

Course Specifications

Institution:College of ScienceAcademic Department :Computer ScienceProgramme :Computer ScienceCourse :-Programming 1Course Coordinator :Noureldin LabanProgramme Coordinator :Dr Yossry AzzamCourse Specification Approved Date :2

College of Science at Az Zulfi Computer Science and Information Computer Science and Information –Programming 1 Noureldin Laban Dr Yossry Azzam oved Date : 22 / 12 / 1435 H

This form compatible with NGAAA 2013 Edition

	E.	1
-	جامعة المجمعة	-
	Harrison and the second states	÷.,

A. Course Identification and General Information

1 - Course title : Programming 1		Course Code:	CSI 211
2. Credit hours : 3 (2 Lectu	re + 2	Lab)	
3 - Program(s) in which the court	rse is	offered: CSI	
4 – Course Language : English			
5 - Name of faculty member res	ponsi	ible for the course:	Noureldin Laban
6 - Level/year at which this cour	rse is	offered : 3 rd level	
7 - Pre-requisites for this course	(if a	ny):	
Computer Skills (PCOM 113)			
8 - Co-requisites for this course	(if ar	ny):	
• N/A			
9 - Location if not on main camp	pus :		
	٠	N/A	
10 - Mode of Instruction (mark	all th	at apply)	
A - Traditional classroom		What percentage?	80 %
B - Blended (traditional and online)		What percentage?	10 %
D - e-learning V What percentage? 10 %			
E - Correspondence What percentage?			
F - Other What percentage?%			
Comments :			

B Objectives

What is the main purpose for this course?

This course introduces the student to object-oriented programming through a study of the concepts of program specification and design, algorithm development, and coding and testing using a modern software development environment. Students learn how to write programs in an object-oriented high level programming language. This course introduces the students to basic programming concepts and constructs. Topics include: control structures, functions, recursion, arrays, pointers and strings of the C++ programming language. The course introduces students to structured, top-down programming design and implementation. This course should serve as a foundation for programming to the students in the program.

The purpose of this course is to:

- 1. Provide students with the ability to develop C++ using pseudo code and flow chart and structured programming design (design, write, debug, comment and modify a C++ program).
- 2. Acquaint students the ability to understand the concept of data types, variables and assignments.
- 3. Introduce students to the object oriented environment.

4. Enable students to be efficient in their work.

Briefly describe any plans for developing and improving the course that are being implemented :

- 1. Using group discussion
- 2. Updating the materials of the course to cover the new topics of the field.
- 3. Motivate students to solve practical problems using C++ programming language.

C. Course Description

1. Topics to be Covered

List of Topics	No. of Weeks	Contact Hours
1. Introduction to computers and C++: Introduction, Computers and the Internet in Industry and Research, Hardware and Software, Moore's Law, Computer Organization, Data Hierarchy, Machine Languages and Typical C++ Development Environment.	2	8
 Introduction to C++ Programming: First Program in C++ , Input / Output and Operators, Memory Concepts ,Arithmetic, Decision Making: Equality and Relational Operators 	2	8
3. Introduction to Classes, Objects and Strings: Defining a Class with a Member Function, Defining a Member Function with a Parameter, Data Members, set Member Functions and get Member Functions, Initializing Objects with Constructors.	2	8
4. Control Statements (Part 1): If Selection Statement, ifelse Double-Selection Statement, while Repetition Statement, Counter-Controlled Repetition, Assignment Operators, Increment and Decrement Operators.	3	12
5. Control Statements (Part 2): For Repetition Statement, dowhile Repetition Statement, switch Multiple-Selection Statement, break and continue Statements, Logical Operators.	2	8
6. Functions and an Introduction to Recursion: Function Definitions with Multiple Parameters, Function Prototypes and Argument Coercion, Scope Rules, Function Call Stack, Inline Functions, References and Reference Parameters, Default Arguments, Function Overloading, Function Templates, Recursion.	2	8
7. Array and vector: Arrays, Declaring arrays, Examples Using arrays, declaring an array and using a Loop to initialize the array's Elements, Initializing an array in a Declaration with an Initializer List.	1	4
8. Pointers: Pointer Variable Declarations and Initialization, Pointer Operators, Pass-by-Reference with Pointers.	1	4

2. Course components (total contact hours and credits per semester):

	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	30	30	-	-	_	60
Credit	30	15	-	-	-	45

3. Additional private study/learning hours expected for students per week.

5 Hours

The total workload of the student in this course is then: $60 + 5 \ge 135$ work hours.

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
1.0	Knowledge		
1.1	Construct error free C++ programs.	Lectures.	Written
1.2	Divide a problem into its logical components.	Lab	Exam
1.3	Design and code small to medium sized problems from the start using $C/C++$ constructs, such as input/output statements, if-then-else statements, while and for loops, functions.	demonstrations. Case studies. Individual presentations.	Homework assignments Lab assignments Class Activities Quizzes
2.0	Cognitive Skills		
2.1	Apply knowledge of computing and mathematics appropriate to the discipline.	Lectures. Lab	Written Exam
2.2	Design, implement and evaluate a computer-based system, process, component, or program to meet desired needs.	demonstrations. Case studies. Individual	Homework assignments Lab

جامعة المجمعة

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
		presentations. Brainstorming.	assignments Class Activities Quizzes
3.0	Interpersonal Skills & Responsibility		
3.1	Analyze a problem, and identify and define the computing requirements appropriate to its solution.	Small group discussions. Whole group	Written Exam Homework
3.2	Understand professional, ethical, legal, security, and social issues and responsibilities.	discussions. Brainstorming. Presentations.	assignments Lab assignments Class Activities Quizzes
4.0	Communication, Information Technology, Nume	erical	
4.1	Work cooperatively in a small group environment.	Small group discussions. Whole group	Written Exam Homework
4.2	Save time and space in each task.	discussions. Brainstorming. Presentations.	assignments Lab assignments Class Activities Quizzes
5.0	Psychomotor		
5.1	N/A		

5. Schedule of Assessment Tasks for Students During the Semester:

	Assessment task	Week Due	Proportion of Total Assessment
1	First written mid-term exam	6	15%

2	Second written mid-term exam	12	15%
3	Presentation, class activities, and group discussion	Every week	10%
4	Homework assignments	After Every chapter	10%
5	Implementation of presented programs	Every two weeks	10%
6	Final written exam	16	40%

D. Student Academic Counseling and Support

Office hours: Sun: 8-12, Mon. 8-10, Wed. 8-10 Office call: Sun. 12-1 and Wed 12-1

Email: n.laban@mu.edu.sa

E. Learning Resources

1. List Required Textbooks :

• Deitel and Deitel, "C++: How To Program ", 2010, Prentice Hall, ISBN 978-007351725.

<u>جامعة المجمعة</u>

2. List Essential References Materials :

• S. Malik, "C++ Programming: From Problem Analysis to Program Design ", Course Technology, ISBN 061916042X.

3. List Recommended Textbooks and Reference Material :

• Journal of Science of Computer Programming.

4. List Electronic Materials :

- <u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-</u>096-introduction-to-c-january-iap-2011/
- <u>http://www.cplusplus.com/reference/</u>

5. Other learning material :

• Video and presentation are available with me

F. Facilities Required

1. Accommodation

• Classroom and Lab, as those that are available at college of science at AzZulfi.

2. Computing resources

Smart Board

3. Other resources

• N/A

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching:

• Questionnaires (course evaluation) achieved by the students and it is electronically organized by the university.

دام « فالمدمعة

• Student-faculty management meetings.

2 Other Strategies for Evaluation of Teaching by the Program/Department Instructor :

- Discussion within the staff members teaching the course
- Departmental internal review of the course.

3 Processes for Improvement of Teaching :

- Periodical departmental revision of methods of teaching.
- Monitoring of teaching activates by senior faculty members.
- Training course.

4. Processes for Verifying Standards of Student Achievement

- Reviewing the final exam questions and a sample of the answers of the students by others.
- Visiting the other institutions that introduce the same course one time per semester.
- Watching the videos of other courses by international institutions

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement :

- Course evaluation
- Exam evaluation
- Improvement plan

Course Specification Approved Department Official Meeting No (6) Date 22 / 12 / 1435 *H*

Course's Coordinator

Department Head

Name :	Noureldin Laban	Name :	.Dr. Yossry Azzam
Signature :		Signature :	
Date :	17/ 12 / 1435 <i>H</i>	Date :	22 / 12 / 1435 H

