Sections 3.5 and 3.6

Notes from Chapter # 3 Part 2

Naming of ionic and molecular compounds

1. Naming of Ionic Compounds

• Write systematic name by simply naming the ions

We have three cases:

1. If the cation is metal with invariant charge

Groups 1A, 2A, Al⁺³, zn²⁺, Ag⁺, Sc³⁺ (Table 3.1, page 62)

TABLE 3.2 Metals Whose Charge Is Invariant from One Compound to Another

Metal	lon	Name	Group Number	
Li	Li ⁺	Lithium	1A	
Na	Na^+	Sodium	1A	
K	K^+	Potassium	1A	
Rb	Rb^+	Rubidium	1A	
Cs	Cs^+	Cesium	1A	
Be	Be ²⁺	Beryllium	2A	
Mg	${\rm Mg^{2+}}$	Magnesium	2A	
Ca	Ca^{2+}	Calcium	2A	
Sr	Sr ²⁺	Strontium	2A	
Ba	Ba ²⁺	Barium	2A	
Al	Al^{3+}	Aluminum	3A	
Zn	Zn^{2+}	Zinc	*	
Sc	Sc^{3+}	Scandium	*	
Ag**	Ag^+	Silver	*	

^{*}The charge of these metals cannot be inferred from their group number.

© 2011 Pearson Education, Inc.

^{**}Silver sometimes forms compounds with other charges, but these are rare.

- Contain metal cation + nonmetal anion
 - 1. name metal cation first, name nonmetal anion second
 - 2. cation name is the metal name
 - 3. nonmetal anion named by changing the ending on the nonmetal name to *-ide*

name of cation (metal) base name of anion (nonmetal) + -ide

Examples:

- CsF → cesium fluoride
- KCl → potassium chloride
- MgCl₂ → magnesium bromide
- Al₃O₂ → aluminum sulfide

2. Metals with Variable Charges

- Contain metal cation + nonmetal anion
 - 1. name metal cation first, name nonmetal anion second
 - 2. metal cation name is the metal name followed by a Roman numeral (I, II, III, IV, V) in parentheses (بین اقواس) to indicate its charge (Table 3.3, page 64)
 - 3. nonmetal anion named by changing the ending on the nonmetal name to *ide*

charge of cation (metal)
in roman numerals
in parentheses

base name of anion (nonmetal) + -ide

© 2011 Pearson Education, Inc

Examples:

- CuF₂ → copper(II) fluoride
- TiCl₄ → titanium(IV) chloride
- PbBr₂ → lead(II) bromide
- Fe₂S₃ → iron(III) sulfide
- 3. polyatomic ion = name of polyatomic ion

Polyatomic ions are single ions that contain more than one atom (i.e OH^{-} , SO_4^{2-} , PO_4^{3-} , CO_3^{2-} , HCO_3^{-} , NO_3^{-})

- Often identified by parentheses around ion in formula
- Name and charge of polyatomic ion do not change
- Name any ionic compound by naming cation first and then anion

Example:

NaC₂H₃O₂ → Sodium acetate

 $Ca(OH)_2 \rightarrow Calcium hydroxide$

 $K_2Cr_2O_7 \rightarrow Potassium dichromate$

NH₄NO₃ → Ammonium nitrate

FeSO₄ → Iron (II) sulphate (Fe has more than one oxidation state)

2. Naming of Molecular compounds

Prefix Name of first element Prefix Base name of 2nd element

Prefix = Mono, di, tri, tetra, penta, hexa, hepta, octa, nona, deca

Example:

NO₂ → Nitrogen dioxide (we don't add Mono at the first of the name)

N₂O → Dinitrogen monoxide

 $CO_2 \rightarrow Carbon dioxide$

PF₅ → Phosphorus pentaflouride

 $P_4S_{10} \rightarrow Phosphorus decasulfide$

Acids

- Contain H⁺¹ cation and anion
 - √ in aqueous solution
- Binary acids have H⁺¹ cation and nonmetal anion
- Oxyacids have H⁺ cation and polyatomic anion

Naming binary acids \rightarrow HCl(aq)

1. Identify the anion

CI = CI⁻, chloride because Group 7A

2. Name the anion with an –ic suffix

Cl⁻ → chloric

3. Add a *hydro-* prefix to the anion name

hydrochloric

4.	Add the	word	acid	tο	the	end

hydrochloric acid

Example:

HBr → Hydrobromic acid

HI → Hydroiodic acid

HF → Hydrofluoric acid