Chapter(6)

The Normal Distribution

Introduction

-6-1 Properties of the Normal Distribution and the Standard Normal Distribution.
-6-2 Applications of the Normal Distribution.
-6-3 The Central Limit Theorem

Note: This PowerPoint is only a summary and your main source should be the book.

The Normal Distribution

Note: This PowerPoint is only a summary and your main source should be the book.

(a) Normal

\square A normal distribution is

 a continuous, symmetric ,bell shaped distribution of a variable.

A normal distribution curve depend on two parameters .
$\mu \longrightarrow$ Position parameter
$\sigma \longrightarrow$ shape parameter

The mathematical equation for the normal distribution:

$$
y=\frac{e^{-(x-\mu)^{2} / 2 \sigma^{2}}}{\sigma \sqrt{2 \pi}}
$$

where
$e \approx 2718$
$\pi \approx 314$
$\mu \approx$ population mean
$\sigma \approx$ population standard deviation

Note: This PowerPoint is only a summary and your main source should be the book.

Note: This PowerPoint is only a summary and your main source should be the book.

Note: This PowerPoint is only a summary and your main source should be the book.

Properties of the Normal Distribution

\square The normal distribution curve is bell-shaped.
\square The mean, median, and mode are equal and located at the center of the distribution.
\square The normal distribution curve is unimodal (single mode).
\square The curve is symmetrical about the mean.
\square The curve is continuous.
The curve never touches the x-axis.
\square The total area under the normal distribution curve is equal to 1 or 100%.

Note: This PowerPoint is only a summary and your main source should be the book.
\square The area under the normal curve that lies within
> one standard deviation of the mean is approximately 0.68 (68\%).
$>$ two standard deviations of the mean is approximately
0.95 (95\%).
$>$ three standard deviations of the mean is approximately
0.997 (99.7\%).

Note: This PowerPoint is only a summary and your main source should be the book.

Empirical Rule: Normal Distribution

(Areas Under the Normal Curve)

The Standard Normal Distribution

Note: This PowerPoint is only a summary and your main source should be the book. distribution with a mean of 0 and a standard deviation of 1 .
\square The formula for the standard normal distribution is

$$
y=\frac{e^{\frac{-z^{2}}{2}}}{\sqrt{2 \pi}} \leadsto \mu=\square
$$

Note: This PowerPoint is only a summary and your main source should be the book.
\square All Normal Distribution can be transformed into standard Distribution.

$$
z=\frac{\text { value }- \text { mean }}{\text { standard deviation }}
$$

Or

$$
z=\frac{x-\mu}{\sigma}
$$

Note: This PowerPoint is only a summary and your main source should be the book.

Empirical Rule: Standard Normal Distribution

Procedure To Finding the area under Standard Normal

 Distribution:1. To the left of any Z value

$$
\mathrm{P}(\mathrm{z}<-\mathrm{a})=\mathrm{P}(\mathrm{z}<\mathrm{a})=\mathrm{Q}(\mathrm{a})
$$

2.To the right of any Z value

(b)

$$
\mathrm{P}(\mathrm{z}>-\mathrm{a})=\mathrm{P}(\mathrm{z}>\mathrm{a})=1-\mathrm{Q}(\mathrm{a})
$$

Note: This PowerPoint is only a summary and your main source should be the book.

3.Between any two Z values

(c)

$$
\begin{aligned}
\mathrm{P}(-\mathrm{b}<\mathrm{z}<-\mathrm{a})=\mathrm{P}(\mathrm{a}<\mathrm{z}<\mathrm{b}) & =\mathrm{P}(\mathrm{z}>\mathrm{a})-\mathrm{P}(\mathrm{z}>\mathrm{b}) \\
& =\mathrm{Q}(\mathrm{a})-\mathrm{Q}(\mathrm{~b})
\end{aligned}
$$

Note: This PowerPoint is only a summary and your main source should be the book.

Example 6-1:

Find the area to the left of $\mathrm{z}=1.99$

$\mathrm{P}(\mathrm{Z}<1.99)=0.9767$

Cumulative Standard Normal Distribution

z	.00	.01	.02	.03	.04	.05	.06	.07	.08
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699
1.9	9713	.9719	.9726	.9732	.9738	.0744	.97530		
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9756	.9761

Example 6-2:

Find the area to the right of $\mathrm{z}=-1.16$

$$
\begin{aligned}
\mathrm{P}(\mathrm{Z}>-1.16) & =1-\mathrm{P}(\mathrm{Z}<-1.16) \\
& =1-0.1230 \\
& =0.8770
\end{aligned}
$$

Table E The Standard Normal Distribution

Cumulative Standard Normal Distribution

\boldsymbol{z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	$\rightarrow .1230$.1210	.1190	.1170

Example 6-3:

Find the area between $\mathrm{z}=1.68$ and $\mathrm{z}=-1.37$

$$
\begin{aligned}
\mathrm{P}(-1.37<\mathrm{Z}<1.68) & =\mathrm{P}(\mathrm{Z}<1.68)-\mathrm{P}(\mathrm{Z}<-1.37) \\
& =0.9535-0.0853 \\
& =0.8682
\end{aligned}
$$

Table E (continued)
Cumulative Standard Normal Distribution

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.922	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
28	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

For z values greater than 3.49 , use 0.9999 .

Table E The Standard Normal Distribution

Cumulative Standard Normal Distribution

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.4	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	. 0005	. 0005	. 0005	. 0004	. 0004	. 0004	. 0004	. 00004	. 0004	. 0003
-3.2	. 0007	. 0007	. 0006	. 0006	. 0006	. 0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	. 0009	. 0009	. 0008	. 0008	. 0008	. 0008	. 0007	. 0007
-3.0	. 0013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 0010
-2.9	. 0019	. 0018	. 0018	. 0017	. 0016	. 0016	. 0015	. 0015	. 0014	. 0014
-2.8	. 0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	. 0021	. 0020	. 0019
-2.7	. 0035	. 0034	. 0033	. 0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	. 0059	. 0057	. 0055	. 0054	. 0052	. 0051	. 0049	. 0048
-2.4	. 0082	. 0080	. 0078	. 0075	. 0073	. 0071	. 0069	. 0068	. 0066	. 0064
-2.3	. 0107	. 0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	. 0084
-2.2	. 0139	. 0136	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	. 0274	. 0268	. 0262	. 0256	. 0250	. 0244	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 0401	. 0392	. 0384	. 0375	. 0367
-1.6	. 0548	. 0537	. 0526	. 0516	. 0505	. 0495	. 0485	. 0475	. 0465	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	. 0618	. 0606	. 0594	. 0582	. 0571	. 0559
-1.4	. 0808	. 0793	. 0778	. 0764	. 0749	. 0735	. 0721	. 0708	. 0694	. 0681
-1.3	. 0968	. 0951	. 0934	. 0918	. 0901	. 0885	. 0869	. 0853	. 0838	. 0823
-1.2	. 1151	. 1131	. 1112	. 1093	. 1075	. 1056	. 1038	. 1020	. 1003	. 0985
-1.1	. 1357	. 1335	. 1314	. 1292	. 1271	. 1251	. 1230	. 1210	. 1190	. 1170

Example 6-4:

Find probability for each
a) $\mathrm{P}(0<\mathrm{z}<2.23)$
b) $\mathrm{P}(\mathrm{z}<1.65)$
c) $\mathrm{P}(\mathrm{z}>1.91)$

$$
\text { a) } \begin{aligned}
\mathrm{P}(0<\mathrm{Z}<2.23) & =\mathrm{P}(\mathrm{Z}<2.23)-\mathrm{P}(\mathrm{Z}<0) \\
& =0.9898-0.5000 \\
& =0.4898
\end{aligned}
$$

b) $\mathrm{P}(\mathrm{Z}<1.65)=0.9505$

$$
\text { c) } \begin{aligned}
\mathrm{P}(\mathrm{Z}>1.91) & =1-\mathrm{P}(\mathrm{Z}<1.91) \\
& =1-0.9719 \\
& =0.0281
\end{aligned}
$$

Example 6-5:

Find the z value such that the area under the standard normal distribution curve between 0 and the z value is 0.2123

$0.2123+0.5000=0.7123$

$$
\mathrm{Z}=0.56
$$

Table E

Cumulative Standard Normal Distribution

z	.00	.01	.02	.03	.04	.05	.06	.07
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	8577

Applications of the Normal Distribution

\square All normally distributed variables can be transformed into the standard normally distribution by using the formula for the standard score:

$$
z=\frac{\text { value }- \text { mean }}{\text { standard deviation }}
$$

$$
z=\frac{x-\mu}{\sigma}
$$

Note: This PowerPoint is only a summary and your main source should be the book.

Example 6-6:

A survey by the National Retail Federation found that women spend on average $\$ 146.21$ for the Christmas holidays. Assume the standard deviation is $\$ 29.44$. Find the percentage of women who spend less than $\$ 160$. Assume the variable is normally distributed. Solution:

Solution:

Step 1 : Find the z value .
$Z=\frac{X-\mu}{\sigma}=\frac{160-146.21}{29.44}=0.47$
Step 3 :Find the area ,using table E.

$$
\mathrm{P}(\mathrm{Z}<0.47)=0.6808
$$

Step 2 :Draw the figure

68.08% of the women spend less than 160\$ at Christmas time.

Note: This PowerPoint is only a summary and your main source should be the book.

Example 6-7:

Each month, an American household generates an average of 28 pounds of newspaper for garbage or recycling. Assume the standard deviation is 2 pounds. If a household is selected at random, Find the probability of its generating.
a) Between 27 and 31 pounds per month
b) More than 30.2 pounds per month

Assume the variable is approximately normally distributed.

Solution (a) :
Step 1 : Find the two z value .

$$
\begin{aligned}
& Z_{1}=\frac{X-\mu}{\sigma}=\frac{27-28}{2}=-0.5 \\
& Z_{2}=\frac{X-\mu}{\sigma}=\frac{31-28}{2}=1.5
\end{aligned}
$$

Step 2 :Draw the figure

Step 3 :Find the area ,using table E.

$$
\begin{aligned}
\mathrm{P}(-0.5<\mathrm{Z}<1.5) & =\mathrm{P}(\mathrm{Z}<1.5)-\mathrm{P}(\mathrm{Z}<-0.5)=0.9332-0.3085 \\
& =0.6247
\end{aligned}
$$

The probability that household generates between 27 and 31 pounds of newspapers per month is 62.47%

Solution (b) :

Step 1 : Find the z value .

Step 2 :Draw the figure

$$
Z=\frac{X-\mu}{\sigma}=\frac{30.2-28}{2}=1.1
$$

Step 3 :Find the area ,using table E.
$P(Z>1.1)=1-P(Z<1.1)=1-0.8643=0.1375$

The probability that household generates more than 30.2 pounds of newspapers is 0.1375 or 31.75%

Example 6-8:
The American Automobile Association reports that the average time it takes to respond to an emergency call is 25 minutes. Assume the variable is approximately normally distributed and the standard deviation is 4.5 minutes. If 80 calls are randomly selected, approximately how many will be responded to in less than 15 minutes?

Solution:

Step 1 : Find the z value .

$$
Z=\frac{X-\mu}{\sigma}=\frac{15-25}{4.5}=-2.22
$$

Step 3 :Find the area ,using table E.

$$
\mathrm{P}(\mathrm{Z}<-2.22)=0.0132
$$

Step 4 :to find how many calls .

$$
0.0132 \times 80=1.056 \approx 1
$$

Step 2 :Draw the figure

Finding Data Values Given Specific Probabilities

Formula for Finding X:

$$
X=z \cdot \sigma+\mu
$$

Example 6-9:

To qualify for a police academy, candidates must score in the top 10% on a general abilities test. The test has a mean of 200 and standard deviation of 20. Find the lowest possible score to qualify. Assume the test scores is normally distributed.
Solution:

Step 1 :Draw the figure

Step 2 : Find the z value .
$1-0.10=0.9000$
Z=1.28

Step 3 :Find the x .

$$
\begin{aligned}
& X=(1.28)(20)+200 \\
& X=226
\end{aligned}
$$

Any body scoring 226 or higher qualify
Note: This PowerPoint is only a summary and your main source should be the book.

For a medical study, a researcher wishes to select people in the middle 60% of the population based on blood pressure. If the mean systolic blood pressure is 120 and the standard deviation is 8 , find the upper and lower readings that would qualify people to participate in the study. Assume that blood pressure readings is normally distributed.

Solution:

Step 1 :Draw the figure

Step 2 : Find the two z values .

$$
\begin{array}{c|c}
0.5000+0.3000=0.8000 & 0.5000-0.3000=0.2000 \\
Z_{1}=0.84 & Z_{2}=-0.84
\end{array}
$$

Step 3 :Find the two x .

$$
\begin{aligned}
& X_{1}=Z_{1} \cdot \sigma+\mu \\
& X_{1}=(0.84)(8)+120=126.72
\end{aligned}
$$

$$
\begin{aligned}
& X_{2}=Z_{2} \cdot \sigma+\mu \\
& X_{2}=(-0.84)(8)+120=113.28
\end{aligned}
$$

The middle 60% will have blood pressure reading of $113.28<X<126.72$

6-3The Central Limit Theorem

Distribution of Sample Means

- A sampling distribution of sample means: is a distribution using the means computed from all possible random samples of a specific size taken from a population.
- Sampling error: is the difference between the sample measure and corresponding population measure due to the fact that the sample is not a perfect representation of the population.

Distribution of Sample Means

- Properties of the distribution of sample means:

1- The mean of the sample means will be the same as the population mean.

2- The standard deviation of the sample means will be smaller than the standard deviation of the population, and it will be equal to the population standard deviation divided by the square root of the sample size.

$$
\mu_{\bar{X}}=\mu
$$

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}
$$

- The Central Limit Theorem:

- As the sample size n increase without limit, the shape of the distribution of the sample means taken with replacement from a population with mean μ and standard deviation σ will approach a normal distribution. This distribution will have a mean μ and a standard deviation σ / \sqrt{n}
- The formula for z values is:

$$
z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

Two important things when we use Central limit theorem :

1- when the original variable is normally distributed, the distribution of the sample means will be normally distributed, for any sample size n.

2- when the original variable might not be normally distributed, a sample size must be 30 or more to approximate the distribution of sample means to normal distribution.

\square Example 6-13:

A. C. Neilsen reported that children between the ages of 2 and 5 watch an average of 25 hours of television per week. Assume the variable is normally distributed and the standard deviation is 3 hours. If 20 children between the ages 2 and 5 are randomly selected, find the probability that the mean of the number of hours they watch television will be greater than 26.3 hours.
\square Solution: $\mu=25, \sigma=3, n=20, \bar{X}=26.3$

$$
\begin{aligned}
& \mu_{\bar{X}}=\mu=25 \quad \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{3}{\sqrt{20}}=0.671 \\
& z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{26.3-25}{0671}=1.94
\end{aligned}
$$

$$
\begin{aligned}
P(Z>1.96) & =1-P(Z<1.96) \\
& =1-0.9738=0.0262
\end{aligned}
$$

\square Example 6-14:
The average age of a vehicle registered in the United States is 8 years, or 96 months. Assume the standard deviation is 16 months. If a random sample of 36 vehicles is selected, find the probability that the mean of their age is between 90 and 100 months.
\square Solution: $\quad \mu=96, \sigma=16, n=36, \bar{X}_{1}=90, \bar{X}_{2}=100$

$$
\begin{aligned}
& Z_{1}=\frac{90-96}{16 / \sqrt{36}}=-2.25 \\
& Z_{2}=\frac{100-96}{16 / \sqrt{36}}=1.50 \\
& \begin{array}{r}
P(-2.25<Z<1.50)=P(Z<1.50)-P(Z<-2.25) \\
\\
=0.9332-0.0122=0.9210
\end{array}
\end{aligned}
$$

Example 6-15:

The average number of pounds of meat that a person consumes per year is 218.4 pounds. Assume that the standard deviation is 25 pounds and the distribution is approximately normal.
Find the probability that a person selected at random consumes less than 224 pounds per year.
b. If a sample of 40 individuals is selected, find the probability that the mean of the sample will be less than 224 pounds per year.

- Solution:

$$
\mu=218.4, \sigma=25
$$

a. $Z=\frac{X-\mu}{\sigma}=\frac{224-218.4}{25}=0.22$
$P(Z<0.22)=0.5871$

b. If a sample of 40 individuals is selected, find the probability that the mean of the sample will be less than 224 pounds per year.

$$
\begin{gathered}
b . Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{224-218.4}{25 / \sqrt{40}}=1.42 \\
P(Z<1.42)=0.9222
\end{gathered}
$$

