SECTION 13.1 INTRODUCTION

The study of waiting lines, called Queuing theory is one of the oldest and most widely used
quantitative analysis techniques. Waiting lines are an everyday occurrence, affecting people
shopping for groceries, buying gasoline, making a bank deposit etc. Queues, another term for
waiting lines, may also take the form of machines waiting to be repaired, trucks in line to be
uploaded, or airplanes lined up on a runway waiting for permission to take off. The three basic
components of a queuing process are arrivals, service facilities, and the actual waiting line.

In this chapter, we discuss how analytical models of waiting lines can help managers
evaluate the cost and effectiveness of service systems. We begin with a look at waiting line
costs and then describe the characteristics of waiting lines and underlying mathematical
assumptions used to develop queuing models.

SECTION 13.2 WAITING LINE COSTS

Most waiting line problems are focused on the question of finding the ideal level of service a
firm should provide. Supermarkets must decide how many cash register checkout positions
should be opened. Gasoline stations must decide how many pumps should be opened and how
many attendants should be on duty. Banks must decide how many teller windows to keep open
to serve customers during various hours of the day. In most cases, this level of service is an
option over which management has control.

When an organization does have control, its objective is usually to find a happy medium
between two extremes. On the one hand, a firm can retain a large staff and provide many service
facilities. This may result in excellent customer service, with seldom more than one or two
customers in a queue. Customers are kept happy with the quick response and appreciate the
convenience. This , however can become expensive.

The other extreme is to have the minimum possible number of checkout lines, gas
pumps, or teller windows open. This keeps the service cost down but may result in customer
dissatisfaction. As the average length of the queue increases and poor service results, customers
and goodwill may be lost.

Most managers recognize the trade-off that must take place between the cost of
providing good service and the cost of customer waiting time. They want queues that are short
enough so that customers don’t become unhappy and either storm out without buying or buy
but never return. But they are willing to allow some waiting in line if it is balanced by a
significant savings in service costs.

One means of evaluating a service facility is thus to look at a total expected cost, a
concept illustrated in Figure 13.1.Total expected cost is the sum of expected service costs plus
expected waiting costs.
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Service costs are seen to increase as a firm attempts to raise its level of service. For exam-
ple, if three teams of stevedores, instead of two, are employed to unload a cargo ship, service
costs are increased by the additional price of wages. As service improves in speed, however, the
cost of time spent waiting in lines decreases. This waiting cost may reflect lost productivity of
workers while their tools or machines are awaiting repairs or may simply be an estimate of the
costs of customers lost because of poor service and long queues.

Three Rivers Shipping Company Example

As an illustration, let’s look at the case of the Three Rivers Shipping Company. Three Rivers
runs a huge docking facility located on the Ohio River near Pittsburgh. Approximately five ships
arrive to unload their cargoes of steel and ore during every 12-hour work shift. Each hour that a
ship sits idle in line waiting to be unloaded costs the firm a great deal of money, about $1,000
per hour. From experience, management estimates that if one team of stevedores is on duty to
handle the unloading work, each ship will wait an average of 7 hours to be unloaded. If two
teams are working, the average waiting time drops to 4 hours; for three teams, it’s 3 hours; and
for four teams of stevedores., only 2 hours. But each additional team of stevedores is also an
expensive proposition, due to union contracts.

Three Rivers’s superintendent would like to determine the optimal number of teams of
stevedores to have on duty each shift. The objective is to minimize total expected costs. This
analysis is summarized in Table 13.1. To minimize the sum of service costs and waiting costs,
the firm makes the decision to employ two teams of stevedores each shift.

TABLE 13.1 Three Rivers Shipping Company Waiting Line Cost Analysis

NUMBER OF TEAMS OF STEVEDORES WORKING

2
(a) Average number of ships arriving per shift 5 5 5 5
(b) Average time each ship waits to be unloaded (hours) 7 4 3 2
(c) Total ship hours lost per shift (a % b) 35 20 15 10
(d) Estimated cost per hour of idle ship time $1.000 $1.,000 $1,000 $1.,000
(e) Value of ship’s lost time or waiting cost (¢ % d) $35.000 $20,000 $15,000 $10,000
(f) Stevedore team salary,” or service cost $6.000 $12,000 $18,000 $24.,000
(g) Total expected cost (¢ + f) $41.,000 $33,000 $34.,000
I—; Optimal cost

#Stevedore team salaries are computed as the number of people in a typical team (assumed to be 50), times the number of hours each person works per
day (12 hours), times an hourly salary of $10 per hour. If two teams are employed, the rate is just doubled.



SECTION 13.3 CHARACTERISTICS OF A QUEUING SYSTEM
In this section, we take a look at the three parts of a queuing system:

1) the arrivals or inputs to the system (sometimes referred to as the calling population),
2) the queue or the waiting line itself, and
3) the service facility.

These components have their own characteristics that must be examined before
mathematical models can be developed.

Arrival Characteristics

The input source that generates arrivals or customers for the service system has three major
characteristics. It is important to consider the size of the calling population, the pattern of
arrivals at the queuing system and the behavior of the arrivals.

SIZE OF THE CALLING POPULATION: Population sizes are considered to be either
unlimited (essentially infinite) or limited (finite). When the number of customers or arrivals
on hand at any given moment is just a small portion of potential arrivals, the calling population
is considered unlimited. For practical purposes, examples of unlimited populations include cars
arriving at a highway tollbooth, shoppers arriving at a supermarket or students arriving to
register for classes at a large university. An example of a finite population is a shop with only
eight machines that might break down and require service.

PATTERN OF ARRIVALS AT THE SYSTEM: Customers either arrive at a service facility
according to some known schedule (for example, one patient every 15 minutes or one student
for advising every half hour) or else they arrive randomly. Arrivals are considered random
when they are independent of one another and their occurrence cannot be predicted exactly.
Frequently in queuing problems, the no. of arrivals per unit of time can be estimated by a
probability distribution known as Poisson distribution.

BEHAVIOR OF THE ARRIVALS: Most queuing models assume that an arriving customer is
a patient customer. Patient customers are people or machines that wait in the queue until they
are served and don not switch between lines. Unfortunately, life and quantitative analysis are
complicated by the fact that people have been known to balk or renege. Balking refers to
customers who refuse to join the waiting line because it is too long to suit their needs or
interests. Reneging customers are those who enter the queue but then become impatient and
leave without completing their transaction.



Waiting Line Characteristics

The waiting line itself is the second component of a queuing system. The length of a line can
be either limited or unlimited. A queue is limited when it cannot (by law of physical restrictions)
increase to an infinite length. This may be the case in a small restaurent that has only 10 tables
and can serve no more than 50 diners an evening. Analytic queuing models are treated in this
chapter under an assumption of unlimited queue length.

A second waiting line characteristic deals with queue discipline. This refers to the rule
by which customers in the line are to receive service. Most systems use a queue discipline
known as the first-in, first-out (FIFO) rule. In a hospital emergency room or an express
checkout line at a supermarket, however, various assigned priorities may preempt FIFO.
Patients who are critically injured will move ahead in traetment priority over patients with
broken fingers or noses.Shoppers with fewer than 10 items may be allowed to enter the express
checkout queue but are then treated as first come, first served.

Service Facility Characteristics

The third part of any queuing system is the service facility. It is important to examine two basic
properties: (1) the configuration of the service system and (2) the pattern of service times.

BASIC QUEUING SYSTEM CONFIGURATIONS: Service systems are usually classified in
terms of their number of channels or number of servers and number of phases or number of
service stops, that must be made. A single-channel system, with one server, is typified by the
drive-in bank that has only one open teller or by the type of drive-through fast-food restaurant
that has become so popular in the United States. If, on the other hand, the bank had several
tellers on duty and each customer waited in one common line for the first available teller, we
should have a multi-channel system at work.

A single-phase system is one in which the customer receives service from only one station
and then exits the system. A fast-food restaurant in which the person who takes your order also
brings you the food and takes your money in a single —phase system. But if the restaurant
requires you to place your order at one station, pay at a second and pick up the food at a third
service stop, it becomes a multiphase system. To help you relate the concepts of channels and
phases, Figure 13.2 presents four possible configurations.



FIGURE 13.2 Four Basic Queuing System Configurations
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SERVICE TIME DISTRIBUTION:Service patterns are like arrival patterns in that they can be
either constant or random. If service time is constant, it takes the same amount of time to take
care of each customer. This is the case in a machine-performed service operation such as an
automatic car wash. More often, service times are randomly distributed. In many cases it can
be assumed that random service times are described by the negative exponential probability
distribution.



Identifying Models Using Kendall Notation:

D.G. Kendall developed a notation that has been widely accepted for specifying the pattern of
arrivals, the service time distribution, and the number of channels in a queuing model. This
notation is often seen in software for queuing models. The basic three-symbol Kendall notation
is in the form

Arrival distribution /Service time distribution/Number of service channels open

Where specific letters are used to represent probability distributions. The following letters are
commonly used in Kendall notation:

M = Poisson distribution for number of occurrences (or exponential times)
D = contant (deterministic) rate
G = general distribution with mean and variance known

Thus, a single channel model with Poisson arrivals and exponential service times would be
represented by M/M/1

When a second channel is added, we would have M/M/?2

If there are m distinct service channels in the queuing system with Poisson arrivals and
exponential service times, the Kendall notation would be M / M / m. A three-channel system
with Poisson arrivals and constant service time would be identified as M /D / 3. A four-
channel system with Poisson arrivals and service times that are normally distributed would be
identifiedas M / G / 4.

There is more detailed notation with additional terms that indicate the maximun
number in the system and the population size. When these are omitted, it is assumed there is
no limit to the queue length or the population size. Most of the models we study here will have
those properties.



SECTION 13.4 SINGLE-CHANNEL QUEUING MODEL WITH POISSON
ARRIVALS AND EXPONENTIAL SERVICE TIMES (M/M/1)

In this section, we present an analytical approach to determine important measures of
performance in a typical service system. After these numeric measures have been computed, it
will be possible to add in cost data and begin to make decisions that balance desirable service
levels with waiting line service costs.

Assumptions of the Model

The single-channel, single-phase model considered here is one of the most widely used and
simplest queuing models. It involves assuming that seven conditions exist:

1. Arrivals are served on a FIFO basis.

2. Every arrival waits to be served regardless of the length of the line; that is, there is no
balking or reneging.

3. Arrivals are independent of preceding arrivals, but the average number of arrivals (the
arrival rate) does not change over time.

4. Arrivals are described by a Poisson probability distribution and come from an infinite
or very large population.

5. Service times also vary from one customer to the next and are independent of one
another, but their average rate is known.

6. Service times occur according to the negative exponential probability distribution.

7. The average service rate is greater than the average arrival rate.

When these seven conditions are met, we can develop a series of equations that define the
queue’s operating characteristics.

Queuing Equations

We let

A = mean no. of arrivals per time period (for example, per hour)

u = mean no. of people or items served per time period
When determining the arrival rate (1) and the service rate (u), the same time period must be
used. For example, if A is the average no. of arrivals per hour, then y must indicate the average
no. that could be served per hour.

The queuing equations follow:

1. The average no. of customers or units in the system, L, that is, the no. in line plus the
no. being served:
A
i, = A (13.1)
2. The average time a customer spends in the system, W, that is, the time spent in line
plus the time spent being served:

1
W=——7 13.2
= (13.2)
3. The average no. of customers in the queue, L,:
/12
L, = plL (13.3)

T a2



4. The average time a customer spends waiting in the queue, IW,:

W, =pW = ———:— 13.4
« =P T LG (13.4)
5. The utilization factor for the system, p, that is, the probability that the service facility
is being used:
A (13.5)
P M :
6. The percent idle time, P,, that is, the probability that no one is in the system:
A
Py=1 o (13.6)
7. The probability that the no. of customers in the system is greater than k, P~ :
k+1
Pooi = (l_) (13.7)

Example: From historical data, Harry’s Car Wash estimates that dirty cars arrive at the rate of
10 per hour all day Saturday. With a crew working the wash line, Harry figures that cars can
be cleaned at the rate of one every 5 minutes. One car at a time is cleaned in this example of a
single-channel waiting line.

Assuming Poisson arrivals and exponential service times, find the
(a) Utilization rate of the car wash.

(b) Average time a car waits before it is washed.

(c) Average time a car spends in the service system.

Solution:

Here Arrival rate, A = 10 cars per hour

Service rate, u = 6—; = 12 cars per hour

(a) Utilization rate of car wash, p = % = g = 0.8333 or 83.33%
(b) Average time a car waits before washed,

A 10

W, = = = 0.4167 h
T =2 12(12 - 10) s
(c) Average time a car spends in the service system,
1 1
W = = 0.5 hrs

L—1_ 12-10



Example: The students patiently form a single line in front of the desk to wait for help at
University. Student arrivals are best described by Poisson distribution with mean of 15 students
per hour arriving at the help desk. The help desk server can help an average one student in 3
minutes, with the service rate being described by an exponential distribution. Calculate the
following characteristics of the service system:

(a) The average number of students in the system.

(b) The average number of students waiting in the line.

(c) Probability that no student is in the system.

Solution:
Here Arrival rate, A = 15 students per hour

Service rate, u = 63—0 = 20 students per hour

(a) The average number of students in the system,
L A 15

S u—21 20-15

(b) The average number of students waiting in the line,

= 3 students

L, = L—AL—15(3)—225 tudent
q=0p T = 2.25 students

(c) Probability that no student is in the system,
A 15
P =1—-——-—=1—-——=0.2
(0) p 50 0.25



SECTION 13.5 MULTICHANNEL QUEUING MODEL WITH POISSON ARRIVALS
AND EXPONENTIAL SERVICE TIMES (M/M/m)

The next logical step is to look at a multichannel queuing system, in which two or more
servers or channels are available to handle arriving customers. Let us still assume that cus-
tomers awaiting service form one single line and then proceed to the first available server. An
example of such a multichannel, single-phase waiting line is found in many banks today.
A common line is formed and the customer at the head of the line proceeds to the first free
teller (Refer to Figure 13.2 for a typical multichannel configuration.)

The multiple-channel system presented here again assumes that arrivals follow a Poisson
probability distribution and that service times are distributed exponentially. Service is first come,
first served, and all servers are assumed to perform at the same rate. Other assumptions listed
earlier for the single-channel model apply as well.

Equations for the Multichannel Queuing Model

If we let

m = number of channels open,
A = average arrival rate, and

. = average service rate at each channel
the following formulas may be used in the waiting line analysis:
1. The probability that there are zero customers or units in the system:

1

=N ml\ /) mp — A
2. The average number of customers or units in the system:
Ap(A/p)™ A
L= B+ = (13-14)

(m — Dimp — A W

3. The average time a unit spends in the waiting line or being serviced (namely, in the
system):

':\ M
A/ ) L1 L (13-15)

Tm— Dlimp — A2 m A

4. The average number of customers or units in line waiting for service:

A
Ly =L —— (13-16)
1

5. The average time a customer or unit spends in the queue waiting for service:

1 L
W, =W ——=— (13-17)
L A
6. Utilization rate:
A
p=— (13-18)
mp.

These equations are obviously more complex than the ones used in the single-channel
model, yet they are used in exactly the same fashion and provide the same type of information
as did the simpler model.



Arnold’'s Muffler Shop Revisited

For an application of the multichannel queuing model, let’s return to the case of Arnold’s Muf-
fler Shop. Earlier. Larry Arnold examined two options. He could retain his current mechanic,
Reid Blank, at a total expected cost of $653 per day; or he could fire Blank and hire a slightly
more expensive but faster worker named Jimmy Smith. With Smith on board, service system
costs could be reduced to $360 per day.

A third option is now explored. Arnold finds that at minimal after-tax cost he can open a
second garage bay in which mufflers can be installed. Instead of firing his first mechanic, Blank,
he would hire a second worker. The new mechanic would be expected to install mufflers at the
same rate as Blank—about p. = 3 per hour. Customers, who would still arrive at the rate of
A = 2 per hour, would wait in a single line until one of the two mechanics is free. To find out

how this option compares with the old single-channel waiting line system, Arnold computes sev-
eral operating characteristics for the m = 2 channel system:

1

235 (@)

1 1 1

PC|=

= = =—=05
2 1(4)( 6 ) 2 1 2
1+=+ = 1+=+—
3 2\9/\6 -2 3 3
= probability of 0 cars in the system
2/ \2
QO 1\ 2 s 2 3
L=\————= |5 tT5=7A%) t53=7=075
112(3) — 2] 2 3 16\2 3 4
= average number of cars in the system
L
W =— =" = =hours = 22!/, minutes
A 2 8 '
= average lime a car spends in the system
A3 2 1
L,=L—-——=———-=—=10.083
q p 4 3 12
= average number of cars in the queue
Ly 0.083 ,
W, = — = ——= = 0.0415 hour = 2!/, minutes
7 2 '

= average time a car spends in the queue

These data are compared with earlier operating characteristics in Table 13.2. The increased serv-
ice from opening a second channel has a dramatic effect on almost all characteristics. In particu-
lar, time spent waiting in line drops from 4() minutes with one mechanic (Blank) or 15 minutes
with Smith down to only 2',.-*'2 minutes! Similarly, the average number of cars in the queue falls
to 0.083 (about ]_;-"'] » of a car).” But does this mean that a second bay should be opened?



SECTION 13.6 CONSTANT SERVICE TIME MODEL(M/D/1)

Some service systems have constant service times instead of exponentially distributed times.
When customers or equipment are processed according to a fixed cycle, as in the case of an au-
tomatic car wash or an amusement park ride, constant service rates are appropriate. Because
constant rates are certain, the values for L, W,, L, and W are always less than they would be in
the models we have just discussed, which have variable service times. As a matter of fact, both
the average queue length and the average waiting time in the queue are halved with the constant
service rate model.

Equations for the Constant Service Time Model
Constant service model formulas follow:

1. Average length of the queue:

A2
Ly =—""—— (13-19)
T 2up — )
2. Average waiting time in the queue:
A
Wq i E—— (13-20)
2p(p — A)
3. Average number of customers in the system:
A
L=Lq+— (13-21)
L
4. Average time in the system:
1
W =W, +— (13-22)
[7H

Garcia-Golding Recycling, Inc.

Garcia-Golding Recycling. Inc.. collects and compacts aluminum cans and glass bottles in New
York City. Its truck drivers, who arrive to unload these materials for recycling, currently wait an
average of 15 minutes before emptying their loads. The cost of the driver and truck time wasted
while in queue is valued at $60 per hour. A new automated compactor can be purchased that will
process truck loads at a constant rate of 12 trucks per hour (i.e.. 5 minutes per truck). Trucks ar-

rive according to a Poisson distribution at an average rate of 8§ per hour. If the new compactor is
put in use, its cost will be amortized at a rate of $3 per truck unloaded. A summer intern from a

local college did the following analysis to evaluate the costs versus benefits of the purchase:
Current waiting cost/trip = ( ]4 hour waiting now ) ($60/hour cost)
= $15/trip
New system: A = 8 trucks/hour arriving,

i = 12 trucks/hour served

A 8
Average waiting time in queue = W, = 2n( » = 2(12)(12 8)
O — -

-~ 12 hour
Waiting cost/trip with new compactor = ( ]_;"']2 hour wait}( $60/hour cost) = $5/trip
Savings with new equipment = $15 (current system) — $5 (new system)
= $10/trip

Cost of new equipment amortized = $3/trip
Net savings = $7/trip



SECTION 13.7 FINITE POPULATION MODEL (M/M/1 WITH FINITE SOURCE)

When there is a limited population of potential customers for a service facility, we need to con-
sider a different queuing model. This model would be used, for example, if you were consider-
ing equipment repairs in a factory that has five machines, if you were in charge of maintenance
for a fleet of 10 commuter airplanes, or if you ran a hospital ward that has 20 beds. The limited
population model permits any number of repair people (servers) to be considered.

The reason this model differs from the three earlier queuing models is that there is now a
dependent relationship between the length of the queue and the arrival rate. To illustrate the ex-
treme situation, if your factory had five machines and all were broken and awaiting repair, the
arrival rate would drop to zero. In general, as the waiting line becomes longer in the limited pop-
ulation model, the arrival rate of customers or machines drops lower.

In this section, we describe a finite calling population model that has the following
assumptions:

1. There is only one server.
2. The population of units seeking service is finite.”
3. Arrivals follow a Poisson distribution, and service times are exponentially distributed.

4. Customers are served on a first-come, first-served basis.

Equations for the Finite Population Model
Using

A = mean arrival rate, p. = mean service rate, N = size of the population

the operating characteristics for the finite population model with a single channel or server on
duty are as follows:

1. Probability that the system is empty:

1
B = % I (A)" (13-23)
a—o(N — m! \p
2. Average length of the queue:
At p
Ly =N — Y (1 — Fy) (13-24)
3. Average number of customers (units) in the system:
L=1~L;+(1— R (13-25)
4. Average waiting time in the queue:
Ly
W, = —— (13-26)
77 (N — DA S
5. Average time in the system:
1
W =W, +— (13-27)
[Th

6. Probability of n units in the system:

N! A\
.P;-[ = m ; PD forn =0,1.....N (13-28)



Department of Commerce Example

Past records indicate that each of the five high-speed “page™ printers at the U.S. Department of
Commerce, in Washington, D.C., needs repair after about 20 hours of use. Breakdowns have

been determined to be Poisson distributed. The one technician on duty can service a printer in
an average of 2 hours, following an exponential distribution.

To compute the system’s operation characteristics we first note that the mean arrival rate is
A= 1,.-'**3[] = (.05 printer/hour. The mean service rate is p. = lg = 0.50 printer/hour. Then

1

L R=— = 0.564 (we leave these calculations for you to confirm)

5! ({).DS )”
=3 —m!'\ 05

0.05 + 0.5

2. L, =5 - |——|1 —FB)=5—(11)1 —0564) =5 — 48

. ( e )( ) (1) )
= ().2 printer
3.L =02+ (1 — 0.564) = 0.64 printer
4. W, = 0.2 _ 02 = 0.91 h
"M (5 — 064005 022 o0

1
5. W =091 + —— = 2.91 hours
0.50

If printer downtime costs $120 per hour and the technician is paid $25 per hour, we can also
compute the total cost per hour:
Total hourly cost = (Average number of printers down)(Cost per downtime hour)
+ Cost per technician hour
= (0.64)($120) + $25 = $76.80 + $25.00 = $101.80



SECTION 7.1 INTRODUCTION

Many management decisions involve trying to make the most effective use of an organization’s
resources. Resources typically include machinery, labor, money, time, warehouse space and
row materials. These resources may be used to make products (such as machinery, furniture,
food or clothing) or services (such as schedules for airlines or production, advertising policies
or investment decisions). Linear programming (LP) is a widely used mathematical modeling
technique designed to help managers in planning and decision making relative to resource
allocation.

Despite its name, LP and the more general category of techniques called “mathematical”
programming have very little to do with computer programming. In the world of management
science, programming refers to modeling and solving a problem mathematically. Computer
programming has, of course, played an important role in the advancement and use of L.P. Real
life LP problems are too cumbersome to solve by hand or with a calculator.

SECTION 7.2 REQUIREMENTS OF A LINEAR PROGRAMMING PROBLEM

In the past 60 years, LP has been applied extensively to military, industrial, financial,
marketing, accounting and agricultural problems. Even though these applications are diverse,
all LP problems have several properties and assumptions in common.

All problems seek to maximize or minimize some quantity, usually profit or cost. We refer to
this property as the Objective Function of an LP problem.

The second property that LP problems have in common is the presence of restrictions, or
constraints, that limit the degree to which we can pursue our objective. For example, deciding
how many units of each product in a firm’s product line to manufacture is restricted by available
personnel and machinery. Selection of an advertising policy or a financial portfolio is limited
by the amount of money available to be spent or invested. We want, therefore, to maximize or
minimize a quantity (the objective function) subject to limited resources (the constraints).

There must be alternative courses of action to choose from. For example, if a company
produces 3 different products, management may use LP to decide how to allocate among them
its limited production resources (of personnel, machinery and so on). Should it devote all
manufacturing capacity to make only the first product, should it produce equal amounts of each
product, or should it allocate the resources in some other ratio? If there were no alternatives to
select from, we would not need L.P.

The objective and constraints in LP problems must be expressed in terms of linear equations
or inequalities. Linear mathematical relationships just mean that all terms used in the objective
function and constraints are of the first degree (i.e., not squared, or to the third or higher power
or appearing more than once).

The term linear implies both proportionality and additivity. Proportionality means that if
production of 1 unit of a product uses 3 hours, production of 10 units would use 30 hours.
Additivity means that the total of all activities equals the sum of the individual activities. If the
production of one product generated $3 profit and the production of another product generated
$8 profit, the total profit would be the sum of these two, which would be $11.



We assume that conditions of certainty exit: that is, number in the objective and constraints
are known with certainty and do not change during the period being studied.

We make the divisibility assumption that solutions need not to be in whole numbers (integers).
Instead, they are divisible and may take any fractional value. In production problems, we often
define variables as the number of units produced per week or per month, and a fractional value
(i.e., 0.3 chairs) would simply mean that there is work in process. Something that was started
in one week can be finished in the next. However, in other types of problems, fractional values
do not make sense. If a fraction of a product cannot be purchased (for example, one-third of a
submarine), an integer programming problem exists.

Finally, we assume that all answers or variables are nonnegative. Negative values of physical
quantities are impossible; you simply cannot produce a negative number of chairs, shirts, lamps
or computers. Table 7.1 summarizes these properties and assumptions.

TABLE 7.1

LP Properties and
Assumptions

One objective function

One or more constraints

[T S R—

Alternative courses of action

4. Objective function and constraints are
linear—proportionality and divisibility

Certainty

[= ]

. Divisibility

7. Nonnegative variables




SECTION 7.3 FORMULATING LP PROBLEMS

Formulating a linear program involves developing a mathematical model to represent the
managerial problem. Thus, in order to formulate a linear program, it is necessary to completely
understand the managerial problem being faced. The steps in formulating a linear program
follow:

(1) Completely understand the managerial problem being faced.

(2) ldentify the objective and the constraints.

(3) Define the decision variables.

(4) Use the decision variables to write mathematical expressions for the objective function
and the constraints.

One of the most common LP applications is the Product Mix Problem. Two or more products
are usually produced using limited resources such as personnel, machines, raw materials, and
so on. The profit that the firm seeks to maximize is based on the profit contribution per unit of
each product. The company would like to determine how many units of each product it should
produce so as to maximize overall profit given its limited resources.

Example : Flair Furniture Company

The Flair Furniture Company produces inexpensive tables and chairs. The production process
for each is similar in that both require a certain number of hours of carpentry work and a certain
number of labor hours in the painting and varnishing department. Each table takes 4 hours of
carpentry and 2 hours in the painting and varnishing shop. Each chair requires 3 hours in
carpentry and 1 hour in painting and varnishing. During the current production period, 240
hours of carpentry time are available and 100 hours in painting and varnishing time are
available. Each table sold yields a profit of $70; each chair produced is sold for $50 profit.

Flair Furniture’s problem is to determine the best possible combination of tables and chairs to
manufacture in order to reach the maximum profit. The firm would like this production mix
situation formulated as an LP problem.

We begin by summarizing the information needed to formulate and solve this problem (see
Table 7.2)

TABLE 7.2 Flair Furniture Company Data

HOURS REQUIRED TO PRODUCE 1 UNIT
DEPARTMENT TABLES (T) CHAIRS (C) AVAILABLE
HOURS THIS WEEK
Carpentry 4 3 240
Painting & varnishing 2 1 100
Profit per unit $70 $50




Formulation:
The decision variables that represent the actual decisions we will make are defined as:
T = number of tables to be produced per week.
C = number of chairs to be produced per week.
Now we can create the LP objective function in terms of T and C:
Maximize profit = $70T + $50C

Our next step is to develop mathematical relationships for the two constraints:
For carpentry, total time used is:
(4hours per table)(Number of tables produced)
+ (3 hours per chair)(Number of chairs produced).
So the first constraint may be stated as follows:
Carpentry time used < Carpentry time available.
4T + 3C < 240 (hours of carpentry time)

Similarly, the second constraint is as follows:
Painting and varnishing time used < Painting and varnishing time available.
2T+ 1C <100 (hours of painting and varnishing time)
Both of these constraints represent production capacity restrictions and, of course, affect the
total profit.

To obtain meaningful solutions, the values for T and C must be nonnegative numbers. That is,
all potential solutions must represent real tables and real chairs. Mathematically, it means that
T > 0 (number of tables produced is greater than or equal to 0)
C > 0 (number of chairs produced is greater than or equal to 0)

The complete problem may now be restated mathematically as
Maximize profit = $70T + $50C

Subjects to the constraints
AT + 3C < 240 (carpentry constraint)
2T + 1C < 100 (painting and varnishing constraint)
T, C = 0 (nonnegativity constraints)



SECTION 7.4 GRAPHICAL SOLUTION TO AN LP PROBLEM

The easiest way to solve a small LP problem such as that of the Flair Furniture Company is
with the graphical solution approach. The graphical procedure is useful only when there are
two decision variables (such as no. of tables, T and no. of Chairs, C) in the problem. When
there are more than two variables, it is not possible to plot the solution on a two-dimensional
graph and we must turn to more complex approaches.

GENERAL LINEAR PROGRAMMING PROBLEM IN TWO VARIABLES:
Find the values of x; & x, that optimize (either maximize or minimize)
Z=C1X1 + Cxy [Linear Objective Function]
Subject to Linear Constraints a;;x; + a;,%; (<, = or =)b;
Ap1X1 + A%y (S, 2 or =)b,
Am1X1 + Qpaxs (5,2 or =)by,

And %20, x,=20 [Non-Negative Constraints]

NOTE (1) A pair of values (x;, x,) that satisfy all the constraints is called a Feasible Solution.
The set of all feasible solutions determines a subset of x; x,-plane called the feasible region. A
feasible solution that optimizes the objective function is called an Optimal Solution.

NOTE (2) The feasible region of an LPP has a boundary consisting of a finite number of
straight line segments. If the feasible region can be enclosed in a sufficiently large circle, it is
called Bounded; otherwise it is called Unbounded.

If the feasible region is empty (contains no points), then the constraints are Inconsistent
and the LPP has no solution.

Those boundary points of a feasible region that are intersections of two of the straight
line boundary segments are called Extreme points (or Corner points).

THEOREM: If the feasible region of an LPP is non-empty and bounded, then the objective
function attains both a maximum and a minimum value and these occur at extreme points of
the feasible region. If the feasible region is Unbounded, then the objective function may or may
not attain a maximum or minimum value; however, if it attains a maximum or minimum value,
it does so at an extreme point.



Example: Solve the following LPP by Graphical method-

Maximize profit = $70T + $50C
Subjects to the constraints
4T + 3C < 240 (carpentry constraint)
2T +1C <100 (painting and varnishing constraint)
T,C=0 (nonnegativity constraints)

Solution: In Fig, we have drawn the feasible region of this problem.

FIGURE 7.5
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Since the feasible region is bounded, the maximum value of z is attained at one of the extreme
points. For this example, the coordinates of three of the corner points are obvious from
observing the graph. These are (0, 0), (50, 0) and (0, 80). The fourth corner point is where the
two constraint lines intersect and the coordinates must be found algebraically by solving the
two equations simultaneously for two variables.

Therefore solving the equations 4T + 3C = 240
2T + C =100
We get T = 30and C = 40 so the intersection point is (30, 40).

The values of objective function at four extreme points are given in the following table:

Extreme Points (T, C) | (0,0) | (50, 0) | (30, 40) | (0,80)
0 3500 | 4100 | 4000

z=70T +50C

From the Table, the maximum value of z is 4100 which is attained at T = 30 & C = 40.



