Trigonometric identities with $\frac{\pi}{2}$

c
Consider a right triangle with an angle of θ radians. Because the angles of a triangle add up to π radians, the triangle's other acute angle is $\frac{\pi}{2}-\theta$ radians, as shown in the figure. If we were working in degrees rather than radians, then we would be stating that a right triangle with an angle of θ° also has an angle of $(90-\theta)^{\circ}$.

Focusing on the angle $\theta: \cos \theta=\frac{c}{b}, \quad \sin \theta=\frac{a}{b}$
Now focusing instead on the angle $\left(\frac{\pi}{2}-\theta\right)$ in the triangle above,
$\cos \left(\frac{\pi}{2}-\theta\right)=\frac{a}{b}, \quad \sin \left(\frac{\pi}{2}-\theta\right)=\frac{c}{b}$
Comparing the last two sets of displayed equations, we get the following identities:
Trigonometric identities with $\frac{\pi}{2}$
$\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta, \quad \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$
Distance between two points
More generally, to find the formula for the distance between two points (x_{1}, y_{1}) and (x_{2}, y_{2}), consider the right triangle in the figure below:

Starting with the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the figure, the horizontal side of the triangle has length $\left(x_{2}-x_{1}\right)$ and the vertical side of the triangle has length $\left(y_{2}-y_{1}\right)$. The Pythagorean Theorem then gives the length of the hypotenuse, leading to the following formula:
The distance between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
Using the formula above, we can now find the distance between two points without drawing a figure.
Example Find the distance between the points $(3,1)$ and $(-4,-99)$.
solution The distance between these two points is
$\sqrt{(3-(-4))^{2}+(1-(-99))^{2}}=\sqrt{(7)^{2}+(100)^{2}}=\sqrt{10049}$

The cosine of a sum and difference

Consider the figure below, which shows the unit circle along with the radius corresponding to A and the radius corresponding to $-B$.

We defined the cosine and sine so that the endpoint of the radius corresponding to A has coordinates $(\cos A, \sin A)$ The endpoint of the radius corresponding to $-B$ has coordinates equals $(\cos (-B), \sin (-B))$, which we know equals $(\cos B,-\sin B)$, as shown above.

The large triangle in the figure above has two sides that are radii of the unit circle and thus have length 1. The angle between these two sides is $A+B$. The length of the third side of this triangle has been labeled c. We can compute c^{2} in two different ways: first by using the formula for the distance between two points, and second by using the law of cosines. We will then set these two computed values of c^{2} equal to each other, obtaining a formula for $\cos (A+B)$.

To carry out the plan discussed in the paragraph above, note that one end point of the line segment above with length c has coordinates $(\cos A, \sin A)$ and the other endpoint has coordinates $(\cos B,-\sin B)$. The distance between two points is the square root of the sum of the squares of the differences of the coordinates. Thus

$$
c=\sqrt{(\cos A-\cos B)^{2}+(\sin A+\sin B)^{2}} .
$$

Squaring both sides of this equation, we have

$$
\begin{aligned}
& c^{2}=(\cos A-\cos B)^{2}+(\sin A+\sin B)^{2}=\cos ^{2} A+\cos ^{2} B-2 \cos A \cos B+\sin ^{2} A+\sin ^{2} B+2 \sin A \sin B \\
& \left(\cos ^{2} A+\sin ^{2} A=1, \quad \cos ^{2} B+\sin ^{2} B=1\right)
\end{aligned}
$$

$$
\begin{equation*}
c^{2}=2-2 \cos A \cos B+2 \sin A \sin B \tag{1}
\end{equation*}
$$

To compute c^{2} by another method, apply the law of cosines to the large triangle in the figure above, getting $c^{2}=1^{2}+1^{2}-2 \times 1 \times 1 \times \cos (A+B)$

$$
\begin{equation*}
c^{2}=2-2 \cos (A+B) \tag{2}
\end{equation*}
$$

From equation (1) and (2)
$2-2 \cos A \cos B+2 \sin A \sin B=2-2 \cos (A+B)$

$$
\Rightarrow \cos (A+B)=\cos A \cos B-\sin A \sin B
$$

This is the addition formula for cosine
***Never, ever, make the mistake of thinking that $\cos (A+B)=\cos A+\cos B$.

We can find a formula for the cosine of the difference of two angles. In the formula for $\cos (A+B)$, replace B by $-B$ on both sides of the equation and using $\cos (-B)=\cos B$ and $\sin (-B)=-\sin B$ to get

$$
\cos (A-B)=\cos A \cos B+\sin A \sin B
$$

This is the subtraction formula for cosine.

The sine of a sum and difference

To find the formula for the sine of the sum of two angles, we will make use of the identities $\sin (\theta)=\cos \left(\frac{\pi}{2}-\theta\right)$ and $\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \quad \quad$ (Trigonometric identities with $\frac{\pi}{2}$)
We begin by converting the sine into a cosine and then we use the identity just derived above:
$\sin (A+B)=\cos \left(\frac{\pi}{2}-(A+B)\right)=\cos \left(\frac{\pi}{2}-A-B\right)=\cos \left(\left(\frac{\pi}{2}-A\right)-B\right)$
$\Rightarrow \sin (A+B)=\cos \left(\frac{\pi}{2}-A\right) \cos B+\sin \left(\frac{\pi}{2}-A\right) \sin B$
The equation above and the identities above now imply the following result:
$\sin (A+B)=\sin A \cos B+\cos A \sin B$
This is the addition formula for sine
${ }^{* * *}$ Never, ever, make the mistake of thinking that $\sin (A+B)=\sin A+\sin B$.
We can find a formula for the sine of the difference of two angles. In the formula for $\sin (A+B)$, replace B by $-B$ on both sides of the equation and using $\cos (-B)=\cos B$ and $\sin (-B)=-\sin B$ to get

$$
\sin (A-B)=\sin A \cos B-\cos A \sin B
$$

This is the subtraction formula for sine.

Change the expression to an equivalent expression involuing sines and casimen ako simpleify if fassible
Q \# $7 \cot x+\frac{1}{\sin x}$

$$
\Rightarrow=\frac{\cos x}{\sin x}+\frac{1}{\sin x}
$$

$$
=\frac{1+\cos x}{\sin x}
$$

Q\#\#13

$$
\begin{aligned}
& 1-\sec ^{2} x \\
= & i-\frac{1}{\cos ^{2} x} \\
= & \frac{\cos ^{2} x-1}{\operatorname{cis}^{2} x} \\
= & -\frac{\left.-i \cos ^{2} i-\cos ^{2} x\right)}{\cos ^{2} x} \\
= & -\frac{\sin ^{2} x}{\cos ^{2} x}
\end{aligned}
$$

Q\#17
Simplify he expression
anded connant to sinies
and cosines

$$
\begin{aligned}
& \frac{1}{1-\cos ^{2} x} \\
= & \frac{1}{\sin ^{2} x} \\
= & \operatorname{cosec}^{2} x
\end{aligned}
$$

Q 井 21

$$
\begin{aligned}
& \frac{\tan \theta \operatorname{cosec} \theta}{\sec c \theta} \\
= & \frac{\sin \theta}{\cos \sec ^{2}} \times \frac{1}{\sin \theta} \\
= & \frac{\frac{1}{\sin \theta}}{\frac{1}{\cos \theta}}=\frac{1}{\cos \theta} 0 \cos 0
\end{aligned}
$$

$2 \# 29$

$$
\begin{aligned}
& \frac{\frac{1+\tan ^{2} x}{\cos x}}{1+\frac{\sin ^{2} x}{\sin ^{2} x}}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \times \frac{1}{\cos ^{2} x}
\end{aligned}
$$

$$
=\frac{1^{\cos x}}{\cos ^{3} x}
$$

$$
=\sec ^{3} x
$$

Q\#5 Prove the identity

$$
\frac{\cos ^{2} \beta}{\sin \beta}+\sin \beta=\operatorname{cosec} \beta
$$

L.H.S $\frac{\cos ^{2} \beta}{\sin \beta^{3}}+\sin \beta$

$$
=\frac{\cos ^{2} \beta-\sin ^{2} \beta^{3}}{\sin \beta}
$$

$$
=\frac{1}{\sin \beta}
$$

Q\#\# 15

$$
\begin{aligned}
& =\operatorname{cosec} \beta=R \cdot \mathrm{H} \cdot \mathrm{~s} \\
& \therefore \operatorname{LH} s=心 \cdot \mathrm{~S} \cdot \mathrm{~s}
\end{aligned}
$$

i.a.s

$$
\begin{aligned}
& \frac{\sin \beta+\tan \beta}{1+\cos \beta} \\
= & \frac{\sin \beta+\frac{\sin \beta}{\cos \beta}}{1+\cos \beta}=\frac{\sin \beta \cos \beta+\sin \beta}{\cos \beta(1+\cos \beta)} \\
= & \frac{\sin \beta(1+\cos \beta)}{\cos \beta(1+\cos \beta)} \\
= & \sin \beta / \cos \beta=\tan \beta=\text { R.H.S. } \\
& \therefore 1 \text { H.S }=\text { H.S. }
\end{aligned}
$$

Q\#35
\#47 In some problems on the motron of
a peridulum, the Expression $\frac{1}{\sqrt{1-\cos x}}$ arisen. show ihat tis expressio is $\sqrt{1-(0) x}$ equerachent

$$
\text { to } \frac{\sqrt{1+\cos x} \sin x}{\sin x}{ }^{\sqrt{1-\cos x}}=\frac{1}{\sqrt{1-\cos x}} \times \frac{\sqrt{1+\cos x}}{\sqrt{1+\cos x}}
$$

$$
=\frac{\sqrt{1+\cos x}}{\sqrt{(1-\cos x)(1+\cos x}}=\frac{\sqrt{1+\cos x}}{\sqrt{1-\cos ^{2} x}}
$$

$$
=\frac{\sqrt{1+\cos x}}{\sqrt{\sin ^{2} n}}=\frac{\sqrt{1+\cos x}}{\sin ^{n} x}
$$

$$
\therefore \frac{1}{\sqrt{1-\cos x}=} \frac{\sqrt{1+\cos x}}{\sin x}
$$

$$
\begin{aligned}
& \cos ^{4} x-\sin ^{4} x=2 \cos ^{2} x-1 \\
& \text { 2.its } \cos ^{4} x-\sin ^{4} x \\
& =\left(\cos ^{2} x+\sin ^{2} x\right)\left(\cos ^{2} x-\sin ^{2} x\right) \\
& =1\left(\cos ^{2} x-\sin ^{2} x\right) \\
& =\sin ^{2} x-\left(1-\cos ^{2} x\right) \\
& \begin{array}{l}
=\cos ^{2} x-1+\cos ^{2} x \\
=2 \cos ^{2} x-1=x .14 .
\end{array} \\
& \therefore \text { L.H }=\text { R. } 14 . S
\end{aligned}
$$

Q\＃II

Find $\cos 2 \theta$ ，given that $\cos \theta=-3 / 7$ ， θ in quadrant III

$$
\cos 2 \theta=?
$$

$\cos \theta=-3 / 7$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
For $\sin \theta=$ ？
$7^{2}=r^{2}+3^{2}$
$\Rightarrow p^{2}=4 a-9$
$\Rightarrow P=\sqrt{40}$
$\Rightarrow P=\sqrt{40}$
$\therefore \sin \theta=-\frac{\sqrt{40}}{7}$
$\therefore \cos 2 \theta=\left(-\frac{3}{7}\right)^{2}-\left(\frac{740}{7}\right)^{2}$
$=\frac{9}{49}-\frac{40}{49}$
$\cos 2 \theta=\frac{9-40}{419}$
$\therefore \cos 2 \theta=-\frac{31}{49}$
Q $⿻ 二 ⿰ 丿 丨 丶 刂 灬$
Prove the givenidencity
$\frac{1+\cos 2 \omega}{\sin 2 \omega}=\cot \omega$
L．1＋5 $\frac{1+\cos 2 \omega}{\sin 2 \omega}$

$$
\begin{aligned}
& =\frac{1+\cos ^{2} \omega-\sin ^{2} \omega}{2 \sin \omega \cos \omega} \\
& =\frac{1+\cos ^{2} \omega-\left(1-\cos ^{2} \omega\right)}{2 \sin \omega \cos \omega} \\
& =\frac{x+\cos ^{2} \omega-1+\cos ^{2} \theta}{2 \sin \omega \cos \omega} \\
& =\frac{x \cos ^{2} / \omega}{x \sin \omega \cos \omega} \\
& =\frac{\cos \omega}{\sin \omega}=\cot \omega=x_{+1, s} \\
& \therefore \text { L.H.S }=\text { R.H.S }
\end{aligned}
$$

Q\＃39 $T=k \omega^{2} \sin \alpha \cos \alpha$

$$
\begin{aligned}
\Rightarrow T & =\frac{2 k \omega^{2} \sin \alpha \cos \alpha}{2} \\
& =\frac{k \omega^{2}(2 \sin \alpha \cos \alpha)}{2} \\
T & =\frac{k \sin ^{2} \sin 2 \alpha}{2}
\end{aligned}
$$

Q\＃19 write the expression in single tenn

$$
\sin (x+y) \cos y-\cos (x+y) \sin y
$$

$$
=\cos y(\sin x \cos y+\cos x \sin y)-\sin y(\cos x \cos y-\operatorname{set} x \sin y)
$$

$$
\begin{aligned}
& \cos =6 \\
&=64 \cdot 62 \\
& 0=18+4462 \sin x \cos ^{2} y+\cos x \cos y \sin y-\cos x \cos y \sin y+\sin x \sin ^{2} y \\
& \sin x\left(\sin ^{2} y+\cos ^{2} y\right)
\end{aligned}
$$

$$
\begin{aligned}
0 & =\sin x\left(\sin ^{2} y+\cos ^{2} y\right) \\
& =\sin x
\end{aligned}
$$

$$
\theta=2=\sin x
$$

$11^{12} Q 37$ write expression in terms of x

$$
\tan \left(x+\frac{\pi}{4}\right)
$$

As $\tan (x+y)=\frac{\tan x+\tan y}{1-\operatorname{Tan} x \tan y}$
$\therefore \tan \left(x+\frac{\pi}{4}\right)=\frac{\tan x+\tan \frac{\pi}{4}}{1-\tan x \tan \frac{\pi}{4}}$

$$
\tan \frac{\pi}{4}=1
$$

$\therefore \tan \left(x+\frac{\pi}{4}\right)=\frac{\tan x+1}{1-\tan x}$

Q\＃55

If a force Foroswt is applied to a weight oscillating on a spring，then the energy s supplied to the system cam be witter in the form

$$
E=\omega F_{0} \cos (\omega t-\gamma) \cos \omega t
$$

Show tat

$$
E=A \omega F_{0}\left(\omega^{2} \cos t \cos \phi(+\cos \omega t s i n t+\sin)\right.
$$

$$
E=A \omega F_{0} \cos (\omega t-\gamma) \cos \omega t
$$

$$
=A \omega F_{0}[\cos \omega t \cos r+\sin \omega t \sin \sigma] \cos \omega t
$$

$$
=A \omega F_{0}\left[\cos ^{2} \omega t \cos r r+\cos \omega t \sin \omega l \sin \gamma\right]
$$

Exercise $165 \quad \hat{y}$-g 514
2 49
Find $\sin \left(\frac{\theta}{2}\right)$, giver that $\cos \theta=\frac{5}{13}$.
θ in quadrant IV

$$
\begin{aligned}
& \cos \theta=5 / 13, \sin \theta / 2=? \\
& A \cos \theta=\cos ^{2} \theta / 2-\sin ^{2} \theta / 2 \\
& \Rightarrow \cos \theta=1-\sin ^{2} \frac{\theta}{2}-\sin ^{2} \theta / 2 \\
& \Rightarrow \cos \theta=1-2 \sin ^{2} \theta / 2 \\
& \Rightarrow \quad 2 \sin ^{2} \theta / 2=1-\cos \theta \Rightarrow \sin ^{2} \theta / 2=\frac{1-\operatorname{cin} \theta}{2} \\
& \Rightarrow \quad \sin ^{2} \theta \theta / 2=\sqrt{\frac{1-\cos \theta}{2}} \\
& \Rightarrow \sin \theta / 2=\sqrt{\frac{1-\frac{5}{13}}{2}} \Rightarrow \sin \frac{\theta}{2}=\sqrt{\frac{13-5}{2+13}} \\
& \Rightarrow \sin \theta / 2=\sqrt{\frac{84}{2 \times 13}} \\
& \Rightarrow \sin \theta=+\frac{2}{\sqrt{3}}=-5 \sin \frac{c}{2}=\frac{2}{\sqrt{3}} \times \frac{\sqrt{13}}{\sqrt{13}} \\
& \sin \theta / 2=\frac{2 \sqrt{13}}{13}
\end{aligned}
$$

Q 21
Elimnate the exponent

$$
2 \sin ^{2} 3 x
$$

we know
we kow $\cos 2 x=\cos ^{2} x-\sin ^{2} x$

$$
\begin{array}{r}
\Rightarrow \quad \cos 2 x=1-\sin ^{2} x-\sin ^{2} x \\
\Rightarrow \quad \cos 2 x=1-2 \sin ^{2} x \\
\Rightarrow \quad 2 \sin ^{2} x=1-\cos 2 x \\
\quad \text { put } x=3 x
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow 2 \sin ^{2} 3 x=1-\cos 2(3 x) \\
& \Rightarrow 2 \sin ^{2} 3 x=1-\cos 6 x
\end{aligned}
$$

U\#27 $\operatorname{cosec}^{2} \theta=\frac{2}{1-\cos 2 \theta}$

$$
\begin{aligned}
& \text { L.H.S } \operatorname{cosec}^{2} \theta \\
& =\frac{1}{\sin ^{2} c} \\
& \begin{array}{c}
\text { R R.1+s } \\
\frac{2}{1-c, s^{2} c e}
\end{array} \\
& =\frac{2}{2 \sin ^{2} \theta} \\
& =\frac{2}{1-\left(1+2 \sin ^{2} \theta\right)} \\
& =\frac{2}{1-\cos 2 \theta}=R\left(1, \quad=\frac{2}{x-x+2 \sin ^{2} v_{1}}\right. \\
& \therefore \angle H \cdot S=K は! \\
& \text { OR R.1+s. } \\
& =\frac{2}{2 \sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}=\operatorname{cosec}^{2} \theta=L .45 .
\end{aligned}
$$

uounnos d. $\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\cot \theta}$

$$
\begin{aligned}
& \left(x^{z} \mathrm{SOO}-\mathrm{I}\right) x^{250} \cdot \mathrm{~J}
\end{aligned}
$$

Of particular interest in Figure 16.3 is that the names tangent and secant
suggest themselves quite naturally. (Recall that a secant line intersects a
circle at two points and a tangent line at one point.)
The derivation of the remaining identity is similar and will be left as an
exercise:
$1+\cot ^{2} \theta=\csc ^{2} \theta$
Example \#2.
2 Use the fundamental identities to simplify the given expressions. Write the
expressions in terms of sines and cosines, if necessary.
 Figure 16.3

$\theta_{z} \mathrm{SOO}=\theta_{z}{ }^{\mathrm{U}!\mathrm{S}}-\mathrm{I} \quad ' \theta_{z} \mathrm{U}!\mathrm{S}=\theta_{z} \mathrm{SOO}-\mathrm{I} \quad$＇I $=\theta_{z} \mathrm{SOO}+\theta_{z} \mathrm{U}!\mathrm{S}$	

[^0]you decide what approach to take．
 facility for verifying identities can be developed only through practice．Al－

 In this section we shall use the fundamental identities to verify more compli－ se！！！łuәp｜6u！noıd

In Exercises 15－31，use the fundamental identities to simplify each given expression．Convert to ath expression
13． $1-\sec ^{2} \theta$
7． $\cot x+\frac{1}{\sin x}$
10． $\cot ^{2} t \sin ^{2} t$
$\frac{x \mathrm{u}!\mathrm{S}}{\mathrm{I}}+x 100 \%$

possible．
In Exercises 1－14，change each expression to an equivalent expression involving sines and cosines．Simplify if
possible．
L＇9L u0！toəs／ses！ə．」əx］
Kıes

$$
\frac{x_{\tau}{ }_{x_{\tau}}{ }_{\tau}^{\mathrm{UE}}+1}{} \cdot \square \mathbf{L}
$$

$\left(s_{z^{\mathrm{ueq}}}+1\right)_{z^{100}} \cdot$ II

ん วəs $\ell \operatorname{sos} \cdot \mathrm{S}$
$m \mathrm{SO}+\frac{\text { m วəs }}{1} \cdot 8$

15．$\frac{\cos ^{2} x+\sin ^{2} x}{\sin x}$
involving sines and cosines if necessary．
$\cos \theta \tan \theta$
θ 1． $\cot \beta$

[^1]$\frac{\theta_{\text {z }} \text { UIS }}{\theta_{\text {UEI }}}=\theta 103+\theta$ UEI ${ }^{\circ} 0 \mathrm{OL}$

3. $\tan \theta \csc \theta=\sec \theta$ 1. $\cot \theta \sin \theta=\cos \theta$

In Exercises 1-40, prove the given identities.
Exercises / Section 16.2
$=1.4 \sin \omega t$
$=\sqrt{1.96 \sin ^{2} \omega t}$
$=\sqrt{-0.04\left(1-\cos ^{2} \omega t\right)+2.0 \sin ^{2} \omega t}$
${ }^{2 \mathrm{~m}}{ }_{z}$ ull $0 . \tau+50.0-1 \mathrm{~m}{ }_{z} \mathrm{SO}+0.0 \wedge=$?

(11) Example 8 The current in a certain circuit as a function of time is given by
1ii Example 8 The current in a certain circuit as a function of time is given by

\quad| i | $=\sqrt{0.04 \cos ^{2} \omega t-0.04+2.0 \sin ^{2} \omega t}$ |
| ---: | :--- |

\[\)| Simplify this expression. | |
| ---: | :--- |
| Solution. | |
| i | $=\sqrt{0.04 \cos ^{2} \omega t-0.04+2.0 \sin ^{2} \omega t}$ |
| | $=\sqrt{-0.04\left(1-\cos ^{2} \omega t\right)+2.0 \sin ^{2} \omega t} \quad \text { common factor }-0.04$ |
| | $=\sqrt{-0.04 \sin ^{2} \omega t+2.0 \sin ^{2} \omega t}$ |
| | $=\sqrt{1.96 \sin ^{2} \omega t}$ |
| | $=1.4 \sin \omega t$ |\quad| replacing $1-\cos ^{2} \omega t \text { by }$ |
| :--- |
| $\sin ^{2} \omega t$ |

\]

$$
\frac{d \mathrm{u}!\mathrm{s}+\mathrm{I}}{\partial \mathrm{U}!\mathrm{s}-\mathrm{I}}=
$$

$$
\frac{(g \text { u!s }+1)(g u!s-1)}{t(g u s-1)}=
$$

uolinnos Simplify this expression.

（2I．91）	G u！s V U！̣s $\pm g$ soo V SOO $=(g \mp V)$ sos g U！！V SOO $\mp g$ soo V U！s $=(g \mp V)$ u！s ：seןnusoł әэиәлә！！pue uns
（II「91）	

 （0I｀91）$\quad g$ u！s V u！̣ $+g$ soo V sos $=(g-V)$ sos pue （6．91）$\quad G$ u！s V sos $-g$ soo V u！s $=(g-\forall)$ u！s （8．91）$\quad g$ u！̣s V u！̣s $-g$ sos V sos $=(g+\forall)$ sos 9
 10
 ．
perpendicular，right side to right side and left side to left side． perpendicular to the x－axis，$P M$ is perpendicular to $O M$ ，and $M R$ is perpen．
In both figures we have Since $\sin (-B)=-\sin B$ and $\cos (-B)=\cos B$ ，we also get $\sin (A+B)=\sin A \cos B+\cos A \sin B$ nd by $O M$ ，each of the resulting ratios is a function of A or $B:$

$$
\frac{d O}{N W}+\frac{d O}{y d}=\frac{d O}{\widetilde{\partial} y}+\frac{d O}{y d}=\frac{d O}{\bar{O} d+y d}=\frac{d O}{\bar{O} d}=(g+\forall) \mathrm{u}!\mathrm{s}
$$ －Нәdıad 500

 x_{Z} U！S $x_{\mathcal{E}} \operatorname{sos}-x_{Z} \operatorname{sos} x_{\mathcal{E}}$ u！s ω之井 习acusx］ $\sin 25^{\circ} \cos 20^{\circ}+\cos 25^{\circ} \sin 20^{\circ}$
Solution．By identity（16．7）
$\sin 25^{\circ} \cos 20^{\circ}+\cos 25^{\circ} \sin 20^{\circ}$
The sum and difference identitie
tain expressions，as shown in the ne $\frac{\imath}{\tau \nearrow}={ }_{o S t}$ U！S $=$
$\left({ }_{0} 0 Z+{ }_{o S} S\right)$ U！S $=$ $\frac{\text { Examfle\＃2 }}{2 \text { Find the exact }}$
4 － $\begin{aligned} & \text { trate these identities，let us find } \\ & \text { without tables or calculators．} \\ & \text { Example } \neq 1\end{aligned} \begin{array}{r}1 \\ \text { Find the exact value of } \cos 75^{\circ} \\ \text { Solution．Since } 75^{\circ} \text { is not a sp } \\ \text { diagram．However，} 75^{\circ}=30^{\circ} \\ \text { known function values．So it f } \\ \cos 75^{\circ}\end{array}=\cos \left(30^{\circ}+45^{\circ}\right)$. trate these identities，let us find the values of certain trigonometric functions

by the double-angle formula (16.23). $\begin{array}{ll} & \begin{array}{l}\text { and } \\ \cos 2 A=\cos ^{2} A-\sin ^{2} A\end{array} \\ \text { axample } 5 & \begin{array}{l}\text { The range } R \text { of a projectile fired } \\ \text { is given by }\end{array}\end{array}$ $\sin 2 A=2 \sin A \cos A$
and

Equating $\sin 2 A$ with $2 \sin A$ and $\cos 2 A$ with $2 \cos A$. As we have seen,
$\quad \sin 2 A=2 \sin A \cos A$
$R=\frac{2 v^{2}}{g} \sin \theta \cos \theta$

Write R as a single trigo \quad| Solution. \quad | $=\frac{2 v^{2}}{g} \sin$ |
| ---: | :--- |
| | $=\frac{v^{2}}{g}(2$ |
| | $=\frac{v^{2}}{g} \sin$ |

$$
2 \theta
$$

$\sin \theta \cos \theta)$
θ
Write R as a single trigonometric function of θ
-

$\theta \operatorname{soj} \theta$ uIs $\frac{\partial}{z^{2 z}}=y$

0
か乙 U！s гпу $\frac{\tau}{I}=L^{\text {п．}}$ $T=\frac{1}{2} k \omega^{2} \sin 2 \alpha$
bearings holding the axle has the form $T=k \omega^{2} \sin \alpha \cos \alpha$ ，where ω is magnitude T of the torque on the
belocity．Show that

$2 \pi r^{2} \sin \theta=4 \pi r^{2} \sin \frac{\theta}{2} \cos \frac{\theta}{2}$

解
trigonometric function of t ．

$$
\tan 2 A=\frac{1}{1-\tan ^{2} A}
$$

which is the double－angle
$=B$ in identity（16．13），show that
$2 \tan A$

.510 ．CHAPTER 16 additional topics in trigonomethy
26． $\sin 2 \theta=\tan \theta(1+\cos 2 \theta)$
28． $\sin 2 \beta=\frac{2 \tan \beta}{1+\tan ^{2} \beta}$
30． $\sin 4 x=4 \sin x \cos x \cos 2 x$
32．$(\cos x+\sin x)^{2}=1+\sin 2 x$
34．$\frac{\cot ^{2} y-1}{2 \cot y}=\cot 2 y$

$$
\text { 24. } 6 \sin 5 x \cos 5 x
$$

$\theta \mathcal{E} \operatorname{sos} \theta \varepsilon$ แ！s $\cdot z \tau$ 20． $2 \sin ^{2} A-1$
x_{Z} soo x_{Z} u！s－8I

（87＊91）	$\frac{\tau}{V \operatorname{sos}+\mathrm{I}} \Lambda \mp=\frac{\tau}{V} \operatorname{sos}$
（LZ＇91）	$\frac{\tau}{V \operatorname{sos}-\mathrm{I}} \Lambda \mp=\frac{\tau}{V} \text { u!s }$

$\cos 2 x=1-2 \sin ^{2} x$
we get
$2 \sin ^{2} x=1-\cos 2 x$
$\sin ^{2} x=\frac{1-\cos 2 x}{2}$
$\sin x= \pm \sqrt{\frac{1-\cos 2 x}{2}}$
Letting $x=A / 2$, we have
$\sin \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{2}}$
Similarly，from $\cos 2 x=2 \cos$

$\operatorname{Arccos} \frac{1}{2}=\frac{\pi}{3}$

2 Find the exact values of
$\varepsilon L \cdot 9 L$ a.n $6!\rfloor$

Zl'9L อ.n6!!

n_{n}^{n}

Solution. a. Since x is positive, Arccos $\frac{1}{2}$ is in the first quadrant. Thus

a. $\operatorname{Arccos} \frac{1}{2}$ b. $\operatorname{Arccos}\left(-\frac{1}{2}\right)$

$\pi / 2, \pi / 2<y \leq \pi$ and sometimes by the restriction $0 \leq y<\pi / 2,-\pi \leq y<$
$-\pi / 2$.
Example\# 2
 ,

ANSWERS TO ODD.NUMBERED EXERCISES
23. $\frac{1}{3}\left[\begin{array}{rrr}-11 & -15 & 5 \\ 6 & 9 & -3 \\ -14 & -21 & 8\end{array}\right]$
25. $\frac{1}{25}\left[\begin{array}{rrr}10 & 5 & -15 \\ 1 & -2 & -14 \\ 2 & -4 & -3\end{array}\right]$
27. $\frac{1}{3}\left[\begin{array}{rrrr}5 & -6 & 11 & -3 \\ 4 & -6 & 13 & -3 \\ -7 & 9 & -19 & 6 \\ -4 & 6 & -10 & 3\end{array}\right]$
29. $\left[\begin{array}{r}-\frac{2}{3} \\ 0 \\ \frac{1}{3}\end{array}\right]$
31. $\left[\begin{array}{r}\frac{7}{5} \\ \frac{11}{25} \\ \frac{3}{25}\end{array}\right]$
33. $\left[\begin{array}{r}\frac{1}{3} \\ -\frac{1}{3} \\ -\frac{2}{3} \\ \frac{1}{3}\end{array}\right]$
35. 3. $-\frac{4}{3},-\frac{7}{3}, 4($ in amps$)$

Cumulative Review Exercises for Chapters 13-15 (page 486)

1. $(0.6,0.4),(-1.6 .2 .6)$
2. $(2,4),(4,2)$
3. $(\sqrt{14}, \sqrt{2}),(\sqrt{14},-\sqrt{2})$
$(-\sqrt{14}, \sqrt{2}),(-\sqrt{14},-\sqrt{2})$
4. $=\frac{1}{2}, \pm j$
5. $x=6$
6. no 7. yes
7. 5
8. $1,1,2,4$
9. $1,1, \frac{4}{3},-\frac{3}{2}$
10. 0.75
11. 394.
1. $(-1,1.0)$
2. (1, 2. $-2,3$)
3. $\left[\begin{array}{rrr}2 & -3 & -2 \\ -1 & 7 & 5 \\ -6 & 6 & 11\end{array}\right]$
4. $\left[\begin{array}{rr}0 & 8 \\ 10 & -17\end{array}\right]$
5. $\left[\begin{array}{rrr}-3 & 2 & 2 \\ 5 & -3 & -3 \\ -1 & 1 & 0\end{array}\right]$
6. (-1, 1.0) $\quad 18 . \quad 3.10 \Omega .6 .90 \Omega$

Chapter 16

Section 16.1 (page 493)

1. $\frac{\cos \beta}{\sin \beta}$
2. $\sin \theta$
3. 1
4. $\frac{\cos x+1}{\sin x}$
5. $\cos \theta$
6. $\frac{1}{\sin ^{2} s}$
7. $-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
8. $\csc x$
9. $\csc ^{-} \theta$
10. $\csc \theta$
11. 1
12. $\cot t$
13. $\cos \theta$
14. 1
15. $\sec ^{3} x$

Section 16.2 (page 497)

41. aw 43. $y=\frac{2 v_{0} 2 x \sin \alpha \cos \alpha-g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}$

Section 16.3 (page 503)

1. $\frac{\sqrt{6}+\sqrt{2}}{4}$
2. $\frac{\sqrt{2}-\sqrt{6}}{4}$
3. $\frac{\sqrt{2}}{2}$
4. $\frac{\sqrt{2}}{2}$
5. $\frac{\sqrt{2}}{2}$
6. $\sin 2 x$
7. $\sin 3 x$
8. $\cos 2 x$
9. $\cos 9 x$
10. $\sin x$
11. $\frac{1}{2}(\sqrt{3} \cos x-\sin x)$
12. $-\sin 2 x$
13. $-\cos x$
14. $\sin 2 x$
15. $\cos 2 . i$
16. $\frac{1}{2}(\sin x-\sqrt{3} \cos x)$
17. $\frac{1}{2}(\sqrt{3} \cos x-\sin x)$
18. $\frac{\sqrt{2}}{2}(\sin x+\cos x)$
19. $\frac{1+\tan x}{1-\tan x}$
20. $y=2 A \cos \left(\frac{2 \pi t}{T}\right) \cos \left(\frac{2 \pi x}{\lambda}\right)$

Section 16.4 (page 509)

1. $\frac{24}{25}$
2. $\frac{7}{25}$
3. $-\frac{120}{169}$
4. $-\frac{\sqrt{ } \overline{3}}{2}$
5. $\frac{17}{25}$
6. $-\frac{31}{49}$
7. $\cos 6 y$
8. $\sin 6 \theta$
9. $\cos 4 \beta$
10. $-\cos 8 y$
11. $\frac{1}{2} \sin 8 \omega$
12. $2 \sin 4 x$
13. $v=4 \sin 2 t$

Section 16.5 (page 514)

1) $\frac{\sqrt{2-15}}{2}=0.2588$
3. $\frac{\sqrt{2+\sqrt{2}}}{2}=0.9239$
4. $\frac{\sqrt{2+\sqrt{2}}}{2}=0.9239$
5. $\frac{7 \sqrt{2}}{10}$
6. $\frac{2 \sqrt{13}}{13}$
7. $\sin 2 \theta$
8. $\sqrt{2} \cos 3 \theta$
9. $\sqrt{10} \sin 2 \theta$
10. $\frac{1}{2}(1-\cos 8 x)$
11. $\frac{1}{2}(1+\cos 4 x)$
12. $1-\cos 6 x$
13. $6(1-\cos 2 x)$
14. $\frac{\sqrt{2}}{2} \csc \frac{x}{2}$
15. $2 \sin \frac{\theta}{2}$

Section 16.6 (page 519)

1. $\frac{\pi}{6}, \frac{5 \pi}{6}$
2. $\frac{\pi}{4}, \frac{5 \pi}{4}$
3. $0, \pi$
4. $0, \frac{\pi}{2}, \pi$
5. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
6. $\frac{\pi}{4}, \pi, \frac{5 \pi}{4}$
7. $\frac{\pi}{2}, \frac{7 \pi}{6} \cdot \frac{11 \pi}{6}$
8. ()
9. $\frac{\pi}{4} \cdot \frac{5 \pi}{4}$
10. π
11. $\frac{\pi}{4}, \frac{5 \pi}{4}$
12. $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
13. $\frac{\pi}{2} \cdot \frac{3 \pi}{2}$
14. $0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
15. $\frac{\pi}{2}$
16. $0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$
17. $54.7^{\circ}, 125.3^{\circ}, 234.7^{\circ}, 305.3^{\circ}$
18. $90^{\circ}, 194.5^{\circ}, 270^{\circ}, 345.5^{\circ} \quad$ 37. $0^{\circ}, 41.4^{\circ}, 180^{\circ}, 318.6^{\circ} \quad 39.54 .7^{\circ}, 125.3^{\circ}, 234.7^{\circ}, 305.3^{\circ}$
19. $22.5^{\circ}, 112.5^{\circ}$
20. $t=\frac{\pi}{24}=0.13 \mathrm{sec}$
21. $t=\frac{\pi}{6 \omega} \sec$

Section 16.7 (page 522)

1. $\frac{\pi}{3}, \frac{2 \pi}{3}$
2. $\frac{\pi}{4}, \frac{5 \pi}{4}$
3. $\frac{\pi}{2}$
4. $0, \pi$
5. $\frac{\pi}{3}, \frac{5 \pi}{3}$
6. $\frac{\pi}{2}, \frac{3 \pi}{2}$
7. $\frac{7 \pi}{6}, \frac{11 \pi}{6}$
8. $\frac{\pi}{3}, \frac{4 \pi}{3}$
9. $x=\tan y$
10. $x=\sin (1-y)$
11. $x=\frac{1}{2} \sin (y+1)$
12. $x=\csc y-1$
13. $x=\frac{1}{3} \sec (y-1)$
14. $x=\frac{1}{3} \cot \frac{y}{3}$
15. $x=\sin \frac{1}{2}(y-3)-1$

Section 16.8 (page 528)

1. $\frac{\pi}{3}$
2. $\frac{\pi}{4}$
3. 0
4. $\frac{\pi}{2}$
5. 0
6. $-\frac{\pi}{4}$
7. $-\frac{\pi}{3}$
8. $\frac{\pi}{3}$
9. $\frac{5 \pi}{6}$
10. $-2 \sqrt{2}$ 21. $-\frac{4}{3}$
11. $\frac{\sqrt{5}}{5}$
12. $\frac{\sqrt{5}}{3}$
13. $-\frac{5}{3}$
14. $-\frac{5}{12}$ 31. 4
15. $-\sqrt{15}$
16. $\frac{\sqrt{21}}{5}$
17. $\frac{1}{5}$
18. $\frac{1}{4}$
19. $\frac{x}{\sqrt{1-x^{2}}}$
20. $\sqrt{1+x^{2}}$
21. $\frac{\sqrt{1-4 x^{2}}}{2 x}$
22. $\frac{\sqrt{9 x^{2}+1}}{3 x}$
23. $\sqrt{1-4 x^{2}}$
24. 1.1071
25. -0.3398
26. 0.9203
27. 2.0846
28. $x=\sin \frac{y}{2}$
29. $x=\operatorname{Arcsin} \frac{y}{2}$
30. $x=\tan (y-3)$
31. $x=\frac{1}{3} \operatorname{Arcsin} \frac{y}{2}$
32. $x=\operatorname{Arctan} \frac{y}{4}+2$
33. $K=X \cot \theta$
34. $i=\sqrt{\frac{m}{k}} \operatorname{Arccos} \frac{x}{A}$

Review Exercises for Chapter 16 (page 530)

1. $\sqrt{\frac{2-\sqrt{2}}{2}} \quad$ 3. $\frac{\sqrt{3}}{2}$
2. $\sin 6 x$
3. $\sin 3 x$
4. $-\cos 2 x$
5. $-\sin 2 r$
6. $\frac{1}{2}(\sqrt{3} \sin x-\cos x)$
7. $-\frac{24}{25}$
8. $\frac{119}{169}$
9. $-\frac{3}{5}$
10. $\cos 6 x$
11. $\cos 8 x$
12. $\sin 6 x$
13. $\sin 2 \theta$
14. $\sqrt{2} \cos 2 \theta$
15. $\frac{1}{2}(1-\cos 6 x)$
16. $1+\cos 6 x$
17. $0, \pi$
18. $\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$
19. $\pi, \frac{4 \pi}{3}$
20. $\theta=\frac{\pi}{4}+\frac{\alpha}{2}$
21. $\frac{\pi}{3}, \frac{5 \pi}{3}$
22. $\frac{5 \pi}{6}, \frac{11 \pi}{6}$
23. $\frac{2 \pi}{3}$
24. $-\sqrt{35}$
25. $\sqrt{1-4 x^{2}}$
26. $x=\frac{1}{4} \operatorname{Arcsin} \frac{y}{2}$

Chapter 17

Section 17.1 (page 538)

1. $x<3$
2. $x \leq 2$
3. $x<-6$
4. $x \geq-5$
5. $x \leq \frac{4}{3}$
6. $x>-\frac{3}{2}$
7. $x \geq \frac{7}{3}$
8. $x>\frac{5}{2}$
9.

19.

27. 7.6 hr
29. $0.0 \leq F \leq 80$ (pounds)
23.

25.

Section 17.2 (page 543)

1. $x>-3$ 3. $-2<x<2$
2. $x \leq-3 . x \geq-2$
3. $x<-2,0<x<3$
4. $x \leq-5,-2 \leq x \leq 3 \quad$ 11. $-8<x<6, x>7$
5. $1<x<2$
6. $x \leq 6, x>7$
7. $3<x<4$
8. $x \leq-4.1<x \leq 3$
9. $-3<x<3, x>6$
10. $x \leq-6.1 \leq x<2, x>3$
11. $x>4$
12. all x
13. $x<-1$
14. $x<-4,1<x \leq 4$
15. $0 \leq t \leq \frac{4}{3}$ (seconds)
16. $x \leq 5, x \geq 15$ (feet)
17. $1 \leq x<20$

Section 17.3 (page 547)

1. $-1<x<3$
2. $-4 \leq x \leq-2$
3. $-1<x<0$
4. $x \leq \frac{1}{2}, x \geq \frac{7}{2}$
5. $-\frac{13}{2}<x<-\frac{1}{2}$
6. $x<-1, x>5$ 13. $x<-3,-2<x<3, x>4$
7. $x<0, x>4$
8. $-2<x<1-\sqrt{7}, 1+\sqrt{7}<x<4$
9. $-3-\sqrt{10}<x<-5,-1<x<-3+\sqrt{10}$
10. $|d-2.5550| \leq 0.0001$

Section 17.4 (page 552)

1.

3.

5.

7.

[^0]: Łечı SMOIIO 7 II
 θ แะㄱㄱ $=\frac{\theta 100}{\mathrm{I}}$
 d．$\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\cot \theta}=\frac{1}{\cot \theta}$
 by identity（16．5），and
 $\left(\frac{x \text { u！̣ }}{\mathrm{I}} \kappa \mathrm{q} x\right.$ วsว ภu！כ尺 d də．$) \quad x$ u！̣ $=\frac{\mathrm{I}}{x_{\tau} \mathrm{U}!\mathrm{S}} \bullet \frac{x \mathrm{u}!\mathrm{S}}{\mathrm{I}}=x_{\tau} \mathrm{U}!\mathrm{S} x$ วsว
 pue＇（t＊9I）Kı！！uәр！Kq x_{z} U！x วงร $=\left(x_{z} \mathrm{SOO}-\mathrm{I}\right) x$ วงว •ว by identities（16．3）and（16．1）． g soo $=\frac{1}{d \text { u！S }} \cdot \frac{d \text { u！s }}{\partial \operatorname{sos}}=\frac{d \text { os } \partial}{d 100} \cdot q$

[^1]: 16．2 PROVING IDENTITIES

 合

