0.7 Trigonometric Functions

$\csc \theta=\frac{1}{\sin \theta}=\frac{r}{y}$	$\sin \theta=\frac{y}{r}$
$\sec \theta=\frac{1}{\cos \theta}=\frac{1}{x}$	$\cos \theta=\frac{x}{r}$
$\operatorname{lلم}$	
$\cot \theta=\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}=\frac{y}{x}$	$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{x}{y}$

- Even and Odd Trigonometric Function:

$$
\begin{aligned}
& \sin (-x)=-\sin x \quad \text { odd function } \\
& \cos (-x)=\cos x \quad \rightarrow \quad \text { even function }
\end{aligned}
$$

Example 5: Show that tangent is an odd function

Solution

$$
\tan (-t)=\frac{\sin (-t)}{\cos (-t)}=\frac{-\sin t}{\cos t}=-\tan t
$$

Example 6: Verify that the following are identities:
(a) $1+\tan ^{2} t=\sec ^{2} t$
(b) $1+\cot ^{2} t=\csc ^{2} t$

Solution

(a) $1+\tan ^{2} t=\sec ^{2} t=1+\frac{\sin ^{2} t}{\cos ^{2} t}=\frac{\cos ^{2} t}{\cos ^{2} t}+\frac{\sin ^{2} t}{\cos ^{2} t}$

$$
=\frac{\cos ^{2} t+\sin ^{2} t}{\cos ^{2} t}=\frac{1}{\cos ^{2} t}=\sec ^{2} t
$$

(b) $1+\cot ^{2} t=\csc ^{2} t=1+\frac{\cos ^{2} t}{\sin ^{2} t}=\frac{\sin ^{2} t}{\sin ^{2} t}+\frac{\cos ^{2} t}{\sin ^{2} t}$

$$
=\frac{\sin ^{2} t+\cos ^{2} t}{\sin ^{2} t}=\frac{1}{\sin ^{2} t}=\csc ^{2} t
$$

Example 7: Find the distance traveled by a bicycle with wheels of radius 30 cm when the wheels turn through 100 revolutions.

Solution

$$
S=r \theta=r(\text { revolutions } \times 2 \pi)=30(100 \times 2 \pi)=6000 \pi \mathrm{~cm}
$$

