Chapter 14

Chemical Equilibrium

Dr. Dalal Alezi dalezi@kau.edu.sa

02/12/2018

Write the type of reaction for the following reactions, homogenous OR heterogeneous reaction
A) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \simeq \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(\mathrm{aq})} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad$ Homogenous reaction (I and aq all are the same phase)
B) $\mathrm{Zn}_{(s)}+\mathrm{Cu}^{+2}{ }_{(a q)} \simeq \mathrm{Cu}_{(\mathrm{s})}+\mathrm{Zn}^{+2}$ (aq) \quad Heterogeneous reaction (s and aq phase, different phases)
C) $\mathrm{SnO}_{2(\mathrm{~s})}+2 \mathrm{CO}_{(\mathrm{g})} \rightleftharpoons \mathrm{Sn}_{(\mathrm{s})}+2 \mathrm{CO}_{2(\mathrm{~g})} \quad$ Heterogeneous reaction (s and g phase, different phases)
D) $\mathrm{CaCO}_{3(\mathrm{~s})} \pm \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2(\mathrm{~g})} \quad$ Heterogeneous reaction (s and g phase, different phases)

Which one of the following is the correct equilibrium constant expression $\left(\mathrm{K}_{\mathrm{c}}\right)$ for this equation.

$$
\mathrm{CO}_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \geq \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}
$$

A) $K_{C}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
B) $K_{C}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
C) $K_{C}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{CO}_{2}\right]}$
D) $K_{C}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
$\mathrm{H}_{2} \mathrm{O}_{(l)}$ is not included in the equilibrium constant expression.

Q2: Which is the correct equilibrium constant expression $\left(\mathrm{K}_{\mathrm{p}}\right)$ for the following reaction?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{H}_{2(\mathrm{~g})} \simeq 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

B) $\mathrm{K}_{\mathrm{p}}=\frac{P_{\mathrm{Fe}}^{2} \times \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}^{3}}{P_{\mathrm{Fe}_{2} \mathrm{O}_{3} \times P_{\mathrm{H}_{2}}^{3}}^{3}}$
C) $\mathrm{K}_{\mathrm{p}}=\frac{P_{\mathrm{H}_{2}}}{P_{\mathrm{H}_{2} \mathrm{O}}}$
D) $\mathrm{K}_{\mathrm{p}}=\frac{P_{\mathrm{H}_{2} \mathrm{O}}^{3}}{P_{\mathrm{H}_{2}}^{3}}$
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ and $\mathrm{Fe}_{(\mathrm{s})}$ are not included in the equilibrium constant expression.

Write an expression for the equilibrium constant for the formation of two moles of ammonia gas $\left(\mathrm{NH}_{3}\right)$ from nitrogen and hydrogen in their standard states

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}
$$

Write the correct K_{c} and K_{p} expressions for the following reaction?

$$
\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

$$
K_{c}=\frac{\left[\mathrm{CO}_{2}\right]^{3}\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}{\left[\mathrm{C}_{3} \mathrm{H}_{8}\right]\left[\mathrm{O}_{2}\right]^{5}}
$$

$$
K_{p}=\frac{P_{C O 2}^{3} P_{H 2 O}^{4}}{P_{C 3 H 8} P_{O 2}^{5}}
$$

Write an expression for the equilibrium constant for this reaction.

$$
\begin{gathered}
\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{Ca}^{2+}{ }_{(\mathrm{aq})} \\
K_{C}=\frac{\left[\mathrm{Ca}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^{2}}
\end{gathered}
$$

For the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow 2 \mathrm{C}$ the appropriate form for the equilibrium constant expression is:
a. $\quad[\mathrm{A}][\mathrm{B}]^{2} /[\mathrm{C}]$
b. $[\mathrm{A}]^{2}[\mathrm{~B}] /[\mathrm{C}]^{2}$
c. $[\mathrm{C}]^{2} /[\mathrm{A}]^{2}[\mathrm{~B}]$
d. $[\mathrm{A}][\mathrm{B}]^{2}[\mathrm{C}]$
e. none of the above

Write the equilibrium expression for the reaction

$$
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{Zn}\left(\mathrm{NH}_{3}\right)^{2+}(\mathrm{aq})
$$

a. $K=\left[\mathrm{Zn}^{2+}\right]+2\left[\mathrm{NH}_{3}\right]+\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)^{2+}\right]$
d. $K=\frac{\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)^{2+}\right]}{\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{2}}$
b. $K=\frac{\left[\mathrm{Zn}^{2+}\right]+2\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)^{2+}\right]}$
c. $K=\frac{\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)^{2+}\right]}$

At $2000^{\circ} \mathrm{C}$, carbon dioxide decomposes as shown.

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

If K_{c} is 6.4×10^{-7} and the concentrations of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ are $2.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ and $1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ at equilibrium, respectively, calculate the concentration of carbon dioxide.

$$
\begin{aligned}
& K=\frac{\left[\mathrm{COO}^{2}\left[\mathrm{O}_{2}\right]\right.}{\left[\mathrm{CO}_{2}\right]^{2}}\left[\mathrm{CO}_{2}\right]^{2}=\frac{\left.\left[\mathrm{CO}^{2}\right]^{2}\right]}{K} \\
& {\left[\mathrm{CO}_{2}\right]=\sqrt{\frac{\left(2.0 \times 10^{-3}\right)^{2}\left(1.0 \times 10^{-3}\right)}{\left(6.4 \times 10^{-7}\right)}}=7.9 \times 10^{-2} \mathrm{mol/L}}
\end{aligned}
$$

Q. If the reaction quotient Q has a smaller value than the related equilibrium constant, K, \qquad
A. the reaction is at equilibrium.
B. the reaction is not at equilibrium, and will make more products at the expense of reactants.
C. the reaction is not at equilibrium, and will make more reactants at the expense of products.
D. the value of K will decrease until it is equal to
Q. If the reaction quotient Q has a larger value than the related equilibrium constant, K, \qquad
A. the reaction is at equilibrium.
B. the reaction is not at equilibrium, and will make more products at the expense of reactants.
C. the reaction is not at equilibrium, and will make more reactants at the expense of products.
D. the value of K will increase until it is equal to Q

For the reaction represented above, the value of the equilibrium constant, K_{p}, is 3.1×10^{-4} at 700 . K .

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(a) Write the expression for the equilibrium constant, K_{p}, for the reaction

$$
K_{p}=\frac{p_{\mathrm{NH}_{3}}^{2}}{p_{\mathrm{N}_{2}} \times p_{\mathrm{H}_{2}}^{3}}
$$

(b) Predict the direction in which the reaction will proceed at $700 . \mathrm{K}$ if you Assume that the initial partial pressures of the gases are as follows: $\mathrm{p}_{\mathrm{N} 2}=0.411 \mathrm{~atm}, \mathrm{p}_{\mathrm{H} 2}=0.903 \mathrm{~atm}$, and $\mathrm{p}_{\mathrm{NH} 3}=0.224 \mathrm{~atm}$

$$
\begin{aligned}
Q & =\frac{p_{\mathrm{NH}_{3}}^{2}}{p_{\mathrm{N}_{2}} \times p_{\mathrm{H}_{2}}^{3}}=\frac{(0.224)^{2}}{(0.411)(0.903)^{3}} \\
Q & =0.166
\end{aligned}
$$

$$
\text { Since } Q>K_{p}
$$

so the reaction must proceed from right to left to establish equilibrium
(c) Calculate the value of the equilibrium constant, K_{c} for this reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
\begin{aligned}
& K_{p}=K_{c}(R T)^{\Delta n} \\
& \Delta n=2-4=-2 \\
& K_{p}=K_{c}(R T)^{-2}
\end{aligned}
$$

$$
3.1 \times 10^{-4}=K_{c}\left(0.0821 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}} \times 700 \mathrm{~K}\right)^{-2}
$$

$$
3.1 \times 10^{-4}=K_{c}(57.5)^{-2}
$$

$$
3.1 \times 10^{-4}=K_{c}\left(3.0 \times 10^{-4}\right)
$$

$$
1.0=K_{c}
$$

If 0.01 M of H 2 was added to 0.01 M of CO 2 in 1 L vessel, and the following reaction occurred:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

Calculate the concentration of all species at equilibrium at $750 \mathrm{~K}, \mathrm{Kc}=0.771$
Step 1:

	$\mathbf{H}_{\mathbf{2}}$	$\mathbf{C O}_{\mathbf{2}}$	$\mathbf{H}_{\mathbf{2}} \mathbf{O}$	$\mathbf{C O}$
Initial	0.01	0.01	0	0
Change	$-x$	$-x$	$+x$	$+x$
Equilibrium	$(0.01-x)$	$(0.01-x)$	x	x

Step 2:

$$
K_{c}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]} \quad 0.711=\frac{(x)(x)}{(0.01-x)(0.01-x)}
$$

Step 3:

$$
0.711=\frac{(x)^{2}}{(0.01-x)^{2}} \quad \sqrt{0.711}=\sqrt{ } \frac{(x)^{2}}{(0.01-x)^{2}} \quad x=4.68 \times 10^{-3}
$$

$$
\begin{aligned}
& \text { So }\left[\mathrm{H}_{2} \mathrm{O}\right]=[\mathrm{CO}]=0.00468 \mathrm{M} \\
& \text { and }\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]=0.0100-0.00468=0.00532 \mathrm{M}
\end{aligned}
$$

In a certain experiment, 0.243 M of $\mathrm{NOCl}, 0.146 \mathrm{M}$ of NO and 1.98 M of Cl_{2} are placed in a container at $400^{\circ} \mathrm{C}$. Will there be a net reaction to form more NO and Cl_{2} or more $\mathrm{NOCl}\left(\mathrm{K}_{\mathrm{c}}=2.1 \times 10^{-2}\right)$?

$$
2 \mathrm{NOCl}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

1. Calculate Q_{c}

$$
\begin{gathered}
\mathrm{Q}_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}{[N O C l]^{2}} \\
\mathrm{Q}_{\mathrm{c}}=\frac{[0.146]^{2}[1.98]}{[0.243]^{2}} \\
\mathrm{Q}_{\mathrm{c}}=0.71
\end{gathered}
$$

2. Compare between Q_{c} and K_{c}

$$
Q_{c}>K_{c}
$$

To reach equilibrium, products (NO and Cl_{2}) must be converted to the reactant (NOCl).
Q. Consider the following reaction at equilibrium:

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=+92.4 \mathrm{~kJ}
$$

Le Châtelier's principle predicts that adding $\mathrm{N}_{2}(\mathrm{~g})$ to the system at equilibrium will result in \qquad .
A. a decrease in the concentration of $\mathrm{H}_{2}(\mathrm{~g})$
B. a decrease in the concentration of $\mathrm{NH}_{3}(\mathrm{~g})$
C. removal of all of the $\mathrm{H}_{2}(\mathrm{~g})$
D. an increase in the value of the equilibrium constant
Q. Consider the following reaction at equilibrium:

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

Le Châtelier's principle predicts that the moles of H_{2} in the reaction container will increase with
A. an increase in total pressure by the addition of helium gas (V and T constant)
B. addition of some N_{2} to the reaction vessel (V and T constant)
C. a decrease in the total volume of the reaction vessel (T constant)
D. a decrease in the total pressure (T constant)

The reaction below is exothermic:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Le Châtelier's Principle predicts that \qquad will result in an increase in the number of moles of SO_{3} - (g) in the reaction container.
A. increasing the pressure
B. increasing the volume of the container
C. decreasing the pressure
D. increasing the temperature

For the endothermic reaction

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Le Châtelier's principle predicts that \qquad will result in an increase in the number of moles of CO_{2}.
A. decreasing the temperature
B. removing some of the $\mathrm{CaCO}_{3}(\mathrm{~s})$
C. increasing the pressure
D. increasing the temperature

In which of the following reactions would increasing pressure at constant temperature not change
the concentrations of reactants and products, based on Le Châtelier's principle?
A. $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
C. $\quad \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})$
D. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

Consider the following reaction at equilibrium:

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-514 \mathrm{~kJ}
$$

Le Châtelier's principle predicts that an increase in temperature will \qquad .
A. increase the partial pressure of CO
B. decrease the value of the equilibrium constant
C. increase the value of the equilibrium constant
D. increase the partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$

For the following reaction, write how the each of the changes will affect the indicated quantity, assuming a container of fixed size. Write "increase", "decrease", or "no change".

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HBr}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-103.7 \mathrm{~kJ}
$$

Change	$\left[\mathrm{H}_{2}\right]$	$\left[\mathrm{Br}_{2}\right]$	$[\mathrm{HBr}]$	K value
Some H_{2} added	decrease	decrease	increase	No change
Some HBr added	increase	increase	decrease	No change
Some H_{2} removed	increase	increase	decrease	No change
Some HBr removed	decrease	decrease	increase	No change
The temperature is increased	increase	increase	decrease	decrease
The temperature is decreased	decrease	decrease	increase	inceasee
Pressure is increased and the container	No change	No change	No change	No change
volume decreased				

Given the following reaction:

$$
2 \mathrm{~A}_{(\mathrm{g})} \leftrightarrow \mathrm{B}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})} \quad \Delta \mathrm{H}^{\circ}=+27 \mathrm{~kJ} \quad \mathrm{~K}=3.2 \times 10^{-4}
$$

Which of the following would be true if the temperature were increased from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$?

1. The value of K would be smaller.
2. The concentration of $A_{(g)}$ would be increased.
3. The concentration of $\mathrm{B}_{(\mathrm{g})}$ would increase.
A. 1 only
B. 2 only
C. 3 only
D. 1 and 2 only

How would you regulate the temperature in this reaction (all substances are gases)

$$
\mathrm{PCl}_{5} \leftrightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}+\text { heat }
$$

In order to do the following:

- A-increase the concentration of PCl_{5}
\therefore we need to raise the temperature to increase the reactant concentration
because reverse reaction will be favoured
- - decrease the concentration of PCl_{3}
\therefore we need to raise the temperature to decrease the product concentration because reverse reaction will be favoured
- C-increase the amount of Cl_{2}
we need to decrease the temperature to increase the product concentration because forward reaction will be favoured
- Decrease the $\mathrm{K}_{\text {eq }}$

In exothermic reaction, increasing temperature will decrease the $\mathrm{K}_{\text {eq }}$ by decreasing the product

Temperature increase favour the endothermic reaction,
 Temperature decrease favours an

 exothermic reactionThis is an exothermic reaction So, increasing the temperature will favour the reverse reaction while decreasing temperature will favour the forward reaction

How would decreasing the volume of the vessel reaction affect these equilibria (consider all the substances are gases):
$\mathrm{CO}+\mathrm{H}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}$
$\Delta n=1-2=-1$
So the reaction shift to the product (right) (forward reaction will be the favoured)
$\mathrm{NH}_{4} \mathrm{HS} \Leftrightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{~S}$
$\Delta \mathrm{n}=2-1=1$
So the reaction shift to the reactant (left) (reverse reaction will be the favoured)
$2 \mathrm{NbCl}_{4} \Leftrightarrow \mathrm{NbCl}_{3}+\mathrm{NbCl}_{5}$
$\Delta \mathrm{n}=2-2=0$
So the reaction will not change (remain unchanged)

Decreasing the volume (increasing the pressure) will favour the reaction that decrease the number of moles of gases.

