
Save from: www.uotiq.org/dep‐cs

Software engineering

3rd Class
 يسرى حسين. د: أستاذة المادة

Chapter 1: An Introduction To Software Engineering

 1

University of Technology
Computer Science Department
Software Engineering 3rd Class
Lecturer Yossra Hussain

An introduction to Software Engendering

Topics:

 1.1 The Computer Software
 1.2 Software Engineering
 1.3 The characteristic of software engineer

1.4 The Evolving Role of Software
1.5 Software Characteristics
1.6 Software Applications
1.7 Software: A crisis on the horizon
1.8 The Attributes of Good software
1.9 Software Lifecycle

 1.10 Software development

Chapter 1: An Introduction To Software Engineering

 2

1.1 The Computer Software

It is the product that software engineers design and build. It encompasses programs

that execute within a computer of any size and architecture, documents that encompass

hard-copy and virtual forms, and data that combine numbers and text but also includes

representations of pictorial, video, and audio information.

Software engineers built it, and virtually everyone in the industrialized world uses it either

directly or indirectly.

When you built computer software like you built any successful product, by applying a

process that leads to a high-quality result that meets the needs of the people who will use

the product. You apply a software engineering approach.

The software might take the following forms:

1. Instructions: Computer programs, that when executed provide desired function and

performance.

2. Data structured: That enable the programs to adequately manipulate information.

3. Documents: That describes the operation and use of programs.

1.2 Software Engineering

As software engineers, we use our knowledge of computer-and computing to help

solve problems. Often the problem with which we are dealing is related to a computer or

an existing computer system, but sometimes the difficulties underlying the problem have

nothing to do with computers. Therefore, it is essential that we first understand the nature

of the problem. In particular, we must be very careful not to impose computing

machinery on every problem that comes our way. We must solve the problem first. Then,

if need be, we can use technology as a tool to implement our solution.

Chapter 1: An Introduction To Software Engineering

 3

Solving problems:
Most problems are large and sometimes tricky to handle, especially if they represent

something new that has never been solved before. So we must begin investigating it by :

a) Analyzing: Breaking the problem into pieces that we can understand and try to deal

with. We can thus describe the larger problem as a collection of small problems and their

interrelationships.

 Figure (1.1) illustrates how analysis works. It is important to remember that the

relationships (the arrows in the figure, and the relative position of the subproblems) are as

essential as the subproblems themselves.

b) Synthesis: construct our solution from components that address the problem's various

aspects, (putting together of a large structure from small building blocks). Figure (1.2)

illustrates this reverse process.

Software engineers use’s tools techniques, procedures and paradigms to enhance the

quality of their software products. Figure (1.3) illustrates the relationship between

computer science and software engineering.

 Figure (1.1): The process of analysis

Chapter 1: An Introduction To Software Engineering

 4

Figure (1.2): The process of synthesis

Figure (1.3): The relationship between computer science and
software engineering

Chapter 1: An Introduction To Software Engineering

 5

1.3 The characteristic of software engineer

1- Good programmer and fluent in one or more programming language.

2- Well versed data structure and approaches.

3- Familiar with several designs approaches.

4- Be able to translate vague (not clear) requirements and desires into

precise specification.

5- Be able to converse with the user of the system in terms of application

not in “computer”.

6- Able to a build a model. The model is used to answer questions about

the system behavior and its performance.

7- Communication skills and interpersonal skills.

1.4 The Evolving Role of Software

Today, software takes on a dual role. It is a product and, at the same time, the

vehicle for delivering a product.

1- As a product: it delivers the computing potential embodied by computer hardware or,

more broadly, a network of computers that are accessible by local hardware. Whether it

resides within a cellular phone or operates inside a mainframe computer, software is

information transformer (producing, managing, acquiring, modifying, displaying, or

transmitting) information that can be as simple as a single bit or as complex as a

multimedia presentation.

2- As the vehicle used to deliver the product: software acts as the basis for the :

a. control of the computer (operating systems).

b. The communication of information (networks).

Chapter 1: An Introduction To Software Engineering

 6

c. The creation and control of other programs (software tools and environments).

The role of computer software has undergone significant change over a time span

of little more than 50 years. Dramatic improvements in hardware performance,

profound changes in computing architectures, vast increases in memory and storage

capacity, and a wide variety of exotic input and output options have all precipitated

more sophisticated and complex computer-based systems. Sophistication and

complexity can

produce dazzling results when a system succeeds, but they can also pose huge problems

for those who must build complex systems.

The lone programmer of an earlier era has been replaced by a team of software

specialists, each focusing on one part of the technology required to deliver a complex

application.

1.5 Software Characteristics

Software is a logical rather than a physical system element. Therefore, software

has characteristics that are considerably different than those of hardware:

1. Software is developed or engineered; it is not manufactured in the classical

sense.

Although some similarities exist between software development and hardware

manufacture, the two activities are fundamentally different. In both activities, high

quality is achieved through good design, but the manufacturing phase for hardware can

introduce quality problems that are nonexistent (or easily corrected) for software.

Software costs are concentrated in engineering. This means that software projects

cannot be managed as if they were manufacturing projects.

Chapter 1: An Introduction To Software Engineering

 7

2. Software doesn't "wear out."

Figure (l .4) depicts failure rate as a function of time for hardware. The relationship,

often called the "bathtub curve," indicates that hardware exhibits relatively high failure

rates early in its life (these failures are often attributable to design or manufacturing

defects); defects are corrected and the failure rate drops to a steady-state level (ideally,

quite low) for some period of time. As time passes, however, the failure rate rises again

as hardware components suffer from the cumulative affects of dust, vibration, abuse,

temperature extremes, and many other environmental maladies. Stated simply, the

hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hardware to wear

out. In theory, therefore, the failure rate curve for software should take the form of the

"idealized curve" shown in Figure 1.5.

Figure (1.4): Failure curve for hardware

Chapter 1: An Introduction To Software Engineering

 8

Undiscovered defects will cause high failure rates early in the life of a program.

However, these are corrected (ideally, without introducing other errors) and the curve

flattens as shown. The idealized curve is a gross oversimplification of actual failure

models for software. However, the implication is clear-software doesn't wear out. But it

does deteriorate! This seeming contradiction can best be explained by considering the

"actual curve" shown in Figure 1.5. During its life, software will undergo change

(maintenance). As changes are made, it is likely that some new defects will be

introduced, causing the failure rate curve to spike as shown in Figure 1.5. Before the

curve can return to the original steady state failure rate, another change is requested,

causing the curve to spike again. Slowly, the minimum failure rate level begins to rise-

the software is deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and software.

When a hardware component wears out, it is replaced by a spare part. There are no

software spare parts. Every software failure indicates an error in design or in the process

through which design was translated into machine executable code. Therefore, software

maintenance involves considerably more complexity than hardware maintenance.

Figure (1.5): Idealized and actual failure curves for software

Chapter 1: An Introduction To Software Engineering

 9

3. Although the industry is moving toward component-based assembly, most

software continues to be custom built.

In the hardware world, component reuse is a natural part of the engineering

process. In the software world, it is something that has only begun to be achieved on a

broad scale.

A software component should be designed and implemented so that it can be reused in

many different programs. In the 1960s, we built scientific subroutine libraries that were

reusable in a broad array of engineering and scientific applications. These subroutine

libraries reused well-defined algorithms in an effective manner but had a limited

domain of application. Today, we have extended our view of reuse to encompass not

only algorithms but also data structure. Modern reusable components encapsulate both

data and the processing applied to the data, enabling the software engineer to create new

applications from reusable parts. For example, today's graphical user interfaces are built

using reusable components that enable the creation of graphics windows, pull-down

menus, and a wide variety of interaction mechanisms. The data structure and processing

detail required to build the interface are contained with a library of reusable components

for interface construction.

1.6 Software Applications

The following software areas indicate the breadth of potential applications:

1. System software: It is a collection of programs written to service other programs.

Some system software (e.g., compilers, editors, and file management utilities) process

complex, but determinate, information structures. Other systems applications (e.g.,

operating system components, drivers, telecommunications processors) process largely

indeterminate data.

2. Real-time software: Software that monitors/analyzes/controls real world events as

they occur is called real time. Real-time differs from “interactive” or “time sharing“. A

real-time system must respond within strict time constraints. The response time of an

interactive (or time sharing) system can normally be exceeded without results.

Chapter 1: An Introduction To Software Engineering

 10

3. Business software: Business information processing is the largest single software

application area. Discrete "systems" (e.g., payroll, accounts receivable/payable,

inventory).

4. Engineering and scientific software: modern applications within the

engineering/scientific area are moving away from conventional numerical algorithms.

Computer-aided design, system simulation, and other interactive applications have

begun to take on real-time and even system software characteristics.

5. Embedded software: Intelligent products have become commonplace in nearly

every consumer and industrial market (e.g., keypad control for a microwave oven or

digital functions in an automobile such as fuel control, and braking systems).

6. Personal computer software: Such as(Word processing, spreadsheets, computer

graphics, multimedia, entertainment, database management).

7. Web-based software: The Web pages retrieved by a browser are software that

incorporates executable instructions (e.g., HTML, Perl, or Java), and data (e.g.,

hypertext and a variety of visual and audio formats).

8. Artificial intelligence software: It makes use of nonnumerical algorithms to solve

complex problems that are not amenable to computation or straightforward analysis.

Expert systems, also called knowledge-based systems, pattern recognition (image and

voice), artificial neural networks, theorem proving, and game playing are representative

of applications within this category.

1.7 Software: A crisis on the horizon

Whether we call it a software crisis or affliction, the term alludes to a set of problems

that are encountered in the development of computer software. The problems are not

limited to software that “doesn’t function properly”. Rather, the affliction encompasses

problems associated with how we develop software, how we support a growing volume

of existing software, and how we can expect to keep pace with a growing demand for

more software.

Chapter 1: An Introduction To Software Engineering

 11

1.8 The Attributes of Good Software

As well as the service which they provide software products have a number of other

associated attributes which reflect the quality of that software.

These attributes are not directly concerned with what the software dose, rather they

reflect its behavior which it is executing and the structure and organization of the source

program and associated documentation. Examples of these attributes (some time called

non-functional attributes) are the software’s response time to use query and the

understandability of the program code. The specific set of attributes which you might

expect from a software system obviously depends on its application. Therefore a

banking system must be secure, on interactive game must be responsive, a telephone

switching system must be reliable, etc. these can be generated in the following

attributes:

1- Maintainability: software should be written in such a way that it may evolve to meet

the changing needs of customer. This is critical attribute because software change is an

inevitable

2- Dependability: software dependability has a range of characteristics, including

reliability, security and safety. Dependable software should not cause physical or

economic damage in the event of system failure.

3- efficiency: software should not make wasteful use of system resources, such as

memory and processor cycles. Therefore efficiency includes responsiveness, processing

time, memory utilization etc…

4- Usability: software must be usable, without under effort by the type of user for whom

it is designed. This means that it should have an appropriate userinterface and adequate

documentation.

1.8 Software Lifecycle

Each software product proceeds to a number of distinct stages, these are:

• Requirements engineering

Chapter 1: An Introduction To Software Engineering

 12

• Software design

• Software construction

• Validation and verification

• Software testing

• Software deployment

• Software maintenance

Depending the software process used for the development of the software

product, these stages may occur in different orders, or frequency.

1.9.1 Requirements Engineering (requirement analysis and definition by using

engineering approach)

Requirements engineering is the interface between customers and developers on a

software project. Requirements should make explicit the ideas of the customer about the

prospective system.

1.9.2 Software Design

The designers converts the logical software requirements from stage 1 into a technical

software design by describe the software in such a way that programmers can write line

of code that implement what the requirements specify.

1.9.3 Software Construction

Software construction is concerned with implementing the softwaredesign by means of

programs in one or more programming languages and setting up a build management

system for compiling and linking the programs.

This stage content several steps, these are :

a. Software reuse

1. Component based software engineering

2. Software product lines

b. Security and reliability

c. Software documentation

d. Coding standards

Chapter 1: An Introduction To Software Engineering

 13

a. Software Reuse

The goal of software engineering is to achieve many features with little effort and few

defects. Software reuse is believed to play an important role in achieving this goal by

encapsulating effort in units of source code, which can be reused in other projects.

However, the effort needed to make something reusable may not be worth it, if it is only

reused few times, or needs extensive adaptation for each reuse.

a.1. Component Based Software Engineering

Building software systems from prefab software components is an old dream of

software engineering.

a.2. Software Product Lines

Software systems are often part of a family of similar systems. The goal of a software

product line is to maintain a set of reusable core artifacts that are common to all systems

in the product line. Thus, code for a specific product can focus on the specifics of that

product, reusing the common functionality.

b. Security And Reliability

Software must be dependable by making it reliable (software should work very well

under any environments), secure and safety (by verifying from user authentication to

using any system).

c. Software Documentation

 • User documentation?

 • Technical documentation?

 • Documentation generation?

d. Coding Standards

Coding standards are important to ensure portability and make code maintainable

by others than the original developer.

1.8.4 Validation And Verification

• Software inspection

• Software testing

Chapter 1: An Introduction To Software Engineering

 14

1.9.4.a) Software Inspection

Software inspections are reviews of the code with the purpose of detecting

defects. In an inspection someone other than the programmer reads a program unit of

limited size to determine whether it satisfies the requirements and specification. A

formal process and checklist are used to ensure that no aspects are forgotten.

1.9.4.b) Software Testing

Testing each unit founded in this software, follow by testing software integration.

1.9.5 Software Deployment

After development, software should be put to use. That is, it should be released

and made available to users, who can then download, install, and activate it. These

activities are captured under the common term software deployment. Richard S. Hall in

the 'Software Deployment Information Clearinghouse' defines software deployment as

follows: "The term software deployment refers to all of the activities that occur after a

software system has been developed and made available for release. As such, software

deployment includes activities such as packaging, releasing, installing, configuring,

updating, and uninstalling a software system." and "Software deployment is the

assembly and maintenance of the resources necessary to use a version of a system at a

particular site".

The following deployment activities make up the software deployment process:

� Release

� Packaging

� Transfer

� Installation

� Configuration

� Activation

� De-activation

� Update

� Adapt

� De-installation

Chapter 1: An Introduction To Software Engineering

 15

� De-release

These activities are not necessarily performed sequentially. Many phases of the

deployment process are often performed manually.

For example, downloading, building and installing a source distribution of a software

package, requires a number of commands to be formulated and executed. Each such

command requires knowledge of some sort about the activity.

Manual deployment does not scale when deploying:

� many applications

� applications composed from separately deployed components

� on multiple machines

� on different types of machines

1.9.6 Software Maintenance
As software evolves after its first release, software maintenance is needed to improve it, i.e., repair

defects, and to extend it, i.e., add new functionality.

1.10 Software development
Three phases to develop the software

1- definition

2- design

3- maintenance

1- Definition

1- what information to be processed

2- What design constrains exist.

3- What function and performance desired.

4- What interfaces are desired.

5- What validation criteria are required?

6- What is modeling?

Chapter 1: An Introduction To Software Engineering

 16

2- Design

1- How data structures to be designed.

2- How procedural details to be implemented.

3- How design to be translated into language.

4- How testing is performed.

3- Maintenance

1- error

2- Adaptation.

3- Modification

 Chapter2: The Software Process Models

 17

University of Technology
Computer Science Department
Software Engineering 3rd Class
Lecturer: Yossra Hussain

Topics

1- Software Engineering - A Layered Technology:
2- Software Process Models

 2.1 The Waterfall Model
 2.2 The Prototype Model
 2.3 Evolutionary Software Process Models

2.2.3.a The Incremental Model
2.2.3.b The Spiral Model

 2.4Component – Based Development

Chapter two

 Chapter2: The Software Process Models

 18

2.1 Software Engineering - A Layered Technology:

The IEEE (IEEE93) has developed a more comprehensive
definition when it states:
Software Engineering: the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance
of software; that is, the application of engineering to software.
Software engineering is a layered technology (figure 2.1). These layers
are:
1- A quality focus: any engineering approach (including software

engineering) must rest on an organizational commitment to quality.
Total quality management and similar philosophies foster a continuous
process improvement culture, and it is this culture that ultimately leads
to the development of increasingly more mature approaches to
software engineering. The bedrock that supports software
engineering is a focus on quality.

2- Process: the foundation for software engineering is the process layer.
Software engineering process is the glue that holds the technology
layers together and enables rational and timely development of
computer software. Process defines a framework for a set of key
process areas (KPAs) that must be established for effective delivery
of software engineering technology. The key process areas from the
basis for management control of software projects and establish the
context in which technical methods are applied, work products
(models, documents, data, reports, forms, etc.) are produced, milestones
are established, quality is ensured, and change is properly managed.

3- Methods: software engineering methods provide the technical "how
to s" for building software methods encompass a broad array of
tasks that include requirements analysis, design, program construction,
testing and maintenance. Software engineering methods rely on a set of
basic principles that govern each area of the technology and include
modeling activities and other descriptive techniques.

4- Tools: software engineering tools provide automated or semi-
automated support for the process and the methods. When tools are
integrated so that information created by one tool can be used by
another, a system for the support of software development, called
computer - aided software engineering (CASE), is established. CASE
combines software, hardware, and software engineering database (a
repository containing important information about analysis, design
program construction, and testing) to create a software engineering
environment that is analogous to CAD/CAE (computer - aided
design/engineering) for hardware.

 Chapter2: The Software Process Models

 19

2.2 Software Process Models
There are various software development approaches defined and

designed which are used/employed during development process of software,
these approaches are also referred as "Software Development Process
Models". Each process model follows a particular life cycle in order to
ensure success in process of software development.

2.2.1 The Waterfall Model

One such approach/process used in Software Development is "The
Waterfall Model". Waterfall approach was first Process Model to be
introduced and followed widely in Software Engineering to ensure success
of the project. In "The Waterfall" approach, the whole process of software
development is divided into separate process phases, these are:

1) Requirement Specifications (analysis and definition).
2) Software Design.
3) Implementation.
4) Testing.
5) Maintenance.

All these phases are cascaded to each other so that second phase is
started as and when defined set of goals are achieved for first phase and it
is signed off, so the name "Waterfall Model".
1) Requirement Analysis & Definition: All possible requirements of

the system to be developed are captured in this phase. Requirements
are set of functionalities and constraints that the end-user (who will be
using the system) expects from the system. The requirements are
gathered from the end-user by consultation, these requirements are
analyzed for their validity and the possibility of incorporating the
requirements in the system to be development is also studied. Finally, a
Requirement Specification document is created which serves the
purpose of guideline for the next phase of the model.

 Chapter2: The Software Process Models

 20

2) System & Software Design: Before a starting for actual coding, it is
highly important to understand what we are going to create and what
it should look like? The requirement specifications from first phase
are studied in this phase and system design is prepared. System Design
helps in specifying hardware and system requirements and also helps in
defining overall system architecture. The system design
specifications serve as input for the next phase of the model.

3) Implementation & Unit Testing: On receiving system design
documents, the work is divided in modules/units and actual coding is
started. The system is first developed in small programs called
units, which are integrated in the next phase. Each unit is developed
and tested for its functionality; this is referred to as Unit Testing.
Unit testing mainly verifies if the modules/units meet their
specifications.

4) Integration & System Testing: As specified above, the system is
first divided in units which are developed and tested for their
functionalities. These units are integrated into a complete system
during Integration phase and tested to check if all modules/units
coordinate between each other and the system as a whole behaves as
per the specifications. After successfully testing the software, it is
delivered to the customer.

5) Maintenance: Generally, problems with the system developed
(which are not found during the development life cycle) come up after its
practical use starts, so the issues related to the system are solved after
deployment of the system. Not all the problems come in picture
directly but they arise time to time and needs to be solved; hence this
process is referred as Maintenance.

There are some disadvantages of the Waterfall Model, these are:
1. As it is very important to gather all possible requirements during the

Requirement Gathering and Analysis phase in order to properly design
the system, not all requirements are received at once, the requirements
from customer goes on getting added to the list even after the end of
"Requirement Gathering and Analysis" phase, this affects the system
development process and its success in negative aspects.

2. The problems with one phase are never solved completely during that
phase and in fact many problems regarding a particular phase arise after
the phase is signed off, this results in badly structured system as not all
the problems (related to a phase) are solved during the same phase.

 3. The project is not partitioned in phases in flexible way.
4. As the requirements of the customer goes on getting added to the list, not

all the requirements are fulfilled, this results in development of almost

 Chapter2: The Software Process Models

 21

unusable system. These requirements are then met in newer version of
the system; this increases the cost of system development. Figure (2.2)
shows the flow diagram of the waterfall model.

 Figure (2.2): The flow diagram of the waterfall model

2.2.2 The Prototype Model
The prototype model is using for many reasons, such as:

1. A customer define a set of general objectives for software but does
not identify detailed input, processing, or output requirements.

2. The developer may be unsure of the efficiency of an algorithm, the
adaptability of an operating system, or the form that human/machine
interaction should take. In these, and many other situations, a
prototyping paradigm may offer the best approach.

The stages of the prototyping model:
1) Requirements gathering (listen to customer): developer and customer

meet and define the overall objectives for the software, identify
whatever requirements are known, and outline areas where further
definition is mandatory. A "quick design" then occurs. The quick
design focuses on a representation of those aspects of the software
that will be visible to the customer/user (e.g., input approaches and
output formats).

2) Construction of a prototype (build/revise mock-up): writing the
software code depending on the quick design information.

Requirement gathering
and analysis

Deployment of system

Testing

Implementation

System design

Maintenance

 Chapter2: The Software Process Models

 22

3) Evaluation (customer test drives mock-up): the prototype is evaluated by
the customer/user and used to refine requirements for the software to
be developed. Iteration occurs as the prototype is turned to satisfy the
needs of the customer, while at the same time enabling the developer to
better understand what needs to be done.

Yet, prototyping can also be problematic for the following reasons:

a. The customer sees what appears to be a working version of the
software, unaware that the prototype is held together "with chewing gum
and baling wire" unaware that in the rush to get it working no one
has considered overall software quality or long-term maintainability.
When informed that the product must be rebuilt so that high levels of
quality can be maintained, the customer cries foul and demands that "a
few fixes" be applied to make the prototype a working product. Too
often, software development management relents.

b. The developer often makes implementation compromises in order to get a
prototype working quickly. An inappropriate operating system or
programming language may be used simply because it is available and
known; an inefficient algorithm may be implemented simply to
demonstrate capability. After a time, the developer may become familiar
with these choices and forget all the reasons why they were inappropriate.
The less-than-ideal choice has now become an integral part of the
system.

Although problems can occur, prototyping can be effective
paradigm for software engineering. The key is to define the rules of the
game at the beginning; that is, the customer and developer must both
agree that the prototype is built to serve as a mechanism for defining
requirements. It is then discarded (at least in part) and the actual software is
engineered with an eye toward quality and maintainability. Figure (2.3)
shows the flow diagram of the prototype model.

19

 Chapter2: The Software Process Models

 23

2.2.4 Evolutionary Software Process Models

Evolutionary models are iterative. They are characterized in a
manner that enables software engineers to develop increasingly more
complete versions of the software. There are several types of that
model, these are:
a. The Incremental Model
b. The Spiral Model
c. The WINWIN Spiral Model
d. The Concurrent Development Model

2.2.4.a The Incremental Model

 The incremental model combines elements of the (linear
sequential model with the iterative philosophy of prototyping).
Referring to Figure 2.4, the incremental model applies linear
sequences in a staggered fashion as calendar time progresses. Each
linear sequence produces a deliverable “increment” of the software. For
example, word-processing software developed using the incremental
paradigm might:
1) Deliver basic file management, editing, and document production

functions in the first increment.
2) More sophisticated editing and document production capabilities in

the second increment.
3) Spelling and grammar checking in the third increment.
4) Advanced page layout capability in the fourth increment.
 When an incremental model is used, the first increment is often
a core product. That is, basic requirements are addressed, but many
supplementary features (some known, others unknown) remain
undelivered. The core product is used by the customer. As a result of
use and/or evaluation, a plan is developed for the next increment. The
plan addresses the modification of the core product to better meet the
needs of the customer and the delivery of additional features and
functionality. This process is repeated following the delivery of each
increment, until the complete product is produced.
 The incremental process model, like prototyping and other
evolutionary approaches, is iterative in nature. But unlike prototyping,
the incremental model focuses on the delivery of an operational
product with each increment.

 Chapter2: The Software Process Models

 24

Delivery of 4th
increment

Incremental development is particularly useful when:

A- Staffing is unavailable for a complete implementation by the
business deadline that has been established for the project. Early
increments can be implemented with fewer people. If the core
product is well received, then additional staff (if required) can be
added to implement the next increment.

B- Increments can be planned to manage technical risks. For
example, a major system might require the availability of new
hardware that is under development and whose delivery date is
uncertain. It might be possible to plan early increments in a way
that avoids the use of this hardware, thereby enabling partial
functionality to be delivered to end-users without inordinate
delay.

2.2.3.b The Spiral Model

 Spiral model, originally proposed by Boehm, is an evolutionary
software process model that couples the iterative nature of prototyping
with the controlled and systematic aspects of the linear sequential
model. It provides the potential for rapid development of incremental
versions of the software. Using the spiral model, software is
developed in a series of incremental releases. During early iterations,

Calendar Time
Figure (2.4): The incremental model

 Chapter2: The Software Process Models

 25

the incremental release might be a paper model or prototype. During
later iterations, increasingly more complete versions of the engineered
system are produced.

 Figure (2.5): The Spiral model

 A spiral model is divided into a number of framework
activities, also called task regions. Figure 2.5 depicts a spiral model that
contains six task regions:
1. Customer communication-tasks required to establish effective

communication between developer and customer.
2. Planning-tasks required to define resources, timelines, and other

project-related information.
3. Risk analysis-tasks required to assess both technical and

management risks.
4. Engineering-tasks required to build one or more representations

of the application.
5. Construction and release-tasks required to construct, test, install, and

provide user support (e.g., documentation and training).
6. Customer evaluation-tasks required to obtain customer feedback

based on evaluation of the software representations created during
the engineering stage and implemented during the installation stage.

 Chapter2: The Software Process Models

 26

 As this evolutionary process begins, the software engineering
team moves around the spiral in a clockwise direction, beginning at the
center. The first circuit around the spiral might result in the
development of a product specification; subsequent passes around the
spiral might be used to develop a prototype and then progressively more
sophisticated versions of the software. Each pass through the planning
region results in adjustments to the project plan. Cost and schedule are
adjusted based on feedback derived from customer evaluation. In
addition, the project manager adjusts the planned number of iterations
required to complete the software.
 Unlike classical process models that end when software is
delivered, the spiral model can be adapted to apply throughout the life
of the computer software. An alternative view of the spiral model can
be considered by examining the project entry point axis, also shown in
Figure 2.8. Each cube placed along the axis can be used to represent the
starting point for different types of projects.

 But like other paradigms, the spiral model is not a panacea, for
many reasons:
1. It may be difficult to convince customers (particularly in contract

situations) that the evolutionary approach is controllable.
2. It demands considerable risk assessment expertise and relies on this

expertise for success. If a major risk is not uncovered and managed,
problems will undoubtedly occur.

3. The model has not been used as widely as the linear sequential or
prototyping paradigms. It will take a number of years before efficacy
of this important paradigm can be determined with absolute
certainty.

2.2.4 Component – Based Development

 Object-oriented technologies provide the technical framework
for a component-based process model for software engineering. The
object-oriented paradigm emphasizes the creation of classes that
(encapsulate both data and the algorithms used to manipulate the data).
If properly designed and implemented, object-oriented classes are
reusable across different applications and computer-based system
architectures.

The component-based development (CBD) model (Figure 2.6)
incorporates many of the characteristics of the spiral model, demanding
an iterative approach to the creation of software. However, the
component-based development model composes applications from

 Chapter2: The Software Process Models

 27

prepackaged software components (called classes).
 Classes created in past software engineering projects are stored in a
class library or repository. Once candidate classes are identified, the
class library is searched to determine if these classes already exist. If
they do, they are extracted from the library and reused. If a candidate
class does not reside in the library, it is engineered using object-
oriented methods. The first iteration of the application to be built is
then composed, using classes extracted from the library and any new
classes built to meet the unique needs of the application. Process flow
then returns to the spiral and will ultimately re-enter the component
assembly iteration during subsequent passes through the engineering
activity.
 The component-based development model leads to software
reuse, and reusability provides software engineers with a number of
measurable benefits. Based on studies of reusability, QSM Associates,
Inc., reports component assembly leads to a 70 percent reduction in
development cycle time; an 84 percent reduction in project cost.

 Figure (2.6): The Component – Based Development

 Ch3: Software Process And Project Metrics

 25

University of Technology

Computer Science Department

Software Engineering 3rd Class

Lecturer Yossra Hussain

 Software Process And Project Metrics

Topics:

1. Introduction
2. Measures, Metrics, and Indicators
3. Process and Project Indicators
4. Process Metrics
5. Project Metrics
6. Software Measurement

a. Size-Oriented Metrics
 b. Function-Oriented Metrics

7. Software Quality Metrics
8. Defect Removal Efficiency
9. Integrating Metrics with Software Process
10. Statistical Process Control
11. Metrics for Small Organizations
12. Establishing a Software Metrics Program

 Ch3: Software Process And Project Metrics

 26

3.1 Introduction
 Software process and project metrics are quantitative measures that enable software

engineers to gain insight into the efficiency of the software process and the projects
conducted using the process framework. In software project management, we are primarily
concerned with productivity and quality metrics. The four reasons for measuring software
processes, products, and resources (to characterize, to evaluate, to predict, and to improve).

3.2 Measures, Metrics, and Indicators
• Measure - provides a quantitative indication of the size of some product or process

attribute
• Measurement - is the act of obtaining a measure
• Metric - is a quantitative measure of the degree to which a system, component, or

process possesses a given attribute

3.3 Process and Project Indicators
• Metrics should be collected so that process and product indicators can be ascertained
• Process indicators enable software project managers to: assess project status, track

potential risks, detect problem area early, adjust workflow or tasks, and evaluate team
ability to control product quality

3.4 Process Metrics
• Private process metrics (e.g. defect rates by individual or module) are known only to

the individual or team concerned.
• Public process metrics enable organizations to make strategic changes to improve the

software process.
• Metrics should not be used to evaluate the performance of individuals.
• Statistical software process improvement helps an organization to discover where they

are strong and where are weak.

 Ch3: Software Process And Project Metrics

 27

3.5 Project Metrics
• Software project metrics are used by the software team to adapt project workflow and

technical activities.
• Project metrics are used to avoid development schedule delays, to mitigate potential

risks, and to assess product quality on an on-going basis.
• Every project should measure its inputs (resources), outputs (deliverables), and results

(effectiveness of deliverables).

 Ch3: Software Process And Project Metrics

 28

3.6 Software Measurement
• Direct measures of software engineering process include cost and effort.
• Direct measures of the product include lines of code (LOC), execution speed, memory

size, defects per reporting time period.
• Indirect measures examine the quality of the software product itself (e.g. functionality,

complexity, efficiency, reliability, maintainability).

 Ch3: Software Process And Project Metrics

 29

3.6.a Size-Oriented Metrics
• Derived by normalizing (dividing) any direct measure (e.g. defects or human effort)

associated with the product or project by LOC.
• Size oriented metrics are widely used but their validity and applicability is widely

debated.

3.6.b Function-Oriented Metrics
• Function points are computed from direct measures of the information domain of a

business software application and assessment of its complexity.
• Once computed function points are used like LOC to normalize measures for software

productivity, quality, and other attributes.
• Feature points and 3D function points provide a means of extending the function point

concept to allow its use with real-time and other engineering applications.
• The relationship of LOC and function points depends on the language used to

implement the software.

 Ch3: Software Process And Project Metrics

 30

 Ch3: Software Process And Project Metrics

 31

3.7 Software Quality Metrics
• Factors assessing software quality come from three distinct points of view (product

operation, product revision, product modification).
• Software quality factors requiring measures include correctness (defects per KLOC),

maintainability (mean time to change), integrity (threat and security), and usability
(easy to learn, easy to use, productivity increase, user attitude).

• Defect removal efficiency (DRE) is a measure of the filtering ability of the quality
assurance and control activities as they are applied throughout the process framework.

3.8 Defect Removal Efficiency

A quality metric that provides benefit at both the project and process level is defect
removal efficiency (DRE). In essence, DRE is a measure of the filtering ability of quality
assurance and control activities as they are applied throughout all process framework
activities.

 Ch3: Software Process And Project Metrics

 32

3.9 Integrating Metrics with Software Process
• Many software developers do not collect measures.
• Without measurement it is impossible to determine whether a process is improving or

not.
• Baseline metrics data should be collected from a large, representative sampling of past

software projects.
• Getting this historic project data is very difficult, if the previous developers did not

collect data in an on-going manner.

3.10 Statistical Process Control
• It is important to determine whether the metrics collected are statistically valid and not

the result of noise in the data.
• Control charts provide a means for determining whether changes in the metrics data are

meaningful or not.
• Zone rules identify conditions that indicate out of control processes (expressed as

distance from mean in standard deviation units).

3.11 Metrics for Small Organizations
• Most software organizations have fewer than 20 software engineers.
• Best advice is to choose simple metrics that provide value to the organization and don't

require a lot of effort to collect.
• Even small groups can expect a significant return on the investment required to collect

metrics, if this activity leads to process improvement.

3.12 Establishing a Software Metrics Program
1. Identify business goal
2. Identify what you want to know
3. Identify subgoals
4. Identify subgoal entities and attributes
5. Formalize measurement goals
6. Identify quantifiable questions and indicators related to subgoals
7. Identify data elements needed to be collected to construct the indicators
8. Define measures to be used and create operational definitions for them
9. Identify actions needed to implement the measures
10. Prepare a plan to implement the measures

 Chapter4: Software Project Planning

 33

University of Technology
Computer Science Department
Software Engineering 3rd Class
Lecturer Yossra Hussain

 Software Project Planning

Topics:

4.1 Introduction
4.2 Estimation Reliability Factors
4.3 Project Planning Objectives
4.4 Software Scope
4.5 Estimation of Resources
4.6 Software Project Estimation Options
4.7 Decomposition Techniques
4.8 Estimation Models

4.8.1 The Structure of Estimation Models
4.8.2 The COCOMO Model
4.8.3 The Software Equation

4.9 Automated Estimation Tools

 Chapter4: Software Project Planning

 34

4.1 Introduction

Software planning involves estimating how much time, effort, money, and
resources will be required to build a specific software system. After the project scope is
determined and the problem is decomposed into smaller problems, software managers use
historical project data (as well as personal experience and intuition) to determine
estimates for each. The final estimates are typically adjusted by taking project complexity
and risk into account. The resulting work product is called a project management plan.

4.2 Estimation Reliability Factors

• Project complexity
• Project size
• Degree of structural uncertainty (degree to which requirements have solidified,

the ease with which functions can be compartmentalized, and the hierarchical
nature of the information processed)

• Availability of historical information

4.3 Project Planning Objectives

• To provide a framework that enables software manager to make a reasonable
estimate of resources, cost, and schedule.

• Project outcomes should be bounded by 'best case' and 'worst case' scenarios.
• Estimates should be updated as the project progresses.

 Chapter4: Software Project Planning

 35

4.4 Software Scope

• Describes the data to be processed and produced, control parameters, function,
performance, constraints, external interfaces, and reliability.

• Often functions described in the software scope statement are refined to allow for
better estimates of cost and schedule.

 Chapter4: Software Project Planning

 36

4.5 Estimation of Resources

1. Human Resources (number of people required and skills needed to complete the

development project)
2. Reusable Software Resources (off-the-shelf components, full-experience components,

partial-experience components, new components)
3. Development Environment (hardware and software required to be accessible by

software team during the development process)

4.6 Software Project Estimation Options

1. Delay estimation until late in the project.
2. Base estimates on similar projects already completed.
3. Use simple decomposition techniques to estimate project cost and effort.
4. Use empirical models for software cost and effort estimation.
5. Automated tools may assist with project decomposition and estimation.

 Chapter4: Software Project Planning

 37

4.7 Decomposition Techniques

 Software project estimation is a form of problem solving, and in most cases, the
problem to be solved (i.e., developing a cost and effort estimate for a software project) is
too complex to be considered in one piece. For this reason, we decompose the problem,
recharacterizing it as a set of smaller (and hopefully, more manageable) problems. There
are several types of decomposition techniques, these are:
1. Software sizing (fuzzy logic, function point, standard component, change)
2. Problem-based estimation (using LOC decomposition focuses on software functions,

using FP decomposition focuses on information domain characteristics)
3. Process-based estimation (decomposition based on tasks required to complete the

software process framework)

4.8 Estimation Models

1. The Structure of Estimation Models, typically derived from regression analysis of
historical software project data with estimated person-months as the dependent
variable and KLOC or FP as independent variables.

2. Constructive Cost Model (COCOMO) is an example of a static estimation model.
3. The Software Equation is an example of a dynamic estimation model.

4.8.1 The Structure of Estimation Models

A typical estimation model is derived using regression analysis on data collected from
past software projects. The overall structure of such models takes the form [MAT94]

where A, B, and C are empirically derived constants, E is effort in person-months, and ev
is the estimation variable (either LOC or FP). In addition to the relationship noted in
Equation (5-2), the majority of estimation models have some form of project adjustment
component that enables E to be adjusted by other project characteristics (e.g., problem
complexity, staff experience, development environment).

4.8.2 The COCOMO Model

In his classic book on "software engineering economics," Barry Boehm [BOE81]
introduced a hierarchy of software estimation models bearing the name COCOMO, for
COnstructive COst MOdel. The original COCOMO model became one of the most
widely used and discussed software cost estimation models in the industry. It has evolved

 Chapter4: Software Project Planning

 38

into a more comprehensive estimation model, called COCOMO II [BOE96, BOE00].
Like its predecessor, COCOMO II is actually a hierarchy of estimation models that
address the following areas:

1. Application composition model. Used during the early stages of software
engineering, when prototyping of user interfaces, consideration of software and
system interaction, assessment of performance, and evaluation of technology
maturity are paramount.

2. Early design stage model. Used once requirements have been stabilized and basic
software architecture has been established.

3. Post-architecture-stage model. Used during the construction of the software.
Like all estimation models for software, the COCOMO II models require sizing

information. Three different sizing options are available as part of the model hierarchy:
object points, function points, and lines of source code.

The COCOMO II application composition model uses object points and is illustrated
in the following paragraphs. It should be noted that other, more sophisticated estimation
models (using FP and KLOC) are also available as part of COCOMO II.

Like function points (Chapter 3), the object point is an indirect software measure that

is computed using counts of the number of (1) screens (at the user interface), (2) reports,
and (3) components likely to be required to build the application. Each object instance
(e.g., a screen or report) is classified into one of three complexity levels (i.e., simple,
medium, or difficult) using criteria suggested by Boehm [BOE96]. In essence,
complexity is a function of the number and source of the client and server data tables that
are required to generate the screen or report and the number of views or sections
presented as part of the screen or report.

Once complexity is determined, the number of screens, reports, and components are
weighted according to Table 4.1. The object point count is then determined by
multiplying the original number of object instances by the weighting factor in Table 4.1
and summing to obtain a total object point count. When component-based development
or general software reuse is to be applied, the percent of reuse (%reuse) is estimated and
the object point count is adjusted:
 NOP = (object points) x [(100 - %reuse)/100]
where NOP is defined as new object points.

To derive an estimate of effort based on the computed NOP value, a "productivity
rate" must be derived. Table 4.2 presents the productivity rate

PROD = NOP/person-month

Table (4.1)

 Chapter4: Software Project Planning

 39

for different levels of developer experience and development environment maturity. Once
the productivity rate has been determined, an estimate of project effort can be derived as:

estimated effort = NOP/PROD
In more advanced COCOMO II models, a variety of scale factors, cost drivers, and

adjustment procedures are required. A complete discussion of these is beyond the scope
of this book. The interested reader should see [BOE00] or visit the COCOMO II Web
site.

4.8.3 The Software Equation

The software equation [PUT92] is a dynamic multivariable model that assumes a specific
distribution of effort over the life of a software development project. The model has been
derived from productivity data collected for over 4000 contemporary software projects.
Based on these data, an estimation model of the form

where E = effort in person-months or person-years
 t = project duration in months or years
 B = "special skills factor "
 P = "productivity parameter" that reflects:
 • Overall process maturity and management practices

• The extent to which good software engineering practices are used
• The level of programming languages used
• The state of the software environment
• The skills and experience of the software team
• The complexity of the application

Typical values might be P = 2,000 for development of real-time embedded software;
P = 10,000 for telecommunication and systems software; P = 28,000 for business systems
applications. The productivity parameter can be derived for local conditions using
historical data collected from past development efforts.

It is important to note that the software equation has two independent parameters:
 (1) an estimate of size (in LOC).
 (2) an indication of project duration in calendar months or years.

Table (4.2)

 Chapter4: Software Project Planning

 40

4.9 Automated Estimation Tools

 The decomposition techniques and empirical estimation models described in the
preceding sections are available as part of a wide variety of software tools. These
automated estimation tools allow the planner to estimate cost and effort and to perform
"what-if" analyses for important project variables such as delivery date or staffing.
Although many automated estimation tools exist, all exhibit the same general
characteristics and all perform the following six generic functions [JON96]:
1. Sizing of project deliverables. The "size" of one or more software work products is

estimated. Work products include the external representation of software (e.g., screen,
reports), the software itself (e.g., KLOC), functionality delivered (e.g., function
points), descriptive information (e.g. documents).

2. Selecting project activities. The appropriate process framework (Chapter 2) is
selected and the software engineering task set is specified.

3. Predicting staffing levels. The number of people who will be available to do the
work is specified. Because the relationship between people available and work
(predicted effort) is highly nonlinear, this is an important input.

4. Predicting software effort. Estimation tools use one or more models (e.g., Section
5.7) that relate the size of the project deliverables to the effort required to produce
them.

5. Predicting software cost. Given the results of step 4, costs can be computed by
allocating labor rates to the project activities noted in step 2.

6. Predicting software schedules. When effort, staffing level, and project activities are
known, a draft schedule can be produced by allocating labor across software
engineering activities.

When different estimation tools are applied to the same project data, a relatively large
variation in estimated results is encountered. More important, predicted values sometimes
are significantly different than actual values.

Chapter five: Analysis Concepts and Principles

 42

University of Technology
Computer Science Department
Software Engineering 3rd Class
Lecturer Yossra Hussain

Analysis Concepts and
Principles

Topics:

5.1 Introduction
5.2 Requirements Analysis
5.3 Software Requirements Analysis Phases
5.4 Software Requirements Elicitation

5.4.1 Facilitated Action Specification Techniques (FAST)
5.4.2 QUALITY Function Deployment (QFD)
5.4.3 Use-Cases

5.5 Analysis Principles
5.5.1 Information Domain
5.5.2 Modeling
5.5.3 Partitioning
5.5.4 Software Requirements Views

5.6 Software Prototyping
5.6.1 Prototyping Methods and Tools

5.7 Specification Principles

Chapter five: Analysis Concepts and Principles

 43

5.1 Introduction

After system engineering is completed, software engineers need to look at the

role of software in the proposed system. Software requirements analysis is

necessary to avoid creating software product that fails to meet the customer's needs.

Data, functional, and behavioral requirements are elicited from the customer and

refined to create specification that can be used to design the system. Software

requirements work products must be reviewed for clarity, completeness, and

consistency.

5.2 Requirements Analysis

• Software engineering task that bridges the gap between system level

requirements engineering and software design.

• Provides software designer with a representation of system information,

function, and behavior that can be translated to data, architectural, comonents-

level design.

• Expect to do a little bit of design during analysis and a little bit of analysis

during design.

Software Requirements Analysis
• Identify the "customer" and work

Together to negotiate "product –level"

• Build an analysis model

 -Focus on data
- define function
- represent behavior

• Prototype areas of uncertainty
• Develop a specification that will guide design
• Conduct formal technical reviews.

Chapter five: Analysis Concepts and Principles

 44

5.3 software Requirements Analysis Phases

• Problem recognition

• Evaluation and synthesis (focus is on what not how)

• Modeling

• Specification

• Review

5.4 software requirements elicitation

• Customer meetings are the most commonly used technique.

• Use context free question to find out customers goal and benefits, identify

stakeholders, gain understanding of problem, determine, customer reactions

to proposed solution, and assess meeting effectiveness.

• If many users are involved, be certain that a representative cross section of

users is interviewed.

5.4.1 Facilitated action Specification Techniques (FAST)

• Meeting held at neutral site, attended by both software engineering

and customers.

• Rules established for preparation and participation.

• Agenda suggested to cover important points and to allow for

brainstorming.

• Meeting controlled by facilitator (customer, developer, or outsider).

• Definition mechanism (flip charts, stickers, electronic device, etc.) is

used.

• Goal is to identify problem, propose elements of solution, negotiate

different approaches, and specify a preliminary set of solution

requirements.

Chapter five: Analysis Concepts and Principles

 45

5.4.2 Quality Function Deployment (QFD)

• Translates customer needs into technical software requirements.

• Uses customer interviews, observation, surveys, and historical data for

requirements gathering.

• Customer voice table(contains summary of requirements)

• Normal requirements (must be present in product for customer to be satisfied)

• Expected requirement (things like ease of use or reliability of operation, that

customer assumes will be present in a professionally developed product

without having to request them explicitly)

• Exciting requirements (features that go beyond the customers expectations and

prove to very satisfying when they are present)

• Function deployment (used during customer meeting to determine the value of

each function required for system)

• Information deployment (identifies data objects and events produced and

consumed by the system)

• Task deployment(examines the behavior of product within in environment)

• Value analysis (used to determine the relative priority of requirements during

function , information, and task deployment)

Fast Guidelines
• Participants must attend entire meeting
• All participants are equal
• Preparation is as important as meeting
• All pre-meeting documents are to be viewed

as " proposed"
• Off-sit meeting location is preferred
• Set an agenda and maintain it
• Don’t get mired in technical

Chapter five: Analysis Concepts and Principles

 46

5.4.3 Use - case

• Scenarios that describe how the product will be used in specific situations.
• Written narratives that describe the role of an actor (user of device) as

interaction with the system occurs.
• Use-cases are designed from the actor's point of view.
• Not all actors can be identify the primary actors before developing the use-

cases

Quality Function Deployment
• Function deployment determines the value (as perceived by the

customer)of each function required of the system

• Information deployment identifies data objects and events

• Task deployment examines the behavior of the system

• Value analysis determines the relative priority of requirements

Use-cases
• A collection of scenarios that describe the thread of usage of a

system
• Each of an "actor" – a person or device that interacts with the

software in some way
• Each scenario answers the following questions :

- What are the main tasks of functions performed by the actor?
- What system information will the actor acquire, produce or

change?
- Will the actor inform the system about environmental changes?
- What information does the actor require of the system?
- Does the actor wish to be informed about unexpected changes?

Chapter five: Analysis Concepts and Principles

 47

5.5 Analysis Principles
• The information domain of the problem must be represented and understood.

• The functions that the software is to perform must be defined.

• Software behavior must be represented.

• Models depicting information, function, and behavior most be partitioned in a

hierarchal manner detail.

• The analysis process should move from the essential information toward

implementation details.

The analysis process

The
problem

Requirement
elicitation

Develop
specificati Review

Build a prototype

Creat
analysis

model

Chapter five: Analysis Concepts and Principles

 48

5.5.1 Information Domain

• Encompasses all data objects that contain numbers, text, images, audio, or

video

• Information content or data model (shows the relationships among the data

and control objects that make up the system)

• Information flow(represents the manner in which data control objects

change as each moves through the system)

• Information structure (representations of the internal organizations of

various data and control items)

5.5.2 Modeling

• data model (shows relationships among system objects)

• function model (description of the functions that enable the transformation of

system objects)

• behavioral model (manner in which software responds to events from the

outside world)

The Analysis Model

Data Model

Function Model

Behavioral Model

Chapter five: Analysis Concepts and Principles

 49

5.5.3 Partitioning

• Process that result in the elaboration of data, function, or behavior.

• Horizontal partitioning is a breadth –first decomposition of the system

function, behavior, or information, one level at a time.

• Vertical portioning is a depth – first elaboration of the system function,

behavior, or information, one subsystem at a time.

Analysis Principle Model the Data Domain

• Define data object

• Describe data attributes

• Establish data relationships

Analysis Principle Model Function

• Identify functions that transform data objects

• Indicate how data flow through the system

• Represent producers and consumers of data

Analysis Principle Model Behavior

• Identify deferent states of the system

• Specify events that cause the system to change state

Chapter five: Analysis Concepts and Principles

 50

5.5.4 Software Requirements Views

• Essential view- presents the functions to be accomplished and the information

to be processed without regard to implementation.

• Implementation view- presents the real world manifestation of processing

functions and information structures.

• Avoid the temptation to move directly to the implementation view, assuming

that the essence of the problem is obvious.

5.6 Software Prototyping

• Throwaway prototyping (prototype only used as a demonstration of product

requirements, finished software is engineered using another paradigm)

• Evolutionary prototyping (prototype is refined to build the finished system)

• Customer resources must be committed to evaluation and refinement of the

prototype.

• Customer must be capable of making requirements decisions in a timely

manner.

Analysis principles Partition the Models

• Refine each model to represent lower level of abstraction

- refine data objects

- create a functional hierarchy

- represent behavior of different levels of detail

Chapter five: Analysis Concepts and Principles

 51

5.6.1 Prototyping Methods and Tools

• Fourth generation techniques (4 GT tools allow software engineer to

generate executable code quickly)

• Reusable software components (assembling prototype from a set of existing

software components)

• Formal specification and prototyping environments (can interactively create

executable programs from software specification models)

•

5.7 Specification Principles

• Separate functionality from implementation.

• Develop a behavioral model that describes functional responses to all system

stimuli.

• Define the environment in which the system operates and indicate how the

collection of agents will interact with it.

• Create a cognitive model rather than an implementation model.

• Recognize that the specification must be extensible and tolerant of

incompleteness.

• Establish the content and structure of a specification so that it can be changed

easily.

Chapter six software testing

52

University of Technology

Computer Science Department

Software Engineering 3rd Class

Lecturer Yossra Hussain

Software Testing

Topics:

6.1 Introduction

6.2 Why Testing

6.3 What is Testing

6.4 Work Products of Testing stage:

6.5 Testing is Important

6.6 Software Testing Technique

6.7 What Testing Shows

6.8 Testing Stage of the Software Process

6.9 Testing Principles

6.10 Who tests the system6.11 Attributes of a Good Test Case

6.12 Engineering Methods on Product Testing

6.13 White–Box Testing

6.14 Black–box Testing

Chapter six software testing

53

Software Engineering
 Software Engineering is about applying “sound engineering principles” in developing software.
 Science vs. Art: Science (and engineering) are based on theories, principles, practices,

processes, and is precise. Pure art likes painting and music is relied on individual’s artistic
talent and is not precise.

 Is writing software a science (which is precise, predictable and Newton’s laws of motion
applied) or an art (like composing music, you need a Beethoven to compose a great piece of
software)?

 The days of solo programmer (or a few programmers) are gone. Software today is created by
a big team of people.

 Can we apply engineering principles, methods, techniques, processes, to developing software?

6.1 Introduction

Revisit the Software Life Cycle

¢ Classical Life Cycle (or Linear Sequential Software Process Model, or Waterfall model)

 Work Products (or Deliverables)

¢ Analogy: Construct a building, chemical & manufacturing process,etc.

6.2 Why Testing?

Two objectives – Verification and Validation (V&V):
¢ To uncover errors (or bugs) in the software before delivery to the client. This is called Verification

-Verify that the program is working. “Are you building the product right? Right?”

¢ To ascertain that the software meet its requirement specification. This is called Validation –
 Validate that the software meets its requirements. “Are you building the right product? “

Chapter six software testing

54

6.3 What is Testing?
¢ At a lower level, testing involves designing a series of “TEST CASES” (or “TEST SUITE”) to
 uncover errors and validate conformance to requirements.
¢ At a higher level, testing involves formulating a test plan and test strategy for the
 execution of the testing process.

6.4 Work Products (or Deliverables) of Testing stage:
¢ Test Plan (Test Strategies).
¢ Test Report (includes Test Cases, Test Data, etc.).

6.5 Testing is Important

“Testing is as important, if not more important than coding. “
Your clients will not accept programs that are full of bugs, or worse still, don t meet the
requirements!.

“The older I get, the more experience on creating software, the more aggressive I get about
testing.”

¢ Although testing is one of the steps in the software process, testing would be the most time
 consuming and costly step among all.
¢ Not unusual to cost 30 40% of the total project cost. In the extreme (e.g., flight control system,
 nuclear reactor), testing can cost 3 5 times as much as all the other steps combined. E.g., NEL was delay for many months to carry out “System Test”.

A Trivial Example on Testing

Requirement:

Write a program to assign an alphabetic grade to raw marks as follows:

Chapter six software testing

55

Program without Testing

¢ This code can compile and run! (Compiler only catches syntax errors, NOT semantics errors or
 logical errors.)
¢ Is the program working? (May be!) (Verification)
¢ Is the program correct? Does the program meet its specification? (NO!) (Validation)
¢ Is the program efficient? (This is an issue on Software Quality Assurance (SQA), not testing–There
 are 10 comparisons in the code, many of them are redundant!)

Test Cases
¢ To verify and validate the program, we design “a series of test cases”. Each test case contains a
 specific input and the expected output. For examples,

¢ How many test cases is “necessary and sufficient”? (101? How about numbers like 200, or–155?
 Countable Infinity!)
¢ This series of lectures on “testing techniques” teaches you how to design good test cases
 “applying sound engineering principles”.

Integrate Testing into the “Build” Process
¢ Testing can be integrated into the build (compile) process.
 ¢ The compiler checks for syntax errors in the program code.
 ¢ The tests pick up semantic or logical errors.

¢ Demonstration : based on our trivial example,

 Step 1 : Design Test Cases

 -Typical values: 95(A), 84(B), 76(C), 67(D), 53(E), 30(F).
 -Boundary values: 100(A), 90(A), 89(B), 80(B), 79(C), 70(C),69(D), 60(D), 59(E), 50(E), 49(F),

 0(F).
 -Out of range: 1(Error), 101(Error)

Chapter six software testing

56

 Step 2 : Write the program code.
 -compile the program to ensure it is syntactically correct.
 -run the test cases to ensure that it is semantically correct.

 Step 3 : Integrate tests into build process, generate “daily build”.
 -Use an appropriate CASE tool (e.g., make, ant).
 -Run the integrated build process whenever you modify the code.

Self Testing Software

“The older I get, the more aggressive I get about testing.”
“Testing should be a continuous process. No code should be written until you know how to test
it. Once you have written it , write the tests for it. Until the tests work, you cannot claim to
have finish writing the code.”
“Test code, once written, should be kept forever. Set up your tests so that you can run every
test with a simple command. The tests should return with either “OK” or a list of failures”
“I find that writing unit tests actually increases my � rogramming g speed.”

Best Practices on Testing

Q: When should test cases be written?
A: “Extreme Programming group” advocates writing the test cases first, before writing the code.
 ¢ Good tests tell you how to best design the system for its intended use.
 ¢ Good tests prevent you from over build the system. When all the tests pass, you know you’ve
 done.

Q: Do I have to write a test for everything?
A: No, just test those things that could reasonably break . Do not write tests, that ultimately turns
 out to be testing the compiler or the operating system, and not your own program.

Best Practices on Testing (cont.)

Q: How often should I run my tests?

A: As often as possible, ideally whenever the code is changed. Frequent testing gives you the
 confidence that your changes didn’t break anything and generally lowers the stress of
 programming.

Run all you tests at least once a day. (You backup at least once a day, Don’t you!)

Chapter six software testing

57

6.6 Software Testing Technique

Software Testing

¢ Once source code has been written, software must be tested (and corrected) to uncover as many
 errors as possible before delivery to your customer.

¢ “Software Testing” is the process of exercising a program with the specific intent of finding errors
 prior to delivery to the e nd user (Verification).

¢ Testing also checks if the software meets its intended usage. Testing represents the ultimate
 review of the specification, analysis, design, and coding (Validation).

¢ Testing is a essential element of Software Quality Assurance (SQA), to achieve high quality
 software.

¢ Testing is important : Not unusual to cost 30- 40% of the total project cost. In the extreme
(e.g., flight control system, nuclear reactor), testing can cost 3- 5 times as much as all the other
steps combined.

 6.7 What Testing Shows?

6.8 Testing Stage of the Software Process

¢ The goal of testing is to “design a series of test cases” that has “a high likelihood of
finding errors”.
¢ How? Design test cases systematically by “applying sound engineering principles and
methods”.
¢ The work product of the testing stage is a “test report” that documents all the test cases run, i.e.,
the test input, the expected output, the actual output, the purpose of the test and etc.

Chapter six software testing

58

Testing Stage Details

6.9 Testing Principles

1. All tests should be traceable to customer requirements – to ensure that the software meets its
 intended use.
2. Tests should be planned long before testing begins – write tests first, before the coding.
3. Testing should begin “in the small” and progress toward testing “in the large” – perform unit tests,
 then integration tests, then validation test, and then system tests.
4. The “80–20 rule” applied – 80% of the errors are located in 20% of the software modules, isolate
 them and test them thoroughly.
5. To be more effective, testing should be conducted by an independent third third–party testing
 specialist (ITG or Independent Testing Group).
6. Exhaustive test is not possible.

Chapter six software testing

59

6.10 Who tests the system?

 Developer Independent Teste
 Understands the system, Must learn about the system,
 but will test “gently”, but will attempt to “break” it,
 and is driven by “delivery” and is driven by “quality”.

¢ During the early stages of testing, the developer performs the tests. As the testing progresses,
 independent test specialist may involved.
¢ “Open–source” software like Linux, Java, Apache are known to be more secure and less buggy
 because many independent parties have “tested” the source code.

Exhaustive Test is NOT Possible

¢ 5 forward paths, 1 to 20 passes, total number of possible paths is (5+52+…+520) about 1014. If we
 execute one test per millisecond, it would take 3171 years to exhaustively test all the paths.
¢ Observation: a decision block adds one extra forward path, aloop multiplies the number of
 forward paths.

Selective Testing is Desired

Chapter six software testing

60

¢ Which path to select? How many testing paths is deem “necessary and ufficient”?
¢ Test case design techniques: Apply engineering principles and methods to design the “necessary
 and sufficient” test cases, instead of testing for everything.

6.11 Attributes of a Good Test Case
¢ A good test has a high probability of finding an error. To design good tests, you have to
 understand how the program might fail. (E.g., in the trivial example, it probably fails at the
 boundary).
¢ A good test is not redundant. (E.g., If you have a test case of 96 marks, a test case of 97
 marks is considered redundant, because they are trying to uncover the same class of error.)
¢ A good test should be neither too simple nor too complex. Each test case preferably has one and
 only one purpose.
¢ Don’t
 ¢ treat testing as an afterthought.
 ¢ develop test cases that may “feel right” but have little assurance of being complete nor
 effective.

6.12 Engineering Methods on Product Testing
An “engineered product” can be tested in one of two ways:
1. knowing the specified functions that the product is designed to perform, conduct tests to validate
 each of these functions – this is called black– box testing.
2. Knowing the internal workings of the product, conduct tests to ensure that the internal operation
 are correct and internal components are properly exercised – this is called white–box testing (or
 glass–box testing).

Software Testing Methods
¢ Black–Box Testing:

Chapter six software testing

61

 ¢ Tests conducted at the system interface, input/output domain.
 ¢ Tests are used to demonstrate that the software are operational, that input is properly
 accepted and output is correctly produced.
 ¢ Black–box tests examine the functional aspect of the system with little regard for the internal
 logical structure of the software.
 ¢ Only executable code needed for black–box testing. No source code needed.
¢ White–box Testing:
 ¢ Examine the procedural details and internal structure.
 ¢ All paths through the software are exercised at least once. The status of the program may be
 examined at various points to determine if the expected status (or asserted status) corresponds
 to the actual status.
 ¢ Source code needed for white–box testing.

6.13 White–Box Testing

¢ Goal: to ensure that all statements and conditions have been executed at least once.

¢ Principles:
 ¢ Exercise all independent paths at least once.
 ¢ Exercise all the logical decisions (if–then–else) on their true and false sides.
 ¢ Exercise all the loops (for, while–do loops) at their boundaries and within their bounds.
 ¢ Exercise all the internal data structure to ensure their validity.

Why White box Testing?

¢ Black box testing on the functionality is not sufficient to deliver a robust software, examine the
 source code and internal thru white box testing is important because:
 ¢ Errors are inversely proportional to a path’s execution frequenc y. Everyday processing tends to
 be well understand and well scrutinized, while “special case” (such as error handling code)
 tends to fall into the cracks. Hence, there is a need to exerci se every paths, not just the
 frequently used ones.
 ¢ We often believe that a path is not likely to be executed; in fa ct, it may get executed in a
 regular basis.If you made a wrong assumption and did not cater a path,the test would unveil it.
 ¢ Typographically errors are random, and exist on mainstream path as well as obscure path.
 Hence, there is a need to � oolean� e all the paths.

White- box Methods

Chapter six software testing

62

¢ White–box methods focuses on testing the control structure (e.g., if–then–else decision, loop) of
 the program.

¢ The commonly–used white–box methods are:
 1. Basis–Path Testing.
 2. Condition Testing:
 (a) Branch Testing
 (b) Domain Testing
 (c) Branch and Relational Operator (BRO) Testing
 3. Loop Testing
 4. Others

White–box Method 1– Basis Path Method

Objective: ” Find a basis set of independent execution paths “ that covers all the statements in the
 program “at least once “.

Step 1: Compute the cyclomatic complexity (C) of the program, which indicates the number of
 independent execution paths.
Step 2: ind a basis set of “C” independent execution paths.
Step 3: Design test cases for the basis set.

Cyclomatic Complexity

¢ Cyclomatic complexity indicates the number of independent paths of the program.
¢ It gives us an upper bound for the number of tests that must be conducted to ensure that all the
 paths have been executed at least once.

Chapter six software testing

63

Modules in this range are more error prone.

Calculating Cyclomatic Complexity
Cyclomatic complexity (C) can be calculated using any one of the following three formula (which are
based on the Graph Theory):
(1) C = 1 + No. of Simple Decisions (P)
 (There is only 1 path without any decision. Each decision introduces an additional path.)
(2) C = No. of Regions (R)
(3) C = No. of Edges (E) – No. of Nodes (N) + 2
 (You must draw a proper graph to use this formula. An edge starts from a node and ends at
 another node. All nodes must be connected.)
Cyclomatic Complexity –Example

Independent Paths
¢ An independent path is a path that introduces at least one new set of processing statement or a
 new condition. In the flow chart, an independent path must move along at least one edge that
 has not been traversed. For example:
 ¢ Path 1: 13⇒12⇒1⇒11.

Chapter six software testing

64

 ¢ Path 2: 13→12→1⇒2⇒3⇒6⇒7⇒9⇒10⇒12→1→11.

 ¢ Path 3: 13→12→1→2→3→6⇒8⇒9→10→12→1→11.

 ¢ Path 4: 13→12→1→2→3⇒4⇒5⇒10→12→1→11.
¢ These 4 independent paths form a basis set.
¢ The basis set is not unique.
¢ c.f. degrees of freedom, rank of matrix, independent vectors, coordinates system, and etc.

Independent Paths (cont.)
¢ Path 5 : 13→12→1→2→3→6→7→9→10→12→1→2→3→4→5→10→ 12→1→11 is not independent as it
 has no new edges.

¢ NEXT : Design 4 test cases corresponding to the 4 independent paths of the basis set chosen.

Compound Decision

¢ Compound decision made up of “ AND ” and “ OR ” operator must be broken up into simple
decisions in performing basis path testing. For example:

if (a OR b) { block1 } else { block2 }
if (c AND d) { block4 } else { block3 }

(Assume short–circuit evaluation for compound condition.)

Basis Path Method– A Complete Example

Requirement: The program computes the average of 100 or fewer numbers of an array that lie
between an upper and lower bounds. The input is terminated by–999.

Chapter six software testing

65

Basis–Path Example (Cont.)

¢ Step 4: Design test cases for each of the independent paths in the basis set chosen.
Path 1 Test Case:
 Input: values={3, 5, 9, –999}, min=0, max=100
 Expected output: (3+5+9)/3.
 Purpose: to test correct Averaging.
 Remark: Path 1 cannot be tested alone.

Chapter six software testing

66

Path 2 Test Case:
 Input: values={– 999}, min=0, max=100
 Expected output: –999.
 Purpose: to produce average= –999.
Path 3 Test Case:
 Input: values={3, 33, …, 76} (101 numbers), min=0, max=100
 Expected output: average of first 100 numbers.
 Purpose: average only the first 100 valid numbers.
Path 4 Test Case :
 Input: values={67, –– 2, 23, ––999}, min=0, max=100
 Expected output: (67+23)/2.
 Purpose: testing lower bound.
Path 5 Test Case :
 Input: values={7, 32, 105, 86, 11, 2, –999}, min=0, max=100
 Expected output: (7+32+86+11+2)/5.
 Purpose: testing upper bound.
Path 6 Test Case :
 Input: values={17, 34, 83, 39, – 999}, min=0, max=100
 Expected output: (17+34+83+39)/4.
 Purpose: proper averaging.
“Software engineers considerably underestimate the number of tests required to verify a
straightforward program.”
Basis Path Method

¢ Although basis path methods is simple and highly effective to guarantee that all statements and
 decisions in the program are executed at least once, it is not “sufficient” to detect many classes of
 semantic errors. For example, suppose (values[i] > min) is incorrectly used instead of
 (values[i] >= min) in the previous example and no test case having a value[i] of min.

¢ Basis– path method focuses on the “typical values” of each of the independent paths. Additional
 test cases (on top of basis– path test cases) needed, especially to exercise the boundary conditions.

White– box Method 2– Condition Testing

¢ Condition Testing is a test case design method that exercises the logical conditions (or � oolean
conditions).

¢ A simple condition is either:
 ¢ A � oolean variable which has value of either true or false (e.g., in C/C++, zero or–zero, in
Java

Chapter six software testing

67

 � oolean type).
 ¢ A relationship expression of the form E1 <relational–operator> E2where E1 and E2 are
 some arithmetic expressions and the relational–operator can be either <, <=, >, >=, ==,!=.
 ¢ Possibly preceded with a NOT (!)operator.

¢ A compound condition is composed of two or more simple conditions joined by � oolean
 operators of AND (&&) or OR (||).

Condition Testing
¢ A condition may include � oolean operator (AND , OR , NOT), � oolean variable, parentheses,
 relationship operator (, >= , , <= , == , !=), and arithmetic expression. E.g. if (!done &&
 ((i < 100) || ((j+k) > 10))) {…}
¢ Hence, errors in a condition may cause by:
 � oolean operator error (e.g., AND instead of OR).
 Relational operator error (e.g., >= instead of >).
 � oolean variable error (e.g., wrong variable used).
 Parenthesis error (e.g., missing or wrong parenthesis).
 Arithmetic expression error (e.g., j+k instead of j–K).
¢ Condition Testing focus on testing the condition, the methods available are:
 1. Branch Testing
 2. Domain Testing
 3. Branch and Relational Operator (BRO) Testing

Branch / Domain Testing

¢ Branch Testing : For a compound condition C, the true and false branches of C and every
 simple condition in C need to be executed at least once. (These tests are carried out in the Basis–
 Path method).
¢ Domain Testing:
 ¢ For a relational expression E1 <relational operator> E2, three tests are designed for E1==E2,
 E1>E2 , E1<E2 . For example, Condition: (X > 5) 3 test cases: X=5 , X=3<5 , and
 X=8>5 needed.
 ¢ For a � oolean expression with n � oolean variables, all 2n possible tests are required. (Only
 possible if n is small!). For example:
 C = (B1 && B2) || (B3 && B4)
 16 test cases needed for all combinations of B1 , B2 , B3 , B4.

Branch and Relational Operator (BR0)
¢ Domain testing with 2n tests is not feasible if the number of � oolean variables n is large. BRO
 technique reduces the number of test cases.
¢ Example 1:
Condition C: B1 AND B2, where B1 and B2 are two � oolean variables. The constraint set is
{(t,t),(t,f),(f,t)}(f,f) is redundant, because if B1, B2, and/or operator AND is incorrect,

Chapter six software testing

68

one of the 3 tests in the above constraint set will fail. (Prove it!) Design 3 test cases corresponding to
the 3 members in the constraint set. (Recall that the Cyclomatic Complexity is 3.)
¢ Example 2:
Condition C: B1 AND (E1==E2), where B1 is a � oolean variable, and E1 and E2 are arithmetic
expressions.
Let B2 be (E1==E2), from Example 1, the constrain set for B1 AND B2 is {(t,t), (t,f),
(f,t)}.
“t” for (E1==E2) is “=”.
 “f” for (E1==E2) is either “>” or “<”.
Hence, the constrain set for C is

Note: Complete domain testing requires 2x3 = 6 test cases.
¢ Example 3:
Condition C: (E1>E2) AND (E3==E4), where E1, E2, E3 and E4 are arithmetic expressions.
Let B1 be (E1>E2) and B2 be (E3==E4). From Example 1, the constrain set for B1 AND B2 is
{(t,t),(t,f),(f,t)}.
“t” for (E1>E2) is “>”, “f” is either “<” or “=”.
“t” for (E3==E4) is “=”, “f” is either “>” or “<”.
Hence, the constrain set for C is

Note: Complete domain Testing requires 3x3 = 9 test cases.
¢ Example 4: Condition C: B1 OR B2 where B1 and B2 are � oolean variables.
 The constrain set is {(f,f),(f,t),(t,f)}.
 (t,t) is redundant, because if B1, B2, and/or operator OR is incorrect, one the 3 tests in the
 above constraint set will fail. Note: Complete domain testing requires 4 tests cases.

“Even if your decide against condition testing, you should spend time evaluating each condition in
an effort to uncover errors. This is a primary hiding place for bugs!”

Chapter six software testing

69

White–box Method 3– Loop Testing

Simple Loop Testing

¢ Suppose n is the maximum number of allowable passes thru the simple loop, the test case are:
 ¢ Skip the loop entirely.
 ¢ Only one pass through the loop.
 ¢ Two pass through the loop.
 ¢ m pass through the loop, where m < n represents a “typical” value.
 ¢ n–1, n, n+1(impossible) passes through the loop.

¢ That is, test for 0, 1, 2, a typical value m, n–1, n, n+1.

Nested Loop Testing
¢ Extending simple loop testing approach to nested loop may not be practical.
¢ To reduce the number of tests:
 ¢ Start at the innermost loop. Set all other loops to minimum values.
 ¢ Test the min+1, typical, max–1, and max for the innermost loop, while holding the outer loop at
 their minimum values.
 ¢ Move outward, conducting test for the next loop, but keeping all the outer loops at minimum
 values and the inner loops at “typical” values.
 ¢ Continue until all loops have been tested.

Other Loops
¢ Concatenated Loops: If the loops are independent, follow simple loop testing approach. If
 the second loop depends on the first loop (e.g., the initial value of the second loop), use the
 nested loop testing approach.

¢ Unstructured Loops: Bad! Rewrite!

Chapter six software testing

70

“Complex loop structure are another hiding place for bugs. It is worth spending time designing
tests that fully exercise loop structure.”

6.14 Black–box Testing
¢ Focus on functional requirements.
¢ Not an alternative to white–box testing, but a complementary to uncover a different class of
 errors than white–box methods.
¢ Black–box testing attempts to find the following type of errors:
 ¢ incorrect or missing functions.
 ¢ interface errors.
 ¢ errors in data structure or external databases.
 ¢ behavior or performance errors.
 ¢ initialization and termination errors.
 ¢ others.

¢ The following black–box methods will be discussed:
 1. Equivalent Partitioning.
 2. Boundary Value Analysis (BVA).
 3. Comparison Testing.

Black–box Method 1: Equivalence Partitioning

¢ A black–box testing method that divide the input domain into equivalent classes . A representative
 test case is designed to test the entire class.

¢ Rationale : An ideal test case uncovers a class of errors that might otherwise require many
 arbitrary test tests.

Chapter six software testing

71

Equivalence Partition
¢ “Equivalence Partition” is defined in SET theory.
 ¢ A relation ρ on two sets Aand B is a subset of the Cartesian product AxB. E.g., aρb, cρd where
 a,c אAand b,dאB

 ¢ Relation can be defined on the same set A.
 ¢ A relation ρ on a set A is reflective if aρa׊aאA.
 ¢ A relation ρ on a set A is symmetric if aρb֜bρa ׊a,b אA.
 ¢ A relation ρ on a set A is transitive if aρb and bρc֜aρc׊a,b,cאA.
 ¢ A relation that is reflective, symmetric and transitive is an equivalence relation. E.g., “=” on Ν
 (Integers) is an equivalent relation but “>” on Ν is not.
 ¢ An equivalence relation partitions the set into disjoint equivalence classes. E.g., the relation
 ρ={(a,b): a,b אΝ, a+b is an even number}has two partitions {0,2,4,..} and
 {1,3,5,...}.

“Guidelines” on Partitioning

The textbook suggests 4 guidelines in partitioning:
1. If input specifies a range , partition into 1 valid and 2 invalid classes. Eg. If input is in the range of
 [0,100] , the valid class is 0<=x<=100 , the invalid classes are x<0 and x>100.
2. If input specifies a specific value , partition into 1 valid and 2 invalid classes. Eg. If input x=5 , the
 valid class is x=5 , the invalid classes are x<5 and x>5.
3. If input specifies a member of a set , partition into 1 valid and 1 invalid class. Eg. If input x
 belongs to the set Months={“Jan”,..,“Dec”} , the valid class is xא Months , the invalid
 class is xב Months.
4. If input specifies a Boolean , partition into 1 valid and 1 invalid classes, corresponds to the two
 states.
I add the fifth:

Chapter six software testing

72

5. Use your engineering common sense, knowledge & intuition!

Partitioning the Trivial Example

¢ The input domain can be partitioned into 8 equivalence classes. 8 test cases are designed for the
 8 classes.

¢ Note that the “Guidelines” suggested in the textbook are merely “guidelines”. Use intuition to do
 the partitioning.

Equivalence Partitioning– Example 1
¢ An automated banking system requires the following inputs:
 ¢ Userid – 6 or more digit alphanumeric string.
 ¢ Password – 6–digit number, not beginning with 0.
 ¢ Command – {check, deposit, pay bill, ...}
¢ The input domain can be partitioned as follows:

¢ Userid :
 Present (Boolean): (1) valid: present, (2) invalid: not present If present, 6 or more digit
 (Boolean): (1a) valid: >=6, (1b) invalid: <6. (Class 1 is further partitioned into 1a and 1b.)

¢ Password :
 Present (Boolean): (3) valid: present, (4) invalid: not present If present, 6–digit not beginning
 with 0 (Range): (3a) valid: 100000–999999, (3b) invalid: <100000, (3c) invalid: >999999

¢ Command (Member of a set): (5) valid: member, (6) invalid: not member.

Example 1 (cont.)

Chapter six software testing

73

Equivalence Partitioning– Example 2

¢ Design test cases for a search routine, which searches a integer array using a search key.

¢ Inputs:
 int[] array : the integer array to be searched.
 int key : search for this key (or element).

¢ Outputs:
 boolean found : true if key found in array , false otherwise.
 int index : If found, the first index of the key in the array
¢ Pre–condition:
 ¢ The array is not empty, contains at least one element.
 ¢ The array is sorted in ascending order.
¢ Post–condition:
 ¢ If Key is found, found=true, array[index]=key.
 ¢ If key is not found, found=false, index is undefined.

Example 2 (Cont.)
The input domain can be partitioned as follows:

Chapter six software testing

74

Note that the pre–condition excludes empty array.

¢ The black box test cases with the test data and expected result are as shown:

Black–box Method 2: Boundary Value Analysis

¢ Boundary Value Analysis (BVA) extends the equivalence partitioning by focusing on the
 boundaries of the input domain rather than its typical values.
¢ Guidelines for BVA:
 1. If input condition specifies a range between a and b, test cases should include a, b, and values
 just above and below a and b.
 2. If input condition specifies a number of values, test cases can exercise the minimum and
 maximum numbers, and values just above the maximum and just below the minimum.
 3. Apply guidelines 1 and 2 to output conditions, test cases should be designed to produce the
 minimum and maximum output.
 4. If internal program data structures have boundaries (e.g., array, buffer), test cases should be
 designed to test these boundaries.

BVA for our Trivial Example

¢ The test cases for boundary value analysis for the trivial example is shown.

Chapter six software testing

75

¢ We usually perform the equivalent partitioning first, then design test cases around the boundaries
 of the partitions instead of using “typical value” in equivalent–partition testing.

Black–box Method 3: Comparison Testing

¢ Comparison testing is a black box testing method for safety critical systems (eg. Aircraft avionics,
 automobile braking systems), where reliability is absolutely critical.

¢ In such applications, redundant (i.e., duplicate) hardware and software are often used to
 minimize the possibility of error and to achieve fault– tolerant.

¢ Separate software teams could independently implement the redundant systems.

¢ In comparison testing, test cases designed using black–box techniques (such as equivalent class)
 are applied to both versions of software that are independently developed, the conformance to
 the specifications are then compared.

