
CHAPTER-12 PROJECT MANAGEMENT 

INTRODUCTION 

Most realistic projects that organizations like Microsoft, General Motors or the U.S. Defense 

Department undertake are large and complex. A builder putting up an office building must 

complete thousands of activities costing millions of dollars. NASA must inspect countless 

components before it launches a rocket. Almost every industry worries about how to manage 

similar large-scale, complicated projects effectively. It is a difficult problem and the stakes are 

high. 

The first step in planning and scheduling a project is to develop the work breakdown 

structure. This involves identifying the activities that must be performed in the project. An 

activity is a job or task that is a part of a project. The beginning or end of an activity is called 

an event. There may be varying levels of detail and each activity may be broken into its most 

basic components. The time, cost, resource requirements, predecessors and person(s) 

responsible are identified for each activity. When this has been done, a schedule for the project 

can be developed. 

The program evaluation and review technique (PERT) and the critical path 

method (CPM) are two popular quantitative analysis techniques to help plan, schedule, 

monitor, and control  large and complex projects. 

When they were first developed, PERT and CPM were similar in their basic approach 

but they differed in the way activity times were estimated. For every PERT activity, three time 

estimates are combined to determine the expected activity completion time. Thus, PERT is a 

probabilistic technique. On the other hand, CPM is a deterministic technique since it is assumed 

that the times are known with certainty. They have become so similar that they are commonly 

considered one technique, PERT/CPM. 

 

Six Steps of PERT/CPM 

1. Define the project and all of its significant activities or tasks. 

2. Develop the relationships among the activities and decide which activities must 

precede others. 

3. Draw the network connecting all of the activities. 

4. Assign time and/or cost estimates to each activity. 

5. Compute the longest time path through the network; this is called the critical path. 

6. Use the network to help plan, schedule, monitor, and control the project. 

 

Finding the critical path is a major part of controlling a project. The activities on the critical 

path represent tasks that will delay the entire project if they are delayed. Managers derive 

flexibility by identifying noncritical activities and replanning, rescheduling and reallocating 

resources such as personnel and finances. 

 

 

 

 

 



PERT/CPM: Almost any large project can be subdivided into a series of smaller activities or 

tasks that can be analyzed with PERT/CPM. When you recognize that projects can have 

thousands of specific activities, you see why it is important to be able to answer questions such 

as the following: 

1. When will the entire project be completed? 

2. What are the critical activities or tasks in the project, that is, the ones that will delay 

the entire project if they are late? 

3. Which are the non-critical activities, that is, the ones that can run late without delaying 

the entire project’s completion?  

4. If there are three time estimates, what is the probability that the project will be 

completed by a specific date? 

5. At any particular date, is the project on schedule, behind schedule, or ahead of 

schedule? 

6. On any given date, is the money spent equal to, less than, or greater than the budgeted 

amount?  

7. Are there enough resources available to finish the project on time? 

  

General Foundry Example of PERT/CPM   

General Foundry, Inc., a metalworks plant in Milwaukee, has long been trying to avoid the 

expense of installing air pollution control equipment. The local environmental protection group 

has recently given the foundry 16 weeks to install a complex air filter system on its main smoke 

stack. General Foundry was warned that it will be forced to close unless the device is installed 

in the allotted period. Lester Harky, the managing partner, wants to make sure that installation 

of the filtering system progresses smoothly and on time. 

When the project begins, the building of the internal components for the device (activity A) 

and the modifications that are necessary for the floor and roof (activity B) can be started. The 

construction of the collection stack (activity C) can begin once the internal components are 

completed and pouring of the new concrete floor and installation of the frame (activity D) can 

be completed as soon as the roof and floor have been modified. After the collection stack has 

been constructed, the high temperature burner can be built (activity E) and the installation of 

the pollution control system (activity F) can begin. The air pollution device can be installed 

(activity G) after the high-temperature burner has been built, the concrete floor has been poured 

and the frame has been installed. Finally, after the control system and pollution device have 

been installed, the system can be inspected and tested (activity H). 

All of these activities seem rather confusing and complex until they are placed in a network. 

First, all of the activities must be listed. This information is shown in Table 12.1 We see in the 

table that before the collection stack can be constructed (activity C), the internal components 

must be built (activity A). Thus, activity A is the immediate predecessor of activity C. 

Similarly, both activities D and E must be performed just prior to installation of the air pollution 

device (activity G). 

 

 

 



 

Table 12.1 Activities and Immediate Predecessors for General Foundry, Inc. 

 

Drawing the PERT/CPM Network 

There are two common techniques for drawing PERT networks. The first is called Activity-on-

node (AON) because the nodes represent activities. The second is called Activity-on-arc (AOA) 

because the arcs are used to represent the activities. The AON approach is easier and more 

commonly used in software packages. 

In constructing an AON network, there should be one node representing the start of the 

project, and one node representing the finish of the project. There will be one node (represented 

as a rectangle in this chapter) for each activity. Figure 12.1 gives the entire network for General 

Foundry. The arcs (arrows) are used to show the predecessors for the activities. For example, 

the arrows leading into activity G indicate that both D and E are immediate predecessors for G 

 

 
Figure 12.1 Network for General Foundry Inc. 

 

 

 

 

 



Activity Times 

The next step in both CPM and PERT is to assign estimates of the time required to complete 

each activity. For some projects, such as construction projects, the time to complete each 

activity may be known with certainty. The developers of CPM assigned just one time estimate 

to each activity. These times are then used to find the critical path. 

In many projects, there is uncertainty about activity times. For this reason, the developers of 

PERT employed a probability distribution based on three time estimates for each activity. A 

weighted average of these estimates is used with PERT in place of the single time estimate 

used with CPM and these averages are used to determine the critical path. The time estimates 

in PERT are 

Optimistic time (a) = time an activity will take if everything goes as well as possible. 

There should be only a small probability (say, 1/100) of this occurring. 

 

Pessimistic time (b) = time an activity would take assuming very unfavorable 

conditions. There should also be only a small probability that the activity will really 

take this long. 

 

 Most likely time (m) = most realistic time estimate to complete the activity 

 

PERT often assumes that time estimates follow beta probability distribution (See Fig 12.2). 

This continuous distribution has been found to be appropriate, in many cases, for determining 

an expected value and variance for activity completion times. 

 

Fig 12.2 Beta Probability Distribution with Three Time Estimates 

To find the expected activity time (t), the beta distribution weights the estimates as follows: 

𝑡 =
𝑎 + 4𝑚 + 𝑏

6
                                   … . . (12.1) 

To compute the dispersion or variance of activity completion time, we use this formula 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = (
𝑏 − 𝑎

6
)

2

                    … … . (12.2) 

Table 12.2 shows General Foundry’s optimistic, most likely and pessimistic time estimates 

for each activity. It also reveals the expected time (t) and variance for each of the activities, 

as computed with Equations 12.1 and 12.2. 



 

How to Find the Critical Path 

Once the expected completion time for each activity has been determined, we accept it as the 

actual time of that task. Variability in times will be considered later. 

Although Table 12.2 indicates that the total expected time for all eight of General Foundry’s 

activities is 25 weeks, it is obvious in Fig 12.3 that several of the tasks can be taking place 

simultaneously. To find out just how long the project will take, we perform the critical path 

analysis for the network. 

 

Figure 12.3 General Foundry’s Network with Expected Activity Times 

The critical path is the longest time path route through the network. If Lester Harky wants to 

reduce the total project time for General Foundry, he will have to reduce the length of some 

activity on the critical path. Conversely, any delay of an activity on the critical path will delay 

completion of the entire project. 

 



To find the critical path, we need to determine the following quantities for each activity in the network: 

1. Earliest start time (ES): the earliest time an activity can begin without violation of immediate 

predecessor requirements. 

2. Earliest finish time (EF): the earliest time at which an activity can end. 

3. Latest start time (LS): the latest time an activity can begin without delaying the entire project. 

4. Latest finish time (LF): the latest time an activity can end without delaying the entire project. 

 

In the network, we represent these times as well as activity times (t) in the nodes, as seen here: 

 
We first show how to determine the earliest times. When we find these, the latest times can be 

computed. 

 

EARLIEST TIMES 

 

Earliest finish time = Earliest start time + Expected activity time 

    EF = ES + t      (12.3) 

Earliest start = Largest of the earliest finish times of immediate predecessors 

 ES = Largest EF of immediate predecessors 

 

The start of the whole project will be set at time zero. Therefore, any activity that has no 

predecessors will have an earliest start time of zero. So ES = 0 for both A and B in the General 

Foundry problem, as seen here: 

 
The rest of the earliest times for General Foundry are shown in Figure 12.4. These are found 

using a forward pass through the network. 

 

 
Fig.12.4 General Foundry’s Earliest Start (ES) and Earliest Finish (EF) Times 

 

 

 



LATEST TIMES 

The next step in finding the critical path is to compute the latest start time (LS) and the latest 

finish time (LF) for each activity. We do this by making a backward pass through the network, 

that is, starting at the finish and working backward. 

 

 Latest start time = Latest finish time – Expected activity time 

           LS = LF – t    (12.4) 

 Latest finish time = Smallest of latest start times for following activities 

           LF = Smallest LS of following activities 

All the latest times are shown in Figure 12.5 

 

 
Fig 12.5 General Foundry’s Latest Start (LS) and Latest Finish (LF) Times 

 

CONCEPT OF SLACK IN CRITICAL PATH COMPUTATIONS  

When ES, LS, EF and LF have been determined, it is a simple matter to find the amount of 

slack time or free time, that each activity has. Slack is the length of time an activity can be 

delayed without delaying the whole project. 

Mathematically,  

Slack = LS−ES,   or  Slack = LF−EF  ….(12.5) 

Table 12.3 summarizes ES, EF, LS, LF and slack times for all of General Foundry’s activities. 

Activity B, for example, has 1 week of slack time. This means that it can be delayed up to 1 

week without causing the project to run any longer than expected. 

 

Table 12.3 General Foundry’s Schedule and Slack Times 

 



On the other hand, activities A, C, E, G and H have no slack time; this means that none of them 

can be delayed without delaying the entire project. Because of this, they are called critical 

activities and are said to be on the critical path. The General Foundry’s critical path is shown 

in network form in Figure 12.6. The total project completion time (T), 15 weeks is seen as the 

largest number in the EF or LF columns of Table 12.3 

Figure 12.6 General Foundry’s Critical Path (A→C→E→G→H) 

  

Probability of Project Completion 

The critical path analysis helped us determine that the foundry’s expected project completion 

time is 15 weeks. Harky knows, however, that if the project is not completed in 16 weeks, 

General Foundry will be forced to close by environmental controllers. He is also aware that 

there is significant variation in the time estimates for several activities. Variation in activities 

that are on critical path can affect overall project completion- possibly delaying it. 

PERT uses the variance of critical path activities to help determine the variance of the overall 

project. If the activity times are statistically independent, the project variance is computed by 

summing the variances of the critical activities: 

 Project variance = ∑ variances of activities on the critical path  ….(12.6) 

From Table 12.2 we know that 

 

Hence, the Project Variance =
4
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+

4

36
+

36

36
+
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+

4

36
= 3.111 

 

 



We know that the standard deviation is just the square root of the variance, so 

Project standard deviation, 𝜎𝑇 = √Project variance 

 = √3.111 = 1.76weeks 

With the assumption that the activity times are independent and total project completion time 

follows a normal probability distribution, the bell-shaped curve shown in Figure 12.7 can be 

used to represent project completion dates. It also means that there is a 50% chance that the 

entire project will be completed in less than the expected 15 weeks and a 50% chance that it 

will exceed 15 weeks. 

Figure 12.7 Probability Distribution for Project Completion Times 

 

For Harky to find the probability that his project will be finished on or before the 16-week 

deadline, he needs to determine the appropriate area under the normal curve. The standard 

normal equation can be applied as follows: 

𝑧 =
𝐷𝑢𝑒 𝑑𝑎𝑡𝑒−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛

𝜎𝑇
     ….(12.7) 

  =
16−15

1.76
= 0.57  

Where z is the no of standard deviations the due date lies from the mean or expected date. 

Referring to the normal table, we find a probability of 0.71566. Thus, there is a  71.6% chance 

that the pollution control equipment can be put in place in 16 weeks or less. This is shown in 

Figure 12.8 

Figure 12.8 Probability of General Foundry’ Meeting the 16 Week Deadline 

 



Example: Given the following project network and table. 

 

  
 

 

 

 

 

 

 

 

 

 

 

a) Fill in the table to give the immediate predecessor(s) for each activity. 

b) What will be the project's estimated completion time? 

c) Identify Critical activities and the critical path. 

 

Solution: 
a. See the table 

 

 
 

b. The project's estimated completion time =18 

 

c. Since activities C, D and G have 0 slack, there C, D and G are critical activities. The path 

through these activities will be a critical path i.e. C    →   D      →    G 

 

 

Activity Estimated 

Activity Time (weeks) 

Immediate 

Predecessors 

A 3 - 

B 4 - 

C 3 - 

D 12 C 

E 5 B 

F 7 A 

G 3 D, E, F 



Example: In a project following are the activities’ ES, LS, EF and LF times 

 

Activity 
Earliest 

start (ES) 

Latest 

start (LS) 

Earliest 

finish (EF) 

Latest 

finish 

(LF) 

Slack 

 

Activities are on 

Critical path 

Yes or No 

A 0 0 5 5   

B 0 6 6 12   

C 5 8 9 12   

D 5 7 8 10   

E 5 5 6 6   

F 6 6 10 10   

G 10 10 24 24   

 

a. Fill the blank space in the table 

b. What are the critical activities? 

 

Solution: 
 

a.  

 

Activity 
Earliest 

start (ES) 

Satest 

start 

(LS) 

Earliest 

finish (EF) 

Latest 

finish 

(LF) 

Slack 

(LS-

ES) 

Activities are 

on Critical path 

Yes or No 

A 0 0 5 5 0 Yes 

B 0 6 6 12 6 No 

C 5 8 9 12 3 No 

D 5 7 8 10 2 No 

E 5 5 6 6 0 Yes 

F 6 6 10 10 0 Yes 

G 10 10 24 24 0 Yes 

 

b. A, E, F and G are critical activities. 

 

 

 

 

 

 

 

 

 



Example: Tom Schreiber, a director of personal of Management Resources, Inc., is in the 

process of designing  a program that its customers can use in the job finding process.  Some of 

the activities including preparing resume, writing letters, making  appointments to see 

prospective employers, researching companies and industries, and so on. Some of the 

information on the activities is shown in the following table:                  

  

 

 

 

 

Draw the PERT network associated with the activity and calculate activities expected time.  

  

Solution: The PERT diagram for the given problem is as follows:    

  

 
  

Expected time(t) =      
𝑎+4𝑚+𝑏

6
 

 

Activity  a  m  b  Expected 

time (t) 

 

A 1 2 3 2  

B 2 3 4 3  

C 4 5 6 5  

D 8 9 10 9  

E 2 5 8 5  

F 4 5 6 5  

G 1 2 3 2 

  

Activity  

Immediate 

Predecessor  

Optimistic 

time    “a”  

Most likely 

time  “m”  

 Pessimistic 

time   “b”  

A  --  1  2  3  

B  --  2  3  4  

C  A  4  5  6  

D  B  8  9  10  

E  C, D  2  5  8  

F  B  4  5  6  

G  E  1  2  3  

Star

t 

  

A   

B   

C   

D   

E   

F   

G   

Finis

h 

  



Example: Consider the following project schedule, the times are estimated and provided in 

the following table:  

  

  

  

 

 

 

 

 

 

Draw the PERT and calculate the variances.   

Solution: The PERT diagram for the given problem is as follows:    

 

  Variance = (
𝑏−𝑎

6
)2 

  

Activity  

  

a  m  b  Variance  

A  8  10  12  4/9  

B  6  7  9  ¼  

C  3  3  4  1/36  

D  10  20  30  100/9  

E  6  7  8  1/9  

 

 

 

 

 

 

    

Activity  

Immediate 

Predecessor  

Optimistic 

time    “a”  

Most likely 

time“m”  
 Pessimistic 

time   “b”  

A  --  8  10  12  

B  --  6  7  9  

  

C  A 3  3  4  

D  B  10  20  30  

E  C  6  7  8  

  

  

  

  

    

  

Start   

A   

B   

C   

D   

E   

Finish   



Example: Sid Davidson is the personal director of Babson and Willcount, a company that 

specializes in consulting and research. One of the training programs that Sid is considering for 
the middle level managers of Babson and Willcount is leadership training. Sid has listed a 
number of activities that must be completed  before a training program of this nature could be 
conducted. The activities, immediate predecessors and activity times appear in the following 

table :  

  

 Activity  Immediate predecessors  Time (days)  

A  -  2  

B  -  5  

C  -  1  

D  B  10  

E  A,D  3  

F  C  6  

G  E,F  8  

Construct the network for this problem and determine the earliest start, earliest finish, latest 

start, latest finish and slack time for each activity.       

Solution:  The PERT diagram for the given problem is as follows:                    

  

                     

  

Activity  

 Earliest 

start time 

(ES) 

Earliest 

finish time  

(EF) 

 Latest 

start time  

(LS) 

 Latest 

Finish time 

(LF)   

 Slack  

LS - ES 

A 0 2 13 15 13 

B 0 5 0 5 0 

C 0 1 11 12 11 

D 5 15 5 15 0 

E 15 18 15 18 0 

F 1 7 12 18 11 

G 18 26 18 26 0 

 

 

 

 

1   
  
  
  
  
  
  
  

    

Start   

A - 2   

B - 5   

C - 1   

E - 3   

D - 10   

F - 6   

G - 8   Finish   



CHAPTER-14 SIMULATION MODELING 

INTRODUCTION 

We are all aware to some extent of the importance of simulation models in our world. Boeing 

Corporation and Airbus Industries, for example, commonly build simulation models of their 

proposed jet aircraft and then test the aerodynamic properties of the models. The U.S. Army 

simulates enemy attacks and defense strategies in war games played on a computer. Business 

students take courses that use management games to simulate realistic competitive business 

situations. And thousands of business, government and service organizations develop 

simulation models to assist in making decisions concerning inventory control, maintenance 

scheduling, plant layout, investments and sales forecasting. 

As a matter of fact, simulation is one of the most widely used quantitative analysis 

tools. Let’s begin our discussion of simulation with a simple definition. 

To simulate is to try to duplicate the features, appearance and characteristics of a real 

system. In this chapter, we show how to simulate a business or management system by building 

a mathematical model that comes as close as possible to representing the reality of the system. 

We won’t build any physical models, as might be used in airplane wind tunnel simulation tests. 

But just as physical model airplanes are tested and modified under experimental conditions, 

our mathematical models are used to experiment and to estimate the effects of various actions. 

The idea behind simulation is to imitate a real-world situation mathematically, then to study its 

properties and operating characteristics and finally, to draw conclusions and make action 

decisions based on the results of the simulation. 

Using simulation, a manager should: 

1. Define a problem. 

2. Introduce the variables associated with the problem. 

3. Construct a simulation model. 

4. Set up possible courses of action for testing. 

5. Run the simulation experiment. 

6. Consider the results. 

7. Decide what courses of action to take. 

These steps are illustrated in Fig 14.1 

 
 



Advantages and Disadvantages of Simulation 
The main advantages of simulation are: 

1. It is relatively straightforward and flexible. 

2. Recent advances in computer software make simulation models very easy to develop. 

3. Can be used to analyze large and complex real-world situations. 

4. Allows “what-if?” type questions. 

5. Does not interfere with the real-world system. 

6. Enables study of interactions between components. 

7. Enables time compression. 

8. Enables the inclusion of real-world complications. 

 

The main disadvantages of simulation are: 

1. It is often expensive as it may require a long, complicated process to develop the 

model. 

2. It does not generate optimal solutions; it is a trial-and-error approach. 

3. It requires managers to generate all conditions and constraints of real-world problem. 

4. Each model is unique and the solutions and inferences are not usually transferable to 

other problems. 

 

MONTE CARLO SIMULATION 

When systems contain elements that exhibit chance in their behavior, the Monte Carlo method 

of simulation can be applied. 

The basic idea in Monte Carlo Simulation is to generate values for the variables 

making up the model being studied. There are a lot of variables in real-world systems that are 

probabilistic in nature and that we might want to simulate. A few examples of these variables 

follow: 

1. Inventory demand on a daily or weekly basis. 

2. Lead time for inventory orders to arrive. 

3. Times between machine breakdowns. 

4. Times between arrivals at service facility. 

5. Service times. 

6. Times to complete project activities. 

7. Number of employees absent from work each day. 

 
Some of these variables, such as the daily demand and the number of employees absent, 

are discrete and must be integer valued. Other variables, such as those related to time, are 

continuous and are not required to be integers because time can be any value. When selecting 

a method to generate values for the random variable, this characteristic of the random variable 

should be considered. 

The basis of Monte Carlo simulation is experimentation on the chance (or probabilistic) 

elements through random sampling. The technique breaks down into five simple steps: 

 

Five Steps of Monte Carlo Simulation 
1. Establishing a probability distribution for important variables. 

2. Building a cumulative probability distribution for each variable. 

3. Establishing an interval of random numbers for each variable. 

4. Generating random numbers. 

5. Actually simulating a series of trials. 

We will examine each of these steps and illustrate them with the following example: 



Harry’s Auto Tire Example 
Harry’s Auto Tire sells all types of tires, but a popular radial tire accounts for a large portion 

of  Harry’s overall sales. Recognizing that inventory costs can be quite significant with this 

product,  

Harry wishes to determine a policy for managing this inventory. To see what the demand would 

look like over a period of time, he wants to simulate the daily demand for a number of days. 

 

Step 1: Establishing Probability Distributions. One common way to establish a probability 

distribution for a given variable is to examine historical outcomes. The probability, or relative 

frequency, for each possible outcome of a variable is found by dividing the frequency of 

observation by the total no. of observations. The daily demand for radial tires at Harry’s Auto 

Tire over the past 200 days is shown in Table 14.1 
 

 
Table 14.1 Historical Daily Demand for Radial Tires at Harry’s Auto Tire and Probability Distribution 

 

We can convert these data to a probability distribution, if we assume that past demand 

rates will hold in the future, by dividing each demand frequency by the total demand, 200. 

 

Probability distributions, we should note, need not be based solely on historical 

observations. Often, managerial estimates based on judgement and experience are used to 

create a distribution. 

 

Step 2: Building a cumulative probability distribution for each variable. The Conversion  

from a regular probability distribution, such as in the right-hand column of Table 14.1, to a 

cumulative distribution is an easy job. A cumulative probability is the probability that a variable 

(demand) will be less than or equal to a particular value. A cumulative distribution lists all of 

the possible values and the probabilities, as shown in Table 14.2.  

 
Table 14.2 Cumulative Probabilities for Radial Tires 

 

The cumulative probability, graphed in Figure 14.2, is used in step 3 to help assign random 

numbers. 



 
Figure 14.2 Graphical Representation of the Cumulative Probability Distribution for Radial Tires 

 

Step 3: Setting random number intervals. After we have established a cumulative probability 

distribution for each variable included in the simulation, we must assign a set of numbers to represent 

each possible value or outcome. These are referred to as random number intervals. Basically, a random 

number is a series of digits (say, two digits from 01, 02, …..,98, 99, 00) that have been selected by a 

totally random process. 

In general, using the cumulative probability distribution computed and graphed in step 2, we 

can set the interval of random numbers for each level of demand in a very simple fashion. You will note 

in Table 14.3 that the interval selected to represent each possible daily demand is very closely related 

to the cumulative probability on its left. The top end of each interval is always equal to the cumulative 

probability percentage. 

 
Table 14.3 Assignment of Random Number Intervals for Harry’s Auto Tire 

Note: Alternatively, we could have assigned the random numbers 00, 01, 02, 03, 04 to represent a demand of 0 

units. The two digits 00 can be thought of as either 0 or 100. As long as 5 numbers out of 100 are assigned to be 

0 demand, it doesn’t make any difference which 5 they are. 

 

Similarly, we can see in Figure 14.2 and in Table 14.3 that the length of each interval on the 

right corresponds to the probability of one of each of the possible daily demands. Hence, in 

assigning random numbers to the daily demand for three radial tires, the range of the random 

number interval (36 to 65) corresponds exactly to the probability (or proportion) of that 

outcome. A daily demand for three radial tires occurs 30% of the time. Any of the 30 random 

numbers greater than 35 up to and including 65 are assigned to that event. 

 

Step 4: Generating random numbers. Random numbers may be generated for simulation 

problems in several ways. If the problem is very large and the process being studied involves 

thousands of simulation trials, computer program are available to generate the random numbers 

needed. 



If the simulation is being done by hand, the numbers may be selected by the spin of a 

roulette wheel that has 100 slots, by blindly grabbing numbered chips out of a hat. The most 

commonly used means is to choose numbers from a table of random digits such as Table 14.4 

 

 
Table 14.4 Table of Random Numbers 

 

Table 14.4 was itself generated by a computer program. It has the characteristic that every digit 

or number in it has an equal chance of occurring. Because everything is random, we can select 

numbers from anywhere in the table to use in our simulation procedures in step 5. 

 

 

Step 5: Simulating the experiment.  We can simulate outcomes of an experiment by simply 

selecting random numbers from Table 14.4. Beginning anywhere in the table, we note the 

interval in Table 14.4 or Figure 14.2 into which each number falls. For example, if the random 

number chosen is 81 and the interval 66 to 85 represents a daily demand for four tires, we select 

a demand of four tires. 



We now illustrate the concept further by simulating 10 days of demand for radial tires 

at Harry’s Auto Tire (see Table 14.5). We select the random numbers needed from Table 14.4, 

starting in the upper left-hand corner and continuing down the first column. 

 

 
Table 14.5 Ten-Day Simulation of Demand for Radial Tires 

 

It is interesting to note that the average demand of 3.9 tires in this 10-day simulation differs 

significantly from the expected daily demand, which we can compute from the data in Table 

14.2 

 

Expected daily demand = ∑ (Probability of 𝑖 tires) × (Demand of 𝑖 tires)5
𝑖=0  

                                  
= (0.05)(0) + (0.10)(1) + (0.20)(2) + (0.30)(3) + (0.20)(4) + (0.15)(5) 

      = 2.95 tyres 

 

If this simulation were repeated hundreds or thousands of times, it is much more likely 

that the average simulated demand would be nearly the same as the expected demand. 

Naturally, it would be risky to draw any hard and fast conclusions regarding the 

operation of a firm from only a short simulation. However, this simulation by hand 

demonstrates the important principles involved. It helps us to understand the process of Monte 

Carlo simulation that is used in computerized simulation models. 

The simulation for Harry’s Auto Tire involved only one variable. The true power of 

simulation is seen when several random variables are involved and the situation is more 

complex. In Section 14.4, we see a simulation of an inventory problem in which both the 

demand and the lead time may vary. 

 

  

 

 

 

 

 

 

 

 



Example: The demand for a STAT201 textbook from an online bookstore is observed to be 

the following during the historical data of last semesters: 
 

Demand (per week) Frequency 

0 5 

1 3 

2 2 

3 1 

4 2 

5 2 

6 1 

Total 16 

 

a) Set up the probability and cumulative probability distribution for the textbook demand 

(round the cumulative probabilities to 2 decimal digits).  

b) Establish random number intervals for the variable and calculate the average demand 

over 5 week period using the random numbers 15, 84, 23, 42, 67. 

Solution:  

       Table 1 for Probability, Cumulative probability and Interval for Random Numbers 

Demand 

(per week) 
Frequency 

Probability of 

occurrence 

Cumulative 

probability 

Interval for random 

numbers 

0 5 0.3125 0.31 01 – 31 

1 3 0.1875 0.50 32 – 50 

2 2 0.1250 0.63 51 – 63 

3 1 0.0625 0.69 64 – 69 

4 2 0.1250 0.81 70 – 81 

5 2 0.1250 0.94 82 – 94 

6 1 0.0625 1 95 – 00 

Total 16 1 – – 

 

Table 2 for Simulated Demand 

Week Random Number Simulated Demand 

1 15 0 

2 84 5 

3 23 0 

4 42 1 

5 67 3 

    Total = 9 

 

Average demand = Total / 5 weeks 

  =9/5 = 1.8 books per week 

 

 

 

 



Example: The head of emergency department in a hospital wants to study the arrival of 

patients needing urgent care during the 48 hours of the weekends. The probability of the 

urgent patients’ arrival per hour is observed to be the following:  

 

No. of urgent 

patients arriving 

Probability 

0 0.35 

1 0.30 

2 0.15 

3 0.15 

4 0.05 

 

a) Establish random number intervals for the variable of number of urgent patients arriving 

per hour during the weekends. 

b) Simulate the arrival of urgent patients during 10 hours, using the following double digit 

random numbers: 52, 37, 82, 69, 98, 96, 33, 50, 88, and 90. Then compute the average 

simulated arrival rate. 

Solution: 
        Table 1 for Probability, Cumulative probability and Interval for Random Numbers 

No. of urgent 

patients arriving 

Probability Cumulative Probability Intervals of Random 

Numbers 

0 0.35 0.35 01- 35 

1 0.30 0.65 36- 65 

2 0.15 0.80 66- 80 

3 0.15 0.95 81- 95 

4 0.05 1.00 96- 00 

 

Table 2 for Simulated Arrivals 

Hour Random Number Simulated Arrivals 

1 52 1 

2 37 1 

3 82 3 

4 69 2 

5 98 4 

6 96 4 

7 33 0 

8 50 1 

9 88 3 

10 90 3 

     Total = 17 

 

Average arrival= 17/10 = 1.7 

 

 

 

 



Example: A grocery store has only one checkout counter. Customers arrive at this checkout 

at random from 1 to 8 minutes apart each possible value of inter-arrival time has the same 

probability of occurrence as given below. Analyze the system by simulating the arrival of 20 

customers using the random numbers 913, 727, 15, 948, 309, 922, 753, 235, 302, 109, 93, 607, 

738, 359, 888, 106, 212, 493 and 535. Also, calculate the average time between arrival. 

 

               Distribution of time between arrivals  

Time Arrivals (Min.) Probability 

1 0.125 

2 0.125 

3 0.125 

4 0.125 

5 0.125 

6 0.125 

7 0.125 

8 0.125 

                                

 Solution:   Distribution of time between arrivals  

 

Time arrivals  

(Minutes)   

Probability  

  

Cumulative   

Probability  

Random Digits  

Assignments  

1  0.125  0.125  001- 125  

2  0.125  0.250  126-  250  

3  0.125  0.375  251-    375  

4  0.125  0.500  376- 500  

5  0.125  0.625  501-  625  

6  0.125  0.750  626- 750  

7  0.125  0.875  751- 875  

8  0.125  1.00  876- 000  

                          

 

 

 

 

 

 

 

 

 

 



Time between arrival determinations: 

 

  Customer  

  

Random  Digits  

  

Time between arrivals (minutes)  

  

1 --- --- 

2 913 8 

3 727 6 

4 015 1 

5 948 8 

6 309 3 

7 922 8 

8 753 7 

9 235 2 

10 302 3 

11 109 1 

12 093 1 

13 607 5 

14 738 6 

15 359 3 

16 888 8 

17 106 1 

18 212 2 

19 493 4 

20 535 5 

  82 

  

                   Average time between arrivals =
82

20
= 4.1 minutes  

  

 

 

 

 


