Ch. 12: Genetics

1. Asexual reproduction includes _____

- Binary fission

- budding

1. Offspring of asexual reproduction _____

- are [identical] to the original cell or organism ---- غلط] Different]

- Involves inheritance of all genes from [one] parent ---- [غلط] Two

1. Binary fission _____

- means dividing in half

- Occurs in [prokaryotic cells] ----- Eukrayotic] غلط]

- produces two [identical] cells from one cell ------ [غلط] Different]

- resulted in duplication of a single circular chromosome

- resulted in plasma membrane growth [inward] at the midpoint to divide the cells ----

[Outward غلط]

1. Prokaryotes are reproduced by _____

- binary fission

- asexually ---- غلط] sexually

2. Sexual reproduction Involves _____

- Offspring are similar to parents, but show variations in traits

- inheritance of unique sets of genes from two parents

2 Eukarvatic Cell Division includes
- meiosis
- mitosis
- produces two identical cells from one cell
3. The sequence of Eukaryotic Cell Cycle is
- G1, S, G2, and M [بالترتيب]
3. The Interphase of Eukaryotic Cell Cycle includes phases
- G1, S, and G2
4 is a part of Eukaryotic Cell Cycle
- G1
- G2
- S
4. G1
- first gap phase, growth and prepares for S-phase
4 is (are) first gap phase, growth and prepares for S-phase
- G1
4. G2
- second gap phase, growth and preparation for division
4 is (are) second gap phase,growth and preparation for division
- G2

4. ______ is (are) DNA synthesis phase, duplication of chromosomes, each becomes two sister chromatids

- S

4. S _____

- DNA synthesis phase, duplication of chromosomes, each becomes two sister chromatids

5. The all Mitotic phases of Eukaryotic Cell Cycle are _____

- Prophase, Prometaphase, Metaphase, Anaphase, and Telophase [الترتيب مهم]

5. _____ is a part of Mitosis of the Eukaryotic Cell Cycle

- Anaphase

- Prophase

- Metaphase
- Telophase

5. Prophase _____

- Chromatin condenses and chromosomes become visible

5. ______ is (are) Chromatin condenses and chromosomes become visible

- Prophase

5. Metaphase _____

- Chromosomes align on cells midplane on top of each other

5. ______ is (are) Chromosomes align on cells midplane on top of each other

- Metaphase

5. Anaphase _____

- Sister chromatids separate, move to opposite poles

5.	is (are) Sister chromatids separate, move to opposite poles	

- Anaphase

5. Telophase _____

- Chromosomes decondensed. Cytokinesis begins

5. _____ is (are) Chromosomes decondensed. Cytokinesis begins

- telophase

6. Duplicated chromosome is made of_____

- two identical DNA molecules

- two Sister [chromatids] ----- [chromatin أو chromosome أو chromomer أ

6. Sister chromatids are joined at a narrow region called the ______

- centromere

7. Cytoplasmic division _____

- is called [Cytokinesis] ------ [غلط] Cytogenesis

[بس الد تيلو صح، اذا جاك "انافيس" أو "بروفيس" كلها غلط. التيلوفيس صح بس] ----- overlaps with telophase -

7. Cytokinesis in plant cells ______

- A cell plate forms in the middle from vesicles

- separates the contents into two cells

- forms a cell plate

7. Cytokinesis in aanimal cells _____

- forms a cleavage furrow

8. Diploid cells _____

- are mainly somatic cells
- have two homologous sets of chromosomes (2n)

8. Haploid cells _____

- are sex cells

- have one set of chromosomes (1n)

8. Meiosis division _____

- converts diploid nuclei to haploid nuclei

8. Meiosis _____

- occurs in the testes
- occurs in the ovaries
- occurs in the [sex organs] ------ [غلط] kidney] غلط] داريج
- produces [haploid] cells ------ (فاط diploid]
- produces gametes
- somatic cells] غلط] ------
- produces sex cells
- produces eggs
- has [two] cytokimesis
- has [two] devisions
- has [one] S phase
- has [one] interphase

8. sex chromosomes are _____

- different in Length
- different in Centromere position
- different in Gene locations

8. Homologous chromosomes are _____

- matched in Length
- matched in Centromere position
- matched in Gene locations

8. Pairs of autosomes _____

- have the [same] genetic information ----- (غلط) different]
- [matched] in Centromere position ------ غلط] different]
- [matched] in Length ----- غلط] different]
- [matched] in Gene locations ------ فلط] different]
- have the same size

9. homologous chromosomes separate during ______

- meiosis I
- Anaphase

9. Crossing over occurs during_____

- prophase of meiosis I
- meiosis I

9. Tetrads forms during_____

- meiosis I
- metaphase of meiosis I

9. Synapsis occurs during_____

- prophase of meiosis I
- meiosis I

9. Sister chromatids separate during _____

- mitosis
- Anaphase
- meiosis II

9. During meiosis I _____

- haploid cell is produced
- homologous chromosomes separate
- The chromosome number is reduced by half 2n ? 1n

9. During meiosis II _____

- haploid cell is produced
- sister chromatids separate
- The chromosome number remains the same

10. Which of the following is Heterozygous?

- Two different alleles
- Aa

10. Which of the following is Homozygous?

- Two identical alleles
- aa
- AA

10. Which of the following statements are true
- The allele that disappear in the [F1] generation is called [recessive] allele غلط] dominat]
- dominant allele [appears] in the [F2] generation [disappear]
- dominant allele appears in the F1 generation
- Recessive allele [appears] in the [F2] generation [disappear]
10. Copy of a gene is called
- alleles
10. In Mendel experiment, the heritable factors is now known as
- genes
11. Open square in human pedigree is symbol for
- normal male
11 Filled square in human nedigree is symbol for
- affected male
11. Open circle in human pedigree is symbol for
- normal female
11. Filled circle in human pedigree is symbol for
- affected female
11. Normal male in genetic pedigree is represented by
- open square

Filled square	
- i illi u Squafe	-
11. Normal f	emale in genetic pedigree is represented by
- Open circle	
11. Affected	female in genetic pedigree is represented by
- Filled circle	
12	is referred to as Heterozygote has intermediate phenotype
- Incomplete	dominance
12. Incomple	te dominance is referred to
12. Incomple - Heterozygo 12	te dominance is referred to te has intermediate phenotype is referred to as The phenomenon of one gene mutation being responsible
 12. Incomple Heterozygo 12 for or affecting Pleiotropy 	te dominance is referred to te has intermediate phenotype is referred to as The phenomenon of one gene mutation being responsible ng more than one phenotypic characteristic
 12. Incomple Heterozygo 12 for or affecting Pleiotropy 12. Pleiotrop 	<pre>ete dominance is referred to</pre>
 12. Incomple Heterozygo 12 for or affecting Pleiotropy 12. Pleiotropy 12. Pleiotropy The phenon phenotypic c 	<pre>te dominance is referred to</pre>
 Incomple Heterozygo Heterozygo or affecting Pleiotropy Pleiotropy The phenomorphenotypic c 12 	<pre>te dominance is referred to</pre>
 12. Incompleter in the interval of th	te dominance is referred tote has intermediate phenotype is referred to as The phenomenon of one gene mutation being responsible ng more than one phenotypic characteristictermed to
 Incomple Heterozygo Heterozygo for or affecting Pleiotropy Pleiotropy Pleiotrop The phenon phenotypic c Codominan Codominan 	te dominance is referred to

12. _______ is referred to as Three or more alleles in a population for the same locus
Multiple alleles

12. Multiple alleles is referred to _____

- Three or more alleles in a population for the same locus

12. ______ is referred to as Multiple independent pairs of genes may have similar and additive effects on the phenotype

- Polygenes

12. Polygenes is referred to _____

- Multiple independent pairs of genes may have similar and additive effects on the phenotype

12. Which of the following is an exception to Mendels Laws?

- Pleiotropy
- Polygenes
- Incomplete dominance
- Co-dominance
- Multiple alleles

13. Which of the following is ture in bees sex determination system?

- Diploid = female
- haploid = male

13. Which of the following is ture in mammals sex determination system?

- XX = female
- XY = male

13. Which of the following is ture in grasshoppers sex determination system?

- XX = female
- XO = male

13. Which of the following is ture in birds sex determination system?

- ZW = female
- ZZ = male