University of Jeddah

Faculty of Science

Department of Mathematics

Academic Year: 1439/1440 H

Code: **MATH 101**

Semester: One

Curriculum Tentative Schedule

#				
Chapter's	Topic/Activity	Examples	Exercises	Due to
Title				Week No.
Chapter P Preliminaries	P.1 "Real numbers and the real line" Intervals-Inequalities-Absolute value.	2(a,b), 3(a), 4(a), 6, 7 Add examples: Solve $x^2-5x+6>0$ $ x-6 \ge 5$, x+4 > 6	14, 15, 18, 21, 28, 29, 35, 37 Solve $x^2-9 \ge 0$	One
	P.2 "Cartesian coordinates in the plane" Axis scales-Distances-Graphs-Straight line-Equations of lines. P.3 "Graphs of quadratic equations" Explain the polynomial function which is found in part 6 page 39. Shifting a graph.	2, 3, 6-11 Solve Exercise 31 8, 9	1, 3, 13, 15, 16, 21, 23, 25, 27, 28, 31, 32 35-38	Two
	P.4 "Functions and their graphs" Definition of function-The domain convention-Graphs of functions-Even and odd functions. P.5 "Combining functions to make new functions" Sums, differences, products, quotients, multiples-Composite functions-Piecewise	2-7 Solve Exercises 11, 12, 18	1, 3, 4, 5, 11-14, 17, 18, 29, 30 1, 7, 9, 25	Three
	defined functions. P.7 "The trigonometric functions" Definition 6-Definition 7-Some useful identities-Some special angles-The additional formulas-Other trigonometric functions.	1-5, 7	1, 3, 5, 7, 9, 13, 16, 25, 29	
	3	$\frac{5\pi}{6} \qquad \qquad \text{(d) } \frac{3\pi}{4}$		Four
	 3- If the radius of a circle is 9 cm, what angle is subtended by an arc of 12 cm? 4- If a circle has radius 4 cm, what is the length of an arc subtended by a central angle of 3π/4 rad? 			

Curriculum MATH 101 1439–1440/1 Page **1** of **4**

Chapter 1 Limits and Continuity	1.2 "Limits of functions" Definition1-One-Sided limits-Rules for calculating limits-The Squeeze Theorem.	1, 3, 4(a, c), 5-7, 9, 10	1, 7, 9, 11, 13, 14, 17, 18, 20, 22, 23, 30, 61, 63, 66, 74, 75		
	1.3 "Limits at infinity and infinite limits" Limits at infinity-Limits at infinity for rational functions-Infinite limits.	1-5, 8, 9, 10	1, 3, 4, 5, 8, 9, 11, 13, 14, 23, 29, 35, 37, 43, 47, 49	Five	
	1.4 "Continuity" Continuity at a point-Continuity on an interval-Continuous extensions and removable discontinuities.	1-5, 6(a, b, c, d), 8	1, 7, 9, 13, 14, 17, 18		
EXAM 1					
Chapter 2 Differentiation	2.1 "The tangent lines and their slopes" Defintion1-Definition2-Definition3- Normals	1, 4, 6, 7	1, 3	appointment)	
	2.2 "The derivative" Definition4-Some important derivatives- Leibniz notation.	1, 2(a), 3	11, 31, 35, 37, 41, 43	Seven	
	2.3 "Differentiation rules" Sum and constant multiples-The product rule-The reciprocal rule-The quotient rule.	1, 3, 4, 7-9	1, 5, 7, 9, 10, 13, 15, 19, 21, 28, 42		
	2.4 "The chain rule" The chain rule-Building the chain into differentiation formulas.	1, 2, 3(a), 5(a)	1, 4, 7, 8, 31, 36		
	2.5 "Derivatives of trigonometric functions" Some special limits-The derivative of sine and cosine-The derivatives of the other trigonometric functions.	Find $\lim_{x\to 0} \frac{\sin 2x}{x}$, 2, 3,	3, 5, 7, 11, 13, 15, 17, 26, 29, 31, 35, 53	Eight	
	2.6 "Higher-Order derivatives"	2, Find $y^{(3)}$ if $y = 3x^4 - x^3 + 2x - 15$ $y = x \sin x$	1, 3, 9, 11		
	2.8 "The Mean-Value Theorem" Increasing and decreasing functions - Theorem 12	4	8, 9, 11	Nine	
	2.9 "Implicit Differentiation" Implicit Differentiation	1, 3	1, 3, 5		

Curriculum MATH 101 1439–1440/1 Page **2** of **4**

	3.1 "Inverse functions" Definition1 - Defintion2 - Properties of inverse functions	1, 2	1, 3, 5, 6, 9	
Chapter 3 Transcendental Functions	3.2 "Exponential and logarithmic functions" Definition 4 - laws of exponents Definition 5 - laws of logarithms	3-4	1, 3, 5, 7, 9, 13, 15, 21, 23, 24	Ten
		$(3) \ 4^{x-1} = 8$	$(4) \ 9^{x+1} = 27$	
	2- Simplify the following mathematical expr (1) $\log_5 125$ (2) $\log_{1/3} 3^{2x}$ (3) $\log 25$		$-\log_2 32 + \log_2 2$	
	$(5) \log_3 27 - \log_3 81 + 5\log_3 3 \qquad (6) 5^{2\log_5 2}$	(7) $(\log_4 16)(\log_4 2)$		
	EXAM 2			Eleven (Initial appointment)
	3.3 "The natural logarithm and exponential" Natural logarithm and its derivative - Natural exponential its derivative - The general logarithm and its derivative - The general exponential and its derivative	first part of 1, 2-3	1, 3, 5, 7, 11, 12, 19, 21, 23, 25, 31, 33, 37, 42, 44	Twelve
ıtiation	4.4 "Extreme Values" Maximum and minimum values-Critical points-Local extreme values-The first derivative test.	1 below	5 (find abs. max and abs. min), 18-20 (find local max and local min)	
4 Differe	4.5 "Concavity and inflections" Concave up and concave down-Inflection points.	2 below	2, 3, 4, 5	Thirteen
Chapter 4 More Applications of Differentiation	Example (1): Find, critical points, the absolute maximum point and the absolute minimum point of the function $f(x) = 3x^2 - 12x + 1$ in [0,3]. Example (2): If $f(x) = x^3 - 3x^2 - 9x + 2$, find the following: 1- The critical points 2- Increasing intervals 3- Decreasing intervals 2- Local maximum value 4- Local minimum values 5- Concave upward intervals 7- Concave downward intervals 8- Inflection points.			
General Revision				

Curriculum MATH 101 1439–1440/1 Page **3** of **4**

• Textbook:

"General Mathematics for Preparatory Year Students"

Compiled from: Robert A. Adams and Christopher Essex, *Calculus: A complete course*, Eighth Edition.

• Curriculum Policy:

The information of

- 1. distributing the grades,
- 2. missing Exams I or II, and
- 3. DN of attendance,

will be determined later by the MATH 101' High Committee.

Best Wishes

Curriculum MATH 101 1439–1440/1 Page **4** of **4**