

(

(

(

)

)

)

Student's Name	Student's ID	Group No.	Lecturer's Name
		1	

Question No.	Ι	II	III	IV	V	Total
Mark						

[I] Determine whether the following is True or False. [9 Points]

(1) If A is an invertible matrix, then AA^T is invertible.

	1	3	2 -		3	1	2			
(2) If $A =$	2	1	-2	and $B =$	1	2	-2	, then $\det B = \det A$.	()
	2	0	1		0	2	1			

- (3) The following equations form a linear system $\begin{array}{rcl} x+3y^2 &=& 1\\ \sin x+y &=& 0 \end{array}$
- (4) If the characteristic polynomial of a matrix A is $P(\lambda) = \lambda^2 + 1$, then A is invertible. (

(5) Any set containing three vectors from \mathbb{R}^3 is a basis for \mathbb{R}^3 . ()
--	---

(6) If $A = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}$, then the eigenvalues of A^4 are 16 and 4.

)

(8)	The vector $u = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is a unit vector.	()
(9)	The inverse of an invertible upper triangular matrix is upper triangular.	()
(10)	If $(v)_S = (1, -1)$ and $S = \{(5, 3), (2, 1)\}$, then $v = (3, 2)$.	()
(11)	If $S = \{(1,4), (2,1)\}$ and $T = \{(1,4), (2,1), (3,5)\}$, then $\text{Span}(S) = \text{span}(T)$.	()
(12)	If $m_1 \neq m_2$ in the system $\begin{cases} -m_1x_1 + x_2 = b_1 \\ -m_2x_1 + x_2 = b_2 \end{cases}$, then the system has a unique solution.	()

(

)

[II] Choose the correct answer. [5 Points]

(1) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation, such that $T\begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, T\begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, T\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}.$

Find
$$T\begin{bmatrix} 3\\ -2\\ 4 \end{bmatrix}$$
.
(a) $T\begin{bmatrix} 1\\ 7\\ 2 \end{bmatrix}$ (b) $T\begin{bmatrix} 5\\ 7\\ 7 \end{bmatrix}$ (c) $T\begin{bmatrix} 3\\ 4\\ 1 \end{bmatrix}$ (d) None of the previous

(2) If $W = \text{span}\{(1, 1, 1), (2, 2, 2)\}$, then dim W is

(a) 0 (b) 2 (c) 1 (d) None of the previous

- (3) The values of c, if any, for which the matrix $A = \begin{bmatrix} c & -c & c \\ 1 & c & 1 \\ 0 & 0 & c \end{bmatrix}$ is invertible are
 - (a) $c \neq 0, 1$ (b) $c \neq 0, -1$ (c) c = 0, -1 (d) None of the previous
- (4) If A and B are 4×4 matrices, then det(3A + 3AB) =
 - (a) $3^4(\det A + \det A \cdot \det B)$ (b) $3^4 \det A \cdot (1 + \det B)$ (c) $3^4 \det A \cdot \det(I + B)$ (d) None of the previous
- (5) If $T_1(x,y) = (x-y, x+y)$ and $T_2(x,y) = (4x, 3x+2y)$, then the standard matrix for $T_2 \circ T_1$ is
 - (a) $\begin{bmatrix} 1 & -2 \\ 7 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 4 & -4 \\ 5 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 5 \\ -4 & -1 \end{bmatrix}$ (d) None of the previous
- (6) If T is the rotation about the origin, through an angle $\theta = 60^{\circ}$, then

(a)
$$\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$
 (b) $\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ (c) $\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$ (d) None of the previous

(7) For a = 2, the system $\begin{cases} 2x + a^2y = 1 \\ X + 2y = 1 \end{cases}$ has

(a) no solution	(b) one solution	(c) infinitely many solutions	(d) None of the previous

(8) The number of parameters in the general solution of $A\mathbf{x} = \mathbf{0}$, if $A = [a_{ij}]_{5\times 7}$ is of rank 3 is

(a) 3	(b) 4	(c) 2	(d) None of the previous

(9) Given $v_1 = (-1, 2, 1)$ and $v_2 = (0, 4, -5)$, then $2v_1 \cdot v_2$ is

(a) (0, 16, -10) (b) -4 (c) 6 (d) None of the previous

 $[\mathbf{III}]$

(a) Show that
$$\lambda = 2$$
 is an eigenvalue of $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 2 & 1 \end{bmatrix}$
(b) Compute the eigenvalues of $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

- [**IV**] Let $S = \{v_1, v_2, v_3\}$, where $v_1 = (1, -3, 1, 1), v_2 = (2, -1, 1, 1), v_3 = (4, -7, 3, 3).$
 - (i) Prove that S is not a basis for \mathbb{R}^4 ;
 - (ii) Find a basis B for span{ v_1, v_2, v_3 } that contains only vectors from S;
- (iii) Express the vector of S which is not in B as a linear combination of vectors from B.

[V]

- (a) Find the standard matrix for the composed transformation in \mathbb{R}^3 given by a reflection about the *xy*-plane, followed by a reflection about the *xz*-plane, followed by an orthogonal projection on the *yz*-plane.
- (b) Determine whether the matrix operator $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by

$$\begin{cases} w_1 = x_1 - 3x_2 + 4x_3 \\ w_2 = -x_1 + x_2 + x_3 \\ w_3 = -2x_2 + 5x_3 \end{cases}$$

is one-to-one. If so, find the standard matrix for the inverse operator and find $T^{-1}(w_1, w_2, w_3)$.

(3) Compute rank([T]).