

KING SAUD UNIVERSITY College of Science Department of Mathematics

M-106

Summer Semester (1430/1431)

Final Exam

Name:	Number:	
Name of Teacher:	Group No:	

Max Marks: 50

Time: Three hours

Marks:

Multiple
Question

Multiple Choice 18 | 19 | 20 1 2 3 4 5 6 7 8 12 13 14 16 17 10 11 15 Q.No: 9 $\{a, b, c, d\}$ Q. No: 1 $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} \sec^2\left(\frac{k}{n}\right)$ is equal to: (a) ∞ (b) $\tan 1$ (c) 0 (d) $\frac{\pi}{4}$ Q. No: 2 If $\int \frac{e^{\cos^{-1}(x)}}{\sqrt{1-x^2}} dx = f(x) + c$, then f(x) is equal to: (a) $e^{\cos^{-1}(x)}$ (b) $e^{-\cos^{-1}(x)}$ (c) $-e^{\cos^{-1}(x)}$ (d) $e^{\sin^{-1}(x)}$ Q. No: 3 If $\ln(x^2) = \ln(4x - 4)$, then the value of x is equal to: (a) -2 (b) 2 (c) 1 (d) -1Q. No: 4 The integral $\int \frac{1}{x(1-\ln x)} dx$ is equal to: (a) $-\ln|1 - \ln x| + c$ (b) $\ln|1 - \ln x| + c$ (c) $-\ln(1 - \ln x) + c$ (d) $\ln|\ln x| + c$ Q. No: 5 If $\int_{0}^{x^{3}} f\left(\sqrt[3]{t}\right) dt = x$, then f(x) is equal to: (a) $\frac{1}{x^2}$ (b) $\frac{1}{3x}$ (c) $\frac{1}{3x^2}$ (d) $\frac{1}{x}$ Q. No: 6 $\lim_{x\to\infty} x\left(\frac{\pi}{2} - \tan^{-1}x\right)$ is equal to: (a) ∞ (b) 1 (c) 0 (d) -1

Q. No: 7 If $F(x) = \sinh^{-1}(\tan x)$, then F'(x) is equal to: (a) $\frac{\sec^2 x}{\sqrt{1-\tan^2 x}}$ (b) $\sec x$ (c) $\tan x$ (d) $|\sec x|$ Q. No: 8 The integral $\int \sqrt{x(6-x)} dx$ with a suitable substitution is equal to: (a) $\int \sqrt{9-u^2} du$ (b) $\int \sqrt{u^2-9} du$ (c) $\int \frac{1}{\sqrt{9-u^2}} du$ (d) $\int \sqrt{3-u^2} du$

Q. No: 9 To evaluate the integral $\int \sec^2 x \sqrt{\tan x} dx$, we use the substitution:

(a) $u = \sec x$ (b) $u = \tan x$ (c) $u = \sqrt{\tan x}$ (d) $u = \sec^2 x$

Q. No: 10 The partial fraction decomposition of $\frac{x^2}{x^3-1}$ takes the form: (a) $\frac{A}{x-1} + \frac{Bx+C}{x^2-x+1}$ (b) $\frac{A}{x-1} + \frac{B}{x^2+x+1}$ (c) $\frac{A}{x-1} + \frac{Bx+C}{x^2+1}$ (d) $\frac{A}{x-1} + \frac{Bx+C}{1+x+x^2}$ Q. No: 11 The substitution $u = \tan\left(\frac{\pi}{2}\right)$ transforms the integral $\int \frac{1}{\sin x + \cos x} dx$ into: (a) $\int \frac{2}{-u^2+2u+1} du$ (b) $\int \frac{1}{-u^2+2u+1} du$ (c) $\int \frac{2}{-u^2-2u+1} du$ (d) $\int \frac{2}{-u^2+1} du$ Q. No: 12 To evaluate the integral $\int \frac{\sqrt{x}}{x^{\frac{1}{3}} + x^{\frac{2}{3}}} dx$, we use the substitution: (a) $u = \sqrt{x}$ (b) $u = x^{\frac{1}{3}}$ (c) $u = x^{\frac{1}{4}}$ (d) $u = x^{\frac{2}{3}}$ Q. No: 13 The improper integral $\int_{e}^{\infty} \frac{1}{x(\ln x)^2} dx$ (a) converges to 0 (b) converges to 1 (c) diverges (d) converges to -1 Q. No: 14 The area of the region bounded by the graphs of $y = x^2$ and y = 1 is equal to: (a) $\frac{4}{3}$ (b) $-\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $-\frac{2}{3}$ Q. No: 15 If a point has polar coordinates $\left(-1, \frac{\pi}{3}\right)$ then its other possible polar coordinates are: (a) $\left(1, \frac{5\pi}{3}\right)$ (b) $\left(1, \frac{2\pi}{3}\right)$ (c) $\left(1, \frac{4\pi}{3}\right)$ (d) $\left(-1, \frac{2\pi}{3}\right)$

Q. No: 16 If a point has polar coordinates $\left(2, \frac{-\pi}{4}\right)$ then its xy-coordinates are: (a) $\left(\sqrt{2}, \sqrt{2}\right)$ (b) $\left(\sqrt{2}, -\sqrt{2}\right)$ (c) $\left(-\sqrt{2}, -\sqrt{2}\right)$ (d) $\left(-\sqrt{2}, \sqrt{2}\right)$

(a)
$$(\sqrt{2}, \sqrt{2})$$
 (b) $(\sqrt{2}, -\sqrt{2})$ (c) $(-\sqrt{2}, -\sqrt{2})$ (d) $(-\sqrt{2}, \sqrt{2})$
Q. No: 17 The slope of the tangent line to the curve $C : x = \cos t$, $y = 2 \sin t$ at $t = \frac{3\pi}{4}$
is:
(a) 2 (b) -2 (c) $\frac{1}{2}$ (d) $\frac{-1}{2}$
Q. No: 18 The length of the curve $C : x = \frac{1}{2} \sin t$, $y = 2 + \frac{1}{2} \cos t$; $0 \le t \le \frac{\pi}{2}$ is equal to:
(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{8}$ (d) $\frac{3\pi}{4}$

Q. No: 19 The surface area resulting by revolving the graph of the equation y = 1 - x, $-1 \le x \le 1$ around the x-axis is equal to: (a) $2\pi\sqrt{2}$ (b) $4\pi\sqrt{2}$ (c) $\pi\sqrt{2}$ (d) $3\pi\sqrt{2}$

Q. No: 20 If a graph has polar equation $r = \sec \theta$, then its equation in xy-system is:

(a)
$$y = 1$$
 (b) $(x - 1)^2 + y^2 = 1$ (c) $x = 1$ (d) $x^2 + (y - 1)^2 = 1$

Full Questions

Question No: 21 Approximate the integral $\int_0^{\pi} \sqrt{1 + \sin x} dx$ using Simpson's rule with n = 4. [4]

Question No: 22 Determine whether the improper integral $\int_{\frac{\pi}{2}}^{\pi} \frac{1}{1 + \cos x} dx$ converges or diverges and if it converges find its value. [4]

Question No: 23 Evaluate
$$\int \frac{1}{x(x^2+x+1)} dx.$$
 [6]

1

Question No: 24 Let R be the region bounded by the graph of the equations $y = x^2$ and y = x + 2.

Sketch the region R and set up (Do not evaluate) an integral that can be used to find the volume of the solid generated by revolving the region R around the line x = 2. (Use Cylindrical Shell) [5]

) uestion No: 25 Let R be the region that is outside the graph of the equation r = 1 and inside the graph of the equation $r = 1 + \sin \theta$.

Sketch the region R and Evaluate its area. [6]

Question No: 26 Let R be the region **bounded** by the graph of the equations: $r = 2 \sec \theta$, $\theta = 0$ and $\theta = \frac{\pi}{4}$.

Sketch the region R and set up (Do not evaluate) an integral that can be used to find its area. [5]