Random Variables:

- $0 \leq P(X=x) \leq 1$
- $\sum P(X=x)=1$
- $E(X)=\sum x P(X=x)$

Question 1:

Given the following discrete distribution:

x	-1	0	1	2	3	4
$P(X=x)$	0.15	0.30	M	0.15	0.10	0.10

1. The value of M is equal to

$$
M=1-(0.15+0.30+0.15+0.10+0.10)=1-0.80=0.20
$$

(A) $\underline{0.20}$	(B) 0.0	(C) 0.10	(D) 0.25

2. $P(X \leq 0.5)=$

$$
0.15+0.30=0.45
$$

| (A) 0.0 | (B) 0.50 | (C) $_0.45$ | (D) 1.0 |
| :--- | :--- | :--- | :--- | :--- |

3. $P(X=0)=$

$(A) 0$	$(B) \underline{0.30}$	(C)	0.80	(D)	1.0

4. The expected (mean) value $E[X]$ is equal to

$$
E(X)=(-1 \times 0.15)+(0 \times 0.30)+(1 \times 0.20)+(2 \times 0.15)+(3 \times 0.10)+(4 \times 0.10)=1.05
$$

| (A) 0.0 | (B) 1.35 | (C) 1.05 | (D) 1.20 |
| :--- | :--- | :--- | :--- | :--- |

Question 2:

The average length of stay in a hospital is useful for planning purposes. Suppose that the following is the probability distribution of the length of stay (X) in a hospital after a minor operation:

Length of stay (days)	3	4	5	6
Probability	0.4	0.2	0.1	k

(1)The value of k is

$$
k=1-(0.4+0.2+0.1)=1-0.7=0.3
$$

A	0.0	B	1	C	0.3	D	6

(2) $P(X<0)=$

A	0.0	B	0.5	C	1	D	0.75

(3) $P(0<X \leq 5)=$

$$
0.4+0.2+0.1=0.7
$$

A	0.32	B	0.5	C	0.7	D	0.1

(4) $P(X \leq 5.5)=$

$$
0.4+0.2+0.1=0.7
$$

A	0.7	B	0.6	C	0	D	0.1

(5)The probability that the patient will stay at most 4 days in a hospital after a minor operation is equal to

$$
0.4+0.2=0.6
$$

A	0.4	B	0.1	C	0.2	D	$\underline{0.6}$

(6) The average length of stay in a hospital is

$$
E(X)=(3 \times 0.4)+(4 \times 0.2)+(5 \times 0.1)+(6 \times 0.3)=4.3
$$

A	2.3	B	0.7	C	1	D	$\underline{4.3}$

Binomial Distribution:

$$
\begin{gathered}
P(X=x)=\binom{n}{x} p^{x} q^{n-x} ; x=0,1 \ldots, n \\
* E(X)=n p \quad * \operatorname{Var}(X)=n p q \\
q=1-p
\end{gathered}
$$

Question 1:

Suppose that 25% of the people in a certain large population have high blood pressure. A Sample of 7 people is selected at random from this population. Let X be the number of people in the sample who have high blood pressure, follows a binomial distribution then

1) The values of the parameters of the distribution are:

$$
p=0.25 \quad q=0.75 \quad n=7
$$

(A) 7, 0.75	(B) $\overline{7,0.25}$	(C) $0.25,0.75$	(D) 25,7

2) The probability that we find exactly one person with high blood pressure, is:

$$
P(X=1)=\binom{7}{1}(0.25)^{1}(0.75)^{6}=0.31146
$$

(A) $\underline{0.31146}$	(B) 0.143	(C) 0.125	(D) 0.25

3) The probability that there will be at most one person with high blood pressure, is:

$$
P(X \leq 1)=\binom{7}{0}(0.25)^{0}(0.75)^{7}+\binom{7}{1}(0.25)^{1}(0.75)^{6}=0.4449
$$

(A) 0.311	(B) 0.25	(C) $\underline{0.4449}$	(D) 0.5551

4) The probability that we find more than one person with high blood pressure, is:

$$
P(X>1)=1-P(X \leq 1)=1-0.4449=0.5551
$$

(A) 0.689	(B) 0.857	(C) 0.4449	(D) 0.5551

Question 2:

In some population it was found that the percentage of adults who have hypertension is 24 percent. Suppose we select a simple random sample of five adults from this population. Then the probability that the number of people who have hypertension in this sample, will be:

$$
p=0.24 \quad q=0.76 \quad n=5
$$

1. Zero:

$$
P(X=0)=\binom{5}{0}(0.24)^{0}(0.76)^{5}=0.2536
$$

2. Exactly one

$$
P(X=1)=\binom{5}{1}(0.24)^{1}(0.76)^{4}=0.4003
$$

3. Between one and three, inclusive

$$
\begin{gathered}
P(1 \leq X \leq 3)=\binom{5}{1}(0.24)^{1}(0.76)^{4}+\binom{5}{2}(0.24)^{2}(0.76)^{3}+\binom{5}{3}(0.24)^{3}(0.76)^{2} \\
=0.7330
\end{gathered}
$$

4. Two or fewer (at most two):

$$
\begin{aligned}
P(X \leq 2)=\binom{5}{0}(0.24)^{0}(0.76)^{5} & +\binom{5}{1}(0.24)^{1}(0.76)^{4}+\binom{5}{2}(0.24)^{2}(0.76)^{3} \\
& =0.9067
\end{aligned}
$$

5. Five:

$$
P(X=5)=\binom{5}{5}(0.24)^{5}(0.76)^{0}=0.0008
$$

6. The mean of the number of people who have hypertension is equal to:

$$
E(X)=n p=5 \times 0.24=1.2
$$

7. The variance of the number of people who have hypertension is equal to:

$$
\operatorname{Var}(X)=n p q=5 \times 0.24 \times 0.76=0.912
$$

Poisson distribution:

$$
\begin{gathered}
P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} ; x=0,1,2, \ldots \\
E(X)=\operatorname{Var}(X)=\lambda
\end{gathered}
$$

Question 1:

The number of serious cases coming to a hospital during a night follows a Poisson distribution with an average of 10 persons per night, then:

1) The probability that 12 serious cases coming in the next night, is:

| $\lambda_{\text {one night }}=10$

 $P(X=12)=\frac{e^{-10} 10^{12}}{12!}=0.09478$ |
| :---: | :---: | :---: |
| (A) $\underline{0.09478}$ (B) 0.3456 (C) 12 (D) 0.5 |$>$.

2) The average number of serious cases in a two nights period is:

$$
\lambda_{\text {two nights }}=20
$$

$(A) 10.5$	(B) $\underline{20}$	(C) 0.2065	(D) 0.0867

3) The probability that 20 serious cases coming in next two nights is:

$$
\begin{gathered}
\lambda_{\text {two nights }}=20 \\
P(X=20)=\frac{e^{-20} 20^{20}}{20!}=0.0888
\end{gathered}
$$

(A) 10.5	(B) 0.7694	(C) 0.20	(D) 0.0888

Question 2:

Given the mean number of serious accidents per year in a large factory is five. If the number of accidents follows a Poisson distribution, then the probability that in the next year there will be:

1. Exactly seven accidents:

$$
\begin{gathered}
\lambda_{\text {one year }}=5 \\
P(X=7)=\frac{e^{-5} 5^{7}}{7!}=0.1044
\end{gathered}
$$

2. No accidents

$$
P(X=0)=\frac{e^{-5} 5^{0}}{0!}=0.0067
$$

3. one or more accidents

$$
\begin{aligned}
P(X \geq 1) & =1-P(X<1) \\
& =1-P(X=0) \\
& =1-0.0067=0.9933
\end{aligned}
$$

4. The expected number (mean) of serious accidents in the next two years is equal to

$$
\lambda_{\text {two years }}=10
$$

5. The probability that in the next two years there will be three accidents

$$
\begin{gathered}
\lambda_{\text {two years }}=10 \\
P(X=3)=\frac{e^{-10} 10^{3}}{3!}=0.0076
\end{gathered}
$$

The Normal Distribution:

Question 1:

Given the standard normal distribution, $Z \sim N(0,1)$, find:

1. The area under the curve between and $z=0$ and $z=1.43$

(A) $\underline{0.4236}$	(B) 0.2330	(C) 0.5396	(D) 0.7864

2. $P(Z \geq 2.71)=$
(A) 0.7088
(B) $\underline{0.0034}$
(C) 0.3645
(D) 0.1875
3. $P(-1.96<Z<1.96)=$

(A) 0.0746	(B) 0.9950	(C) 0.9500	(D) 0.9750

4. If $P(Z<a)=0.9929$, then the value of $a=$

$(A)-2.54$	(B) 0	(C) 1.64	(D) 2.45

5. If $P(-k<Z<k)=0.8132$, then the value of $k=$

$(A) 2.54$	$(B) 2.31$	$(C) \underline{1.32}$	(D) 0.5

6. $P(Z=1.33)=$
(A) 0.1220
(B) 0.1660
(C) 0.1550
(D) $\underline{0.0}$

Question 2:

Given the standard normal distribution, then:

1) $P(-1.1 \leq z \leq 1.1)$ is:

(A) 0.3254	(B) 0.8691	(C) $\underline{0.7286}$	(D) 0.1475

2) $P(z>-0.15)$ is:

(A) 0.5596	(B) 0.9394	(C) 0.0606	(D) 0.4404

3) The z value that has an area of 0.883 to its right, is:

$(A)-0.811$	(B) 1.19	(C) 0.811	(D) -1.19

Question 3:

A nurse supervisor has found that staff nurses, on the average, complete a certain task in 10 minutes. If the times required to complete the task are approximately normally distributed with a standard deviation of 3 minutes, then:

1) The probability that a nurse will complete the task in less than 8 minutes is:

(A) 0.3221	(B) $\underline{0.2514}$	(C) 0.5288	(D) 0.1565

2) The probability that a nurse will complete the task in more than 4 minutes is:

(A) 0.5461	(B) 0.7558	(C) $\underline{0.9772}$	(D) 0.8712

3) If eight nurses were assigned the task, the expected number of them who will complete it within 8 minutes is approximately equal to:

$(A) 4$	$(B) 1$	$(C) 5$	$(D) \underline{2}$

4) If a certain nurse completes the task within k minutes with probability 0.6293; then k equals approximately:

(A) 15	(B) 11	(C) 7	(D) 21

Question 4:

Given the normally distributed random variable X with mean 491 and standard deviation 119,

1) If $P(X<k)=0.9082$, the value of k is equal to

(A) 649.27	(B) 390.58	(C) 128.90	(D) 132.65

2) If $P(292<X<M)=o .8607$, the value of M is equal to

(A) 766	(B) $\underline{649}$	(C) 108	(D) 136

Question 5:

The IQ (Intelligent Quotient) of individuals admitted to a state school for the mentally retarded are approximately normally distributed with a mean of 60 and a standard deviation of 10 , then:

1) The probability that an individual picked at random will have an IQ greater than 75 is:

(A) 0.9332	(B) 0.8691	(C) 0.7286	(D) $\underline{0.0668}$

2) The probability that an individual picked at random will have an IQ between 55 and 75 is:

(A) 0.3085	(B) 0.6915	(C) $\underline{0.6247}$	(D) 0.9332

3) If the probability that an individual picked at random will have an $I Q$ less than k is 0.1587 . Then the value of k

$(A) \underline{50}$	(B) 45	(C) 51	(D) 40

Question 6:

In a simple random sample of size 36 drawn from a population with a mean of 100 and a standard deviation of 36, then

1) the probability that the sample mean will be less than 91is:

(A) 0.1549	(B) 0.0753	(C) 0.0668	(D) 0.0875

2) the probability that the sample mean will be more than 98 is:

(A) 0.5468	(B) 0.6293	(C) 0.8527	(D) 0.7169

3) the probability that the sample mean will be between 95 and 105 is:

$(A) 0.5934$	(B) 0.6174	(C) 0.8432	(D) 0.7647

