3.2: Equations of lines and Linear Models

$$
(x, y),\left(x_{1}, y_{1}\right)
$$

slope

$$
\begin{aligned}
& \text { lope } \quad(m)=\frac{y-y_{1}}{x-x_{1}} \\
& \qquad\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \Longrightarrow \text { slope: } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

point-slope Form:-
let m slope, point $\left(x_{1}, y_{1}\right)$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

 نقا

Example 1.p(99):~
Write an equation of line through $(-4,1)$, having Slope -3 (3 (3 a

$$
\begin{aligned}
& x_{1}=-4, \quad y_{1}=1 \quad, m=-3 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=-3(x-(-4)) \\
& y-1=-3(x+4) \\
& y-1=-3 x-12 \Rightarrow y=-3 x-11 \\
& \text { nscanner }
\end{aligned}
$$

AW $1 \rho_{0}$ (99)
Write an equation of the line through $(-3,2)$ and $(2,-4)$. Write the result in standard form

$$
A x+B y=C
$$

Find slope, $\left.\begin{array}{c}\left.x_{1} y_{1}, \begin{array}{c}x_{2} \\ -1,2) \\ -3,2) \\ 2\end{array},-4\right) \\ 2,-4\end{array}\right)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-2}{2-(-3)}=\frac{-6}{5}
$$

On أَّقا ط.

Let the point $(-3,2) \Rightarrow x_{1}=-3, y_{1}=2$

$$
\begin{gathered}
m=-\frac{6}{5} \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-2=-\frac{6}{5}(x-(-3)) \\
y-2=-\frac{6}{5}(x+3) \\
y-2=-\frac{6}{5} x-\frac{18}{5} \\
y=-\frac{6}{5} x-\frac{18}{5}+2 \\
y=-\frac{6}{5} x-\frac{18}{5}+\frac{10}{5} \\
y=-\frac{6}{5} x-\frac{8}{5}
\end{gathered}
$$

standard form: $y+\frac{6}{5} x=-\frac{8}{5}$

$$
5 y+6 x=-8
$$

slope-Intercapt Form:

$$
y=(m x+b) \rightarrow y \text {-intercept }
$$

j bl slope
Example $2 \rho_{0}(100):$ Find the slope and y-intercept of the line with equation

$$
\begin{aligned}
& 4 x+5 y=-10 \\
& 5 y=-10-4 x \\
& y=-\frac{4}{5} x-\frac{10}{5} \\
& y=-\frac{4}{5} x-2 \rightarrow y \text {-intercept } \\
& \text { slope }
\end{aligned}
$$

-. Slope $m=-\frac{4}{5}, y$-intercept -2
HW2 $\rho_{0}(100):$ Write an equation of the line through $(1,1)$ and $(2,4)$. Then graph the line
uni; using the slope inter ce pt form.
(1) Find the slope: $(1,1),(2,4)$ ($2, y_{1}$ ن)

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x}=\frac{4-1}{2-1}=\frac{3}{1}=3
$$

$$
\begin{equation*}
y-y_{1}=m\left(x-x_{1}\right) \quad \text { at point }(1,1) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& y-1=3(x-1) \\
& y-1=3 x-3 \\
& y=3 x-3+1 \\
& y=3 x-2 \rightarrow x
\end{aligned}
$$

Example 3 O. (100) : الرستـي
(a) Find the slope, y-intercept, x-inlercept
(b) Write the equation that defines f.
(a) We have the points $\begin{gathered}x_{1} y_{1} \\ (-3,0),\left(\begin{array}{cc}x_{2} & y_{2} \\ 0, & -1\end{array}\right)\end{gathered}$

Slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-0}{0-(-3)}$

$$
=\frac{-1}{3}
$$

peon y s. and y-inter capt -1
 x
(b)

$$
\begin{aligned}
& m=-\frac{1}{3}, \text { point }(-3,0) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-0=-\frac{1}{3}(x-(-3)) \\
& y=-\frac{1}{3}(x+3)=-\frac{1}{3} x-1 \\
& f(x)=-\frac{1}{3} x-1
\end{aligned}
$$

General Form: -oblacuss

$$
\begin{gathered}
A x+B y=C \\
B y=-A x+C \quad A x=-B y+C \\
y=-\frac{A}{B} x+\left(\frac{C}{B} \rightarrow y\right. \text {-intercept } \\
\text { slope } \\
=\frac{-B}{A} y+\left(\frac{C}{A}\right.
\end{gathered}
$$

Equations of Vertical and Horizontal line

Vertical
Line
(a, b)

$$
x=a
$$

slope: undefined
$m=\frac{2-1}{a-a}=\frac{1}{0}$ undefined
b) Horizontal
-1
line (a, b)

$$
y=b
$$

slope $=0$

$$
\begin{aligned}
m=\frac{b-b}{2-1} & =\frac{0}{1} \\
& =0
\end{aligned}
$$

parallel and Perpendicular lines

Parallel

هُوْازه
tines

same slope．
beds Perpendicular essen hines 1

 － 1 ＝Rn $m_{1} m_{2}=-1$

NW $\cdot \mathrm{p} \cdot(102): \sim$
Write the equation of line that passes through the point $(3,5)$
（a）Parallel to the line $2 x+5 y=4$ \therefore 全
i）（1）Find the slope．

$$
\begin{gathered}
2 x+5 y=4 \Longrightarrow 5 y=-2 x+4 \\
y=\frac{-2}{5} x+\frac{4}{5} \\
- \text { Slope } m=\frac{-2}{5}
\end{gathered}
$$

is (2) Find the equation of line, $\left(\begin{array}{c}x_{1}, y_{1} \\ 3,5)\end{array}\right.$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-5 & =-\frac{2}{5}(x-3) \\
y-5 & =-\frac{2}{5} x+\frac{6}{5} \\
y & =-\frac{2}{5} x+\frac{6}{5}+5 \\
y & =-\frac{2}{5} x+\frac{6+25}{5} \\
y & =-\frac{2}{5} x+\frac{31}{5}
\end{aligned}
$$

Standard form: $5 y+2 x=31$
(b) Perpendicular to the line $2 x+5 y=4$

. ")

old $\quad m_{1}=-\frac{2}{5}$

- $1=$ =

$$
\begin{aligned}
& m_{1}\left(\frac{2}{5}\right)\left(\frac{5}{2}\right)=-1 \\
& m_{2} \\
& m_{2}=\frac{5}{2} \longrightarrow \text { slope } \\
& y-y=m\left(x-x_{1}\right) \\
& y-5=\frac{5}{2}(x-3)
\end{aligned}
$$

$$
\begin{aligned}
& y-5=\frac{5}{2} x-\frac{15}{2} \\
& y=\frac{5}{2} x-\frac{15}{2}+5 \\
& y=\frac{5}{2} x \frac{-15+10}{2} \\
& y=\frac{5}{2} x-\frac{5}{2}
\end{aligned}
$$

Standard form: $2 y-5 x=-5$

Exercises 3.2 P.(103)
Write an equation for the line.
(7) through $(-1,3)$ and $(3,4)$
(1) Find the slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-3}{3-(-1)}=\frac{1}{4}$
(2) Find the equation: $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{align*}
& y-3=\frac{1}{4}(x-(-1)) \\
& y-3=\frac{1}{4}(x+1) \\
& y-3=\frac{1}{4} x+\frac{1}{4} \\
& 4 y-x=13 \\
& y=\frac{1}{4} x+\frac{1}{4}+3 \\
& y=\frac{1}{4} x+\frac{13}{4} \tag{8}
\end{align*}
$$

Give the slope and y-inter copt and graph it
(15) $y=(3) x-1 \rightarrow y$-inter apt slope

slope: $m=3, \quad y$-inter capt -1
(19) $\quad y-\frac{3}{2} x-1=0$

$$
y=\left(\frac{3}{2} x+1 \rightarrow y\right. \text {-intercept }
$$

slope

Slope: $m=\frac{3}{2}, y$-intercept 1
(26) Write an equation of line through $(-5,6)$, Perpendicular to $x=-2 \rightarrow \underset{\text { pin }}{\text { ping }}$

- المستَ

3.3 Function operations and composition

operation on functions and Domains:
- yl? J Josde jund

Let $f(x), g(x)$ defined functions.

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& (f-g)(x)=f(x)-g(x) \\
& (f g)(x)=f(x) \cdot g(x) \\
& \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0
\end{aligned}
$$

 Domain of $\frac{f}{g}$ is $\Delta f \cap D g$ which $g \neq 0 \Rightarrow$ olen-1 اهنیا
Example 1 p.(105): $f(x)=x^{2}+1, g(x)=3 x+5$
(a)

Find:
(b) $(f-g)(-3)=f(-3)-g(-3)=\left((-3)^{2}+1\right)-(3(-3)+5)=10-(-4)$
$=14$
(c) $(f g)(5)=f(5) \cdot g(5)=\left(5^{2}+1\right)(3(5)+5)=(26)(20)=520$
(d) $\left(\frac{f}{g}\right)(0)=\frac{f(0)}{g(0)}=\frac{0^{2}+1}{2(0)+5}=\frac{1}{5}$

Example $\xlongequal{2} \rho_{0}(106)$

$$
\begin{aligned}
& f(x)=2 x+1 \quad, g(x)=\sqrt{x} \\
& \begin{array}{|c|c|c|c|c|c|c|c|}
x & f(x) & g(x) \\
\hline-2 & -3 & \text { undefined } \\
0 & 1 & 0 \\
1 & 3 & 1 \\
4 & 9 & 2
\end{array} \\
& (f+g)(4)=f(4)+g(4)=9+2=11 \\
& (f-g)(-2)=f(-2)-g(-2)=\text { undefined. } \\
& \text { Evaluate : } \\
& (f g)(1)=f(1) \cdot g(1)=3(1)=3 \\
& \left(\frac{f}{g}\right)(0)=\frac{f(0)}{g(0)}=\frac{1}{0} \quad \text { undefined. }
\end{aligned}
$$

The Difference Quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

HW2 $\rho_{0}(108)$ Let $f(x)=2 x^{2}-3 x$
Find $\frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{2(x+h)^{2}-3(x+h)-\left(2 x^{2}-3 x\right)}{h} \\
& =\frac{2\left(x^{2}+2 h x+h^{2}\right)-3 x-3 h-2 x^{2}+3 x}{h} \\
& =\frac{2 x^{2}+4 h x+2 h^{2}-3 x-3 h-2 x^{2}+3 x}{h} \\
& =\frac{4 h x+2 h^{2}-3 h}{h}=\frac{h(4 x+2 h-3)}{h} \\
& =4 x+2 h-3 \\
f(x+h) & \neq f(x)+f(h)=1)
\end{aligned}
$$

- Composition of Functions and Domain:
-

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x)) \\
& (g \circ f)(x)=g(f(x))
\end{aligned}
$$

Example 3 ㄱp. (109): $f(x)=2 x-1, g(x)=\frac{4}{x-1}$
Find: (a) $(f \circ g)(2)$
(b) $(g \circ f)(-3)$
(a)

$$
\begin{aligned}
& (f \circ g)(2)=f(g(2)) \\
& g(2)=\frac{4}{2-1}=4 \\
& =8-1=7
\end{aligned}
$$

(b)

$$
\begin{aligned}
& (g \circ f)(-3)=g(f(-3)) \\
& f(-3)=2(-3)-1=-7 \\
- & (g \circ f)(-3)=g(f(-3))= \\
& =\frac{4}{-8}=-\frac{1}{2}
\end{aligned}
$$

Example $\stackrel{4}{=} \rho_{0}(110): f(x)=\frac{6}{x-3}, \quad g(x)=\frac{1}{x}$

Find: (a) $(f \circ g)(x)$ and its domain
(b) $(g \circ f)(x)$ and its domain
(a)

$$
\begin{aligned}
&(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right) \quad \begin{array}{l}
\text { domain } \\
x \neq 0 \\
(-\infty, 0) \cup(0, \infty)
\end{array} \\
&=\frac{6}{\frac{1}{x}-3}=\frac{6}{\frac{1-3 x}{x}}=6 \cdot \frac{x}{1-3 x} \\
&\left.=\frac{6 x}{1-3 x} \rightarrow \quad \begin{array}{l}
\text { (g) } \\
1-3 x
\end{array}\right) \\
&=0 \Rightarrow-3 x=-1 \Rightarrow x \neq \frac{1}{3} \\
&(-\infty) \cup\left(\frac{1}{3}, \infty\right)
\end{aligned}
$$

-: Domain of $(f \circ g)(x)=(-\infty, 0) \cup\left(0, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \infty\right)$
(b)

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x))=g\left(\frac{6}{x-3}\right) \begin{array}{l}
\text { domain } \\
x-3 \neq 0 \\
x \neq 3 \\
-\infty, 3) \cup(3, \infty)
\end{array} \\
& =\frac{1}{\frac{6}{x-3}}=1 \cdot \frac{x-3}{6}=\frac{x-3}{6} \text { yin }
\end{aligned}
$$

\therefore Domain of $(g \circ f)(x)=(-\infty, 3) \cup(3, \infty)$

$$
(f \circ g)(x) \neq(g \circ f)(x)
$$

Example $5 \rho_{0}(111):$ Find f and g

$$
\begin{aligned}
(f \circ g)(x) & =\left(x^{2}-5\right)^{3}-4\left(x^{2}-5\right)+3 \\
g(x) & =x^{2}-5, \quad f(x)=x^{3}-4 x+3 \\
(f \circ g)(x)=f(g(x)) & =f\left(x^{2}-5\right) \\
& =\left(x^{2}-5\right)^{3}-4\left(x^{2}-5\right)+3
\end{aligned}
$$

or

$$
\begin{aligned}
g(x) & =x^{2}, f(x)=(x-5)^{3}-4(x-5)+3 \\
(f \circ g)(x) & =f(g(x))=f\left(x^{2}\right)=\left(x^{2}-5\right)^{3}-4\left(x^{2}-5\right)+3
\end{aligned}
$$

Exercises $3 \cdot 3$ P. (III)

$$
f(x)=x^{2}+3 \quad, \quad g(x)=-2 x+6
$$

Find:
(1)

$$
\begin{aligned}
(f+g)(3) & =f(3)+g(3) \\
& =\left(3^{2}+3\right)+(-2(3)+6) \\
& =(9+3)+(-6+6) \\
& =12+0=12
\end{aligned}
$$

(2)

$$
\begin{aligned}
(f-g)(-1) & =f(-1)-g(-1) \\
& =\left((-1)^{2}+3\right)-(-2(-1)+6) \\
& =(1+3)-(2+6) \\
& =4-8=-4
\end{aligned}
$$

(3)
(4) $\left(\frac{f}{g}\right)(-1)=\frac{f(-1)}{g(-1)}=\frac{\left((-1)^{2}+3\right)}{-2(-1)+6}=\frac{4}{8}=\frac{1}{2}$

Find $(f+g)(x),(f-g)(x),(f g)(x)$ and $\left(\frac{f}{g}\right)(x)$ Give the Domain. gefoleqtícis pr, bevel
(5) $f(x)=3 x+4, \quad g(x)=2 x-5$ 2
Domain of $f(x):(-\infty, \infty)$

$$
g(x): \quad(-\infty, \infty)
$$

*

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
& =(3 x+4)+(2 x-5) \\
& =3 x+4+2 x-5 \\
& =5 x-1
\end{aligned}
$$

$\operatorname{Domain}(f+g)(x):(-\infty, \infty)$, f lg
*

$$
\begin{aligned}
(f-g)(x) & =f(x)-g(x) \\
& =(3 x+4)-(2 x-5) \\
& =3 x+4-2 x+5 \\
& =x+9
\end{aligned}
$$

Domain $(f-g)(x):(-\infty, \infty)$
*

$$
\begin{aligned}
(f g)(x) & =f(x) g(x)=(3 x+4)(2 x-5) \\
& =6 x^{2}-15 x+8 x-20 \\
& =6 x^{2}-7 x-20
\end{aligned}
$$

Domain $(f g)(x): \quad(-\infty, \infty)$
*

$$
\begin{aligned}
&\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{3 x+4}{2 x-5} \rightarrow . p_{1} \neq c \text { 领 } \\
& 2 x-5 \neq 0 \Rightarrow x \neq \frac{5}{2}
\end{aligned}
$$

Domain $\left(\frac{f}{g}\right)(x): \quad\left(-\infty, \frac{5}{2}\right) \cup\left(\frac{5}{2}, \infty\right)$
(6) $f(x)=2 x^{2}-3 x, \quad g(x)=x^{2}-x+3$
\therefore Domain $f(x), g(x):(-\infty, \infty)$

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
& =2 x^{2}-3 x+x^{2}-x+3 \\
& =3 x^{2}-4 x+3
\end{aligned}
$$

Domain $(f+g)(x): \quad(-\infty, \infty)$

$$
\begin{aligned}
(f-g)(x) & =f(x)-g(x) \\
& =\left(2 x^{2}-3 x\right)-\left(x^{2}-x+3\right) \\
& =2 x^{2}-3 x-x^{2}+x-3 \\
& =x^{2}-2 x-3
\end{aligned}
$$

Domain $(f-g)(x)$: $(-\infty, \infty)$

$$
\begin{aligned}
(f g)(x) & =f(x) g(x) \\
& =\left(2 x^{2}-3 x\right)\left(x^{2}-x+3\right) \\
& =2 x^{4}-2 x^{3}+6 x^{2}-3 x^{3}+3 x^{2}-9 x \\
& =2 x^{4}-5 x^{3}+9 x^{2}-9 x
\end{aligned}
$$

Domain $(f g)(x)$: $(-\infty, \infty)$

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)}=\frac{2 x^{2}-3 x}{x^{2}-x+3} \\
x & x^{2}-x+3 \neq 0 \\
x & \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(3)}}{2} \\
& =\frac{1 \pm \sqrt{1-12}}{2}=\frac{1}{2} \pm \frac{\sqrt{-11}}{2}=\frac{1}{2} \pm \frac{\sqrt{11}}{2} i
\end{aligned}
$$

.
—. Domain $\left(\frac{f}{g}\right)(x): \quad(-\infty, \infty)$
(7) $\quad f(x)=\sqrt{4 x-1} \quad 1 \quad g(x)=\frac{1}{x}$

$$
\begin{gathered}
4 x-1 \geqslant 0 \\
x \geqslant \frac{1}{4}
\end{gathered}
$$

Domain $f(x): \quad\left[\frac{1}{4}, \infty\right)$

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
& =\sqrt{4 x-1}+\frac{1}{x}
\end{aligned}
$$

Domain $(f+g)(x):\left[\frac{1}{4}, \infty\right) \cap((-\infty, 0) \cup(0, \infty))$

$$
=\left[\frac{1}{4}, \infty\right)
$$

$$
\begin{aligned}
(f-g)(x) & =f(x)-g(x) \\
& =\sqrt{4 x-1}-\frac{1}{x}
\end{aligned}
$$

Domain $(f-g)(x):\left[\frac{1}{4}, \infty\right)$ f,g

$$
\begin{aligned}
& (f g)(x)=f(x) g(x)=(\sqrt{4 x-1})\left(\frac{1}{x}\right)=\frac{\sqrt{4 x-1}}{x} \\
& \text { Domain }(f g)(x): \quad\left[\frac{1}{4}, \infty\right)
\end{aligned}
$$

$$
\left(\frac{f}{g} f(x)=\frac{f(x)}{g(x)}=\frac{\sqrt{4 x-1}}{\frac{1}{x}}=x \sqrt{4 x-1}\right.
$$

Domein $\left(\frac{f}{g}\right)(x)$: $\left[\frac{1}{4}, \infty\right)$

Use the graph to evaluate :-
(12)

(a)

$$
\begin{aligned}
(f+g)(2) & =f(2)+g(2) \\
& =4+(-2)=2
\end{aligned}
$$

(b)

$$
\begin{aligned}
(f-g)(1) & =f(1)-g(1) \\
& =1-(-3) \\
& =1+3=4
\end{aligned}
$$

(c)

$$
\begin{aligned}
(f g)(0) & =f(0) g(0) \\
& =0(-4)=0
\end{aligned}
$$

(d) $\left(\frac{f}{g}\right)(1)=\frac{f(1)}{g(1)}=\frac{1}{-3}=-\frac{1}{3}$
(13)

(a)

$$
\begin{aligned}
(f+g)(-1) & =f(-1)+g(-1) \\
& =0+3=3
\end{aligned}
$$

(b)

$$
\begin{aligned}
(f-g)(-2) & =f(-2)-g(-2) \\
& =-1-4=-5
\end{aligned}
$$

(C)

$$
\begin{aligned}
(f g)(0) & =f(0) g(0) \\
& =1(2)=2
\end{aligned}
$$

(d) $\left(\frac{f}{g}\right)(2)=\frac{f(2)}{g(2)}=\frac{3}{0}$ undefine

(14)

x	$f(x)$	$g(x)$
-2	0	6
0	5	0
2	7	-2
4	10	5

(4) $(f+g)(2)=f(2)+g(2)=7+(-2)=5$
(b) $(f-g)(4)=f(4)-g(4)=10-5=5$
(c) $(f g)(-2)=f(-2) g(-2)=0(6)=0$
(d) $\left(\frac{f}{g}\right)(0)=\frac{f(0)}{g(0)}=\frac{5}{0}$ undefined.

x	3	4	6
$f(x)$	1	3	9

x	2	7	1	9
$g(x)$	3	6	9	12

Find:-
(28) $(f \circ g)(2)=f(g(2))=f(3)=1$
(29) $\quad(g \circ f)(3)=g(f(3))=g(1)=9$
(30) $(f \circ f)(4)=f(f(4))=f(3)=1$

- Find $(f \circ g)(x)$ and its domain.
$(g \circ f)(x)$ and its domain.
(36)

$$
\text { 6) } \begin{aligned}
f(x) & =\frac{2}{x}, g(x)=x+1 \\
(f \circ g)(x) & =f(g(x))=f(x+1) \\
& =\frac{2}{x+1} \quad, x+1 \neq 0 \Rightarrow x \neq-1
\end{aligned}
$$

Domain $(f \circ g)(x):(-\infty,-1) \cup(-1, \infty)$

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x))=g\left(\frac{2}{x}\right)^{\Delta \text { domain }}(-\infty \neq 0) \cup(0, \infty) \\
& =\frac{2}{x}+1=\frac{2+x}{x} \rightarrow x \neq 0
\end{aligned}
$$

Domain $(g \circ f)(x)$: $(-\infty, 0) \cup(0, \infty)$
(39)

$$
\begin{aligned}
& f(x)=\frac{1}{x-2}, g(x)=\frac{1}{x} \\
&(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)^{0} \quad(-\infty, 0) \cup(0, \infty) \\
&=\frac{1}{\frac{1}{x}-2}=\frac{1}{\frac{1-2 x}{x}}=\frac{x}{1-2 x} \\
& 1-2 x \neq 0 \Rightarrow x \neq \frac{1}{2} \\
&\left(-\infty, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)
\end{aligned}
$$

-: Domain $(f \circ g)(x):(-\infty, 0) \cup\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x))=g\left(\frac{1}{x-2}\right) \quad \operatorname{domain} \quad x \neq 2 \\
& \left.=\frac{1}{\frac{1}{x-2}}=x-2\right) \cup(2, \infty)
\end{aligned}
$$

\therefore Damain $(g \circ f)(x):(-\infty, 2) \cup(2, \infty)$

Find f, g such that $(f \circ g)(x)=h(x)$.

$$
g, f \text { i }
$$

(44) $h(x)=(6 x-2)^{2}$

$$
\begin{aligned}
g(x) & =6 x-2, f(x)=x^{2} \\
\text { Sis }(f \circ g)(x) & =f(g(x))=f(6 x-2)=(6 x-2)^{2}
\end{aligned}
$$

(45)

$$
\begin{aligned}
& h(x)=\sqrt{x^{2}-1} \\
& g(x)=x^{2}-1, f(x)=\sqrt{x} \\
& (f \circ g)(x)=f(g(x))=f\left(x^{2}-1\right)=\sqrt{x^{2}-1}
\end{aligned}
$$

(46)

$$
\begin{aligned}
g(x) & =\sigma x, f(x)=\sqrt{x}+12 \\
(f \circ g)(x) & =f(g(x))=f(6 x)=\sqrt{6 x}+12
\end{aligned}
$$

