Test bank chapter (14)

Choose the most correct answer

1. Which is the correct equilibrium constant expression for the following reaction?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) $\mathrm{Kc}=\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]\left[\mathrm{H}_{2}\right]^{3} /[\mathrm{Fe}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}$
b) $\mathrm{Kc}=\left[\mathrm{H}_{2}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]$
c) $\mathrm{Kc}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{3} /\left[\mathrm{H}_{2}\right]^{3}$
d) $\mathrm{Kc}=[\mathrm{Fe}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3} /\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]\left[\mathrm{H}_{2}\right]^{3}$
2. The following reactions occur at 500 K . Arrange them in order of increasing tendency to proceed to completion (least \rightarrow greatest tendency).

$$
\begin{array}{ll}
\text { 1. } 2 \mathrm{NOCl} \leftrightarrow 2 \mathrm{NO}+\mathrm{Cl}_{2} & \mathrm{Kp}=1.7 \times 10^{-2} \\
\text { 2. } 2 \mathrm{SO}_{3} \leftrightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2} & \mathrm{Kp}=1.3 \times 10^{-5} \\
\text { 3. } 2 \mathrm{NO}_{2} \leftrightarrow 2 \mathrm{NO}+\mathrm{O}_{2} & \mathrm{Kp}=5.9 \times 10^{-5}
\end{array}
$$

a) $2<1<3$
b) $1<2<3$
c) $2<3<1$
d) $3<2<1$
3.Calculate Kp for the below reaction if Kc at for this reaction is $2.1 \times 10^{-\mathbf{2}}$ at $400^{\circ} \mathrm{C}$.

$$
2 \mathrm{NOCl}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

a) 0.689
b) 0.115
c) 0.137
d) 1.2
4. For the following reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

$\mathrm{Kc}=\mathbf{5 0 . 2}$ at $445{ }^{\circ} \mathrm{C}$. If $\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=[\mathrm{HI}]=1.75 \times 10^{-3} \mathrm{M}$ at $445{ }^{\circ} \mathrm{C}$, which one of these statements is true?
a) The system is not at equilibrium; thus, no concentration changes will occur.
b) The concentrations of HI and I_{2} will increase as the system approaches equilibrium.
c) The concentration of HI will increase as the system approaches equilibrium.
d) The concentrations of H_{2} and HI will decrease as the system moves toward equilibrium.
5. For the below reaction at equilibrium, which choice gives a change that will shift the position of equilibrium to favor formation of more products?

$$
2 \mathrm{NOBr}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

$$
\Delta \mathbf{H}^{0}{ }_{\mathrm{rxn}}=30 \mathrm{~kJ} / \mathrm{mol}
$$

a) Increase the total pressure by decreasing the volume.
b) Add more NO.
c) Remove Br_{2}.
d) Lower the temperature.

6 - For the following reaction at equilibrium in a reaction vessel, which one of these changes would cause the $\mathbf{B r}_{2}$ concentration to decrease?

$$
2 \mathrm{NOBr}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}), \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=30 \mathrm{~kJ} / \mathrm{mol}
$$

a) Increase the temperature.
b) Remove some NO.
c) Add more NOBr .
d) Compress the gas mixture into a smaller volume.
7. For the below reaction at equilibrium, if we increase the reaction temperature, the equilibrium will:

$$
2 \mathrm{SO}_{3} \leftrightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \quad\left(\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=198 \mathrm{~kJ} / \mathrm{mol}\right)
$$

a) shift to the right.
b) shift to the left.
c) not shift.
d) The question cannot be answered because the equilibrium constant is not given.
8. For the equilibrium reaction:
$\mathbf{2 S O} \mathbf{2}_{\mathbf{2}}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2 S O}_{\mathbf{3}}(\mathrm{g}), \quad \Delta \mathrm{H}^{\mathbf{o}}{ }_{\mathrm{rxn}}=\mathbf{- 1 9 8} \mathrm{kJ} / \mathrm{mol}$.
Which one of these factors would cause the equilibrium constant to increase?
a) Decrease the temperature.
b) Increase the temperature.
c) Add SO_{2} gas
d) Remove O_{2} gas.
9. The reaction below is endothermic. If the temperature is increased,

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a) more SO_{3} will be produced.
b) Kc will increase.
c) Kc will decrease.
d) no change will occur in Kc.
10. If a catalyst is added to a chemical reaction, the equilibrium yield of a product will be, and the time taken to come to equilibrium will be \qquad .than before.
a) higher; less
b) lower; the same
c) higher; the same
d) the same; less

11- For the reaction:

$$
\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g})
$$

$\mathrm{Kc}=\mathbf{0 . 0 6 0 0}$ at a certain temperature. In an equilibrium mixture of the three gases, $\left[\mathrm{NH}_{3}\right]=$ 0.242 M and $\left[\mathrm{H}_{2}\right]=1.03 \mathrm{M}$. What is the concentration of N_{2} in this system?
a) 3.9 M
b) 0.003 M
c) 0.89 M
d) 1.12 M

12. Consider the reaction,

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

If an equilibrium mixture of these three substances is compressed, equilibrium will \qquad ., because \qquad
a) shift to the right; higher pressure favors fewer moles of gas
b) shift top the right; higher pressure favors more moles of gas
c) shift to the left; higher pressure favors fewer moles of gas
d) shift to the left; higher pressure favors more moles of gas

13- Consider the equilibrium system:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{CO}(\mathrm{~g})
$$

If more $\mathbf{C}(s)$ is added, the equilibrium will \qquad ; if CO is removed the equilibrium will \qquad
a) shift to the left; shift to the left
b) shift to the right; shift to the left
c) be unchanged; shift to the right
d) be unchanged; shift to the left
14. Consider the exothermic reaction at equilibrium:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

If the system is cooled, the equilibrium will \qquad because \qquad
a) shift to the left; decreased temperature favors an exothermic reaction
b) shift to the right; decreased temperature favors an exothermic reaction
c) shift to the right; decreased temperature favors an endothermic reaction
d) shift to the left; decreased temperature favors an endothermic reaction
15. A large value of the equilibrium constant indicates that when the reaction reaches equilibrium, mostly \qquad will be present.
a) reactants
b) products
c) catalysts
d) shrapnel
16. When equilibrium is achieved?
a) $\mathrm{Q}>\mathrm{K}$
b) $\mathrm{Q}<\mathrm{K}$
c) $\mathrm{Q}=\mathrm{K}$
d) $\mathrm{Q} 2=\mathrm{K}$
17. for the following reaction:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

If all species are gases and H_{2} is added, the amount of CO present at equilibrium will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.
18. For the reaction:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

If all species are gases and $\mathrm{H}_{2} \mathrm{O}$ is added, the amount of CO present at equilibrium will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.
19. For the reaction:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

If the reaction is endothermic and the temperature is raised, the amount of CO present will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.
20. For the reaction:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

If all species are gases and the container is compressed, the amount of CO present will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.
21. What is K_{P} in terms of K_{c} for the following reaction?

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

a) $\mathrm{Kp}=\mathrm{Kc} \mathrm{RT}$
b) $\mathrm{Kp}=\mathrm{Kc} / \mathrm{RT}$
c) $\mathrm{Kp}=\mathrm{KcR} \mathrm{R} / \mathrm{T}$
d) $\mathrm{Kp}=\mathrm{Kc} /(\mathrm{RT})^{2}$
22. What is the correct equilibrium constant expression for the reaction:

$$
\mathrm{P}(\mathrm{~s})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{PCl}_{3}(\mathrm{l})
$$

a. $\frac{\left[\mathrm{PCl}_{3}\right]^{4}}{\left[\mathrm{P}_{4}\right]\left[\mathrm{Cl}_{2}\right]^{6}}$
b. $\frac{1}{\left[\mathrm{Cl}_{2}\right]^{6}}$
c. $\frac{\left[\mathrm{PCl}_{3}\right]^{4}}{\left[\mathrm{Cl}_{2}\right]^{6}}$
d. $\frac{\left[\mathrm{PCl}_{3}\right]^{4}}{[\mathrm{P}]\left[6 \mathrm{Cl}_{3}\right]}$
23. The equation relating Kp and Kc is:
a) $\mathrm{Kp}=\mathrm{kc}(\mathrm{RT})^{\Delta \mathrm{n}}$
b) $K p=K c R T^{\Delta n}$
c) $K c=K p R T^{\Delta n}$
d) $K c=K p(R T)^{\Delta n}$
24. Kp will be equal to Kc if:
a) $\Delta n=1$
b) $\Delta \mathrm{n}=0$
c) $\Delta \mathrm{n}=-1$
d) $\mathrm{RT}=0$
25. Consider the reversible reaction at equilibrium at $392{ }^{\circ} \mathrm{C}$:

$$
2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \leftrightarrow \mathrm{C}(\mathrm{~g})
$$

The partial pressures are found to be: A: $6.70 \mathrm{~atm}, \mathrm{~B}: 10.1 \mathrm{at}, \mathrm{C}: \mathbf{3 . 6 0} \mathbf{~ a t m}$. Evaluate Kp for this reaction.
a) 7.94×10^{-3}
b) 0.0794
c) 0.794
d) 7.94
26. Which of the following will result in an equilibrium shift to the right?

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{5}(\mathrm{~g})
$$

$$
\Delta H=-87.9 \mathrm{KJ} / \mathrm{mol}
$$

a) Increase temperature/increase volume
b) Increase temperature/decrease volume
c) decrease temperature/increase volume
d) decrease temperature/decrease volume
27. Which accurately reflects the change in concentration that will occur if O_{2} is added to disturb the equilibrium?

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

	$[\mathbf{N O}]$	$\left[\mathbf{O}_{2}\right]$	$\left[\mathbf{N O}_{2}\right]$
a)	Increase	Increase	Increase
b)	Increase	Increase	Decrease
c)	Decrease	Decrease	Decrease
d)	Decrease	Increase	Increase

