

Math 101

Continuity on open interval

Definition:

A function f is continuous on an open interval (a,b) if it is continuous at each point in the interval.

Remark:- A function f that is continuous on the entire line

$$
(-\infty, \infty) \text { is every where continuous. }
$$

Theorem: The following types of function are continuous at every point in their domains.

Example 1: Find the intervals in which each the following function is continuous.
1). $f(x)=x^{2}+2 x+1$
$f(x)$ is continuous on $R=(-\infty, \infty)$
2). $f(x)=\frac{x}{x^{2}-6 x+9}$

$$
\begin{aligned}
\therefore \quad & x^{2}-6 x+9=0 \\
& (x-3)(x-3)=0 \\
\Rightarrow & x=3
\end{aligned}
$$

$\therefore f(x)$ is continuous on $R_{-}\{3\}=(-\infty, 3) \cup(3, \infty)$.
3). $f(x)=\sqrt[5]{x+2}$
$f(x)$ is continuous on R.
4)- $f(x)=\sqrt{x(x-1)}$
F is continuous iff $x(x-1) \geqslant 0$

$$
\begin{array}{r}
\Rightarrow x \geqslant 0 \text { or } x-1 \geqslant 0 \\
\Rightarrow x \geqslant 1
\end{array}
$$

5). $f(x)=\ln (x+4)$
F is continuous iff $x+4>0$

$$
x>-4
$$

$\therefore f$ is continuous on $(-4, \infty)$
6). $f(x)=\sqrt[4]{x+7}$
f is continuous iff $x+7 \geqslant 0$

$$
x \geqslant-7
$$

$\therefore f$ is continuous iff $[-7, \infty)$
7)- $f(x)=\frac{1}{x^{2}+1}$
F is continuous on R. Why?!
8) $-F(x)=\frac{x^{2}+x-12}{x^{2}-3 x}$
F is continnous iff $x^{2}-3 x \neq 0$

$$
\begin{aligned}
& x(x-3) \neq 0 \\
& \Rightarrow x \neq 0 \text { or } x-3 \neq 0 \\
& x=3
\end{aligned}
$$

$\therefore f$ is continuous on $(-\infty, 0) \cup(0,3) \cup(3, \infty)$
9). $f(x)=\sqrt{x^{2}+25}$
f is continuous iff $x^{2}+25 \geqslant 0$
10) $f(x)=\sin \left(x^{2}-4\right)$

Continuity on a closed interval
A function f is continuous on the closed interval [a, b] iff
1). f continuous on (a, b).
2) $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
3). $\lim _{x \rightarrow b^{-}} f(x)=f(b)$

Example 1: Discuss the continuity of
a) _ $f(x)=\sqrt{25-x^{2}}$
f is continuous if $25-x^{2} \geqslant 0$
Remember:

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& y=\sqrt{25-x^{2}} \\
& y^{2}=25-x^{2} \\
& x^{2}+y^{2}=25
\end{aligned}
$$

$\Rightarrow 5-x \geqslant 0$ or $5+x \geqslant 0$
$\Rightarrow 5 \geqslant x \quad$ or $x \geqslant-5$
$\Rightarrow x \leqslant 5$ or $x \geqslant-5$

$$
\Rightarrow \quad-5 \leqslant x \leqslant 5
$$

$$
\therefore D(f)=[-5,5]
$$

1). f is continuous on ($-5,5$)

2). $\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}} \sqrt{25-x^{2}}=\sqrt{25-x^{2}}=0=f(5)$
3). $\lim _{x \rightarrow-5^{+}} f(x)=\lim _{x \rightarrow-5^{+}} \sqrt{25-x^{2}}=\sqrt{25-25}=0=f(-5)$
$\therefore f$ is continuous on $[-5,5]$
b) - $g(x)=\sqrt{1-x^{2}} \quad$ HoW

One sided continuity
Right and left continuity:

- A function f is continuous from the right at ai if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

- A function f is continuous from the left at a if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

Example 1: Discuss the continuity of the following function

$$
f(x)=\sqrt{x}
$$

f is continuous iff $x-5 \geqslant 0$

$$
\Rightarrow x \geqslant 5
$$

$\therefore f$ is continuous on $[5, \infty)$

$$
h(x)=\sqrt{x+3}
$$

F is continuous iff $x_{+} \geqslant 0$

$$
x \geq-3
$$

$\therefore f$ is continuous on $[-3, \infty)$

Example 2: Discuss the continuity of the following function

$$
f(x)=\sqrt{1-x}
$$

F is continuous iff $1-x \geqslant 0$

$$
\Rightarrow 1 \geqslant x
$$

$\therefore f$ is continuous on $(-\infty, 1]$

$$
g(x)=\sqrt{5-x}
$$

f is continuous iff $5-x \geqslant 0$

$$
\Rightarrow 5 \geqslant x \text { or } x \leqslant 5
$$

$\therefore f$ is continuous on $(-\infty, 5$]

$$
h(x)=\sqrt{-3-x}
$$

f is continuous iff $-3-x \geqslant 0$

$$
\Rightarrow-3 \geqslant x \text { or } x \leqslant-3
$$

$\therefore f$ is continuous on $(-\infty,-3]$
Example 3: Discuss the continuity of the following function at the given number

$$
f(x)=\sqrt{x} \text { at } a=0
$$

1). $f(0)=\sqrt{0}=0$
2). $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} \sqrt{x}$

$$
=\sqrt{0}=0
$$

3)_ $\because \lim _{x \rightarrow 0^{+}} f(x)=f(0)$
$\therefore f$ is continuous from
the right

Example 4: Greatest integer function
The greatest integer function $[x]$ is the largest integer less than or equal to x.

$$
\begin{aligned}
& {[x]=n \Leftrightarrow n \leqslant x<n+1} \\
& {[2.9]=2 \quad[0]=0 \quad[1.4]=1 \quad[3]=3} \\
& {[-2.51]=-3 \quad[-0.5]=-1 \quad[-1.01]=-2 \quad[-2]=-2} \\
& \begin{array}{l|l|l|l}
\lim _{x \rightarrow 1^{-}}[x]=0 & \lim _{x \rightarrow 1}[x]=\text { DeE } & \lim _{x \rightarrow 1^{+}}[x]=1 \\
\lim _{x \rightarrow 2^{-}}[x]=1 & \lim _{x \rightarrow 2}[x] & \text { oNE } & \lim _{x \rightarrow 2^{+}}[x]=2 \\
\lim _{x \rightarrow 3^{-}}[x]=2 & \lim _{x \rightarrow 3}[x] & \text { oNE } & \lim _{x \rightarrow 3^{+}}[x]=3 \\
\lim _{x \rightarrow n^{-}}[x]=n-1 & \lim _{x \rightarrow n^{-}}[x] & \text { oNE } & \lim _{x \rightarrow n^{+}}[x]=n
\end{array}
\end{aligned}
$$

Discuss the continuity of $g(x)=[x]$ at $a=n^{n}$ 药

$$
\left.\begin{array}{l}
g(n)=[n]=n \\
\lim _{x \rightarrow \underline{n}^{+}}[x]=n \\
\lim _{x \rightarrow n^{-}}[x]=n-1
\end{array}\right\} \begin{aligned}
& \text { Exist but } \\
& \text { not equal }
\end{aligned}
$$

$\therefore g$ is discontinuous at $a=n$
\therefore I has Jump discontinuity.
or g is continuous from the right

Remark:-
1). There is a jump at each integer and so

$$
\lim _{x \rightarrow n^{+}}[x] \neq \lim _{x \rightarrow n^{-}}[x]
$$

2). What about if a is not integer i.e $a=1.5$
P Does $g(x)=[x]$ is continuous at $a=1.5$

Theorem 2.4.1: [Properties of Continuity]
If f and g are continuous function at a and k is any real number, then the following functions are continuous at a.

1. Sum and Difference: $f \pm g$
2. Product: $f g$
3. Quotient: $\frac{f}{g}$ provided $g(a) \neq 0$
4. Constant multiple: $k f$.
