

MINISTRY OF EDUCATION

لكل المهتمين و المهتمات بدروس و مراجع الجامعية مدونة المناهج السعودية eduschool40.blog

Hypotheses Testing

<u>1-Single Mean</u>

(if σ known):

Hypotheses	$H_o: \mu = \mu_o$	H_{o} : $\mu \leq \mu_{o}$	$H_o: \mu \ge \mu_o$
	H_A : $\mu \neq \mu_o$	$H_A: \mu > \mu_o$	$H_A: \mu < \mu_o$
Test Statistic (T.S.)	Calculate the	value of: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$\frac{1}{2} \sim N(0,1)$
R.R. & A.R. of H _o	$\begin{array}{c} \alpha/2 & 1-\alpha & \alpha/2 \\ A.R. \text{ of } H_0 & Z & \alpha/2 & Z_{1-\alpha/2} & \alpha H_0 \\ \hline R.R. & Z & \alpha/2 & Z_{1-\alpha/2} & \alpha H_0 \\ & = -Z_{\alpha/2} \end{array}$	$\begin{array}{c} 1-\alpha \\ A.R. of H_0 \\ = -Z_{\alpha} \end{array}$	α 1- α R.R. of H ₀ Z α A.R. of H ₀
Critical value (s)	$Z_{\alpha/2}$ and $-Z_{\alpha/2}$	$Z_{1-\alpha} = -Z_{\alpha}$	Zα
Decision:	We reject H _o (and acc	cept H _A) at the signif	icance level α if:
	$Z < Z_{\alpha/2}$ or $Z > Z_{1-\alpha/2} = -Z_{\alpha/2}$	$Z > Z_{1-\alpha} = - Z_{\alpha}$	$Z < Z_{\alpha}$
	Two-Sided Test	One-Sided Test	One-Sided Test

(if σ unknown):

			· · · · · · · · · · · · · · · · · · ·
Hypotheses	$H_o: \mu = \mu_o$	$H_{\text{o}}: \mu \leq \mu_{\text{o}}$	$H_{o}:\mu\geq\mu_{o}$
	$H_A \mu \neq \mu_o$	$H_A: \mu > \mu_o$	$H_A: \mu < \mu_o$
Test Statistic (T.S.)	Calculate the value of: $t = \frac{\overline{X} - \mu_o}{S / \sqrt{n}} \sim t(n-1)$		
	(df = v = n-1)		
R.R. & A.R. of H _o	$\frac{\alpha/2}{\operatorname{A.R. of } H_0} \frac{1-\alpha}{t_{1-\alpha/2}} \frac{\alpha/2}{\operatorname{A.R. of } H_0}$ $\frac{\alpha/2}{\operatorname{A.R. of } H_0} \frac{1-\alpha}{t_{1-\alpha/2}} \frac{\alpha/2}{\operatorname{A.R. of } H_0}$ $= -t_{\alpha/2}$	$\begin{array}{c} 1-\alpha \\ A.R. \text{ of } H_0 \\ = -t_{\alpha} \end{array}$	α $1-\alpha$ R.R. of H ₀ t_{α} A.R. of H ₀
value (s)	$t_{\alpha/2}$ and $-t_{\alpha/2}$	$\iota_{1-\alpha} = -\iota_{\alpha}$	ια
Decision:	We reject H_o (and accept H_A) at the significance level α if:		
	$t < t_{\alpha/2}$ or	$t > t_{1-\alpha} = -t_{\alpha}$	$t < t_{\alpha}$
	$t > t_{1-\alpha/2} = -t_{\alpha/2}$ Two-Sided Test	One-Sided Test	One-Sided Test

Question 1:

Suppose that we are interested in estimating the true average time in seconds it takes an adult to open a new type of tamper-resistant aspirin bottle. It is known that the population standard deviation is $\sigma = 5.71$ seconds. A random sample of 40 adults gave a mean of 20.6 seconds. Let μ be the population mean, then, to test if the mean μ is 21 seconds at level of significant 0.05 $(H_0: \mu = 21 \text{ vs } H_A: \mu \neq 21)$ then:

(1) The value of the test statistic is:

$$\sigma = 5.71$$
 $n = 40$ $\bar{X} = 20.6$

$$Z = \frac{\bar{X} - \mu_o}{\sigma/\sqrt{n}} = \frac{20.6 - 21}{5.71/\sqrt{40}} = -0.443$$

- (A) 0.443 (B) 0.012 (C) -0.443 (D) 0.012
- (2) The acceptance area is:

$$Z_{\frac{\alpha}{2}} = Z_{\frac{0.05}{2}} = Z_{0.025} = 1.96$$

$$\alpha/2$$
A.R. of H_o

$$\alpha/2$$
A.R. of H_o
A.R. o

$(A) (-1.96, 1.96) $ $(B) (1.96, \infty)$	$(C)(-\infty, 1.96)$	$(D)(-\infty, 1.645)$
---	----------------------	-----------------------

(3) The decision is:

(A)	Reject H ₀	(\underline{B}) Accept H_0	(C) no decision	(D) None of these
-----	-----------------------	--------------------------------	-----------------	-------------------

Question 2:

(1) The test statistic is:

(A)
$$Z = \frac{\overline{X} - 10}{\sigma/\sqrt{n}}$$
 (B) $Z = \frac{\overline{X} - 10}{s/\sqrt{n}}$ (C) $t = \frac{\overline{X} - 10}{\sigma/\sqrt{n}}$ (D) $t = \frac{\overline{X} - 10}{s/\sqrt{n}}$

(2) The value of the test statistic is:

$$s = 2 \quad n = 25 \quad \overline{X} = 13$$
$$t = \frac{\overline{X} - \mu_o}{S/\sqrt{n}} = \frac{13 - 10}{2/\sqrt{25}} = 7.5$$

$$(A) 10 (B) 1.5 (C) 7.5 (D) 37.5$$

(3) The rejection of H_0 is :

(A) Z < -1.645 (B) z > 1.645 (C) t < -1.711 (D) t > 1.711

(4) The decision is:

(\underline{A}) Reject H_0	(B) Do not reject (Accept) H_0
(C) Accept both H_0 and H_A	(D) Reject both H_0 and H_A

Hypotheses	$H_{o}: \mu_{1} - \mu_{2} = 0$	$H_{o}:\mu_{1}-\mu_{2}\leq 0$	$H_{o}:\mu_{1}-\mu_{2}\geq 0$
	$H_A: \mu_1 - \mu_2 \neq 0$	$H_A: \mu_1 - \mu_2 > 0$	$H_A: \mu_1 - \mu_2 < 0$
Test Statistic For the First Case:	$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim \mathrm{N}(0)$,1) {if σ_1^2 and	σ_2^2 are known}
R.R. and A.R. of H _o (For the First Case)	$\begin{array}{c} \alpha/2 & 1-\alpha \\ A.R. \text{ of } H_0 \\ \sigma f H_0 \\ = -Z_{\alpha/2} \\ \end{array} \begin{array}{c} \alpha/2 \\ Z_{\alpha/2} \\ R.R. \\ \sigma f H_0 \\ R.R. \\ R.R. \\ \sigma f H_0 \\ R.R. \\ R.R. \\ \sigma f H_0 \\ R.R. \\ $	$\begin{array}{c c} & & \alpha \\ & & & \\ \hline & & & \\ \hline & & & \\ A.R. of H_0 & Z_{\alpha} & R.R. \\ & & & \\ \sigma f H_0 \end{array}$	$\alpha = 1 - \alpha$ R.R. of Ho of Ho Z1-\alpha A.R. of Ho = -Za
Test Statistic For the Second Case:	$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}} \sim t(n_1)$	$+n_2-2)$ {if $\sigma_1^2 = \sigma_2^2$	=σ ² is unknown}
R.R. and A.R. of H _o (For the Second Case)	$\begin{array}{c c} \alpha/2 & 1-\alpha & \alpha/2 \\ \hline & A.R. \text{ of } H_0 \\ \hline & f H_0 & t_{1-\alpha/2} & t_{\alpha/2} \\ \hline & f H_0 & t_{1-\alpha/2} \\ \hline & f H_0 \\ \hline & f H_0 \\ \hline \end{array}$	$\begin{array}{c} 1-\alpha \\ \hline \\ A.R. of H_0 \\ \hline \\ t_{\alpha} \\ of H_0 \\ \end{array}$	$\alpha \qquad 1-\alpha$ R.R. $t_{1-\alpha}$ of H ₀ $t_{1-\alpha}$ $= -t_{\alpha}$
Decision:	Reject H _o (and accept	H _A) at the significant	nce level α if:
	T.S. ∈ R.R.	T.S. ∈ R.R.	T.S. ∈ R.R.
	Two-Sided Test	One-Sided Test	One-Sided Test

Question 1:

A standardized chemistry test was given to 50 girls and 75 boys. The girls made an average of 84, while the boys made an average grade of 82. Assume the <u>population</u> standard deviations are 6 and 8 for girls and boys respectively. To test the null hypothesis $H_0: \mu_1 - \mu_2 \leq 0$ against the alternative hypothesis $H_A: \mu_1 - \mu_2 > 0$ at 0.05 level of significance:

(1) The standard error of $(\overline{X}_1 - \overline{X}_2)$ is:

girls:
$$n_1 = 50$$
, $\bar{X}_1 = 84$, $\sigma_1 = 6$
boys: $n_2 = 75$, $\bar{X}_2 = 82$, $\sigma_2 = 8$

$$S.E(\bar{X}_1 - \bar{X}_2) = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{\frac{6^2}{50} + \frac{8^2}{75}} = 1.2543$$

 $(A) 0.2266 (B) 2 (C) 1.5733 (\underline{D}) 1.2543$

(2) The value of the test statistic is:

$$Z = \frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{(84 - 82)}{\sqrt{\frac{6^2}{50} + \frac{8^2}{75}}} = \frac{2}{1.2543} = 1.5945$$
(A) -1.59 (B) 1.59 (C) 1.25 (D) 4.21

(3) The rejection region (RR) of H_0 is:

(4) The decision is:

$$(A)$$
 Reject H_0 (\underline{B}) Do r (C) Accept both H_0 and H_A (D) Reje

 \underline{B}) Do not reject (Accept) H_0 D) Reject both H_0 and H_A

Question 2:

Cortisol level determinations were made on two samples of women at childbirth. Group 1 subjects underwent emergency cesarean section following induced labor. Group 2 subjects natural childbirth route following spontaneous labor. The sample sizes, mean cortisol levels, and standard deviations were $(n_1 = 40, \bar{x}_1 = 575, \sigma_1 = 70)$, $(n_2 = 44, \bar{x}_2 = 610, \sigma_2 = 80)$ If we are interested to test if the mean Cortisol level of group 1 (μ_1) is less than that of group 2 (μ_2) at level 0.05 (orH₀: $\mu_1 \ge \mu_2$ vs H₁: $\mu_1 < \mu_2$), then:

(1) The value of the test statistic is:

$$Z = \frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{(575 - 610)}{\sqrt{\frac{70^2}{40} + \frac{80^2}{44}}} = -2.138$$
(A) -1.326 (B) -2.138 (C) -2.576 (D) -1.432

(2) Reject H_0 if :

(A)	Z > 1.645	(B) T > 1.98	(C) Z < -1.645	(D) $T < -1.98$
(11)	2 / 1.015	(D) I > I. > 0	$\underline{10}$ $\underline{2}$ $\underline{10}$ $\underline{10}$	(D) I < 1.00

(3) The decision is:

(A)	Reject H ₀	(B) Accept H_0	(C) no decision	(D) none of these
-----	-----------------------	------------------	-----------------	-------------------

Question 3:

An experiment was conducted to compare time length (duration time in minutes) of two types of surgeries (A) and (B). 10 surgeries of type (A) and 8 surgeries of type (B) were performed. The data for both samples is shown below.

Surgery type	A	В
Sample size	10	8
Sample mean	14.2	12.8
Sample standard deviation	1.6	2.5

Assume that the two random samples were independently selected from two normal populations with equal variances. If μ_A and μ_B are the population means of the time length of surgeries of type (A) and type (B), then, to test if μ_A is greater than μ_B at level of significant 0.05 $(H_0: \mu_A \le \mu_B \text{ vs } H_A: \mu_A > \mu_B)$ then:

(4) The value of the test statistic is:

$$Sp^{2} = \frac{S_{1}^{2}(n_{1}-1) + S_{2}^{2}(n_{2}-1)}{n_{1}+n_{2}-2} = \frac{1.6^{2}(10-1) + 2.5^{2}(8-1)}{10+8-2} = 4.174$$

$$t = \frac{(\bar{X}_1 - \bar{X}_2)}{Sp\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(14.2 - 12.8)}{\sqrt{4.174}\sqrt{\frac{1}{10} + \frac{1}{8}}} = 1.44$$

(D) 1.11 (D) 1.11 (D) 0.000 (D) 0.000 (D) 0.000 (D) 0.000 (D) 0.000 (D) 0.000 (D) 0.00 (D)	(A) -1.44	(B) 1.44	(<i>C</i>) - 0.685	(D) 0.68.
--	-----------	----------	----------------------	-----------

(5) Reject H_0 if :

$$t_{\alpha,n_1+n_2-2} = t_{0.05,10+8-2} = t_{0.05,16} = 1.746$$

(6) The decision is:

(A)	Reject H ₀	(\underline{B}) Accept H_0	(C) no decision	(D) none of these
-----	-----------------------	--------------------------------	-----------------	-------------------

Question 4:

A researcher was interested in comparing the mean score of female students μ_1 , with the mean score of male students μ_2 in a certain test. Assume the populations of score are normal with equal variances. Two independent samples gave the following results:

	Female	male
Sample size	<i>n</i> ₁ = 5	$n_2 = 7$
Mean	$\bar{x}_1 = 82.63$	$\bar{x}_2 = 80.04$
Variance	$s_1^2 = 15.05$	$s_2^2 = 20.79$

Test that is there is a difference between the mean score of female students and the mean score of male students.

(1) The hypotheses are:

$$\begin{array}{cccc} (\underline{A}) & H_o: \ \mu_1 = \mu_2 \\ H_A: \ \mu_1 \neq \mu_2 \end{array} \qquad \begin{array}{cccc} (B) & H_o: \ \mu_1 = \mu_2 \\ H_A: \ \mu_1 \neq \mu_2 \end{array} \qquad \begin{array}{ccccc} (B) & H_o: \ \mu_1 = \mu_2 \\ H_A: \ \mu_1 \neq \mu_2 \end{array} \qquad \begin{array}{cccccc} (C) & H_o: \ \mu_1 < \mu_2 \\ H_A: \ \mu_1 > \mu_2 \end{array} \qquad \begin{array}{cccccccccc} (D) & H_o: \ \mu_1 \leq \mu_2 \\ H_A: \ \mu_1 > \mu_2 \end{array}$$

(2) The value of the test statistic is:

$$Sp^{2} = \frac{S_{1}^{2}(n_{1}-1) + S_{2}^{2}(n_{2}-1)}{n_{1}+n_{2}-2} = \frac{15.05(4) + 20.79(6)}{5+7-2} = 18.494$$
$$t = \frac{(\bar{X}_{1} - \bar{X}_{2})}{Sp\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} = \frac{82.63 - 80.04}{\sqrt{18.494}\sqrt{\frac{1}{5} + \frac{1}{7}}} = 1.029$$

$$(A) \ 1.3 \qquad (\underline{B}) \ 1.029 \qquad (C) \ 0.46 \qquad (D) \ 0.93$$

(4) The acceptance region (AR) of H_0 is:

(<u>C</u>) (-2.228,

$$t_{\frac{\alpha}{2},n_{1}+n_{2}-2} = t_{\underline{0.05},5+7-2} = t_{0.025,10} = 2.228$$

$$u_{\frac{\alpha}{2},n_{1}+n_{2}-2} = t_{\frac{\alpha}{2},5+7-2} = t_{0.025,10} = 2.228$$

$$u_{\frac{\alpha}{2},n_{1}+n_{2}-2} = t_{\frac{\alpha}{2},2} = t_{\frac{\alpha}{2},2}$$

$$u_{\frac{\alpha}{2},n_{1}+n_{2}-2} = t_{\frac{\alpha}{2},2} = t_{\frac{\alpha}{2},2}$$

$$u_{\frac{\alpha}{2},n_{1}+n_{2}-2} = t_{\frac{\alpha}{2},2} = t_{\frac{\alpha}{2},2}$$

$$u_{\frac{\alpha}{2},n_{1}+n_{2}-2} = t_{\frac{\alpha}{2},2} = t_{\frac{\alpha}{2},2} = t_{\frac{\alpha}{2},2}$$

$$u_{\frac{\alpha}{2},n_{1}+n_{2}-2} = t_{\frac{\alpha}{2},2} =$$

8

Question 5:

A nurse researcher wished to know if graduates of baccalaureate nursing program and graduate of associate degree nursing program differ with respect to mean scores on personality inventory at $\alpha = 0.02$. A sample of 50 associate degree graduates (sample A) and a sample of 60 baccalaureate graduates (sample B) yielded the following means and standard deviations:

$$\bar{X}_A = 88.12, S_A = 10.5, n_A = 50$$

 $\bar{X}_B = 83.25, S_B = 11.2, n_B = 60$

1) The hypothesis is:

A)
$$H_0: \mu_1 \le \mu_2 \ vs \ H_1: \mu_1 > \mu_2$$

C) $H_0: \mu_1 = \mu_2 \ vs \ H_1: \mu_1 \ne \mu_2$
B) $H_0: \mu_1 \ge \mu_2 \ vs \ H_1: \mu_1 < \mu_2$
D) None of the above.

- 2) The test statistic is:
 - A) Z \underline{B}) t C) F D) None of the above.
- 3) The computed value of the test statistic is:

$$Sp^{2} = \frac{S_{1}^{2}(n_{1}-1) + S_{2}^{2}(n_{2}-1)}{n_{1}+n_{2}-2} = \frac{10.5^{2}(50-1) + 11.2^{2}(60-1)}{50+60-2} = 118.55$$
$$t = \frac{(\bar{X}_{1} - \bar{X}_{2})}{Sp\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} = \frac{88.12 - 83.25}{\sqrt{118.55}\sqrt{\frac{1}{50} + \frac{1}{60}}} = 48.19$$
$$A) 2.72 \qquad B) 1.50 \qquad C) 1.86 \qquad \underline{D}) 2.35$$

4) The critical region (rejection area) is:

A) 2.60 Or -2.60 B) 2.06 Or -2.06 <u>C</u>) 2.33 Or - 2.33 D) 2.58

5) Your decision is:

A) accept & reject H_0 B) accept H_0 C) reject H_0 D) no decision.

Single proportion:

Hypotheses	$H_o: p = p_o$	$H_o: p \le p_o$	$H_o: p \ge p_o$
	$H_A: p \neq p_o$	$H_A: p > p_o$	$H_A: p < p_o$
Test Statistic (T.S.)	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1)$		
R.R. & A.R. of H _o	$\begin{array}{c} \alpha/2 & 1-\alpha \\ A.R. \text{ of } H_0 \\ \hline R.R. \\ of H_0 \\ \hline Z \alpha/2 \\ \hline Z_{1-\alpha/2} \\ C_{1-\alpha/2} \\ \hline C_{1-\alpha/2} \\ C_{1-\alpha/2$	$\begin{array}{c} 1-\alpha \\ A.R. of H_0 \\ = -Z_{\alpha} \end{array}$	α $1-\alpha$ R.R. of H _o Z α A.R. of H _o
Decision:	Reject H _o (and accept	t H _A) at the significa	nce level α if:
	$Z < Z_{\alpha/2}$ or $Z > Z_{\alpha/2} = -Z_{\alpha/2}$	$Z > Z_{1-\alpha} = - Z_{\alpha}$	$Z < Z_{\alpha}$
	$\frac{\Sigma - \Sigma_{1-\alpha/2} - \Sigma_{\alpha/2}}{\text{Two-Sided Test}}$	One-Sided Test	One-Sided Test

<u>Question 1:</u>

Toothpaste ((x + q + q)) company claims thatmorethan 75% of the dentists recommend their product to the patients. Suppose that 161 out of 200 dental patients reported receiving a recommendation for this toothpaste from their dentist. Do you suspect that the proportion is actually morethan 75%. If we use 0.05 level of significance to test $H_0: P \leq 0.75$, $H_A: P > 0.75$, then:

(1) The sample proportion \hat{p} is:

(2) The value of the test statistic is:

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} = \frac{0.805 - 0.75}{\sqrt{(0.75)(0.25)}} = 1.7963$$
(A) 1.963 (B) 1.796 (C) -1.796 (D) -1.963

(3)The decision is:

(<u>A</u>) Reject H_0 (C) Accept both H_o and H_A

(B) Do not reject (Accept) H_{\circ} (D) Reject both H_{\circ} and H_{A}

Question 2:

A researcher was interested in studying the obesity ($|I_{uui}|$) disease in a certain population. A random sample of 400 people was taken from this population. It was found that 152 people in this sample have the obesity disease. If p is the population proportion of people who are obese. Then, to test if p is greater than 0.34 at level 0.05 ($H_0: p \le 0.34$ vs $H_A: p > 0.34$) then:

(1) The value of the test statistic is:

$$n = 400, \quad \hat{p} = \frac{152}{400} = 0.38$$

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} = \frac{0.38 - 0.34}{\sqrt{\frac{0.34 \times 0.66}{400}}} = 1.69$$

(A) 0.023 (B) 1.96 (C) 2.50 (D) 1.69

(2) The P-value is

$$P - value = P(Z > 1.96) = 1 - P(Z < 1.96) = 1 - 0.9545 = 0.0455$$

(A) 0.9545	(B) 0.0910	<u>(C)</u> 0.0455	(D)1.909
------------	------------	-------------------	----------

(3) The decision is:

$$P - value = 0.0455 < 0.05$$

(A) Reject H_0	(B) Accept H_0	(C) no decision	(D) none of these
--------------------	--------------------	-----------------	-------------------

Two proportions:

Hypotheses	$H_0: p_1 - p_2 = 0$	$H_0: p_1 - p_2 \le 0$	$H_0: p_1 - p_2 \ge 0$	
	$H_{A}: p_{1} - p_{2} \neq 0$	$H_A: p_1 - p_2 > 0$	$H_{A}: p_{1} - p_{2} < 0$	
Test Statistic	7 -	$(\hat{p}_1 - \hat{p}_2)$		
(T.S.)	$\Sigma = -\overline{\overline{p}}($	$Z = \frac{1}{\overline{p(1-\overline{p})}, \overline{p(1-\overline{p})}} \sim N(0,1)$		
	$\sqrt{n_1} + \overline{n_2}$			
R.R. and	\square	\land	\land	
A.R. of H_o	1-9			
		$1-\alpha$	α 1-α	
	$\frac{R_{R}}{\alpha \mu} \frac{Z_{1-\alpha/2}}{Z_{1-\alpha/2}} \frac{Z_{\alpha/2}}{Z_{\alpha/2}} \frac{R_{R}}{Z_{1-\alpha/2}}$	A.R. of Ho Z / R.R.	R.R. Z1-a A.R. of Ho	
	$= -Z_{\alpha/2}$	- tt of H _o	$=-Z_{\alpha}$	
Decision:	Reject H _o (and acce	pt H ₁) at the signif	ficance level α if	
	Z∈R.R.:			
Critical	$Z > Z_{\alpha/2}$	$Z > Z_{\alpha}$	$Z < -Z_{\alpha}$	
Values	or $Z < -Z_{\alpha/2}$			
	Two-Sided Test	One-Sided Test	One-Sided Test	

Question 1:

In a first sample of 200 men, 130 said they used seat belts and a second sample of 300 women, 150 said they used seat belts. To test the claim that men are more safety-conscious than women $(H_0: p_1 - p_2 \le 0, H_1: p_1 - p_2 > 0)$, at 0.05 level of significant:

(1) The value of the test statistic is:

$$n_{1} = 200, \quad \hat{p}_{1} = \frac{130}{200} = 0.65 \qquad n_{2} = 300, \quad \hat{p}_{2} = \frac{150}{300} = 0.5$$
$$\hat{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}} = \frac{130 + 150}{200 + 300} = 0.56$$
$$Z = \frac{(\hat{p}_{1} - \hat{p}_{2})}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} = \frac{(0.65 - 0.5)}{\sqrt{(0.56)(0.44)\left(\frac{1}{200} + \frac{1}{300}\right)}} = 3.31$$

 $(A) -3.31 (B) 5.96 (C) 1.15 (\underline{D}) 3.31$

(2) The decision is:

(3) We can conclude that from confidence interval that

(A) The diabetes proportions may be equal for both proportion.(B) The diabetes proportions may not be equal for both proportion.

Question 2:

In a study of diabetes, the following results were obtained from samples of males and females between the ages of 20 and 75. Male sample size is 300 of whom 129 are diabetes patients, and female sample size is 200 of whom 50 are diabetes patients. If P_M , P_F are the diabetes proportions in both populations and \hat{p}_M , \hat{p}_F are the sample proportions, then: A researcher claims that the Proportion of diabetes patients is found to be more in males than in female (H_0 : $P_M - P_F \leq 0$ vs H_A : $P_M - P_F > 0$). Do you agree with his claim, take $\alpha = 0.10$

(1) The pooled proportion is:

$$\hat{p} = \frac{x_m + x_f}{n_m + n_f} = \frac{129 + 50}{300 + 200} = 0.358$$

(A) 0.43 (B) 0.18 (C) 0.358 (D) 0.68

(2) The value of the test statistic is:

$$Z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(0.43 - 0.25)}{\sqrt{(0.358)(1 - 0.358)\left(\frac{1}{300} + \frac{1}{200}\right)}} = 0.411$$

$$(A) -4.74 (B) 4.74 (C) 4.11 (D) - 4.11$$

(3) The decision is:

(A) Agree with the claim

 (\underline{B}) do not agree with the claim

(C) Can't say

 $x = 25 \rightarrow \text{normal}$ x = 4.8 $x = 5 = 2 \rightarrow 3$ is unknow **Exercise #10** $x = 2 \rightarrow 5$

Q1: A study was made of a random sample of 25 records of patients seen at a chronic disease hospital on an outpatient basis, the mean number of outpatient visits per patient was 4.8 with standard deviation was 2. Can it be concluded from these data that the population mean is greater than four visits per patient. Let the probability of committing a type I error be 0.05.

 \cancel{x} \cancel{x} = \cancel{y} Q2: In a sample of 49 adolescents who served as the subjects in an immunologic study, one \cancel{x} \cancel{x} = \cancel{y} variable of interest was the diameter of a skin test reaction to an antigen. The sample mean and \cancel{x} \cancel{y} = \cancel{y} standard deviation were 21 and 11 mm erythematic, respectively. Can it be concluded from these
data that the population mean is less than 30? let α =0.05

1-what is the assumption?

Scanned by CamScanner

×n=100	* 6=6.5
$\neq \overline{X} = 27$	* a=0.05

Q3:A survey of 100 similar-sized hospitals revealed a mean daily census in the pediatrics service of 27. The population distributed normally with standard deviation of 6.5 .Do these data provide sufficient evidence to indicate that the population mean is not equal 25?let α=0.05

1-what is the assumption?

& known, normal, n large (1730)

2-Hypothesis is?

 H_{A} : $M \neq 25$ Ho: M=25 3-Test statistic= $Z = \frac{X - \mu_0}{\frac{2}{6.5}} = \frac{27 - 25}{\frac{6.5}{6.5}} = 3.077$

¥8=16 ~>

 $\frac{1}{1-6.025} = \frac{2}{6.975} = 1.96$ 4-Rejection region is $R \cdot R = (-\infty)$

b)accept H₀

known

[2=3.077] E A.F 5-conclusion is: "6 K (R.E.) رفق المقافة علية a)reject Ho 6- P-value =

H.W 1:

two

sided (=)(7)

> * n= 64 -> n lårge * x = 183 * d = 0.05 A research team is willing to assume that systolic blood pressures in a certain population of males are approximately normally distributed with a standard deviation of 16. A simple random sample of 64 males from the population had a mean systolic blood pressure reading of 133 . At the 0.05 level of significance, do these data provide sufficient evidence for us to conclude that the population mean is greater than 130.

(2)×P(z>|z1) = 2×P(z>3077) = 2× 0.00104 = 0.00208

1-what is the assumption?

(Answer: Normal, σ known, n large)

 $H_A: \mu > 130$) (Answer: $H_0: \mu \le 130$, 2-Hypothesis is? Z ~ ~ 2 . 13; # (Answer: Z = 1.5) 3-Test statistic= $Z = \frac{\overline{X} - M_0}{\frac{3}{N_{W}}} = \frac{133 - 130}{\frac{16}{N_{W}}} = 1.5$ 2=1.645 (Answer: $Z > Z_{1-\alpha}$) 4-Reject H₀ if 5-conclusion is: م الرفق بالقادون، و b)accept Ho a)reject Ho. 2=1.5 272.0 ، ع منفقه- القِبول acrept Ho d= A.R >1.645 55 لم تتقعم شرط الرفع

Scanned by CamScanner

Q4: The objective of a study by Sairam et al. (A-8) was to identify the role of various disease states and additional risk factors in the development of thrombosis. One focus of the study was to determine if there were differing levels of the anticardiolipin antibody IgG in subjects with and without thrombosis.

Group	Mean IgG Level (ml/unit)	Sample Size	Population Standard deviation
Thrombosis	59.01	53	44.89
No thrombosis	46.61	54	34.85

We wish to know if we may conclude, on the basis of these results, that, in general, persons with thrombosis have, on the average, higher IgG levels than persons without thrombosis. let $\alpha=0.01$ H_{1} ; $M_{2} \ge M_{2}$

4-Acceptance region is? A.R = (-00 0 2.325) (Zi-a = Zi-0:01 = Zi-99 = 2.325)

H: M, ZM2

 $Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{2^2}{n_1^2} + \frac{2^2}{n_2^2}}} = \frac{59 \cdot 61 - 45 \cdot 61}{\sqrt{\frac{44 \cdot 39^2}{53} + \frac{24 \cdot 85^2}{53}} = 1.59$

b)accept H₀

R. R. R.

(3, 53) known g hon-normal , (1, 12) large

1-what is the assumption?

2-Hypothesis is?

2 Z=1.59 0

5-conclusion is:

a)reject H₀

Tears

Z-EA.R

 $H_{a}: M \ge M_{2}$ $H_{a}: M \le M_{2}$ **3-Test statistic=**

56

Q5:A test designed to measure mothers' attitudes toward their labor and delivery experiences was given to two groups of new mothers. Sample 1 (attenders) had attended prenatal classes held at the local health department. Sample 2 (nonattenders) did not attend the classes. The sample sizes and means and standard deviations of the test scores were as follows:

sample	n	x	S
1	15	4.75	1.0
2	22	3.00	1.5

Assume equal variances. Do these data provide sufficient evidence to indicate that attenders, on the average, score less than non attenders? Let $\alpha = 0.05$. Assume normal population

Hi M, KM2 1-what is the assumption?

(3, 32) anthown but equal, normal, (nish2) small

2-Hypothesis is?

HA: M < M2

Mo: MZ M2

3- find pooled variance

 $S_{p}^{2} = \frac{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2} = \frac{(15-1)a_{1}^{2} + (22-1)(1.5)^{2}}{15+22-2} = 1.75$

4-Test statistic=

Scanned by CamScanner

Q6:

Woo and McKenna (A-18) investigated the effect of broadband ultraviolet B (UVB) therapy and topical calcipotriol cream used together on areas of psoriasis. One of the outcome variables is the Psoriasis Area and Severity Index (PASI). The following table gives the PASI scores for 20 subjects measured at baseline and after eight treatments. Do these data provide sufficient evidence, at the .01 level of significance, to indicate that the combination therapy reduces PASI scores?

subject	Baseline	After 8 treatments	$D_{i}=X-Y_{i}$
1	5.9	- 5.2	= 0.7
2	7.6	+ 12.2	F - 4.6
3	12.8	- 4.6	8.2
4	16.5	- 4.0	12.5
5	6.1	- 0.4	~ 57
6	14.4	- 3.8	10.6
7	6.6	- 1.2	5.4
8	5.4	- 3.1	= 2.3
9	9.6	- 3.5	6.1
10	11.6	- 4.9	6.7
11	11.1	11.1	- 0
12	15.6	- 8.4	-7.2
13	6.9	- 5.8	
14	15.2	+ 5.0	10.2
15	21.0	- 6.4	= 14.6
16	5.9	- 0.0	= 5.9
17	10.0	- 2.7	- 7.3
18	12.2	- 5.1	= 7.1
19	20.2	4.8	15,4
20	6.2	+ 4.2	= 2
χ 1-what is the assumption?		$(\bar{\chi})$ (mean) $\bar{D} = 6.22$	الم معدم الخ
in first	10.0	(Sx) (standard). So = 5.04 €	
2-Hypothesis is?			
H. : MD = O			
$\mu_{A}: \mu_{D} > 0$ 3-Test statistic=			

 $T = \frac{D}{\frac{50}{N_{W}}} = \frac{6.22}{\frac{5.04}{N_{W}}} = 5.519$ **<-.4-Rejection region is? t** = t

tsince $t = 5.519 \in R \cdot R$ (a) reject H0 b)accept H0

A <- نذفن م ٢

Scanned by CamScanner

 $\frac{X}{n} = \frac{90}{295} = 0.31$

Q7: Jacquemyn et al. (A-21) conducted a survey among gynecologists-obstetricians in the Flanders region and obtained 295 responses. Of those responding, 90 indicated that they had performed at least one cesarean section on demand every year. Does this study provide sufficient evidence for us to conclude that less than 35 percent of the gynecologists-obstetricians in the Flanders region perform at least one cesarean section on demand each year? Let $\alpha = 0.05$.

1-Hypothesis is?

<u>H.W4</u>

In an article in the journal Health and Place, Hui and Bell (A-22) found that among 2428 boys ages 7 to 12 years, 461 were overweight or obese. On the basis of this study, can we conclude that more than 15 percent of the boys ages 7 to 12 in the sampled population are obese or overweight? Let α =0.05

1-Hypothesis is?	(Answer: $H_0: P \le 0.15$,	$H_A: P > 0.15$)
2-Test statistic=	(Answer: Z = 4.91)	.)
3-Acceptance region is		

(Answer: $(-\infty, 1.645)$)

61

4-conclusion is:

a)reject H₀

<u>b)accept H₀</u>

Q8: Ho et al. (A-25) used telephone interviews of randomly selected respondents in Hong Kong to obtain information regarding individuals' perceptions of health and smoking history. Among 1222 current male smokers, 72 reported that they had "poor" or "very poor" health, while 30 يوم وم among 282 former male smokers reported that they had "poor" or "very poor" health. Is this sufficient evidence to allow one to conclude that among Hong Kong men there is a difference $P_1 = P_2 \neq \infty$ between current and former smokers with respect to the proportion who perceive themselves as having "poor" and "very poor" health? Let $\alpha = 0.01$. $P = \frac{\chi + \chi_2}{n + n} = \frac{72 + 30}{1222 + 282} = 0.068$ **1-Hypothesis is?** $H_{A}: P_{1} = P_{2} \neq 0$, $H_{A}: P_{1} \neq P_{2}$ $H_{0}: P_{1} = P_{2} = 0$, $H_{0}: P_{1} = P_{2}$ q = 1- p = 1 - 0,068 = 0.932 2-Test statistic= P1-P2 0.053-0.106 P3+P3 0.068(1-0.068) + 0.068(1-0.068) 2 = 7 8-Acceptance region is? 1222 Z1-a = A.R = (-2.325, 2.325) time: ².-6-conclusion is:

b)accept H₀

H.W5:

a)reject H₀

-2.325

RR

ZERP

In a study of obesity the following results were obtained from samples of males and females between the ages of 20 and 75:

	n	Number overweight
Males	150	21
Fomales	200	48
remaics	200	

Can we conclude from these data that in the sampled populations there is a difference in the proportions who are overweight? Let $\alpha = 0.05$.

1-Hypothesis is?

 $H_0: P_1 = P_2, \quad H_A: P_1 \neq P_2$

2-Test statistic=

Z = -2.328 .

3-Acceptance region is?

(-1.645, 1.645)

6-conclusion is:

a)reject H₀

b)accept H₀

62

ABO MOHANNAD/0509891763/stat109ch6/150/140/106/111/151/200/244/204/sta324

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

ABO MOHANNAD/0509891763/stat109ch6/150/140/106/111/151/200/244/204/sta324

(Finding Reliability Coefficient)

ABO MOHANNAD/0509891763/stat 109/150/140/104/111/151/200/244/204/sta324

Page 2

<u>6.2 Confidence Interval for a Population Mean (µ) :</u>

1) C.I of the Mean (μ): σ^2 is known

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

Page 3

 $\overline{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$

$$\left(\overline{X} - Z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} , \overline{X} + Z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

We are (1-α)100% confident that the true value of μ belongs to the interval (X̄ - Z_{1-a/2}/√n, X̄ + Z_{1-a/2} σ/√n).
 Upper limit of the confidence interval = X̄ + Z_{1-a/2} σ/√n
 Lower limit of the confidence interval = X̄ - Z_{1-a/2} σ/√n
 Lower limit of the confidence interval = X̄ - Z_{1-a/2} σ/√n
 Z_{1-a/2} = Reliability Coefficient
 Z_{1-a/2} × σ/√n = margin of error = precision of the estimate
 In general the interval estimate (confidence interval) may be expressed as follows:

$$\overline{X} \pm Z_{1-\frac{\alpha}{2}} \sigma_{\overline{X}}$$

estimator \pm (reliability coefficient) \times (standard Error)

estimator \pm margin of error

Example: (The case where σ^2 is known)

Diabetic ketoacidosis is a potential fatal complication of diabetes mellitus throughout the world and is characterized in part by very high blood glucose levels. In a study on 123 patients living in Saudi Arabia of age 15 or more who were admitted for diabetic ketoacidosis, the mean blood glucose level was 26.2 mmol/l. Suppose that the blood glucose levels for such patients have a normal distribution with a standard deviation of 3.3 mmol/l.

(1) Find a <u>point estimate</u> for the mean blood glucose level of such diabetic ketoacidosis patients.

(2) Find a 90% confidence interval for the mean blood glucose level of such diabetic ketoacidosis patients.

<u>6.3 The t Distribution:</u> (Confidence Interval Using t)

$$\overline{X} \pm t \underset{1 \leq \frac{\alpha}{2}}{\xrightarrow{x}} \frac{S}{\sqrt{n}}$$

$$\left(\overline{X} - t \underset{\mathbb{A} \neq \frac{\alpha}{2}}{S} \frac{S}{\sqrt{n}}, \overline{X} + t \underset{\mathbb{A} \neq \frac{\alpha}{2}}{S} \frac{S}{\sqrt{n}}\right)$$

1. We are $(1-\alpha)100\%$ confident that the true value of μ belongs to the interval $\left(\overline{X} - t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right)$. 2. $\hat{\sigma}_{\overline{X}} = \frac{S}{\sqrt{n}}$ (estimate of the standard error of \overline{X}) 3. $t_{\frac{1+\alpha}{2}} =$ Reliability Coefficient

4. In this case, we replace σ by S and Z by t.

5. In general the interval estimate (confidence interval) may be expressed as follows:

Estimator ± (Reliability Coefficient) × (Estimate of the Standard Error)

$$X \pm t_{1-\frac{\alpha}{2}} \hat{\sigma}_{\overline{X}}$$

(Finding Reliability Coefficient)

Example:

Suppose that t ~ t(30). Find $t_{1-\frac{\alpha}{2}}$ for $\alpha = 0.05$.

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

Page 8

Example: (The case where σ^2 is unknown)

A study was conducted to study the age characteristics of Saudi women having breast lump. A sample of 121 Saudi women gave a mean of 37 years with a standard deviation of 10 years. Assume that the ages of Saudi women having breast lumps are normally distributed.

(a) Find a point estimate for the mean age of Saudi women having breast lumps.

(b) Construct a 99% confidence interval for the mean age of Saudi women having breast lumps

 $\mathcal{D}(.I) = \mathcal{K} \pm \mathcal{T}_{-\pm}$ 4=121 = 37 ± 2.6174. 053-8 5 = 1.2 = (34.62,39.38) 993 7=1%=(0,0) (2) PS = (x)= 37 2 ST. e = 5 = 10 1-75 1- 2 50.995 (y) daxie = (). Or df=V= n-1 = (120) D W = + = 39,38 (a) L = - = 34.82 0.995 Z) Lofe. I = U-L= 2.6174 ET, 120 ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324 Page 9

Page 10

 $(\overline{X}_1 - \overline{X}_2) \pm Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

1. Mean of $\overline{X}_1 - \overline{X}_2$ is:

2. Variance of $\overline{X}_1 - \overline{X}_2$ is:

 $\mu_{\overline{X}_1-\overline{X}_2}=\mu_1-\mu_2$ $\sigma_{\overline{X}_1-\overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$ 3. Standard error of $\overline{X}_1 - \overline{X}_2$ is: $\sigma_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

Example: (1st Case: σ_1^2 and σ_2^2 are known)

An experiment was conducted to compare time length

(duration time) of two types of surgeries (A) and (B) 75 surgeries of type (A) and 50 surgeries of type (B) were performed. The average time length for (A) was 42 minutes and the average for (B) was 36 minutes.

(1) Find a point estimate for $\mu_A - \mu_B$, where μ_A and μ_B are population means of the time length of surgeries of type (A) and (B), respectively.

(2) Find a 96% confidence interval for $\mu_A - \mu_B$. Assume that the population standard deviations are 8 and 6 for type (A) and (B), respectively.

Page 12

 \mathcal{D} C.T. $\left[\left(\overline{\alpha}_{A} - \overline{\alpha}_{B}\right) + \frac{2}{1 - \frac{1}{2}} \cdot \sqrt{\frac{\sigma_{A}^{2}}{\eta_{A}}} + \frac{\sigma_{B}^{2}}{\eta_{B}}\right]$ € 42-36) ± (2,055/ (1.25) = (3.43 , 8.5632) 2 p.5 = B ST.@ =) () Max.e = 5 4 = 8.56 6) 2 = 3.47 Z) Lof. (.) = U- L-
Critical Values of the t-distribution (t_{α})

					·α
v=df	t _{0.90}	t _{0.95}	t0.975	t _{0.99}	(t _{0.995})
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
(29)	1.311	1.699	(2.045)	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
35	1.3062	1.6896	2.0301	2.4377	2.7238
40	1.3030	1.6840	2.0210	2.4230	2.7040
45	1.3006	1.6794	2.0141	2.4121	2.6896
50	1.2987	1.6759	2.0086	2.4033	2.6778
60	1.2958	1.6706	2.0003	2.3901	2.6603
70	1.2938	1.6669	1.9944	2.3808	2.6479
80	1.2922	1.6641	1.9901	2.3739	2.6387
90	1.2910	1.6620	1.9867	2.3685	2.6316
100	1.2901	1.6602	1.9840	2.3642	2.6259
120	1.2886	1.6577	1.9799	2.3578	2.6174)
140	1.2876	1.6558	1.9771	2.3533	2.6114
160	1.2869	1.6544	1.9749	2.3499	2.6069
180	1.2863	1.6534	1.9732	2.3472	2.6034
200	1.2858	1.6525	1.9719	2.3451	2.6006
00	1.282	1.645	1.960	2.326	2.576

Areas Under The Standard Normal Curve

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0002
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.0	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.6	0.9352	0.9345	0.935/	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.0	0.9452	0.9463	0.94/4	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.0	0.9554	0.9504	0.9373	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
19	0.9713	0.9710	0.9000	0.9004	0.90/1	0.9678	0.9686	0.9693	0.9699	0.9706
2.0	0.9772	0.9778	0.9720	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.1	0.9821	0.9826	0.9783	0.9700	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.2	0.9861	0.9864	0.9868	0.9874	0.9030	0.9042	0.9646	0.9650	0.9854	0.9857
2.3	0.9893	0.9896	0.9898	0.9901	0.9075	0.9076	0.9661	0.9684	0.9667	0.9890
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9900	0.9909	0.9911	0.9913	0.9916
2.5	0.9938	0.9940	0.9941	0.9943	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.6	0.9953	0.9955	0.9956	0.9957	0.9940	0.9940	0.9948	0.9949	0.9951	0.9952
2.7	0.9965	3366.0	0.9967	0.9969	0.9959	0.9970	0.9901	0.9902	0.9963	0.9964
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9971	0.9972	0.9973	0.9974
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9994	0.9979	0.9979	0.9900	0.9901
3.0	0.9987	0.9987	0.9987	0.9988	0.9999	0.9999	0.9900	0.9900	0.9900	0.9900
3.1	0.9990	0.9991	0.9991	0.9991	0.9900	0.9909	0.9909	0.9909	0.9990	0.9990
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9992	0.9992	0.9993	0.9993
3.3	0.9995	0.9995	0.9995	39999.0	39999.0	0.9996	3999 0	0.0000	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

CHAPTER 7: Using Sample Statistics To Test Hypotheses About Population Parameters:

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

<u>7.2 Hypothesis Testing: A Single Population Mean (μ):</u> <u>1) T.H of the Mean (μ): σ² is known</u>

ABO MOHANNAD/0509891763/ \underline{stat} **109**/150/140/106/111/151/200/244/204/sta324

Example: (first case: variance σ^2 is known)

A random sample of 100 recorded deaths in the United States during the past year showed an average of 71.8 years. Assuming a population standard deviation of 8.9 year, does this seem to indicate that the mean life span today is greater than 70 years? Use a 0.05 level of significance.

10 2 N=100 JEH C $\begin{array}{c} \text{H}_{\circ}: M = M_{\circ} \implies M = 7^{\circ} \text{ or } M$ 27-5 M-5(7-2.5 X-10 71.8-20 = 2.022 9 50.05 2-7 5-8-0.05 20,9500 = 1.645 Critica reject to De

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

Since $2 > \overline{2}_{1-\alpha}$

Accepte region of H. (- 00, 1.645)

resect region of the (1.645, 2)

<u>2)</u>T.H of the Mean (\mu): \sigma^2 is unknown</u>

السؤال

Sample n =
Average $\overline{\mathbf{x}} =$
Population standard deviation $S = $
Greater, less, equal $\mu = 1 - \frac{\pi}{2}$
Use α level of significance -3 $t_{1-\alpha}$, $Jf_{5}V_{5}V_{-1}$ df
1) Hypothesis
Ho: M=Mo M=Mo M= No
the datas Mada Mana
2) Test statistic
$T = \frac{\overline{X} - A_{3}}{\frac{S}{\sqrt{n}}}$
الرسم (3
$\frac{1}{T_{1-\frac{1}{2}}} = \frac{1}{T_{1-\frac{1}{2}}} = \frac{1}{T_{1-\frac{1}{2}}} = \frac{1}{T_{1-\frac{1}{2}}}$
4) Decision
Accept 4.
4
S reseated.
ABO MOHANNAD/0509891763/ Stat 109 /150/140/106/111/151/200/244/204/sta324 Page 5

Example: (second case: variance σ^2 is unknown) The manager of a private clinic claims that the mean time of the patient-doctor visit in his clinic is 8 minutes. Test the hypothesis that $\mu=8$ minutes against the alternative that $\mu\neq8$ minutes if a random sample of 50 patient-doctor visits yielded a mean time of 7.8 minutes with a standard deviation of 0.5 minutes. It is assumed that the distribution of the time of this type of visits is normal. Use a 0.01 level of significance.

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

Since -T 1-X

Accepte region of Ho (-2.6778, 2.6773)

Veriect region of blo (-a, -2.6778) U(2.6778, -)

7.3 Hypothesis Testing: The Difference Between Two Population Means: (Independent Populations)

<u>3)T.H of the Difference between two Means ($\mu 1 - \mu 2$) σ_1^2 and σ_2^2 are known</u> السؤال A B Sample $n_2 =$ $n_1 =$ $\overline{\mathbf{X}}_1 =$ $\overline{\mathbf{X}}_2 =$ Average $\sigma_2 =$ Population standard deviation $\sigma_1 =$ 20 1/3/ d= 3.-1 Use α level of significance Ho: $M_1 = M_2$ $M_1 = M_2$ $M_1 = M_2$ $\frac{1}{1} = \frac{1}{2}$ 7. - 12 = 0 1) Hypothesis d_1 , $M_1 - M_2 \neq d$, $M_1 - M_2 > d$ 1. - 12 < d 2) Test statistic $\frac{\alpha_{1}-\alpha_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{\mu_{1}}+\frac{\sigma_{2}^{2}}{\mu_{1}}}}$ الرسم (3 The second secon 24 -31-2 31-2 4) Decision A Ccepte #13 Vered Ho

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

Example: (σ_1^2 and σ_2^2 are known)

Researchers wish to know if the data they have collected provide sufficient evidence to indicate the difference in mean serum uric acid levels between individuals with Down's syndrome and normal individuals. The data consist of serum uric acid on 12 individuals with Down's syndrome and 15 normal individuals. The sample means are $\bar{X}_1 = 4.5$ mg/100ml and $\bar{X}_2 = 3.4$ mg/100ml. Assume the populations are normal with variances $\sigma_1^2 = 1$ and $\sigma_2^2 = 1.5$. Use significance level $\alpha = 0.05$.

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

Vediet Ho

3 > 3 - 7 Since

Altente region of H.

(-1.96, 1.96)

Vered region of H. $(-\infty) - (.90) U(1.96, \infty)$

Critical Values of the t-distribution (t_{α})

		1			ya .
v=df	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}	t0.995
1	3.078	6.314	12,706	31.821	63.657
2	1.886	2.920	4.303	6.965	9,925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3,143	3.707
7	1.415	1.895	2.365	2.998	3,499
8	1.397	1.860	2.306	2.896	3,355
9	1.383	1.833	2.262	2.821	3 2 50
10	1.372	1.812	2.228	2.764	3 169
11	1.363	1.796	2.201	2.718	3 106
12	1.356	1.782	2 179	2 681	3.055
13	1.350	1 771	2 160	2.650	3.012
14	1.345	1 761	2.100	2.630	2 977
15	1.341	1.753	2.145	2.602	2.917
16	1.337	1.735	2.131	2.583	2.947
17	1 333	1.740	2.120	2.567	2.921
18	1 330	1 734	2.110	2.557	2.878
19	1 328	1.734	2.101	2.532	2.878
20	1 325	1.725	2.095	2.539	2.801
21	1 323	1.723	2.080	2.528	2.845
22	1 321	1.721	2.030	2.518	2.031
23	1 310	1.717	2.074	2.500	2.813
24	1 318	1.714	2.009	2.300	2.807
25	1 316	1.711	2.004	2.492	2.797
26	1 315	1.706	2.000	2.485	2.787
27	1 314	1.700	2.050	2.479	2.779
28	1 313	1.703	2.032	2.475	2.771
20	1.313	1.701	2.048	2.407	2.705
30	1 310	1.607	2.043	2.402	2.750
35	1 3062	1.697	2.042	2.437	2.730
40	1.3030	1.6840	2.0301	2.4377	2.7230
45	1.3006	1.6704	2.0210	2.4230	2.7040
(50)	1 2987	1.6759	2.0141	2.4121	2.0090
60	1 2058	1.6706	2.0000	2.4033	2.6603
70	1.2938	1.6660	1.0044	2.3901	2.0003
80	1.2930	1.6641	1.9944	2.3808	2.0479
00	1.2922	1.6620	1.9901	2.3739	2.0307
100	1.2910	1.6602	1.9007	2.3083	2.0310
120	1 2886	1.6577	1.9040	2.3042	2.0239
140	1.2000	1.6559	1.9799	2.3370	2.01/4
140	1.2070	1.0550	1.9//1	2.3333	2.0114
190	1.2009	1.0344	1.9/49	2.3499	2.0009
200	1.2003	1.0334	1.9/32	2.34/2	2.0034
200	1.2000	1.0323	1.9/19	2.3431	2.0000
00	1.282	1.045	1.960	2.320	2.576

Areas Under The Standard Normal Curve

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.2	0.0005	0.0005	0.0005	0.0004	0.0003	0.0004	0.0004	0.0004	0.0004	0.0003
-3.3	0.0005	0.0003	0.0006	0.0004	0.0004	0.0004	0.0004	0.0005	0.0004	0.0005
-3.2	0.0007	0.0007	0.0006	0.0006	0.0008	0.0008	0.0008	0.0005	0.0003	0.0003
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.0	0.0227	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
4.0	0.0207	0.0201	0.0214	0.0200	0.0202	0.0200	0.0200	0.0244	0.0203	0.0200
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0,1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0 2389	0 2358	0.2327	0.2296	0.2266	0 2236	0.2206	0.2177	0.2148
0.0	0.2420	0.2303	0.2556	0.2542	0.2230	0.2270	0.2546	0.2514	0.2493	0.2451
-0.6	0.2743	0.2709	0.2070	0.2043	0.2011	0.2576	0.2040	0.2014	0.2403	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2077	0.2043	0.2010	0.2170
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0 7454	0 7486	0.7517	0 7549
0.0	0.7590	0.7611	0.7542	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.7	0.7500	0.7011	0.7042	0.7073	0.7005	0.9022	0.9051	0.9079	0.8106	0.8133
0.0	0.7661	0.7910	0.7939	0.7907	0.7995	0.0023	0.0001	0.0070	0.0100	0.0133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.6315	0.6340	0.0305	0.0309
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
21	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0,9846	0,9850	0.9854	0.9857
2.1	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.2	0.9001	0.9996	0.0000	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.3	0.9093	0.0000	0.0000	0.00075	0.0007	0.9920	0.9931	0.9932	0.9934	0.9936
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.0054	0.0050
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
24	0 9997	0 9997	0 9997	0 9997	0 9997	0 9997	0 9997	0 9997	0 9997	0.9998

ABO MOHANNAD/0509891763	3/stat109ch	7 /150/	/140/106/111/151/200	0/244/204/sta324
4) T.H of the Difference	between	two	Means(µ1-µ2) σ_1^2 and σ_2^2 are
unknown				<u></u>
	•		р	11 aut
Sample	A n =		B	
Sumple	$\Pi_1 -$		$\Pi_2 =$	
Average	$\overline{\mathbf{x}}_1 =$		$\overline{\mathbf{x}_2} =$	
Population standard deviation	$s_1 =$		$s_2 =$	
	-1		52	(1) (1)
	<u>Pc</u> نستنتج	ooled e	$estimate s_p^2 =$	h.+h-=2
Use α level of significance	Po	oled v	variance	16.81
G TA-92 de	rs V= Nith	-2		
(4 4	1			
1) Hypothesis	20	M	- 1 -	M, - M2 sd
hull 00 -1 = 0	~	14	- ~ 2	MI = M2
1, - 42-	t.J	H,	1270	1, - 1, <)
Alternative H1: 4 = 1	4 2	H	> 12	M, S, Ar
2) Test statistic	ز		more	tess
2) Test statistic				
TE	$(\chi_1 - \alpha_2)$		9	
· /	S 2		S.o2	
	n,	+	12	
<u>الرسم (3</u>				
		6		
A B			The state	A
-T. The			TI-a	-11-9
1-2 1-2				
4) Decision	Α.			
	nt. 11			
HLLC	rc tha			
Ves'e	t H.			

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

Example: ($\sigma_1^2 = \sigma_2^2 = \sigma^2$ is unknown)

An experiment was performed to compare the abrasive wear of two different materials used in making artificial teeth. 12 pieces of material 1 were tested by exposing each piece to a machine measuring wear. 10 pieces of material 2 were similarly tested. In each case, the depth of wear was observed. The samples of material 1 gave an average wear of 85 units with a sample standard deviation of 4, while the samples of materials 2 gave an average wear of 81 and a sample standard deviation of 5. Can we conclude at the 0.05 level of significance that the mean abrasive wear of material 1 is greater than that of material 2? Assume normal populations with equal variances.

ABO MOHANNAD/0509891763/<u>stat</u> 109/150/140/106/111/151/200/244/204/sta324

> H7P H_{\circ} : $M_{\circ} = M_{2}$ $t_1 \neq M_1 > M_2$ T-S 2 $T = \frac{(s_1 - x_2) - \delta}{\sqrt{\frac{s_1^2}{m} + \frac{s_1^2}{m}}}$ 12-10 1.031 TS h ارے 2 250.05 T1-75 Vo. 95 1-9 1.725 Jf = M1+12-1 - 500 0.95 y De Accertos 20 1.725 > Since J < TI-q) - Accepte region of the (- -) (.725) revier region of do (1.725, 0)

5) T.H of a Proportion

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

Example:

A researcher was interested in the proportion of females in the population of all patients visiting a certain clinic. The researcher claims that 70% of all patients in this population are females. Would you agree with this claim if a random survey shows that 24 out of 45 patients are females? Use a 0.10 level of significance.

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

9 De reject to 2 < - 81-2 Since acceptoregion of do (-1.645, 1.695) Veo'ect region of Ho (-a, -1.645) U(1.645,-)

6) T.H of the Difference between Two Proportions

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

Example:

In a study about the obesity (overweight), a researcher was interested in comparing the proportion of obesity between males and females. The researcher has obtained a random sample of 150 males and another independent random sample of 200 females. The following results were obtained from this study.

	n	Number of obese people
Males	150	21)
Females	200	48

Can we conclude from these data that there is a difference between the proportion of obese males and proportion of obese females? Use $\alpha = 0.05$?

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

De repebbe Jince 2 < -2,-3 - O Ccepter Vegion of 40 (-1.96, 1.96) revied tegrio-of Un (-~,-1.90/U(1.96,~)

rdescriptive Statisticis: field of stady concerned with. > D collecting data. "Jululias" « تحليل البيانات ". Analysis (تحليل البيانات) by tablets and Charts] (Conclusionsor decision. " تا عبد العقى را تعني المعني العقى والمح ستنتاجات ". [inferential statics] رو ا دصاء استقراعي Data: Raw material of statistics. - Quantitative Qualitative-[numbers age, weights] غير [Letter : jess] مثلاً: حنس ، اللون Tilling Sources Dato 2 F Routinely Kept Surveys Experiments External source Records مصادر خارجية التجارب اسةمسحية واستقصاعة : Jus : 1120 #U.N records. * BOOKS. * Interviews. +Data Bank مقابلات شخصية سحلات الأمم المتحمة + A guestionnaire *Published + school records. reports. i him 1 maki as mas التقارير المنسورة **回Population**"N" 2 Sample "n" largest Collection Part of population. جزى من العجت of entities.

the characteristic to be measured on the elements is called

t i ي طريقة أفضل لحساب السانات من مقايس النزعة المركزية ؟ \$ ān the and 1, 1 ling the sion-Mode (1 - mode (1 Mode (1) Mean (2) Mean (2) Mean (3) Median (3) Median (3) 19 Q0. 99

			0
central Tendency	MEAN unit	MEDIANUNIF	MODE unit
-0	• Simplicity easily	•Simplicity	• simplicity -
96	· Uniquenessony one	.Uniqueness	• The mode is
ta	. The mean takes	.The median is	not affected by extreme values
< Nai	into account all	not affected by	The mode may be found for-
Ad	values of the data	extreme values.	both quantitative and qualitative
			<u> </u>
59	Extreme values	The median doesn't	• The mode is not a "good" measure of
607	have an influence	take into account	location, because it depends on a few
Xa	on the mean.	all values of the sample	values of the data.
Ad	. The mean can only	Themedian canonly	the mode doesn't take into account
ů.	be found for	be found for	all values of the sample
	quantitative	quan titative	There might be no made hav a -
	Variables	variables in some	data sof.
		cases can be	There might be more made for -
A		found for ordinal	adata set.
Y Carl			

JUNKNOWNX

Known

Measures of	M	FAN	- En gio	MEDTAN P	MADE
Carlind I I		AIIV		MLV IMIN .	MULE
Lentral tendency	Popul	ation "pay	rameter	That value which	That value with
(of location)	M =X	+X2+	+XN	dividesthe	highest frequence
	N	N		"Ordered array"	and the second
	M = 2	Xi		into tow equal parts	one mode
		N		• Odd number	Ex:27 28,28,60
	• Sampl	e" staisti	c ^v	# There is only one	
		+ 1 + 100	+11.	Ex:10,21,38,52,54	Ex:2,3,3,4,5,6,6
* .	A	n	M	Even number	allanda
	- 2	ale		*Thereare two	EX: 2,2,3,3,4,4
	X=	inc		Values in the middle.	Ex: 1,2,3,4,5
		n	-	Ex: 10, 70, 10, 10, 60, 63	
				2 40+46	
				=431	
					•

but the values values roters - R = Max+Min Measures to how spread the variation) ispersion other. is from each or dispension Variation) Larger n a set of Smaller variation variati The diff Ex 26,27,30, 33,39 2.00/10 and the smallest value between the largest value 25 (bell R=39-26 R 0 / two (vh / Kg) = 13 UN السوان R remande GE • The variance is a measure it is Un Known The Population bar anet 6 4. that uses the mean as a e l'he Point of reference. +it Zero when all observations + it small when the obsetvations param of or + it lange when the observations it is Known are close to the mean. statistic n stances: are spread out from the mean. o have the same value. **IAK** 5270 11 N->population/size ANCE > sample s te -> Papulation m leavy US ~ 15 13 . RE · Population · sample • The square root STANDARD + We wish dispersion in SIVER of the variance. concept of original express the terms of the 5 V62 0 DEVIAIIQU UM 10 5 19-45.0 ais burgher M いんちゃっち coefficient of variation on eith the relative a measure o ال ۷.۷ نقدرانگارنا قيم E حواكة فعنل كان شكتك 4 1015 Variation that キとの O.V= ووسال سخلفة بلعض how i+x وداعما القيمة الاحلخر NO Selips/ ang & the Vister dates 01 4 + olepen وبا ختصار : ا 1000 0100 are. 30 5 × 100

	3,	
OP L Luis (m)		
U Probability meas	sure used to measure	the Chance
Disolo of o P(E)	$\frac{\text{ccurrence of even} + (1)}{= 0 \leqslant P(E) = n(E) \leqslant 1 - \frac{1}{2}}$	which is between o and 1) P(Q) = 0 $P(\Lambda) = 1$
<u>Osample space set of</u> (<u>()</u> (where aiment schede	all possible outcomes n(A) is the number of o	of experiment utcome s-elements-in_1)
BExperiment Some	procedure or process	s that we do.
Equally النخرية	likely outcomes : If the outco	mes have the
	Same chan فرمن الطعور مساوية	ce of occurrence
@ Event(E) Any sub	osef of Π (where n(E) is the nu	mber of out comes in E
SJI ØSA	(impossible event) // AC.	A (sure event)
	operations on ever	its
Union Uor	Intersectionn and	not Complementa A' A'
فأخذ المجعتبار العناص الموجورة	فأخذ بالاعتبار العناحير المشتركة فنط	ظرالعثامي الموجودة في A وغرمه وقرق
The exhaustive eventsis:	The disjoint or mutually	A.,
الحداد فالم أخذ ت كل فضاء السنة ٩	exclusive events is:	Rule: P(A°)=1-P(A)
P(E)=1 event=IL suis	الحوادق إلى ما ويها عنا حبر مستركة	*AUA'= ~ [exhaustive]
D. In: DIAURI-PIA)-PIA)		*ANA'= Q[disjoint]
-P(ANB)		
P(AUB) = n(AUB)	p(ANB)= n(ANB)	
n(A)	n(A)	
P(AUB): n(A) +n(B) A (AnB)		+
	IN ANY ANY ANY CARE OF ANY	

		Star Strate Star			
0.3 M 5	an ist w	Western 1	ones Anties	2. 13.4	$d d \hat{x}$
		Ba	and in Biono	JOTAL	<u>.</u>
	A	0.2	0-3	0.5	
and a second	Ā	0.4	0.1	0.5	and the second second
الحرب مینگرد بینا ماه مید بینیم ایند است. حقیا می مند .	TOTAL	0.6	0.4	1.00	-
	P(AU P(ĀU P(ĀU P(ĀU	B) = P(A) + P(B) B) = exercise B) = exercise ن ک ل لا عدی	$-P(A \cap B) = 0.5$	+0.4-0.3=0.6 Lisjointu sa	• • • • •
۸۳ نامی نامیمهمه	A ,B exl حتی دن P(AUB) - 1 P(AUB) = P(A P(AUB) = P(A	naustive? لا نشوف ۲ انشرطه ۲(۹/۹)-۹(۹/۹)	بر مربع بر مربع P(AN	$\frac{2}{3} = \frac{2}{3} = \frac{2}$	بال
	P(AUB) = 0 $P(AUB) = 0$ $P(AUB) = 1$	0.9 0.9	انجدول وني تک طع B و A با تعزا ي هو		

3

é

الحادث المستقلة +Independent Events تكون الحادثة مستقلة إذا تحقق مثال على الحوادث المستقلة أحدهذه الشروط: Ex: p(B|A) = 0.5O P(A|B) = P(A)P(A)=0.5 (2) P(B|A) = P(B)P(B)=0.3 (3) $P(B(A) = P(A) \times P(B)$ * Are A, B independent? * نختاره حدة هنهم حسب المعطيات $P(B|A) \stackrel{?}{=} P(B)$ 0.5 = 0.3 A, B are not independent. toist suited + Conditional probability کلی ت داله: P(A|B) = P(AAB)ogiven that P(B) = P(B)Knowing that · Found that

mid 2 3.5 This result happens when a test P(TOD) indicates a positive status when the P(D) true status is negative. This result happens when a test Fn-P(TID) 100 indicates a negative status when the P(D) true status is positive. The sensitivity of a test is the (1np)sen p(TID) Probability of a positive test P(D) result given the presence of the disease. The specificity of a test is the P(TID) = P(I)SP Probability of a negative test result given the absence of the dispase. Predictive p(D) or Rate of the disease. The predictive value positive The predictive value negative The probability that a subject The probability that a subject has the disease, given that the doesn't have the disease, given subject has a positive screening. that the subject has a negative screening. P(DIT) = Sen x P(D)-معطاه P(DIT) = SP X P(D) + (1-5P) X P(D) 1-500 X (1-500) X P(D) alasa P(D)

(3) Rejection region of Ho (Critical region) * Reliability Cofficient (Critical Values): 10-Sided (Left) values): 10-Sided one Sided one Sided (Left) Two-Sided وفي تقصل منطقة رفض ٢ + Z1-~ عن منطقة فيول الم مرحم - Zi-x الم + t1- x - t 1-0 t1-a Have avoir a star a 20 A : الرسومات * R.R A.R A.R of Ho A.R.d R.R.of Ho Ho R.R of Ho HA: (4) Decision: القرار Z Il is pierre p- Value قوانين الرفض الرسم الجرول موجود في منعدة (131) Ho HA] = > نیزسم و نحدد العتم الوقاتال الاسم أقارن فيه؟ (T.S.) P-Value 2 p (Z> / Z_) P(Z> Z_) P(Z>-2 بالقتيم العرجة () الشون تعلم ويك (] (] د ين تقع) 14 oif p-value <d) منطقة رفض H (R.R) إذا دَحِقَ الشَوْط => reject Ho أو منطقة فيول H (A.R) نزفض ه o if p-value > 2 reject Ho => Accept Ho الملخص لفطوات أجراء الأختبار فقع 1/ خلود باسالم

H.W3

One of the purposes of an investigation by Porcellini et al. (A-19) was to investigate the effect on CD4 T cell count of administration of intermittent interleukin (IL-2) in addition to highly active antiretroviral therapy (HAART). The following table shows the CD4 T cell count at baseline and then again after 12 months of HAART therapy with IL-2. Do the data show, at the .05 level, a significant change in CD4 T cell count?

	Subject	1	2	3	4	5	6	7
(CD4 T cell	173	58	103	181	105	301	169
,	CD4 T cell count at end of follow-up	257	108	315	362	141	549	369
	D = X - Y	-84	* - 50	-212	-181	-36	-248	-200

D= -144. 43 Sn = 85. 677

n=7

الجواب :

(-∞, - 2.447) U(2.447, ∞)

a)reject H0

5-conclusion is:

×=0.05

f=n-1=7-1=6

2-Hypothesis is?

4-Rejection region is?

b)accept H0

ti-g = to.975 = 2.447

2-Hypothesis is? $H_0: H_x - H_y = 0$ VS $H_A: H_x - H_y \neq 0$ $H_0: H_D = 0$ VS $H_A: M_D \neq 0$ 3-Test statistic= $T = \frac{\overline{D}}{S_D/\sqrt{n}} = \frac{-144.43}{85.677} = -4.46$

LALIZ UL FULL T LAMULIS	and the		
reing vierver + referiças			
Himater ± (reliability cathicent) (Standord)	58		Tou Propertien
Ila in Pland Right Caller a liter of i	<u>b</u> ' - <u>b</u>	61 - P2	Difference
LIMUL LIMON (1- a) = Confidence Cofficient.	$\overline{\chi} - \overline{\chi}_{2}$	M1 - M2	Difference behveen tow mean
Addy Jone	d d	d	Noitrogorg
7 < baranses < n	S	9	hobrof2
$(n \cdot 7)$	25 🥔	0-5	Variana
me promoter	X	W	เนอรษ
that most likely includes	Pointon porton	opulation popul	arter ant
Consists of two numerical	stor	ritze et bezli	o Single Value
Canfidence Interval Estimate		stor	Point Estin
to sissafteg HHJ⇒FAD fast	and the actual Value of the actual Value even povorneters	itomitas Hulpileene indnitas	i powi zsz
tical Infuences	situs Charis	-0 2-0 1 1	g. [W
ail Mier le cap zi litin 2-reta	doy) Chop	population measure comp	Porometers:

Confidence Interval of
$$\mathbb{N}$$

(confidence Interval of \mathbb{N}
(confidence Interval of \mathbb{N}

24 + 14 1 2 - 17 - 8 (3X - 1X): 1 imin 10mo $\frac{2}{2} + \frac{1}{2} + \frac{1}$ $df = V = N_1 + n_2 - 2$ $r_{2}^{2} + \frac{14}{19} \int_{x}^{x} Z - (x - x) = 1$ μ + μ - 5 $S_{s}^{b} = (u^{1}-1)S_{s}^{t} + (u^{2}-1)S_{s}^{s}$ $\frac{1}{2} \frac{1}{2} \frac{1}$ o Precision of estimate ters to riprom. stomitss to reision?. ters to niprom. 1 Cofficient 3.2 philidoiler retronites Colficient Cont Error of (x,-x2) $\frac{zu}{\underline{z}^{s}} = \frac{1}{\overline{z}} \cdot \frac{1}{\sqrt{\frac{z}{z}}} + \frac{1}{\sqrt{\frac{z}{z}}} +$ propuets peliobility . totomidas 2-1-07 (²X-¹X) 7 + 11<30 , 12<30 et = ez = e Mu known o ol 5 and 02 2 known 2 10 hund + 5 0 Interval Estimale of M. - M. between two mean (M, - M2) Centidence Interval tot dittorance

(2)

Lower Limit . G . - Z, . . Upper Limit : J+2 : Jimil -oggu · Precision of estimate niprom . fo 10:01 nul idoibt topow:457 + 9-1 d 6 9< du 6 0520 $\int g < b u = (d-1) u$ Reitonitz Lorsini. · Confidence Interval d

مذا الملخص لا يغني عن المانية الاييسية المعرار 1/ خلود با سالم

[TVLS 601]

(V) Hursteiner (B) Level of Paris

$$For int estimate (C.I.) Interval Estimate (C.I.) Interval (n. large) (N. Source (T)) (N. Sou$$

· C · T × Find alpha 1 2 Calculate 1- a * * t 1- <u>x</u> 3 Find Z-a or تراو ل 67 20 أبحودعى بالقابون y

6.1: The Point Estimates of the Population Parameters:

	Population Parameters	Point estimato
Mean	μ	$\rightarrow \overline{X}$
Variance	σ ² ~	S ²
Standard Deviation	σ	> S
Proportion	P	p
The Difference between Two Means	$\mu_1 - \mu_2$	$\overline{X_1} - \overline{X_2}$
The Difference between Two Proportion	$P_1 - P_2$	$\widehat{P_1} - \widehat{P_2}$

نغ'

```
* 1-\alpha = is called the confidence coefficient (level)

* L = lower limit of the confidence interval

* U = upper limit of the confidence interval
```

7.1 Introduction:

Consider a population with some unknown parameter θ . We are interested in testing (confirming or denying) some conjectures about θ . For example, we might be interested in testing the conjecture that $\theta > \theta_0$, where θ_0 is a given value.

definition • A hypothesis is a statement about one or more.

[الرون معمم (سب) (۱۹۱۹)

- A research hypothesis is the conjecture or supposition that motivates the research.
- A statistical hypothesis is a conjecture (or a statement) concerning the population which can be evaluated by appropriate statistical technique.
- For example, if θ is an unknown parameter of the population, we might be interested in testing the conjecture sating that $\theta \ge \theta_0$ against $\theta < \theta_0$ (for some specific value θ_0).
- We usually test the null hypothesis (H₀) against the alternative (or the research) hypothesis (H₁ or H_A) by choosing one of the following situations:

(i) $H_0: \theta = \theta_0$ against $H_A: \theta \neq \theta_0$

(ii) $H_o: \theta \ge \theta_o$ against $H_A: \theta < \theta_o$

(iii) $H_0: \theta \le \theta_0$ against $H_A: \theta > \theta_0$

- Equality sign must appear in the null hypothesis.
 - H_o is the null hypothesis and H_A is the alternative hypothesis. (H_o and H_A are complement of each other)
 - The null hypothesis (H_o) is also called "the hypothesis of no difference".
- The alternative hypothesis (H_A) is also called the research hypothesis.

King Saud University

Dr. Abdullah Al-Shiha

SimposeRE.Merge and Split Unrepistered. Yersion 1. http://www.simpopdf.com 1431/1000

• There are 4 possible situations in testing a statistical hypothesis:

		(Nature/reality)		
		H _o is true	H _o is false	
Possible Action	Accepting H _o	Correct Decision	Type II error (β)	
(Decision)	Rejecting H _o	Type I error (α)	Correct Decision	

- There are two types of Errors:
 - Type I error = Rejecting II_o when H_o is true
 P(Type I error) = P(Rejecting Ho | Ho is true) = α
 - Type II error Accepting Ho when Ho is false
 P(Type II error) = P(Accepting Ho | Ho is false) = β
- The level of significance of the test is the probability of rejecting true H_o:

 $\alpha = P(\text{Rejecting } H_o | H_o \text{ is true}) - P(\text{Type } 1 \text{ error})$

There are 2 types of alternative hypothesis:
 One-sided alternative hypothesis:
 H₀: θ ≥ θ₀ against H_A: 0 < 0₀

- $\Pi_0: 0 \le \theta_0$ against $\Pi_A: \theta \ge \theta_0$
- o Two-sided alternative hypothesis:
 - $H_0: \theta = \theta_0$ against $H_A: \theta \neq \theta_0$
- We will use the terms "accepting" and "not rejecting" interchangeably. Also, we will use the terms "acceptance" and "nonrejection" interchangeably.
- We will use the terms "accept" and "fail to reject" interchangeably

The Procedure of Testing H₀ (against H_A):

The test procedure for rejecting H_0 (accepting H_A) or accepting H_0 (rejecting H_A) involves the following steps:

