
SECTION 13.1 INTRODUCTION 

The study of waiting lines, called Queuing theory is one of the oldest and most widely used 

quantitative analysis techniques. Waiting lines are an everyday occurrence, affecting people 

shopping for groceries, buying gasoline, making a bank deposit etc. Queues, another term for 

waiting lines, may also take the form of machines waiting to be repaired, trucks in line to be 

uploaded, or airplanes lined up on a runway waiting for permission to take off. The three basic 

components of a queuing process are arrivals, service facilities, and the actual waiting line. 

 

In this chapter, we discuss how analytical models of waiting lines can help managers 

evaluate the cost and effectiveness of service systems. We begin with a look at waiting line 

costs and then describe the characteristics of waiting lines and underlying mathematical 

assumptions used to develop queuing models. 

 

 

SECTION 13.2 WAITING LINE COSTS 

Most waiting line problems are focused on the question of finding the ideal level of service a 

firm should provide. Supermarkets must decide how many cash register checkout positions 

should be opened. Gasoline stations must decide how many pumps should be opened and how 

many attendants should be on duty. Banks must decide how many teller windows to keep open 

to serve customers during various hours of the day. In most cases, this level of service is an 

option over which management has control. 

 

When an organization does have control, its objective is usually to find a happy medium 

between two extremes. On the one hand, a firm can retain a large staff and provide many service 

facilities. This may result in excellent customer service, with seldom more than one or two 

customers in a queue. Customers are kept happy with the quick response and appreciate the 

convenience. This , however can become expensive. 

 

The other extreme is to have the minimum possible number of checkout lines, gas 

pumps, or teller windows open. This keeps the service cost down but may result in customer 

dissatisfaction. As the average length of the queue increases and poor service results, customers 

and goodwill may be lost. 

 

 Most managers recognize the trade-off that must take place between the cost of 

providing good service and the cost of customer waiting time. They want queues that are short 

enough so that customers don’t become unhappy and either storm out without buying or buy 

but never return. But they are willing to allow some waiting in line if it is balanced by a 

significant savings in service costs. 

 

 One means of evaluating a service facility is thus to look at a total expected cost, a 

concept illustrated in Figure 13.1.Total expected cost is the sum of expected service costs plus 

expected waiting costs. 

 



 

 

 

 

 



SECTION 13.3 CHARACTERISTICS OF A QUEUING SYSTEM 

In this section, we take a look at the three parts of a queuing system: 

1) the arrivals or inputs to the system (sometimes referred to as the calling population), 

2) the queue or the waiting line itself, and  

3) the service facility. 

These components have their own characteristics that must be examined before 

mathematical models can be developed. 

 

Arrival Characteristics 

The input source that generates arrivals or customers for the service system has three major 

characteristics. It is important to consider the size of the calling population, the pattern of 

arrivals at the queuing system and the behavior of the arrivals. 

SIZE OF THE CALLING POPULATION: Population sizes are considered to be either 

unlimited (essentially infinite) or limited (finite). When the number of customers or arrivals 

on hand at any given moment is just a small portion of potential arrivals, the calling population 

is considered unlimited. For practical purposes, examples of unlimited populations include cars 

arriving at a highway tollbooth, shoppers arriving at a supermarket or students arriving to 

register for classes at a large university. An example of a finite population is a shop with only 

eight machines that might break down and require service.  

PATTERN OF ARRIVALS AT THE SYSTEM: Customers either arrive at a service facility 

according to some known schedule (for example, one patient every 15 minutes or one student 

for advising every half hour) or else they arrive randomly. Arrivals are considered random 

when they are independent of one another and their occurrence cannot be predicted exactly. 

Frequently in queuing problems, the no. of arrivals per unit of time can be estimated by a 

probability distribution known as Poisson distribution. 

 

BEHAVIOR OF THE ARRIVALS: Most queuing models assume that an arriving customer is 

a patient customer. Patient customers are people or machines that wait in the queue until they 

are served and don not switch between lines. Unfortunately, life and quantitative analysis are 

complicated by the fact that people have been known to balk or renege. Balking refers to 

customers who refuse to join the waiting line because it is too long to suit their needs or 

interests. Reneging  customers are those who enter the queue but then become impatient and 

leave without completing their transaction. 

 

 

 

 

 



Waiting Line Characteristics 

The waiting line itself is the second component of a queuing system. The length of a line can 

be either limited or unlimited. A queue is limited when it cannot (by law of physical restrictions) 

increase to an infinite length. This may be the case in a small restaurent that has only 10 tables 

and can serve no more than 50 diners an evening. Analytic queuing models are treated in this 

chapter under an assumption of unlimited queue length. 

 A second waiting line characteristic deals with queue discipline. This refers to the rule 

by which customers in the line are to receive service. Most systems use a queue discipline 

known as the first-in, first-out (FIFO) rule. In a hospital emergency room or an express 

checkout line at a supermarket, however, various assigned priorities may preempt FIFO. 

Patients who are critically injured will move ahead in traetment priority over patients with 

broken fingers or noses.Shoppers with fewer than 10 items may be allowed to enter the express 

checkout queue but are then treated as first come, first served. 

Service Facility Characteristics 

The third part of any queuing system is the service facility. It is important to examine two basic 

properties: (1) the configuration of the service system and (2) the pattern of service times. 

BASIC QUEUING SYSTEM CONFIGURATIONS: Service systems are usually classified in 

terms of their number of channels or number of servers and number of phases or number of 

service stops, that must be made. A single-channel system, with one server, is typified by the 

drive-in bank that has only one open teller or by the type of drive-through fast-food restaurant 

that has become so popular in the United States. If, on the other hand, the bank had several 

tellers on duty and each customer waited in one common line for the first available teller, we 

should have a multi-channel system at work. 

A single-phase system  is one in which the customer receives service from only one station 

and then exits the system. A fast-food restaurant in which the person who takes your order also 

brings you the food and takes your money in a single –phase system. But if the restaurant 

requires you to place your order at one station, pay at a second and pick up the food at a third 

service stop, it becomes a multiphase system. To help you relate the concepts of channels and 

phases, Figure 13.2 presents four possible configurations. 



 

 

SERVICE TIME DISTRIBUTION:Service patterns are like arrival patterns in that they can be 

either constant or random. If service time is constant, it takes the same amount of time to take 

care of each customer. This is the case in a machine-performed service operation such as an 

automatic car wash. More often, service times are randomly distributed. In many cases it can 

be assumed that random service times are described by the negative exponential probability 

distribution. 

 

 

 

 



Identifying Models Using Kendall Notation: 

D.G. Kendall developed a notation that has been widely accepted for specifying the pattern of 

arrivals, the service time distribution, and the number of channels in a queuing model. This 

notation is often seen in software for queuing models. The basic three-symbol Kendall notation 

is in the form 

Arrival distribution ∕Service time distribution∕Number of service channels open 

Where specific letters are used to represent probability distributions. The following letters are 

commonly used in Kendall notation: 

𝑀 = Poisson distribution for number of occurrences (or exponential times) 

𝐷 = contant (deterministic) rate 

𝐺 = general distribution with mean and variance known 

Thus, a single channel model with Poisson arrivals and exponential service times would be 

represented by   𝑀 ∕ 𝑀 ∕ 1 

When a second channel is added, we would have  𝑀 ∕ 𝑀 ∕ 2 

If there are m distinct service channels in the queuing system with Poisson arrivals and 

exponential service times, the Kendall notation would be 𝑀 ∕ 𝑀 ∕ 𝑚. A three-channel system 

with Poisson arrivals and constant service time would be identified as 𝑀 ∕ 𝐷 ∕ 3. A four-

channel system with Poisson arrivals and service times that are normally distributed would be 

identified as 𝑀 ∕ 𝐺 ∕ 4. 

  There is more detailed notation with additional terms that indicate the maximun 

number in the system and the population size. When these are omitted, it is assumed there is 

no limit to the queue length or the population size. Most of the models we study here will have 

those properties. 

 

 

 

 

 

 

 

 

 

 

 



SECTION 13.4 SINGLE-CHANNEL QUEUING MODEL WITH POISSON 

ARRIVALS AND EXPONENTIAL SERVICE TIMES (M/M/1) 

In this section, we present an analytical approach to determine important measures of 

performance in a typical service system. After these numeric measures have been computed, it 

will be possible to add in cost data and begin to make decisions that balance desirable service 

levels with waiting line service costs. 

Assumptions of the Model 

The single-channel, single-phase model considered here is one of the most widely used and 

simplest queuing models. It involves assuming that seven conditions exist: 

1. Arrivals are served on a FIFO basis. 

2. Every arrival waits to be served regardless of the length of the line; that is, there is no 

balking or reneging. 

3. Arrivals are independent of preceding arrivals, but the average number of arrivals (the 

arrival rate) does not change over time. 

4. Arrivals are described by a Poisson probability distribution and come from an infinite 

or very large population. 

5. Service times also vary from one customer to the next and are independent of one 

another, but their average rate is known. 

6. Service times occur according to the negative exponential probability distribution. 

7. The average service rate is greater than the average arrival rate. 

When these seven conditions are met, we can develop a series of equations that define the 

queue’s operating characteristics. 

Queuing Equations 

We let 

𝜆 = mean no. of arrivals per time period (for example, per hour) 

𝜇 = mean no. of people or items served per time period 

When determining the arrival rate (𝜆) and the service rate (𝜇), the same time period must be 

used. For example, if 𝜆 is the average no. of arrivals per hour, then 𝜇 must indicate the average 

no. that could be served per hour. 

 The queuing equations follow: 

1. The average no. of customers or units in the system, 𝐿, that is, the no. in line plus the 

no. being served: 

𝐿 =
𝜆

𝜇 − 𝜆
                                          (13.1) 

2. The average time a customer spends in the system, 𝑊, that is, the time spent in line 

plus the time spent being served: 

𝑊 =
1

𝜇 − 𝜆
                                      (13.2) 

3. The average no. of customers in the queue, 𝐿𝑞: 

𝐿𝑞 = 𝜌𝐿 =
𝜆2

𝜇(𝜇 − 𝜆)
                  (13.3) 

 



4. The average time a customer spends waiting in the queue, 𝑊𝑞: 

𝑊𝑞 = 𝜌𝑊 =
𝜆

𝜇(𝜇 − 𝜆)
                    (13.4) 

5. The utilization factor for the system, 𝜌, that is, the probability that the service facility 

is being used: 

𝜌 =
𝜆

𝜇
                             (13.5) 

6. The percent idle time, 𝑃0, that is, the probability that no one is in the system: 

𝑃0 = 1 −
𝜆

𝜇
                    (13.6) 

7. The probability that the no. of customers in the system is greater than 𝑘, 𝑃𝑛>𝑘: 

𝑃𝑛>𝑘 = (
𝜆

𝜇
)

𝑘+1

                     (13.7) 

 

Example: From historical data, Harry’s Car Wash estimates that dirty cars arrive at the rate of 

10 per hour all day Saturday. With a crew working the wash line, Harry figures that cars can 

be cleaned at the rate of one every 5 minutes. One car at a time is cleaned in this example of a 

single-channel waiting line. 

Assuming Poisson arrivals and exponential service times, find the 

(a) Utilization rate of the car wash. 

(b) Average time a car waits before it is washed. 

(c) Average time a car spends in the service system. 

 

Solution:  

Here Arrival rate, 𝜆 = 10 cars per hour 

   Service rate, 𝜇 =
60

5
= 12 cars per hour 

(a) Utilization rate of car wash, 𝜌 =
𝜆

𝜇
=

10

12
= 0.8333 or 83.33% 

(b) Average time a car waits before washed, 

𝑊𝑞 =
𝜆

𝜇(𝜇 − 𝜆)
=

10

12(12 − 10)
= 0.4167 ℎ𝑟𝑠 

(c) Average time a car spends in the service system, 

𝑊 =
1

𝜇 − 𝜆
=

1

12 − 10
= 0.5 ℎ𝑟𝑠 

 

 

 

 

 

 

 

 

 

 

 

 



Example: The students patiently form a single line in front of the desk to wait for help at 

University. Student arrivals are best described by Poisson distribution with mean of 15 students 

per hour arriving at the help desk. The help desk server can help an average one student in 3 

minutes, with the service rate being described by an exponential distribution. Calculate the 

following characteristics of the service system: 

(a) The average number of students in the system. 

(b) The average number of students waiting in the line. 

(c) Probability that no student is in the system. 

 

Solution: 

Here Arrival rate, 𝜆 = 15 students per hour 

   Service rate, 𝜇 =
60

3
= 20 students per hour 

(a) The average number of students in the system, 

𝐿 =
𝜆

𝜇 − 𝜆
=

15

20 − 15
= 3 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

(b) The average number of students waiting in the line, 

𝐿𝑞 = 𝜌𝐿 =
𝜆

𝜇
𝐿 =

15

20
(3) = 2.25 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

(c) Probability that no student is in the system, 

𝑃(0) = 1 −
𝜆

𝜇
= 1 −

15

20
= 0.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SECTION 13.5 MULTICHANNEL QUEUING MODEL WITH POISSON ARRIVALS 

AND EXPONENTIAL SERVICE TIMES (M/M/m) 

 



 

 

 

 

 

 



SECTION 13.6 CONSTANT SERVICE TIME MODEL(M/D/1) 

 

 

 



SECTION 13.7 FINITE POPULATION MODEL (M/M/1 WITH FINITE SOURCE) 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



SECTION 7.1 INTRODUCTION 

Many management decisions involve trying to make the most effective use of an organization’s 

resources. Resources typically include machinery, labor, money, time, warehouse space and 

row materials. These resources may be used to make products (such as machinery, furniture, 

food or clothing) or services (such as schedules for airlines or production, advertising policies 

or investment decisions). Linear programming (LP) is a widely used mathematical modeling 

technique designed to help managers in planning and decision making relative to resource 

allocation.  

Despite its name, LP and the more general category of techniques called “mathematical” 

programming have very little to do with computer programming. In the world of management 

science, programming refers to modeling and solving a problem mathematically. Computer 

programming has, of course, played an important role in the advancement and use of L.P. Real 

life LP problems are too cumbersome to solve by hand or with a calculator. 

 

SECTION 7.2 REQUIREMENTS OF A LINEAR PROGRAMMING PROBLEM 

In the past 60 years, LP has been applied extensively to military, industrial, financial, 

marketing, accounting and agricultural problems. Even though these applications are diverse, 

all LP problems have several properties and assumptions in common. 

All problems seek to maximize or minimize some quantity, usually profit or cost. We refer to 

this property as the Objective Function of an LP problem. 

The second property that LP problems have in common is the presence of restrictions, or 

constraints, that limit the degree to which we can pursue our objective. For example, deciding 

how many units of each product in a firm’s product line to manufacture is restricted by available 

personnel and machinery. Selection of an advertising policy or a financial portfolio is limited 

by the amount of money available to be spent or invested. We want, therefore, to maximize or 

minimize a quantity (the objective function) subject to limited resources (the constraints). 

There must be alternative courses of action to choose from. For example, if a company 

produces 3 different products, management may use LP to decide how to allocate among them 

its limited production resources (of personnel, machinery and so on). Should it devote all 

manufacturing capacity to make only the first product, should it produce equal amounts of each 

product, or should it allocate the resources in some other ratio? If there were no alternatives to 

select from, we would not need L.P. 

The objective and constraints in LP problems must be expressed in terms of linear equations 

or inequalities. Linear mathematical relationships just mean that all terms used in the objective 

function and constraints are of the first degree (i.e., not squared, or to the third or higher power 

or appearing more than once). 

The term linear implies both proportionality and additivity. Proportionality means that if 

production of 1 unit of a product uses 3 hours, production of 10 units would use 30 hours. 

Additivity means that the total of all activities equals the sum of the individual activities. If the 

production of one product generated $3 profit and the production of another product generated 

$8 profit, the total profit would be the sum of these two, which would be $11. 



We assume that conditions of certainty exit: that is, number in the objective and constraints 

are known with certainty and do not change during the period being studied. 

We make the divisibility assumption that solutions need not to be in whole numbers (integers). 

Instead, they are divisible and may take any fractional value. In production problems, we often 

define variables as the number of units produced per week or per month, and a fractional value 

(i.e., 0.3 chairs) would simply mean that there is work in process. Something that was started 

in one week can be finished in the next. However, in other types of problems, fractional values 

do not make sense. If a fraction of a product cannot be purchased (for example, one-third of a 

submarine), an integer programming problem exists. 

Finally, we assume that all answers or variables are nonnegative. Negative values of physical 

quantities are impossible; you simply cannot produce a negative number of chairs, shirts, lamps 

or computers. Table 7.1 summarizes these properties and assumptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SECTION 7.3 FORMULATING LP PROBLEMS 

Formulating a linear program involves developing a mathematical model to represent the 

managerial problem. Thus, in order to formulate a linear program, it is necessary to completely 

understand the managerial problem being faced. The steps in formulating a linear program 

follow: 

(1) Completely understand the managerial problem being faced. 

(2) Identify the objective and the constraints. 

(3) Define the decision variables. 

(4) Use the decision variables to write mathematical expressions for the objective function 

and the constraints. 

One of the most common LP applications is the Product Mix Problem. Two or more products 

are usually produced using limited resources such as personnel, machines, raw materials, and 

so on. The profit that the firm seeks to maximize is based on the profit contribution per unit of 

each product. The company would like to determine how many units of each product it should 

produce so as to maximize overall profit given its limited resources. 

Example : Flair Furniture Company 

The Flair Furniture Company produces inexpensive tables and chairs. The production process 

for each is similar in that both require a certain number of hours of carpentry work and a certain 

number of labor hours in the painting and varnishing department. Each table takes 4 hours of 

carpentry and 2 hours in the painting and varnishing shop. Each chair requires 3 hours in 

carpentry and 1 hour in painting and varnishing. During the current production period, 240 

hours of carpentry time are available and 100 hours in painting and varnishing time are 

available. Each table sold yields a profit of $70; each chair produced is sold for $50 profit. 

Flair Furniture’s problem is to determine the best possible combination of tables and chairs to 

manufacture in order to reach the maximum profit. The firm would like this production mix 

situation formulated as an LP problem. 

We begin by summarizing the information needed to formulate and solve this problem (see 

Table 7.2) 

TABLE 7.2 Flair Furniture Company Data 

 HOURS REQUIRED TO PRODUCE 1 UNIT  

DEPARTMENT TABLES (T) CHAIRS (C) AVAILABLE 

HOURS THIS WEEK 

Carpentry 4 3 240 

Painting & varnishing 2 1 100 

Profit per unit $70 $50  

 

 

 

 

 



Formulation:  

The decision variables  that represent the actual decisions we will make are defined as: 

T = number of tables to be produced per week. 

C = number of chairs to be produced per week. 

Now we can create the LP objective function in terms of T and C: 

Maximize profit = $70T + $50C 

 

Our next step is to develop mathematical relationships for the two constraints: 

For carpentry, total time used is: 

  (4hours per table)(Number of tables produced) 

+ (3 hours per chair)(Number of chairs produced). 

So the first constraint may be stated as follows: 

Carpentry time used ≤ Carpentry time available. 

       4T + 3C ≤ 240 (hours of carpentry time) 

 

Similarly, the second constraint is as follows: 

 Painting and varnishing time used ≤ Painting and varnishing time available. 

    2 T + 1C ≤ 100 (hours of painting and varnishing time) 

Both of these constraints represent production capacity restrictions and, of course, affect the 

total profit. 

 

To obtain meaningful solutions, the values for T and C must be nonnegative numbers. That is, 

all potential solutions must represent real tables and real chairs. Mathematically, it means that 

T ≥ 0 (number of tables produced is greater than or equal to 0) 

C ≥ 0 (number of chairs produced is greater than or equal to 0) 

 

The complete problem may now be restated mathematically as 

Maximize profit = $70𝑇 + $50𝐶 

Subjects to the constraints 

4𝑇 + 3𝐶 ≤ 240 (carpentry constraint) 

2𝑇 + 1𝐶 ≤ 100 (painting and varnishing constraint) 

𝑇, 𝐶 ≥ 0 (nonnegativity constraints) 

 

 

 

 

 

 

 

 

 

 

 

 



SECTION 7.4 GRAPHICAL SOLUTION TO AN LP PROBLEM 

The easiest way to solve a small LP problem such as that of the Flair Furniture Company is 

with the graphical solution approach. The graphical procedure is useful only when there are 

two decision variables (such as no. of tables, T and no. of Chairs, C) in the problem. When 

there are more than two variables, it is not possible to plot the solution on a two-dimensional 

graph and we must turn to more complex approaches. 

GENERAL LINEAR PROGRAMMING PROBLEM IN TWO VARIABLES: 

Find the values of 𝑥1 & 𝑥2 that optimize (either maximize or minimize) 

𝑧 = 𝑐1𝑥1 +  𝑐2𝑥2   [Linear Objective Function] 

Subject to Linear Constraints    𝑎11𝑥1 + 𝑎12𝑥2 (≤, ≥ 𝑜𝑟 =)𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 (≤, ≥ 𝑜𝑟 =)𝑏2 

      …………………………………………………. 

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 (≤, ≥ 𝑜𝑟 =)𝑏𝑚 

And     𝑥1 ≥ 0, 𝑥2 ≥ 0 [Non-Negative Constraints] 

 

NOTE (1) A pair of values (𝑥1, 𝑥2) that satisfy all the constraints is called a Feasible Solution. 

The set of all feasible solutions determines a subset of 𝑥1𝑥2-plane called the feasible region. A 

feasible solution that optimizes the objective function is called an Optimal Solution. 

NOTE (2) The feasible region of an LPP has a boundary consisting of a finite number of 

straight line segments. If the feasible region can be enclosed in a sufficiently large circle, it is 

called Bounded; otherwise it is called Unbounded. 

 If the feasible region is empty (contains no points), then the constraints are Inconsistent 

and the LPP has no solution. 

Those boundary points of a feasible region that are intersections of two of the straight 

line boundary segments are called Extreme points (or Corner points). 

 

THEOREM:  If the feasible region of an LPP is non-empty and bounded, then the objective 

function attains both a maximum and a minimum value and these occur at extreme points of 

the feasible region. If the feasible region is Unbounded, then the objective function may or may 

not attain a maximum or minimum value; however, if it attains a maximum or minimum value, 

it does so at an extreme point. 

 

 

 

 



Example: Solve the following LPP by Graphical method- 

   Maximize profit = $70𝑇 + $50𝐶 

Subjects to the constraints 

4𝑇 + 3𝐶 ≤ 240  (carpentry constraint) 

2𝑇 + 1𝐶 ≤ 100  (painting and varnishing constraint) 

𝑇, 𝐶 ≥ 0   (nonnegativity constraints) 

Solution: In Fig, we have drawn the feasible region of this problem. 

 

 

Since the feasible region is bounded, the maximum value of 𝑧 is attained at one of the extreme 

points. For this example, the coordinates of three of the corner points are obvious from 

observing the graph. These are (0, 0), (50, 0) and (0, 80). The fourth corner point is where the 

two constraint lines intersect and the coordinates must be found algebraically by solving the 

two equations simultaneously for two variables. 

Therefore solving the equations   4𝑇 + 3𝐶 = 240   

2𝑇 + 𝐶 = 100 

We get  𝑇 = 30 and 𝐶 = 40  so the intersection point is (30, 40). 

The values of objective function at four extreme points are given in the following table: 

 

Extreme Points (T, C) (0, 0) (50, 0) (30, 40) (0,80) 

𝑧 = 70𝑇 + 50𝐶 
0 3500 4100 4000 

From the Table, the maximum value of 𝑧 is 4100 which is attained at  𝑇 = 30 & 𝐶 = 40. 

 

 

 


