### **Trigonometric identities with** $\frac{\pi}{2}$



Consider a right triangle with an angle of  $\theta$  radians. Because the angles of a triangle add up to  $\pi$  radians, the triangle's other acute angle is  $\frac{\pi}{2} - \theta$  radians, as shown in the figure. If we were working in degrees rather than radians, then we would be stating that a right triangle with an angle of  $\theta^o$  also has an angle of  $(90 - \theta)^o$ .

Focusing on the angle  $\theta$ :  $\cos \theta = \frac{c}{b}$ ,  $\sin \theta = \frac{a}{b}$ Now focusing instead on the angle  $\left(\frac{\pi}{2} - \theta\right)$  in the triangle above,  $\cos\left(\frac{\pi}{2} - \theta\right) = \frac{a}{b}$ ,  $\sin\left(\frac{\pi}{2} - \theta\right) = \frac{c}{b}$ 

Comparing the last two sets of displayed equations, we get the following identities:

Trigonometric identities with  $\frac{\pi}{2}$ 

$$\cos\left(\frac{\pi}{2}-\theta\right) = \sin\theta, \qquad \sin\left(\frac{\pi}{2}-\theta\right) = \cos\theta$$

### **Distance between two points**

More generally, to find the formula for the distance between two points  $(x_1, y_1)$  and  $(x_2, y_2)$ , consider the right triangle in the figure below:



Starting with the points  $(x_1, y_1)$  and  $(x_2, y_2)$  in the figure, the horizontal side of the triangle has length  $(x_2 - x_1)$  and the vertical side of the triangle has length  $(y_2 - y_1)$ . The Pythagorean Theorem then gives the length of the hypotenuse, leading to the following formula:

The distance between the points  $(x_1, y_1)$  and  $(x_2, y_2)$  is  $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ . Using the formula above, we can now find the distance between two points with

Using the formula above, we can now find the distance between two points without drawing a figure.

Example Find the distance between the points (3,1) and (-4,-99). solution The distance between these two points is

$$\sqrt{\left(3 - \left(-4\right)\right)^2 + \left(1 - \left(-99\right)\right)^2} = \sqrt{\left(7\right)^2 + \left(100\right)^2} = \sqrt{10049}$$

### The cosine of a sum and difference

Consider the figure below, which shows the unit circle along with the radius corresponding to A and the radius corresponding to -B.



We defined the cosine and sine so that the endpoint of the radius corresponding to *A* has coordinates  $(\cos A, \sin A)$  The endpoint of the radius corresponding to -B has coordinates equals  $(\cos(-B), \sin(-B))$ , which we know equals  $(\cos B, -\sin B)$ , as shown above.

The large triangle in the figure above has two sides that are radii of the unit circle and thus have length 1. The angle between these two sides is A + B. The length of the third side of this triangle has been labeled *c*. We can compute  $c^2$  in two different ways: first by using the formula for the distance between two points, and second by using the law of cosines. We will then set these two computed values of  $c^2$  equal to each other, obtaining a formula for cos(A + B).

To carry out the plan discussed in the paragraph above, note that one end point of the line segment above with length *c* has coordinates  $(\cos A, \sin A)$  and the other endpoint has coordinates  $(\cos B, -\sin B)$ . The distance between two points is the square root of the sum of the squares of the differences of the coordinates. Thus

$$c = \sqrt{(\cos A - \cos B)^2 + (\sin A + \sin B)^2}.$$

Squaring both sides of this equation, we have

 $c^{2} = (\cos A - \cos B)^{2} + (\sin A + \sin B)^{2} = \cos^{2} A + \cos^{2} B - 2\cos A\cos B + \sin^{2} A + \sin^{2} B + 2\sin A\sin B$  $(\cos^{2} A + \sin^{2} A = 1, \cos^{2} B + \sin^{2} B = 1)$ 

$$^{2} = 2 - 2\cos A\cos B + 2\sin A\sin B \tag{1}$$

To compute  $c^2$  by another method, apply the law of cosines to the large triangle in the figure above, getting  $c^2 = 1^2 + 1^2 - 2 \times 1 \times 1 \times \cos(A + B)$ 

$$c^{2} = 2 - 2\cos(A + B)$$
 (2)

From equation (1) and (2)  $2-2\cos A\cos B + 2\sin A\sin B = 2-2\cos(A+B)$ 

 $\Rightarrow \cos(A+B) = \cos A \cos B - \sin A \sin B$ 

This is the addition formula for cosine

\*\*\*Never, ever, make the mistake of thinking that  $\cos(A+B) = \cos A + \cos B$ .

We can find a formula for the cosine of the difference of two angles. In the formula for  $\cos(A+B)$ , replace *B* by -B on both sides of the equation and using  $\cos(-B) = \cos B$  and  $\sin(-B) = -\sin B$  to get

 $\cos(A-B) = \cos A \cos B + \sin A \sin B$ 

This is the subtraction formula for cosine.

### The sine of a sum and difference

To find the formula for the sine of the sum of two angles, we will make use of the identities  $\sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right)$  and  $\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$  (Trigonometric identities with  $\frac{\pi}{2}$ )

We begin by converting the sine into a cosine and then we use the identity just derived above:

$$\sin(A+B) = \cos\left(\frac{\pi}{2} - (A+B)\right) = \cos\left(\frac{\pi}{2} - A - B\right) = \cos\left(\left(\frac{\pi}{2} - A\right) - B\right)$$
$$\Rightarrow \sin(A+B) = \cos\left(\frac{\pi}{2} - A\right)\cos B + \sin\left(\frac{\pi}{2} - A\right)\sin B$$

The equation above and the identities above now imply the following result: sin(A+B) = sin A cos B + cos A sin B

This is the addition formula for sine

\*\*\*Never, ever, make the mistake of thinking that sin(A+B) = sin A + sin B.

We can find a formula for the sine of the difference of two angles. In the formula for sin(A+B), replace B by -B on both sides of the equation and using cos(-B) = cos B and sin(-B) = -sin B to get

 $\sin(A-B) = \sin A \cos B - \cos A \sin B$ 

This is the subtraction formula for sine.

Exercise 16.1 Page (493) Change the expression to an equivalent expression involving sines and asimen also Simplify if possible Q#7 Cot x + Sinx = Cus n + L 1+1051 -Sinx Q#13 1- Secza  $= i - \frac{1}{60s^2 n}$ = 605 22 -1 cos m -1 & 1 - Cush ) Cost 1 - Sinhy 1 Cupin Q#17 Simplefy the expression and convert to sives and cutines 1-632 - - Sin' 20 = Goseen Q# 21 tang Coser is Seele  $= \frac{\sin \theta}{\cos \theta} \times \frac{1}{\sin \theta}$ L Centre = 1 0.429 1+tan x LOX  $= \frac{1 + \frac{5m^{2}m}{m^{2}m}}{\frac{5m^{2}m}{m}} = \frac{\frac{1}{5m^{2}m} + \frac{5m^{2}m}{m} \times \frac{1}{5m}}{\frac{5m^{2}m}{m} \times \frac{1}{5m}}$ Carol N Secon

Exercise 16.2 Page 497-497 Q#5 prove the identity 653 B + Sup = case B Senf L.H.S Cust 13 + Sin B Sing3 cos 3 + 512/3 Simps = 1 Simps = Cosec B = R.H.s = L.H.S= K.H.S R#15 Sing + tan B = tan B Itesp L. H. S Sings + tangs 1+ 60313  $\frac{S_{10}\beta + \frac{S_{10}\beta}{c_{1}\beta}}{\frac{1+c_{0}\beta}{c_{0}\beta}} = \frac{S_{10}\beta c_{0}\beta + \frac{S_{10}\beta}{c_{0}\beta}}{c_{00}\beta (1+c_{0}\beta)}$  $= \frac{S_{1-\beta}(1+c_{\beta}\beta)}{c_{\beta}\beta(1+c_{\beta}\beta)}$ =  $\frac{3}{10}\frac{\beta}{10s\beta} = \frac{1}{10}\frac{\beta}{10s\beta} = \frac{1}{10}\frac{\beta}{10s\beta} = \frac{1}{10}\frac{1}{10}\frac{\beta}{10s\beta}$ : L. H.S. = K. H.S. Q#35 65 n - Sinn = 2 con -1 1.4.5 Con - Sin M (con'n+ Sin'n)(con-sin'n) = 1( (1 - 1 - 'n) (1- (1- con) 1  $= \frac{C_{1}^{2}n - 1 + c_{1}^{2}n}{2 c_{2}^{2}n - 1} = R.H.$ = 2 c\_{2}^{2}n - 1 = R.H. #47 In some problems on the motion of a pendulum, the expression 1 arises. Show that this expression is equivalent to 1+ configur  $\int \overline{1-con} = \int \frac{1}{\sqrt{1-con}} \times \frac{\sqrt{1+con}}{\sqrt{1+con}}$  $=\sqrt{1+\cos n}$   $=\sqrt{1+\cos n}$ N(1-CON)(1407M NI-COM - JI+ GUIN - JI+ WIN JSIGN STAN JI-com JI+com 1-3 Singl

CAME HE MAY 16

Q# 11 Exercise 16.3 Page 503-505 Find Cos2 0, given that Cos0 = -3/7,1 Q#19 Write the expression in single term Q in quadrant III Sin(n+y) cosy - cos(n+y) sing (0520=? Cos 0= - 3/2 = (ory ( sinx cosy + cosx siny) - Siny ( concory - SEAX Jury) w= 3 Cos20= Coro-5-20 Sinx Logy + Cox coyking - cosx cosysing + Sin x sin y 4 - 64.62 0 = 18 + 64.62 = For Since = ! 7= P+22 0=244.62 = Sinx ( Sin y + us J) >p= 49-9 20= 489.25 Sin x = > P= 10 write expression in terms of re · Sinc= - 40 Q # 37 tan (x+x)  $- C_{os20} = \left(-\frac{3}{7}\right)^2 = \left(-\frac{3}{7}\right)^2 = \left(-\frac{3}{7}\right)^2$ As tan (x+y) = ten x + tan y 1- Tan x tan y 40 49 9----tan (x+ x) = tanx + tan x 6-120- 9-40 419 1- tanx tan x tan x = 1 C = 520 = -31 $\frac{1}{1-\tan(x+\frac{\pi}{4})} = \frac{\tan(x+1)}{1-\tan(x)}$ Q#33 Q#55 If a force Follosait is applied to a Prove the given identity weight oscillating on a spring, then the energy supplied to the system can 1+ Coszw = cotw be witten in the form L.HS N+ COS2W Ez KW Focos (Wt-8) Gowt 51200 1+ cos2 2 - Sina -Show that 2 sin a su E= AWFO ( in 2 as traight construct sind sind 1+ cost w - (1- 1, w) -2 Sinw asal E = A w Fo cos (wt-r) coswt X+ cos 2 x + 465 ce -= A W Fo [ C-SW & COSY + Silvet Sing] cost 2 Siwasa - Lastw = AWFO[ Gowt as SV + Const Sinwelsing] ZSINWESW cosw = cotw=KH's : L.H. S = R.H.S Q#39 T= 1003 SEXUS &

 $= T = \frac{2 k \omega^2 s \omega \alpha \omega s \alpha}{\frac{2}{2}}$  $= \frac{k \omega^2 (2 s \omega \alpha \omega s \alpha)}{\frac{2}{1}}$  $(T = \frac{2}{k \omega^2 s \omega s \alpha})$ 

2-3

Exercise 165 Frage 514

·

0#9 Find Sin(E), given that cond= 5. & in quadrant IV (00 0 = 5/13, sin 0/2 =? -67.38 As Lose - hor - Ludy 146.31 ce. ad, and the =) 630 = 1 - Sin 2 - 5220/2 ) Core = 1 - 2 Sin 20/2 =)  $2 \sin^2 \theta_1 = 1 - \cos \theta = 5 \sin^2 \theta_1 = \frac{1 - c_1 \theta}{1 - c_1 \theta}$ =) Sin 0/2 = 1- 650  $Sii Oh = \frac{1}{2} = \frac{1-\frac{5}{13}}{2} = 5 Sii O = \frac{1}{2} = \frac{13-5}{2 \times 13}$ コ Sim 1/2= 84 5  $S_{12} = + \frac{2}{\sqrt{73}} + \frac{2}{5} + \frac{2}{5} + \frac{2}{13} + \frac{2}{13} \times \frac{13}{13}$ ゴ Al Sie Oh = 2 13

Q# 21 Eliminate the exponent

 $2 \sin^{2} 3 \times \frac{3 \sin^{2} 3 \times \sin^{2} 3$ 

L.H.S  $Cosec^{2} O$   $= \frac{1}{s_{11}^{2} O}$   $= \frac{2}{2 s_{11}^{2} O}$   $= \frac{2}{2 s_{11}^{2} O}$   $= \frac{2}{1 - C_{12} S_{11}^{2} O}$  $= \frac{2}{1 - C_{12} S_{11}^{2} O}$ 

3-3

|                                                      | Identity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.1                                                                                                                                                                                                                                                                                                                                                         | Objectives                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | ۹ P T E R                                                                                      |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                      | We saw in earlier chapters that solving triangles is an integral part of trigo-<br>nometry. Another branch, called <b>analytic trigonometry</b> , deals mainly with<br><b>identities</b> . This aspect of the subject plays a major role in more advanced<br>areas of mathematics, especially calculus.<br>Most of this chapter is devoted to the study of trigonometric identities.<br>Identities are then used in Section 16.6 to help solve trigonometric equa-<br>tions. The chapter ends with a brief study of inverse trigonometric functions.<br>Recall that an <b>identity</b> is an equation that is satisfied for every value of<br>the variable. For example, $x^2 - 1 = (x - 1)(x + 1)$ is an identity. In | <ol> <li>Use the identities in objective (3) to:         <ul> <li>a. Find certain function values.</li> <li>b. Transform certain given trigonometric expressions.</li> <li>c. Prove other identities.</li> </ul> </li> <li>Solve trigonometric equations.</li> <li>Evaluate inverse trigonometric relations and functions.</li> </ol> Fundamental Identities | <ul> <li>Upon completion of this chapter, you should be able to:</li> <li>1. State the fundamental trigonometric identities.</li> <li>2. Use the fundamental trigonometric identities to <ul> <li>a. Simplify certain trigonometric expressions.</li> <li>b. Prove additional elementary identities.</li> </ul> </li> <li>3. State the sum. difference. half-angle. and double-angle formulas</li> </ul> | Additional Topics in Trigonometry                                                                                                         |                                                                                                |
| $\sec \theta = \frac{1}{\cos \theta}, \ \cos \theta$ | pr f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sin \theta = \frac{1}{\csc \theta},  \cos \theta$<br>Since $\tan \theta = y/x = (y/r)/t$<br>the identity<br>$\tan \theta = \frac{y}{x} = \frac{y}{\frac{y}{x}} = \frac{\sin t}{\cos t}$                                                                                                                                                                    | From these definition                                                                                                                                                                                                                                                                                                                                                                                    | tions.<br>Definitions of trigono<br>$\sin \theta = \frac{y}{r}$ csc<br>$\cos \theta = \frac{x}{r}$ sec<br>$\tan \theta = \frac{y}{x}$ cot | trigonometry, identities ;<br>given. For example, sin $\theta$<br>other identities, let us rec |

16.1 FUNDAMENTAL IDENTITIES 489

arise almost as soon as the basic definitions are  $\theta = 1/\csc \theta$  is valid for every  $\theta \neq 0 \pm n\pi$ . To obtain call the basic definitions of the trigonometric func-



ns we get the following reciprocal relations:

$$\sin \theta = \frac{1}{\csc \theta}, \ \cos \theta = \frac{1}{\sec \theta}, \ \tan \theta = \frac{1}{\cot \theta}$$
 (16.1)

(x/r), we get from the definitions of sine and cosine

$$\frac{y}{x} = \frac{\frac{y}{x}}{\frac{x}{x}} = \frac{\sin \theta}{\cos \theta}$$
(16.2)

an  $\theta$ , we have

11

$$t \theta = \frac{\cos \theta}{\sin \theta}$$
(16.3)

he secant, cosecant, tangent, and cotangent functerms of sines and cosines:

$$\sec \theta = \frac{1}{\cos \theta}, \quad \csc \theta = \frac{1}{\sin \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta}$$



Since  $a^2 + b^2 = 1$ , it follows that  $a = \sin \theta$  and  $b = \cos \theta$ 

(16.4)

**16.1** FUNDAMENTAL IDENTITIES

491

491

numerically equal to sec  $\theta$ . By the Pythagorean theorem Figure 16.3, the y-coordinate of P is equal to tan  $\theta$  and the length of PO is Similar identities hold for the remaining trigonometric functions. In

 $1 + \tan^2 \theta = \sec^2 \theta$ (16.5)



Figure 16.3

circle at two points and a tangent line at one point.) Of particular interest in Figure 16.3 is that the names tangent and secant suggest themselves quite naturally. (Recall that a secant line intersects a

The derivation of the remaining identity is similar and will be left as an

$$1 + \cot^2 \theta = \csc^2 \theta \tag{16.6}$$

Use the fundamental identities to simplify the given expressions. Write the expressions in terms of sines and cosines, if necessary.

**a.** 
$$1 - \sin^2 \alpha$$
 **b.**  $\frac{\cot \beta}{\csc \beta}$  **c.**  $\csc x(1 - \cos^2 x)$   
**d.**  $\frac{\sec^2 \theta - \tan^2 \theta}{\cot \theta}$ 

by identity (16.4) a.  $1 - \sin^2 \alpha = \cos^2 \alpha$ 

| facility for verifying identities can be developed only through practice. Al-<br>though no general method can be given, the guidelines that follow will help<br>you decide what approach to take.      |                                                                                   | $1 + \tan^2 \theta = \sec^2 \theta$ , $\sec^2 \theta - \tan^2 \theta = 1$                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| required in more advanced work in mathematics.<br>In one respect, proving identities is similar to solving word problems:<br>Each identity has its own features and must be verified in its own way. A |                                                                                   | $\sin^2 \theta + \cos^2 \theta = 1$ , $1 - \cos^2 \theta = \sin^2 \theta$ , $1 - \sin^2 \theta = \cos^2 \theta$              |
| <b>Proving Identities</b><br>In this section we shall use the fundamental identities to verify more compli-<br>cated identities. Writing trigonometric expressions in alternate form is a skill        | 10.2                                                                              | Alternate forms of the identities can be obtained by rearranging the terms. The following sets of identities are equivalent: |
|                                                                                                                                                                                                        |                                                                                   |                                                                                                                              |
|                                                                                                                                                                                                        |                                                                                   | $1 + \cot^2 \theta = \csc^2 \theta$                                                                                          |
| $\theta \cos^2 \theta$ 31. $\cot \theta \cos^2 \theta + \cot \theta \sin^2 \theta$                                                                                                                     | <b>30.</b> $\tan \theta \sin^2 \theta + \tan \theta \cos^2 \theta$                | $1 + \tan^2 \theta = \sec^2 \theta$                                                                                          |
| <b>28.</b> $\tan^2 y - \frac{\sec^2 y}{\csc^2 y}$ <b>29.</b> $\frac{1 + \tan^2 x}{\cos x}$                                                                                                             | <b>27.</b> $\csc^2 \alpha - \cot^2 \alpha$                                        | $\cos \theta$<br>$\sin^2 \theta + \cos \theta$                                                                               |
| 26.                                                                                                                                                                                                    | <b>24.</b> $\sin^2 x \sec^2 x$                                                    | sec $\theta$                                                                                                                 |
| 23.                                                                                                                                                                                                    | <b>21.</b> $\frac{\tan \theta \csc \theta}{\sec \theta}$                          | $\tan \theta =$                                                                                                              |
| $1 + \cot^2 \theta) $ 20.                                                                                                                                                                              | 18. $\sin^2 \gamma (1 + \tan^2 \gamma)$                                           | Fundamental trigonometric identities:                                                                                        |
| 16. $\frac{\tan \beta}{\sec \beta}$ 17. $\frac{1}{1-\cos^2 \theta}$                                                                                                                                    | 15. $\frac{\cos^2 x + \sin^2 x}{\sin x}$                                          | For easy reference, the basic identities are given in the box below.                                                         |
| In Exercises 15-31, use the fundamental identities to simplify each given expression. Convert to an expression involving sines and cosines if necessary.                                               | In Exercises 15-31, use the fundamental involving sines and cosines if necessary. | $\cot \theta = \tan \theta$                                                                                                  |
| 14. $\frac{1 + \tan^2 x}{\sec^2 x}$                                                                                                                                                                    | 13. $1 - \sec^2 \theta$                                                           | It follows that $\sec^2 \theta - \tan^2 \theta$                                                                              |
| 11. $\cot^2 s(1 + \tan^2 s)$ 12. $\tan^2 x - \sec^2 x$                                                                                                                                                 | <b>10.</b> $\cot^2 t \sin^2 t$                                                    | $\frac{1}{\cot \theta} = \tan \theta$                                                                                        |
| 8. $\frac{1}{\sec \omega} + \cos \omega$ 9. $\tan \theta \cos \theta \cot \theta$                                                                                                                      | <b>7.</b> $\cot x + \frac{1}{\sin x}$                                             | by identity (16.5), and                                                                                                      |
| 2. $\sin \alpha \cot \alpha$<br>3. $\cos \theta \tan \theta$<br>5. $\cos \gamma \sec \gamma$<br>6. $1 - \tan \beta \cot \beta$                                                                         | 1. $\cot_{\beta}\beta$<br>4. $\sec \theta$                                        | <b>d.</b> $\frac{\sec^2 \theta - \tan^2 \theta}{\cot \theta} = \frac{1}{\cot \theta}$                                        |
| In Exercises 1–14, change each expression to an equivalent expression involving sines and cosines. Simplify if possible.                                                                               | In Exercises 1–14, change possible.                                               | $\csc x \sin^2 x = \frac{1}{\sin x} * \frac{\sin^2 x}{1} = \sin x$ (replacing $\csc x$ by $\frac{1}{\sin x}$ )               |
| tion 16.1                                                                                                                                                                                              | Exercises / Section                                                               | by identity (16.4), and                                                                                                      |
|                                                                                                                                                                                                        |                                                                                   | by identities (16.3) and (16.1).<br>c. $\csc x(1 - \cos^2 x) = \csc x \sin^2 x$                                              |
| $1 + \cot^2 \theta = \csc^2 \theta$ , $\csc^2 \theta - \cot^2 \theta = 1$                                                                                                                              |                                                                                   | <b>b.</b> $\frac{\cot \beta}{\csc \beta} = \frac{\cos \beta}{\sin \beta} \cdot \frac{\sin \beta}{1} = \cos \beta$            |
| 16.2 PROVING IDENTITIES 493                                                                                                                                                                            |                                                                                   | IONAL TOPICS IN TRIGONOMETRY 492                                                                                             |

|   | = 2 con2 v replacing Kas & Sec.X                                                                                                            |                                                                                                                                                                              |
|---|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $= \frac{2}{\cos^2 x} = 2 \int e^{-x} \chi \qquad \text{since } \sin^2 x + \cos^2 x = 1$                                                    | which is the right side. Note that Guideline 1 was also used.                                                                                                                |
|   | $=\frac{1}{1-\sin^2 x}$                                                                                                                     | $=\cos^2\theta - \sin^2\theta$                                                                                                                                               |
|   | 2                                                                                                                                           | $= (\cos^2 \theta - \sin^2 \theta)(1) \qquad \qquad \text{replacing}$                                                                                                        |
|   | $= \frac{(1 + \sin x) + (1 - \sin x)}{(1 - \sin x)(1 + \sin x)}$                                                                            |                                                                                                                                                                              |
|   |                                                                                                                                             | = $(\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta)$ difference of two                                                                                         |
|   | $\frac{1+\sin x}{(1-\sin x)(1+\sin x)} + \frac{1-\sin x}{(1+\sin x)(1-\sin x)}$                                                             | $\cos^4 \theta - \sin^4 \theta = (\cos^2 \theta)^2 - (\sin^2 \theta)^2$                                                                                                      |
|   | which should be combined:                                                                                                                   | <b>Solution.</b> The left side, which is the more complicated side (Guideline 2), is factorable as a difference of two sources (Guideline 3). Thus                           |
|   | Solution. The left side is more complicated and contains two fractions.                                                                     | $\cos^4\theta - \sin^4\theta = \cos^2\theta - \sin^2\theta$                                                                                                                  |
|   | $\frac{1}{1-\sin x} + \frac{1}{1+\sin x} = 2 \sec^2 x$                                                                                      | Prove the identity                                                                                                                                                           |
|   |                                                                                                                                             | 1 # 122 merer                                                                                                                                                                |
|   | ple 4 Show that                                                                                                                             | r illustrate these guidelines.                                                                                                                                               |
| 1 | Example #4                                                                                                                                  | The identity is thereby verified.                                                                                                                                            |
|   | $= \csc^2 \gamma$ identity (16.6)                                                                                                           | $\cot \theta \sin \theta = \frac{\cos \theta}{\sin \theta} \sin \theta = \cos \theta$                                                                                        |
| ` | $= 1 + \cot^2 \gamma \qquad \qquad \cos \gamma / \sin \gamma = \cot \gamma$                                                                 |                                                                                                                                                                              |
|   | $= \frac{1}{\sin \gamma} \sin \gamma + \left(\frac{1}{\sin \gamma}\right) \cos \gamma = 1/\sin \gamma$                                      | line 3), the identity $\cot \theta = \cos \theta / \sin \theta$ may be useful (Guideline 1). This identity converts the left side to sines and cosines (Guideline 4) so that |
|   | 2                                                                                                                                           | it is more complicated. While no algebraic operations come to mind (Guide-                                                                                                   |
|   | $\left(\csc \gamma + \frac{\cos^2 \gamma}{\sin^3 \gamma}\right)\sin \gamma = \csc \gamma \sin \gamma + \frac{\cos^2 \gamma}{\sin^2 \gamma}$ | In accordance with Guideline 2, start with the left side of the equation, since                                                                                              |
|   |                                                                                                                                             | $\cot \theta \sin \theta = \cos \theta$                                                                                                                                      |
|   | Solution. We multiply the expression on the left side (Guideline 3) to obtain                                                               | To see how to use the guidelines, consider the identity                                                                                                                      |
|   | $\left(\csc \gamma + \frac{\cos^2 \gamma}{\sin^3 \gamma}\right)\sin \gamma = \csc^2 \gamma$                                                 | multiply both sides by an expression, and so on. Instead, work on one side of the identity until the other side is obtained.                                                 |
|   |                                                                                                                                             |                                                                                                                                                                              |
|   | ple 3 Show that                                                                                                                             | treated as an equation—establishing equality is the very purpose of the                                                                                                      |
| 1 | Example #3                                                                                                                                  | Caution When proving an identity the given volationship man                                                                                                                  |
|   | $=\sin\beta\cos\beta$                                                                                                                       | other side for possible clues on how to proceed.                                                                                                                             |
|   | $= \sin \beta \cos \beta(1)$ from Guideline 1                                                                                               | 5. When working on one side of the identity, always keep in mind the                                                                                                         |
|   | $= \sin \beta \cos \beta (\sin^2 \beta + \cos^2 \beta)$ common factor                                                                       |                                                                                                                                                                              |
|   | $\sin^3\beta\cos\beta + \cos^3\beta\sin\beta$                                                                                               | 4. If everything else fails try expressing all functions in terms of                                                                                                         |
|   | factor sin $\beta$ cos $\beta$ (Guideline 3). Thus                                                                                          | help to multiply out the terms in an expression, to factor an expres-                                                                                                        |
|   | Solution. The left side, which is more complicated, contains a common                                                                       | 3. Perform any algebraic operation indicated. For example, it may                                                                                                            |
|   | $\sin^3\beta\cos\beta + \cos^3\beta\sin\beta = \sin\beta\cos\beta$                                                                          | - start with the more complicated side of the identity and try to reduce it to the simpler side.                                                                             |
|   | <b>ble</b> Z Prove the identity                                                                                                             | Sible.                                                                                                                                                                       |
| ' |                                                                                                                                             | 1. Memorize the fundamental identities and use them whenever pos-                                                                                                            |
| J | E valuar 0 16.2 PROVING IDENTITIES 495                                                                                                      | Guidelines for proving identities                                                                                                                                            |
|   |                                                                                                                                             | 194<br>1                                                                                                                                                                     |
|   |                                                                                                                                             |                                                                                                                                                                              |



| Figure 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200 <sup>2</sup> cos <sup>2</sup> α Write as a Single fraction.                                                                                                                                                                                                                                 | $y = x \tan \alpha - \frac{1}{2v_0}$                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Neglecting air resistance, the equation of the path of a missile projected at velocity $v_0$ at an angle, horizontal is $\# \approx n \beta u \propto with 1hu horizontal is$                                                                                                                   | <ol> <li>Neglecting air resistan<br/>horizontal is</li> </ol>                                                                                                 |
| RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Suppose a particle moves along a line with velocity $v = 2\cos t + 2\sin t$ (in meters per second).<br>Show that $a = 0$ whenever $\tan t = 1$ .                                                                                                                                                | <ol> <li>Suppose a particle mo<br/>of calculus show that t</li> <li>Show that a = 0 wher</li> </ol>                                                           |
| P A+B obtue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (aw cos wt) <sup>2</sup>                                                                                                                                                                                                                                                                        | $\sqrt{(a\omega \sin \omega t)^2 + (a\omega \cos \omega t)^2}$                                                                                                |
| and נשבאבא. To do so, let A and B be two acute angles. Then A + B may be e<br>א ether acute (Figure 16.4) or obtuse (Figure 16.5). In both figures, PQ and MA<br>נוחל איע                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\tan \alpha + \cot \alpha}{\cos^2 \alpha} = \frac{\sec \alpha}{1 + \cos x}$ 40. $\frac{\tan \alpha + \cot \alpha}{\cos^2 \alpha} - \sin \alpha \sec^3 \alpha = \sec \alpha$ 41. An object traveling along a circle of radius a (in feet) at an angular velocity of $\omega/2\pi$ rev/sec | $\frac{39}{\sin^3 x} = \frac{300 x}{1 + \cos x}$<br>11. An object traveling along a velocity                                                                  |
| It is sometimes useful to write a trigonometric function of the sum of $\mathcal{A}_{f} \neq \mathcal{W}^{Q}$ angles in terms of trigonometric functions of each angle. For example, sin $(A + B)$ can be expressed in terms of sin A, cos A, sin B, and cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{+\sin\theta}{-\sin\theta}$ 38.                                                                                                                                                                                                                                                           | 37. $\frac{\tan \theta + \sec^2 \theta - 1}{\tan \theta - \sec^2 \theta + 1} = \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta}$ $\tan x - \sin x$ |
| <b>16.3</b> The Sum and Difference Formulas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 36.                                                                                                                                                                                                                                                                                           | 35. $\cos^4 x - \sin^4 x = 2 \cos^2 x -$                                                                                                                      |
| $\frac{47 \text{ sm b}}{\cos \theta} (\text{See Example A7. In some problems on the motion of a pendulum, the expression 1/\sqrt{1 - \cos x} arises. Show that \cos \theta < \sin $ | $32. \frac{32}{1 - \sin \theta} =$ See Example 6.) 34. $\frac{1}{1 - \sin \theta}$                                                                                                                                                                                                              | $\sin \gamma (1 + \cos \gamma)$ 33. $\sec \theta + \tan \theta = \frac{cc}{1 - c}$                                                                            |
| $h = \frac{c \cos \theta}{\sqrt{2(1 + \sin \theta)}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $30. \frac{\cot \theta + \tan}{\sec \theta}$                                                                                                                                                                                                                                                    | 31, $\frac{1 + \cos \gamma - \sin^2 \gamma}{\cos^2 \theta} = \tan^2 \theta$                                                                                   |
| where $\theta$ is the contact angle between the liquid and the plate and c a constant that depends <sup>*</sup> on the su tension and specific gravity of the liquid. Show that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{\sin\theta}{c\theta + \cot\theta} = \sec\theta + \cos\theta \qquad 28. \frac{1 - \tan^2\alpha}{1 + \tan^2\alpha} =$                                                                                                                                                                      | $\frac{\tan\theta}{\csc\theta - \cot\theta}$ $\frac{1 + \tan^2\theta}{1 + \tan^2\theta}$                                                                      |
| $h = c \sqrt{\frac{1 - \sin \theta}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 | $25. \ \frac{1-\tan\gamma}{1+\tan\gamma} = \frac{\cot\gamma-1}{\cot\gamma+1}$                                                                                 |
| <sup>β</sup> 46. If a vertical plate is partly submerged in a liquid, then the capillarity will cause the liquid to rise on the to a height of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sin \theta + \sec \theta  \tan \theta - \sec \theta = \frac{1}{1 + \cos^2 \theta}$ $S x = \sin x + \csc x \qquad 24. (1 - \cos \beta)(1 + \cos \beta) = \frac{1}{1 + \cos^2 \theta}$                                                                                                          | <b>23.</b> 2 csc $x - \cot x \cos x = \sin x + \csc x$                                                                                                        |
| $y_{\min} = \frac{wEI}{P^2} \frac{2\cos\theta - \theta^2\cos\theta - 2 + 2\theta\sin\theta}{2\cos\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.<br>θ 22.                                                                                                                                                                                                                                                                                    | 21. $\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta}$                                                                                       |
| $y_{\min} = \frac{1}{P^2} \left(1 - \frac{1}{2} \theta^2 - \sec \theta + \theta \tan \theta\right)$<br>where $\theta = L\sqrt{P/EI}$ . Show that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                              | 17. $\frac{\sin\theta}{1-\cos\theta} - \frac{1-\cos\theta}{\sin\theta} = 2 \cot^2\theta$<br>19. $\cot^2\theta - \cos^2\theta = \cot^2\theta \cos^2\theta$     |
| Sumptine $L$ (in inches) weighing w (pounds per inch) and clamped at the force $P$ at the free end. The minimum deflection is given by $vEI$ ( . 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.                                                                                                                                                                                                                                                                                             | 15. $\frac{\sin\beta + \tan\beta}{1 + \cos\beta} = ta$                                                                                                        |
| $1 - k^2 \sin^2 \theta = k^2 \cos^2 \theta + 1 - k^2$ Subjectively, that $subjectively, the accuracy of the a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\tan \theta + \cot \theta = \cos \theta$ sin $\gamma \cos \gamma$ 14. $(\tan \theta + \cot \theta)^2 = \sec^2 \theta + \csc^2 \theta$                                                                                                                                                          | 13. $\frac{1}{\cot \gamma + \tan \gamma} = \sin \gamma \cos \gamma$                                                                                           |
| M. In the study of the motion of a pendulum the expression $\sqrt{1 - \frac{1}{2} \sin^2 \theta}$ arises of $\frac{499}{1 - \frac{1}{2} \sin^2 \theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I I I CSC B                                                                                                                                                                                                                                                                                     | <b>498</b> CHAPTER 16 ADDIT<br><b>11.</b> $(1 + \tan^2 x) \cos^2 x =$                                                                                         |

-

| ress a function of a<br>hemselves. To illus-                       | As noted earlier, these identities enable us to express a function of a sum of two angles in terms of functions of the angles themselves. To illus-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (16.11)<br>(16.12)                                                 | $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                    | Sum and difference formulas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| y in the forms given<br>12) indicates that the                     | These four formulas can be written more compactly in the forms given below. (The combination " $\pm$ " and " $\mp$ " in formula (16.12) indicates that the terms have opposite signs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (16.10)                                                            | $\cos (A - B) = \cos A \cos B + \sin A \sin B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (16.3)                                                             | and $(x, y) = \sin x \cos y = \cos x \sin y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                    | Since $\sin (-B) = -\sin B$ and $\cos (-B) = \cos B$ , we also get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (16.8)                                                             | $\cos (A + B) = \cos A \cos B - \sin A \sin B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                    | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                    | $= \frac{ON}{OM} \cdot \frac{OM}{OP} - \frac{RM}{PM} \cdot \frac{PM}{OP}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\frac{ON}{OP} - \frac{RM}{OP}$                                    | $\cos (A + B) = \frac{OQ}{OP} = \frac{ON - QN}{OP} = \frac{ON}{OP} - \frac{QN}{OP} = \frac{ON}{OP} =$ |
|                                                                    | For the corresponding identity involving $\cos(A + B)$ , we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $A \sin B$ (16.7)                                                  | $\sin (A + B) = \sin A \cos B + \cos A \sin B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -<br>                                                              | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A cos B                                                            | $= \frac{PR}{PM} \cdot \frac{PM}{OP} + \frac{MN}{OM} \cdot \frac{OM}{OP} = \cos A \sin B + \sin A \cos B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                    | $\frac{PR}{OP} \cdot \frac{PM}{PM} + \frac{MN}{OP} \cdot \frac{OM}{OM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A or B. However, if<br>ction by $PM$ and the<br>n of A or B:       | The last two fractions do not define functions of either A or B. However, if we multiply numerator and denominator of the first fraction by $PM$ and the second by $OM$ , each of the resulting ratios is a function of A or B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\frac{R}{6} + \frac{MN}{OP}$                                      | $\sin (A + B) = \frac{PQ}{OP} = \frac{PR + RQ}{OP} = \frac{PR}{OP} + \frac{RQ}{OP} = \frac{PR}{OP} + \frac{MN}{OP}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| r, and <i>MR</i> is perpen-<br>ngles have their sides<br>eft side. | perpendicular to the x-axis, PM is perpendicular to OM, and MR is perpendicular to PQ. Note that $\angle MPQ = \angle A$ , since the two angles have their sides perpendicular, right side to right side and left side to left side.<br>In both figures we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| യട                                                                 | STIONAL TOPICS IN TRIGONOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                                                                                                                                                                                                                                       |                                 |                                              |                     |                                     | ω       | 1 |                                                                                                                         |                                       |                                                                                                      |                              |                                                             | N                       | 1          |                                                                                                                                                                                         |                                                                       |                                              |                                                                                                                                                                                                                                                  | -                                                                            | m           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|---------------------|-------------------------------------|---------|---|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------|-------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------|
| In our study of the graphs of sinusoidal functions, we found that the graph of $y = \sin (x \pm c) \operatorname{can} be obtained from the graph of y = \sin x by translating the latter graph by c units. If c is a special angle, the relationship$ | $\sin\left(3x-2x\right)=\sin x$ | Solution. By identity (16.9) we get directly | into a single term. | $\sin 3x \cos 2x - \cos 3x \sin 2x$ | Combine |   | The sum and difference identities are sometimes used to combine cer-<br>tain expressions, as shown in the next example. | $=\sin 45^\circ = \frac{\sqrt{2}}{2}$ | $\sin 25^{\circ} \cos 20^{\circ} + \cos 25^{\circ} \sin 20^{\circ} = \sin (25^{\circ} + 20^{\circ})$ | Solution. By identity (16.7) | $\sin 25^\circ \cos 20^\circ + \cos 25^\circ \sin 20^\circ$ | Find the exact value of | Example #2 | $= \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{6} - \sqrt{2}}{4}$ | $= \cos 30^{\circ} \cos 45^{\circ} - \sin 30^{\circ} \sin 45^{\circ}$ | $\cos 75^\circ = \cos (30^\circ + 45^\circ)$ | <b>Solution.</b> Since 75° is not a special angle, $\cos 75^\circ$ cannot be found from a diagram. However, $75^\circ = 30^\circ + 45^\circ$ , a sum of two special angles having known function values. So it follows from identity (16.8) that | Find the exact value of cos 75° by means of the sum and difference formulas. | Example + 1 |

trate these identities, let us find the values of certain trigonometric functions without tables or calculators.

16.3 THE SUM AND DIFFERENCE FORMULAS

501

| $ \frac{\sin 5x \sin 4x}{2\pi} = \frac{18 \cos 2x \cos 3x - \sin 2x \sin 3x}{2\pi} - \frac{(-5)(x+3) \sin 2x}{(-5)(x+3) \sin 2x} = \frac{18}{2\pi} \cos (2x-3) \sin (2x-3) \sin (3y-3x)} $                                                                                                                  | 17. $\cos 5x \cos 4x - \sin 5x$<br>19. $\frac{5}{2}$ (1. $\frac{1}{2}$ ) $\frac{1}{2}$ (2. $\frac{1}{2}$ ) $\frac{1}{2}$ (3. $\frac{1}{2}$ ) $\frac{1}{2}$ (3. $\frac{1}{2}$ ) $\frac{1}{2}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sin x$ 16. cos 5x cos 3x + sin 5x sin 3x                                                                                                                                                                                                                                                                  | 15. $\cos 3x \cos x + \sin 3x \sin x$                                                                                                                                                        | $1 - \tan 2x \tan \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $14. \sin 3x \cos x + \cos 3x \sin x$                                                                                                                                                                                                                                                                       | 13. $\sin x \cos 2x + \cos x \sin 2x$                                                                                                                                                        | $\tan\left(2x+\frac{\pi}{4}\right) = \frac{\pi}{4} + \frac{\pi}{2} + \frac{\pi}{4} = \frac{1}{1-\tan 2x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\cos 4x \sin 2x$ <b>12.</b> $\sin 6x \cos 3x - \sin 6x \cos 3x$                                                                                                                                                                                                                                            | 11, $\sin 4x \cos 2x - \cos 4x$                                                                                                                                                              | $\tan 2x + \tan \frac{\pi}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| write each expression as a single term. (See Example 3.)                                                                                                                                                                                                                                                    | In Exercises 11-20, write                                                                                                                                                                    | Solution. By identity (16.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 39° sin 6° 10. cos 18° cos 12° – sin 18° sin 12°                                                                                                                                                                                                                                                            | 9. sin 39° cos 6° + cos 39° sin 6°                                                                                                                                                           | Simplify tan $(2x + \pi/4)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $+ \sin 55^\circ \sin 10^\circ$<br>8. $\sin 76^\circ \cos 16^\circ - \cos 76^\circ \sin 16^\circ$                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $4. \sin 285^{\circ}$                                                                                                                                                                                                                                                                                       | <b>3.</b> cos (-105°)<br><b>5.</b> cos 16° cos 29° - sin                                                                                                                                     | $\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \longrightarrow (16.14)$ (16.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2. sin 105°                                                                                                                                                                                                                                                                                                 | 1. cos 15°                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| use the sum and difference identities to find each given value without using a table or a imples 1 and $2.$ )                                                                                                                                                                                               | In Exercises 1-10, use the sum and calculator. (See Examples 1 and 2.)                                                                                                                       | $\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \longrightarrow (16.13) $ (16.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| on 16.3                                                                                                                                                                                                                                                                                                     | Exercises / Section 16.3                                                                                                                                                                     | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $= 15 \sin \omega t (\sin \omega t \cdot 0 - \cos \omega t \cdot 1)$ $= -15 \sin \omega t \cos \omega t$                                                                                                                                                                                                    |                                                                                                                                                                                              | $\tan (A + B) = \frac{\cos A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                              | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                              | $\cos(A + B) = \cos(A + B) = \cos(A + \cos(B) - \sin(A)) \sin(B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $P = ei = (5 \sin \omega t) \left[ 3 \sin \left( \omega t - \frac{\pi}{2} \right) \right]$                                                                                                                                                                                                                  |                                                                                                                                                                                              | $\tan (A + B) = \frac{\sin (A + B)}{\sin (A + B)} = \frac{\sin A \cos B}{\cos A} + \cos A \sin B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Solution. The power is given by                                                                                                                                                                                                                                                                             |                                                                                                                                                                                              | and are listed mainly for completeness.<br>By identities (16.7) and (16.8),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| result.                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              | The sum and difference identities for the tangent occur less frequently                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| If $i = 3 \sin(\omega t - \pi/2)$ is the current in a circuit and $e = 5 \sin \omega t$ the voltage, find an expression for the power $P = ei$ as a function of time and simplify the                                                                                                                       | Example 7                                                                                                                                                                                    | $= -\cos 2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\cos (A + B)$ should not be written $\cos A + \cos B$ .                                                                                                                                                                                                                                                    |                                                                                                                                                                                              | $\cos (2x - \pi) = \cos 2x \cos \pi + \sin 2x \sin \pi$ $= (\cos 2x)(-1) + (\sin 2x)(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Similarly,                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                              | Solution. By identity (16.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\sin A \cos B + \cos A \sin B$                                                                                                                                                                                                                                                                             |                                                                                                                                                                                              | <b>5</b> Simplify $\cos(2x - \pi)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Instead, $\sin (A + B)$ should be written as                                                                                                                                                                                                                                                                | adarka con                                                                                                                                                                                   | Example # 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\sin (A + B)$ as $\sin A + \sin B$                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              | $= (\sin x)(0) + (\cos x)(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Writing                                                                                                                                                                                                                                                                                                     | Common error                                                                                                                                                                                 | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ |
| mathematician Romanus (1561–1615).                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              | $\sin\left(r+\frac{\pi}{2}\right) = \sin r \cos \pi + \cos \pi + \pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Remark. The identities $\tan \theta = \sin \theta / \cos \theta$ and $\cot \theta = \cos \theta / \sin \theta$ were known to the Arabs. The Hindus knew the fundamental identity $\sin^2 \theta + \cos^2 \theta = 1$ while the formula for $\sin (A + B)$ were discovered by the formula for $\sin (A + B)$ |                                                                                                                                                                                              | <b>4</b> Simplify sin $(x + \pi/2)$ .<br>Solution. By identity (16.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16.3 THE SUM AND DIFFERENCE FORMULAS 503                                                                                                                                                                                                                                                                    |                                                                                                                                                                                              | xample #14 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

ie produc

(16.9):

$$\sin A \cos B = \frac{1}{2} \left[ \sin \left( A + B \right) + \sin \left( A - B \right) \right] \longrightarrow \left( \left( 6.15 \right) \right)$$

$$\cos A \sin B = \frac{1}{2} \left[ \sin \left( A + B \right) - \sin \left( A - B \right) \right] \longrightarrow \left( \left\{ b, \sqrt{b} \right\} \right)$$

(16.10):

$$\cos A \cos B = \frac{1}{2} \left[ \cos \left( A + B \right) + \cos \left( A - B \right) \right] \longrightarrow (16.17)$$

$$\sin A \sin B = \frac{1}{2} [\cos (A - B) - \cos (A + B)]$$

**51.** The sum-to-product formulas can be obtained from identities (16.15) through (16.18) by letting A + B = x.  $a_{\text{rel}}A - B = y$ . Thus

$$A = \frac{x+y}{2}$$
 and  $B = \frac{x-y}{2}$ 

1

t

By substituting show that

N° N

16.3 THE SUM AND DIFFERENCE FOF

$$\sin x + \sin y = 2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \rightarrow (16.14)$$
  

$$\sin x - \sin y = 2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) \rightarrow (16.25)$$
  

$$\cos x + \cos y = 2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \rightarrow (16.21)$$
  

$$\cos x - \cos y = -2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) \rightarrow (16.22)$$

52. Prove the following identity occurring in the study of alpha particle scattering:

$$\sin \frac{1}{2} (\pi - \theta) = \cos \frac{\theta}{2} \qquad \text{ sof two waves of equal}$$

53. The equation of a standing wave may be obtained by adding the displacements of two amplitude and wavelangth but to the standing the displacements of two amplitude and wavelength but traveling in opposite directions. Given that at some partic Some particular instant

$$y_1 = A \sin 2 \left( x - \frac{\pi}{4} \right)$$

is the equation of a wave traveling in the positive x-direction and

Ą

$$y_2 = A \sin 2 \left( x + \frac{\pi}{4} \right)$$

is the equation of the corresponding wave traveling in the negative x-direction, show that  $y_1 + y_2 + y_1 + y_2 + y_2$ the waves cancel each other at the instant in question.

54. The current in a certain electric circuit is given by

$$i = A \sin\left(\omega t - \frac{\pi}{4}\right) + B \cos\left(\omega t + \frac{\pi}{4}\right)$$

Simplify this expression.

55. If a force  $F_0 \cos \omega t$  is applied to a weight oscillating on a spring, then the energy supplied to  $\mathcal{L}_{A}$  be written in the form

(₫6

 $E = A\omega F_0 \cos(\omega t - \gamma) \cos \omega t$ 

Show that

 $E = A\omega F_0(\cos^2 \omega t \cos \gamma + \cos \omega t \sin \omega t \sin \gamma)$ \* of retraction within

56. A light ray strikes a glass plate of thickness a at an angle of incidence  $\phi$ . If  $\phi'$  is the angle of runties the glass, then the lateral displacement D of the emerging beam is given by

(16

(46

 $D=\frac{a\sin\left(\phi-\phi'\right)}{2}$ cos φ'

57. Given that Show that  $D = a(\sin \phi - \cos \phi \tan \phi')$ .

1 \$

Y

**DUD** - CHAPTER 16 ADDITIONAL TOPICS IN TRIGONOMETRY

Se 6

an a manage of

is the equation of a wave traveling in the positive x-direction and

$$y_2 = A \cos 2\pi \left(\frac{t}{T} + \frac{x}{\lambda}\right)$$

is the equation of the corresponding wave traveling in the negative x-direction, find  $y = y_1 + y_2$ , the equation

58. In the development of the theory of Fourier series (see Section 8.5) the product

$$\cos\frac{m\pi t}{p}\cos\frac{n\pi t}{p}$$

has to be written as a sum. Carry out this operation

**59.** Show that the product of two complex numbers  $r_1 \operatorname{cis} \theta_1$  and  $r_2 \operatorname{cis} \theta_2$  is

 $r_1 r_2 [(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + j(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)]$ 

Simplify this expression to obtain the standard form  $r_1r_2 \operatorname{cis} (\theta_1 + \theta_2)$ 

## 16.4 **Double-Angle Formulas**

angle formulas. warrant separate classification. One such classification includes the double-Some special cases of the sum and difference formulas occur often enough to

Let A = B in the identity

 $\sin (A + B) = \sin A \cos B + \cos A \sin B$ 

Then

 $\sin (A + A) = \sin A \cos A + \cos A \sin A$ 

OF

 $\sin 2A = 2 \sin A \cos A$ 

If A = B in the identity

 $\cos (A + B) = \cos A \cos B - \sin A \sin B$ 

then

 $\cos (A + A) = \cos A \cos A - \sin A \sin A$ 

or

 $\cos 2A = \cos^2 A - \sin^2 A$ 

If we let  $\cos^2 A = 1 - \sin^2 A$ , then  $\cos 2A = 1 - \sin^2 A - \sin^2 A = 1 - 2 \sin^2 A$ . Similarly,  $\cos 2A = \cos^2 A - (1 - \cos^2 A) = 2 \cos^2 A - 1$ .

| $= 1 - 2 \sin^2 A$ | $= 2 \cos^2 A - 1$ | $\cos 2A = \cos^2 A - \sin^2 A$ | $\sin 2A = 2 \sin A \cos A$ | Double-angle formulas: |
|--------------------|--------------------|---------------------------------|-----------------------------|------------------------|
| (16.26)            | (16.25)            | (16.24)                         | (16.23)                     |                        |

sider the examples below.  $\cos \theta$  are known, we can use the identities to find  $\sin 2\theta$  and  $\cos 2\theta$ . Contwice an angle in terms of functions of a single angle. In particular, if sin  $\theta$  or The double-angle formulas can be used to express the sine or cosine of

Example # 4

Use the double-angle formulas to find sin  $2\theta$  and cos  $2\theta$ , given that sin  $\theta =$  $\frac{3}{13}$ ,  $\theta$  in quadrant II.

**Solution.** Since sin  $\theta = \frac{1}{13}$ ,  $\theta$  in quadrant II, we obtain  $\cos \theta = -\frac{12}{13}$  (Figure 16.6). Thus

$$\sin 2\theta = 2 \sin \theta \cos \theta = 2 \left(\frac{5}{13}\right) \left(-\frac{12}{13}\right) = -\frac{120}{169}$$

and

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = \left(-\frac{12}{13}\right)^2 - \left(\frac{5}{13}\right)^2$$

$$=\frac{144}{169}-\frac{25}{169}=$$

169



N Find sin 2 $\theta$  and cos 2 $\theta$ , given that cos  $\theta = -\frac{2}{5}$ ,  $\theta$  in quadrant III.

**Solution.** From the diagram (Figure 16.7 on page 508), we obtain sin  $\theta$  = -V21/5. Hence

 $\sin 2\theta = 2 \sin \theta \cos \theta = 2 \left(-\frac{\sqrt{21}}{5}\right) \left(-\frac{2}{5}\right) = \frac{4\sqrt{21}}{25}$ 

| 13. $\cos^2 3y - \sin^2 3y$ 14. $\sin^2 x - \cos^2 x$ 15. $2 \sin 3\theta \cos 3\theta$ 16. $1 - 2 \sin^2 5x$       |                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| vrite each expression as a sin                                                                                      | by formula (16.24).                                                                              |
| 12. Find sin 2 $\theta$ , given that cos $\theta = -\frac{2}{3}$ , $\theta$ in quadrant II.                         | $= \cos^2 2\theta - \sin^2 2\theta = \cos 4\theta  \cos^2 2\theta + \sin^2 2\theta = 1$          |
| 11. Find $\cos 2\theta$ , given that $\cos \theta = -\frac{3}{7}$ , $\theta$ in quadrant III.                       | $= (\cos^2 2\theta - \sin^2 2\theta)(\cos^2 2\theta + \sin^2 2\theta)$                           |
| Find $\sin 2\theta$ .                                                                                               | $\cos^4 2\theta - \sin^4 2\theta = (\cos^2 \theta)^2 - (\sin^2 \theta)^2$                        |
| 9. Find $\cos 2\theta$ given that $\sin \theta = \frac{2}{2}$ , $\theta$ in quadrant II.                            | Solution. Factoring the left side, we get                                                        |
| Find one 74                                                                                                         | $\cos^4 2\theta - \sin^4 2\theta = \cos 4\theta$                                                 |
| Find $\cos 2\theta$ , given that $\sin \theta =$                                                                    | <b>4</b> Prove the identity                                                                      |
|                                                                                                                     | Example # 4                                                                                      |
| <b>3.</b> Filld COS 20, given that $\cos \theta = \frac{5}{2}$ , $\theta$ in quadrant I.                            | $\cos^2 A_{x} = \sin^2 A_{x} = \cos 8_{x} \qquad A = 4_{x} \text{ and } 2A = 8_{x}$              |
| 2. Find sin 20, given that sin $\theta = \frac{3}{5}$ , $\theta$ in quadrant II.                                    |                                                                                                  |
| <b>1.</b> Find sin $2\theta$ , given that sin $\theta = \frac{3}{8}$ , $\theta$ in quadrant I.                      | <b>3</b> Change $\cos^2 4x - \sin^2 4x$ to a single term.                                        |
| Exercises / Section 16.4                                                                                            | $2\cos^2 6x - 1 = \cos 12x$<br>Example # 3                                                       |
|                                                                                                                     | Similarly, since $\cos 2A = 2 \cos^2 A - 1$ , we have                                            |
| by the double-angle formula (16.23).                                                                                | $\sin 16\theta = 2 \sin 8\theta \cos 8\theta$                                                    |
| $=\frac{v^{-}}{g}\sin 2\theta$                                                                                      | of multiple angles. For example, from the identity $\sin 2A = 2 \sin A \cos A$ , it follows that |
| $\cos \theta$ )                                                                                                     | The double-angle formulas are also applicable to trigonometric functions                         |
| <b>Solution.</b> $R = \frac{2\theta}{g} \sin \theta \cos \theta$                                                    | Figure 16.7                                                                                      |
| Write R as a single trigonometric function of $\theta$ .                                                            |                                                                                                  |
| $\frac{1}{8}$ sint or cos of                                                                                        |                                                                                                  |
| $B = \frac{2v^2}{\sin \theta} \cos \theta$                                                                          |                                                                                                  |
| <b>Example 5</b> The range R of a projectile fired with velocity v at an angle $\theta$ with the ground is given by | $-\sqrt{21}$                                                                                     |
|                                                                                                                     | $-2\theta$                                                                                       |
| and<br>$\cos 2A = \cos^2 A - \sin^2 A$                                                                              |                                                                                                  |
| $\sin 2A = 2 \sin A \cos A$                                                                                         | $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = \frac{4}{25} - \frac{21}{25} = -\frac{17}{25}$   |
| Equivalence $A$ with 2 sin A and $\cos 2A$ with 2 $\cos A$ . As we have se                                          | and So t                                                                                         |
| 16.4 DOUBLE-ANGLE FORMULAS 509                                                                                      |                                                                                                  |

510 , CHAPTER 16 ADDITIONAL TOPICS IN TRIGONOMETRY

17. 
$$2\cos^2 2\beta - 1$$
 18.  $\sin 2x \cos 2x$ 

 19.  $1 - 2\cos^2 4y$ 
 20.  $2\sin^2 A - 1$ 

 21.  $\sin 4\omega \cos 4\omega$ 
 20.  $2\sin^2 A - 1$ 

 23.  $4\sin 2x \cos 2x$ 
 20.  $2\sin^2 A - 1$ 

 24.  $6\sin 5x \cos 3\theta$ 
 24.  $6\sin 5x \cos 5x$ 

 In Exercises 25-35, prove the given identities.
 24.  $6\sin 5x \cos 5x$ 

 25.  $\cos^4 x - \sin^4 x = \cos 2x$ 
 26.  $\sin 2\theta = \tan \theta (1 + \cos 2\theta)$ 

 27.  $1 - \cos 2\beta = \tan \beta \sin 2\beta$ 
 28.  $\sin 2\beta = \frac{2 \tan \beta}{1 + \tan^2 \beta}$ 

 29.  $\frac{\cos 2\theta + \cos \theta + 1}{\sin 2\theta + \sin \theta} = \cot \theta$ 
 30.  $\sin 4x = 4\sin x \cos x \cos 2$ 

 31.  $\frac{\cos^2 \gamma + 1}{\cos^2 \gamma + 1}$ 
 24.  $\cos^2 2\beta = \tan \beta \sin 2\beta$ 

27. 
$$1 - \cos 2\beta = \tan \beta \sin 2\beta$$
  
29.  $\frac{\cos 2\theta + \cos \theta + 1}{\sin 2\theta + \sin \theta} = \cot \theta$   
30.  $\sin 4x = 4 \sin x \cos x \cos 2$ 

$$\sin 2\theta + \sin \theta = \frac{30}{200} \sin 4x = 4 \sin x \cos x \cos 2x$$

$$32. \ \frac{2 \cos^4 y + \cos^2 y - 1}{\sin^2 x} = 1 + \sin 2x$$

$$33. \ \frac{1 + \cos 2\omega}{\sin^2 x} = \cot \omega$$

5. 
$$\frac{\csc^2 \theta - 2}{\csc^2 \theta} = \cos 2\theta$$

**36.** By letting A = B in identity (16.13), show that

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

which is the double-angle formula for the tangent.

37. Suppose a particle is traveling along a line according to the equation  $s = 4 \sin^2 t$ , where s is measured in in meters and t in seconds. Calculus shows that the velocity is given by  $v = 8 \sin t \cos t$ . Write v as a single 30

18. Prove the following identity from the derivation of Rutherford's scattering formula:

$$2\pi r^2 \sin \theta = 4\pi r^2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$

9. An axle is placed through the center of a circular disk at an angle  $\alpha$ . The magnitude T of the torque on the bearings holding the axle has the form  $T = k\omega^2 \sin \alpha \cos \alpha$ , where  $\omega$  is the angular velocity. Show that

$$T = \frac{1}{2} k\omega^2 \sin 2\alpha$$

$$T=\frac{1}{2}\,k\omega^2\,\sin\,2\alpha$$

$$T = \frac{1}{2} k\omega^2 \sin 2\alpha$$

$$T = \frac{1}{2} k\omega^2 \sin 2\alpha$$

$$T=\frac{1}{2}\,k\omega^2\,\sin\,2\alpha$$

$$T=\frac{1}{2}\,k\omega^2\,\sin\,2\alpha$$

$$T=\frac{1}{2}\,k\omega^2\,\sin\,2\alpha$$

$$T=\frac{1}{2}\,k\omega^2\,\sin\,2\alpha$$

$$I = \frac{1}{2} k\omega^2 \sin 2\alpha$$

-

0. The equation of the path of a missile projected at velocity v at an angle  $\theta$  with the ground is

Show that 
$$x(v^2 \sin 2\theta -$$

 $y = x \tan \theta -$ 

 $2v^2 \cos^2 \theta$ 

4  $2v^2\cos^2\theta$ 

### 0.0

# Half-Angle Formulas

las, which enable us to express a function of  $\frac{1}{2}A$  in terms of functions of A. terms of functions of A. In this section we shall study the half-angle formu-The identities in the previous section allow us to write a function of 2A in The half-angle formulas can be obtained from the double-angle formulas

by properly rearranging the terms. If we start with

$$\cos 2x = 1 - 2 \sin^2 x$$

we get

$$\sin^2 x = 1 - \cos 2x$$
$$\sin^2 x = \frac{1 - \cos 2x}{1 - \cos 2x}$$

N

$$\ln x = \pm \sqrt{\frac{1 - \cos 2x}{2}}$$

Letting x = A/2, we have

$$\sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos x}{2}}$$

Similarly, from  $\cos 2x = 2 \cos^2 x - 1$ , we obtain

$$\cos\frac{A}{2} = \pm \sqrt{\frac{1+\cos A}{2}}$$

The algebraic sign depends on the quadrant in which the terminal side of A/2

lies.

| $\sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{2}}$ | $\cos\frac{A}{2} = \pm \sqrt{\frac{1+\cos A}{2}}$ |
|--------------------------------------------------|---------------------------------------------------|
|                                                  | $=\pm\sqrt{1}$                                    |

examples. given half-angle in terms of the cosine of the angle, as shown in the first two The half-angle identities can be used to express the sine and cosine of a





SIS

22.  $4 \cos^2 4x$ **19.**  $\cos^2 2x$ 

27.  $\csc^2 \theta = \frac{1}{1 - \cos 2\theta}$ N

31. In determining the length of the path along which a particle will slide from a higher to a lower point in minimum time, the expression  $\sqrt{2} - 2 \cos \theta$  needs to be simplified. Carry out this simplification

32. A common exercise in calculus is determining the area under a curve. To find the area under one arch of the

all values of the variable. Now we shall turn to conditional equations, which So far we have concentrated only on identities, equations that are valid for

| <ul> <li>4 Solve the equation sin 2x = 0, 0 ≤ x &lt; 2π.</li> <li>Solution. Since sin 2x = 0, we have 2x = 0°, 180°, so that x = 0°, 90°. Because of the double angle, these are not the only solutions in the range 0 ≤ x &lt; 360°. From 2x = 360°, 540°, we have x = 180°, 270°. In other words, sin 2x = 0</li> <li>whenever</li> <li>2x = 0, π, 2π, 3π</li> </ul> | $\sec^{2} x - 4 \tan^{2} x = 0$ $1 + \tan^{2} x - 4 \tan^{2} x = 0$ $1 - 3 \tan^{2} x = 0$ $\tan^{2} x = \frac{1}{3}$ $\sqrt{\tan^{2} x} = \pm \sqrt{\frac{1}{3}}$                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| measure<br>$x = \frac{7\pi}{6}, \frac{11\pi}{6}$ Example # 4                                                                                                                                                                                                                                                                                                           | 2 Solve the equation $\sec^2 x - 4 \tan^2 x = 0$ , $0 \le x < 2\pi$ .<br>Solution. Since the equation involves two different functions, no direct solution is possible. However, if we recall that $1 + \tan^2 x = \sec^2 x$ , we can convert one of the functions. Thus                                                                              |
| It follows from $y = \csc x$ that<br>1 use the $\csc x = -2$ and $\csc x = \frac{1}{2}$<br>As shown Since a value of $\csc x$ cannot be less than unity, the equation $\csc x = \frac{1}{2}$ has<br>no solution. From $\csc x = -2$ , we obtain $x = 210^{\circ}$ and 330°. In radian                                                                                  | If an equation involves more than one function, we can often use the identities to convert it to an equation involving only one function, as shown in the next example.<br>Erample #2                                                                                                                                                                 |
| <b>3</b> Solve the equation $2 \csc^2 x + 3 \csc x - 2 = 0, \ 0 \le x < 2\pi$ .<br><b>Solution.</b> Let $y = \csc x$ . Then the equation becomes<br>$2y^2 + 3y - 2 = 0$<br>(2y - 1)(y + 2) = 0<br>$y = -2, \frac{1}{2}$                                                                                                                                                | $\cos x = \frac{1}{2}$ dividing by 2<br>The angles between 0 and $2\pi$ whose cosine is $\frac{1}{2}$ are<br>$x = \frac{\pi}{3}$ and $x = \frac{5\pi}{3}$<br>Substituting into the given equation shows that the solutions check.                                                                                                                     |
| ns Some trigonometric equations are actually in quac<br>in the next example.<br>これるからしまる                                                                                                                                                                                                                                                                               | <ul> <li>Solve the equation 2 cos x − 1 = 0, 0 ≤ x &lt; 2π.</li> <li>Solution. The first step is to solve the given equation for cos x. Thus 2 cos x − 1 = 0 given equation</li> <li>2 cos x = 1 transposing −1</li> </ul>                                                                                                                            |
| $\tan x = \pm \frac{1}{\sqrt{3}}$<br>tan $x = \pm \frac{1}{\sqrt{3}}$<br>tan $x = \pm \frac{1}{\sqrt{3}}$<br>ion, we<br>is of the<br>It follows that $x = 30^{\circ}$ , 150°, 210°, and 330°. In radian measure<br>$x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$                                                                                | is not an identity, since equality holds only if<br>$\theta = 0^\circ, \pm 180^\circ, \pm 360^\circ$ , and so on<br>To solve an equation containing a single trigonometric function, we<br>solve the equation for this function and then determine the values of the<br>angle for which equality holds. Consider the next example.<br>Example $\pm 4$ |
| 16.6 TRIGONOMETRIC EQUATIONS 517                                                                                                                                                                                                                                                                                                                                       | For example, the equation $\leq 16$                                                                                                                                                                                                                                                                                                                   |

| 21.                                                                                                                             | <b>20.</b> 2 $\tan^2 x - \sec^2 x = 0$                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18. $\cot^2 x - \tan^2 x = 0$                                                                                                   | 0 17. $\sin x - \cos x = 0$                                            | x - 2 =                            | $\cos x = \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $= 0 	 15. 	 3 \cos^2 x - 7 \cos x + 4 = 0$                                                                                     | 14.                                                                    |                                    | $4\cos x - 3 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1) = 0 12. $(2 \cos x - 1)(\csc x - 2) = 0$                                                                                     | ) 11. $(\cot x - 1)(\cos x + 1) =$                                     | 10. $(\sec x - 1)(\tan x + 1) = 0$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9. $4\cos^2 x - 3 = 0$                                                                                                          | 8. $\tan x(\csc x + 1) = 0$                                            | 7. $\sin^2 x - \sin x = 0$         | $\sin x(4\cos x - 3) = 0$ common factor since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6. $2\sin^2 x - 1 = 0$                                                                                                          | 5. $\cos^2 x - 1 = 0$                                                  | 4. 2 sec $x + 4 = 0$               | $4\sin x\cos x - 3\sin x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                 | 2. $3 \sin x + 3 = 0$                                                  | 1. $2 \sin x - 1 = 0$              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                 | In Exercises 1–31, solve the given equations for x, $0 \le x < 2\pi$ . | In Exercises 1-31, solve the g     | $2 \sin 2x - 3 \sin x = 0$ given equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                 | 6.6                                                                    | Exercises / Section 16.6           | <b>Solution.</b> By the double-angle formula for the sine function, $\sin 2x = 2 \sin x \cos x$ , we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                 |                                                                        |                                    | to the nearest tenth of a degree ( $0^{\circ} \le x < 360^{\circ}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| So the projectile can be aimed at either 32° or 58° to land 45 ft away.                                                         | the projectile can be aimed at                                         | 6                                  | $2\sin 2x - 3\sin x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 200 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000                                                                 | $\theta = 30^{\circ}$ 58° $\theta = 30^{\circ}$ 58°                    |                                    | Use a calculator to solve the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 120                                                                                                                             | $\sin 2\theta = 0.9$                                                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                 | (40)                                                                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2)                                                                                                                              | $2 \sin \theta \cos \theta = \frac{(45)(32)}{(40)^2}$                  |                                    | $x = 0, \frac{2\pi}{3}, \frac{4\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                 |                                                                        |                                    | It follows that $x = 120^{\circ}$ , 240°, and 0°. In radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                 | (40) <sup>2</sup>                                                      |                                    | 2, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                 | $\frac{440}{32}$ cos o sin o = 45                                      |                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| c                                                                                                                               | TAN2 cos A sin A                                                       |                                    | $(2\cos x + 1)(\cos x - 1) = 0 \qquad 2z^2 - z - 1 = (2z + 1)(z - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ven equation, we get                                                                                                            | Solution Substituting into the given equation, we get                  | Sol                                | $2\cos^2 x - \cos x - 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                 | Figure 16.9                                                            |                                    | $2\cos^2 x - 1 - \cos x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *                                                                                                                               |                                                                        | ********                           | $\cos 2x - \cos x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                 | B B                                                                    |                                    | $2 \cos^2 x - 1$ by one of the double angle, $\cos 2x$ must first be changed to $2 \cos^2 x - 1$ by one of the double-angle formulas for the cosine function (reminder: $\cos 2x \neq 2 \cos x$ ). Then we obtain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                 | N<br>J                                                                 |                                    | Solution Doctor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| angle $\theta$ at which the projectile has to be almed to fill all object $+j$ it away.                                         | $e \theta$ at which the projectile has                                 | angl                               | 5 Solve the equation $\cos 2x - \cos x = 0$ $0 < x < 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| re 16.9.) If $v = 40$ ft/sec, determine the                                                                                     | re $g = 32$ ft/sec <sup>2</sup> . (See Figure 16.9.) If v              |                                    | Example, モメロークタン しょう しょうしょう しょう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                 | $R = \frac{2v^2\cos\theta\sin\theta}{g}$                               |                                    | In most cases, equations involving functions of multiple angles should<br>be solved by mine of the solved by the solv |
| given by                                                                                                                        | velocity $v$ (in feet per second) is given by                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The range R (in feet) of a projectile fired at an angle $\theta$ with the horizontal at                                         | range R (in feet) of a projectil                                       | Example 7                          | Note that the largest of the roots, $3\pi/2$ , is still less than $2\pi$ , so that there are four solutions to the equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| From sin $x = 0$ , we get $x = 0^{\circ}$ , 180°. Using a calculator, cos $x = \frac{3}{4}$ yields $x = 41.4^{\circ}$ , 318.6°. | From sin $x = 0$ , we get $x = 0^{\circ}$ , 180'<br>41.4°, 318.6°.     |                                    | $x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16.6 TRIGONOMETRIC EQUATIONS $517$                                                                                              |                                                                        | a ta m                             | and Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                 |                                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| next          | We know from our study of equations that it is often desirable to solve a given equation for one of the variables in terms of the other variables. To                                            | ow from our study of eque                                          | We kn<br>given                                                                                                                                          |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exa           | ations                                                                                                                                                                                           | Inverse Trigonometric Relations                                    | 16.7 Inver                                                                                                                                              |
| y =           |                                                                                                                                                                                                  |                                                                    |                                                                                                                                                         |
| func          |                                                                                                                                                                                                  | n seconds) for which $i = 2$ A.                                    | Find the smallest value of t (in seconds) for which $i = 2$ A.                                                                                          |
|               |                                                                                                                                                                                                  |                                                                    | $i = 2 \sin^2 \omega t + 3 \sin \omega t$                                                                                                               |
| 1             |                                                                                                                                                                                                  | in a circuit is                                                    | <b>45.</b> Starting at $t = 0$ , the current in a circuit is                                                                                            |
| 50            | where x is measured in centimeters and t in seconds. Find the smallest value of t for which the displacement is zero. (Set your calculator in the radian mode.)                                  | eters and <i>t</i> in seconds. Find th<br>n the radian mode.)      | where $x$ is measured in centimeters and $t$ in second is zero. (Set your calculator in the radian mode.)                                               |
| 2             |                                                                                                                                                                                                  | $2t, t \ge 0$                                                      | $x = 2.0 \cos 2t - 1.0 \sin 2t, t \ge 0$                                                                                                                |
| 2             | lacement is given by                                                                                                                                                                             | on a spring, the vertical disp                                     | 44. For a certain mass oscillating on a spring, the vertical displacement is given by                                                                   |
| 2             | The current in a certain circuit is given by $i = e^{-5t}(\cos 4.0t - \sqrt{3} \sin 4.0t)$ . Find the smallest positive value of t (in seconds) for which the current is zero.                   | t is given by $i = e^{-St}(\cos 4.0t)$<br>e current is zero.       | <b>43.</b> The current in a certain circuit is given by $i = i$ of t (in seconds) for which the current is zero.                                        |
|               | <b>42.</b> Suppose a projectile fired at a velocity of 80 ft/sec is to hit a target 100 ft away. At what angle with respect to the ground does the projectile have to be fired? (See Example 7.) | velocity of 80 ft/sec is to hit a t<br>have to be fired? (See Exam | <b>42.</b> Suppose a projectile fired at a velocity of 80 ft/sec is to hit a target 1 the ground does the projectile have to be fired? (See Example 7.) |
| 1             | = 1  and  C = 0.                                                                                                                                                                                 | $\theta < 180^{\circ}$ ), given that $A = B$                       | Solve this equation for $\theta$ ( $0 \le \theta < 180^{\circ}$ ), given that $A = B = 1$ and $C = 0$ .                                                 |
| 2  <br>Ein    |                                                                                                                                                                                                  | $\beta(\cos^2\theta - \sin^2\theta) = 0$                           | $2(C - A) \sin \theta \cos \theta + B(\cos^2 \theta - \sin^2 \theta) = 0$                                                                               |
| at est        | certain problems in mechanics are simplified by rotating the coordinate axes. In the process, the following equation has to be solved:                                                           | s are simplified by rotating the                                   | <b>41.</b> Certain problems in mechanic equation has to be solved:                                                                                      |
|               | 40. $5\sin^2 x + 8\sin x - 4 = 0$                                                                                                                                                                | <b>39.</b> $\csc^2 x - 3 \cot^2 x = 0$                             | 38. $\cos^2 x - 2 \sin^2 x = 0$                                                                                                                         |
| IS ±          | = 0 37. 2 sin 2x = 3 sin x                                                                                                                                                                       | 36. $\sec^2 x - 2 \tan x - 4 = 0$                                  | <b>35.</b> $2 \sin 2x + \cos x = 0$                                                                                                                     |
| Sol           | 34. $2\cos^2 x = 1 + \sin^2 x$                                                                                                                                                                   | 33. $\tan^2 x - 2 = 0$                                             | 32, $3 \sin x \cos x - \cos x = 0$                                                                                                                      |
| <b>1</b> Find | In Exercises 32–40, use a calculator to solve the given equations to the nearest tenth of a degree ( $0 \le x < 360^{\circ}$ ).                                                                  | or to solve the given equation:                                    | In Exercises 32–40, use a calculat                                                                                                                      |
|               |                                                                                                                                                                                                  |                                                                    | 31. $\sin x \cos x - \sin 2x = 0$                                                                                                                       |
| arcs          | 30. $1 - \sin x \cos x = 1$                                                                                                                                                                      | <b>29.</b> $\sin \frac{x}{2} = \cos \frac{x}{2}$                   | <b>28.</b> $\cos 2x - \sin x = 0$                                                                                                                       |
| The           | <b>27.</b> $\cos 2x - \cos x = 0$                                                                                                                                                                | 26. $\sin 2x + \cos 2x = 0$                                        | 25. $\sin^2 x + \cos 2x = 0$                                                                                                                            |
| The           | 24. $\sin x + \sin 2x = 0$                                                                                                                                                                       | 23. $\cos 2x = 0$                                                  | 22. $\cos 2x = 1$                                                                                                                                       |
|               | Szo ,                                                                                                                                                                                            | ADDITIONAL TOPICS IN TRIGONOMETRY                                  | 520 CHAPTER 16 ADDITIONAL TO                                                                                                                            |

We know from our study of equations that it is often desirable to solve a given equation for one of the variables in terms of the other variables. To solve a trigonometric equation y = f(x) for the variable x, we need the concept of an *inverse trigonometric relation*.

Consider, for example, the function  $y = \sin x$ . To solve this equation for x in terms of y, we introduce the following notation:

 $x = \arcsin y$ 

Expressed verbally, "x is a number (or angle measure) whose sine is y." Following the usual convention of placing y on the left side of the equal sign, we write

 $y = \arcsin x$ 

The equation  $y = \arcsin x$  is called an **inverse trigonometric relation.** To illustrate the meaning of this kind of notation, let us evaluate  $y = \arcsin x$  for certain values of x. Etam plu  $\pm \sqrt{2}$ Find y if  $y = \arcsin \frac{1}{2}$ ,  $0 \le y < 2\pi$ .

The expression says that y is a number (or angle measure) whose sine is x.

52

10.1 INVERSE TRIGONOMETRIC RELATIONS

170

**Solution.** By the definition of  $\arcsin \frac{1}{2}$  we need to find a number whose sine is  $\frac{1}{2}$ . Two such numbers exist between 0 and  $2\pi$ , namely,

$$y = \frac{\pi}{6} \text{ and } y = \frac{5\pi}{6}$$
  

$$f = \frac{5\pi}{6}$$

Find y if  $y = \arcsin 0$ .

**Solution.** Since  $\sin 0 = 0$  and  $\sin \pi = 0$ , it follows that

 $\sin (0 + k \cdot 2\pi) = 0$  and  $\sin (\pi + k \cdot 2\pi) = 0$ ,  $k = 0, \pm 1, \pm 2, \ldots$ 

¢,

or

 $\sin k\pi = 0, \quad k = 0, \pm 1, \pm 2, \ldots$ 

 $y = k\pi, \quad k = 0, \pm 1, \pm 2, \ldots$ 

*Remark.* Recall that a relation between two variables x and y is called a **function** if for every value of x there exists a unique value of y, denoted by y = f(x). By this definition,  $y = \arcsin x$  is *not* a function, as we can see from Example 2: The value x = 0 does not yield a unique value for y. To obtain a function, the values of y must be suitably restricted. That is the topic of the next section.

The other trigonometric functions have similar inverse relations, as shown in the next two examples.

Example #3 Find y if  $y = \arccos(\sqrt{3}/2), 0 \le y < 2\pi$ .

ω

**Solution.** The notation arccos ( $\sqrt{3}/2$ ) has an analogous meaning as an angle whose cosine is  $\sqrt{3}/2$ . For  $0 \le y < 2\pi$ , we have

 $y = \frac{\pi}{6}$  and  $y = \frac{11\pi}{6}$ 

(16.31)

| <br>                                              | TRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 725                                                                                                                                                                              | 16.8 IN                                                                                                                                                                                                                                                                                                                                                                                                              | INVERSE TRIGONOMETRIC FUNCTIONS                                                                                                                                                               |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4                                                 | 4 Find y if $y = \arctan{(-1)}, 0 \le y < 2\pi$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in tensents are                                                                                                                                                                  | 24. $y = \operatorname{arccot} 2x$                                                                                                                                                                                                                                                                                                                                                                                   | <b>25.</b> $y = \arccos 3x + 1$                                                                                                                                                               |
| tengentseine                                      | <b>Solution.</b> For y between 0 and $2\pi$ , the only angles whose targends are the start of the second se | only angles whose tary $26. y = \arcsin 2(x - 2)$<br>29. $y = 2 \arcsin (x + 1) + 3$                                                                                             | <b>27.</b> $y = 3 \operatorname{arccot} 3x$<br>+ 3 <b>30.</b> $y = 3 \operatorname{arccos} (x - 2) - 2$                                                                                                                                                                                                                                                                                                              | <b>28.</b> $y = 2 \arctan 5x + 1$                                                                                                                                                             |
|                                                   | $y = \frac{3\pi}{4}$ and $y = \frac{7\pi}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.8                                                                                                                                                                             | Inverse Trigonometric Functions                                                                                                                                                                                                                                                                                                                                                                                      | ×                                                                                                                                                                                             |
|                                                   | As noted at the beginning of this section, the notation for the inverse relationship enables us to solve a trigonometric equation for $x$ in terms of $y$ , as shown in the next example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | As noted at the beginning of this section, the notation for the inverse ionship enables us to solve a trigonometric equation for $x$ in terms of $y$ , nown in the next example. | We learned in our study of logarithms that the equation $y = b^x$ can be written $x = \log_b y$ . While the two equations mean the same thing, the first expresses y as a function of x and the second expresses x as a function of y; $y = b^x$ and $y = \log_b x$ are called <b>inverse functions.</b> An analogous situation exists in trigonometry in the sense that every trigonometric function has an inverse | the equation $y = b^x$ can be written<br>he same thing, the first expresses<br>es x as a function of y; $y = b^x$ and<br>An analogous situation exists in<br>nometric function has an inverse |
|                                                   | <b>5</b> Solve the equation $y = 1 + \sin 2x$ for x in terms of y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x in terms of y.                                                                                                                                                                 | In the last section we introduced the customary notation for inverse trigonometric relations. We also noted that a relation such as $y = \arcsin x$                                                                                                                                                                                                                                                                  | e customary notation for inverse<br>at a relation such as $y = \arcsin x$                                                                                                                     |
|                                                   | <b>Solution.</b> The equation $y = 1 + \sin 2x$ can also be written<br>$\sin 2x = y - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | can also be written                                                                                                                                                              | does not represent a function. Given the importance of the function concept, this state of affairs is unsatisfactory. The variable y must be suitably re-<br>stricted so that every value of $x$ yields a unique value of $y$ . This restriction                                                                                                                                                                     | <ul> <li>iportance of the function concept,</li> <li>variable y must be suitably re-</li> <li>nique value of y. This restriction</li> </ul>                                                   |
|                                                   | Using the inverse relationship,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  | leads to the definition of an inverse trigonometric function.                                                                                                                                                                                                                                                                                                                                                        | ometric function.                                                                                                                                                                             |
|                                                   | $2x = \arcsin(y - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  | this equation in the form $x = \sin y$ , we get the graph of the sine function with                                                                                                                                                                                                                                                                                                                                  | the graph of the sine function with $x = \frac{1}{2}$                                                                                                                                         |
| De                                                | we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  | x and $y$ interchanged, as shown in Figure 16.10. This graph shows why the                                                                                                                                                                                                                                                                                                                                           | 16.10. This graph shows why the                                                                                                                                                               |
| ÷                                                 | $x = \frac{1}{2} \arcsin(y - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                  | V.                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |
| Exercises / Section 16.7                          | ction 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                               |
| In Exercises 1-16, fi                             | In Exercises 1–16, find y ( $0 \le y < 2\pi$ ) without using a table or calculator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lator.                                                                                                                                                                           | ~                                                                                                                                                                                                                                                                                                                                                                                                                    | ·*                                                                                                                                                                                            |
| 1. $y = \arcsin \frac{\sqrt{3}}{2}$               | <b>2.</b> $y = \arcsin(-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>3.</b> y = arctan 1                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |
| 4. $y = \arccos(-1)$                              | $5, y = \arccos 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>6.</b> $y = \arccos(-1)$                                                                                                                                                      | <i>π</i>                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                               |
| <b>7.</b> $y = \arcsin 0$                         | 8. $y = \arcsin\left(-\frac{1}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9. $y = \arccos \frac{1}{2}$                                                                                                                                                     | $\frac{\pi}{2}$ +                                                                                                                                                                                                                                                                                                                                                                                                    | an in                                                                                                                                                                                         |
| 10. $y = \arcsin\left(-\frac{\sqrt{2}}{2}\right)$ | $\left(\frac{1}{2}\right)$ 11. $y = \arccos 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>12.</b> $y = \arccos 1$                                                                                                                                                       | -1 0 1 ··· x                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                               |
| <b>13.</b> y = arccsc (-2)                        | 14. $y = \arctan\left(-\frac{1}{\sqrt{3}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>15.</b> $y = \operatorname{arccot} \frac{1}{\sqrt{3}}$                                                                                                                        | $\left( + -\frac{\pi}{2} \right)$                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                               |
| 16. y = arctan 0                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                  | $-\pi$                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| In Exercises 17-30,                               | In Exercises $17-30$ , solve each equation for x in terms of y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |
| 17. $y = \arctan x$                               | 18. $y = \arccos 3x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>19.</b> $y = 1 - \arcsin x$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |
| <b>20.</b> $y = 2 + \operatorname{arcsec} x$      | <b>21.</b> $y = \arcsin 2x - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>22.</b> $y = \arccos(x - 2)$                                                                                                                                                  | Figure 16.10                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                               |

| find the proper quadratic find the proper quadratic field and | Inverse trigonometric functions: $y = \operatorname{Arcsin} x, -\pi/2 \le y \le \pi/2$ (16.32) $y = \operatorname{Arctan} x, -\pi/2 < y < \pi/2$ (16.33) $y = \operatorname{Arccos} x, 0 \le y \le \pi$ (16.34)                                                                                                                                                                                                                                                                                                                                      |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Solution. a. Since x is positive, A<br>Arccos $\frac{1}{2} = \frac{\pi}{3}$<br>(Don't forget that Arccos $\frac{1}{2}$ is an a<br>b. Since x is negative, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The inverse functions corresponding to y = arctan x and y = arccos x<br>are obtained from the graphs of x = tan y and x = cos y, shown in Figure<br>16.12 and Figure 16.13, respectively.<br>Following the usual conventions, y = Arctan x is the solid curve in<br>Figure 16.12 and y = Arccos x the solid curve in Figure 16.13. Note that in<br>all cases the angle y is in the first quadrant whenever x is positive. The<br>different cases are summarized next.                                                                                |                                           |
| Although inverse trigonometr<br>tions, we shall confine ourselves to<br>is that different authors define th<br>example, $y = \operatorname{Arcsec} x$ is sometime<br>$\pi/2, \pi/2 < y \leq \pi$ and sometimes $1$<br>$-\pi/2$ .<br>$E \neq a \neq le \pm 2$<br><b>2</b> Find the exact values of<br><b>a.</b> Arccos $\frac{1}{2}$ <b>b.</b> Arccos (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a. $y = \arcsin \frac{1}{2}$ $(0 \le y < 2\pi)$ b. $y = Arcsin \frac{1}{2}$<br>Solution. a. As we saw in the previous section,<br>$y = \frac{\pi}{6}$ and $y = \frac{5\pi}{6}$<br>b. Since $-\pi/2 \le y \le \pi/2$ , the only permissible value is<br>$y = \frac{\pi}{6}$<br>Thus Arcsin $\frac{1}{2} = \pi/6$ , a unique value.                                                                                                                                                                                                                    |                                           |
| Figure 16.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Find the exact value of y in each case:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Example 1                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y = Arcsin x is a function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Figure 16.11                              |
| $-\frac{1}{2}$ $y = Arctan x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | relation $y = \arcsin x$ is not a function: For every $x$ such that $-1 \le x \le 1$ , we<br>get infinitely many values for $y$ .<br>We can also see from the graph that $y$ becomes unique if all but a small<br>section of the graph is eliminated. This elimination can be done in several<br>corresponds to the portion of the graph through the origin, drawn as the solid<br>curve in Figure 16.11. To distinguish between the solid curve and the dashed<br>$y = \operatorname{Arcsin} x$<br>using the capital letter A. Note especially that | $\frac{\pi}{2} = \operatorname{Arcsin} x$ |

negative, the angle cannot be in the first quadrant. To roper quadrant, we must refer to the definition of By agreement, the angle must lie between 0 and  $\pi$ .

$$\operatorname{Arccos}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

545

s sometimes defined by using the restriction  $0 \le y \le y$ ometimes by the restriction  $0 \le y < \pi/2, -\pi \le y < \pi/2$ urselves to the cases already presented. One reason igonometric functions exist for the remaining funcdefine the other functions in different ways. For

Figure 16.13

ġ

Na

X

 $y = \operatorname{Arccos} x$ 

Arccos  $\left(-\frac{1}{2}\right)$ 

positive, Arccos  $\frac{1}{2}$  is in the first quadrant. Thus

Arccos 
$$\frac{1}{2} = \frac{\pi}{3}$$

os  $\frac{1}{2}$  is an angle!)

7

| Frigure 16.14                                                                                                                                                                                                                                                                               | Inverse trigonometric functions can be used to solve certain trigonometric equations.                                                                                                                                                                        |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| $\frac{4}{ -1} x$                                                                                                                                                                                                                                                                           | The result agrees with the convention in statement (16.32).                                                                                                                                                                                                  |       |
| _ y ,                                                                                                                                                                                                                                                                                       | Arcsin(-0.6845) = -0.7539                                                                                                                                                                                                                                    |       |
|                                                                                                                                                                                                                                                                                             | <b>Solution.</b> Set the calculator in the radian mode and proceed as in Example 5. We obtain                                                                                                                                                                |       |
| $\sin\left[\operatorname{Arctan}\left(-\frac{1}{2}\right)\right] = \sin \theta = \frac{-1}{2} = -\frac{\sqrt{17}}{22}$                                                                                                                                                                      | <b>5</b> Evaluate Arcsin (-0.6845).                                                                                                                                                                                                                          | 6     |
| <b>9</b> Find the exact value of sin [Arctan $(-\frac{1}{4})$ ].<br><b>Solution.</b> Recall that Arctan $(-\frac{1}{4})$ is an angle whose tangent is $-\frac{1}{4}$ . Let $\theta =$ Arctan $(-\frac{1}{4})$ . To find sin $\theta$ , we draw the diagram in Figure 16.14. It follows that | press the <u>LINV</u> key, rollowed by the <u>SIN</u> key, to obtain 0.4421. As expected, the angle is in the first quadrant.<br>le By setting the calculator in the degree mode, the same sequence yields<br>Arcsin (0.4278) = 25.33°.<br>下子 com  ゆ         | ode   |
| The remaining examples involve trigonometric functions in a way that is<br>particularly useful in calculus.<br>にたampleまり                                                                                                                                                                    |                                                                                                                                                                                                                                                              | эde   |
| $x = \frac{1}{2}\cos\frac{y}{3}$                                                                                                                                                                                                                                                            | R To show how strictly these conventions must be observed, let us find<br>T some of the values of the inverse trigonometric functions by using a calcula-<br>tor. (If the angles are not special angles, a calculator should be used anyway.)<br>じょうかんはたろ    |       |
| $\frac{y}{3} = \operatorname{Arccos} 2x$ $2x = \cos \frac{y}{3}$                                                                                                                                                                                                                            | $\operatorname{Arcsin}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$                                                                                                                                                                                     |       |
| 8 Solve the equation $y = 3$ Arccos $2x$ for x in terms of y.<br>Solution. $y = 3$ Arccos $2x$                                                                                                                                                                                              | <b>Solution.</b> Since x is negative, the angle cannot lie in the first quadrant. By the definition of Arcsin x, we have $-\pi/2 \le y \le \pi/2$ , so that                                                                                                  | 4<br> |
|                                                                                                                                                                                                                                                                                             | <b>4</b> Find the exact value of Arcsin $\left(-\frac{\sqrt{3}}{2}\right)$ .                                                                                                                                                                                 | 4     |
| $3x = \operatorname{Arctan} \frac{1}{2} (y + 1)  \text{inverse function}$ $x = \frac{1}{3} \operatorname{Arctan} \frac{1}{3} (y + 1)  \text{dividing by 3}$                                                                                                                                 | $\operatorname{Arctan} (-1) = -\frac{\pi}{4}$ $\operatorname{Example}_{4} 4 4$                                                                                                                                                                               | 1     |
| Solution. $y = 2 \tan 3x - 1$ given equation $y + 1 = 2 \tan 3x$ transposing -1 $\tan 3x = \frac{1}{2}(y + 1)$ dividing by 2                                                                                                                                                                | dents proceed to drop one of the values and keep only $7\pi/4$ . Now, while this angle does lie in the fourth quadrant, this choice still violates the convention in statement (16.33). Since $-\pi/2 < y < \pi/2$ , the angle chosen must be negative. Thus |       |
| 7 Solve the equation $y = 2 \tan 3x - 1$ for x in terms of y using the proper inverse function.                                                                                                                                                                                             | <b>Solution.</b> This is a problem that many students find troublesome. If we were looking merely for some angles between 0 and $2\pi$ , we would choose 135° and                                                                                            |       |
| 16.8 INVERSE TRIGONOMETRIC FUNCTIONS 527<br>ディットのビーキア                                                                                                                                                                                                                                       | Find the exact value of Arctan (-1).                                                                                                                                                                                                                         | ω     |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                              | ۰, ۳  |

|                                |         | Example # 10                                                                                                                                                                | 828 828                                                                 |                                                                                   |                                                                                                                                  | 1.75 275                                                                      |
|--------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| •<br>•                         | 10      | Find an algebraic expression equivalent to $tan$ (Arccos x).                                                                                                                | to tan (Arccos x).                                                      | 10. Arcsin 1                                                                      | <b>11.</b> Arcsin $\left(-\frac{1}{\sqrt{2}}\right)$                                                                             | 12. Arcsin $\left(\frac{1}{\sqrt{2}}\right)$                                  |
|                                | ۶       | <b>Solution.</b> Let $\theta$ = Arccos x. Thus $\theta$ is an angle whose cosine is $x/1$ . Draw a right triangle with x on the adjacent side and 1 on the hypotenuse. (See | n angle whose cosine is $x/1$ . Draw a de and 1 on the hypotenuse. (See | <b>13.</b> Arctan $(-\sqrt{3})$                                                   | 14. Arccos $\left(-\frac{1}{\sqrt{2}}\right)$                                                                                    | 15. Arctan $\sqrt{3}$                                                         |
|                                |         | Figure 16.15.) By the Pythagorean theorem, the length of the opposite side is $\sqrt{1-x^2}$ . It follows that                                                              | em, the length of the opposite side is                                  | 16. Arccos $\frac{1}{\sqrt{2}}$                                                   | 17. Arccos $\left(-\frac{\sqrt{3}}{2}\right)$                                                                                    |                                                                               |
|                                |         | $\tan(\operatorname{Arccos} x) = \tan \theta = \frac{\sqrt{1-x^2}}{x}$                                                                                                      |                                                                         | In Exercises 18-40, evaluate the gi                                               | In Exercises 18-40, evaluate the given expressions without a table or a calculator. (See Example 5                               | calculator. (See Example                                                      |
| T                              |         | ډ                                                                                                                                                                           |                                                                         | 9.)<br>18. sin (Arctan 2)                                                         | 19. $\tan\left[\operatorname{Arccos}\left(-\frac{1}{3}\right)\right]$                                                            | <b>20.</b> $\tan\left[\operatorname{Arcsin}\left(-\frac{1}{3}\right)\right]$  |
|                                |         | $1$ $\sqrt{1-x^2}$                                                                                                                                                          |                                                                         | 21. csc $\left[\operatorname{Arcsin}\left(-\frac{3}{4}\right)\right]$             | 22. csc $\left[\operatorname{Arccos}\left(-\frac{3}{4}\right)\right]$                                                            | <b>23.</b> cos [Arctan (-2)]                                                  |
| ×<br>•<br>•                    |         | x<br>x                                                                                                                                                                      |                                                                         | 24. sec (Arctan 3)                                                                | <b>25.</b> $\cos\left(\operatorname{Arcsin}\frac{2}{3}\right)$                                                                   | 26. sec $\left(\operatorname{Arcsin} \frac{4}{5}\right)$                      |
|                                |         | Figure 16.15                                                                                                                                                                |                                                                         | <b>27.</b> , csc $\left[\operatorname{Arctan}\left(-\frac{3}{4}\right)\right]$    | <b>28.</b> tan $\left[\operatorname{Arcsin}\left(-\frac{12}{13}\right)\right]$                                                   | <b>29.</b> cot $\left[\operatorname{Arccos}\left(-\frac{5}{13}\right)\right]$ |
|                                | 1       | The width $\psi$ of a laser beam at a dista                                                                                                                                 | nce d from the source is given                                          | <b>30.</b> cot $\left[ \operatorname{Arctan} \left( -\frac{5}{6} \right) \right]$ | 31. sec $\left(\operatorname{Arccos} \frac{1}{4}\right)$                                                                         | 32. csc $\left(\operatorname{Arcsin} \frac{2}{5}\right)_{e}$                  |
|                                | 0       | $w = 2d \tan \frac{\alpha}{2}$                                                                                                                                              |                                                                         | <b>33.</b> cot $\left[\operatorname{Aresin}\left(-\frac{1}{4}\right)\right]$      | 34. sec $\left[\operatorname{Arcsin}\left(-\frac{3}{7}\right)\right]$                                                            | <b>35.</b> sin $\left[\operatorname{Arccos}\left(-\frac{2}{5}\right)\right]$  |
| i.                             |         | where $\alpha$ is the angle of the beam. Solve this equation for $\alpha$ .                                                                                                 | e this equation for $\alpha$ .                                          | 36. csc (Arctan $\sqrt{5}$ )                                                      | 37. $\sin\left(\operatorname{Arcsin}\frac{1}{5}\right)$                                                                          | 38. tan (Arctan 4)                                                            |
| 17                             |         | <b>Solution.</b> $w = 2d \tan \frac{\alpha}{2}$                                                                                                                             |                                                                         | 39. cot (Arctan 4)                                                                | 40. $\cos\left(\operatorname{Arccos}\frac{2}{5}\right)$ is the                                                                   | -> Use the positive square rat in                                             |
|                                |         | $\frac{w}{2d} = \tan \frac{\alpha}{2}$                                                                                                                                      |                                                                         | In Exercises 41–50, for each expre<br>each case. (See Example 10.)                | In Exercises 41–50, for each expression find an equivalent algebraic expression. Use the positive scench case. (See Example 10.) | ression. Use the positive's                                                   |
|                                |         | $\frac{\alpha}{2} = \operatorname{Arctan} \frac{w}{2d}$                                                                                                                     |                                                                         | 41. tan (Arcsin x)                                                                | 42. $\cos(\operatorname{Arctan} x)$                                                                                              | 43. sec (Arctan $x$ )                                                         |
|                                |         | $\alpha = 2 \operatorname{Arctan} \frac{w}{2}$                                                                                                                              |                                                                         | 44. $\sin(\operatorname{Arccos} x)$                                               | 45. $\cot (\operatorname{Arcsin} 2x)$<br>48. $\tan (\operatorname{Arccos} 3x)$                                                   | 46. $\sin(\operatorname{Arccos} 2x)$<br>49. $\sin(\operatorname{Arccos} 2x)$  |
|                                |         |                                                                                                                                                                             |                                                                         | 50. $\tan(\operatorname{Arcsin} 3x)$                                              |                                                                                                                                  | in the modian mode                                                            |
| xercises /                     | Secti   |                                                                                                                                                                             |                                                                         | In Exercises 51–58, use a calculate                                               | In Exercises 51–58, use a calculator to evaluate each inverse function. (Set your calculator in the r                            | Set your calculator in the r                                                  |
| Exercises 1-1                  | 7, find | us ing ح<br>value (in radian measure) of ea                                                                                                                                 | th expression without using a bill                                      | <b>51.</b> Arctan 2                                                               | <b>52.</b> Arctan (-2)                                                                                                           | <b>53.</b> Arcsin $\left(-\frac{1}{3}\right)$                                 |
| l. Arcsin $\frac{\sqrt{3}}{2}$ |         | 2. Arcsin (-1)                                                                                                                                                              | 3. Arctan 1                                                             | 54. Arccos $\left(-\frac{2}{3}\right)$                                            | 55. Arctan (1.3142)                                                                                                              | <b>56.</b> Arcsin (-0.7418)                                                   |
| ↓. Arccos (−1)                 |         | 5. Arcsin 0                                                                                                                                                                 | 6. Arcsin $\left(-\frac{1}{2}\right)$                                   | In Exercises 59–68, solve the equations for $x$                                   | nations for x.                                                                                                                   |                                                                               |
| 7. Arccos 0                    |         | 8. Arctan $\left(-\frac{1}{\sqrt{3}}\right)$                                                                                                                                | 9. Arctan 0                                                             | <b>59.</b> $y = 2$ Arcsin x<br><b>62.</b> $y = 3 \cos x$                          | <b>60.</b> $y = 3$ Arccos x<br><b>63.</b> $y = \arctan x + 3$                                                                    | <b>61.</b> $y = 2 \sin x$<br><b>64.</b> $y = \operatorname{Arctan}(x + 3)$    |
|                                |         |                                                                                                                                                                             |                                                                         |                                                                                   |                                                                                                                                  |                                                                               |

| 38. $\frac{1}{\cot \theta + \tan \theta} = \sin \theta$ 40. $\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta$ 42. $\frac{1}{\csc x + \cot x} = \frac{1 - \cos x}{\sin x}$ | 37. $\frac{1+\sin x}{1+\sin x} - \frac{1-\sin x}{1-\sin x} = -2 \tan x \sec x$<br>39. $\frac{1+\sin^2 \theta \sec^2 \theta}{1+\cos^2 \theta \csc^2 \theta} = \tan^2 \theta$<br>41. $\frac{\cos^4 x - \sin^4 x}{1-\tan^4 x} = \cos^4 x$ | <ul> <li>keview Exercises / Chapter 16</li> <li>n Exercises 1-4, use the appropriate identity to evaluate each function without using a table or a calculator.</li> <li>1. sin 22.5°</li> <li>2. cos 112.5°</li> <li>3. cos 12° cos 18° - sin 12° sin 18°</li> <li>4. sin 110° cos 20° - cos 110° sin 20°</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36. $(\sec \alpha - \tan \alpha)(\csc \alpha + 1) = cc$<br>$= c_{\alpha}t_{\alpha}$                                                                                                   | 35. $\frac{\cos\beta\tan\beta + \sin\beta}{\tan\beta} = 2\cos\beta$                                                                                                                                                                    | where q is the magnitude of the charge, v its velocity, $\phi$ the angle between the direction of motion and the direction of the magnetic field, and F the force acting on the moving charge. Solve this formula for $\phi$ .                                                                                       |
| on cety                                                                                                                                                                               | In Exercises 35-56, prove the given identities.                                                                                                                                                                                        | $B = \frac{r}{qv \sin \phi}$                                                                                                                                                                                                                                                                                         |
| <b>34.</b> $4 \sin^2 4x$                                                                                                                                                              | <b>31.</b> sin <sup>2</sup> 3x<br><b>33.</b> 2 cos <sup>2</sup> 3x                                                                                                                                                                     | 4. The formula for magnetic intensity is                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                       | In Exercises 31–34, eliminate the exponent.                                                                                                                                                                                            | Find the formula for the time t required for the particle to move from its starting position $x = A$ (when $t = 0$ ) to a new position $(0 \le t \le \pi \sqrt{m/k})$ .                                                                                                                                              |
| 30. $\sqrt{2-2\cos 8\theta}$                                                                                                                                                          | $\frac{2}{29} \cdot \sqrt{1 + \cos 4\theta}$                                                                                                                                                                                           | $x = A \cos \sqrt{\frac{k}{m}} t$                                                                                                                                                                                                                                                                                    |
| $28. \sqrt{\frac{1+\cos 4\theta}{2}}$                                                                                                                                                 | In Exercises 27-50, simplify the given expressions.<br>27. $\sqrt{1 - \cos 4\theta}$                                                                                                                                                   | Figure 16.17<br>3. Recall that the equation of simple harmonic motion is                                                                                                                                                                                                                                             |
| AC. SIII TA COS TA                                                                                                                                                                    | La Erraciono 27 20 cimelifa the civer everencione                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                      |
| 24. $2\cos^2 3\beta - 1$                                                                                                                                                              | 23. $1 - 2 \sin^2 4x$                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                      |
| 22. $\sin^2 2x - \cos^2 2x$                                                                                                                                                           | <b>21.</b> $\cos^2 3x - \sin^2 3x$                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                      |
| gle trigonometric function.                                                                                                                                                           | In Exercises 21-26, write each expression as a single trigonometric function.                                                                                                                                                          | Solve this equation for $\theta$ .                                                                                                                                                                                                                                                                                   |
| adrant III.                                                                                                                                                                           | <ol> <li>Find cos (θ/2), given that sin θ = -23/23, θ in quadrant III.</li> <li>Find cos (θ/2), given that cos θ = 13/3, θ in quadrant IV.</li> </ol>                                                                                  | $T = 2\pi \sqrt{\frac{L\cos\theta}{g}}$                                                                                                                                                                                                                                                                              |
| drant IV.                                                                                                                                                                             | <b>17.</b> Find $\cos 2\theta$ , given that $\sin \theta = -\frac{1}{13}$ , $\theta$ in quadrant IV.<br><b>*18.</b> Find $\sin (\theta/2)$ , given that $\cos \theta = -\frac{1}{3}$ , $\theta$ in quadrant II.                        | 72. A small body is revolving in a horizontal circle at the end of a cord of length L making an angle $\theta$ with t <sub>1</sub> [ke vertical (Figure 16.17). The time for one complete revolution is                                                                                                              |
| nt III.<br>nt III.                                                                                                                                                                    | <b>15.</b> Find sin $2\theta$ , given that $\cos \theta = -\frac{4}{3}$ , $\theta$ in quadrant II.<br><b>16.</b> Find sin $2\theta$ , given that $\sin \theta = -\frac{1}{3}$ , $\theta$ in quadrant III.                              | <b>Figure 16.16</b><br><b>71.</b> The formula $\phi$ = Arctan (X/R) arises in the study of alternating current. Solve this formula for p                                                                                                                                                                             |
| 14. $\cos\left(x-\frac{\pi}{4}\right)$                                                                                                                                                | 13. $\sin(x - \frac{\pi}{6})$                                                                                                                                                                                                          | A a b B                                                                                                                                                                                                                                                                                                              |
| <b>12.</b> $\cos(x - 2\pi)$                                                                                                                                                           | 11. $\cos\left(2x+\frac{\pi}{2}\right)$                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |
| <b>10.</b> $\sin\left(x - \frac{\pi}{2}\right)$                                                                                                                                       | 9. $\cos(2x - \pi)$                                                                                                                                                                                                                    | ru. Show that angle $A = Arctan [(b/a) \tan B]$ in Figure 16.16.                                                                                                                                                                                                                                                     |
| 8. $\cos (x - y) \cos y - \sin (x - y) \sin \frac{1}{2}$<br>$\cos (x - y) \cos y - \sin (x - y) \sin \frac{1}{2}$<br>tion of x or 2x.                                                 | 7. $\sin 4x \cos x - \cos 4x \sin x$ 8. $\cos (x - y) \cos y - \sin (x - y)$ In Exercises 9–14, write each expression as a function of x or $2x$ .                                                                                     | It when she $00/x$ ).                                                                                                                                                                                                                                                                                                |
| ingle term. $53$<br>6. cos 6x cos x + sin 6x sin x                                                                                                                                    | In Exercises 5–8, combine each expression into a single term.<br>5. $\sin 2x \cos 4x + \cos 2x \sin 4x$ 6. cc                                                                                                                          | 65. $y = 2 \sin 3x$<br>66. $y = 4 \operatorname{Arcsin} (x + 4)$<br>67. $y = 4 \tan (x - 2)$<br>68. $y = \frac{1}{2} \operatorname{Arccos} (x + 1)$                                                                                                                                                                  |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                        | לאט אוואו או אין                                                                                                                                                                                                                                                                 |

$$b2d'$$
cover is 6Addition and the point of sin (Arc) $5 \leq L$ 43.  $\cos y$  in  $(x - y) + \sin y \cos (x - y) = x \cos x$ 44.  $\cos \left(x - \frac{x}{b}\right) - \cos \left(x + \frac{x}{b}\right) = \sin x$ 45.  $\cos (x + y) + \cos (x - y) = 2 \cos x \cos y$ 46.  $\cos 2x + 2 \sin^2 x = 1$ 47.  $\cos (x - x) = 2 \operatorname{Arctan} (x + 2)$ .47.  $2 - \sec^2 y = \cos 2y$ 46.  $\cos 2x + 2 \sin^2 x = 1$ 47.  $\sin^2 y = \cos 2y$ 48.  $\sin 2y = \sec^2 \theta$ 49.  $\frac{1 - \tan^2 y}{1 + \cos 2x}$ 49.  $\frac{1 - \tan^2 y}{1 + \cos 2x}$ 50.  $\cos 2y = \frac{2 \sin^2 \theta}{2 \sin^2 \theta}$ 50.  $\cos 2y = \frac{2 \sin^2 \theta}{2 \sin^2 \theta}$ 74.  $\sin^2 \theta = \cos^2 \theta$ 51.  $1 - \cos 2y$ 52.  $\sin \theta = 2 \sin \frac{2}{2 \sin^2 \theta}$ 53.  $\sin \theta = 2 \sin \frac{2}{2 \cos^2 \theta}$ and that53.  $\sin^2 \theta = \frac{1 - \cos^2 y}{1 - \cos^2 2}$ 54.  $2 \sec^2 \theta = \frac{1 + \cos^2 2}{2(1 + \cos^2 2)}$ and that53.  $\sin^2 \theta = \frac{1 - \cos^2 y}{1 - \cos^2 2}$ 54.  $2 \sec^2 \theta = \frac{1 + \cos^2 2}{2(1 + \cos^2 2)}$ where  $x$  is an angle determined by  $a$  and  $b = \frac{1}{\sqrt{a^2 + b^2}}$  and  $\cos \alpha = \sqrt{a^2 + b^2}$ 54.  $2 \sec^2 \theta = \frac{1 + \cos^2 2}{1 - \cos^2 2}$ 54.  $3 \sec^2 \theta = \frac{1 + \cos^2 2}{2(1 + \cos^2 2)}$ where  $x$  is an angle determined by  $a$  and  $b = \frac{1}{\sqrt{a^2 + b^2}}$  and  $\cos \alpha = \sqrt{a^2 + b^2}$  and  $\cos$ 

533 REVIEW EXERCISES / CHAPTE

rccos 2x)

written in simpler form by noting that **75.** Solve for x:  $y = 2 \sin 4x$ .

 $\frac{d}{a+b^2}\cos\theta\Big) = a\sin\theta + b\cos\theta$ 

$$\alpha = \frac{b}{\sqrt{a^2 + b^2}}$$
 and  $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$ 

b. (See Figure 16.18.) Use the identity for sin  $(A + \beta)$ 







.

ANSWERS TO ODD-NUMBERED EXERCISES A-57 31.  $\begin{bmatrix} \frac{7}{5} \\ \frac{11}{25} \\ \frac{3}{25} \end{bmatrix}$  33.  $\begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ -\frac{2}{3} \end{bmatrix}$ 35.  $3. -\frac{4}{3}. -\frac{7}{3}.4$  (in amps) Cumulative Review Exercises for Chapters 13-15 (page 486) **1.** (0.6, 0.4), (-1.6, 2.6) **2.** (2, 4), (4, 2) **3.**  $(\sqrt{14}, \sqrt{2}), (\sqrt{14}, -\sqrt{2}), (-\sqrt{14}, \sqrt{2}), (-\sqrt{14}, -\sqrt{2}), (-\sqrt{14}, -\sqrt{14}, -\sqrt{2}), (-\sqrt{14}, -\sqrt{14}, -\sqrt{14}), (-\sqrt{14}, -\sqrt{14}, -\sqrt{14}), (-\sqrt{14}, -\sqrt{14}), (-\sqrt{14}), (-\sqrt{14}, -\sqrt{14}), (-\sqrt{14}, -\sqrt{1$ 4.  $\pm \frac{1}{2}, \pm j$  5. x = 6 6. no 7. yes 8. 5 9. 1, 1, 2, 4 10. 1, 1,  $\frac{4}{3}, -\frac{3}{2}$  11. 0.75 12. 394 13. (1. 2. -2, 3) 14.  $\begin{bmatrix} 2 & -3 & -2 \\ -1 & 7 & 5 \\ -6 & 6 & 11 \end{bmatrix}$  15.  $\begin{bmatrix} 0 & 8 \\ 10 & -17 \end{bmatrix}$  16.  $\begin{bmatrix} -3 & 2 & 2 \\ 5 & -3 & -3 \\ -1 & 1 & 0 \end{bmatrix}$ 17. (-1, 1, 0)18. 3.10 Ω. 6.90 Ω Chapter 16 Section 16.1 (page 493) 1.  $\frac{\cos \beta}{\beta}$ 1.  $\frac{\cos \beta}{\sin \beta}$  3.  $\sin \theta$  5. 1 7.  $\frac{\cos x + 1}{\sin x}$  9.  $\cos \theta$  11.  $\frac{1}{\sin^2 s}$  13.  $-\frac{\sin^2 \theta}{\cos^2 \theta}$ 15.  $\csc x$  17.  $\csc^2 \theta$  19.  $\csc \theta$  21. 1 23.  $\cot t$  25.  $\cos \theta$  27. 1 29. 29. sec<sup>3</sup> x 31. cot θ Section 16.2 (page 497) 41.  $a\omega$  43.  $y = \frac{2v_0^2 x \sin \alpha \cos \alpha - gx^2}{2v_0^2 \cos^2 \alpha}$ Section 16.3 (page 503) 1.  $\frac{\sqrt{6} + \sqrt{2}}{4}$  3.  $\frac{\sqrt{2} - \sqrt{6}}{4}$  5.  $\frac{\sqrt{2}}{2}$  7.  $\frac{\sqrt{2}}{2}$  9.  $\frac{\sqrt{2}}{2}$  11. sin 2x 13. sin 3x 15.  $\cos 2x$  17.  $\cos 9x$  19.  $\sin x$  21.  $\frac{1}{2}(\sqrt{3}\cos x - \sin x)$  23.  $-\sin 2x$ 25.  $-\cos x$ 27.  $\sin 2x$  29.  $\cos 2x$  31.  $\frac{1}{2}(\sin x - \sqrt{3}\cos x)$  33.  $\frac{1}{2}(\sqrt{3}\cos x - \sin x)$ 35.  $\frac{\sqrt{2}}{2}(\sin x + \cos x)$  37.  $\frac{1 + \tan x}{1 - \tan x}$  57.  $y = 2A\cos\left(\frac{2\pi t}{T}\right)\cos\left(\frac{2\pi x}{\lambda}\right)$ Section 16.4 (page 509) 1.  $\frac{24}{25}$  3.  $\frac{7}{25}$  5.  $-\frac{120}{169}$  7.  $-\frac{\sqrt{3}}{2}$  9.  $\frac{17}{25}$  11.  $-\frac{31}{49}$  13. cos 6y **15.** sin 6θ 17.  $\cos 4\beta$  19.  $-\cos 8y$  21.  $\frac{1}{2}\sin 8\omega$  23.  $2\sin 4x$  37.  $v = 4\sin 2t$ 

A-58 APPENDIX D

Section 16.5 (page 514)

1.  $\frac{\sqrt{2-\sqrt{3}}}{2} = 0.2588$  3.  $\frac{\sqrt{2+\sqrt{2}}}{2} = 0.9239$  5.  $\frac{\sqrt{2+\sqrt{2}}}{2} = 0.9239$  7.  $\frac{7\sqrt{2}}{10}$  9.  $\frac{2\sqrt{13}}{13}$ 11.  $\sin 2\theta$  13.  $\sqrt{2}\cos 3\theta$  15.  $\sqrt{10}\sin 2\theta$  17.  $\frac{1}{2}(1-\cos 8x)$  19.  $\frac{1}{2}(1+\cos 4x)$ 21.  $1-\cos 6x$  23.  $6(1-\cos 2x)$  29.  $\frac{\sqrt{2}}{2}\csc \frac{x}{2}$  31.  $2\sin \frac{\theta}{2}$ 

Section 16.6 (page 519)

1.  $\frac{\pi}{6}, \frac{5\pi}{6}$  3.  $\frac{\pi}{4}, \frac{5\pi}{4}$  5. 0,  $\pi$  7. 0,  $\frac{\pi}{2}, \pi$  9.  $\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$  11.  $\frac{\pi}{4}, \pi, \frac{5\pi}{4}$ 13.  $\frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$  15. 0 17.  $\frac{\pi}{4}, \frac{5\pi}{4}$  19.  $\pi$  21.  $\frac{\pi}{4}, \frac{5\pi}{4}$  23.  $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$  25.  $\frac{\pi}{2}, \frac{3\pi}{2}$ 27. 0,  $\frac{2\pi}{3}, \frac{4\pi}{3}$  29.  $\frac{\pi}{2}$  31. 0,  $\frac{\pi}{2}, \pi, \frac{3\pi}{2}$  33. 54.7°, 125.3°, 234.7°, 305.3° 35. 90°, 194.5°, 270°, 345.5° 37. 0°, 41.4°, 180°, 318.6° 39. 54.7°, 125.3°, 234.7°, 305.3° 41. 22.5°, 112.5° 43.  $t = \frac{\pi}{24} = 0.13 \sec 45.$   $t = \frac{\pi}{6\omega} \sec$ 

Section 16.7 (page 522)

1.  $\frac{\pi}{3}, \frac{2\pi}{3}$  3.  $\frac{\pi}{4}, \frac{5\pi}{4}$  5.  $\frac{\pi}{2}$  7. 0,  $\pi$  9.  $\frac{\pi}{3}, \frac{5\pi}{3}$  11.  $\frac{\pi}{2}, \frac{3\pi}{2}$  13.  $\frac{7\pi}{6}, \frac{11\pi}{6}$  15.  $\frac{\pi}{3}, \frac{4\pi}{3}$ 17.  $x = \tan y$  19.  $x = \sin (1 - y)$  21.  $x = \frac{1}{2}\sin (y + 1)$  23.  $x = \csc y - 1$ 25.  $x = \frac{1}{3}\sec (y - 1)$  27.  $x = \frac{1}{3}\cot \frac{y}{3}$  29.  $x = \sin \frac{1}{2}(y - 3) - 1$ 

Section 16.8 (page 528)

1.  $\frac{\pi}{3}$  3.  $\frac{\pi}{4}$  5. 0 7.  $\frac{\pi}{2}$  9. 0 11.  $-\frac{\pi}{4}$  13.  $-\frac{\pi}{3}$  15.  $\frac{\pi}{3}$  17.  $\frac{5\pi}{6}$ 19.  $-2\sqrt{2}$  21.  $-\frac{4}{3}$  23.  $\frac{\sqrt{5}}{5}$  25.  $\frac{\sqrt{5}}{3}$  27.  $-\frac{5}{3}$  29.  $-\frac{5}{12}$  31. 4 33.  $-\sqrt{15}$ 35.  $\frac{\sqrt{21}}{5}$  37.  $\frac{1}{5}$  39.  $\frac{1}{4}$  41.  $\frac{x}{\sqrt{1-x^2}}$  43.  $\sqrt{1+x^2}$  45.  $\frac{\sqrt{1-4x^2}}{2x}$  47.  $\frac{\sqrt{9x^2+1}}{3x}$ 49.  $\sqrt{1-4x^2}$  51. 1.1071 53. -0.3398 55. 0.9203 57. 2.0846 59.  $x = \sin\frac{y}{2}$ 61.  $x = \operatorname{Arcsin}\frac{y}{2}$  63.  $x = \tan(y-3)$  65.  $x = \frac{1}{3}\operatorname{Arcsin}\frac{y}{2}$  67.  $x = \operatorname{Arctan}\frac{y}{4} + 2$ 71.  $R = X \cot \theta$  73.  $t = \sqrt{\frac{m}{k}}\operatorname{Arccos}\frac{x}{4}$ 

Review Exercises for Chapter 16 (page 530)

1.  $\sqrt{\frac{2-\sqrt{2}}{2}}$  3.  $\frac{\sqrt{3}}{2}$  5.  $\sin 6x$  7.  $\sin 3x$  9.  $-\cos 2x$  11.  $-\sin 2x$ 13.  $\frac{1}{2}(\sqrt{3}\sin x - \cos x)$  15.  $-\frac{24}{25}$  17.  $\frac{119}{169}$  19.  $-\frac{3}{5}$  21.  $\cos 6x$  23.  $\cos 8x$ 25.  $\sin 6x$  27.  $\sin 2\theta$  29.  $\sqrt{2}\cos 2\theta$  31.  $\frac{1}{2}(1-\cos 6x)$  33.  $1+\cos 6x$  57.  $0,\pi$ 

