Chapter 8

Periodic Relationship Among the Elements

Dr. Dalal Alezi
dalezi@kau.edu.sa

11/11/2018

Which of the following make an isoelectronic pair:

$$
\mathrm{Cl}^{-}, \mathrm{O}^{2-}, \mathrm{F}^{2} \mathrm{Ca}^{2+}, \mathrm{Fe}^{3+} \text { ? }
$$

Isoelectronic are species have the same number of electrons

Species	Number of electrons
Cl^{-}	$17+1=18 \mathrm{e}$
O^{2-}	$8+2=10 \mathrm{e}$
F	9 e
Ca^{2+}	$20-2=18 \mathrm{e}$
Fe^{3+}	23 e

Cl^{-}and Ca^{2+} is isoelectronic pair

Which one of the following is NOT isoelectronic with the others:

$$
\mathrm{Br}^{-}, \mathrm{Rb}^{+}, \mathrm{Se}^{2-}, \mathrm{Sr}^{2+}, \mathrm{Te}^{2-} ?
$$

Species	Number of electrons
Br^{-}	$35+1=36 \mathrm{e}$
Rb^{+}	$37-1=36 \mathrm{e}$
Se^{2-}	$34+2=36 \mathrm{e}$
Sr^{2+}	$38-2=36 \mathrm{e}$
Te^{2-}	$52+2=54 \mathrm{e}$

Which of the atoms listed below has the smallest radius?
A) Al
(B) P C) As
D) Te
E) Na

$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
$\begin{aligned} & \text { I } \\ & \mathbf{H} \end{aligned}$	$\stackrel{2}{2 \mathrm{~A}}$											$\begin{array}{r} 13 \\ 3 \mathrm{~A} \end{array}$	$\begin{aligned} & 14 \\ & 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15 \\ & 5 A \end{aligned}$	$\begin{aligned} & 16 \\ & 6 A \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \end{aligned}$	$\stackrel{2}{\mathrm{He}}$
${ }_{\mathbf{L i}}^{\mathbf{L i}}$	$\stackrel{4}{\mathrm{Be}}$											[${ }_{6}^{6}$	$\stackrel{7}{\mathrm{~N}}$	8 0	F	10 Ne
$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{gathered} 12 \\ \mathbf{M g} \end{gathered}$	$\begin{gathered} 3 \\ 3 \mathrm{~B} \end{gathered}$	$\begin{gathered} 4 \\ 4 B \end{gathered}$	$\begin{gathered} 5 \\ 5 B \end{gathered}$	$\begin{gathered} 6 \\ 6 B \end{gathered}$	$\begin{gathered} 7 \\ 7 B \end{gathered}$		$\begin{gathered} 9 \\ 8 \mathrm{~B} \end{gathered}$		$\begin{aligned} & 11 \\ & 1 B \end{aligned}$	$\begin{aligned} & 12 \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 13 \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{aligned} & 15 \\ & \mathbf{P} \end{aligned}$	$\begin{gathered} 16 \\ \mathbf{S} \end{gathered}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & 18 \\ & \mathbf{A r} \end{aligned}$
$\begin{aligned} & 19 \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$	$\begin{aligned} & 22 \\ & \mathbf{T i} \end{aligned}$	$\stackrel{23}{\mathbf{V}}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{gathered} 25 \\ \mathbf{M n} \end{gathered}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{Co} \end{aligned}$	$\begin{array}{r} 28 \\ \mathbf{N i} \end{array}$	$\stackrel{29}{\mathrm{Cu}}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \end{aligned}$	$\begin{gathered} 31 \\ \mathbf{G a} \end{gathered}$	$\begin{gathered} 32 \\ \mathrm{Ge} \end{gathered}$	$\begin{array}{r} 33 \\ \text { As } \end{array}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \end{aligned}$
$\begin{aligned} & 37 \\ & \mathbf{R b} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{aligned} & 39 \\ & \mathbf{Y} \end{aligned}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \end{aligned}$	$\begin{gathered} 41 \\ \mathbf{N b} \end{gathered}$	$\begin{aligned} & 42 \\ & \text { Mo } \end{aligned}$	$\begin{aligned} & 43 \\ & \mathbf{T c} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathbf{R u} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathbf{R h} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathbf{P d} \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & 51 \\ & \mathbf{S b} \end{aligned}$	52 Te	53 I	$\begin{aligned} & 54 \\ & \mathbf{X e} \end{aligned}$

Which of the atoms listed below has the largest (greatest) radius?
A) Cl
B) 1
C) P
(D) Sb
E) Se

$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
$\begin{aligned} & \text { I } \\ & \mathbf{H} \end{aligned}$	$\stackrel{2}{2 A}$											$\begin{array}{r} 13 \\ 3 \mathrm{~A} \end{array}$	$\begin{aligned} & 14 \\ & 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 16 \\ 6 \mathrm{~A} \end{array}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \end{aligned}$	$\stackrel{2}{\mathrm{He}}$
$\stackrel{3}{\mathbf{L i}}$	$\stackrel{4}{\mathrm{Be}}$											[$\stackrel{6}{\text { C }}$	$\stackrel{7}{\mathrm{~N}}$	$\stackrel{8}{0}$	F	$\stackrel{10}{\mathrm{Ne}}$
$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{gathered} 12 \\ \mathbf{M g} \end{gathered}$	$\begin{gathered} 3 \\ 3 \mathrm{~B} \end{gathered}$	$\begin{gathered} 4 \\ 4 B \end{gathered}$	$\begin{gathered} 5 \\ 5 B \end{gathered}$	$\begin{gathered} 6 \\ 6 B \end{gathered}$	$\begin{gathered} 7 \\ 7 B \end{gathered}$		$\begin{gathered} 9 \\ -8 B \end{gathered}$		$\begin{aligned} & 11 \\ & 1 B \end{aligned}$	$\begin{aligned} & 12 \\ & 2 B \end{aligned}$	$\begin{aligned} & 13 \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{aligned} & 15 \\ & \mathbf{P} \end{aligned}$	16 S	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \end{aligned}$
$\begin{aligned} & 19 \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$	22 Ti	$\stackrel{23}{V}$	$\stackrel{24}{\mathrm{Cr}}$	$\begin{gathered} 25 \\ \mathbf{M n} \end{gathered}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{Co} \end{aligned}$	$\begin{aligned} & 28 \\ & \mathbf{N i} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \end{aligned}$	$\begin{gathered} 31 \\ \mathbf{G a} \end{gathered}$	$\begin{gathered} 32 \\ \mathrm{Ge} \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \end{gathered}$	34 Se	35 Br	36 $\mathbf{K r}$
$\begin{aligned} & 37 \\ & \mathbf{R b} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{aligned} & 39 \\ & \mathbf{Y} \end{aligned}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathbf{N b} \end{aligned}$	$\begin{gathered} 42 \\ \text { Mo } \end{gathered}$	$\begin{aligned} & 43 \\ & \mathbf{T c} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathbf{R u} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathbf{R h} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathbf{P d} \end{aligned}$	$\begin{gathered} { }^{47} \\ \mathbf{A g} \end{gathered}$	$\begin{aligned} & 48 \\ & \text { Cd } \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & 51 \\ & \text { Sb } \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ 1 \end{gathered}$	$\begin{aligned} & 54 \\ & \mathbf{X e} \end{aligned}$

Arrange the following ions in order of decreasing ionic radius:

$$
\mathrm{Al}^{3+}, \mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{O}^{2-} .
$$

decreasing radius \rightarrow
A) $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{O}^{2-}>\mathrm{Na}^{+}$
B) $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}>\mathrm{O}^{2-}$
C) $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}>\mathrm{O}^{2-}$
D) $\mathrm{O}^{2-}>\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}$
E) $\mathrm{O}^{2-}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$

Which one in the following pairs has larger atomic/ionic radius:

$\mathrm{Al}^{+3}, \mathrm{~F}^{-}$	F^{-}is larger
$\mathrm{Al}^{+3}, \mathrm{Ga}^{+3}$	Ga^{+3} is larger
$\mathrm{Cu}^{+2}, \mathrm{Cu}^{+3}$	Cu^{+2} is larger
$\mathrm{P}^{-3}, \mathrm{Cl}^{-}$	P^{-3} is larger
$\mathrm{Ar}, \mathrm{P}^{-3}$	P^{-3} is larger

Which of the atoms listed below has the smallest $\mathrm{Z}_{\text {eff }}$?
A) Si
B) Cl
C) Mg
D) Na

Which of the atoms listed below has the largest $Z_{\text {eff }}$
A) Na
B) Be
C) F
D) Si

Which one in the following sets has higher ionization energy:

$$
\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}
$$

Which of the elements listed below has the smallest first ionization energy?
A) C
B) Ge
C) P
D) O
E) Se

Arrange the following elements in order of increasing ionization energy:

> Mg, Al, Si, P, S ,Ar

Same period \rightarrow IE increases from left to the right with exception

$$
1 A<3 A<2 A<4 A<6 A<5 A<7 A<8 A
$$

$$
\mathrm{Al}<\mathrm{Mg}<\mathrm{Si}<\mathrm{S}<\mathrm{P}<\mathrm{Ar}
$$

Ionization energy increases (with exceptions)

Circle the right answer for each:
Largest electron affinity: P S CI

Smallest electron affinity: Kr, Br

Order the following elements from smallest to largest in terms of electron affinity: CI, Si, Ca, P
A. $\mathrm{Si}<\mathrm{Ca}<\mathrm{Cl}<\mathrm{P}$
B. $\mathrm{Ca}<\mathrm{P}<\mathrm{Si}<\mathrm{Cl}$
C. $\mathrm{P}<\mathrm{Ca}<\mathrm{Si}<\mathrm{Cl}$
D. $\mathrm{Ca}<\mathrm{Si}<\mathrm{P}<\mathrm{Cl}$

EA increases from left to the right with exception
$\underline{8 A}<2 A<1 A<3 A<5 A<4 A<6 A<7 A$

Arrange the following elements in order of increasing electronegativity:
Al, Si, P, S ,F
electronegativity increases from left to the right

$$
\mathrm{Al}<\mathbf{S i}<\mathrm{P}<\mathbf{S}<\mathrm{F}
$$

Electronegativity increases

Which one of the following has the smallest radius?
A. P
B. Na
C. Br
D. Cl

Order the following elements from largest to smallest in terms of ionization Energy:

$$
\mathrm{Al}, \mathrm{P}, \mathrm{Ar}, \mathrm{Na}
$$

A. $\mathrm{Ar}>\mathrm{Na}>\mathrm{P}>\mathrm{Al}$
B. $\mathrm{Ar}>\mathrm{P}>\mathrm{Al}>\mathrm{Na}$
C. $\mathrm{Ge}>\mathrm{Ar}>\mathrm{P}>\mathrm{Al}$
D. $\mathrm{Ar}>\mathrm{P}>\mathrm{Na}>\mathrm{Al}$

Which one of the following atoms has the largest radius?
A. Sr
B. I
C. Ca
D. Ba

The first ionization energies of the elements \qquad as you go from left to right across a period of the periodic table, and \qquad as you go from the bottom to the top of a group in the table.
A. increase, increase
B. increase, decrease
C. decrease, increase
D. decrease, decrease

Which of the following statements is false?
A. A sodium atom has a smaller radius than a potassium atom.
B. A neon atom has a smaller radius than an oxygen atom.
C. A fluorine atom has a smaller first ionization energy than an oxygen atom.
D. A cesium atom has a smaller first ionization energy than a lithium atom.

Which of the following atoms has the largest ionization energy?
A. 0
B. Li
C. Ne
D. Be

