

ZZZZ

مدونة المناهج السعودية https://eduschool40.blog الموقع التعليمي لجميع المراحل الدراسية في المملكة العربية السعودية

Continuity on open interval

Definition:

A Function f is continuous on an open interval (9,6)

if it is continuous at each point in the interval.

Remark :- A Function & that is continuous on the entire line

(-w, w) is everywhere confinuous.

Theorem: The following types of function are continuous at every point in their domains.

Functions IlegIU	Forms الشكل	Domain المجال
Polynomial functions	$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$	D=R
Rational functions	$r(x) = \frac{p(x)}{q(x)}$, $p(x)$ and $q(x)$ are polynomials.	$\mathbf{D} = \mathbf{R}$ -{أصفار المقام}
Radical functions	$f(x) = \sqrt[n]{x}$ n: even	D=اتحت الجذر
	n: odd	D=R
Trigonometric functions	$\sin x$, $\cos x$, $\tan x$, $\sec x$, $\csc x$, $\cot x$	D=R
Exponential functions	$e^x, a^x a > 0$	$\mathbf{D} = \mathbf{R}$
Logarithmic functions	$\ln x$, $\log_a x$	D= مابداخل الدالة)

Example 1: Find the intervals in which each the following function is continuous.

1) - $F(x) = x^2 + 2x + 1$

FOOD is continuous on R= (-00,00)

2)- $f(x) = \frac{x}{x^2 - 6x + 9}$ F(x) is continuous on R-{ { { { { { { { { { { { { { { { { } } } } } } } } } } } }

 $x^{2} - 6x + 9 = 0$

 $(\chi - 3)(\chi - 3) = 0$

 $\Rightarrow \chi = 3$

: f(x) is continuous on $R_{-23} = (-\infty, 3) \cup (3, \infty)$.

3)_ $f(x) = \sqrt{x+2}$

F(x) is continuous on R.

4) - $F(x) = \sqrt{x(x-1)}$

Fis continuous iff x (x-1) 20

$5)_{-}$ $F(x)_{=}$ $\ln(x_{+}4)$

F is continuous iff x+4>0

*>-4 :. F is continuous on (-4,00)

6) - $F(x) = \sqrt{2+7}$

fis continuous iff 2+720

27-7

: F is continuous iff [-7,00)

 $7) - F(x) = \frac{1}{x^2 + 1}$

Fis continuous on R. Why?

8) - $F(x) = \frac{x^2 + x - 12}{x^2 - 3x}$

F is continuous iff $\chi^2 - 3\chi \neq 0$

 $\chi(\chi-3) \neq 0$ $\Rightarrow \chi \neq 0 \text{ or } \chi-3 \neq 0$

 $\chi = 3$

: F is continuous on (-00,0) U(0,3) U(3,00)

9)_ $F(x) = \sqrt{x^2 + 25}$

F is continuous iff $x^2 + 25 \ge 0$

10) $f(x) = Sin(x^2 - 4)$

Continuity on a closed interval

A Function f is continuous on the closed interval [a,b] iff

1) f continuous on (a,b).

2)
$$\lim_{x \to a^+} F(x) = F(a)$$

3)
$$\lim_{x \to b} F(x) = F(b)$$

Example 1: Discuss the continuity of

One sided continuity

Right and left continuity:

· A function f is continuous from the right at a f

 $\lim_{x \to q^{+}} F(x) = F(q)$

• A function f is continuous from the left at aif $\lim_{x \to q^-} F(x) = F(q)$

Example 1: Discuss the continuity of the following function

 $f(x) = \sqrt{x}$

F is continuous iff 2>0

... f is continuous on E0,00)

901) = V2-5

F is continuous iff 12-520

=> 77,5

. f is continuous on [5,00)

 $h(x) = \sqrt{x+3}$

F is continuous iff x+3>0

your Note:

: f is continuous on [-3,00)

27-3

-3 5

Example 2: Discuss the continuity of the following function

. Fis continuous from

Example 4: Greatest integer function

The greatest integer function [x] is the largest integer less than or equal to 2.

$[\chi] = n \Leftrightarrow n \leqslant \chi < n + 1$

- $\begin{bmatrix} 2 \cdot q \end{bmatrix} = 2 \qquad \begin{bmatrix} 0 \end{bmatrix} = 0 \qquad \begin{bmatrix} 1 \cdot 4 \end{bmatrix} = 1 \qquad \begin{bmatrix} 3 \end{bmatrix} = 3$ $\begin{bmatrix} -2 \cdot 5 \end{bmatrix} = -3 \qquad \begin{bmatrix} -0 \cdot 5 \end{bmatrix} = -1 \qquad \begin{bmatrix} -1 \cdot 0 \end{bmatrix} = -2 \qquad \begin{bmatrix} -2 \end{bmatrix} = -2$
- $\lim_{x \to 1^-} \mathbb{E}[x] = 0 \qquad \lim_{x \to 1^-} \mathbb{E}[x] = 0 \text{ NE } \qquad \lim_{x \to 1^+} \mathbb{E}[x] = 1 \\ x \to 1^+ \qquad x \to 1^+ \qquad x \to 1^+$
- $\lim_{x \to 2^+} [x] = \frac{1}{x} \qquad \lim_{x \to 2^+} [x] = \frac{1}{x} \qquad \lim_{x \to 2^+} [x] = \frac{1}{x}$
- $\lim_{x \to 3} [x] = 2 \qquad \lim_{x \to 3} [x] = 3$
- $\lim_{x \to n} [x] = n 1 \quad \lim_{x \to n} [x] DNE \quad \lim_{x \to n^+} [x] = n$

or

;, g is discontinuous at a=n

: 9 has Jump discontinuity.

Remark:

1)_ There is a jump at each integer and so

 $\lim_{x \to n^+} [x] \neq \lim_{x \to n^-} [x]$

2) What about if a is not integer i.e a= 1.5

P Does gon= [x] is continuous at a= 1.5

Theorem 2.4.1: [Properties of Continuity] If f and g are continuous function at a and k is any real number, then the following functions are continuous at a.

1. Sum and Difference: $f \pm g$

2. Product: fg

3. Quotient: $\frac{f}{g}$ provided $g(a) \neq 0$

4. Constant multiple: kf.