
CHAPTER-5 FORECASTING 

5.1 INTRODUCTION 

Every day, managers make decisions without knowing what will happen in the future. Inventory is 

ordered though no one knows what sales will be, new equipment is purchased though no one knows the 

demands for products and investments are made though no one knows what profits will be. Managers 

are always trying to reduce this uncertainty and to make better estimates of what will happen in the 

future. Accomplishing this is the main purpose of forecasting. 

There are many ways to forecast the future. In numerous firms, the entire process is subjective, 

involving seat-of-the-pants methods, intuition and years of experience. There are also many quantitative 

forecasting models, such as moving averages, exponential smoothing, trend projections and least 

squares regression analysis. 

The following steps can help in the development of a forecasting system. While steps 5 and 6 may not 

be relevant if a qualitative model is selected in step 4, data are certainly necessary for the quantitative 

forecasting models. 

Eight Steps to Forecasting 

1. Determine the use of the forecast—what objective are we trying to obtain? 

2. Select the items or quantities that are to be forecasted. 

3. Determine the time horizon of the forecast—is it 1 to 30 days (short term), 1 month to 1 year 

(medium term), or more than 1 year (long term)? 

4. Select the forecasting model or models. 

5. Gather the data needed to make the forecast. 

6. Validate the forecasting model. 

7. Make the forecast. 

8. Implement the results. 

 

5.2TYPES OF FORECASTS  

In this chapter, we consider forecasting models that can be classified into one of three 

categories: time-series models, casual models and qualitative models (see Fig 5.1) 

 



Qualitative Models 

Whereas time-series and casual models rely on quantitative data, qualitative models attempt to 

incorporate judgmental or subjective factors into the forecasting model. Opinions by experts, 

individual experiences and judgments and other subjective factors may be considered. Here is 

a brief overview of 4 different qualitative forecasting techniques: 

1. Delphi Method: This iterative group process allows experts, who may be located in 

different places, to make forecasts. There are three different types of participants in the 

Delphi process: decision makers, staff personnel and respondents. The decision making 

group usually consists of 5 to 10 experts who will be making the actual forecast. The 

staff personnel assist the decision makers by preparing, distributing, collecting and 

summarizing a series of questionnaires and survey results. The respondents are a group 

of people whose judgments are valued and are being sought. This group provides inputs 

to the decision makers before the forecast is made. 

2. Jury of executive opinion: This method takes the opinions of a small group of high-

level managers, often in combination with statistical models and results in a group 

estimate of demand. 

3. Sales force composite: In this approach, each salesperson estimates what sales will be 

in his or her region; these forecasts are reviewed to ensure that they are realistic and are 

then combines at the district and national levels to reach an overall forecast. 

4. Consumer market survey: This method solicits input from customers regarding their 

future purchasing plans. It can help not only in preparing a forecast but also in 

improving product design and planning for new products. 

Time-Series Models 

Time-Series Models attempt to predict the future by using historical data. These models make 

the assumption that what happens in the future is a function of what has happened in the past. 

In other words, time-series models look at what has happened over a period of time and use a 

series of past data to make a forecast 

Causal Models 

Causal Models incorporate the variables or factors that might influence the quantity being 

forecasted into the forecasting model. For example, daily sales of a cola drink might depend 

on the season, the average temperature, the average humidity, whether it is a weekend or a 

weekday and so on. Thus, a causal model would attempt to include factors for temperature, 

humidity, season, day of the week and so on. Causal models may also include past sales data 

as time series models do, but they include other factors as well. The most common quantitative 

causal model is regression analysis. 

 

 

 

 

 



5.3 SCATTER DIAGRAMS AND TIME SERIES 

As with regression models, scatter diagrams are very useful when forecasting time series. A 

scatter diagram for a time series may be plotted on a two-dimensional graph with the horizontal 

axis representing the time period. The variable to be forecast (such as sales) is placed on vertical 

axis. Let us consider the example of a firm that needs to forecast sales for three different 

products. 

Wacker Distributers notes that annual sales for three of its products—television sets, radios 

and compact disk players—over the past 10 years are as shown in Table 5.1. One simple way 

to examine these historical data and perhaps to use them to establish a forecast, is to draw a 

scatter diagram for each product (Figure 5.2) 

 

 



5.4 MEASURES OF FORECAST ACCURACY 

We discuss several different forecasting models in this chapter. To see how well one model 

works or to compare that model with other models, the forecasted values are compared with 

the actual or observed values. The forecast error (or deviation) is defined as 

Forecast error = Actual value – Forecast value 

One measure of accuracy is the mean absolute deviation (MAD). This is computed as 

MAD =
∑|forecast error|

no.  of errors
   ……(5.1) 

Consider the Wacker Distributers sales of CD players shown in Table 5.1. Suppose that in the 

past, Wacker had forecast sales for each year to be the sales that were actually achieved in the 

previous year. This is sometimes called a naïve model. 

Table 5.2 Computing the Mean Absolute Deviation (MAD) 

Year Actual Sales of  

CD Players 

Forecast Sales Absolute value of Errors 

i.e., |Actual − Forecast| 
1 110 -- -- 

2 100 110 |100 − 110| = 10 

3 120 100 |120 − 100| = 20 

4 140 120 |140 − 120| = 20 

5 170 140 |170 − 140| = 30 

6 150 170 |150 − 170| = 20 

7 160 150 |160 − 150| = 10 

8 190 160 |190 − 160| = 30 

9 200 190 |200 − 190| = 10 

10 190 200 |190 − 200| = 10 

11 -- 190 -- 

   Sum of |errors| = 160 

 

From this, we see that  

MAD =
∑|forecast error|

no.  of errors
 

=
160

9
= 17.8  

This means that on the average, each forecast missed the actual value by 17.8 units. 

Other measures of the accuracy of historical errors in forecasting are sometimes used besides 

the MAD. One of the most common is the mean squared error (MSE), which is the average 

of the squared errors 

  MSE =
∑(error)2

n
                          … … . . (5.2) 

where n is the no. of errors 



5.5 TIME-SERIES FORECASTING MODELS 

A time series is based on a sequence of evenly spaced (weekly, monthly, quarterly and so on) 

data points. Examples include weekly sales of HP personal computers, quarterly earnings 

reports of Microsoft Corporation, daily shipments of Eveready batteries and annual U.S. 

consumer price indices. 

Components of a Time Series 

Analyzing time series means breaking down past data into components and then projecting 

them forward. A time series typically has four components: 

1. Trend (T) is the gradual upward or downward movement of the data over time. 

2. Seasonality (S) is a pattern of the demand fluctuation above or below the trend line that 

repeats at regular intervals. 

3. Cycles (C) are patterns in annual data that occur every several years. They are usually 

tied into the business cycle. 

4. Random Variations (R) are “blips” in the data caused by chance and unusual situations; 

they follow no discernible pattern. 

Figure 5.3 shows a time series and its components. 

 

There are two general forms of time-series models in statistics. The first is a multiplicative 

model, which assumes that demand is the product of four components. It is stated as follows: 

Demand = 𝑇 × 𝑆 × 𝐶 × 𝑅 

An additive model adds the components together to provide an estimate. Multiple regression 

is often used to develop additive models. This additive relationship is stated as follows: 

Demand = 𝑇 + 𝑆 + 𝐶 + 𝑅 

There are other models that may be a combination of these. For example, one of the components 

(such as trend) might be additive while another (such as seasonality) could be multiplicative. 

 

 

 



Moving Averages 

Moving averages are useful if we can assume that market demands will stay fairly steady 

over time. This tends to smooth out short-term irregularities in the data series. 

An 𝑛-period moving average forecast, which serves as an estimate of the next period’s 

demand, is expressed as follows: 

Moving average forecast =
Sum of demands in previous 𝑛 periods

𝑛
            … … (5.4) 

Mathematically, this is written as 

       𝐹𝑡+1 =
𝑌𝑡 + 𝑌𝑡−1 + ⋯ + 𝑌𝑡−𝑛+1

𝑛
                 … … . . (5.5) 

Where  

𝐹𝑡+1 = forecast for time period 𝑡 + 1 

𝑌𝑡 = actual value in time period 𝑡 

𝑛 = no. of periods to average 

A 4-month moving average has 𝑛 = 4; a 5-month moving average has 𝑛 = 5. 

WALLACE GARDEN SUPPLY EXAMPLE: Storage shed sales at Wallace Garden Supply are 

shown in the middle column of Table 5.3. A 3- month moving average is indicated on the right. The 

forecast for the next January, using this technique, is 16. Were we simply asked to find a forecast for 

next January, we would only have to make this one calculation. The other forecasts are necessary only 

if we wish to compute the MAD or another measure of accuracy. 

Table 5.3 Wallace Garden Supply Shed Sales 

MONTH Actual Shed Sales 3- month Moving Average 

January 10  

February 12  

March 13  

April 16 10+12+13

3
= 11.67  

May 19 12+13+16

3
= 13.67  

June 23 13+16+19

3
= 16.00  

July 26 ………………… 

August 30 ………………… 

September 28  

October 18  

November 16  

December 14 …………………. 

January -- 18+16+14

3
= 16.00  

 

 

 



Example Following table represents the sales data from January to June for certain company: 

 

Month 

Automobile 

Battery Sales 

January 28 

February 21 

March 38 

April 34 

May 36 

June 38 

 

a. Use 3 period moving averages to forecast the batteries sales for April, May & June. 

b. Find MAD (Mean Absolute Deviation). 

 

Solution: 

(a)  

  

Month Automobile Battery Sales Forecast |Forecast Error| 
January 28   

February 21   

March 38   

April 34 (28+21+38)/3= 29.0 |34 − 29| = 5 

May 36 (21+38+34)/3= 31.0 |36 − 31| = 5 

June 38 (34+36+38)/3= 36.0 |38 − 36| = 2 

   ∑|Forecast Error| = 12   
 

(b)  

MAD =
∑|forecast error|

no.  of errors
 

=
12

3
= 4  

 

 

 

 

 

 

 

 

 

 



WEIGHTED MOVING AVERAGE 

A simple  moving average gives the same weight (1
𝑛⁄ ) to each of the past observations being 

used to develop the forecast. On the other hand, a weighted moving average allows different 

weights to be assigned to the previous observations. 

A weighted moving average may be expressed as  

𝐹𝑡+1 =
∑(Weight in period 𝑖)(Actual value in period 𝑖)

∑(Weights)
                   … . (5.6) 

Mathematically, this is 

𝐹𝑡+1 =
𝑤1𝑌𝑡 + 𝑤2𝑌𝑡−1 + ⋯ + 𝑤𝑛𝑌𝑡−𝑛+1

𝑤1 + 𝑤2 + ⋯ + 𝑤𝑛
                        … … . (5.7) 

Where  𝑤𝑖 = weight for 𝑖th observation 

Wallace Garden Supply decides to use a 3-month weighted moving average forecast with 

weights of 3 for the most recent observation, 2 for the next observation and 1 for the most 

distant observation. 

The results of the Wallace Garden Supply weighted average forecast are shown in Table 5.4 

 

Table 5.4 Weighted Moving Average Forecast for Wallace Garden Supply 

MONTH Actual Shed Sales 3- month Weighted Moving Average 

January 10  

February 12  

March 13  

April 16 3×13+2×12+1×10

3+2+1
= 12.17  

May 19 3×16+2×13+1×12

3+2+1
= 14.33  

June 23 3×19+2×16+1×13

3+2+1
= 17.00  

July 26 ………………… 

August 30 ………………… 

September 28  

October 18  

November 16  

December 14 …………………. 

January -- 3×14+2×16+1×18

3+2+1
= 15.33  

 

 

 

 

 

 



Example Following table represents the sales data from January to June for certain company: 

 

Month January February March April May June 

Automobile 

Battery Sales 

28 21 38 34 36 38 

 

Develop a 3-month weighted moving average forecast  for April, May & June by weighting 

three months as follows: 

Period Last Month Two Months Ago Three Months Ago Total 

Weight Applied 4 3 1 8 

 

Solution: The 3- month weighted moving average forecasts for April, May & June are given 

in the following Table 

 

Month Automobile Battery Sales Forecast 

January 28  

February 21  

March 38  

April 34 (1×28+ 3×21+4×38)/8= 30.375 

May 36 (1×21+2×38+4×34)/8= 33.875 

June 38 (1×34+3×36+4×38)/8= 36.75 

 

Example: Bike sales at Sport Xpert are shown below: 

Week 1 2 3 4 5 6 7 

Bike Sales 4 5 4 6 5 7 -- 

 

Calculate a 3-week weighted moving average forecast for 7th week by weighting three weeks 

as follows: 

Period Last Week Two Weeks Ago Three Weeks Ago Total 

Weight Applied 4 3 1 8 

 

Solution: The 3-week weighted moving average forecast for week-7 is given in the table: 

Week Bike Sales Forecast 

1 4  

2 5  

3 4  

4 6  

5 5  

6 7  

7 -- (4×7+ 3×5+1×6)/8= 6.125 

 

 



Exponential Smoothing 

Exponential Smoothing is a forecasting method that is easy to use and is handled efficiently 

by computers. Although it is a type of moving average technique, it involves little record 

keeping of past data. The basic exponential smoothing formula can be shown as follows: 

New forecast=Last period’s forecast+𝛼(Last period’s actual demand−Last’s period’s forecast)     5.8 

Or 𝐹𝑡+1 = 𝐹𝑡 + 𝛼(𝑌𝑡 − 𝐹𝑡)                     (5.9) 

where 𝛼 is a weight (or smoothing constant) that has a value between 0 and 1, inclusive i.e. 0 ≤ 𝛼 ≤ 1 

For example, in January, a demand for 142 of a certain car model for February was predicted 

by a dealer. Actual February demand was 153 autos. Using a smoothing constant of 𝛼 = 0.20, 

we can forecast the March demand using the exponential smoothing model.  

New forecast (for March demand) = 142 + 0.20(153 − 142) 

   = 144.2  

Thus, the demand forecast for the cars in March is 144. 

Suppose that actual demand for the cars in March was 136. A forecast for the demand 

in April, using the exponential smoothing model with a constant of 𝛼 = 0.20, can be made: 

New forecast (for April demand) = 144.2 + 0.20(136 − 144.2) 

   = 142.6 or 143 autos  

Selecting The Smoothing Constant: The exponential smoothing approach is easy to 

use and has been applied successfully by banks, manufacturing companies, wholesalers and 

other organizations. The appropriate value of the smoothing constant, 𝛼, however, can make the 

difference between an accurate forecast and an inaccurate forecast. In picking a value for the smoothing 

constant, the objective is to obtain the most accurate forecast. Several values of the smoothing constant 

may be tried and the one with the lowest MAD could be selected. 

Example: Given an actual demand of 125 for current period when forecast of 129 was 

anticipated. 

 

a. What is forecast error for current period? 

b. For given smoothing constant (𝛼) of 0.5 what would be the forecast for the next 

period by using simple exponential smoothing? 

Solution:  

(a) Forecast error = Actual Value – Forecast Value 

  = 125 − 129 =  −4 
(b) Here α=0.5 

𝐹𝑡+1 = 𝐹𝑡 + 𝛼(𝑌𝑡 − 𝐹𝑡)  

 𝐹 =  (129) + 0.5(125 − 129)  

=  129 + 0.5(−4) = 127  
 

 

 

 



Example: Sport Xpert want to use the simple exponential smoothing on the bike sales given 

as below: 

 

Week 1 2 3 4 5 6 7 

Bike Sales 4 5 4 6 5 7 -- 

 

 Assume that F1 is perfect. 

a) Develop a simple exponential smoothing with =0.3 and compute the MAD. 

b) The MAD of a simple exponential smoothing with =0.4 is 0.87. What value of  (0.3 

or 0.4) should Sport Xpert choose? 

 

Solution: Since 𝐹1 is perfect so 𝐹1 = 𝑌1 = 4 

Week 
Bike 

Sales 

F using =0.3 

)(1 tttt FYFF    

 Absolute deviations 

tt FY   

1 4 4  0 

2 5 4 + 0.3(4 − 4) = 4 1.0 

3 4 4 + 0.3(5 − 4) =4.3 0.3 

4 6 4.3 + 0.3(4 − 4.3) = 4.21 1.79 

5 5 4.21 + 0.3(6 − 4.21) = 4.75 0.25 

6 7 4.75 + 0.3(5 − 4.75) = 4.82 2.18 

7 - 4.82 + 0.3(7 − 4.82) = 5.48   

     ∑|𝑌𝑡 − 𝐹𝑡| =5.52 

 

By the formula, MAD (corresponding to 𝛼 = 0.3) =
∑|𝒀𝒕−𝑭𝒕|

𝑛
=

5.52

6
= 0.92 

MAD corresponding to 𝛼 = 0.4 is given 0.87 

Since MAD (corresponding to 𝛼 = 0.4)< MAD (corresponding to 𝛼 = 0.3), so Sport Xpert 

will prefer 𝛼 = 0.4. 

 

 

 

 

 

 



Exponential Smoothing with Trend Adjustment The averaging or smoothing 

forecasting techniques are useful when a time series has only a random component, but these 

techniques fail to respond to trends. If there is trend present in the data, a forecasting model 

that explicitly incorporates this into the forecast should be used. One such technique is the 

exponential smoothing with trend model. The idea is to develop an exponential smoothing 

forecast and then adjust this for trend. Two smoothing constants, 𝛼 and 𝛽, are used in this 

model and both of these values must be between 0 and 1. 

The exponential smoothing forecast including trend (𝐹𝐼𝑇𝑡) is developed using 3 steps: 

Step 1. Smoothed forecast = Previous forecast including trend + 𝛼 (last error) 

𝐹𝑡+1 = 𝐹𝐼𝑇𝑡 + 𝛼(𝑌𝑡 − 𝐹𝐼𝑇𝑡)      (5.10) 

Step 2. Smoothed trend = Previous trend + 𝛽 (error or excess in trend) 

𝑇𝑡+1 = 𝑇𝑡 + 𝛽(𝐹𝑡+1 − 𝐹𝐼𝑇𝑡)      (5.11) 

Step 3. Forecast including trend = Smoothed forecast + Smoothed trend 

𝐹𝐼𝑇𝑡+1 = 𝐹𝑡+1 + 𝑇𝑡+1      (5.12) 

Where  

𝑇𝑡 = smoothed trend for time period 𝑡 

𝐹𝑡 = smoothed forecast for time period 𝑡 

𝐹𝐼𝑇𝑡 = forecast including trend for time period 𝑡 

𝛼 = smoothing constant for forecasts 

𝛽 = smoothing constant for trend 

Consider the case of Midwestern Manufacturing Company, which has a demand for electrical 

generators over the period 2004 to 2010 as shown in Table 5.7. 

Table 5.7 Midwestern Manufacturing Demand 

Years Electrical Generators Sold 

2004 74 

2005 79 

2006 80 

2007 90 

2008 105 

2009 142 

2010 122 

  

To use the trend-adjusted exponential smoothing method, first set initial conditions (Previous 

values for 𝐹 and 𝑇) and choose 𝛼 and 𝛽. Assuming that 𝐹1 is perfect and 𝑇1 is 0 and picking 

0.3 and 0.4 for the smoothing constants, we have 

 



𝐹1 = 𝑌1 = 74 , 𝑇1 = 0, 𝛼 = 0.3,  𝛽 = 0.4 

This results in   𝐹𝐼𝑇1 = 𝐹1 + 𝑇1 = 74 + 0 = 74 

Following the three steps to get the forecast for 2005 (time period 2), we have 

Step 1.  𝐹2 = 𝐹𝐼𝑇1 + 0.3(𝑌1 − 𝐹𝐼𝑇1)  ,  using equation (5.10) 

     = 74 + 0.3(74 − 74) = 74  

Step 2.  𝑇2 = 𝑇1 + 0.4(𝐹2 − 𝐹𝐼𝑇1),   using equation (5.11) 

     = 0 + 0.4(74 − 74) = 0  

Step 3.Trend-adjusted exponential smoothing forecast is given as 

𝐹𝐼𝑇2 = 𝐹2 + 𝑇2 = 74 + 0 = 74  

 

For 2006 (time period 3), we have 

Step 1.  𝐹3 = 𝐹𝐼𝑇2 + 0.3(𝑌2 − 𝐹𝐼𝑇2)  ,  using equation (5.10) 

     = 74 + 0.3(79 − 74) = 75.5  

Step 2.  𝑇3 = 𝑇2 + 0.4(𝐹3 − 𝐹𝐼𝑇2),   using equation (5.11) 

     = 0 + 0.4(75.5 − 74) = 0.6  

Step 3.Trend-adjusted exponential smoothing forecast is given as 

𝐹𝐼𝑇3 = 𝐹3 + 𝑇3 = 75.5 + 0.6 = 76.1  

In the same way, we can find the results for other years. 

 

 



 

 

 



Seasonal Variations 

Time-series forecasting such as that in example of Midwestern Manufacturing involves looking 

at the trend of data over a series of time observations. Sometimes, however, recurring variations 

at certain seasons of the year make a seasonal adjustment in the trend line forecast necessary. 

Demand for coal and fuel oil, for example, usually peaks during cold winter months. Demand 

for golf clubs or suntan lotion may be highest in summer. Analyzing data in monthly or 

quarterly terms usually makes it easy to spot seasonal patterns. A seasonal index is often used 

in multiplicative time series forecasting models to make an adjustment in the forecast when a 

seasonal component exists. An alternative is to use an additive model such as a regression 

model that will be introduced in a later section. 

A seasonal index indicates how a particular season (e.g., month or quarter) compares with an 

average season. When no trend is present, the index can be found by dividing the average value 

for a particular season by the average of all the data. Thus, an index of 1 means the season is 

average. The example illustrates how to compute seasonal indices from historical data and to 

use these in forecasting future values. 

 

 

Monthly sales of one brand of telephone answering machine at Eichler Supplies are shown in 

Table 5.9, for the two most recent years. The average demand in each month is computed and 

these values are divided by the overall average (94) to find the seasonal index for each month. 

We then use the seasonal indices from Table 5.9 to adjust future forecasts. For example, 

suppose we expected the third year’s annual demand for answering machines to be 1,200 units, 

which is 100 per month. We should not forecast each month to have a demand of 100, but we 

should adjust these based on the seasonal indices as follows: 

January  
1200

12
× 0.957 = 96 

February 
1200

12
× 0.851 = 85 

March  
1200

12
× 0.904 = 90     and so on 



5.6 Monitoring and Controlling Forecasts 

After a forecast has been completed, it is important that it not be forgotten. No manager wants 

to be reminded when his or her forecast is horribly inaccurate, but a firm needs to determine 

why the actual demand (or whatever variable is being examined) differed significantly from 

that projected. 

One way to monitor forecasts to ensure that they are performing well is to employ a tracking 

signal. A tracking signal is a measurement of how well the forecast is predicting actual values. 

A tracking signal is computed as  

Tracking signal =
RSFE

MAD
                                       (5.13) 

=
∑(forecast error)

MAD
 

Where 

MAD =
∑|forecast error|

n
 

Positive tracking signals indicate that demand is greater than the forecast. Negative signals 

mean that demand is less than forecast. A good tracking signal—that is, one with a low RSFE—

has about as much positive error as it has negative error. In other words, small deviations are 

okay, but the positive and negative deviations should balance so that the tracking signal centers 

closely around zero. 

When tracking signals are calculated, they are compared with predetermined control limits. 

When a tracking signal exceeds an upper or lower limit, a signal is tripped. This means that 

there is a problem with the forecasting method and management may want to reevaluate the 

way it forecasts demand. Figure 5.6 shows the graph of a tracking signal that is exceeding the 

range of acceptable variation. If the model being used is exponential smoothing, perhaps the 

smoothing constant needs to be readjusted. 

Figure 5.6 Plot of Tracking Signals 

 

 



KIMBALL’S BAKERY EXAMPLE: Here is an example that shows how the tracking signal 

and RSFE can be computed. Kimball’s Bakery’s quarterly sales of croissants (in thousands), 

as well as forecast demand and error computations, are in the following table. The objective is 

to compute the tracking signal and determine whether forecasts are performing adequately. 

Time 

Period 

Actual 

Demand 

Forecast 

Demand 

Error RSFE |
Forecast 

Error
| Cumulative 

Error 

MAD Tracking 

Signal 

1 90 100 −10 −10 10 10 10.0 −1 

2 95 100 −5 −15 5 15 7.5 −2 

3 115 100 +15 0 15 30 10.0 0 

4 100 110 −10 −10 10 40 10.0 −1 

5 125 110 +15 +5 15 55 11.0 +0.5 

6 140 110 +30 +35 30 85 14.2 +2.5 

 

In period 6, the calculations are  

MAD =
∑|forecast error|

n
 

=
85

6
= 14.2 

Tracking signal =
RSFE

MAD
                                  

        =
35

14.2
= 2.5MADs 

This tracking signal is within acceptable limits. We see that it drifted from −2.0 MADs to +2.5 

MADs 

 

 

 

 

 

 

 

 

 

 

 

 



SECTION 4.1 INTRODUCTION 

Regression analysis is a very valuable tool for today’s manager. Regression has been used to 

model such things as the relationship between level of education and income, the price of a 

house and the square footage and the sales volume for a company relative to the dollars spent 

on advertising. Cost estimation models are often regression models. 

There are generally two purposes for regression analysis. The first is to understand the 

relationship between variables such as advertising expenditures and sales. The second purpose 

is to predict the value of one variable based on the value of the other.  

In any regression model, the variable to be predicted is called the dependent variable or 

response variable. The value of this is said to be dependent upon the value of an independent 

variable, which is sometimes called an explanatory variable or a predictor variable. 

SECTION 4.2 SCATTER DIAGRAMS 

To investigate the relationship between variables, it is helpful to look at a graph of the data. 

Such a graph is often called a scatter diagram or a scatter plot. Normally the independent 

variable is plotted on the horizontal axis and the dependent variable is plotted on the vertical 

axis. The following example will illustrate this: 

Triple A Construction Company renovates old homes in Albany. Over time, the company has 

found that its dollar volume of renovation work is dependent on the Albany area payroll. The 

figures for Triple A’s revenues and the amount of money earned by wage earners in Albany 

for the past six years are presented in Table 4.1. Economists have predicted the local area 

payroll to be $600 million next year and Triple A wants to plan accordingly. 

Table 4.1 Triple A Construction Company Sales and Local Payroll 

Triple A’s Sales ($100,000) Local Payroll($100,000,000) 

6 3 

8 4 

9 6 

5 4 

4.5 2 

9.5 5 

Figure 4.1 provides a scatter diagram for the Triple A Construction data given in Table 4.1. 

This graph indicated that higher values for the local payroll seem to result in higher sales for 

the company. There is not a perfect relationship because not all the points lie in a straight line, 

but there is a relationship. A line has been drawn through the data to help show the relationship 

that exists between the payroll and sales. 

 



SECTION 4.3 SIMPLE LINEAR REGRESSION 

In any regression model, there is an implicit assumption (which can be tested) that a relationship exists 

between the variables. There is also some random error that cannot be predicted. The underlying simple 

linear regression model is 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖      (4.1) 

Where 𝑌 = dependent variable (response variable) 

𝑋 = independent variable (predictor variable or explanatory variable)  

𝛽0 = intercept (value of  𝑌 when 𝑋 = 0) 

𝛽1 = slope of regression line 

𝜖 = random error 

The true values of the intercept and slope are not known and therefore they are estimated using sample 

data. The regression equation based on sample data is given as 

𝑌̂ = 𝑏0 + 𝑏1𝑋        (4.2) 

where   𝑌̂ = predicted value of 𝑌 

𝑏0 = estimate of 𝛽0, based on sample results 

𝑏1 = estimate of 𝛽1, based on sample results 

Error is defined as  

Error = (Actual value)−(Predicted value) 

     𝑒 = 𝑌 − 𝑌̂        (4.3) 

Some errors may be positive or negative, the average error could be zero even though there are 

extremely large errors—both positive and negative. To eliminate the difficulty of negative errors 

canceling positive errors, the errors can be squared. The best regression line will be defined as one with 

the minimum sum of the squared errors. For this reason, regression analysis is sometimes called least-

squares regression. 

Statisticians have developed formulas that we can use to find the equation of a straight line that 

would minimize the sum of the squared errors. The simple linear regression equation is 

𝑌̂ = 𝑏0 + 𝑏1𝑋   

The following formulas can be used to compute the intercept and the slope: 

𝑋̅ =
∑ 𝑋

𝑛
= average (mean)of 𝑋 values 

𝑌̅ =
∑ 𝑌

𝑛
= average (mean)of 𝑌 values 

      𝑏1 =
∑(𝑋−𝑋̅)(𝑌−𝑌̅)

∑(𝑋−𝑋̅)2      (4.4) 

      𝑏0 = 𝑌̅ − 𝑏1𝑋̅       (4.5) 



Example: Computing the Regression equation for the Triple A construction Company 

Local Payroll 

($100,000,000) 

Triple A’s Sales 

 ($100,000) 

3 6 

4 8 

6 9 

4 5 

2 4.5 

5 9.5 

 

First we calculate the mean values of  𝑋 & 𝑌 as follows 

𝑋̅ =
∑ 𝑋

𝑛
=

24

6
= 4  

𝑌̅ =
∑ 𝑌

𝑛
=

42

6
= 7  

Table 4.2 Regression Calculations for Triple A Construction 

𝑋 𝑌 (𝑋 − 𝑋̅)2 (𝑋 − 𝑋̅)(𝑌 − 𝑌̅) 

3 6 (3 − 4)2 = 1 (3 − 4)(6 − 7) = 1 

4 8 (4 − 4)2 = 0 (4 − 4)(8 − 7) = 0 

6 9 (6 − 4)2 = 4 (6 − 4)(9 − 7) = 4 

4 5 (4 − 4)2 = 0 (4 − 4)(5 − 7) = 0 

2 4.5 (2 − 4)2 = 4 (2 − 4)(4.5 − 7) = 5 

5 9.5 (5 − 4)2 = 1 (5 − 4)(9.5 − 7) = 2.5 

∑ 𝑋 = 24  ∑ 𝑌 = 42  ∑(𝑋 − 𝑋̅)2 = 10  ∑(𝑋 − 𝑋̅)(𝑌 − 𝑌̅) = 12.5  

 

Now slope and intercept of the regression equation can be calculated as 

𝑏1 =
∑(𝑋 − 𝑋̅)(𝑌 − 𝑌̅)

∑(𝑋 − 𝑋̅)2
=

12.5

10
= 1.25 

       𝑏0 = 𝑌̅ − 𝑏1𝑋̅ = 7 − (1.25)(4) = 2   

The estimated regression equation therefore is 

𝑌̂ = 2 + 1.25𝑋 

or     sales = 2 + 1.25(payroll) 

If the payroll next year is $600 million (𝑋 = 6), then the predicted value would be 

𝑌̂ = 2 + 1.25(6) = 9.5 

or $950,000 

One of the purposes of regression is to understand the relationship among variables. This model 

tells us that for each $100 million (represented by 𝑋) increase in the payroll, we would expect 

the sales to increase by $125,000 since 𝑏1 = 1.25 ($100,000s). This model helps Triple A 

Construction see how the local economy and company sales are related. 



Example: Fit a regression curve to the following data  

      

    X   1   3   5   7   9 

    Y   15   18   21   24   22 

   

Solution:  

X Y (X-𝑋̅) (Y-𝑌̅) (X-𝑋̅)(Y-𝑌̅) (X-𝑋̅)2 

1 15 -4 -5 20 16 

3 18 -2 -2 4 4 

5 21 0 1 0 0 

7 24 2 4 8 4 

9 22 4 2 8 16 

∑X = 25 ∑Y = 100   ∑ (X-𝑋̅)(Y-𝑌̅) = 40 ∑ (X-𝑋̅)2 = 40 

                                                                                           

First we calculate the mean values of  𝑋 & 𝑌 as follows 

𝑋̅ =
∑ 𝑋

𝑛
=

25

5
= 5  

𝑌̅ =
∑ 𝑌

𝑛
=

100

5
= 20  

Now slope and intercept of the regression equation can be calculated as 

𝑏1 =
∑(𝑋 − 𝑋̅)(𝑌 − 𝑌̅)

∑(𝑋 − 𝑋̅)2
=

40

40
= 1 

       𝑏0 = 𝑌̅ − 𝑏1𝑋̅ = 20 − (1)(5) = 15   

The estimated regression equation therefore is 

𝑌̂ = 𝑏0 + 𝑏1𝑋 

       or    𝑌̂ = 15 + (1)𝑋 

 

 

 

             

  

              

 

 

 



SECTION 4.4 MEASURING THE FIT OF THE REGRESSION MODEL 

A regression equation can be developed for any variables 𝑋 and 𝑌, even random numbers. We 

certainly would not have any confidence in the ability of one random number to predict the 

value of another random number. How do we know that the model is actually helpful in 

predicting 𝑌 based on 𝑋? Should we have confidence in this model? Does the model provide 

better predictions (smaller errors) than simply using the average of the 𝑌 values? 

In the Triple A Construction example, sales figures (𝑌) varied from a low of 4.5 to a high of 

9.5 and the mean was 7. If each sales value is compared with the mean, we see how far they 

deviate from the mean and we could compute a measure of the total variability in sales. Because 

𝑌 is sometimes higher and sometimes lower than the mean, there may be both positive and 

negative deviations. Simply summing these values would be misleading because the negatives 

would cancel out the positives, making it appear that the numbers are closer to the mean than 

they actually are. To prevent this problem, we will use the sum of the squares total (SST) to 

measure the total variability in 𝑌: 

SST=  ∑(𝑌 − 𝑌̅)2    (4.6) 

If we did not use 𝑋 to predict 𝑌, we would simply use the mean of 𝑌 as the prediction and the 

SST would measure the accuracy of our predictions. However, a regression line may be used 

to predict the value of 𝑌 and while there are still errors involved, the sum of these squared 

errors will be less than the total sum of squares just computed. The sum of squares error (SSE) 

is     

SSE = ∑ 𝑒2 = ∑(𝑌 − 𝑌̂)2    (4.7) 

 

Table 4.3 Sum of Squares for Triple A Conctruction 

𝑌 𝑋 (𝑌 − 𝑌̅)2 𝑌̂ (𝑌 − 𝑌̂)2 (𝑌̂ − 𝑌̅)2 

6 3 (6 − 7)2 = 1 2 + 1.25(3) = 5.75 0.0625 1.563 

8 4 (8 − 7)2 = 1 2 + 1.25(4) = 7.00 1 0 

9 6 (9 − 7)2 = 4 2 + 1.25(6) = 9.50 0.25 6.25 

5 4 (5 − 7)2 = 4 2 + 1.25(4) = 7.00 4 0 

4.5 2 (4.5 − 7)2 = 6.25 2 + 1.25(2) = 4.50 0 6.25 

9.5 5 (9.5 − 7)2 = 6.25 2 + 1.25(5) = 8.25 1.5625 1.563 

  ∑(𝑌 − 𝑌̅)2 = 22.5  

            SST= 22.5 

 ∑(𝑌 − 𝑌̂)2 = 6.875  

           SSE = 6.875 

∑(𝑌̂ − 𝑌̅)2 = 15.625  

            SSR = 15.625 

 

Table 4.3 provides the calculations for the Triple A Construction example. The mean (𝑌̅ = 7) 

is compared to each value and we get  

SST = 22.5 

The prediction (𝑌̂) for each observation is computed and compared to the actual value. This 

results in  

SSE = 6.875 

 



The SSE is much lower than the SST. Using the regression line has reduced the variability in 

the sum of squares by 22.5 − 6.875 = 15.625. This is called the sum of squares due to 

regression (SSR)  and indicates how much of the total variability in 𝑌 is explained by the 

regression model. Mathematically, this can be calculated as  

SSR= ∑(𝑌̂ − 𝑌̅)2    (4.8) 

Table 4.3 indicates   

     SSR = 15.625 

There is a very important relationship between the sums of squares that we have computed: 

Sum of squares total = Sum of squares due to regression + Sum of squares error 

i.e.,    SST = SSR + SSE       (4.9) 

Figure 4.2 displays the data for Triple A Construction. The regression line is shown, as is a line 

representing the mean of the 𝑌 values. The errors used in computing the sums of squares are 

shown on this graph. Notice how the sample points are closer to the regression line than they 

are to the mean. 

 

 

Coefficient of Determination 

The SSR is sometimes called the explained variability in 𝑌 while the SSE is the unexplained 

variability in 𝑌. The proportion of the variability in 𝑌 that is explained by the regression 

equation is called the coefficient of determination and is denoted by 𝑟2. Thus, 

𝑟2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
      (4.10) 

For Triple A Construction, we have 

𝑟2 =
15.625

22.5
= 0.6944 

This means that about 69% of the variability in sales (𝑌) is explained by the regression equation 

based on payroll (𝑋). 



If every point in the sample were on the regression line (meaning all errors are 0), then 100% 

of the variability in 𝑌 could be explained by the regression equation, so 𝑟2 = 1 and SSE = 0. 

The lowest possible value of 𝑟2 is 0, indicating that 𝑋 explains 0% of the variability in 𝑌. 

Thus, 𝑟2 can range from a low of 0 to a high of 1. In developing regression equations, a good 

model will have an 𝑟2 value close to 1. 

Example: In a simple regression model study, the following results are  found: 

Given ∑(𝑌 − 𝑌̅)2 =  20 and     ∑(𝑌 − 𝑌̂)2 = 2. 

Complete the following table: 

SST SSE SSR 𝑟2 

    

    

Solution: 

SST SSE SSR 𝑟2 

∑(𝑌 − 𝑌̅)2  ∑(𝑌 − 𝑌̂)2   SST-SSE SSR SST⁄  

20 2 18 0.90 

 

 

 

  


