Random Variables:

•
$$0 \le P(X = x) \le 1$$

•
$$\sum P(X = x) = 1$$

•
$$E(X) = \sum x P(X = x)$$

Question 1:

Given the following discrete distribution:

X	-1	0			3			
P(X=x)	0.15	0.30	M	0.15	0.10	0.10		

1. The value of M is equal to

$$M = 1 - (0.15 + 0.30 + 0.15 + 0.10 + 0.10) = 1 - 0.80 = 0.20$$

(A) <u>0.20</u> (B) 0.0	(C) 0.10	(D) 0.25	
-------------------------	----------	----------	--

2. $P(X \le 0.5) =$

$$0.15 + 0.30 = 0.45$$

(A) 0.0	(B) 0.50	(C) <u>0.45</u>	(D) 1.0

3. P(X=0) =

$(A) 0 \qquad (B) \underline{0.30}$	(C)	0.80	(D)	1.0
-------------------------------------	-----	------	-----	-----

4. The expected (mean) value E[X] is equal to

$$E(X) = (-1 \times 0.15) + (0 \times 0.30) + (1 \times 0.20) + (2 \times 0.15) + (3 \times 0.10) + (4 \times 0.10) = 1.05$$

(A) 0.0	(B) 1.35	(C)	1.05	(D) 1.20

The average length of stay in a hospital is useful for planning purposes. Suppose that the following is the probability distribution of the length of stay (X) in a hospital after a minor operation:

Length of stay (days)	3	4	5	6
Probability	0.4	0.2	0.1	k

(1) The value of k is

$$k = 1 - (0.4 + 0.2 + 0.1) = 1 - 0.7 = 0.3$$

A	0.0	В	1	C	0.3	D	6
---	-----	---	---	---	-----	---	---

(2) P(X < 0) =

$\begin{vmatrix} A & 0.0 \end{vmatrix} \qquad \begin{vmatrix} B & 0.5 \end{vmatrix} \qquad \begin{vmatrix} C & I \end{vmatrix} \qquad \begin{vmatrix} D & 0.75 \end{vmatrix}$	$A \mid 0.0$	B 0.5	C 1	D 0.75
---	--------------	-------	-----	--------

 $(3) P(0 < X \le 5) =$

$$0.4 + 0.2 + 0.1 = 0.7$$

A	0.32	В	0.5	\boldsymbol{C}	0.7	D	0.1

 $(4)P(X \le 5.5) =$

$$0.4 + 0.2 + 0.1 = 0.7$$

A	0.7	В	0.6	C	0	D	0.1
---	-----	---	-----	---	---	---	-----

(5) The probability that the patient will stay at most 4 days in a hospital after a minor operation is equal to

$$0.4 + 0.2 = 0.6$$

\boldsymbol{A}	0.4	В	0.1	C	0.2	D	<u>0.6</u>

(6) The average length of stay in a hospital is

$$E(X) = (3 \times 0.4) + (4 \times 0.2) + (5 \times 0.1) + (6 \times 0.3) = 4.3$$

\boldsymbol{A}	2.3	В	0.7	C	1	D	<u>4.3</u>

Binomial Distribution:

$$P(X = x) = \binom{n}{x} p^x q^{n-x} ; \quad x = 0, 1, ..., n$$
$$* E(X) = np \quad * Var(X) = npq$$
$$q = 1 - p$$

Question 1:

Suppose that 25% of the people in a certain large population have high blood pressure. A Sample of 7 people is selected at random from this population. Let X be the number of people in the sample who have high blood pressure, follows a binomial distribution then

1) The values of the parameters of the distribution are:

$$p = 0.25 \quad q = 0.75 \quad n = 7$$
(A) 7, 0.75 (B) 7, 0.25 (C) 0.25, 0.75 (D) 25, 7

2) The probability that we find exactly one person with high blood pressure, is:

$$P(X = 1) = {7 \choose 1} (0.25)^{1} (0.75)^{6} = 0.31146$$

$$(A) 0.31146 \quad (B) 0.143 \quad (C) 0.125 \quad (D) 0.25$$

3) The probability that there will be at most one person with high blood pressure, is:

$$P(X \le 1) = {7 \choose 0} (0.25)^{0} (0.75)^{7} + {7 \choose 1} (0.25)^{1} (0.75)^{6} = 0.4449$$

$$(A) 0.311 \qquad (B) 0.25 \qquad (C) 0.4449 \qquad (D) 0.5551$$

4) The probability that we find more than one person with high blood pressure, is:

P(X > 1) =	$= 1 - P(X \le 1)$) = 1 - 0.4449	$\theta = 0.5551$
(A) 0.689	(B) 0.857	(C) 0.4449	(D) <u>0.5551</u>

In some population it was found that the percentage of adults who have hypertension is 24 percent. Suppose we select a simple random sample of <u>five</u> adults from this population. Then the probability that the number of people who have hypertension in this sample, will be:

$$p = 0.24$$
 $q = 0.76$ $n = 5$

1. Zero:

$$P(X=0) = {5 \choose 0} (0.24)^0 (0.76)^5 = 0.2536$$

2. Exactly one

$$P(X = 1) = {5 \choose 1} (0.24)^{1} (0.76)^{4} = 0.4003$$

3. Between one and three, inclusive

$$P(1 \le X \le 3) = {5 \choose 1} (0.24)^{1} (0.76)^{4} + {5 \choose 2} (0.24)^{2} (0.76)^{3} + {5 \choose 3} (0.24)^{3} (0.76)^{2}$$

= 0.7330

4. Two or fewer (at most two):

$$P(X \le 2) = {5 \choose 0} (0.24)^0 (0.76)^5 + {5 \choose 1} (0.24)^1 (0.76)^4 + {5 \choose 2} (0.24)^2 (0.76)^3$$

= 0.9067

5. Five:

$$P(X = 5) = {5 \choose 5} (0.24)^5 (0.76)^0 = 0.0008$$

6. The mean of the number of people who have hypertension is equal to:

$$E(X) = np = 5 \times 0.24 = 1.2$$

7. The variance of the number of people who have hypertension is equal to:

$$Var(X) = npq = 5 \times 0.24 \times 0.76 = 0.912$$

Poisson distribution:

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!} ; x = 0,1,2,...$$

$$E(X) = Var(X) = \lambda$$

Question 1:

The number of serious cases coming to a hospital during a night follows a Poisson distribution with an average of 10 persons per night, then:

1) The probability that 12 serious cases coming in the next night, is:

$$\lambda_{one \ night} = 10$$

$$P(X = 12) = \frac{e^{-10} \ 10^{12}}{12!} = 0.09478$$

2) The average number of serious cases in a two nights period is:

$$\lambda_{two\ nights} = 20$$

3) The probability that 20 serious cases coming in next two nights is:

$$\lambda_{two\ nights} = 20$$

$$P(X = 20) = \frac{e^{-20}\ 20^{20}}{20!} = 0.0888$$

Given the mean number of serious accidents per year in a large factory is five. If the number of accidents follows a Poisson distribution, then the probability that in the next year there will be:

1. Exactly seven accidents:

$$\lambda_{one\ year} = 5$$

$$P(X = 7) = \frac{e^{-5} 5^7}{7!} = 0.1044$$

2. No accidents

$$P(X=0) = \frac{e^{-5} 5^0}{0!} = 0.0067$$

3. one or more accidents

$$P(X \ge 1) = 1 - P(X < 1)$$
$$= 1 - P(X = 0)$$
$$= 1 - 0.0067 = 0.9933$$

4. The expected number (mean) of serious accidents in the next two years is equal to

$$\lambda_{two\ vears} = 10$$

5. The probability that in the next two years there will be three accidents

$$\lambda_{two\ years} = 10$$

$$P(X = 3) = \frac{e^{-10} \ 10^3}{3!} = 0.0076$$

The Normal Distribution:

Question 1:

Given the standard normal distribution, $Z\sim N(0,1)$, find:

1. The area under the curve between and z=0 and z=1.43

(A) <u>0.4236</u>	(B) 0.2330	(C) 0.5396	(D) 0.7864
-------------------	------------	------------	------------

2. $P(Z \ge 2.71) =$

(A) 0.7088	(B) <u>0.0034</u>	(C) 0.3645	(D) 0.1875
------------	-------------------	------------	------------

3. P(-1.96 < Z < 1.96) =

(A) 0.0746	(B) 0.9950	(C) <u>0.9500</u>	(D) 0.9750

4. If P(Z < a) = 0.9929, then the value of a =

(A) -2.54	(B) O	(C) 1.64	(D) <u>2.45</u>

5. If P(-k < Z < k) = 0.8132, then the value of k = 0.8132

(A) 2.54 (B) 2.31 (C) <u>1.3</u>	(D) 0.5
----------------------------------	---------

6. P(Z=1.33)=

(A) 0.1220	(B) 0.1660	(C) 0.1550	$(D) \underline{0.0}$

Given the standard normal distribution, then:

1) $P(-1.1 \le z \le 1.1)$ is:

(A) 0.3254 (B) 0.8691	(C) <u>0.7286</u>	(D) 0.1475
-----------------------	-------------------	------------

2) P(z > -0.15) is:

	(A) <u>0.5596</u>	(B) 0.9394	(C) 0.0606	(D) 0.4404
--	-------------------	------------	------------	------------

3) The z value that has an area of 0.883 to its right, is:

(A) -0.811	(B) 1.19	(C) 0.811	(D) -1.19

A nurse supervisor has found that staff nurses, on the average, complete a certain task in 10 minutes. If the times required to complete the task are approximately normally distributed with a standard deviation of 3 minutes, then:

1) The probability that a nurse will complete the task in less than 8 minutes is:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(A) 0.3221	(B) <u>0.2514</u>	(C) 0.5288	(D) 0.1565
---	------------	-------------------	------------	------------

2) The probability that a nurse will complete the task in more than 4 minutes is:

(A) 0.5461	(B) 0.7558	(C) <u>0.9772</u>	(D) 0.8712

3) If eight nurses were assigned the task, the expected number of them who will complete it within 8 minutes is approximately equal to:

(A) 4	(B) 1	(C) 5	(D) <u>2</u>

4) If a certain nurse completes the task within k minutes with probability 0.6293; then k equals approximately:

(A) 15	(B) 11	(C) 7	(D) 21

Given the normally distributed random variable X with mean 491 and standard deviation 119,

1) If P(X < k) = 0.9082, the value of k is equal to

(A) 649.27 (B) 390.58 (C) 128.90 (D) 132.65				
	(A) 649.27	(B) 390.58	(C) 128.90	(D) 132.65

2) If P(292 < X < M) = 0.8607, the value of M is equal to

(A) 766	(B) <u>649</u>	(C) 108	(D) 136

Question 5:

The IQ (Intelligent Quotient) of individuals admitted to a state school for the mentally retarded are approximately normally distributed with a mean of 60 and a standard deviation of 10, then:

1) The probability that an individual picked at random will have an IQ greater than 75 is:

(A) 0.9332 (B) 0.869	01 (C) 0.7286	(D) <u>0.0668</u>
----------------------	---------------	-------------------

2) The probability that an individual picked at random will have an IQ between 55 and 75 is:

(A) 0.3085	(B) 0.6915	(C) <u>0.6247</u>	(D) 0.9332

3) If the probability that an individual picked at random will have an IQ less than k is 0.1587. Then the value of k

(A) <u>50</u> (B) 45	(C) 51	(D) 40
----------------------	--------	--------

In a simple random sample of size 36 drawn from a population with a mean of 100 and a standard deviation of 36, then

1) the probability that the sample mean will be less than 91is:

(A) 0.1549 (B) 0.0753 (C) 0.0668 (D) 0.087	5
--	---

2) the probability that the sample mean will be more than 98 is:

(A) 0.5468	(B) 0.6293	(C) 0.8527	(D) 0.7169
(11) 0.0 100	(2) 0.02)	(0) 0.0027	(2) 0., 10)

3) the probability that the sample mean will be between 95 and 105 is:

(A) 0.5934	(B) 0.6174	(C) 0.8432	(D) 0.7647
1			