

## **Chemical Equilibrium**

# Dr. Dalal Alezi dalezi@kau.edu.sa

02/12/2018



Write the type of reaction for the following reactions, homogenous OR heterogeneous reaction

A)  $C_2H_5OH_{(aq)} + CH_3COOH_{(aq)} \rightleftharpoons CH_3COOC_2H_{5(aq)}H_2O_{(l)}$  Homogenous reaction (I and aq all are the same phase)

B)  $Zn_{(s)} + Cu^{+2}_{(aq)} \rightleftharpoons Cu_{(s)} + Zn^{+2}_{(aq)}$  Heterogeneous reaction (s and aq phase, different phases)

C)  $SnO_{2(s)} + 2CO_{(g)} \rightleftharpoons Sn_{(s)} + 2CO_{2(g)}$  Heterogeneous reaction (s and g phase, different phases)

D)  $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$  Heterogeneous reaction (s and g phase, different phases)

Which one of the following is the correct equilibrium constant expression  $(K_c)$  for this equation.

$$CO_{2(aq)} + H_2O_{(l)} \rightleftharpoons H_2CO_{3(aq)}$$



 $H_2O_{(l)}$  is not included in the equilibrium constant expression.

Q2: Which is the correct equilibrium constant expression  $(K_p)$  for the following reaction?

$$Fe_2O_{3(s)} + 3H_{2(g)} \rightleftharpoons 2Fe_{(s)} + 3H_2O_{(g)}$$

A) K<sub>p</sub> = 
$$\frac{P_{Fe_2O_3} \times P_{H_2}^3}{P_{Fe}^2 \times P_{H_2O}^3}$$
  
B) K<sub>p</sub> =  $\frac{P_{Fe_2}^2 \times P_{H_2O}^3}{P_{Fe_2O_3} \times P_{H_2}^3}$   
C) K<sub>p</sub> =  $\frac{P_{H_2}}{P_{H_2O}}$   
D) K<sub>p</sub> =  $\frac{P_{H_2O}^3}{P_{H_2O}^3}$ 

 $Fe_2O_{3(s)}$  and  $Fe_{(s)}$  are not included in the equilibrium constant expression.

Write an expression for the equilibrium constant for the formation of two moles of ammonia gas  $(NH_3)$  from nitrogen and hydrogen in their standard states

$$N_2(g) + 3 H_2(g) \underset{\longrightarrow}{\leftarrow} 2 NH_3(g)$$

$$K_c = \frac{[NH_3]^2}{[N_2] [H_2]^3}$$

Write the correct  $K_c$  and  $K_p$  expressions for the following reaction?

$$C_3H_8_{(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$$

$$K_{c} = \frac{[CO_{2}]^{3}[H_{2}O]^{4}}{[C_{3}H_{8}][O_{2}]^{5}} \qquad \qquad K_{p} = \frac{P^{3}_{CO2}P^{4}_{H2O}}{P_{C3H8}P^{5}_{O2}}$$

Write an expression for the equilibrium constant for this reaction.

Ca(OH)<sub>2(s)</sub> + 2H<sup>+</sup> (aq) ↔ 2H<sub>2</sub>O<sub>(l)</sub> + Ca<sup>2+</sup>(aq)  
$$K_{c} = \frac{[Ca^{2+}]}{[H^{+}]^{2}}$$

For the reaction  $2A + B \rightarrow 2C$  the appropriate form for the equilibrium constant expression is:

a. 
$$[A][B]^{2}/[C]$$
  
b.  $[A]^{2}[B]/[C]^{2}$   
c.  $[C]^{2}/[A]^{2}[B]$   
d.  $[A][B]^{2}[C]$   
e. none of the above

Write the equilibrium expression for the reaction

 $Zn^{2+}(aq) + 2 NH_3(aq) \leftrightarrow Zn(NH_3)^{2+}(aq)$ 

a. 
$$K = [Zn^{2+}] + 2[NH_3] + [Zn(NH_3)^{2+}]$$
  
b.  $K = \frac{[Zn^{2+}] + 2[NH_3]}{[Zn(NH_3)^{2+}]}$   
c.  $K = \frac{[Zn^{2+}][NH_3]^2}{[Zn(NH_3)^{2+}]}$   
d.  $K = \frac{[Zn^{2+}][NH_3]^2}{[Zn(NH_3)^{2+}]}$   
e.  $K = [Zn(NH_3)^{2+}] - [Zn^{2+}] - 2[NH_3]$ 

At 2000°C, carbon dioxide decomposes as shown.

 $2CO_2(g) \Leftrightarrow 2CO(g) + O_2(g)$ 

If K<sub>c</sub> is  $6.4 \times 10^{-7}$  and the concentrations of CO(g) and O<sub>2</sub>(g) are  $2.0 \times 10^{-3}$  mol/L and  $1.0 \times 10^{-3}$  mol/L at

equilibrium, respectively, calculate the concentration of carbon dioxide.

$$K = \frac{[CO]^{2}[O_{2}]}{[CO_{2}]^{2}}, [CO_{2}]^{2} = \frac{[CO]^{2}[O_{2}]}{K}$$
$$[CO_{2}] = \sqrt{\frac{\left(2.0 \times 10^{-3}\right)^{2} \left(1.0 \times 10^{-3}\right)}{\left(6.4 \times 10^{-7}\right)}} = 7.9 \times 10^{-2} \text{ mol/L}$$

Q. If the reaction quotient Q has a smaller value than the related equilibrium constant, K, \_\_\_\_\_

- A. the reaction is at equilibrium.
- B. the reaction is not at equilibrium, and will make more products at the expense of reactants.
- C. the reaction is not at equilibrium, and will make more reactants at the expense of products.
- D. the value of K will decrease until it is equal to

Q. If the reaction quotient Q has a larger value than the related equilibrium constant, K, \_\_\_\_\_

- A. the reaction is at equilibrium.
- B. the reaction is not at equilibrium, and will make more products at the expense of reactants.
- C. the reaction is not at equilibrium, and will make more reactants at the expense of products.
- D. the value of K will increase until it is equal to Q

For the reaction represented above, the value of the equilibrium constant,  $K_p$ , is 3.1 × 10<sup>-4</sup> at 700. K.

 $N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$ 

(a) Write the expression for the equilibrium constant,  $K_p$ , for the reaction

$$K_p = \frac{p_{\mathrm{NH}_3}^2}{p_{\mathrm{N}_2} \times p_{\mathrm{H}_2}^3}$$

(b) Predict the direction in which the reaction will proceed at 700. K if you Assume that the initial partial pressures of the gases are as follows:  $p_{N2} = 0.411$  atm,  $p_{H2} = 0.903$  atm, and  $p_{NH3} = 0.224$  atm

$$Q = \frac{p_{\text{NH}_3}^2}{p_{\text{N}_2} \times p_{\text{H}_2}^3} = \frac{(0.224)^2}{(0.411)(0.903)^3}$$
$$Q = 0.166$$

Since  $Q > K_p$ 

so the reaction must proceed from right to left to establish equilibrium

(c) Calculate the value of the equilibrium constant, K<sub>c</sub> for this reaction

 $N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$ 

$$K_{p} = K_{c}(RT)^{\Delta n}$$
  

$$\Delta n = 2 - 4 = -2$$
  

$$K_{p} = K_{c}(RT)^{-2}$$
  

$$3.1 \times 10^{-4} = K_{c}(0.0821 \frac{\text{L atm}}{\text{mol K}} \times 700 \text{ K})^{-2}$$
  

$$3.1 \times 10^{-4} = K_{c}(57.5)^{-2}$$
  

$$3.1 \times 10^{-4} = K_{c}(3.0 \times 10^{-4})$$
  

$$1.0 = K_{c}$$

If 0.01 M of H2 was added to 0.01 M of CO2 in 1 L vessel, and the following reaction occurred:

 $H_2(g) + CO_2(g) \Leftrightarrow H_2O(g) + CO(g)$ 

### Calculate the concentration of all species at equilibrium at 750 K, Kc = 0.771

Step 1:

|                     | H <sub>2</sub> | CO <sub>2</sub> | H <sub>2</sub> O | СО |
|---------------------|----------------|-----------------|------------------|----|
| Initial             | 0.01           | 0.01            | 0                | 0  |
| <b>C</b> hange      | -x             | -x              | +x               | +x |
| <b>E</b> quilibrium | (o.o1 –x)      | (o.o1 –x)       | x                | x  |

<u>Step 2:</u>

$$K_c = \frac{[H_2 O][CO]}{[H_2][CO_2]} \qquad 0.711 = \frac{(x)(x)}{(0.01 - x)(0.01 - x)}$$

$$0.711 = \frac{(x)^2}{(0.01 - x)^2} \qquad \sqrt{0.711} = \sqrt{\frac{(x)^2}{(0.01 - x)^2}} \qquad x = 4.68 \text{ x} 10^{-3}$$

<u>Step 3:</u>

So 
$$[H_2O] = [CO] = 0.00468M$$
  
and  $[H_2] = [CO_2] = 0.0100 - 0.00468 = 0.00532M$ 

In a certain experiment, 0.243 M of NOCl, 0.146 M of NO and 1.98 M of  $Cl_2$  are placed in a container at 400°C. Will there be a net reaction to form more NO and  $Cl_2$  or more NOCl ( $K_c=2.1 \times 10^{-2}$ )?

 $2NOCI_{(g)} \rightleftharpoons 2NO_{(g)} + CI_{2(g)}$ 

1. Calculate Q<sub>c</sub>

$$Q_{c} = \frac{[NO]^{2}[Cl_{2}]}{[NOCl]^{2}}$$

$$Q_{c} = \frac{[0.146]^{2}[1.98]}{[0.243]^{2}}$$
$$Q_{c} = 0.71$$

2. Compare between  $Q_c$  and  $K_c$ 

 $Q_c > K_c$ 

To reach equilibrium, products (NO and  $Cl_2$ ) must be converted to the reactant (NOCl).

Q. Consider the following reaction at equilibrium:

 $2NH_3(g) \leftrightarrow N_2(g) + 3H_2(g)$   $\Delta H^\circ = +92.4 \text{ kJ}$ 

Le Châtelier's principle predicts that adding N<sub>2</sub> (g) to the system at equilibrium will result in \_\_\_\_\_\_.

- A. a decrease in the concentration of  $H_2$  (g)
- B. a decrease in the concentration of  $NH_3$  (g)
- C. removal of all of the  $H_2$  (g)
- D. an increase in the value of the equilibrium constant

Q. Consider the following reaction at equilibrium:

 $2NH_{3}(g) \leftrightarrow N_{2}(g) + 3H_{2}(g)$ 

Le Châtelier's principle predicts that the moles of H<sub>2</sub> in the reaction container will increase with......

- A. an increase in total pressure by the addition of helium gas (V and T constant)
- B. addition of some  $N_2$  to the reaction vessel (V and T constant)
- C. a decrease in the total volume of the reaction vessel (T constant)
- D. a decrease in the total pressure (T constant)

#### The reaction below is exothermic:

 $2SO_2(g) + O_2(g) \Leftrightarrow 2SO_3(g)$ 

Le Châtelier's Principle predicts that \_\_\_\_\_\_ will result in an increase in the number of moles of SO<sub>3</sub>(g)

in the reaction container.

- A. increasing the pressure
- B. increasing the volume of the container
- C. decreasing the pressure
- D. increasing the temperature

#### For the endothermic reaction

 $CaCO_3$  (s)  $\leftrightarrow$  CaO (s) + CO<sub>2</sub> (g)

Le Châtelier's principle predicts that \_\_\_\_\_\_ will result in an <u>increase in the number of moles of CO<sub>2</sub></u>.

- A. decreasing the temperature
- B. removing some of the  $CaCO_3$  (s)
- C. increasing the pressure
- D. increasing the temperature

In which of the following reactions would increasing pressure at constant temperature not change

the concentrations of reactants and products, based on Le Châtelier's principle?

- A.  $2N_2(g) + O_2(g) \leftrightarrow 2N_2O(g)$
- B.  $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$
- C.  $N_2(g) + O_2(g) \leftrightarrow 2NO(g)$
- D.  $N_2O_4(g) \leftrightarrow 2NO_2(g)$

Consider the following reaction at equilibrium:

$$2CO_2 (g) \leftrightarrow 2CO (g) + O_2 (g)$$
  $\Delta H^\circ = -514 \text{ kJ}$ 

Le Châtelier's principle predicts that an increase in temperature will \_\_\_\_\_\_.

A. increase the partial pressure of CO

B. decrease the value of the equilibrium constant

C. increase the value of the equilibrium constant

D. increase the partial pressure of  $O_2$  (g)

For the following reaction, write how the each of the changes will affect the indicated quantity, assuming a container of fixed size. Write "increase", "decrease", or "no change".

 $H_2(g) + Br_2(g) \leftrightarrow 2HBr(g)$   $\Delta H^\circ = -103.7 \text{ kJ}$ 

| Change                                  | [H <sub>2</sub> ] | [Br <sub>2</sub> ] | [HBr]     | K value   |
|-----------------------------------------|-------------------|--------------------|-----------|-----------|
| Some H <sub>2</sub> added               | decrease          | decrease           | increase  | No change |
| Some HBr added                          | increase          | increase           | decrease  | No change |
| Some H <sub>2</sub> removed             | increase          | increase           | decrease  | No change |
| Some HBr removed                        | decrease          | decrease           | increase  | No change |
| The temperature is increased            | increase          | increase           | decrease  | decrease  |
| The temperature is decreased            | decrease          | decrease           | increase  | inceasee  |
| Pressure is increased and the container | No change         | No change          | No change | No change |
| volume decreased                        |                   |                    |           |           |

Given the following reaction:

$$2A_{(g)} \leftrightarrow B_{(g)} + C_{(g)}$$
  $\Delta H^{\circ} = +27 \text{ kJ}$   $K = 3.2 \times 10^{-4}$ 

Which of the following would be true if the temperature were increased from 25°C to 100°C?

1. The value of K would be smaller.

2. The concentration of  $A_{(g)}$  would be increased.

3. The concentration of  $B_{(g)}$  would increase.

A. 1 only

B. 2 only

C. 3 only

D. 1 and 2 only

How would you regulate the temperature in this reaction (all substances are gases)

 $PCl_5 \leftrightarrow PCl_3 + Cl_2 + heat$ 

In order to do the following:

- A-increase the concentration of PCl<sub>5</sub>
- ∴ we need to <u>raise the temperature</u> to increase the reactant concentration because reverse reaction will be favoured
- - decrease the concentration of PCl<sub>3</sub>
- ∴ we need to <u>raise the temperature</u> to decrease the product concentration because reverse reaction will be favoured
- C-increase the amount of Cl<sub>2</sub>
- we need to <u>decrease the temperature</u> to increase the product concentration because forward reaction will be favoured
- Decrease the K<sub>eq</sub>

In exothermic reaction, increasing temperature will decrease the  $\rm K_{eq}$  by decreasing the product

Temperature increase favour the endothermic reaction,

Temperature decrease favours an exothermic reaction

This is an exothermic reaction So, increasing the temperature will <u>favour</u> the reverse reaction while decreasing temperature will <u>favour</u> the forward reaction How would decreasing the volume of the vessel reaction affect these equilibria (consider all the substances are gases):

 $CO + H_2 \iff H_2CO$ 

```
∆n=1-2=-1
```

So the reaction shift to the product (right) (forward reaction will be the favoured)

 $NH_4HS \Leftrightarrow NH_3 + H_2S$   $\Delta n=2-1=1$ So the reaction shift to the reactant (left) ( reverse reaction will be the favoured)

 $2NbCl_4 \Leftrightarrow NbCl_3 + NbCl_5$ 

∆n=2-2=0

So the reaction will not change (remain unchanged)

Decreasing the volume (increasing the pressure ) will favour the reaction that <u>decrease</u> the number of moles of gases.