Length;
11: Length = 10;
12: USHORT Area = Width * Length;
13: cout << "Width:" << Width << "\n";
14: cout << "Length: " << Length << endl;
15: cout << "Area: " << Area <<endl;
16: }

Output:
Width:5
Length: 10
Area: 50

When to Use short and When to
Use long

If there is any chance that the value you'll want to put
into your variable will be too big for its type, use a
larger type.
unsigned short integers, assuming that they are two
bytes, can hold a value only up to 65,535.
Signed short integers can hold only half that.
Although unsigned long integers can hold an
extremely large number (4,294,967,295) that is still
quite finite.
If you need a larger number, you'll have to go to float
or double.

٣/٢/١٤٣٩

٢٠

Wrapping Around an unsigned
Integer

The fact that unsigned long integers have a limit to the
values they can hold is only rarely a problem, but what
happens if you do run out of room?
When an unsigned integer reaches its maximum value,
it wraps around and starts over, much as a car
odometer might.

Listing 3.4.A demonstration of putting too large a value
in an unsigned integer.

1: #include <iostream.h>
2: int main()
3: {
4: unsigned short int smallNumber;
5: smallNumber = 65535;
6: cout << "small number:" << smallNumber << endl;
7: smallNumber++;
8: cout << "small number:" << smallNumber << endl;
9: smallNumber++;
10: cout << "small number:" << smallNumber << endl;
11: return 0;
12: }

Output:
small number:65535
small number:0
small number:1

٣/٢/١٤٣٩

٢١

Wrapping Around a signed Integer

A signed integer is different from an unsigned integer,
in that half of the values you can represent are
negative. Instead of picturing a traditional car
odometer, you might picture one that rotates up for
positive numbers and down for negative numbers.
One mile from 0 is either 1 or -1.
When you run out of positive numbers, you run right
into the largest negative numbers and then count back
down to 0.

Listing 3.5. A demonstration of adding
too large a number to a signed integer.

1: #include <iostream.h>
2: int main()
3: {
4: short int smallNumber;
5: smallNumber = 32767;
6: cout << "small number:" << smallNumber << endl;
7: smallNumber++;
8: cout << "small number:" << smallNumber << endl;
9: smallNumber++;
10: cout << "small number:" << smallNumber << endl;
11: return 0;
12: }

Output:
small number:32767
small number:-32768
small number:-32767

٣/٢/١٤٣٩

٢٢

Characters

Character variables (type char) are typically 1 byte,
enough to hold 256 values.
A char can be interpreted as a small number (0-255) or
as a member of the ASCII set (American Standard
Code for Information Interchange).

Characters and Numbers

When you put a character, for example, 'a', into a char variable,
what is really there is just a number between 0 and 255. The
compiler knows, however, how to translate back and forth
between characters (represented by a single quotation mark and
then a letter, numeral, or punctuation mark, followed by a
closing single quotation mark) and one of the ASCII values.
The value/letter relationship is arbitrary; there is no particular
reason that the lowercase "a" is
assigned the value 97.
It is important to realize, however, that there is a big difference
between the value 5 and the character `5'. The latter is actually
valued at 53, much as the letter `a' is valued at 97.

٣/٢/١٤٣٩

٢٣

Listing 3.6. Printing characters based
on numbers

1: #include <iostream.h>
2: int main()
3: {
4: for (int i = 32; i<128; i++)
5: cout << (char) i;
6: return 0;
7: }

Output:
!"#$%G'()*+,./0123456789:;<>?@ABCDEFGHIJKLMNOP_QRSTUVWXYZ[\]^'
abcdefghijklmnopqrstuvwxyz<|>~s

This simple program prints the character values for the integers 32
through 127.

Constants

Like variables, constants are data storage locations.
Unlike variables, and as the name implies, constants
don't change. You must initialize a constant when you
create it, and you cannot assign a new value later.

٣/٢/١٤٣٩

٢٤

Constants

Literal Constants
A literal constant is a value typed directly into your
program wherever it is needed.
Symbolic Constants
A symbolic constant is a constant that is represented
by a name, just as a variable is represented.
Unlike a variable, however, after a constant is
initialized, its value can't be changed.

Constants

 Literal Constants
int myAge = 39;
myAge is a variable of type int; 39 is a literal constant. You can't
assign a value to 39, and its value can't be changed.

 Symbolic Constants
students = classes * 15;
In this example, 15 is a literal constant. Your code would be easier
to read, and easier to maintain, if you substituted a symbolic
constant for this value:
students = classes * studentsPerClass
If you later decided to change the number of students in each
class, you could do so where you define the constant
studentsPerClass without having to make a change every place
you used that value.

٣/٢/١٤٣٩

٢٥

Constants

There are two ways to declare a symbolic constant in C++.
The old, traditional, and now obsolete way is with a
preprocessor directive:
#define studentsPerClass 15
Defining Constants with const Although #define works,
there is a new, much better way to define constants in C++:
const unsigned short int studentsPerClass = 15;
This method has several advantages in making your code easier to maintain and in preventing bugs.
The biggest difference is that this constant has a type, and the compiler can enforce that it is used
according to its type.

Enumerated Constants

Enumerated constants enable you to create new types
and then to define variables of those types whose
values are restricted to a set of possible values.
For example, you can declare COLOR to be an
enumeration, and you can define that there are five
values for COLOR: RED, BLUE, GREEN, WHITE, and
BLACK.
enum COLOR { RED, BLUE, GREEN, WHITE, BLACK };

 It makes COLOR the name of an enumeration, that is, a new type.
 2. It makes RED a symbolic constant with the value 0, BLUE a symbolic constant with the

value 1, GREEN a symbolic constant with the value 2, and so forth.

٣/٢/١٤٣٩

٢٦

Every enumerated constant has an integer value. If you
don't specify otherwise, the first constant will have the
value 0, and the rest will count up from there. Any one
of the constants can be initialized with a particular
value, however, and those that are not initialized will
count upward from the ones before them.
Thus, if you write
enum Color { RED=100, BLUE, GREEN=500, WHITE, BLACK=700 };
then RED will have the value 100; BLUE, the value 101;
GREEN, the value 500; WHITE, the value 501; and
BLACK, the value 700.

Listing 3.7. A demonstration of
enumerated constants.

#include <iostream.h>
int main()
{
enum Days { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday };

Days DayOff;
int x;

cout << "What day would you like off (0-6)? ";
cin >> x;
DayOff = Days(x);

if (DayOff == Sunday || DayOff == Saturday)
cout << "\nYou're already off on weekends!\n";

else
cout << "\nOkay, I'll put in the vacation day.\n";

return 0;
}

٣/٢/١٤٣٩

٢٧

Q&A

 Q. If a short int can run out of room and wrap
around, why not always use long integers?

 Q. What happens if I assign a number with a
decimal point to an integer rather than to a float?

 Q. Why not use literal constants; why go to the
bother of using symbolic constants?

 Q. What happens if I assign a negative number to
an unsigned variable?

 Q. Can I work with C++ without understanding bit
patterns, binary arithmetic, and hexadecimal?

Quiz

1. What is the difference between an integral variable and a floating-point
variable?
2. What are the differences between an unsigned short int and a long int?
3. What are the advantages of using a symbolic constant rather than a literal
constant?
4. What are the advantages of using the const keyword rather than #define?
5. What makes for a good or bad variable name?
6. Given this enum, what is the value of BLUE?
enum COLOR { WHITE, BLACK = 100, RED, BLUE, GREEN = 300 };
7. Which of the following variable names are good, which are bad, and which
are invalid?

a. Age
b. !ex
c. R79J
d. TotalIncome
e. __Invalid

٣/٢/١٤٣٩

٢٨

Statements

One of the most common statements is the following
assignment statement:
x = a + b;

 Unlike in algebra, this statement does not mean that x
equals a+b.

 This is read, "Assign the value of the sum of a and b to
x," or "Assign to x, a+b." Even though this statement is
doing two things, it is one statement and thus has one
semicolon. The assignment operator assigns whatever
is on the right side of the equal sign to whatever is on
the left side.

Whitespace

Whitespace (tabs, spaces, and newlines) is generally
ignored in statements. The assignment statement
previously discussed could be written as
x=a+b;

 or as
x =a
+ b ;

 Although this last variation is perfectly legal, it is also perfectly foolish.
 Whitespace can be used to make your programs more readable and easier to

maintain, or it can be used to create horrific and indecipherable code.

٣/٢/١٤٣٩

٢٩

Expressions

 Anything that evaluates to a value is an expression in
C++. An expression is said to return a value.

 Thus, 3+2; returns the value 5 and so is an expression.
 All expressions are statements.

Listing 4.1. Evaluating complex
expressions.

#include <iostream.h>

int main()
{

int a=0, b=0, x=0, y=35;
cout << "a: " << a << " b: " << b;
cout << " x: " << x << " y: " << y << endl;
a = 9;
b = 7;
y = x = a+b;
cout << "a: " << a << " b: " << b;
cout << " x: " << x << " y: " << y << endl;

return 0;
}

Output:
a: 0 b: 0 x: 0 y: 35
a: 9 b: 7 x: 16 y: 16

٣/٢/١٤٣٩

٣٠

Operators

An operator is a symbol that causes the compiler to
take an action. Operators act on operands, and in C++
all operands are expressions. In C++ there are several
different categories of operators.
Two of these categories are

 Assignment operators.
 Mathematical operators.

Assignment Operator

The assignment operator (=) causes the operand on the left side of the
assignment operator to have its value changed to the value on the right
side of the assignment operator. The expression
x = a + b;
assigns the value that is the result of adding a and b to the operand x.

 An operand that legally can be on the left side of an assignment
operator is called an lvalue. That which can be on the right side is
called (you guessed it) an rvalue.

 Constants are r-values. They cannot be l-values. Thus, you can write
x = 35; // ok

 but you can't legally write
35 = x; // error, not an lvalue!

٣/٢/١٤٣٩

٣١

Mathematical Operators

 There are five mathematical operators: addition (+),
subtraction (-), multiplication (*), division (/), and
modulus (%).

 Addition and subtraction work as you would expect,
although subtraction with unsigned integers can lead
to surprising results, if the result is a negative number.

Integer Division and Modulus

 Integer division is somewhat different from everyday
division. When you divide 21 by 4, the result is a real
number (a number with a fraction). Integers don't have
fractions, and so the "remainder" is lopped off.

 The answer is therefore 5. To get the remainder, you take 21
modulus 4 (21 % 4) and the result is 1. The modulus
operator tells you the remainder after an integer division.

 Finding the modulus can be very useful. For example, you
might want to print a statement on every 10th action. Any
number whose value is 0 when you modulus 10 with that
number is an exact multiple of 10. Thus 1 % 10 is 1, 2 % 10 is
2, and so forth, until 10 % 10, whose result is 0. 11 % 10 is
back to 1, and this pattern continues until the next multiple
of 10, which is 20.

٣/٢/١٤٣٩

٣٢

WARNING
Many novice C++ programmers inadvertently put a semicolon after their if
statements:

if(SomeValue < 10);
SomeValue = 10;

What was intended here was to test whether SomeValue is less than 10, and if
so, to set it to 10, making 10 the minimum value for SomeValue.
Running this code snippet will show that SomeValue is always set to 10! Why?
The if statement terminates with the semicolon (the do-nothing operator).
Remember that indentation has no meaning to the compiler.

This snippet could more accurately have been written as:
if (SomeValue < 10) // test
; // do nothing
SomeValue = 10; // assign

Removing the semicolon will make the final line part of the if statement and
will make this code do what was intended.

Combining the Assignment and
Mathematical Operators

It is not uncommon to want to add a value to a variable, and then
to assign the result back into the variable. If you have a variable
myAge and you want to increase the value by two, you can write

int myAge = 5;
int temp;
temp = myAge + 2; // add 5 + 2 and put it in temp
myAge = temp; // put it back in myAge

This method, however, is terribly convoluted and wasteful. In
C++, you can put the same variable on both sides of the
assignment operator, and thus the preceding becomes

myAge = myAge + 2;
which is much better. In algebra this expression would be
meaningless, but in C++ it is read as "add two to the value in
myAge and assign the result to myAge."

٣/٢/١٤٣٩

٣٣

Even simpler to write, but perhaps a bit harder to read
is:

myAge += 2;

The self-assigned addition operator (+=) adds the
rvalue to the lvalue and then reassigns the result into
the lvalue. This operator is pronounced "plus-equals."
There are self-assigned subtraction (-=), division (/=),
multiplication (*=), and modulus (%=) operators as
well.

Increment and Decrement

The most common value to add (or subtract) and then reassign
into a variable is 1. In C++, increasing a value by 1 is called
incrementing, and decreasing by 1 is called decrementing. There
are special operators to perform these actions.

 The increment operator (++) increases the value of the variable
by 1, and the decrement operator (--) decreases it by 1. Thus, if
you have a variable, C, and you want to increment it, you would
use this statement:

C++; // Start with C and increment it.
 This statement is equivalent to the more verbose statement

C = C + 1;
 which you learned is also equivalent to the moderately verbose

statement
C += 1;

٣/٢/١٤٣٩

٣٤

Prefix and Postfix

 Both the increment operator (++) and the decrement operator(--
) come in two varieties: prefix and postfix.

 The prefix variety is written before the variable name
(++myAge); the postfix variety is written after (myAge++).

 In a simple statement, it doesn't much matter which you use, but
in a complex statement, when you are incrementing (or
decrementing) a variable and then assigning the result to
another variable, it matters very much.

 The prefix operator is evaluated before the assignment, the
postfix is evaluated after.

 The semantics of prefix is this: Increment the value and then
fetch it. The semantics of postfix is different: Fetch the value and
then increment the original.

This can be confusing at first, but if x is an integer whose
value is 5 and you write

int a = ++x;
you have told the compiler to increment x (making it 6)
and then fetch that value and assign it to a.
Thus, a is now 6 and x is now 6.
If, after doing this, you write

int b = x++;
you have now told the compiler to fetch the value in x (6)
and assign it to b, and then go back and increment x. Thus,
b is now 6, but x is now 7.

٣/٢/١٤٣٩

٣٥

Listing 4.3. A demonstration of prefix and
postfix operators.

// Listing 4.3 - demonstrates use of
// prefix and postfix increment and
// decrement operators
#include <iostream.h>
int main()
{

int myAge = 39; // initialize two integers
int yourAge = 39;

cout << "I am: " << myAge << " years old.\n";
cout << "You are: " << yourAge << " years old\n";
myAge++; // postfix increment
++yourAge; // prefix increment
cout << "One year passes...\n";
cout << "I am: " << myAge << " years old.\n";
cout << "You are: " << yourAge << " years old\n";
cout << "Another year passes\n";

cout << "I am: " << myAge++ << " years old.\n";
cout << "You are: " << ++yourAge << " years old\n";
cout << "Let's print it again.\n";
cout << "I am: " << myAge << " years old.\n";
cout << "You are: " << yourAge << " years old\n";

return 0;
}

Listing 4.3 Output
I am 39 years old
You are 39 years old
One year passes
I am 40 years old
You are 40 years old
Another year passes
I am 40 years old
You are 41 years old
Let's print it again
I am 41 years old
You are 41 years old

٣/٢/١٤٣٩

٣٦

Precedence

 In the complex statement:
x = 5 + 3 * 8;

 which is performed first, the addition or the multiplication?
 If the addition is performed first, the answer is 8 * 8, or 64. If the

multiplication is performed first, the answer is 5 + 24, or 29.
 Every operator has a precedence value, Multiplication has higher

precedence than addition, and thus the value of the expression is 29.
 When two mathematical operators have the same precedence, they are

performed in left-to-right order.
 Thus

x = 5 + 3 + 8 * 9 + 6 * 4;
 is evaluated multiplication first, left to right. Thus, 8*9 = 72, and 6*4 =

24. Now the expression is essentially
x = 5 + 3 + 72 + 24;

 Now the addition, left to right, is 5 + 3 = 8; 8 + 72 = 80; 80 + 24 = 104.

Precedence

TotalSeconds = NumMinutesToThink + NumMinutesToType * 60

TotalSeconds = (NumMinutesToThink + NumMinutesToType) * 60

٣/٢/١٤٣٩

٣٧

Nesting Parentheses

For complex expressions, you might need to nest parentheses one
within another. For example, you might need to compute the total
seconds and then compute the total number of people who are
involved before multiplying seconds times people:

TotalPersonSeconds = (((NumMinutesToThink + NumMinutesToType) * 60)
* (PeopleInTheOffice + PeopleOnVacation))

TotalMinutes = NumMinutesToThink + NumMinutesToType;
TotalSeconds = TotalMinutes * 60;
TotalPeople = PeopleInTheOffice + PeopleOnVacation;
TotalPersonSeconds = TotalPeople * TotalSeconds;

٣/٢/١٤٣٩

٣٨

The Nature of Truth

In C++, zero is considered false, and all other values
are considered true, although true is usually
represented by 1. Thus, if an expression is false, it is
equal to zero, and if an expression is equal to zero, it is
false. If a statement is true, all you know is that it is
nonzero, and any nonzero statement is true.

Relational Operators

 The relational operators are used to determine whether two numbers
are equal, or if one is greater or less than the other. Every relational
statement evaluates to either 1 (TRUE) or 0 (FALSE).

 If the integer variable myAge has the value 39, and the integer variable
yourAge has the value 40,

 you can determine whether they are equal by using the relational
"equals" operator:

myAge == yourAge;
// is the value in myAge the same as in yourAge?

 This expression evaluates to 0, or false, because the variables are not
equal.

 The expression
myAge > yourAge; // is myAge greater than yourAge?

evaluates to 0 or false.

٣/٢/١٤٣٩

٣٩

There are six relational operators: equals (==), less than (<), greater than (>),
less than or equal to (<=), greater than or equal to (>=), and not equals (!=).
Name Operator Sample Evaluates
Equals == 100 == 50; false

50 == 50; true
Not Equals != 100 != 50; true

50 != 50; false
Greater Than > 100 > 50; true

50 > 50; false
Greater Than or Equals >= 100 >= 50; true

50 >= 50; true
Less Than < 100 < 50; false

50 < 50; false
Less Than or Equals <= 100 <= 50; false

50 <= 50; true

The if Statement

 Normally, your program flows along line by line in the
order in which it appears in your source code.

 The if statement enables you to test for a condition
(such as whether two variables are equal) and branch
to different parts of your code, depending on the
result.

 The simplest form of an if statement is this:
if (expression)

statement;

٣/٢/١٤٣٩

٤٠

 The expression in the parentheses can be any
expression at all, but it usually contains one of the
relational expressions. If the expression has the value
0, it is considered false, and the statement is skipped.
If it has any nonzero value, it is considered true, and
the statement is executed.

 Consider the following example:
if (bigNumber > smallNumber)

bigNumber = smallNumber;

 Because a block of statements surrounded by braces is exactly equivalent to a
single statement, the following type of branch can be quite large and powerful:

if (expression)
{

statement1;
statement2;
statement3;

}

 Here's a simple example of this usage:
if (bigNumber > smallNumber)
{

bigNumber = smallNumber;
cout << "bigNumber: " << bigNumber << "\n";
cout << "smallNumber: " << smallNumber << "\n";

}

٣/٢/١٤٣٩

٤١

Listing 4.4. A demonstration of branching
based on relational operators.

 // Listing 4.4 - demonstrates if statement
 // used with relational operators
 #include <iostream.h>
 int main()
 {
 int RedSoxScore, YankeesScore;
 cout << "Enter the score for the Red Sox: ";
 cin >> RedSoxScore;

 cout << "\nEnter the score for the Yankees: ";
 cin >> YankeesScore;

 cout << "\n";

 if (RedSoxScore > YankeesScore)
 cout << "Go Sox!\n";

 if (RedSoxScore < YankeesScore)
 {
 cout << "Go Yankees!\n";
 cout << "Happy days in New York!\n";
 }

 if (RedSoxScore == YankeesScore)
 {
 cout << "A tie? Naah, can't be.\n";
 cout << "Give me the real score for the Yanks: ";
 cin >> YankeesScore;

 if (RedSoxScore > YankeesScore)
 cout << "Knew it! Go Sox!";

 if (YankeesScore > RedSoxScore)
 cout << "Knew it! Go Yanks!";

 if (YankeesScore == RedSoxScore)
 cout << "Wow, it really was a tie!";
 }

 cout << "\nThanks for telling me.\n";
 return 0;
 }

else

 Often your program will want to take one branch if y
our condition is true, another if it is false.

 The method shown so far, testing first one condition
and then the other, works fine but is a bit
cumbersome. The keyword else can make for far more
readable code:

if (expression)
statement;

else
statement;

٣/٢/١٤٣٩

٤٢

Listing 4.5. Demonstrating the else
keyword.

// Listing 4.5 - demonstrates if statement
// with else clause
#include <iostream.h>
int main()
{
int firstNumber, secondNumber;
cout << "Please enter a big number: ";
cin >> firstNumber;
cout << "\nPlease enter a smaller number: ";
cin >> secondNumber;
if (firstNumber > secondNumber)

cout << "\nThanks!\n";
else

cout << "\nOops. The second is bigger!";

return 0;
}

Advanced if Statements

It is worth noting that any statement can be used in an if or else clause, even another if or
else statement. Thus, you might see complex if statements in the following form:

if (expression1)
{

if (expression2)
statement1;

else
{

if (expression3)
statement2;

else
statement3;

}
}
else

statement4;

٣/٢/١٤٣٩

٤٣

Listing 4.6. A complex, nested if statement.

 // Listing 4.5 - a complex nested
 // if statement
 #include <iostream.h>
 int main()
 {
 // Ask for two numbers
 // Assign the numbers to bigNumber and littleNumber
 // If bigNumber is bigger than littleNumber,
 // see if they are evenly divisible
 // If they are, see if they are the same number

 int firstNumber, secondNumber;
 cout << "Enter two numbers.\nFirst: ";
 cin >> firstNumber;
 cout << "\nSecond: ";
 cin >> secondNumber;
 cout << "\n\n";

 if (firstNumber >= secondNumber)
 {
 if ((firstNumber % secondNumber) == 0) // evenly divisible?
 {
 if (firstNumber == secondNumber)
 cout << "They are the same!\n";
 else
 cout << "They are evenly divisible!\n";
 }
 else
 cout << "They are not evenly divisible!\n";
 }
 else
 cout << "Hey! The second one is larger!\n";
 return 0;
 }

Listing 4.7. A demonstration of why braces help clarify
which else statement goes with which if statement.

 // Listing 4.7 - demonstrates why braces
 // are important in nested if statements
 #include <iostream.h>
 int main()
 {
 int x;
 cout << "Enter a number less than 10 or greater than 100: ";
 cin >> x;
 cout << "\n";

 if (x > 10)
 if (x > 100)
 cout << "More than 100, Thanks!\n";
 else // not the else intended!
 cout << "Less than 10, Thanks!\n";

 return 0;
 }

 Output:
 Enter a number less than 10 or greater than 100: 20
 Less than 10, Thanks!

٣/٢/١٤٣٩

٤٤

Listing 4.8. A demonstration of the proper use of
braces with an if statement

 // Listing 4.8 - demonstrates proper use of braces
 // in nested if statements
 #include <iostream.h>
 int main()
 {
 int x;
 cout << "Enter a number less than 10 or greater than 100: ";
 cin >> x;
 cout << "\n";

 if (x > 10)
 { if (x > 100)
 cout << "More than 100, Thanks!\n";

}
 else // not the else intended!
 cout << "Less than 10, Thanks!\n";

 return 0;
 }

 Output:
 Enter a number less than 10 or greater than 100: 20

 Write a program that takes hours, minutes, seconds as
an input and print it out in 24 hours & standard
format.

٣/٢/١٤٣٩

٤٥

Logical Operators

Often you want to ask more than one relational
question at a time. "Is it true that x is greater than y, and
also true that y is greater than z?" A program might need
to determine that both of these conditions are true, or
that some other condition is true, in order to take an
action.
Operator Symbol Example
AND && expression1 && expression2
OR || expression1 || expression2
NOT ! !expression

Logical AND

A logical AND statement evaluates two
expressions, and if both expressions are true, the logical
AND statement is true as well. If it is true that you are
hungry, AND it is true that you have money, THEN it is
true that you can buy lunch. Thus,

if ((x == 5) && (y == 5))
would evaluate TRUE if both x and y are equal to 5, and
it would evaluate FALSE if either one is not equal to 5.
Note that both sides must be true for the entire
expression to be true.

٣/٢/١٤٣٩

٤٦

Logical OR

A logical OR statement evaluates two expressions.
If either one is true, the expression is true. If you have
money OR you have a credit card, you can pay the bill.
You don't need both money and a credit card; you need
only one, although having both would be fine as well.
Thus,

if ((x == 5) || (y == 5))
evaluates TRUE if either x or y is equal to 5, or if both
are.

Logical NOT

A logical NOT statement evaluates true if the
expression being tested is false. Again, if the expression
being tested is false, the value of the test is TRUE! Thus

if (!(x == 5))
is true only if x is not equal to 5. This is exactly the same
as writing

if (x != 5)

٣/٢/١٤٣٩

٤٧

Relational Precedence

Relational operators and logical operators, being C++
expressions, each return a value: 1 (TRUE) or 0 (FALSE).
Like all expressions, they have a precedence order (see
Appendix A) that determines which relations are
evaluated first. This fact is important when determining
the value of the statement

if (x > 5 && y > 5 || z > 5)
If x is 3, and y and z are both 10,

if ((x > 5) && (y > 5 || z > 5))

More About Truth and Falsehood

 In C++, zero is false, and any other value is true. Because an expression
always has a value, many C++ programmers take advantage of this
feature in their if statements. A statement such as

if (x) // if x is true (nonzero)
x = 0;

can be read as "If x has a nonzero value, set it to 0." This is a bit of a cheat;
it would be clearer if written

if (x != 0) // if x is nonzero
x = 0;

 Both statements are legal, but the latter is clearer.

 These two statements also are equivalent:
if (!x) // if x is false (zero)
if (x == 0) // if x is zero

٣/٢/١٤٣٩

٤٨

Conditional (Ternary) Operator

 The conditional operator (?:) is C++'s only ternary
operator; that is, it is the only operator to take three
terms.

 The conditional operator takes three expressions and
returns a value:

(expression1) ? (expression2) : (expression3)
 This line is read as "If expression1 is true, return the

value of expression2; otherwise, return the value of
expression3.

// Listing 4.9 - demonstrates the conditional operator
#include <iostream.h>
int main()
{

int x, y, z;
cout << "Enter two numbers.\n";
cout << "First: ";
cin >> x;
cout << "\nSecond: ";
cin >> y;
cout << "\n";

if (x > y)
z = x;

else
z = y;

cout << "z: " << z;
cout << "\n";

z = (x > y) ? x : y;

cout << "z: " << z;
cout << "\n";

return 0;
}

٣/٢/١٤٣٩

٤٩

Functions

 A function is, in effect, a subprogram that can act on data
and return a value. Every C++ program has at least one
function, main(). When your program starts, main() is
called automatically. main() might call other functions,
some of which might call still others.

 Each function has its own name, and when that name is
encountered, the execution of the program branches to the
body of that function. When the function returns,
execution resumes on the next line of the calling function.

 Functions come in two varieties: user-defined and built-in.
Built-in functions are part of your compiler package--they
are supplied by the manufacturer for your use.

Declaring and Defining Functions

 Using functions in your program requires that you first
declare the function and that you then define the
function.

 The declaration tells the compiler the name, return
type, and parameters of the function.

 The definition tells the compiler how the function
works.

 No function can be called from any other function that
hasn't first been declared. The declaration of a
function is called its prototype.

٣/٢/١٤٣٩

٥٠

Declaring the Function

There are three ways to declare a function:
 Write your prototype into a file, and then use the

#include directive to include it in your program.
 Write the prototype into the file in which your

function is used.
 Define the function before it is called by any other

function. When you do this, the definition acts as its
own declaration.

Defining the Function

 The definition of a function consists of the function
header and its body.

 The header is exactly like the function prototype,
except that the parameters must be named, and there
is no terminating semicolon.

 The body of the function is a set of statements
enclosed in braces.

٣/٢/١٤٣٩

٥١

Functions

 Function Prototype Syntax
return_type function_name ([type [parameterName]]...);

 Function Definition Syntax
return_type function_name ([type parameterName]...)
{
statements;
}

Listing 5.1. A function declaration and
the definition and use of that function.

// Listing 5.1 - demonstrates the use of function prototypes
typedef unsigned short USHORT;
#include <iostream.h>
USHORT FindArea(USHORT length, USHORT width); //function prototype
int main()
{

USHORT lengthOfYard;
USHORT widthOfYard;
USHORT areaOfYard;
cout << "\nHow wide is your yard? ";
cin >> widthOfYard;
cout << "\nHow long is your yard? ";
cin >> lengthOfYard;
areaOfYard= FindArea(lengthOfYard,widthOfYard);
cout << "\nYour yard is ";
cout << areaOfYard;
cout << " square feet\n\n";

return 0;
}
USHORT FindArea(USHORT l, USHORT w)
{
return l * w;
}

٣/٢/١٤٣٩

٥٢

Write C++ program to find greatest number
between three numbers using if-els.

Home Work
 Wright a C++ program to find the area and perimeter

of a right triangle.

c = a*a + b*b;
z = sqrt(c);

٣/٢/١٤٣٩

٥٣

Function Prototype Examples

 long FindArea(long length, long width); // returns long,
has two parameters

 void PrintMessage(int messageNumber); // returns void,
has one parameter

 int GetChoice(); // returns int, has no parameters
 BadFunction(); // returns int, has no parameters

 Every function has a return type. If one is not explicitly
designated, the return type will be int. Be sure to give every
function an explicit return type. If a function does not
return a value, its return type will be void.

Function Definition Examples

long Area(long l, long w)
{

return l * w;
}
void PrintMessage(int whichMsg)
{

if (whichMsg == 0)
cout << "Hello.\n";
if (whichMsg == 1)
cout << "Goodbye.\n";
if (whichMsg > 1)
cout << "I'm confused.\n";

}

٣/٢/١٤٣٩

٥٤

Listing 5.2. The use of local
variables and parameters.

#include <iostream.h>

float Convert(float);
int main()
{
float TempFer;
float TempCel;
cout << "Please enter the temperature in Fahrenheit: ";
cin >> TempFer;
TempCel = Convert(TempFer);
cout << "\nHere's the temperature in Celsius: ";
cout << TempCel << endl;
return 0;
}
float Convert(float TempFer)
{
float TempCel;
TempCel = ((TempFer - 32) * 5) / 9;
return TempCel;
}

Local and Global Variables

 Not only can you pass in variables to the function, but
you also can declare variables within the body of the
function. This is done using local variables, so named
because they exist only locally within the function
itself. When the function returns, the local variables
are no longer available.

 Variables defined outside of any function have global
scope and thus are available from any function in the
program, including main().

٣/٢/١٤٣٩

٥٥

Using Functions as Parameters to
Functions
 Although it is legal for one function to take as a parameter a

second function that returns a value, it can make for code that is
hard to read and hard to debug.

 As an example, say you have the functions double(), triple(),
square(), and cube(), each of which returns a value. You could
write

Answer = (double(triple(square(cube(myValue)))));
 This statement takes a variable, myValue, and passes it as an

argument to the function cube(), whose return value is passed as
an argument to the function square(), whose return value is in
turn passed to triple(), and that return value is passed to
double(). The return value of this doubled, tripled, squared, and
cubed number is now passed to Answer.

 It is difficult to be certain what this code does (was the value
tripled before or after it was squared?), and if the answer is
wrong it will be hard to figure out which function failed.

 An alternative is to assign each step to its own intermediate
variable:

unsigned long myValue = 2;
unsigned long cubed = cube(myValue); // cubed = 8
unsigned long squared = square(cubed); // squared = 64
unsigned long tripled = triple(squared); // tripled = 196
unsigned long Answer = double(tripled); // Answer = 392

 Now each intermediate result can be examined, and the order of
execution is explicit.

٣/٢/١٤٣٩

٥٦

Return Values

 When the return keyword is encountered, the
expression following return is returned as the value of
the function. Program execution returns immediately
to the calling function, and any statements following
the return are not executed.

 It is legal to have more than one return statement in a
single function. Listing 5.6 illustrates this idea.

Listing 5.6. A demonstration of
multiple return statements.

#include <iostream.h>
int Doubler(int AmountToDouble);
int main()
{

int result = 0;
int input;

cout << "Enter a number between 0 and 10,000 to double: ";
cin >> input;

cout << "\nBefore doubler is called... ";
cout << "\ninput: " << input << " doubled: " << result<< "\n";

result = Doubler(input);

cout << "\nBack from Doubler...\n";
cout << "\ninput: " << input << " doubled: " << result << "\n";

return 0;
}

٣/٢/١٤٣٩

٥٧

int Doubler(int original)
{
if (original <= 10000)
return original * 2;
else
return -1;
cout << "You can't get here!\n";
}

Output
Enter a number between 0 and 10,000 to double: 9000
Before doubler is called...
input: 9000 doubled: 0
Back from doubler...
input: 9000 doubled: 18000
Enter a number between 0 and 10,000 to double: 11000
Before doubler is called...
input: 11000 doubled: 0
Back from doubler...
input: 11000 doubled: -1

٣/٢/١٤٣٩

٥٨

Overloading Functions

 C++ enables you to create more than one function with the
same name. This is called function overloading. The
functions must differ in their parameter list, with a
different type of parameter, a different number of
parameters, or both. Here's an example:

int myFunction (int, int);
int myFunction (long, long);
int myFunction (long);

 The return types can be the same or different on
overloaded functions. You should note that two functions
with the same name and parameter list, but different
return types, generate a compiler error.

 Function overloading i s also called function polymorphism.
Poly means many, and morph means form: a polymorphic
function is many-formed.

 Function polymorphism refers to the ability to "overload" a
function with more than one meaning. By changing the
number or type of the parameters, you can give two or
more functions the same function name, and the right one
will be called by matching the parameters used.

 This allows you to create a function that can average
integers, doubles, and other values without having to
create individual names for each function, such as
AverageInts(), AverageDoubles(), and so on.

٣/٢/١٤٣٩

٥٩

 Suppose you write a function that doubles whatever input you give it. You
would like to be able to pass in an int, a long, a float, or a double. Without
function overloading, you would have to create four function names:

int DoubleInt(int);
long DoubleLong(long);
float DoubleFloat(float);
double DoubleDouble(double);

 With function overloading, you make this declaration:
int Double(int);
long Double(long);
float Double(float);
double Double(double);

 This is easier to read and easier to use. You don't have to worry about which one
to call; you just pass in a variable, and the right function is called automatically.

Listing 5.8. A demonstration of
function polymorphism.

#include <iostream.h>

int Double(int);
long Double(long);
float Double(float);
double Double(double);

int main()
{

int myInt = 6500;
long myLong = 65000;
float myFloat = 6.5F;
double myDouble = 6.5e20;

int doubledInt;
long doubledLong;
float doubledFloat;
double doubledDouble;

٣/٢/١٤٣٩

٦٠

cout << "myInt: " << myInt << "\n";
cout << "myLong: " << myLong << "\n";
cout << "myFloat: " << myFloat << "\n";
cout << "myDouble: " << myDouble << "\n";

doubledInt = Double(myInt);
doubledLong = Double(myLong);
doubledFloat = Double(myFloat);
doubledDouble = Double(myDouble);

cout << "doubledInt: " << doubledInt << "\n";
cout << "doubledLong: " << doubledLong << "\n";
cout << "doubledFloat: " << doubledFloat << "\n";
cout << "doubledDouble: " << doubledDouble << "\n";

return 0;
}

int Double(int original)
{

cout << "In Double(int)\n";
return 2 * original;

}

long Double(long original)
{

cout << "In Double(long)\n";
return 2 * original;

}

float Double(float original)
{

cout << "In Double(float)\n";
return 2 * original;

}

double Double(double original)
{

cout << "In Double(double)\n";
return 2 * original;

}

٣/٢/١٤٣٩

٦١

Output
myInt: 6500
myLong: 65000
myFloat: 6.5
myDouble: 6.5e+20
In Double(int)
In Double(long)
In Double(float)
In Double(double)
DoubledInt: 13000
DoubledLong: 130000
DoubledFloat: 13
DoubledDouble: 1.3e+21

