
1

Dr. George Karraz, Ph. D. 



Introduction to

Backpropagation

- In 1969 a method for learning in multi-layer network,

Backpropagation, was invented by Bryson and Ho.

- The Backpropagation algorithm is a sensible approach

for dividing the contribution of each weight.

- Works basically the same as perceptrons



Backpropagation Learning Principles: 

Hidden Layers and Gradients

There are two differences for the updating rule :

1) The activation of the hidden unit is used instead of 

activation of the   input value.

2) The rule contains a term for the gradient of the activation 

function.



Backpropagation Network 

training

• 1. Initialize network with random weights

• 2. For all training cases (called examples):

– a. Present training inputs to network and 
calculate output

– b. For all layers (starting with output layer, 
back to input layer):

• i. Compare network output with correct output

(error function)

• ii. Adapt weights in current layer
This is 

what 

you 

want



Backpropagation Learning 

Details

• Method for learning weights in feed-forward (FF) 
nets

• Can’t use Perceptron Learning Rule
– no teacher values are possible for hidden units

• Use gradient descent to minimize the error
– propagate deltas to adjust for errors

backward from outputs

to hidden layers

to inputs
forward

backward



Backpropagation Algorithm – Main 

Idea – error in hidden layers

The ideas of the algorithm can be summarized as follows :

1. Computes the error term for the output units using the

observed error.

2. From output layer, repeat 

- propagating the error term back to the previous layer

and 

- updating the weights between the two layers

until the earliest hidden layer is reached.



Backpropagation Algorithm

• Initialize weights (typically random!)

• Keep doing epochs

– For each example e in training set do

• forward pass to compute

– O = neural-net-output(network,e)

– miss = (T-O) at each output unit 

• backward pass to calculate deltas to weights

• update all weights

– end

• until tuning set error stops improving

Backward pass explained in next slideForward pass explained 

earlier



Backward Pass

• Compute deltas to weights 

– from hidden layer 

– to output layer

• Without changing any weights (yet), 

compute the actual contributions

– within the hidden layer(s)

– and compute deltas



Gradient Descent

• Think of the N weights as a point in an N-

dimensional space

• Add a dimension for the observed error

• Try to minimize your position on the “error 

surface”



Error Surface

Error as function of 

weights in 

multidimensional space

error

weights



Gradient

• Trying to make error decrease the fastest

• Compute:
• GradE = [dE/dw1, dE/dw2, . . ., dE/dwn]

• Change i-th weight by
• deltawi = -alpha * dE/dwi

• We need a derivative!  

• Activation function must be continuous, 
differentiable, non-decreasing, and easy to 
compute

Derivatives of error for weights

Compute 

deltas



Can’t use LTU

• To effectively assign credit / blame to units 

in hidden layers, we want to look at the 

first derivative of the activation function

• Sigmoid function is easy to differentiate

and easy to compute forward

Linear Threshold Units Sigmoid function



Updating hidden-to-output

• We have teacher supplied desired values

• deltawji =  * aj * (Ti - Oi) * g’(ini)

=  * aj * (Ti - Oi) * Oi * (1 - Oi)

– for sigmoid the derivative is, g’(x) = g(x) * (1 - g(x))

alpha

derivative

miss

Here we have 

general formula with 

derivative, next we 

use for sigmoid



Updating interior weights

• Layer k units provide values to all layer 

k+1 units

• “miss” is sum of misses from all units on k+1

• missj =  [ ai(1- ai) (Ti - ai) wji ]

• weights coming into this unit are adjusted 

based on their contribution

deltakj =  * Ik * aj * (1 - aj) * missj For layer k+1

Compute deltas



How do we pick ?

1. Tuning set, or

2. Cross validation, or

3. Small for slow, conservative learning



How many hidden layers?

• Usually just one (i.e., a 2-layer net)

• How many hidden units in the layer?

– Too few ==> can’t learn

– Too many ==> poor generalization



How big a training set?

• Determine your target error rate, e

• Success rate is 1- e

• Typical training set approx. n/e, where n is the 

number of weights in the net

• Example:

– e = 0.1, n = 80 weights

– training set size 800

trained until 95% correct training set classification 

should produce 90% correct classification 

on testing set (typical)



Examples of Backpropagation 

Learning

In the restaurant 

problem NN was 

worse than the 

decision tree

Error 

decreases 

with number 

of epochs

Decision tree still 

better for 

restaurant 

example



Examples of Backpropagation Learning

Majority example, 

perceptron better

Restaurant 

example, DT 

better



Backpropagation 

Learning Math

See next 

slide for 

explanation



Visualization of 

Backpropagation 

learning

Backprop output layer









bias neuron in input layer

Bias Neurons in Backpropagation 

Learning



Training pairs

Software for Backpropagation Learning

Calculate difference to 

desired output

Calculate total error

Run network forward. 

Was explained earlier

This routine 

calculate error for 

backpropagation



Update output weights

Software for Backpropagation Learning 

continuation

Calculate hidden difference values

Update input weights

Return total error

Here we do not use 

alpha, the learning rate



The general Backpropagation Algorithm for updating weights in a multilayer network

Run network to 

calculate its 

output for this 

example

Go through all 

examples

Compute the 

error in output

Update weights 

to output layer

Compute error in 

each hidden layer

Update weights in 

each hidden layer

Repeat until 

convergent

Return learned network

Here we use alpha, the 

learning rate



Examples and 

Applications 

of ANN



Neural Network in Practice

NNs are used for classification and function approximation

or mapping problems which are:

- Tolerant of some imprecision.

- Have lots of training data available.

- Hard and fast rules cannot easily be applied.



NETalk (1987)
• Mapping character strings into phonemes so they 

can be pronounced by a computer

• Neural network trained how to pronounce each 

letter in a word in a sentence, given the three 

letters before and three letters after it in a window

• Output was the correct phoneme

• Results

– 95% accuracy on the training data

– 78% accuracy on the test set



Other Examples

• Neurogammon (Tesauro & Sejnowski, 1989)

– Backgammon learning program

• Speech Recognition (Waibel, 1989)

• Character Recognition (LeCun et al., 1989)

• Face Recognition (Mitchell)



ALVINN

• Steer a van down the road

– 2-layer feedforward 

• using backpropagation for learning

– Raw input is 480 x 512 pixel image 15x per sec

– Color image preprocessed into 960 input units

– 4 hidden units

– 30 output units, each is a steering direction



Neural Network Approaches

ALVINN - Autonomous Land Vehicle In a Neural Network



Learning on-the-

fly

• ALVINN learned as the vehicle 

traveled

– initially by observing a human

driving

– learns from its own driving by 

watching for future corrections

– never saw bad driving

• didn’t know what was 

dangerous, NOT correct

• computes alternate views of 

the road (rotations, shifts, and 

fill-ins) to use as “bad” 

examples

– keeps a buffer pool of 200 pretty 

old examples to avoid overfitting

to only the most recent images



Feed-forward vs. Interactive 

Nets
• Feed-forward

– activation propagates in one direction

– We usually focus on this

• Interactive

– activation propagates forward & backwards

– propagation continues until equilibrium is reached in 

the network

– We do not discuss these networks here, complex 

training. May be unstable.



Ways of learning with an ANN

• Add nodes & connections

• Subtract nodes & connections

• Modify connection weights

– current focus

– can simulate first two

• I/O pairs:

– given the inputs, what should the output be? 
[“typical” learning problem]



More Neural Network 

Applications

- May provide a model for massive parallel computation.

- More successful approach of “parallelizing” traditional

serial algorithms.

- Can compute any computable function.

- Can do everything a normal digital computer can do.

- Can do even more under some impractical assumptions.



Neural Network Approaches to driving

- Developed in 1993.

- Performs driving with

Neural Networks.

- An intelligent VLSI image

sensor for road following.

- Learns to filter out image

details not relevant to 

driving.

Hidden layer

Output units

Input units

•Use special hardware

•ASIC

•FPGA

•analog



Neural Network Approaches

Hidden Units Output unitsInput Array



Actual Products Available

ex1. Enterprise Miner:

- Single multi-layered feed-forward neural networks.

- Provides business solutions for data mining.

ex2. Nestor:

- Uses Nestor Learning System (NLS).

- Several multi-layered feed-forward neural networks.

- Intel has made such a chip - NE1000 in VLSI technology.



Ex1. Software tool - Enterprise Miner

- Based on SEMMA (Sample, Explore, Modify, Model,

Access) methodology.

- Statistical tools include :

Clustering, decision trees, linear and logistic

regression and neural networks.

- Data preparation tools include :

Outliner detection, variable transformation, random 

sampling, and partition of data sets  (into training,

testing and validation data sets).



Ex 2. Hardware Tool - Nestor

- With low connectivity within each layer.

- Minimized connectivity within each layer results in rapid

training and efficient memory utilization, ideal for VLSI.

- Composed of multiple neural networks, each specializing

in a subset of information about the input patterns.

- Real time operation without the need of special computers

or custom hardware DSP platforms

•Software exists.



Problems with using ANNs

1. Insufficiently characterized development 
process compared with conventional software

– What are the steps to create a neural network?

2. How do we create neural networks in a 
repeatable and predictable manner?

3. Absence of quality assurance methods for 
neural network models and implementations

– How do I verify my implementation?



Solving Problem 1 – The Steps to create 

a ANN 

Define the process of developing neural networks:

1. Formally capture the specifics of the problem in 

a document based on a template

2. Define the factors/parameters for creation

– Neural network creation parameters

– Performance requirements

3. Create the neural network

4. Get feedback on performance



Neural Network Development Process



Problem Specification Phase

• Some factors to define in problem specification:

– Type of neural networks (based on experience or 

published results)

– How to collect and transform problem data

– Potential input/output representations

– Training & testing method and data selection

– Performance targets (accuracy and precision)

• Most important output is the ranked collection of 

factors/parameters



Problem 2 –

How to create a Neural Network

• Predictability (with regard to resources)

– Depending on creation approach used, record time 

for one iteration

– Use timing to predict maximum and minimum times

for all of the combinations specified

• Repeatability

– Relevant information must be captured in problem 

specification and combinations of parameters



Problem 3 - Quality Assurance

• Specification of generic neural network software 

(models and learning)

• Prototype of specification

• Comparison of a given implementation with 

specification prototype

• Allows practitioners to create arbitrary neural 

networks verified against models



Two Methods for Comparison

• Direct comparison of outputs:

• Verification of weights generated by learning 

algorithm:

20-10-5 (with particular connections and input)

Prototype <0.123892, 0.567442, 0.981194, 0.321438, 0.699115>

Implementation <0.123892, 0.567442, 0.981194, 0.321438, 0.699115>

20-10-5 Iteration 100 Iteration 200 ………. Iteration n

Prototype Weight state 1 Weight state 2 ………. Weight state n

Implementation Weight state 1 Weight state 2 ………. Weight state n



Further Work on 

improvements

• Practitioners to use the development process or 
at least document in problem specification

• Feedback from neural network development 
community on the content of the problem 
specification template

• Collect problem specifications and analyse to 
look for commonalities in problem domains and 
improve predictability (eg. control)

• More verification of specification prototype



Further Work (2)

• Translation methods for formal specification

• Extend formal specification to new types

• Fully prove aspects of the specification

• Cross discipline data analysis methods (eg. ICA, 
statistical analysis)

• Implementation of learning on distributed 
systems
– Peer-to-peer network systems (farm each 

combination of parameters to a peer)

• Remain unfashionable



Summary
- Neural network is a computational model that simulate

some properties of  the human brain.

- The connections and nature of units determine the   

behavior of a neural network.

- Perceptrons are feed-forward networks that can only  

represent linearly separable functions.



Summary

- Given enough units, any function can be represented  

by Multi-layer feed-forward networks.

- Backpropagation learning works on multi-layer 

feed-forward networks.

- Neural Networks are widely used in developing 

artificial learning systems.



References
- Russel, S. and P. Norvig (1995). Artificial Intelligence - A   

Modern Approach. Upper Saddle River, NJ, Prentice  

Hall.

- Sarle, W.S., ed. (1997), Neural Network FAQ, part 1 of 7:   

Introduction, periodic posting to the Usenet newsgroup 

comp.ai.neural-nets, 

URL: ftp://ftp.sas.com/pub/neural/FAQ.html 



Eddy Li

Eric Wong

Martin Ho

Kitty Wong

Sources


	Slide 1 
	Slide 2 
	Slide 3 
	Backpropagation Network training
	Backpropagation Learning Details
	Slide 6 
	Backpropagation Algorithm
	Backward Pass
	Gradient Descent
	Error Surface
	Gradient
	Can’t use LTU
	Updating hidden-to-output
	Updating interior weights
	How do we pick ?
	How many hidden layers?
	How big a training set?
	Slide 18 
	Slide 19 
	Backpropagation Learning Math
	Visualization of Backpropagation learning
	Slide 22 
	Slide 23 
	Slide 24 
	Bias Neurons in Backpropagation Learning
	Software for Backpropagation Learning
	Slide 27 
	Slide 28 
	Slide 29 
	Slide 30 
	NETalk (1987)
	Other Examples
	ALVINN
	Slide 34 
	Learning on-the-fly
	Feed-forward vs. Interactive Nets
	Ways of learning with an ANN
	Slide 38 
	Slide 39 
	Slide 40 
	Slide 41 
	Slide 42 
	Slide 43 
	Problems with using ANNs
	Solving Problem 1 – The Steps to create a ANN 
	Neural Network Development Process
	Problem Specification Phase
	Problem 2 –  How to create a Neural Network
	Problem 3 - Quality Assurance
	Two Methods for Comparison
	Further Work on improvements
	Further Work (2)
	Slide 53 
	Slide 54 
	Slide 55 
	Slide 56 



