Trigonometric identities with %

Consider a right triangle with an angle of ¢ radians. Because the angles of a triangle add up to =

radians, the triangle’s other acute angle is%— @ radians, as shown in the figure. If we were working in

degrees rather than radians, then we would be stating that a right triangle with an angle of 6°also has
an angle of (90-0)".

Focusing on the angle &: cosezg, siné’:%
Now focusing instead on the angle

cos(ﬁ—ejzi, sin(z—ﬁj:E
2 b 2 b

Comparing the last two sets of displayed equations, we get the following identities:

NN

—0) in the triangle above,

Trigonometric identities with z
cos(z—ej:sine, sin(z—ej:cose
2 2

Distance between two points
More generally, to find the formula for the distance between two points (x,,y,) and (X, Y, ), consider

the right triangle in the figure below:

*x,Y)

(yz_y ])

x.y) (X-X) . y)

Starting with the points (x,,y,) and (x,,y,) in the figure, the horizontal side of the triangle has length
(x, —x,) and the vertical side of the triangle has length (y, -y, ). The Pythagorean Theorem then gives
the length of the hypotenuse, leading to the following formula:

The distance between the points (x,,y,) and (x,,y,)Is \/(xz %) (Y, -,
Using the formula above, we can now find the distance between two points without drawing a figure.

Example Find the distance between the points (3,1) and (—4,-99).
solution The distance between these two points is

J(3=(=4))" +(1-(-99))" =/(7)" +(100)’ = V10049




The cosine of a sum and difference

Consider the figure below, which shows the unit circle along with the radius corresponding to Aand

the radius corresponding to —B.

(cosA, sinA)

(cosB, -sinB)
We defined the cosine and sine so that the endpoint of the radius corresponding to A has coordinates

(cos A,sin A) The endpoint of the radius corresponding to —-B has coordinates equals
(cos(—B),sin (—B)), which we know equals (cosB,—sin B), as shown above.

The large triangle in the figure above has two sides that are radii of the unit circle and thus have length
1. The angle between these two sides is A+ B. The length of the third side of this triangle has been
labeled c. We can compute c? in two different ways: first by using the formula for the distance between
two points, and second by using the law of cosines. We will then set these two computed values of ¢?
equal to each other, obtaining a formula for cos(A+B).

To carry out the plan discussed in the paragraph above, note that one end point of the line segment

above with length ¢ has coordinates (cosA,sin A) and the other endpoint has coordinates
(cosB,—sinB). The distance between two points is the square root of the sum of the squares of the

differences of the coordinates. Thus

c= \/(cos A—cosB)? + (sin A+sin B)?.
Squaring both sides of this equation, we have
c? = (cos A—cos B)? + (sin A+sin B)® = cos® A+ cos®? B—2cos Acos B +sin® A+sin® B + 2sin Asin B
(cos2 A+sin® A=1, cos’B+sin’B =1)
¢ =2-2cos AcosB +2sin Asin B (1)
To compute c? by another method, apply the law of cosines to the large triangle in the figure above,
getting ¢ =1° +1° - 2x1x1xcos(A+B)
¢’ =2-2cos(A+B) (2)

From equation (1) and (2)
2—-2cos AcosB+2sin AsinB =2-2cos(A+B)

= cos(A+B)=cos Acos B —sin Asin B
This is the addition formula for cosine

***Never, ever, make the mistake of thinking that cos( A+ B)=cos A+ cos B.



We can find a formula for the cosine of the difference of two angles. In the formula for cos(A+ B),

replace B by —B on both sides of the equation and using cos(—B)=cosB and sin(-B)=-sinB to
get

cos(A—B)=cos Acos B +sin Asin B
This is the subtraction formula for cosine.

The sine of a sum and difference
To find the formula for the sine of the sum of two angles, we will make use of the identities
sin(H):cos(%—aj and sin(%—ej:cose (Trigonometric identities with %)

We begin by converting the sine into a cosine and then we use the identity just derived above:
sin(A+B)= cos(%—(A+ B)j = cos[%— A- Bj = cos((%— Aj— Bj

=sin(A+B)= cos(%— A)cos B +sin(%— Ajsin B
The equation above and the identities above now imply the following result:

sin(A+B)=sin Acos B +cos Asin B
This is the addition formula for sine

***Never, ever, make the mistake of thinking that sin( A+ B)=sin A+sin B.

We can find a formula for the sine of the difference of two angles. In the formula for
sin(A+B), replace B by —B on both sides of the equation and using cos(—-B)=cosB and

sin(-B)=—sinB to get
sin(A—B)=sin Acos B—cos Asin B
This is the subtraction formula for sine.
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Objectives

16.1

Identity

Additional Topics in Trigonometry
hgt

Upon completion of this chapter, you should be able to:

1. State the fundamental trigonometric identities.
2. Use the fundamental trigonometric identities to
a, Simplify certain trigonometric expressions.
b. Prove additional elementary identities.
3. State the sum, difference, half-angle, and double-angle formulas.
4. Use the identities in objective (3) to:
a. Find certain function values.
b. Transform certain given trigonometric expressions.
c. Prove other identities.
5. Solve trigonometric equations.
6. Evaluate inverse trigonometric relations and functions.

Fundamental Identities

We saw in earlier chapters that solving triangles is an integral part of trigo-
nometry. Another branch, called analytic trigonemetry, deals mainly with
identities. This aspect of the subject plays a major role in more advanced
areas of mathematics, especially calculus.

Most of this chapter is devoted to the study of trigonometric identities.
Identities are then used in Section 16.6 to help solve trigonometric equa-
tions. The chapter ends with a brief study of inverse trigonometric functions.

Recall that an identity is an equation that is satisfied for every value of
the variable. For example, x2 — 1 = (x — 1)(x + 1) is an identity. In

16.1 FUNDAMENTAL IGENTITIES Amm
trigonometry, identities arise almost as soon as the basic definitions are
given. For example, sin 6 = 1/csc @ is valid for every 8 # 0 = nw. To obtain

other identities, let us recall the basic definitions of the trigonometric func-
tions.

Definitions of trigonometric functions:

) ¥
mEmHN cscf=— y
r y
nOmmnm mmomnm
r X
E:mnw noﬁanm
X y

Figure 16.1 w

From these definitions we get the following reciprocal relations:
1 . 1
csc 6’ OOmm.lmmn i

sin § =

(16.1)

Since tan 6 = y/x = (y/r)/(x/r), we get from the definitions of sine and cosine
the identity

y
in
sinwumnwomm (16.2)
¥
Finally, since cot 8 = 1/tan 8, we have
g6t = o (16.3)
. Sin 6

Note especially that the secant, cosecant, tangent, and cotangent func-
tions can be expressed in terms of sines and cosines:




m./;sﬁpﬁux 4

+  ADDITIGNAL TOPICS IN TRIGONOMETRY 2

Lo

- It follows that any combination of these functions can be expressed in tepy
of sines and cosines. For example,

1 2sin@® cos#d

Nﬂm:m+m8ﬂmu 55 B +wmm=m

Consider another example.

e 1

Change the following expressions to equivalent expressions involving mmzmwm.
and cosines;

b, mm=m+l_||

a. secf + tan 0
csc 6

1 sinf 1+ si
a. secf + tan f = + = g
cosf cosf cos 8

Solution.

by identities (16.1) and (16.2), respectively.

1
csc 6

b. sin 8 + =sin@+sing=2sinf

since l/csc 8 = sin 6.

e Ko Sy

The definitions of the trigonometric functions yield other basic relation-
ships, but the derivations can be carried out in a more interesting way, -

£]

Consider the unit circle (r = 1) in Figure 16.2 and any point (a, b) on the:
circle, Note that m
; b
sin 8 = m and cos @ = 1 mm
Y a
(a, b)
_ E
fsin 6N Lo |
cos 8 ”
_u.,@@ir (6-2 m
!

Figure 16.2

16.1 FUNDAMENTAL IDENTITIES 491
I
or :@:
a=sinf and b =cosé
Since a? + b = 1, it follows that
sin? @ + cos? @ =1 (16.4)

Similar identities hold for the remaining trigonometric functions. In
Figure 16.3, the y-coordinate of P is £qual to tan 6 and the length of PO is
numerically equal to sec 8. By the Pythagorean theorem .

1 + tan? 6 = sec? 8 (16.5)

il

L9

S

o

2 tan §

Figure 16.3

Of particular interest in Figure 16.3 is that the names rangent and secant
suggest themselves quite naturally. (Recall that a secant line intersects a
circle at two points and a tangent line at one point.)

The derivation of the remaining identity is similar and will be left as an

exercise: '
1 + cot? 8 = csc? @ (16.6)

L]

2  Use the fundamental identities to simplify the given expressions. Write the

expressions in terms of sines and cosines, if necessary.

. cot
a. 1 —sin’ o b. coLf ¢. csc x(1 — cos? x)
csc B
d sec? f — tan? @
) cot 8
Solution.

a. | — sinfa = cos? &

by identity (16.4).



TONAL TOPICS IN TRIGONOMETRY m_w 9L
cotB@ cosfB sin
b. =— LY. cos 3
csc 8 sinf 1

by identities (16.3) and (16.1).
¢. csc x(1 — cos? x) = csc x sin? x

by identity (16.4), and

csc x sin? x = ._ ’ LLiE sin x TnEmnEm cscxb _
sin x 1 Y sin hv
d mmONm.IHm:NmH 1
’ cot 6 cot 6
by identity (16.5), and
1
T tan 6
It follows that
sec’ § — tan® @
= tan 0

cot 6

1

For easy reference, the basic identities are given in the box below.

Fundamental trigonometric identities:

: 1 1 |
sin 8 = = =
csc @ cos 8 sec 0 kB cot 6
sin 8 cos 6
t = =
an 8 cos 6 catd sin 6

sin? @ + cos* 8 =1
I+ tan’ 8 = sec? @
1+ cot?f =csc?2 g

Alternate forms of the identities can be obtained by rearranging the
terms. The following sets of identities are equivalent:

sin?@ +cos?@ =1, 1 —cos*@=sin?6, 1— sin?6 = cos? B

Il +tan®’ @ = sec? h, sec’d —tan @ = 1

493

16.2 PROVING IDENTITIES

1+ cot?d =csctd, csctf—cot?d =1

p—

Exercises / Section 16.1

In Exercises 1-14, change each expression to an equivalent expression involving sines and cosines. Simplify if
possible.

(=

4.
1.
10.

13.

cot 8
sec 6

1
sin x

cot x +
cot? ¢ sin® ¢

| — sec? 6

2. sinxcot a 3. cos ftan @

5. cos y sec y 6. 1 —tan Bcot B
1

8. o + COoS w 9, tan fcos cot 8

11. cot? s(1 + tan’s) 12. tan? x — sec’ x
+ tan?

14. 1 Ns X
seC” x

In Exercises 15-31, use the fundamental identities to simplify each given expression. Convert to afi expression
involving sines and cosines if necessary.

15.
18.

.

A.

21.
3.

cos? x + sin® x
sin x

sin? y(1 + tan? y)

tan 6 csc 0
sec 8

sin? x sec? x

csc? o — cot?

tan 6 sin 6 + tan 8 cos? 6

16.2

tan 8 1
16. 17. ————

sec 8 1 —cos? @
19. sin 8(1 + cot? 8) 20. csc B(1 — cos? B)
5y, S€CY 53, 3¢

csc y sec 1

sin 0 tan? w — sec? w
5. tan 8 26. sec w

,. _secty 1 + tan x

2. tan?y - 5 9. ——=
31. cot 6 cos? @ + cot @ sin? §

Proving ldentities

In this section we shall use the fundamental identities to verify more compli-
cated identities. Writing trigonometric expressions in alternate form is a skill
required in more advanced work in mathematics.

In one respect, proving identities is similar to solving word problems:
Each identity has its own features and must be verified in its own way. A
facility for verifying identities can be developed only through practice. Al-
though no general method can be given, the guidelines that follow will help
you decide what approach to take.
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Caution. When proving an identity, the given relationship may not be
treated as an equation—establishing equality is the very purpose of the
verification. For this reason, it is not permissible to transpose terms, to

[l'l]'-'f‘

Guidelines for proving identities :

1. Memorize the fundamental identities and use them whenever POs-
sible.

2. Start with the more complicated side of the identity and try to
reduce it to the simpler side.

3. Perform any algebraic operation indicated. For example, it may
help to multiply out the terms in an expression, to factor an expres.
sion, to add fractions, and so on.

4. If everything else fails, try expressing all functions in terms of
sines and cosines.

5. When working on one side of the identity, always keep in mind the
other side for possible clues on how to proceed.

|

multiply both sides by an expression, and so on. Instead, work on one side of

the identity until the other side is obtained.
To see how to use the guidelines, consider the identity
cot # sin # = cos @

In accordance with Guideline 2, start with the left side of the equation, since
it is more complicated. While no algebraic operations come to mind (Guide-
line 3), the identity cot § = cos 6/sin # may be useful (Guideline 1). This
identity converts the left side to sines and cosines (Guideline 4), so that
cos 6
sin 8
The identity is thereby verified.
The examples below further illustrate these guidelines.

m,_ﬁ,s_b\@,# 4

cotfsinf = sinf =cos O

Prove the identity
cos* @ — sin* 8 = cos? § — sin? 9
Solution. The left side, which is the more complicated side (Guideline 2), is
factorable as a difference of two squares (Guideline 3). Thus
cos? § — sin® 8 = (cos? 8)2 — (sin® 0 )?
= (cos? § — sin® @)(cos? # + sin? 6)

Il

difference of two
squares

replacing

cos? @ + sin @byl

= (cos? 8 — sin? 8)(1)

= cos? § — sin? @

which is the right side. Note that Guideline 1 was also used.

'
t
i

16.2 PROVING IDENTITIES 495

E xamply 4
sle 2 Prove the identity

sin® B8 cos B + cos® B sin B = sin 8 cos B
Solution. The left side, which is more complicated, contains a common
factor sin B8 cos 8 (Guideline 3). Thus

sin® B cos B + cos® B sin B8

= sin B cos B(sin? B + cos? B)
sin 8 cos B(1)

common factor

I

from Guideline 1

= sin B cos
mﬂnnr.,\shubb#w
ple 3 Show that
costy\y .
AOmn v+ wl_mul.wv Sin y = Csc* vy

Solution. We multiply the expression on the left side acaw.::n 3) to obtain

A + ot J i = cscysiny + |no% s

cscy + g5, siny Y8y Hoam
N & Aoom JN il
= siny sin vy Sin y cscy = 1l/siny
=1+ cot?y cos y/sin v = cot y
= cscly identity (16.6)

2 camPli iy
ple 4 Show that )
1 1
e} —— =2 sect x
Il—sinx 1+sinx

Solution. The left side is more complicated and contains two fractions,
which should be combined:

1+ sinx g 1-—sinx

(1 —sinx)(1+sinx) (14 sinx)(1—sinx
(1 + sin x) + (1 — sin x)

(1 — sin x)(1 + sin x)

2

1—-sin’x

2 - NmmnvF
cos? x

since sin? x + cos? x = |
ong Yeosx &) SewX

ranmlarina 1lerne v hu can «

¢ i

= 7 cand +



5 .Wihqu\bn H S

Show that

tan 8 + cot # = sec 6 csc @

Solution. Since the left side contains two terms, it must be considered the
more complicated side. Since no algebraic operations and no fundamenty
identities come to mind, we write both terms as expressions involving sineg '/
and cosines (Guideline 4). Thus o

-

10.£ FPHUVING [DENIHTIES

o7
Solution. The most promising approach is to multiply out the expression on
the left side (Guideline 3):

(sec B — tan B)?

Q437

5 s (a = by =
=sec B — 2sec Btan B + tan® B 72 0 g B

1 2sinf3  sin? g8 converting to
= OOMN m - OOmN \w & OOmN _mw. sines and cosines

B )
= 1-2sinf + sin’ 8 combining fractions

cos? B
(1 — sin B)? factoring and

T = sin? B identity (16.4)

(1 — sin B} difference of two
= —sa (1 + sn B) squares
_l—sing

; " 1+sing

ﬁm:m+no~mnm_=¢+nﬁwmm i
cos 8 sinéd i
Sin 0 sin @ , cos # cos @
= - + — i
€os 0 sin @ sin 6 co5 @ _
_ sin? @ + cos? 6 1
~ cosfsing  cosOsing ”
_ — 7] e m
= ¢ — ==
cos 8 sinf R
m1§§v\§ #6
6 Show that
sin? ¢
I+cosg L—cosé

Solution. Apart from the fact that the left side is more complicated than the
right side, none of the guidelines we have used so far seem to apply. Think-
ing of Guideline 5, see if the right side offers a clue. It does suggest one
possibility: Multiply the numerator and denominator of the left side by 1 —
cos 6, not only to introduce this expression but alsa to reduce the denomina-

Example 8

The current in a certain circuit as a function of time is given by

i=V0.04 cos? wt — 0.04 + 2.0 sin? w!

Simplify this expression.

Solution.

i = V0.04 cos? wr — 0.04 + 2.0 sin® wt
= V—0.04(1 — cos? wr) + 2.0 sin? wt

common factor —0.04

= V=0.04 sin® ot + 2.0 sin? wr replacing 1 — cos® wt by
tor. Thus " i

sin? @ ,1—cos0_ sin? (1 — cos ) — 4 g

1+cosb 1= cosé 1 —cos?@
si* (1 — cos 6)
= m*.mw\m =1—-cos@ s Ll .
Exercises / Section 16.2

Guidelines 1 and 3 could actually be used to prove this identity: since 3 pyercies 1-40, prove the given identities.

sin® 6 + cos? 6 = 1, the numerator of the left side can be written sin2 6 = 1 —
cos’ 6 = (1 — cos 6)(1 + cos 8), so that the factor 1 + cos 6 cancels. 1.

However, the above technique using Guideline 5 is needed in Exercises 32 3,
and 33. ‘
1 Show that 1.
1 —sing
- - .
(sec B — tan B) 1+ 50 g 9,

cot 8 sin 8 = cos 0 2. sin 8 cot fsecd = 1

tan 8 csc § = sec @ 4. cos @ + sinftan = sec 6

2 i ,,__”

cos . . : ¥

: m+m::mnomnm 6. sin® x + sin x cos? x = sin x i
sin f3 i
w — OOmw ¥ 2 ind 2 2 — 2

3 = tan” y 8. sin®y + tan’ y + cos?y = sec? y

cos? y

1 + tan? @ tan
= tan® 10. tan 6 + cot § = —

Ermra ik U sin® @
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11. (1 + tan x) cos? x = | E Ll = cos @
! HHCOSTE = "tan @ + cot @
— .
S . S ! 3 s 2
13. coty ¥ tany sin vy cos y 14. (tan 9 + cot 6)? = sec 0+ csc? g
sin 8 + tan g8 _ sin @ sin 8 )
£, l1+cospg ~anB Ha._+ome+_laomm|mnmnm
sin @ 1 —cos@ .
17, - — =2cot g 18. sec? x + csc? x = sec? x cse? X
1 —cosp sin ¢
19. cot? 8 - cos? 6 = cot? @ cos? ] 20. tan* & + tan? @ = sin? & sect g
1 + sin 8 cos 6 cos @ cos f
. cos 8 +_+m_.=mfmmmnm Nm.ﬂm=m+mnom+ v
1
A —_ = gt + a — =
23. 2csc x Cot x cos x = sin x + csc x 24. (1 cos B)(1 + cos B) [+ col’
1—tan coty — 1 cos 1
25, =7 26, ——%
I+tany coty+ | COSw—sinw | —taneg
tan 8 sin @ I — tan? o
A —— " ’ = o in2
u.___.omnmlno:w csc§ +catg €O Fcoso <8 [+ianlgq | ~2sinfa
I + tan? @ cot @ + tan @
29, 77— =tan?g 30, —————— = c5cp
csct g sec @
1 + cos y — sin? cos @ 1 + sin
31, JI =coty 32, j = ) (See Example
siny cos y sin cos m.?mrnisl&.u
cos 8 1
33, sec O +tan § = e (See Example 6.) 3. ilm = sec @ + tan @
; ) sin' @ — cos?
35. cos*x — sin*x = 2 cos? x — | 36; ——= _.C =1
sin® « — cos? o
tan 6 + sec’9 ~ 1 cos @ + sin g sec 8 + csc B\2
3, @00+ 5e0 1 _coso+s A P ca
1 tan § — sec’ 8 + 1 cos 6 — sin § 5 I+ tan g8 et
tan x — sin x SeC x tan o + cot « .
39, — = W ———— —sinasec’ @ = sec
sin® x I+ cosx cos’ o = Seen Cscar
1, An object traveling along a circle of radius g (in, feet) a an angular velocity of /25 rev/sec
velocity —Aa KS e Eo;r\@
(9w sin w1)? + (go cos wt) y
- - . - 3 h
1 Simplify this expression. (See Example 8.) {in ?m}\\mé\na..xt. T 4id
: e dias
2. Suppose a particle moves along a line with velocity v = 2 cos ¢ + 2 sin ¢ (in meters per second).’
of calculus show that the acceleration is given by g = —2 $in ¢ + 2 cos ¢ (in meters per second pe
8 Show that a = 0 whenever tan 7 = 1. Lol por MM\MMA.S%\&\??&. ”
3. Neglecting air resistance, the equation of the path of a missile projected at velocity vy at an angle ,
horizontal js ¥ ﬁ;m‘f of Wit The syl wosﬁ,ﬂ Vs
2
X
Y=xtan o — Ilwl

Wite as < Single ‘PT%

2uy® cos? @

Wleitm av e = 22 4~ -

44. In the study of the motion of a pendulum, the expression

where 6

fan.0= secg ==&$inp 46, If a vertical plate is partly submerged in a liquid, then the capillarity will cause th
to a height of

16.3 THE SUM AND DIFFERENCE FORMULAS
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| — k% sin’ @ arises. Show that

449

1 —Ksin?0=kcos?@+1- 42

Subjecle

5, A beam of length L (in inches) weighing w (pounds per inch) and clamped at the left end is subjected
am.ﬁoanﬁmmm?n force P at the free end. The minimum deflection is given by

wEl I 5
wa:.”ﬂ? IMm-Imnnm+mB:&
= LVP/EI. Show that
wEl 2cos @ —6*cos @ —2 + 20 sin @
Ymin = 53 5 cos B

afuseen tho PRI

e liquid to'rise on the
I —sin@

m. =c /\1N,

ont S face

. #
where 6§ is the contact angle between the liquid and the plate and ¢ a constant that depends’on the su
tension and specific gravity of the liquid. Show that

ccos

B V2(1 + sin 6)

41. In some problems on the motion of a pendulum, the expression [/V1 — cos x arises. Show that

Jhin¥ expression is equivalent to V1 + cos x/sin x.

S oo fiaf Hivs &

16.3 The Sum and Difference Formulas

It is sometimes useful to write a trigonometric function of the sum of

e £wo angles in terms of Hamomo:._omln m::n:o:m of each m:m._m. mow.anxm_._.
Zv examfly, Sin (A + B) can be expressed in terms of sin A, cos A, sin B, and cos
sl / To do so, let A and B be two acute angles. Then A + B may be e

Loit s .
HMW@ acute (Figure 16.4) or obtuse (Figure 16.5). In both figures, PQ and M}
0.50/37“ KR
1 ~u. 4 ARG @r?rﬂ
\U
il
A
RH h /
B J A+ B acute B Akdio
A allin| x / L
o] Q N . DJ_ 5 L
Frgure 164 Eviae (6§
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Sso
" perpendicular to the x-axis, PM is perpendicular to OM, and MR is
dicular to PQ. Note that ZMPQ = £ A, since the two angles have th
perpendicular, right side to right side and left side to left side.
In both figures we have

PO_PR+RQ _PR RQ_PR MN
OP OP OP OP OP OP
The last two fractions do not define functions of either A or B. However :._.ﬂ
we multiply numerator and denominator of the first fraction by PM and ?a

second by OM, each of the resulting ratios is a function of A or B: _

PR PM MN OM

s il
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muﬂan—,— ¥

eir sideg ;

e

trate these identities, let us find the values of certain trigonometric functions
without tables or calculators.

Exampl4

1  Find the exact value of cos 75° by means of the sum and difference formulas.

e

0

sin(A + B) =

Solution. Since 75° is not a special angle, cos 75° cannot be found from a
diagram. However, 75° = 30° + 45°, a sum of two special angles having
known function values. So it follows from identity (16.8) that

SRS IR o T

OP .Fﬁ + OF ‘% . : cos 75° = cos (30° + 459
B PR PM MN oM B . ) | = cos 30° cos 45° — sin 30° sin 45°
ISETQTM+QE.Q~U|8m>m_=m+w_=>8mm _ Hz\w._lw.mn/\w\_./\mnz\»lz\m
or : 2 VI I'v3 I N2 4
sin (A + B) = sin A cos B + cos A sin B (16.7) . Example 2
|
For the corresponding identity involving cos (4 + B), we get : 2  Find the exact value of
cos (A + B) HD@HEHEI@H@;@ sin 25° cos 20° + cos 25° sin 20°
OP OP OP  OF  OP  ©OP i . S ”
_ON .. oM _RM PM ; Solution. By identity (16.7)
T OM OP PM OP ; sin 25° cos 20° + cos 25° sin 20° = sin (25° + 20°)
V2
or = gin 45° = 5
cos (A + B) = cos A cos B — sin A sin B (16.8) . -
Since sin (—B) = —sin B and cos (—B) = cos B, we also get
sin (A — B) = sin A cos B — cos A sin B (16.9) The sum and difference identities are sometimes used to combine cer-
and : tain expressions, as shown in the next example.
cos (A — B) =cos A cos B + sin A sin B (16.10) ! W??E A3 . ; ¢ shlacned
4 o befrreentfa o Fuancfins Ean be oblatine
These four formulas can be written more compactly in the forms given ] 3 Combine . \f\j Agadle o @ o emd ﬁ di Lotmm el
below. (The combination “+" and **="" in formula (16.12) indicates that the | s Beston e cosTi-sin T b, ] i
terms have opposite signs.) i // k\?gg tdeate'tien,
| into a single term. T
Sum and difference formulas: ; Solution. By identity (16.9) we get directly T .
sin (A = B) = sin A cos B + cos A sin B (16.11) sin 3x — 2x) = sin x
cos (A + B) = cos A cos B F sin A4 sin B (16.12) | .

In our study of the graphs of sinusoidal functions, we found that the
As noted earlier, these identities enable us to express a function of a graph of y = sin (x * ¢) can be obtained from the graph of y = sin x by
sum of two angles in terms of functions of the angles themselves. To illus- - translating the latter graph by ¢ units. If ¢ is a special angle, the relationship -



Simplify sin (x + 7/2).
Solution. By identity (16.7)

™ . T
M + cos x sin M
(sin x)(0) + (cos x)(1)

= COoS x

Evample s

. ﬂ .
m:._ Tu + Mv = SIn x COos

Il

Simplify cos (2x — x).
Solution. By identity (16.10)

€os (2x — ) = cos 2x cos  + sin 2x sin )
(cos 2x)(—1) + (sin 2x)(0)
—Ccos 2x

The sum and difference identities for the tangent occur less frequently
and are listed mainly for completeness.
By identities (16.7) and (16.8),

sin (A + B) sin A cos B + cos A sin B
cos (A +B) cosAcosB — sin A sin B
Dividing numerator and denominator by cos A cos B, we get

sin A cos B £ cos A sin B
cos A cos B ' cos A cos B

tan (A + B) =

tan (4 + B) = cos A cos B B sin A sin B
cos AcosB cosAcosB
or
tan A + tan B m
_ —= (.13
tan (A + B) I = i A G T v (16.13)
Similarly,
tan A — tan B :u._.rv
e T — (
tan (4 - B) 1+ tan A tan B (16.14)
Evamplt 34 L

Common error

16.3 THE SUM AND DIFFERENCE FORMULAS 503

Remark. The identities tan @ = sin 8/cos # and cot 8 = cos 6/sin 8 were
known to the Arabs. The Hindus knew the fundamental identity sin® 8 +
cos? @ = |, while the formula for sin (A + B) was discovered by the Belgian
mathematician Romanus (1561-1615).

Writing
sin(4 + B) as sinA + sin B
Instead, sin (A + B) should be written as
sin A cos B + cos A sin B
Similarly,

cos (A + B) should not be written cos A + cos B.

@v Example 7

Py

If i = 3 sin (wt — 7/2) is the current in a circuit and ¢ = S sin wf the voltage,
find an expression for the power P = ¢i as a function of time and simplify the
result,

Solution. The power is given by

P = ei

(5 sin wrt) T sin AEH o W:

1l

(5 sin wt) * 3 :mm: wl Cos M — COS wf sin WZ

15 sin wt (sin wt* 0 ~ cos wt * 1)

Ii

—15 sin wt cos wt

li

Simplify tan 2x + 7/4).
Solution. By identity (16.13)

w
4 1+ tan2x
71— tan 2x

_ISH_MHSH.M

tan 2x + tan

tan AMM + Mv =

Exercises / Section 16.3

In Exercises 1-10, use the sum and difference identities to find each giver value without using a table or a
calculator. (See Examples 1 and 2.)

1.

3.
5.
7.
5.

cos 16° cos 29° — sin 16° sin 29°
cos 55° cos 10°

2. sin 105°

4. sin 285° ]

6. sin 50° cos 10° + cos 50° sin 10°
sin 55° sin 10° 8. sin 76° cos 16° — cos 76° sin 16°

sin 39° cos 6° + cos 39° sin 6° ’ 10. cos 18° cos 12° — sin 18° sin 12°

In Exercises 11-20, write each expression as a single term. (See Example 3.)

11,
13,
15,

17,
1

sin 4x cos 2x — cos 4x sin 2x 12, sin 6x cos 3x — sin 6x cos 3x
sin x cos 2x + cos x sin 2x 14. sin 3x cos x + cos 3x sin x

cos 3x cos x + sin 3x sin x 16. cos 5x cos 3x + sin 5x sin 3x
€0s 5x cos 4x — sin Sx sin 4x 18. cos 2x cos 3x — sin 2x sin 3x

) o5y — Coshry) siny 2o 3 A% Lamt) = Gn/22-9) G5 (Y= 1)

D . LT

\
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1 Exerci 21~ i : .
, r ,_mnm 1-38, write each expression as a function of x or 2x. (See Examples 4 and 5.) 16.3 THE SUM AND DIFFERENCE FOF
1. cos (x + 30°) 22, sin (x — 30°) & oS
23 ituti
T By substituting show that
3. cos AMR + Mv 24, sin (x — ) .
% sin x + mmzu\nwmiﬁk+wvn0mﬁalw .Iv.@@.?&
5. cos (x + ) 26. cos (x — m) 2 2
Lt
. + - R
7. sin (2x — 2m) 28. Smm va sin x — mw:wnmoowh\«wwv mmsﬁxwwvi\vv (s v
29
. T x + ¢ o DR
2 E:T&+MV 30. nomﬁ |mv Smx+nomwu~oowﬁlmljoomwﬁ mJ — v
3 ,
T : L (x Y\ L (X b2
L. m_zm uv 32. sin T,va cosx —cosy = —2 m_nﬂ wv sin Aa wu -— h 1 p
52 6 2 2
i3. cos T + mv 34. cos hwa . Mw 52. Prove the following identity occurring in the study of alpha particle scattering:
33 ° 1 0
15, sin T + Hu 36 T sinz (w — 8) = cos 3
4 - cosfx—7 2 2 . b s 175 , Cb
37 . . N A i x
V7. tan [x + = a . The equation of a standing wave may be obtained by a ing the displacements of twc
7 T “U um_mnwnlu 53. Th tion of a stand ay be obtained by adding the displ ts of t
) 4 . amplitude and wavelength but traveling in opposite directions. Given that at some partic
‘n Exercises 39-48, prove the given identities. Sowme par "t ,.M nsaanl
——— Bt
). sin m|muu|8m?+mv 40. sin 20 = sin (0 + 6) = 2 sin § cos 0 : , ” —
-Lof is the equation of a wave traveling in the positive x-direction and
11. cos 20 = cos (§ + 8) = cos? § — sin? 0 42, sin (x + y) + sin (x — y) = 2sinx cos y a ik s
“ | . . # Eu»&:~¢+hv w?&\@_\w m:.fs,rnoi 31
3. sin(x +y) — sin(x —y) = 2cos x sin y 44. sin T + mu + cos Ax + wl& = Ccos x 4 B etz Ty
45 s te b Puinte=1y = sinbx —sin? B ) is the equation of the corresponding wave traveling in the negative x-direction, show that y; 1
pysiw(e=3) S Siofx —an'y . 46. cos (x + y) cos (x — y) = cos’ x — sin’ y the waves cancel each other at the instant in question.
47, tan(x —y) —tan (y — x) = 2(tan x — tan y) 48 tan (x +y) —tany _ t 54. The current in a certain electric circuit is given by
1+ tan x tan y "T+tan(x + y)tany _ mnm,am?
. . e . : T T
In Exercises 49-51, we shall obtain a few other standard identities. The first mcmw%% .mvno,w: as wvn produc § =3 he_, - Mu + Beos AEH + Mv
sum formidas and the last four as the sum-to-product formulas.
49. Derive the following product-te-sum formulas by adding and subtracting formulas (16.7) and (16.9): R BN CHRrestan ; 7 sy » to jﬂc.m w,unnrk.m m N A
; 1. .. . e 55, If a force Fycos w! is applied to a weight oscillating on a spring, then the energy supplied (0
sin A cos B = 5 [sin (A + B) + sin (A — B)] > ﬁfo.,wu (@6 Canbe written in the form
cos A sin B = 3 [sin (A + B) - sin (4 — B)] —>(b\b) i B =g {ah—glise
50. Derive the followi ) Show that
. Derive the following product-to-sum formulas by adding and subtracting formulas (16.8) and (i6 10): . . Hin
N E = AwFy(cos? wt cos y + COs wt sin ol sin ) 3 sﬂqﬁ_..?n_._.us Wt
¥

1 . .
cos A cos B = 5 [cos (A + B) + cos (4 — B)] — (k. .nC (16
. 56. A light ray strikes a glass plate of thickness a at an angle of incidence ¢. If ¢ is the angle of it

sin A sin B = W [cos (A — B) — cos (A + B)] A\ k- rwv i the glass, then the lateral displacement D of the emerging beam is given by
51. The sum-to-product formulas can be obtained fi identiti . _a sin (¢ — ¢')
»?T» — B =y, Thes rom identities (16.15) through (16.18) by letting A + B = x. D cos ¢’
A _xty s mnhlw Show that D = a(sin ¢ — cos ¢ tan ¢').
2 , 2 §7. Given that

I8 X
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; Sob :

) _m.ﬁwo equation of a wave traveling in the positive x-direction and
t o x 2

wwn\»nOmuﬁﬁ|+|v G

Y E

is the mﬁ_:m:.on of the corresponding wave traveling in the negative x-direction, findy = y, + y
of a standing wave. (Refer to Exercise 53) >

§8. In the development of the theory of Fourier series (see Section 8.5) the product

mirt niwt
COs —— cos —

p p

has to be written as a sum. Carry out this operation,

59. Show that the product of two complex numbers r, cis 6, and r, cis 6, is
riral(cos 6, cos @, ~ sin 8, sin 62) + j(sin 8, cos 6; + cos 0; sin 65)] 4

Simplify this expression to obtain the standard form ryr; cis (8, + 6,)

16.4  Double-Angle Formulas

Some special cases of the sum and difference formulas occur often enough t

warrant separate classification. One such classification includes the double. &

angle formulas.
Let4 = B in the identity E

Il

sin (A +B)
Then

sin A cosB + cos A sinB
sin (A +A4) =sin A cos4 + cos A sind

or

sin 2A = 2 sin A cos A
IfA = B in the identity
cos (A +B) = cos A cosB - sin A sinB

then

Il

cos (A +4) = cos A cos4 — sin A sind

or
cos 2A = cos? A — sin A

If we let cos? A =1 —sin? A, then cos 24 = | — sin2 A — sin? A =
2 sin? A. Similarly, cos 24 = cos2 A — (1 —cos?A)=2cos*A4 — 1.
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Double-angle formulas:
sin 2A = 2 sin A cos A (16.23)
cos 2A = cos’ A — sin’ A4 (16.24)
=2cos?A — 1 (16.25)
=1-2sin? A (16.26)

The double-angle formulas can be used to express the sine or cosine of
twice an angle in terms of functions of a single angle. In particular, if sin 6 or
cos 6 are known, we can use the identities to find sin 26 and cos 26. Con-
sider the examples below.

1 Usethe double-angle formulas to find sin 26 and cos 28, given that sin =

3, 0 in quadrant II.

Solution. Since sin 8 = %, 8 in quadrant II, we obtain cos 8 = —1% (Figure
16.6). Thus %
. IYEATE .
memlmMEmnOmmlmAG B)= " 160
and
g _MVN Am VN
cos 260 = cos* 6 — sin” 8 h T 3
14425 119
169 169 169
—12 3
Figure 16.6
m.gfwfu&aw

2  Find sin 26 and cos 20, given that cos # = —%, 0 in quadrant III.

Solution. From the diagram (Figure 16.7 on page 508), we obtain sin § =

—V/21/5. Hence
_ 421

25

-2

mmummnmm.zmoom.mnmmlﬁ
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: @y Example 5

and Ge8
. . 4 21 17
N = 2 e 2 E o e IS e e— o
cos 20 = cos“ 6 — sin“ # 25 7 35 75
y
8
2N
“
E)\Mm“ 5
|
Figure 16.7

The double-angle formulas are also applicable to trigonometric functions

of multiple angles. For example, from the identity sin 2A = 2 sin A cos 4,
it follows that

sin 168 = 2 sin 86 cos 84
Similarly, since cos 24 = 2 cos’ A — 1, we have

2cos? 6x — 1 = cos 12x
m.:r“.%‘u\c\ﬁ.knw

3 Change cos? 4x — sin? 4x to a single term.
Solution. By formula (16.24), cos 24 = cos? A — sin? A, we get
cos’? 4x — sin®4x = cos 8x A =4xand 24 = 8x
£ ramplo 4 Lt
4 Prove the identity

cos® 28 — sin* 20 = cos 46
Solution. Factoring the left side, we get
cos? 260 — sin? 26 = (cos® B)2 — (sin® 0)2
(cos? 26 — sin? 26)(cos? 26 + sin? 26)
cos? 20 — sin? 20 = cos 49  cos® 26 + sin® 26 = |

Il

by formula (16.24).

Common error

SUY

sd7

Equating sin 24 with 2 sin A and cos 24 with 2 cos A. As we have seen,
sin 24 = 2sinAcos A

16.4 DOUBLE-ANGLE FORMULAS

and
cos 2A = cos? A — sin? A

The range R of a projectile fired with velocity v at-an angle 6 with the ground
is given by

2 2
R = = sin 8 cos 8
g
Write R as a single trigonometric function of 6.
. 0% .
Solution. R = 5 sin 0 cos 6

vt )
= M (2 sin 6 cos 8)

2 "
vt .

= — sin 26
g

by the double-angle formula (16.23).

Exercises / Section 16.4

1.
2.
3.
4.
3.
6.
7.

o0

9.
10.
11.
12.

Find sin 20, given that sin 8
Find sin 20, given that sin 6 =

2, 0 in quadrant I.
4.8 in quadrant IL

Find cos 26, given that sin # = —$, 6 in quadrant III.
Find cos 20, given that cos 6 = +y, 6 in quadrant .
Find sin 20, given that cos # = —1i, 6 in quadrant I1.
Find cos 26, given that sin § = —+y, 0 in quadrant III.
Find sin 28, given that cos § = %, 8 in quadrant IV.
Find cos 28, given that sin 6= -4, 0in quadrant IV.
Find cos 26, _m?n: that sin 8 = £, 6 in quadrant II.
Find sin 26, given that sin 8 = §, 8 in quadrant L.
Find cos 20, given that cos 6 = —$%, 8 in quadrant III.
Find sin 26, %.«6: that cos 8 = —§, 6 in quadrant II.

In Exercises 13—24, write each expression as a single trigonometric function. (See Examples 3 and 5.)

13. cos? 3y — sin? 3y
15, 2 sin 36 cos 36

14. sin’?x — cos? x
16. 1 — 2 sin? 5x
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Half-Angle Formulas .
37. 2cos? 28 — | 18. sin 2x cos 2x The identities in the previous section allow us to writé a m_._:onom_ ow m_w”_ “_p
19. 1 — 2 cos? 4y 20, 2sin®4 — 1 terms of functions of A. In this section we shall study the half-angle fo

las, which enable us to express a function of $A in terms of functions of m»
’ The half-angle formulas can be obtained m_.o:._ the double-angle formulas
by properly rearranging the terms, If we start with

21. sin 4w cos 4w 22. sin 30 cos 38
23. 4 sin 2x cos 2x 24, 6 sin 5x cos 5x

In Exercises 25-35 » prove the given identities.

cos2x =1 — 2sin’x
25. cos' x — sin? x = cos 2y 26, sin 260 = tan 8 (1 + cos 28)
St we get
: an
27. 1 ~ cos 28 = tan 8 sin 2 28, sin 28 =
A R A n g I + tan?g 2sinfx=1— cos 2x
€0s 20 + cos @ + | . p
B —Err o Wt spng = cotd * 30. sin 4x = 4 sin x cos x cos 2x i g 1= cos 2x
25 cos’y + 1 B m‘ 2 - ; ’
.iﬂlmmn 24 32. (cosx + sin x)2 = | + sin 2x E
. e e T GOS8 S
1+ cos 2w cotly — | SHE = 6 2
3. sin 2 COt @ 4. 2coty = cetly
csc? g — 2 Letting x = A/2, we have 5
35. 3 = cos 26
csc 6
LA I —cos A
36. By letting A = B in identity (16.13), show that siny = *\——>
2tan A : .
tan N\» = m — nmwﬂu A meEWH—%u ﬁ—.oa cos N.ﬂ = N COosS* x — wu we OUmN:.—
which is the double-angle Jormula for the tangent. A 5 /\a
iu . . . COS 5 = \[—FH
37. Suppose a particle is traveling along a line according to the equation s = 4 sin® ¢, where 5 is measured in 2 2

in meters and 7 in seconds. Calculus shows that the velocity is given by v =

8 sin 7 cos ¢. Write v as a single
trigonometric function of ¢,

The algebraic sign depends on the quadrant in which the terminal side of A/2

18 .
18. Prove the following identity from the derivation of Rutherford’s scattering formula: lies.
27r? sin @ = 472 mmzm cos W,
; & : ; . Half-angle formulas:
9. An axle is placed through the center of a circular disk at an angle o.. The magnitude T of the torque on the
bearings holding the axle has the form T = kw? sin « cos a, where w is the angular velocity. Show that sin A_ E ‘ (16.27)
2T 2
1

I+

T= M .._new sin 2a A _ E Amammv
o4 cos 3 = —

0, The equation of the path of a missile projected at velocity v at an angle 6 with the ground is

gx?

2v? cos?

y=xtanf —

The half-angle identities can be used to express the sine mua now:..m Mm a
given half-angle in terms of the cosine of the angle, as shown in the first two

x(v? sin 20 - gx) examples.
= 2 21 EF TEN)
¥ 2v? cos? g

Show that
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Eawe

Q45 A £ m
T Useth 7
se the appropriate half-angle formula to find the exact value of Cos 1657, m
Solution. By identity (16.28) d
cos 165° = & /\_ + cos [(2)(1659)] _ /\H + cos 330° h
2 . 2 P
P A M
. 2 2 2 h
= + = =+ =
7 7 "2
L2t V3_ V243 :
+ 3 + 5 ]
Since 165° is in the second quadrant, cos 165° is negative. So
cos 165° = — LJMPM
Ccampl 4 D
)

2  Find cos 6/2, given that sin § = —1%, g in quadrant IV.

Solution. If sin § = —13, then cos 8 = & for
; , # in quadrant IV. More
since 270° < 8 < 360°, it follows that 135° < 6/2 < 180°. Thus cos 8/2 < m%.”_

1 +—
no,n.ll \_+oomm Sul
2
_ _m+m \
i

3 <| g
Vi3 13 |

Sometimes the half-angle formulas are
used to
expressions. simplify certain radical -

mﬁbgwgﬁw
3 mmiv:@ V6 — 6 cos 46.

Solution. The expression resembles the right side of identity (16.27). To get

the proper form, we need to remove 6 f i i
. ! rom the radical and ob i
denominator. Thus . _

V6 — 6 cos 40 = V6(1 — cos 40) = V6 V1 — cos 40

VE (1 — cos 48)

I

Jio
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16.5 HALF-ANGLE FORMULAS

1 — cos 48

V6 V2 5

2V/3 sin 26

= V12 sin 26

1l

In the study of calculus, the forms of the half-angle formulas stated
below are sometimes more useful.

1 —cos2A
2

1+ cos24
2

sin? A

(16.29)

cos? A = (16.30)

Note that these formulas are really the double-angle identities (16.25) and
(16.26) slightly rewritten.

_m.«p%q&p%:

4  Write 4 sin? 3x without the square.
Solution. By identity (16.29) with A = 3x,

1 — cos 6x
3 v = 2(1 — cos 6x)

4 sin* 3x = 4 A
Etample 4 S
1]

B Write 6 cos? 2x without the square.
Solution. By identity (16.30) with A =

1+ cos4
6cos?2x =6 A Nom xu = 3(1 + cos 4x)
mfm:\lu\@ b
¥
6 Prove the identity
0 sin’ 0
2= —
2 cos 2 1—cosé
Solution. Since sin® § = 1 — cos® 6,
sinf@ 1 —cos’d (1 — cos6)l + cos (i) S—
1—-cos@ 1-—cosb 1 — cos @ of two squares
1+ V]
HH+00mmM~A C05 6)
2
7]
= 2 cos?

3 by (16.30)
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e | Sit
Example 7 The motion of a planet or comet about the sun can be

desc rbed ru an equation of the form

{
¢ 5 " a=bcoso . "
S Tl e Buadion reoents ) ;
e where Pm? and nmmw% nczmﬁmam. (See Figure 16.8.) This equ
.w\ S a conic section. For example, the equation of the elliptic pz
S ; ryas
nTog Merearats i x 17
NG "= 1=0.206 cos 6
where r is measured in miles. .
Figure 16.8 Some comets follow a path that is nearly parabolic:
_ A
B ] —cos @
Show that
A b
r=3cscls
Soluti A A 2 A 1
== = —
SRR, "T1-cos® 2'T-cosd 2 T-co
2
._ _AL LA L0
H.\.ﬂl, | — (ol 2 .lemnmou
2 = Sl

Exercises / Section 16.5

\Tn:\.w\_ Je

2. cos 75°

5. sin 112.5°

%, 6 in quadrant 1.
—3$%, 0 in quadrant III.
2, ¢ in quadrant IL.

71, 0 in quadrant IV.
—%, 6 in quadrant 1V.

of fhe EM% -an
1. sin 15° h m 3. cos 22.5°

4. cos 105°

6. Find sin (6/2), given that cos 8
7. Find sin (6/2), given that cos
8
9

]

. Find cos (8/2), given that sin 8

Il

. Find sin (8/2), given that cos 6
10. Find cos (8/2), given that sin 8

In Exercises 11-16, simplify each given expression. (See Example 3.)

1 — cos 46 1 + cos 68
11. ,\!INI 12. ,\|N]

14. V4 — 4 cos 88 15. V5 — 5cos 40

13. V1 + cos 66

Eeosdd

o fimd

In Exercises 1-3, find the nxmam‘mwh:m of each trigonometric function by means of the half-as

16. V6 + 6 cos 860

575

In Exercises 17-24, eliminate the exponent. (See Examples 4 and 5.)
17. sin® 4x 18. sin? 3x 19. cos® 2x
20. cos® 3x 21. 2 sin® 3x 22. 4 cos? 4x
23, 12 sin’ x 24. 2 cos’x
In Exercises 25-28, prove the given identities.
; 1 + cos =
2. M_MMM = Bmmm - maum 2. costy = — : T omom 2
B B

wm.mnOmMH: +nom.9mnnm

29, Simplify the following expression from a problem in the study of the pendulum:

1
V1 — cosx

30. In the study of the motion of a pendulum, the expression
s [1 ~ cos b -
1 —cosa

needs to be simplified. Show that

in?
mzm

sin =
2

3l In a.m:wnam_.:m the length of the path along which a particle will slide from a higher to a lower point in
minimum time, the expression V2 — 2 cos 0 needs to be simplified. Carry out this simplification.

32, A common exercise in calculus is determining the area under a curve. To find the area under one arch of the
curve y = sin® x, the equation must be written without the exponent. Rewrite this equation.

33. The index of refraction n of a prism with apex angle A whose minimum angle of refraction is 5 is given by
. A+ .

A
m_ﬂw

Show that the expression is equivalent to

/\H + sin A sin & — cos A cos &
:”
1 —cosA

16.6 Trigonometric Equations

So far we have concentrated only on identities, equations that are valid for
all values of the variable. Now we shall turn to conditional equations, which
are valid only for certain values of the angle.



For example, the equation
sinf =0

is not an identity, since equality holds only if
6 = 0°, + 180°, + 360°, and so on _

To solve an equation containing a single trigonometric function, we
solve the equation for this function and then determine the values of the
angle for which equality holds. Consider the next example.

W#E:&\@P 4 A 1

Solve the equation2cosx — 1 =0,0 = x <27,
Solution. The first step is to solve the given equation for cos x. Thus

2cosx—1=10 given equation

i

2cosx =1 transposing —1

Cos X dividing by 2

1
2
The angles between 0 and 27 whose cosine is § are

T S
HIM and Hiq

Substituting into the given equation shows that the solutions check.

If an equation inyolves more than one function, we can often use the

identities to convert it to an equation involving only one function, as shown
in the next example. - - — ‘

m%»s)._p\mm#w

Solve the equation sec? x — 4 tan? x = 0, 0 =< x < 27r.

Solution. Since the equation involves two different functions, no direct
solution is possible. However, if we recall that 1 + tan? x = sec? x, we can
convert one of the functions. Thus .

se?x —4tan’x =0
1+ tan*x —4tan?x =0
1—3tan?x =0
1
Hmsnxnw

1

VT ]

16.6 TRIGONOMETRIC EQUATIONS 207
s 9
. . V1
anx = £ —=
V3
tan s+ _
X = —F=
V3
It follows that x = 30°, 150°, 210°, and 330°. In radian measure
w0 I Ao
*FTE 86 6
ns Some trigonometric equations are actually in quadratic form, as shown
in the next example.
Wf»s;%@mmw

3  Solve the equation 2 csc? x + 3cscx —2=10,0 = x < 27.
Solution. Let y = csc x. Then the equation becomes
2v24+3y—-2=0
Qy-y+2)=0

1
y -2, M

It follows from y = csc x that

1
cscx = —2 and Omnknm

Since a value of csc x cannot be less than unity, the equation csc x = % has
no solution. From csc x = —2, we obtain x = 210° and 330°. In radian
measure

Iw 1«

X=—— —

6’ 6
€ o e 4 4

Solve the equation sin 2x = 0, 0 < x < 2.

Solution. Since sin 2x = 0, we have 2x = 0°, 180°, so that x = 0°, 90°.
Because of the double angle, these are not the only solutions in the range 0 =
x < 360°. From 2x = 360°, 540°, we have x = 180°, 270°. In other words,

sin2x =0
whenever

2x =0, 7, 2w, 37



NI

Wy

1

™ 37

F\”OUMM\.«H" N

My

Note that the largest of the roots, 3

/2, is still less than 27, s
four solutions to the equation, 7, S0 that there are

. - [,l,i'l’l'll“
: In most cases, equations involving functions of multiple angles s
e solved by using an appropriate identity, as shown in the next exa

Erawele &S

houlq :
mple,

sl e

2
Solve the equation cos 2x — cos x=0,0=x<27w

Solution. Because of the double angle, cos 2x must first be

2 nou.wN x = 1 by one of the double-angle formulas for the cosi
(reminder: cos 2x # 2 cos x). Then we obtain

changed 1
ne functiop

oS 2x — cos x = ()
2
2c08*x =1 — cos x

i

Il

0

2cos’x —cosx - 1=0

(2 cos x + I)(cos x — =20

Cos x = — W |

It follows that x = 120°, 240°, and 0°. In radians
2w 4nm

373 : _

mfrﬁ_s)fmv\g nm.mmu 4

X =

Use a calculator to solve the equation
2sin2x —3sinx =0
to the nearest tenth of a degree (0° = x < 360°). |

2sin2x — 3sinx =0
2@sinxcosx) — 3sinx =0
4sinxcosx —3sinx=0
sinx(4cosx —3) =0

given equation

common factor sin x

sinx =( Leos s =3 =0

cCosx =

)t

e

joi]

=

S
Hyyi

D1y
S9
From sin x = 0, we get x = 0°, 180°. Using a calculator, cos x = § yields x =
41.4°, 318.6°.

16.6 TRIGONOMETRIC EQUATIONS

@\ Example 7

The range R (in feet) of a projectile fired at an angle 6 with the horizontal at
velacity v (in feet per second) is given by
2v? cos 0 sin 6
g

where g = 32 ft/sec?. (See Figure 16.9.) If v = 40 ft/sec, determine the
angle 6 at which the projectile has to be aimed to hit an object 45 ft away.

R =

—

Figure 16.9
Solution. Substituting into the given equation, we get .
240)? cos 6 sin 6 _
ey = 45
(40 _ .
= 45
3 (2sinfcos B) =4
: (4502)
2sinflcosf = @0y
sin 26 = 0.9
20 = 64°, 116°
8 = 32°, 58°

So the projectile can be aimed at either 32° or 58° to land 45 ft away.

Exercises / Section 16.6

In Exercises 1-31, solve the given equations for x, 0 = x < 2.

L2sinx—1=0

4.
7,
10.
13,
16.
19,

2secx+4=0
sin?x — sinx = 0

(secx — D(tanx + 1) =0
2sinfx ~sinx—1=0
2sec’x +3secx—2=10

2sinfx +cosx+1 =0

2.3sinx+3=0 4tanx +4=28

S.cosx—1=0 6. 2sinfx—1=0

8. tanx(cscx + 1) =0 9. 4costx—3=0

11. (cotx — D(cosx + 1) =0 12, 2cosx — Diescex —2) =0
14. 2sin’x —sinx -3 =0 15. 3cos?x —Tcosx + 4 =0
17. sinx —cosx =0 18. cot?x — tan*x = 0

20. 2tan’ x —sec’x =0 21, sin2x =1
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cos 2x = 1 23. cos2x =0 24. sinx + sin2x =0
sinx + cos2x = 0 26. sin2x + cos 2x = 0 27. cos2x —cosx =0

. . X x 2
cos2x —sinx =0 29, sin5 = cos = 30. 1 —sinxcosx =1

2 2

sin x cos x — sin 2x = 0

In Exercises 32-40, use a calculator to solve the given equations to the nearest tenth of a degree (0 = x < 360°),

32,
3s.
38.
41.

42,

43,

45

Isinxcosx —cosx =10 B.tan’x -2 =0 34, 2cos’x =1+ sin? x
36. sec’x —2tanx —4=0 37. 2sin2x = 3 sin x

39. csc?x —3cotlx =0

2sin2x+cosx =0
cos’x — 2sin2x =0 40. S5sin>x + 8sinx — 4 =9

Certain problems in mechanics are simplified by rotating the coordinate axes. In the process, the following
equation has to be solved:

2(C — A)sin 6 cos 6 + B(cos® 6 — sin? @) = 0
Solve this equation for § (0 < 9 < 180°), given that A = B = 1 and C = 0.

Suppose a projectile fired at a velocity of 80 ft/sec is to hit a target 100 ft away. At what angle with respect to
the ground does the projectile have to be fired? (See Example 7.)

The current in a certain circuit is given by i = e “™(cos 4.0 — V3 sin 4.00). Find the smallest positive vajue
of t (in seconds) for which the current is zero.

For a certain mass oscillating on a spring, the vertical displacement is given by
x=20cos2t—10sin2¢, =0

where x is measured in centimeters and 7 in seconds. Find the smallest value of ¢ for which the displacement

is zero. (Set your calculator in the radian mode.)

Starting at 1 = 0, the current in a circuit is
i=2sin*wt+ 3 sin wt

Find the smallest value of ¢ (in seconds) for whichi = 2 A.

16.7

Inverse Trigonometric Relations

We know from our study of equations that it is often desirable to solve a
given equation for one of the variables in terms of the other variables. To
solve a trigonometric equation y = f(x) for the variable x, we need the
concept of an inverse trigonometric relation.

Consider, for example, the function y = sin x. To solve this equation for
x in terms of y, we introduce the following notation:

X = arcsin y

Expressed verbally, ““x is a number (or angle measure) whose sine is y.”’
Following the usual convention of placing y on the left side of the equal sign,
we write

y = arcsin x (16.31)

INVEHSE TRIGONOMETRIC RELATIONS QL0

m| Ml— 10.7
The expression says that y is a number (or angle measure) whose sine is x.
The equation y = arcsin x is called an inverse trigonometric relation.
To illustrate the meaning of this kind of notation, let us evaluate y =
arcsin x for certain values of x.

,—.\mim.-:i %\mﬁlﬁ\,‘w

Findyify = arcsin}, 0 <y < 27,

Solution. By the definition of arcsin } we need to find a number whose sine
is . Two such numbers exist between 0 and 2, namely,

_ 37

and y :

Evampde #2

Find y if y = arcsin 0.
Solution. Since sin 0 = 0 and sin 7 = 0, it follows that

sin (0 + k+27) =0 and sin{m + k+27) =0,
k=0,=x1, %2, ... =

or
sinkwr =0, k=0, +1, 2
So

Remark. Recall that a relation between two variables x and yis called a
function if for every value of x there exists a unique value of y, denoted by
y = f(x). By this definition, y = arcsin x is not a function, as we can see from
Example 2: The value x = 0 does not yield a unique value for y. To obtain a

function, the values of y must be suitably restricted. That is the topic of the
next section.

The other trigonometric functions have similar inverse relations, as
shown in the next two examples.

mm%nrs)%.mvw

Find y if y = arccos (V3/2), 0 = y < 27.

Solution. The notation arccos (\V/3/2) has an analogous meaning as an angle
whose cosine is V3/2. For 0 < ¥ < 2m, we have
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mfmﬁwf Y ¥ e

4 Findyify = arctan (1), 0 < y < 277

fan Mh&.m e w@f% to —1 are

By
26. ¥

o E

Solution. For y between 0 and 27, the only angles Eromm.m.ws

!

qu\__mma Iq|,q
Y= A

————

As noted at the beginning of this section, the notation for the inverse
relationship enables us to solve a trigonometric equation for x in terms of
as shown in the next example.

K

Solve the equation y = 1 + sin 2x for x in terms of y.
Solution. The equation y = 1 + sin 2x can also be written
sin2x =y — 1
Using the inverse relationship,
2x = arcsin (y — 1)
we get

1 ;
x = 5 arcsin (y—=1

Exercises / Section 16.7

In Exercises 1-16, find y (0 = y < 2#) without using a table or calculator.

10. y

13. y

16. y

I

I

I

. V3
arcsin q

arccot (—1)

arcsin 0

V2

arcsin ﬁi 5

arccsc (—2)

arctan 0

)

In Exercises 17-30, solve each equation for x in terms of y.

17. y
20. y

arctan x

2 + arcsec x

2. y = arcsin (—1) 3. y = arctan 1
5, y = arccse 1 6. y = arccos (—1)
) - s
. y = arcsin 3 9. y = arccos 3
11. y = arccos 0 12, y = arcsec 1
14. y = arctan A ! v 15 _
Ly = = . ¥y = arccot —=
V3 e
18. y = arccos 3x 19. y =1 — arcsin x
21. y = arcsin 2x — | 22. y = arccos (x — 2)

arcesc (x + 1)
arcsin 2(x — 2)

29, y = 2arcsin (x + 1) +3

16.8 INVERSE TRIGONOMETRIC FUNCTIONS QLI
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24. y = arccot 2x 25. y = arcsec 3x + 1
27. y = 3 arccot 3x 28. y = 2 arctan 5x + |
30. y = 3 arccos (x —2) — 2

16.8 Inverse Trigonometric Functions

We learned in our study of logarithms that the equation y = b* can be written
x = log, y. While the two equations mean the same thing, the first expresses
y as a function of x and the second expresses x as a function of y; y = b* and
y = log, x are called inverse functions. An analogous situation exists in
trigonometry in the sense that every trigonometric function has an inverse
function.

In the last section we introduced the customary notation for inverse
trigonometric relations. We also noted that a relation such as y = arcsin x
does not represent a function. Given the importance of the function concept,
this state of affairs is unsatisfactory. The variable y must be suitably re-
stricted so that every value of x yields a unique value of y. This restriction
leads to the definition of an inverse trigonometric function.

First we need to consider the graph of the relation y = arcsin x. Writing
this equation in the form x = sin y, we get the graph of the sine function with
x and y interchanged, as shown in Figure 16.10. This graph shows why the

y

|

o
*

|
(]

Figure 16.10
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Figure 16.11

R

Sa

relation y = arcsin x is not a function: For every x such that .r.._ =x=]
get infinitely many values for y.

We can also see from the graph that y becomes unique if all but g smal] X
section of the graph is eliminated. This elimination can be done in severy]
ways. The restriction that has become standard js —7/2 < Y = m/2, which ¢
corresponds to the portion of the graph through the origin, drawn as the soliq .
curve in Figure 16.11. To distinguish between the solid curve and the dasheq
curve, the equation of the solid curve is written ,

53
£

Lk,

in-l EES

B

y = Arcsin x _

using the capital letter A. Note especially that

¥ = Arcsin x is a function.

Example 1

Find the exact value of y in each case:

1 1

a. y = arcsin 7 0=y<2y) b. y = Arcsin 3
Solution. a. As we saw ip the previous section,
T S
Y=g and y= F 1
b. Since —7/2 < Y = @/2, the only permissible value is
T
# = ..m:

Thus Arcsin ¢ = /6, a unique value.

The inverse functions corresponding to y = arctan x and Y = arccos x |
are obtained from the graphs of x = tan y and x = €0s y, shown in Figure
16.12 and Figyre 16.13, respectively.

Following the usual conventions, y = Arctan x is the solid curve in
Figure 16.12 and Y = Arccos x the solid curve in Figure 16.13. Note that in !

all cases the angle Y Is in the first quadrant whenever x is positive. The
different cases are summarized next.

Inverse trigonometric functions:

y = Arcsinx, —7/2 < y = 7/2 (16.32)
Y= Arctanx, —-zf2 < y <wl2 (16.33)
Yy = Arccos x, 0= y=1 (16.34)

o \
- _“
\\\ 7 ]
7 /
- rd
»] A
- = X
e ~ y=Arctan Fd
e — :_.--
2
y=Arccos x
X
0 &
T 2
-3 L X
- o[
”~ /
’ /
L7 /
Pd A
s
\\\\ \
— o i
_ i
\

Figure 16.12 Figure 16.13

<

Although inverse trigonometric functions exist for the qnamﬁ_us_:m ?M_%_w
tions, we shall confine ourselves to the cases m_ﬂwm&\ .?‘om.oioa. ne _‘n.wmoh.
is that different authors define the other ?nnroam in g_mnﬁ.sﬁ.imwﬂ s
example, y = Arcsec x is sometimes defined g using the Rﬂ:MEI: M y :
w/2, w/2 < y = w and sometimes by the restriction0 =y < #/2, —w <y

—l2.

Evamp e £ W
\
Find the exact values of

1 1
a. Arccos 3 b. Arccos ﬁl Mv

Solution. a, Since x is positive, Arccos } is in the first quadrant. Thus

I _ 7
>q08w Mlu

(Don’t forget that Arccos 3 is an angle!)

b. Since x is negative, the angle cannot be in the first m:m&.m.:ﬁ To
find the proper quadrant, we must refer .8 the definition of
Arccos x. By agreement, the angle must lie between 0 and .
Thus

1 2
Arccos ml MV =3
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Find the exact value of Arctan (—1).

Solution. This is a problem that many students find troublesome. If we were
looking merely for some angles between 0 and 27, we would choose 135° and
315° (3w/4 and 77/4). Knowing that the value has to be unique, some stu-
dents proceed to drop one of the values and keep only 77/4. Now, while this
angle does lie in the fourth quadrant, this choice still violates the convention
in statement (16.33). Since —#/2 < y < w/2, the angle chosen must be
negative. Thus

Arctan (—1) = —

Ak
4
(H,mﬁs\,m\@...ta r
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.N+»§Wm~ #F
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. 3
Find the exact value of Arcsin mf :%v

Solution. Since x is negative, the angle cannot lie in the first quadrant. By
the definition of Arcsin x, we have —7/2 < y = /2, so that
V3

Arcsin ml qv = — M

To show how strictly these conventions must be observed, let us find
some of the values of the inverse trigonometric functions by using a calcula-
tor. (If the angles are not special angles, a calculator should be used anyway.)

W.r»sim@rnﬂm.

Solve the equation y = 2 tan 3x — 1 for x in terms of y using the proper
inverse function.

yde

ade

Use a calculator to find Arcsin (0.4278).

Solution. First set the calculator in the radian mode. Now enter 0.4278 and

press the [INV] key, followed by the [SIN] key, to obtain 0.4421. As ex-
pected, the angle is in the first quadrant.

By setting the calculator in the degree mode, the same sequence yields
Arcsin (0.4278) = 25.33°.

ﬂ..n+234.b.ﬁ u#mu

6

Evaluate Arcsin (—0.6845).

Solutiop. Set the calculator in the radian mode and proceed as in Example
5. We obtain

Arcsin (—0.6845) = —0.7539
The result agrees with the convention in statement (16.32).

Solution. y=2tan 3x — 1 given equation
y + 1= 2tan 3x transposing — |
tan 3x = W (y +1) dividing by 2
3x = Arctan W (y+1 inverse function
1 1 ;
x=3 Arctan 7 (y+1) dividing by 3
m‘ﬁ»i.vﬁﬁm
Solve the equation y = 3 Arccos 2x for x in terms of y.
Solution. ¥y = 3 Arccos 2x
w = Arccos 2x -
2x = cos W
X = ru.—Nr cos W\u

The remaining examples involve trigonometric functions in a way that is
particularly useful in calculus.

€ ample £

Inverse trigonometric functions can be used to solve certain trigonomet-
ric equations.

Find the exact value of sin [Arctan (—1)].

.mo_:moz. Recall that Arctan (—1) is an angle whose tangent is —%. Let 8 =

Arctan (—1). To find sin 6, we draw the diagram in Figure 16.14. It follows
that

; : -1 V17
sin ﬁb_.ﬁm: ﬁl 1: =sinf = :[Hm B ot
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Find an algebraic expression equivalent to tan (Arccos x).

Solution. Let 8 = Arccos x. Thus 8 is an angle whose cosine is x/1. Draw a

¢. right triangle with x on the adjacent side and 1 on the hypotenuse. (Sge
Figure 16.15.) By the Pythagorean theorem, the length of the opposite side j _m
V1 — x% It follows that

l—x

tan (Arccos x) = tan 6§ = =

\’/\HIIMM
6
X

Figure 16.15
Exawpled 44
11 The width w of a laser beam at a distance d from the source is givor

M@ @/_705 rw‘v
w = 2d tan

2

where « is the angle of the beam. Solve this equation for «.

2d tan 2

Solution. 5

<
1

(44

tan )

R ga.lE

1%
= Arctan 33

R
Il

2 ?.Qm: 2d

xercises / Section 16.8

Th

using & EvAR PR

| Exercises 1-17, find the exact value (in radian measure) of each expression without :E:m a TEh
vculator.

. Arcsin -5
{. Arccos (-1)

7. Arccos 0

V3

2, Arcsin (—1) 3. >n2mn‘_

5, Arcsin 0 6. Arcsin AI wv

2

m.?nﬁms h.. Pu

V3 w Arctan 0

S24 S|
; 1 .1
10. Arcsin 1 11. Arcsin ﬁl i/\lmu 12. Arcsin Aqu
13. Arctan (-V3) 14, Arccos Ai /\FMV 15. Arctan V3
1 V3
16. Arccos - 17. Arccos Al Imlv

In Exercises 18—40, evaluate the given expressions without a table or a calculator. (See Example ¢

a.)

18. sin (Arctan 2) 19. tan Twanow hl Wi 20. tan T:SE A.. Wv_
21. csc ﬂ>3mm= AI Wz 22. csc TﬁooOm MZ 23. cos [Arctan (-2)]
24. sec (Arctan 3) 25. ¢ A?nm_: v 26. sec ﬁ?nmi Mu
27..csc T:nnw: A\ wi 28. t T:,nm:_ sz 29, cot T,Hnoom h[ Wv
30, cot ﬁbﬂﬂm: AI Mi 31. s A>Room u 32. csc T:nwm: mun

3. cot T:.oﬂ: h! w: M. 5 _M?.nm_: Wi 35. sin Tﬁonom, hl wi
36. csc (Arctan V5) 3. s A,fom_z w 38. tan (Arctan 4)

39. cot (Arctan 4) 40. cos T:.nnOw £ ?aw tn

L s LBseThe ?ﬁfﬁ ﬁam Spuare Y¥

In Exercises 41-50, for each expression find an equivalent m_mowqm_o nx_uqmmm_oz Use the positive'sc
each case. (See Example 10.)

41. tan (Arcsin x)
44, sin (Arccos x)
47. csc (Arctan 3x)
50. tan (Arcsin 3x)

42. cos (Arctan x)
45. cot (Arcsin 2x)
48. tan (Arccos 3x)

43. sec (Arctan x)
46. sin (Arccos 2x)
49, sin (Arccos 2x)

W therwddan mod€
Pil'llrt

In Exercises 51-58, use a calculator to evaluate each inverse function. (Set your calculator in the

. ' . u
51. Arctan 2 52. Arctan (—2) 53. Arcsin hl wu
54. Arccos Al mv 55. Arctan (1.3142) 56. Arcsin (—0.7418)
57. Arccos (—0.4915) 58. Arctan (2.672)

In Exercises 59-68, solve the equations for x.
5.y
62. y

1l
I

2 Arcsin x 60. y = 3 Arccos x 61.

63. y = Arctan x + 3 64. y

2 sin x
Arctan (x + @

-
It

Jcosx

il
i
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mm. y = 2 sin 3x 66. y = 4 Arcsin (x + 4) 67. y = 4 tan (x — 2) In Exercises 5-8, combine each expression into a single term. mvl |
68. y = W?.nnom x+1 Q% fhe Vr—% " 5. sin 2x cos 4x + cos 2x sin 4x 6. cos 6x cos x + sin 6x sin x
SoFge e L s - = " — — <1 — 1
i - T . T 7. sin 4x cos x — cos 4x sin x 8. cos (x — y) cos y — sin (x — y) sin
69. A woman is Em_w:.ﬁ toward a building 100 ft high. Show that when she is x feet from the base of the . . Galayl try—Sialy-g) Sy
the angle of elevation of the top is given by 8 = Arctan (100/x). In Exercises 9-14, write each expression as a function of x or 2x.

70. Show that angle A = Arctan [(b/a) tan Bl in Figure 16.16. ) i

9, cos (2x — ) 10. sin T - mu

11. cos ? + mv 12. cos (x — 2)

. 7 _ mv
13. sin ﬁ - Nv 14. cos A 4
Figure 16.16 15. Find sin 26, given that cos 8 = —#, 0 in quadrant IL.
ind si i hat sin § = —3%, 6 in quadrant III.
71. The formula ¢ = Arctan (X/R) arises in the stud | . ) 16. Find sin 26, given t ;
72, A small body is revolving in a horizontal circl v__“:.m {ernating current. Solve this formula for R. 17. Find cos 28, given that sin # = —+, 6 in quadrant IV.
o " n a horizontal circle at the end of a cord of lengt i : g . .
{ke vertical (Figure 16.17). The time for one complete revolution is oF tength Lmaking anangle & with ti.  -18. Find sin (8/2), given that cos § = —4, 6 in quadrant II.
IL cos @ 19. Find cos (6/2), given that sin § = —%, 6 in quadrant 111
r=2m g 20. Find cos (8/2), given that cos # = {3, 8 in quadrant IV. =

Solve this equatjon for 4.

In Exercises 21-26, write each expression as a single trigonometric function.

21. cos? 3x — sin? 3x 22. sin? 2x — cos? 2x

23. 1 — 2 sin® 4x 24. 2cos* 38— 1

25. 2 sin 3x cos 3x . 26. sin 4x cos 4x
Figure 16.17 In Exercises 27-30, simplify the given expressions.

3. Recall that the equation of simple harmonic motion is

: 27.
x=A nOm/\HH
m

: — cos 48 \_ + cos 40
3 s 2

29. V1 + cos 40 30. V2 — 2cos 89
Find the formula for the time 7 required for the parti i : s i imi
; particle to move from it = _ In Exercises 31-34, eliminate the exponent.

to a new position (0 = 1 < 7Vm/k). PEs RRIERR oo 5= A& (wrhenis = 0) 1. sin? 32 24
. . . cos® 4x
4. The formula for magnetic intensity is uw - ww 3 34, 4:sin 4

. 2 cos® 3x . 4 sin® 4x
F
B = qu sin ¢ In Exercises 35-56, prove the given identities. ; = kB
i L
g . " 5 - .ll.,lrl
Mrnnw. qis M?w magnitude of the charge, v its velocity, ¢ the angle between the direction of motion and the 35, — GHnA ¥ B g B 36. (sec & — tan a)(csc a + 1) = ce
rection of the magnetic field, and F the force acting on the moving charge. Solve this formula for b b = Cota
1 1 sec 6 )

. . uq._+ - ol v = —2 tan x Sec x mw.gumﬁm

teview Exercises / Chapter 16 wsw 2 o
1 + sin’ @ sec’ 6 : ;

W Bsara S o e TN B iR 40. tan® @ — sin® 6 = tan?® § sin’ @
1 Exercises 1-4, use the appropriate identity to evaluate each function without using a table or a calculator. ¥ cosTgesero” B o
n.. sin 22.5° 2. cos 112.5° il cos* x — sin’ x _ . P 1 _1—cosx
3. cos 12° cos 18° — sin 12° sin 18° 4. sin 110° cos 20° — cos 110° sin 20° "1 —tan*x “escx + cotx sin x
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“43. cos y sin (x — y) + sin y cos (x — y) = sin x 4. cos A‘« — mv — cos T + Nv = sin x s5. (isinoalgehieie exprestion o vin seoney
. 1y = 2 sin 4x.
45. cos (x + y) + cos (x — y) = 2 cos x cos y 46. cos 2x + 2 sin2 x = | 74. Solve for x: y = 2 Arctan (x + 2). 75. Solve forx: y .
2~ secty 2tan @ 6. The expression a sin 6 + b cos # can be written in simpler form by noting that
47, 3 = cos 2y 48, ——— = sec? § 6.
e _— Vv o b mv sin @ + bcos @
24 b | —=sinf+ ——=cos ) =as
1 —tan? g o g — 1 e A e VT B
9. = cos 20 50. cot 26 = < Va> + b W+ b
1+ tan? @ 2cotd
i d that
_lnomm<+m5mfl .8 0 an
51. _+nom§‘+mm=melﬂm=q\ 52, m_smlwm_smnomm o A Lo 2
: N ! e e Ve
N B = . - . L
3 el - cos 26 EREEE I+ cos 26 where « is an angle determined by a and b. (See Figure 16.18.) Use the identity for sin (A + m;
.0 2 . in? 2 v 3 :
55. TEM — cos MV =1-sing 56. sin? o — SN’ 2a s le Shows that

In Exercises 57-62, solve the given equations (0 < x < 277)

2(1 + cos 2a) .
asinf + bcos @ = ksin(f+ a)

where k = Va? + b? and « is any angle for which

57. cos?x + 2sinx = 1 58. sin2x — 3 sinx =0 b a
59. 2cos’x + cos x = 1 60. tan x = tan? x _ sin o = s and cos a = Tt
.ﬂ.oomw+8ma+_no 62. 3cos’x — 14cosx+8=0 -
63. Suppose a projectile is fired along an inclined plane making an angle « to the horizontal from a gun making y
an angle 8 to the horizontal. Calculus shows that the range of the projectile along the inclined plane isa -
maximum when 8 satisfies the relation
3
. . \Y _
cos @ cos (f — a) — sin @ sin (6 — a) = 0 %x "w
I
Find angle 4. a ” %
64. A body of weight Wis dragged along a horizontal plane by a force whose line of action makes an angle 6 with a
the plane. Calculus shows that the pull is least when 6 satisfies the equation :
jt 08 8~ sin 0= 0 Figure 16.18

where g is the coefficient of friction. Show that the pull is least when 8 = Arctan .

In Exercises 65-68, find y (0 < ¥ < 27) in each case without using a table or a calculator.

1
arccos 3 66.

65, y

0l

67. y = arccot (—V3) 68.

In Exercises 69-72, evaluate each expression without using

_
%.?.noom ﬁf MV 70.

.:.nE Tw_.omma ml Wz 72.

y = arcesc 1

1
arctan —

%)

a table or a calculator.

I

y

Arctan mf &v

sin [Arctan (—2)]



ANSWERS TO ODD-NUMBERED EXERCISES A-57
8. [-11 -15 5 2. Po 5 -15 27 5 -6 11 -3 29. 3
-3 6 9 -3 il =2 -3 1] 4 -6 13 -3 -3
-14 =21 8 Sl [ B 3[-7 9 -19 6 0
~4 6 -=10 3 |
3
3t. 71 B[ i1 3 5.-%2-1 sdnamps
-4 4 33
-5 3
11 -
25 3
3 _2
25 3
|
L3
Cumulative Review Exercises for Chapters 13-15 (page 486)
I (06,04).(-1.6.26) 2. (2,4.(4.2) 3. (VI4 V2. (VT4 -V3I), (-VIE, VI), (-V14, ~\V3)
4 =45 5 x=6 6 no T ys 8 5 9 L124 1. L3 -3 1 o
12. 394 13. (1.2.-2.3) 14, 2 =3 =1 15. 0 8 16. [—3 2 2
. -1 7 S 10 -17 5 =3 -3
-6 6 11 R | ! 0
17. (-1, 1.0 18. 3.100.6.90 0
]
¢ Chapter 16 ‘
4! J Section 16.1 (page 483) ;
R [ 03B 5 sine & 1 7 XL 9 e m L. 3 -S0%0
: F sin 8 sin x . sin- § cos- 8
$ ‘ 15. cscx . 17. esc?@  19. csc®  21. | 23, cotr 25 cosé 2T. 1 29. sec*x
i | 31. cot @ ‘
ér ) Section 16.2 (page 497) :
T4 ] s B 3
4 i 43, P 2ugex sin ?: cos‘ o — g
uy® cos a
¥ Section 16.3 (page 503)
! +\V3 - V6 3 V2 V2 '
g, MOENE 5 ME-VE o M ME o M gy e e g
_l . 7 2 7 2
b - 1 15 cos2r 17. cos9r 19. sinx 2L -.E—{\/i cosx —sinx) 23, -sin2x 25, —cosx
5 4 ) - '
";1 ; 27. sin2x  29. cos 2« 31. % (sin x = V3 cos x) 33. % (V3 cos x = sin x) :
o ' V2. | + tan x _ 2mt 2mx
i ; 35, % (sin x = cos x) 37. T=Ttan & 57. » = 2A cos (—T-) cos (T)
§  Section 16.4 (page 509) . }
:‘ ] 2 7 5 _lo .3 1y 23 :
i L 5 3 55 5 e - ~3 9. 33 11. o 13. cos 6y  15. sin 66
i o
* 17. cos48 19. —-cos8y 21 é sin 8w 23. 2sindx  37. v = 4sin 2t




8 A-58 APPENDIX D i
3 i
“Section 16.5 (page 514) é
x
3 = ; i
. 2-\3 V2 + V2 V2 + V2 2 13 H
B Y2-V3 s 3, M2EV2 gy 5 M2FVEL 09239 7. l]\_;— 9. L83 {
| | ]
- 81 sin26 13, V2cos36 15. Vi0sin20 17 5’(1 —cos8x) 19. 3(I + cos4x) - i
© B2l 1-cosér 23 6(1-cos2x) 29, —\? csc3 3L 2 sing i
¢ ¥ Ssection 16.6 (page 519) i
& 757 7 S T 5w T lw T 5w ;
» 4 1 i3 3. g 5. 0.m 4 0.§,r 9. BET 11. R ;
- w T7 ll=m w 3w 7 Sw 7 37 S I T 3 :
§ 13. R 15. 0 17. ey 19. =« 21. T 23. T T 7T 25. 5.3 §
i . T oA T
TR 0T 2007 a0 la ¥ 3 sarisr a7 3053
P 35 90° 19455 270°, 345.5°  37. 0% 41.4° 180° 318.6°  39. S4.7° 125.3°, 234.7°, 305.3° ’
£ E! ", 5° = I‘— = = el i
g Erdl. 22.5° 1]12.5 43. 1« 54 0.13 sec 45, ¢ & SE€ !
:_; Section 16.7 (page 522) 3
i 2 = 5% 5 3 Tm 1 : |
F, T2 gL z 7 0% I oF Iz Ug i3 ;
L3y ¥i7 S3 To0m 9 iF 1W3F B L 1 3 ;_g
L 17, x = tan v 19. x =sin(l — v) 2. x= %sin (»+1 23. x=cscy—1 %
v 1 1y o ;
25, x =gsec(y - 1) 27. x =gcoty 29, x—smi(_\ -3) -1 4
Section 16.8 (page 528)
b LT G 7 7 .7 T Sw
1. 3 3. % 5.0 7. i\/_ 9. 0 \1/1_ -3 13. 3 15. 3 17. 3 1
18 — S _- 3
o, -2V oo -1 23 X a5 X2 g oI o - 3 3.4 3 VB
g va L | x — VIi-—4s VOt |
B = oyl o owmloog . @ e a Mo g R
4 5 5 4 o T 2x 3x
49, VI—3¢ 5L L1071 83, -0.3398  55. 0.9203 57. 2.0846 59, x = sin 3
- 6L x=Arcsiny 63 x=wn(y-3) 5. x=jAmcsin 67 x= Arctan 3 + 2
© 7. R=Xcoté T3 := \/% Arccos < ’ ]
i A &
E | 3
Review Exercises for Chapter 16 (page 530) ;
; B
b - A D V3 !
& 1. 2 .,\ = 3 ---:5E 5. sin6c 7. sin3r 9. —cosZx 1l. —sin 2r §
2 - “ . " g
E. 13, 3 (V3 sin x - cos x) 15. - 24 17. 112 19, - 3 21. cos 6x 23. cos 8x ' £
) 75 169 ; ‘
" 25, sin6x 27, sin2 29. VZcos20 3L % (1-cos6x) 33. l+coséx 57. 0,7 i
3 i
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ANSWERS TO ODD-NUMBERED LXERCISES  A.5Q ;
k
T 5 4 T « 7 57 5w 1w 2 :
59, .?, ™, —3“ 61. 3 63. 6= 7 + 3 65. 33 67. 5 T 69 3 ;
I 0
M. -V3 T VI— 4 T x =g Awcsing
Chapter 17 _
Section 17.1 (page 538) 1
4 3 % ;
1. x<3 3. x=2 5 x<-6 1. x=2-5 9 x=3 1. +>-35 13 vz 3 L
E 5 . 4
! 15. x> 3 17. 3 21. |
1
4 =
§
?
23 b 25 29. 0.0 = F = 80 (pounds) |
] ]
i 1
P 1 !
Wi 1
%‘ | Section 17.2 (page 543)
gﬁ:_f;j " 1. x> -3 3, “2<x<?2 §, x=-3.x= -2 7. x<-2,0<x<3
Rl 9. r=<-5,-2=<x=3 1. -8<x<6,x>7 13 1<x<2 15 x=6.x>7 {
e 17. 3cf<d4 19 xs-d l<sx=3 2L -3<i<3r36 B r5-61=sx<2a>d ]
B 25, x> 4 27. allx 29, v < -1 31, v< -4 1l<x=4 33, 0=r= g (seconds)
| g * '
il 3. x=5x=15(feet) 37. 1=x<20 5
Section 17.3 (page 547) g
' 1 7 13 a
1. -1<x<3 3 —-4=x=-2 5 -l<x<0 7. x=5x=3 9 -5 <x<-3
il 1. x<-Lx>5 13, x<-3,-2<x<3.x>4 15. x<0,x>4
K 17, 2<x<l-VI1+Vi<x<d 19. -3-VI<r<=-5-1<x<-3+VI0
I 21. |d — 2.5550] = 0.0001
. ! :
i [ Section 17.4 (page 552) -
1. b3 3. 7. }
i (1. 1)
N
| 2.0
i * v

Eg':t: e W .a.’.\..;‘l"»:k. L R S
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