
 MINISTRY OF EDUCATION


لكل المـهتمين و المـهتمـات بدروس و مراجع الجامعيـة eduschool40.blog مدونةّ المناهـح اللسعودية

## Hypotheses Testing

## 1-Single Mean

(if $\sigma$ known ):

| Hypotheses | $\begin{aligned} & \mathrm{H}_{\mathrm{o}}: \mu=\mu_{\mathrm{o}} \\ & \mathrm{H}_{\mathrm{A}}: \mu \neq \mu_{\mathrm{o}} \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{0}: \mu \leq \mu_{\mathrm{o}} \\ & \mathrm{H}_{\mathrm{A}}: \mu>\mu_{0} \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{\mathrm{o}}: \mu \geq \mu_{\mathrm{o}} \\ & \mathrm{H}_{\mathrm{A}}: \mu<\mu_{\mathrm{o}} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Test Statistic (T.S.) | Calculate the value of: $Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)$ |  |  |
| $\begin{aligned} & \text { R.R. \& A.R. } \\ & \text { of } \mathrm{H}_{\mathrm{o}} \end{aligned}$ |  |  |  |
| Critical value (s) | $\mathrm{Z}_{\alpha / 2}$ and $-\mathrm{Z}_{\alpha / 2}$ | $\mathrm{Z}_{1-\alpha}=-\mathrm{Z}_{\alpha}$ | $\mathrm{Z}_{\alpha}$ |
| Decision: | We reject $\mathrm{H}_{0}$ (and accept $\mathrm{H}_{A}$ ) at the significance level $\alpha$ if: |  |  |
|  | $\begin{gathered} \mathrm{Z}<\mathrm{Z}_{\alpha / 2} \text { or } \\ \mathrm{Z}>\mathrm{Z}_{1-\alpha / 2}=-\mathrm{Z}_{\alpha / 2} \\ \text { Two-Sided Test } \\ \hline \end{gathered}$ | $Z>Z_{1-\alpha}=-Z_{\alpha}$ <br> One-Sided Test | $\mathrm{Z}<\mathrm{Z}_{\alpha}$ <br> One-Sided Test |

(if $\sigma$ unknown ):

| Hypotheses | $\begin{aligned} & \mathrm{H}_{\mathrm{o}}: \mu=\mu_{\mathrm{o}} \\ & \mathrm{H}_{\mathrm{A}} \mu \neq \mu_{\mathrm{o}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{\mathrm{o}}: \mu \leq \mu_{\mathrm{o}} \\ & \mathrm{H}_{\mathrm{A}}: \mu>\mu_{\mathrm{o}} \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{0}: \mu \geq \mu_{\mathrm{o}} \\ & \mathrm{H}_{\mathrm{A}}: \mu<\mu_{0} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Test Statistic (T.S.) | Calculate the value of: $t=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}} \sim \mathrm{t}(n-1)$$(\mathrm{df}=v=\mathrm{n}-1)$ |  |  |
| $\begin{aligned} & \text { R.R. \& A.R. } \\ & \text { of } \mathrm{H}_{\mathrm{o}} \end{aligned}$ |  |  |  |
| Critical value (s) | $\mathrm{t}_{\alpha / 2}$ and $-\mathrm{t}_{\alpha / 2}$ | $\mathrm{t}_{1-\alpha}=-\mathrm{t}_{\alpha}$ | $\mathrm{t}_{\alpha}$ |
| Decision: | We reject $\mathrm{H}_{0}$ (and accept $\mathrm{H}_{A}$ ) at the significance level $\alpha$ if: |  |  |
|  | $\begin{gathered} \mathrm{t}<\mathrm{t}_{\alpha / 2} \text { or } \\ \mathrm{t}>\mathrm{t}_{1-\alpha / 2}=-\mathrm{t}_{\alpha / 2} \\ \text { Two-Sided Test } \end{gathered}$ | $t>t_{1-\alpha}=-t_{\alpha}$ <br> One-Sided Test | $\mathrm{t}<\mathrm{t}_{\alpha}$ <br> One-Sided Test |

## Question 1:

Suppose that we are interested in estimating the true average time in seconds it takes an adult to open a new type of tamper-resistant aspirin bottle. It is known that the population standard deviation is $\sigma=5.71$ seconds. A random sample of 40 adults gave a mean of 20.6 seconds. Let $\mu$ be the population mean, then, to test if the mean $\mu$ is 21 seconds at level of significant 0.05 ( $H_{0}: \mu=21$ vs $H_{A}: \mu \neq 21$ ) then:
(1) The value of the test statistic is:

$$
\begin{array}{r}
\sigma=5.71 \quad n=40 \quad \bar{X}=20.6 \\
Z=\frac{\bar{X}-\mu_{o}}{\sigma / \sqrt{n}}=\frac{20.6-21}{5.71 / \sqrt{40}}=-0.443
\end{array}
$$

(A) 0.443
(B) - 0.012
(C) -0.443
(D) 0.012
(2) The acceptance area is:

$$
Z_{\frac{\alpha}{2}}=Z_{\frac{0.05}{2}}=Z_{0.025}=1.96
$$


(A) $(-1.96,1.96)$
(B) $(1.96, \infty)$
(C) $(-\infty, 1.96)$
(D) $(-\infty, 1.645)$
(3) The decision is:
(A) Reject $H_{0}$
(B) Accept $H_{0}$
(C) no decision
(D) None of these

## Question 2:

If the hemoglobin level of pregnant women (مرأه حامل) is normally distributed, and if the mean and standard deviation of a sample of 25 pregnant women were $\bar{X}=13(\mathrm{~g} / \mathrm{dl}), \mathrm{s}=2$ $(g / d l)$.Using $\alpha=0.05$, to test if the average hemoglobin level for the pregnant women is greater than $10(\mathrm{~g} / \mathrm{dl})\left[H_{0}: \mu \leq 10, H_{A}: \mu>10\right]$.
(1) The test statistic is:
(A) $Z=\frac{\bar{X}-10}{\sigma / \sqrt{n}}$
(B) $Z=\frac{\bar{X}-10}{S / \sqrt{n}}$
(C) $t=\frac{\bar{x}-10}{\sigma / \sqrt{n}}$
$(\underline{D}) t=\frac{\bar{X}-10}{S / \sqrt{n}}$
(2) The value of the test statistic is:

$$
\begin{aligned}
& s=2 \quad n=25 \quad \bar{X}=13 \\
& t=\frac{\bar{X}-\mu_{o}}{S / \sqrt{n}}=\frac{13-10}{2 / \sqrt{25}}=7.5
\end{aligned}
$$

(A) 10
(B) 1.5
(C) 7.5
(D) 37.5

## (3) The rejection of $H_{o}$ is :

$$
t_{1-\alpha, n-1}=t_{0.95,24}=1.711
$$


(A) $Z<-1.645$
(B) $z>1.645$
(C) $t<-1.711$
$(\underline{D}) t>1.711$
(4) The decision is:
(A) Reject $H_{0}$
(B) Do not reject (Accept) $H_{0}$
(C) Accept both $H_{0}$ and $H_{A}$
(D) Reject both $H_{0}$ and $H_{A}$

## 2-Two Means:

| Hy | $\begin{aligned} & \mathrm{H}_{\mathrm{o}}: \mu_{1}-\mu_{2}=0 \\ & \mathrm{H}_{\mathrm{A}}: \mu_{1}-\mu_{2} \neq 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{0}: \mu_{1}-\mu_{2} \leq 0 \\ & \mathrm{H}_{\mathrm{A}}: \mu_{1}-\mu_{2}>0 \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{0}: \mu_{1}-\mu_{2} \geq 0 \\ & \mathrm{H}_{\mathrm{A}}: \mu_{1}-\mu_{2}<0 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Test Statistic For the First Case: | $Z=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim \mathrm{~N}(0,1) \quad$ \{if $\sigma_{1}^{2}$ and $\sigma_{2}^{2}$ are known $\}$ |  |  |
| R.R. and <br> A.R. of $\mathrm{H}_{\text {。 }}$ <br> (For the First <br> Case) |  |  |  |
| Test Statistic For the Second Case: | $T=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S_{p}^{2}}{n_{1}}+\frac{S_{p}^{2}}{n_{2}}}} \sim \mathrm{t}\left(n_{1}+n_{2}-2\right) \quad\left\{\right.$ if $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$ is unknown $\}$ |  |  |
| R.R. and <br> A.R. of $\mathrm{H}^{\circ}$ <br> (For the <br> Second Case) |  |  |  |
| Decision: | Reject $\mathrm{H}_{0}$ (and accept $\mathrm{H}_{A}$ ) at the significance level $\alpha$ if: |  |  |
|  | $\text { T.S. } \in \text { R.R. }$ <br> Two-Sided Test | T.S. $\in$ R.R. One-Sided Test | $\text { T.S. } \in \text { R.R. }$ One-Sided Test |

## Question 1:

A standardized chemistry test was given to 50 girls and 75 boys. The girls made an average of 84, while the boys made an average grade of 82. Assume the population standard deviations are 6 and 8 for girls and boys respectively. To test the null hypothesis $H_{0}: \mu_{1}-\mu_{2} \leq 0$ against the alternative hypothesis $H_{A}: \mu_{1}-\mu_{2}>0$ at 0.05 level of significance:
(1) The standard error of $\left(\bar{X}_{1}-\bar{X}_{2}\right)$ is:

$$
\begin{array}{cl}
\text { girls: } & n_{1}=50, \bar{X}_{1}=84, \sigma_{1}=6 \\
\text { boys: } & n_{2}=75, \bar{X}_{2}=82, \sigma_{2}=8 \\
\text { S. } E\left(\bar{X}_{1}-\bar{X}_{2}\right)=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}=\sqrt{\frac{6^{2}}{50}+\frac{8^{2}}{75}}=1.2543
\end{array}
$$

(A) 0.2266
(B) 2
(C) 1.5733
(D) 1.2543
(2) The value of the test statistic is:

$$
Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}=\frac{(84-82)}{\sqrt{\frac{6^{2}}{50}+\frac{8^{2}}{75}}}=\frac{2}{1.2543}=1.5945
$$

(A) -1.59
(B) 1.59
(C) 1.25
(D) 4.21
(3) The rejection region ( RR ) of $\mathrm{H}_{0}$ is:

$$
Z_{1-\frac{\alpha}{2}}=Z_{1-\frac{0.05}{2}}=Z_{0.975}=1.645
$$


(A) $(1.645, \infty)$
(B) $(-\infty,-1.645)$
(C) $(1.96, \infty)$
(D) $(-\infty,-1.96)$
(4) The decision is:
(A) Reject $H_{0}$
(B) Do not reject (Accept) $H_{0}$
(C) Accept both $H_{0}$ and $H_{A}$
(D) Reject both $H_{0}$ and $H_{A}$

## Question 2:

Cortisol level determinations were made on two samples of women at childbirth. Group 1 subjects underwent emergency cesarean section following induced labor. Group 2 subjects natural childbirth route following spontaneous labor. The sample sizes, mean cortisol levels, and standard deviations were $\left(n_{1}=40, \bar{x}_{1}=575, \sigma_{1}=70\right),\left(n_{2}=44, \bar{x}_{2}=610, \sigma_{2}=80\right)$ If we are interested to test if the mean Cortisol level of group $1\left(\mu_{1}\right)$ is less than that of group 2 ( $\mu_{2}$ ) at level $0.05\left(\right.$ or $_{0}: \mu_{1} \geq \mu_{2}$ vs $\left.H_{1}: \mu_{1}<\mu_{2}\right)$, then:
(1) The value of the test statistic is:

$$
Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}=\frac{(575-610)}{\sqrt{\frac{70^{2}}{40}+\frac{80^{2}}{44}}}=-2.138
$$

(A) -1.326
(B) -2.138
(C) -2.576
(D) -1.432
(2) Reject $H_{0}$ if :

(A) $Z>1.645$
(B) $T>1.98$
(C) $Z<-1.645$
(D) $T<-1.98$
(3) The decision is:
(A) Reject $H_{0}$
(B) Accept $H_{0}$
(C) no decision
(D) none of these

## Question 3:

An experiment was conducted to compare time length (duration time in minutes) of two types of surgeries $(A)$ and $(B) .10$ surgeries of type $(A)$ and 8 surgeries of type $(B)$ were performed. The data for both samples is shown below.

| Surgery type | A | B |
| :--- | :--- | :--- |
| Sample size | 10 | 8 |
| Sample mean | 14.2 | 12.8 |
| Sample standard deviation | 1.6 | 2.5 |

Assume that the two random samples were independently selected from two normal populations with equal variances. If $\mu_{A}$ and $\mu_{B}$ are the population means of the time length of surgeries of type $(A)$ and type $(B)$, then, to test if $\mu_{A}$ is greater than $\mu_{B}$ at level of significant 0.05 $\left(H_{0}: \mu_{A} \leq \mu_{B}\right.$ vs $\left.H_{A}: \mu_{A}>\mu_{B}\right)$ then:
(4) The value of the test statistic is:

$$
\begin{gathered}
S p^{2}=\frac{S_{1}^{2}\left(n_{1}-1\right)+S_{2}^{2}\left(n_{2}-1\right)}{n_{1}+n_{2}-2}=\frac{1.6^{2}(10-1)+2.5^{2}(8-1)}{10+8-2}=4.174 \\
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)}{S p \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{(14.2-12.8)}{\sqrt{4.174} \sqrt{\frac{1}{10}+\frac{1}{8}}}=1.44
\end{gathered}
$$

(A) -1.44
(B) 1.44
(C) -0.685
(D) 0.685
(5) Reject $H_{0}$ if :

$$
t_{\alpha, n_{1}+n_{2}-2}=t_{0.05,10+8-2}=t_{0.05,16}=1.746
$$


(A) $Z>1.645$
(B) $Z<-1.645$
(ㄷ) $T>1.746$
(D) $T<-1.746$
(6) The decision is:
(A) Reject $H_{0}$
(B) Accept $H_{0}$
(C) no decision
(D) none of these

## Question 4:

A researcher was interested in comparing the mean score of female students $\mu_{1}$, with the mean score of male students $\mu_{2}$ in a certain test. Assume the populations of score are normal with equal variances. Two independent samples gave the following results:

|  | Female | male |
| :--- | :--- | :--- |
| Sample size | $n_{1}=5$ | $n_{2}=7$ |
| Mean | $\bar{x}_{1}=82.63$ | $\bar{x}_{2}=80.04$ |
| Variance | $s_{1}^{2}=15.05$ | $s_{2}^{2}=20.79$ |

Test that is there is a difference between the mean score of female students and the mean score of male students.

## (1) The hypotheses are:

(ㅅ) $H_{0}: \boldsymbol{\mu}_{\mathbf{1}}=\boldsymbol{\mu}_{\mathbf{2}}$ $H_{A}: \boldsymbol{\mu}_{\mathbf{1}} \neq \boldsymbol{\mu}_{\mathbf{2}}$
(B) $H_{o:} \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{\boldsymbol{2}}$
$H_{A}: \mu_{1}<\mu_{2}$
(C) $H_{o}: \boldsymbol{\mu}_{1}<\boldsymbol{\mu}_{\boldsymbol{2}}$
$H_{A}: \boldsymbol{\mu}_{1}>\boldsymbol{\mu}_{2}$
(D) $H_{0} \boldsymbol{\mu}_{\mathbf{1}} \leq \boldsymbol{\mu}_{\boldsymbol{2}}$
$H_{A}: \boldsymbol{\mu}_{1}>\boldsymbol{\mu}_{2}$
(2) The value of the test statistic is:

$$
\begin{gathered}
S p^{2}=\frac{S_{1}^{2}\left(n_{1}-1\right)+S_{2}^{2}\left(n_{2}-1\right)}{n_{1}+n_{2}-2}=\frac{15.05(4)+20.79(6)}{5+7-2}=18.494 \\
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)}{S p \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{82.63-80.04}{\sqrt{18.494} \sqrt{\frac{1}{5}+\frac{1}{7}}}=1.029
\end{gathered}
$$

(A) 1.3
(B) 1.029
(C) 0.46
(D) 0.93

## (4) The acceptance region (AR) of $H_{0}$ is:

$$
t_{\frac{\alpha}{2}, n_{1}+n_{2}-2}=t_{\frac{0.05}{2}, 5+7-2}=t_{0.025,10}=2.228
$$


(A) $(2.2281, \infty)$
(B) $(-\infty,-2.2281)$
(C) $(-2.228,2.228)$
(D) $(-1.96,1.96)$

## Question 5:

A nurse researcher wished to know if graduates of baccalaureate nursing program and graduate of associate degree nursing program differ with respect to mean scores on personality inventory at $\alpha=0.02$. A sample of 50 associate degree graduates (sample A) and a sample of 60 baccalaureate graduates (sample B) yielded the following means and standard deviations:

$$
\begin{array}{ll}
\bar{X}_{A}=88.12, & S_{A}=10.5, \\
n_{A}=50 \\
\bar{X}_{B}=83.25, & S_{B}=11.2, \\
n_{B}=60
\end{array}
$$

1) The hypothesis is:
A) $H_{0}: \mu_{1} \leq \mu_{2}$ vs $H_{1}: \mu_{1}>\mu_{2}$
B) $H_{0}: \mu_{1} \geq \mu_{2}$ vs $H_{1}: \mu_{1}<\mu_{2}$
C) $H_{0}: \mu_{1}=\mu_{2}$ vs $H_{1}: \mu_{1} \neq \mu_{2}$
D) None of the above.
2) The test statistic is:
A) $Z$
B) $t$
C) $F$
D) None of the above.
3) The computed value of the test statistic is:

$$
\begin{gathered}
S p^{2}=\frac{S_{1}^{2}\left(n_{1}-1\right)+S_{2}^{2}\left(n_{2}-1\right)}{n_{1}+n_{2}-2}=\frac{10.5^{2}(50-1)+11.2^{2}(60-1)}{50+60-2}=118.55 \\
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)}{S p \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{88.12-83.25}{\sqrt{118.55 \sqrt{\frac{1}{50}+\frac{1}{60}}}=48.19}
\end{gathered}
$$

A) 2.72
B) 1.50
C) 1.86
D) 2.35
4) The critical region (rejection area) is:

$$
t_{\frac{\alpha}{2}, n_{1}+n_{2}-2}=t_{\frac{0.02}{}}^{2},{ }_{50+60-2}=t_{0.01,108}=
$$


A) 2.60 Or -2.60
B) 2.06 Or -2.06
C) $2.33 \mathrm{Or}-2.33$
D) 2.58

## 5) Your decision is:

A) accept \& reject $H_{0}$
B) accept $H_{0}$
C) reject $H_{0}$
D) no decision.

Single proportion:

| Hypotheses | $\begin{aligned} & \mathrm{H}_{0}: p=p_{0} \\ & \mathrm{H}_{\mathrm{A}}: p \neq p_{0} \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{0}: p \leq p_{0} \\ & \mathrm{H}_{\mathrm{A}}: p>p_{0} \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{0}: p \geq p_{0} \\ & \mathrm{H}_{\mathrm{A}}: p<p_{0} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Test Statistic (T.S.) | $Z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}} \sim \mathrm{~N}(0,1)$ |  |  |
| $\begin{aligned} & \text { R.R. \& A.R. } \\ & \text { of } \mathrm{H}_{0} \end{aligned}$ |  |  |  |
| Decision: | Reject $\mathrm{H}_{0}$ (and accept $\mathrm{H}_{\mathrm{A}}$ ) at the significance level $\alpha$ if: |  |  |
|  | $\begin{aligned} & \mathrm{Z}<\mathrm{Z}_{\alpha / 2} \text { or } \\ & \mathrm{Z}>\mathrm{Z}_{1-\alpha / 2}=-\mathrm{Z}_{\alpha / 2} \end{aligned}$ <br> Two-Sided Test | $Z>Z_{1-\alpha}=-Z_{\alpha}$ <br> One-Sided Test | $\mathrm{Z}<\mathrm{Z}_{\alpha}$ <br> One-Sided Test |

## Question 1:

Toothpaste (معجون الاسنان) company claims thatmorethan $75 \%$ of the dentists recommend their product to the patients. Suppose that 161 out of 200 dental patients reported receiving a recommendation for this toothpaste from their dentist. Do you suspect that the proportion is actually morethan $75 \%$. If we use 0.05 level of significance to test $H_{0}: P \leq 0.75, H_{A}: P>0.75$, then:
(1) The sample proportion $\hat{\boldsymbol{p}}$ is:

$$
n=200, \hat{p}=\frac{161}{200}=0.8050
$$

(A) 0.75
(B) 0.195
(C) 0.805
(D) 0.25
(2) The value of the test statistic is:

$$
Z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}=\frac{0.805-0.75}{\sqrt{\frac{(0.75)(0.25)}{200}}}=1.7963
$$

(A) 1.963
( ${ }^{B}$ ) 1.796
(C) - 1.796
(D) -1.963
(3)The decision is:

$$
\alpha=0.05 \rightarrow Z_{1-\alpha}=Z_{0.95}=1.645
$$


(A) Reject $H_{0}$
(B) Do not reject (Accept) $H_{o}$
(C) Accept both $H_{o}$ and $H_{A}$
(D) Reject both $H_{o}$ and $H_{A}$

## Question 2:

A researcher was interested in studying the obesity (السمنة) disease in a certain population. A random sample of 400 people was taken from this population. It was found that 152 people in this sample have the obesity disease. If p is the population proportion of people who are obese. Then, to test if $p$ is greater than 0.34 at level $0.05\left(H_{0}: p \leq 0.34\right.$ vs $\left.H_{A}: p>0.34\right)$ then:
(1) The value of the test statistic is:

$$
\begin{gathered}
n=400, \quad \hat{p}=\frac{152}{400}=0.38 \\
Z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}=\frac{0.38-0.34}{\sqrt{\frac{0.34 \times 0.66}{400}}}=1.69
\end{gathered}
$$

(A) 0.023
(B) 1.96
(C) 2.50
(D) 1.69
(2) The $P$-value is

$$
P-\text { value }=P(Z>1.96)=1-P(Z<1.96)=1-0.9545=0.0455
$$

(A) 0.9545
(B) 0.0910
(C) 0.0455
(D)1.909
(3) The decision is:

$$
P-\text { value }=0.0455<0.05
$$

(A) Reject $H_{0}$
(B) Accept $H_{0}$
(C) no decision
(D) none of these

Two proportions:

| Hypotheses | $\begin{aligned} & \mathrm{H}_{\mathrm{o}}: p_{1}-p_{2}=0 \\ & \mathrm{H}_{\mathrm{A}}: p_{1}-p_{2} \neq 0 \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{\mathrm{o}}: p_{1}-p_{2} \leq 0 \\ & \mathrm{H}_{\mathrm{A}}: p_{1}-p_{2}>0 \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{\mathrm{o}}: p_{1}-p_{2} \geq 0 \\ & \mathrm{H}_{\mathrm{A}}: p_{1}-p_{2}<0 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Test Statistic (T.S.) | $Z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)}{\sqrt{\frac{\bar{p}(1-\bar{p})}{n_{1}}+\frac{\bar{p}(1-\bar{p})}{n_{2}}}} \sim \mathrm{~N}(0,1)$ |  |  |
| $\begin{aligned} & \text { R.R. and } \\ & \text { A.R. of } H_{0} \end{aligned}$ |  |  |  |
| Decision: | Reject $H_{0}$ (and accept $H_{1}$ ) at the significance level $\alpha$ if $Z \in R . R$. : |  |  |
| Critical Values | $\begin{gathered} \mathrm{Z}>\mathrm{Z}_{\alpha / 2} \\ \text { or } \mathrm{Z}<-\mathrm{Z}_{\alpha / 2} \\ \text { Two-Sided Test } \end{gathered}$ | $\mathrm{Z}>\mathrm{Z}_{\alpha}$ <br> One-Sided Test | $\mathrm{Z}<-\mathrm{Z}_{\alpha}$ <br> One-Sided Test |

## Question 1:

In a first sample of 200 men, 130 said they used seat belts and a second sample of 300 women, 150 said they used seat belts. To test the claim that men are more safety-conscious than women $\left(H_{0}: p_{1}-p_{2} \leq 0, H_{1}: p_{1}-p_{2}>0\right)$, at 0.05 level of significant:
(1) The value of the test statistic is:

$$
\begin{gathered}
n_{1}=200, \hat{p}_{1}=\frac{130}{200}=0.65 \quad n_{2}=300, \hat{p}_{2}=\frac{150}{300}=0.5 \\
\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}=\frac{130+150}{200+300}=0.56 \\
Z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)}{\sqrt{\hat{p} \hat{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{(0.65-0.5)}{\sqrt{(0.56)(0.44)\left(\frac{1}{200}+\frac{1}{300}\right)}}=3.31
\end{gathered}
$$

(A) -3.31
(B) 5.96
(C)1.15
(D) 3.31
(2) The decision is:

$$
Z_{1-\alpha}=Z_{1-0.05}=Z_{0.95}=1.645
$$


(A) Reject $H_{0}$
(B) Do not reject (Accept) $H_{0}$
(C) Accept both $H_{0}$ and $H_{A}$
(D) Reject both $H_{0}$ and $H_{A}$
(3) We can conclude that from confidence interval that
(A) The diabetes proportions may be equal for both proportion.
(B) The diabetes proportions may not be equal for both proportion.

## Question 2:

In a study of diabetes, the following results were obtained from samples of males and females between the ages of 20 and 75. Male sample size is 300 of whom 129 are diabetes patients, and female sample size is 200 of whom 50 are diabetes patients. If $P_{M}, P_{F}$ are the diabetes proportions in both populations and $\hat{p}_{M}, \hat{p}_{F}$ are the sample proportions, then:
A researcher claims that the Proportion of diabetes patients is found to be more in males than in female $\left(H_{0}: P_{M}-P_{F} \leq 0\right.$ vs $\left.H_{A}: P_{M}-P_{F}>0\right)$. Do you agree with his claim, take $\alpha=0.10$
(1) The pooled proportion is:

$$
\hat{p}=\frac{x_{m}+x_{f}}{n_{m}+n_{f}}=\frac{129+50}{300+200}=0.358
$$

(A) 0.43
(B) 0.18
(C) 0.358
(D) 0.68

## (2) The value of the test statistic is:

$$
Z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)}{\sqrt{\hat{p} \hat{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{(0.43-0.25)}{\sqrt{(0.358)(1-0.358)\left(\frac{1}{300}+\frac{1}{200}\right)}}=0.411
$$

(A) -4.74
(B) 4.74
(C) 4.11
(D) -4.11

## (3) The decision is:

$$
Z_{1-\frac{\alpha}{2}}=Z_{1-\frac{0.05}{2}}=Z_{0.975}=1.96
$$


(A) Agree with the claim
(B) do not agree with the claim
(C) Can't say

$$
\begin{aligned}
& * u=25 \rightarrow \text { normal } \\
& * \bar{x}=4 \cdot 8 \\
& * s=2 \longrightarrow 3 \text { is unknown Exercise \#10 } \\
& * a=0.05
\end{aligned}
$$

Q1: A study was made of a random sample of 25 records of patients seen at a chronic disease hospital on an outpatient basis, the mean number of outpatient visits per patient was 4.8 with standard deviation was 2. Can it be concluded from these data that the population mean is greater than four visits per patient. Let the probability of committing a type I error be 0.05 .

$x n=49$
$x \bar{x}=21$
Q2:In a sample of 49 adolescents who served as the subjects in an immunologic study, one \& $S=11$ standard deviation were 21 and 11 mm erythematic, respectively. Can it be concluded from these data that the population mean is less than 30 ? let $\alpha=0.05$

## 1-what is the assumption?

3 unknown,

```
nok-normal, }n\mathrm{ large }\langlen\rangle30
```

2-Hypothesis is?

$$
\begin{aligned}
& H_{A}: \mu<30 \\
& H_{0}: \mu \geqslant 30
\end{aligned}
$$

## 3-Test statistic=



5-conclusion is:
a) reject $\mathrm{H}_{0}$
b)accept $\mathrm{H}_{0}$


```
*M=100 & b b 6 6.5
* \overline{X}=27 *\alpha=0.05
```

Q3:A survey of 100 similar-sized hospitals revealed a mean daily census in the pediatrics service of 27. The population distributed normally with standard deviation of 6.5 .Do these data provide sufficient evidence to indicate that the population mean is not equal 25? let $\alpha=0.05$

## 1-what is the assumption?

```
b known, normal, n large ( }n>30
```


## 2-Hypothesis is?

$H_{A}: M \neq 25$
$H_{0}: M=25$

## 3-Test statistic $=$



4-Rejection region is


## 5 -conclusion is

a) reject $\mathrm{H}_{0}$
b) accept $\mathrm{H}_{0}$

## 6- $\mathbf{P}$-value $=$

two sided $(=)(z)$
(2) $\times$ P 2

## H.W 1:

```
                B=16}
```

A research team is willing to assume that systolic blood pressures in a certain population of males are approximately normally distributed with a standard deviation of 16 . A simple random sample of 64 males from the population had a mean systolic blood pressure reading of 133 . At the 0.05 level of significance, do these data provide sufficient evidence for us to conclude that the population mean is greater than 130 .

## 1-what is the assumption?

(Answer: Normal , $\boldsymbol{\sigma}$ known, n large )

2-Hypothesis is?
(Answer: $H_{0}: \mu \leq 130, \quad H_{A}: \mu>130$ )
(Answer: $\mathrm{Z}=1.5$ )

## 3-Test statistic=

 $: Z_{1-a}$ ~~~, 芫; \# $z_{1 . a}=z_{1-0.05}=z_{0.95}$ $\therefore z=1.645$ 5

4-Reject $\mathrm{H}_{0}$ if
5-conclusion is:


Answer: $\mathbf{Z}>\mathbf{Z}_{1-\alpha}$ )

55

 $z>z_{1-a}$

$x$


Q4:The objective of a study by Sairam et al. (A-8) was to identify the role of various disease states and additional risk factors in the development of thrombosis. One focus of the study was to determine if there were differing levels of the anticardiolipin antibody IgG in subjects with and without thrombosis.

| Group | Mean IgG Level <br> (ml/unit) | Sample Size | Population Standard <br> deviation |
| :---: | :---: | :---: | :---: |
| Thrombosis | 59.01 | 53 | 44.89 |
| No thrombosis | 46.61 | 54 | 34.85 |

We wish to know if we may conclude, on the basis of these results, that, in general, persons with thrombosis have, on the average, higher IgG levels than persons without thrombosis. let $\alpha=0.01$

## 1-what is the assumption?

oे, 3, known


2-Hypothesis is?
$H_{A}: \mu>\mu_{2}$ $\leq \mu$

## 3-Test statistic=

$z=$


4-Acceptance region is?

$z \in A \cdot R$
a) reject $\mathrm{H}_{0}$
b)accept $\mathrm{H}_{0}$

Q5: A test designed to measure mothers' attitudes toward their labor and delivery experiences was given to two groups of new mothers. Sample 1 (attenders) had attended prenatal classes held at the local health department. Sample 2 (nonattenders) did not attend the classes. The sample sizes and means and standard deviations of the test scores were as follows:

| sample | n | $\bar{x}$ | S |
| :---: | :---: | :---: | :---: |
| 1 | 15 | 4.75 | 1.0 |
| 2 | 22 | 3.00 | 1.5 |

Assume equal variances. Do these data provide sufficient evidence to indicate that attenders, on the average, score less than non attenders? Let $\alpha=0.05$. Assume normal population

## 1-what is the assumption?

$\left(\sigma_{1}, \partial_{2}\right.$ ) untnown butequal, normal, ( $n_{1}, n_{2}$ ) small

## 2-Hypothesis is?

$H_{A}: \mu_{1}<M_{2}$
$H_{0}: \mu_{1} \geq M_{2}$

3- find pooled variance

## 4-Test statistic $=$


\% \# \%


## Q6:

Woo and McKenna (A-18) investigated the effect of broadband ultraviolet B (UVB) therapy and topical calcipotriol cream used together on areas of psoriasis. One of the outcome variables is the Psoriasis Area and Severity Index (PASI). The following table gives the PASI scores for 20 subjects measured at baseline and after eight treatments. Do these data provide sufficient evidence, at the .01 level of significance, to indicate that the combination therapy reduces PASI scores?


2-Hypothesis is?
$H_{0}: \mu_{D} \leqslant 0$
$H_{A}: \mu_{D}>0$
3-Test statistic=

$\leftarrow, 4$-Rejection region is?
$R \cdot R=(2.579, \infty)$



5-conclusion is
f since $t=5.519 \in R \cdot R$
a) reject HO
b) accept H0
(2) ni: shift $\rightarrow 9 \rightarrow 1$ : Setup $\rightarrow=\rightarrow A \subset$
(3) Mode $\overrightarrow{2}^{2}$ (stat) $\rightarrow 1$ (1-Var) $\rightarrow D_{i}$ ions $\rightarrow A E$
(1)

$$
\begin{array}{r}
u=S_{D}: \text { shift } \rightarrow 1 \rightarrow 4(\text { var }) \rightarrow 4(5 x) \rightarrow 2\left(\frac{59}{8}\right) \rightarrow=
\end{array}
$$

$$
\begin{array}{ll}
* n=295 \\
* x=90 \\
* a=0.05 & * \hat{p}=\frac{x}{n}=\frac{90}{295}=0.31
\end{array}
$$

Q7: Jacquemyn et al. (A-21) conducted a survey among gynecologists-obstetricians in the Flanders region and obtained 295 responses. Of those responding, 90 indicated that they had performed at least one cesarean section on demand every year. Does this study provide sufficient evidence for us to conclude that less than 35 percent of the gynecologistsobstetricians in the Flanders region perform at least one cesarean section on demand each year? Let $\alpha=0.05$.

## 1-Hypothesis is?

$H_{A}: P<0.35$
$H_{C}: P \geqslant 0.35$

## 2-Test statistic=



3-Rejection region is


## 4-conclusion is:

## a) reject $\mathrm{H}_{0}$

b) accept $\mathrm{H}_{0}$


6- P -value $=$


## H.W4

In an article in the journal Health and Place, Hui and Bell (A-22) found that among 2428 boys ages 7 to 12 years, 461 were overweight or obese. On the basis of this study, can we conclude that more than 15 percent of the boys ages 7 to 12 in the sampled population are obese or overweight? Let $\alpha=0.05$

1-Hypothesis is?
2-Test statistic=
3-Acceptance region is
(Answer : $\mathrm{H}_{0}: \mathrm{P} \leq 0.15, \quad \mathrm{H}_{\mathrm{A}}: \mathrm{P}>0.15$ )
(Answer : Z = 4.91)
(Answer: ( $-\infty, 1.645$ ) )

## 4-conclusion is:

$$
\text { a) reject } \mathrm{H}_{0} \quad \text { b) accept } \mathrm{H}_{0}
$$

$$
\begin{array}{ll}
* n_{1}=1222 & * n_{2}=282 \\
* \quad x_{1}=72 & * x_{2}=30
\end{array}
$$

QP:

$$
\nVdash \hat{P}_{1}=\frac{X_{1}}{n_{1}}=\frac{72}{1222}=0.059
$$

$$
\forall \hat{p}_{2}=\frac{x_{2}}{n_{2}}=\frac{30}{282}=0.106
$$

Ho et al. (A-25) used telephone interviews of randomly selected respondents in Hong Kong to obtain information regarding individuals' perceptions of health and smoking history. Among 1222 current male smokers, 72 reported that they had "poor" or "very poor" health, while 30
 sufficient evidence to allow one to conclude that among Hong Kong men there is a difference $\overrightarrow{P_{1}}-P_{2} \neq 0$ between current and former smokers with respect to the proportion who perceive themselves as having "poor" and "very poor" health? Let $\alpha=0.01$.

## 1-Hypothesis is?

$\sigma_{5}^{-}$-conclusion is
$-2.325 \quad 2.32$
$z \in R, R$

## H.W5:

In a study of obesity the following results were obtained from samples of males and females between the ages of 20 and 75:

|  | n | Number overweight |
| :---: | :---: | :---: |
| Males | 150 | 21 |
| Females | 200 | 48 |

Can we conclude from these data that in the sampled populations there is a difference in the proportions who are overweight? Let $\alpha=0.05$.

## 1-Hypothesis is?

$$
\mathbf{H}_{0}: \mathbf{P}_{1}=\mathbf{P}_{2}, \quad \mathbf{H}_{A}: \mathbf{P}_{1} \neq \mathbf{P}_{2}
$$

## 2-Test statistic=

$$
Z=-2.328
$$

## 3-Acceptance region is?

(-1.645, 1.645)

## 6-conclusion is:

a) reject $\mathrm{H}_{0}$ - b) accept $\mathrm{H}_{0}$

## CHAPTER 6: Using Sample Data to Make Estimations

 About Population Parameters
## Confidence Interval (C.I)

$$
\text { Means }\left(\mu_{1}-\mu_{2}\right) \sigma_{1}^{2} \text { and } \sigma_{2}^{2} \text { are known }
$$

4) C.I of the Difference between two Means $\left(\mu_{1}-\mu_{2}\right) \sigma_{1}^{2}$ and $\sigma_{2}^{2}$ are unknown
5) C.I of a Proportion

6) C.I of the Difference between Two Proportions
(1) C.I

7) Point estimate


Standard error

4) Max. Error (error will not exceed $=$ e )

(5) Upper
b) Lower

Length( width) of ci


## (Finding Reliability Coefficient)



## 1) C.I of the Mean $(\mu): \sigma^{2}$ is known

السؤال
Mean $=$ average $=\vec{X}$
Sample $=n$
Population standard deviation $=$


CI $=\vec{x} \pm z_{1}-\lambda_{2} \cdot \frac{6}{\sqrt{n}}$
PS $=\bar{x}$

STE=

$\operatorname{MAX} \cdot E=Z_{1-\epsilon} \cdot \frac{\sigma}{\sqrt{n}}$

$$
U=\bar{\alpha}+\partial_{1-\frac{\pi}{i}}
$$

$$
\mathrm{L}=\bar{\alpha}-z_{1-\frac{a}{2}}
$$


L. OF C.I $=\mu-L$
$X \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
$\left(\bar{X}-Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$

1. We are $(1-\alpha) 100 \%$ confident that the true value of $\mu$ belongs to the interval $\left(\bar{X}-Z_{1-\frac{\alpha}{2}} \overline{\sqrt{n}}, \bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$.
2. Upper limit of the confidence interval $=\bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
3. Lower limit of the confidence interval $=\bar{X}-Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
4. $Z_{1-\frac{\alpha}{2}}=$ Reliability Coefficient
5. $Z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}=$ margin of error $=$ precision of the estimate
6. In general the interval estimate (confidence interval) may be expressed as follows:

$$
\bar{X} \pm Z_{1-\frac{\alpha}{2}} \sigma_{\bar{X}}
$$

estimator $\pm$ (reliability coefficient) $\times($ standard Error)
estimator $\pm$ margin of error

## Example: (The case where $\sigma^{2}$ is known)

Diabetic ketoacidosis is a potential fatal complication of diabetes mellitus throughout the world and is characterized in part by very high blood glucose levels. In a study on 123 patients living in Saudi Arabia of age 15 or more who were admitted for diabetic ketoacidosis, the mean blood glucose level was $26.2 \mathrm{mmol} / 1$. Suppose that the blood glucose levels for such patients have a normal distribution with a standard deviation of $3.3 \mathrm{mmol} / \mathrm{l}$.
(1) Find a point estimate for the mean blood glucose level of such diabetic ketoacidosis patients.
(2) Find a $90 \%$ confidence interval for the mean blood glucose level of such diabetic ketoacidosis patients.

6.3 The t Distribution:
(Confidence Interval Using t)

السؤال
Mean $=$ average $=\vec{\alpha}$
Sample $=n$
Population standard deviation $=$
2) C.I of the Mean $(\mu): \sigma^{2}$ is Unknown




$$
\begin{aligned}
& \text { C.I }=\sqrt{\frac{1}{x}} \pm \sqrt{1-\frac{x}{2}} \cdot \frac{5}{\sqrt{n}} \\
& \text { P.S }=\overparen{\alpha}
\end{aligned}
$$

$$
\text { STE }=\frac{S}{\sqrt{n}}
$$

$$
\operatorname{MAX} . E=\frac{\$}{1+\frac{s}{2}} \cdot \frac{\sqrt{n}}{\sqrt{n}}
$$

$\mathrm{U}=$ $\qquad$
$\mathrm{L}=$ $\square$

$$
\text { L.OFC.I }=u-L
$$

$$
\begin{aligned}
& \bar{X} \pm t_{ \pm \leqslant \frac{\alpha}{2}} \frac{S}{\sqrt{n}} \\
& \left(\bar{X}-t_{1 \leq \frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X}+t_{t \leq \frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right)
\end{aligned}
$$

1. We are $(1-\alpha) 100 \%$ confident that the true value of $\mu$ belongs
to the interval $\left(\bar{X}-t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X}+t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right)$.
2. $\hat{\sigma}_{\bar{x}}=\frac{S}{\sqrt{n}} \quad$ (estimate of the standard error of $\bar{X}$ )
3. $t_{1-\frac{\alpha}{2}}=$ Reliability Coefficient
4. In this case, we replace $\sigma$ by $S$ and Z by t.
5. In general the interval estimate (confidence interval) may be expressed as follows:
Estimator $\pm$ (Reliability Coefficient) $\times$ (Estimate of the Standard Error)

$$
\bar{X} \pm t_{1-\frac{\alpha}{2}} \hat{\sigma}_{\bar{X}}
$$

(Finding Reliability Coefficient)


Example:
Suppose that $\mathrm{t} \sim \mathrm{t}(30)$. Find ${ }_{1-\frac{\alpha}{2}}$ for $\alpha=0.05$.

$$
\begin{aligned}
& 1-\frac{q}{2}=1-\frac{0.5}{2}=0.975 \\
& \partial f=v=n-1=3=-1=29
\end{aligned}
$$

$$
T_{1-\frac{9-}{2}}=2.04 \mathrm{~s}
$$



Example: (The case where $\sigma^{2}$ is unknown)
A study was conducted to study the age characteristics of Saudi women having breast lump. A sample of 121 Saudi women gave a mean of 37 years with a standard deviation of 10 years. Assume that the ages of Saudi women having breast lumps are normally distributed.
(a) Find a point estimate for the mean age of Saudi women having breast lumps.
(b) Construct a $99 \%$ confidence interval for the mean age of Saudi women having breast lumps


### 6.4 Confidence Interval for the Difference between Two

## Population Means ( $\mu_{1}-\mu_{2}$ ):

(i) First Case: $\sigma_{1}^{2}$ and $\sigma_{2}^{2}$ are known:

## 3) C.I of the Difference between two Means $\left(\mu_{1}-\mu_{2}\right) \sigma_{1}^{2}$ and $\sigma_{2}^{2}$ are known

السؤال
Mean = average
Sample
Population standard deviation
$\square$ $\% \xrightarrow{\text { نستختّ }}$

(1) $\mathrm{C} . \mathrm{I}=$

$$
\left(\overline{x_{1}}-\bar{x}_{2}\right)
$$

$$
\pm \widehat{z_{1}-\frac{1}{z}}
$$

$$
\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}}+\frac{\sigma_{2}^{2}}{n_{2}^{2}}
$$STE=


(4) $\mathrm{MAX} \cdot \mathrm{E}=$
(5) $\mathrm{U}=$$\mathrm{L}=$
L. OF CI =

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{1 \frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

1. Mean of $\bar{X}_{1}-\bar{X}_{2}$ is:

$$
\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}
$$

2. Variance of $\bar{X}_{1}-\bar{X}_{2}$ is:

$$
\begin{aligned}
& \sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}} \\
& \sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
\end{aligned}
$$

3. Standard error of $\bar{X}_{1}-\bar{X}_{2}$ is:

Example: ( $1^{\text {st }}$ Case: $\sigma_{1}^{2}$ and $\sigma_{2}^{2}$ are known)
An experiment was conducted to compare time length (duration time) of two types of surgeries (A) and (B) 75 surgeries of type (A) and 50 surgeries of type (B) were performed. The average time length for (A) was 42 minutes and the average for $(\mathrm{B})$ was 36 minutes.
(1) Find a point estimate for $\mu_{A}-\mu_{B}$, where $\mu_{A}$ and $\mu_{B}$ are population means of the time length of surgeries of type (A) and (B), respectively.
(2) Find a $96 \%$ confidence interval for $\mu_{A}-\mu_{B}$. Assume that the population standard deviations are 8 and 6 for type (A) and (B), respectively.


$$
\begin{aligned}
& \text { (1) C.I } \\
& \left(\bar{\alpha}_{A}-\widehat{\alpha}_{B}\right)+Z_{1-\frac{T}{2}}^{\frac{\pi}{u_{A}}} \cdot \sqrt{\frac{\sigma_{A}^{2}}{u_{B}}+\frac{\sigma_{B}^{2}}{}} \\
& \text { f } 42-36) \pm(2.055)(1.25) \\
& =(3.43 / 8.5687) \\
& \text { (2) p.s = } \\
& \text { (3) ST:e }= \\
& \text { (4) Max:e = } \\
& \text { (5) } u=8.56 \\
& \text { (6) } L=3.43 \\
& 7 \text { lot.r.I }=u_{-} \text {. }
\end{aligned}
$$

Critical Values of the $t$-distribution $\left(t_{\alpha}\right)$


| $v=\mathbf{d f}$ | $\mathbf{t}_{0.90}$ | $\mathbf{t}_{0.95}$ | $t_{0.975}$ | $\mathrm{t}_{0.99}$ | $\mathrm{t}_{0.995}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 |
| 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 |
| 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 |
| 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 |
| 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 |
| 6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 |
| 7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 |
| 8 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 |
| 9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 |
| 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 |
| 11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 |
| 12 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 |
| 13 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 |
| 14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 |
| 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 |
| 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 |
| 17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 |
| 18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 |
| 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 |
| 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 |
| 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 |
| 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 |
| 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 |
| 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 |
| 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 |
| 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 |
| 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 |
| 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 |
| (29) | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 |
| 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 |
| 35 | 1.3062 | 1.6896 | 2.0301 | 2.4377 | 2.7238 |
| 40 | 1.3030 | 1.6840 | 2.0210 | 2.4230 | 2.7040 |
| 45 | 1.3006 | 1.6794 | 2.0141 | 2.4121 | 2.6896 |
| 50 | 1.2987 | 1.6759 | 2.0086 | 2.4033 | 2.6778 |
| 60 | 1.2958 | 1.6706 | 2.0003 | 2.3901 | 2.6603 |
| 70 | 1.2938 | 1.6669 | 1.9944 | 2.3808 | 2.6479 |
| 80 | 1.2922 | 1.6641 | 1.9901 | 2.3739 | 2.6387 |
| 90 | 1.2910 | 1.6620 | 1.9867 | 2.3685 | 2.6316 |
| 100 | 1.2901 | 1.6602 | 1.9840 | 2.3642 | 2.6259 |
| 120 | 1.2886 | 1.6577 | 1.9799 | 2.3578 | 2.6174 |
| 140 | 1.2876 | 1.6558 | 1.9771 | 2.3533 | 2.6114 |
| 160 | 1.2869 | 1.6544 | 1.9749 | 2.3499 | 2.6069 |
| 180 | 1.2863 | 1.6534 | 1.9732 | 2.3472 | 2.6034 |
| 200 | 1.2858 | 1.6525 | 1.9719 | 2.3451 | 2.6006 |
| $\infty$ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 |


| Z | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -3.4 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0002 |
| -3.3 | 0.0005 | 0.0005 | 0.0005 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0003 |
| -3.2 | 0.0007 | 0.0007 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0005 | 0.0005 | 0.0005 |
| -3.1 | 0.0010 | 0.0009 | 0.0009 | 0.0009 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0007 | 0.0007 |
| -3.0 | 0.0013 | 0.0013 | 0.0013 | 0.0012 | 0.0012 | 0.0011 | 0.0011 | 0.0011 | 0.0010 | 0.0010 |
| -2.9 | 0.0019 | 0.0018 | 0.0018 | 0.0017 | 0.0016 | 0.0016 | 0.0015 | 0.0015 | 0.0014 | 0.0014 |
| -2.8 | 0.0026 | 0.0025 | 0.0024 | 0.0023 | 0.0023 | 0.0022 | 0.0021 | 0.0021 | 0.0020 | 0.0019 |
| -2.7 | 0.0035 | 0.0034 | 0.0033 | 0.0032 | 0.0031 | 0.0030 | 0.0029 | 0.0028 | 0.0027 | 0.0026 |
| -2.6 | 0.0047 | 0.0045 | 0.0044 | 0.0043 | 0.0041 | 0.0040 | 0.0039 | 0.0038 | 0.0037 | 0.0036 |
| -2.5 | 0.0062 | 0.0060 | 0.0059 | 0.0057 | 0.0055 | 0.0054 | 0.0052 | 0.0051 | 0.0049 | 0.0048 |
| -2.4 | 0.0082 | 0.0080 | 0.0078 | 0.0075 | 0.0073 | 0.0071 | 0.0069 | 0.0068 | 0.0066 | 0.0064 |
| -2.3 | 0.0107 | 0.0104 | 0.0102 | 0.0099 | 0.0096 | 0.0094 | 0.0091 | 0.0089 | 0.0087 | 0.0084 |
| -2.2 | 0.0139 | 0.0136 | 0.0132 | 0.0129 | 0.0125 | 0.0122 | 0.0119 | 0.0116 | 0.0113 | 0.0110 |
| -2.1 | 0.0179 | 0.0174 | 0.0170 | 0.0166 | 0.0162 | 0.0158 | 0.0154 | 0.0150 | 0.0146 | 0.0143 |
| -2.0 | 0.0228 | 0.0222 | 0.0217 | 0.0212 | 0.0207 | 0.0202 | 0.0197 | 0.0192 | 0.0188 | 0.0183 |
| -1.9 | 0.0287 | 0.0281 | 0.0274 | 0.0268 | 0.0262 | 0.0256 | 0.0250 | 0.0244 | 0.0239 | 0.0233 |
| -1.8 | 0.0359 | 0.0351 | 0.0344 | 0.0336 | 0.0329 | 0.0322 | 0.0314 | 0.0307 | 0.0301 | 0.0294 |
| -1.7 | 0.0446 | 0.0436 | 0.0427 | 0.0418 | 0.0409 | 0.0401 | 0.0392 | 0.0384 | 0.0375 | 0.0367 |
| -1.6 | 0.0548 | 0.0537 | 0.0526 | 0.0516 | 0.0505 | 0.0495 | 0.0485 | 0.0475 | 0.0465 | 0.0455 |
| -1.5 | 0.0668 | 0.0655 | 0.0643 | 0.0630 | 0.0618 | 0.0606 | 0.0594 | 0.0582 | 0.0571 | 0.0559 |
| -1.4 | 0.0808 | 0.0793 | 0.0778 | 0.0764 | 0.0749 | 0.0735 | 0.0721 | 0.0708 | 0.0694 | 0.0681 |
| -1.3 | 0.0968 | 0.0951 | 0.0934 | 0.0918 | 0.0901 | 0.0885 | 0.0869 | 0.0853 | 0.0838 | 0.0823 |
| -1.2 | 0.1151 | 0.1131 | 0.1112 | 0.1093 | 0.1075 | 0.1056 | 0.1038 | 0.1020 | 0.1003 | 0.0985 |
| -1.1 | 0.1357 | 0.1335 | 0.1314 | 0.1292 | 0.1271 | 0.1251 | 0.1230 | 0.1210 | 0.1190 | 0.1170 |
| -1.0 | 0.1587 | 0.1562 | 0.1539 | 0.1515 | 0.1492 | 0.1469 | 0.1446 | 0.1423 | 0.1401 | 0.1379 |
| -0.9 | 0.1841 | 0.1814 | 0.1788 | 0.1762 | 0.1736 | 0.1711 | 0.1685 | 0.1660 | 0.1635 | 0.1611 |
| -0.8 | 0.2119 | 0.2090 | 0.2061 | 0.2033 | 0.2005 | 0.1977 | 0.1949 | 0.1922 | 0.1894 | 0.1867 |
| -0.7 | 0.2420 | 0.2389 | 0.2358 | 0.2327 | 0.2296 | 0.2266 | 0.2236 | 0.2206 | 0.2177 | 0.2148 |
| -0.6 | 0.2743 | 0.2709 | 0.2676 | 0.2643 | 0.2611 | 0.2578 | 0.2546 | 0.2514 | 0.2483 | 0.2451 |
| -0.5 | 0.3085 | 0.3050 | 0.3015 | 0.2981 | 0.2946 | 0.2912 | 0.2877 | 0.2843 | 0.2810 | 0.2776 |
| -0.4 | 0.3446 | 0.3409 | 0.3372 | 0.3336 | 0.3300 | 0.3264 | 0.3228 | 0.3192 | 0.3156 | 0.3121 |
| -0.3 | 0.3821 | 0.3783 | 0.3745 | 0.3707 | 0.3669 | 0.3632 | 0.3594 | 0.3557 | 0.3520 | 0.3483 |
| -0.2 | 0.4207 | 0.4168 | 0.4129 | 0.4090 | 0.4052 | 0.4013 | 0.3974 | 0.3936 | 0.3897 | 0.3859 |
| -0.1 | 0.4602 | 0.4562 | 0.4522 | 0.4483 | 0.4443 | 0.4404 | 0.4364 | 0.4325 | 0.4286 | 0.4247 |
| -0.0 | 0.5000 | 0.4960 | 0.4920 | 0.4880 | 0.4840 | 0.4801 | 0.4761 | 0.4721 | 0.4681 | 0.4641 |
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |

## CHAPTER 7: Using Sample Statistics To Test Hypotheses About Population Parameters:

1) T.H of the Mean $(\mu): \sigma^{2}$ is known
2) T.H of the Mean $(\mu): \sigma^{2}$ is unknown
3) T.H of the Difference between two Means $\left(\mu_{1}-\mu_{2}\right) \sigma_{1}^{2}$ and $\sigma_{2}^{2}$ are known
4) T.H of the Difference between two Means $\left(\mu_{1}-\mu_{2}\right) \sigma_{1}^{2}$ and $\sigma_{2}^{2}$ are unknown
5) T.H of a Proportion
6) T.H of the Difference between Two Proportions



$$
\begin{aligned}
& \operatorname{accep}=\text { notrecject } \\
& \text { revico }=\text { n.t accept }
\end{aligned}
$$

7.2 Hypothesis Testing: A Single Population Mean ( $\mu$ ):

1) T.H of the Mean $(\mu): \sigma^{2}$ is known

السؤال
Sample $\mathrm{n}=$
Average $\bar{x}=$

Population standard deviation $\sigma=$
Greater, less, equal $\mu_{0}=$
Use (a) level of significance

1) Hypothesis

2) Test statistic

$$
Z=\frac{\bar{\alpha}-M_{0}}{\frac{\sigma}{\sqrt{n}}}
$$

3) الزسم

$-8_{1-\frac{\pi}{2}} 8_{1-c}$
4) Decision

$$
\begin{aligned}
& \square \text { Accepted } \\
& \geqq \text { resect tl }
\end{aligned}
$$

Example: (first case: variance $\sigma^{2}$ is known)
A random sample of 100 recorded deaths in the United States during the past year showed an average of 71.8 years. Assuming a population standard deviation of 8.9 year, does this seem to indicate that the mean life span today is greater than 70 years? Use a 0.05 level of significance.
(1) trIp

$$
\text { 解 } z>z_{1-x}
$$

pal î́ jöáádè
Acceste region ०f $\quad(-\infty, 1.645)$
Qeject region of tho áséc $\quad(1.645, \infty)$

السؤال
Sample $\mathrm{n}=$
Average $\bar{x}=$
Population standard deviation $\mathrm{S}=$
Greater, less, equal $\mu_{0}=$
Use $\alpha$ level of significance $\rightarrow t_{1-\alpha}$, ff s $V=4-1$ or $t_{1}-\frac{x}{s}$

1) Hypothesis

$$
\begin{array}{ll|l|l}
H_{0}: & N=M_{0} & M=M_{0} & N=M_{0} \\
H_{1}: & M \neq N> & M>M_{0} & M \subset M_{0}
\end{array}
$$

2) Test statistic

$$
T=\frac{\bar{\alpha}-A_{2}}{\frac{S}{\sqrt{n}}}
$$

3) الرسم

4) Decision

$$
\begin{aligned}
& \text { Accept } t= \\
& \& \quad \text { reject } t \text {. }
\end{aligned}
$$

Example: (second case: variance $\sigma^{2}$ is unknown) The manager of a private clinic claims that the mean time of the patient-doctor visit in his clinic is 8 minutes. Test the hypothesis that $\mu=8$ minutes against the alternative that $\mu \neq 8$ minutes if a random sample of 50 patient-doctor visits yielded a mean time of 7.8 minutes with a standard deviation of 0.5 minutes. It is assumed that the distribution of the time of this type of visits is normal. Use a 0.01 level of significance.


$$
\begin{aligned}
& \text { Since }<T_{1-\frac{\alpha}{2}} \\
& \text { Acceptc reyion ot to }(-2.6778,2.6778) \\
& (-\infty,-2.6778) \cup(2.6778,-1)
\end{aligned}
$$

7.3 Hypothesis Testing: The Difference Between Two Population Means: (Independent Populations)
3)T.H of the Difference between two Means $(\mu 1-\mu 2) \sigma_{1}^{2} \underline{1}$ and $\sigma_{2}^{2}$ are known

Sample
Average

Population standard deviation
$d=$
Use $\alpha$ level of significance

A
B
$\mathrm{n}_{2}=$

$$
\overline{\mathrm{x}}_{1}=\quad \overline{\mathrm{x}}_{2}=
$$

السؤال

$$
\mathrm{n}_{1}=
$$

$$
\sigma_{1}=\quad \sigma_{2}=
$$98


2) Test statistic

$$
\vec{z}=\frac{\left(\overline{\alpha_{1}}-\overline{\alpha_{2}}\right)-d}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

3) الزسم


$$
-8_{1-2} \quad 8_{1-2}
$$


$b_{1-}+\quad-z_{L}+$
4) Decision

A ccepte H. reject to

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324

## Example: ( $\sigma_{1}^{2}$ and $\sigma_{2}^{2}$ are known)

Researchers wish to know if the data they have collected provide sufficient evidence to indicate the difference in mean serum uric acid levels between individuals with Down's syndrome and normal individuals. The data consist of serum uric acid on 12 individuals with Down's syndrome and 15 normal individuals. The sample means are $\bar{X}_{1}=4.5 \mathrm{mg} / 100 \mathrm{ml}$ and $\bar{X}_{2}=3.4 \mathrm{mg} / 100 \mathrm{ml}$. Assume the populations are normal with variances $\sigma_{4}^{2}=1$ and $\sigma_{2}^{2}=1.5$. Use significance level $\alpha=0.05$.

(1) Hys HO: $\mu_{1}=\mu_{2}$

Gryeder

$$
H_{1} \quad m_{1} \neq m_{2}
$$

(2) T.s

$$
\begin{aligned}
z & =\frac{\left(\overline{\alpha_{1}}-\bar{\alpha}_{2}\right) \mathcal{d}^{\theta}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{1}^{2}}{n_{2}}}} \\
& =\frac{4.5-3.4}{\sqrt{\frac{1}{12}+\frac{1.5}{15}}}=\frac{2.569}{}
\end{aligned}
$$

85,1

(4) $V C$ Vejer Ho

$$
8>81-2
$$

ACEente region of $H$.

$$
(-1.96,1.96)
$$

reject region of tl.

$$
(-\infty,-1.96) \cup(1.96, \infty)
$$

Critical Values of the $t$-distribution $\left(t_{\alpha}\right)$


| $v=\mathbf{d f}$ | $\mathrm{t}_{0.90}$ | $\mathrm{t}_{0.95}$ | $\mathbf{t}_{0.975}$ | $\mathrm{t}_{0.99}$ | $\mathrm{t}_{0.995}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 |
| 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 |
| 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 |
| 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 |
| 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 |
| 6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 |
| 7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 |
| 8 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 |
| 9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 |
| 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 |
| 11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 |
| 12 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 |
| 13 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 |
| 14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 |
| 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 |
| 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 |
| 17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 |
| 18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 |
| 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 |
| 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 |
| 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 |
| 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 |
| 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 |
| 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 |
| 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 |
| 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 |
| 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 |
| 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 |
| 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 |
| 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 |
| 35 | 1.3062 | 1.6896 | 2.0301 | 2.4377 | 2.7238 |
| 40 | 1.3030 | 1.6840 | 2.0210 | 2.4230 | 2.7040 |
| 45 | 1.3006 | 1.6794 | 2.0141 | 2.4121 | 2.6896 |
| 50 | 1.2987 | 1.6759 | 2.0086 | 2.4033 | 2.6778 |
| 60 | 1.2958 | 1.6706 | 2.0003 | 2.3901 | 2.6603 |
| 70 | 1.2938 | 1.6669 | 1.9944 | 2.3808 | 2.6479 |
| 80 | 1.2922 | 1.6641 | 1.9901 | 2.3739 | 2.6387 |
| 90 | 1.2910 | 1.6620 | 1.9867 | 2.3685 | 2.6316 |
| 100 | 1.2901 | 1.6602 | 1.9840 | 2.3642 | 2.6259 |
| 120 | 1.2886 | 1.6577 | 1.9799 | 2.3578 | 2.6174 |
| 140 | 1.2876 | 1.6558 | 1.9771 | 2.3533 | 2.6114 |
| 160 | 1.2869 | 1.6544 | 1.9749 | 2.3499 | 2.6069 |
| 180 | 1.2863 | 1.6534 | 1.9732 | 2.3472 | 2.6034 |
| 200 | 1.2858 | 1.6525 | 1.9719 | 2.3451 | 2.6006 |
| $\infty$ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 |



Areas Under The Standard Normal Curve

| Z | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -3.4 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0002 |
| -3.3 | 0.0005 | 0.0005 | 0.0005 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0003 |
| -3.2 | 0.0007 | 0.0007 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0005 | 0.0005 | 0.0005 |
| -3.1 | 0.0010 | 0.0009 | 0.0009 | 0.0009 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0007 | 0.0007 |
| -3.0 | 0.0013 | 0.0013 | 0.0013 | 0.0012 | 0.0012 | 0.0011 | 0.0011 | 0.0011 | 0.0010 | 0.0010 |
| -2.9 | 0.0019 | 0.0018 | 0.0018 | 0.0017 | 0.0016 | 0.0016 | 0.0015 | 0.0015 | 0.0014 | 0.0014 |
| -2.8 | 0.0026 | 0.0025 | 0.0024 | 0.0023 | 0.0023 | 0.0022 | 0.0021 | 0.0021 | 0.0020 | 0.0019 |
| -2.7 | 0.0035 | 0.0034 | 0.0033 | 0.0032 | 0.0031 | 0.0030 | 0.0029 | 0.0028 | 0.0027 | 0.0026 |
| -2.6 | 0.0047 | 0.0045 | 0.0044 | 0.0043 | 0.0041 | 0.0040 | 0.0039 | 0.0038 | 0.0037 | 0.0036 |
| -2.5 | 0.0062 | 0.0060 | 0.0059 | 0.0057 | 0.0055 | 0.0054 | 0.0052 | 0.0051 | 0.0049 | 0.0048 |
| -2.4 | 0.0082 | 0.0080 | 0.0078 | 0.0075 | 0.0073 | 0.0071 | 0.0069 | 0.0068 | 0.0066 | 0.0064 |
| -2.3 | 0.0107 | 0.0104 | 0.0102 | 0.0099 | 0.0096 | 0.0094 | 0.0091 | 0.0089 | 0.0087 | 0.0084 |
| -2.2 | 0.0139 | 0.0136 | 0.0132 | 0.0129 | 0.0125 | 0.0122 | 0.0119 | 0.0116 | 0.0113 | 0.0110 |
| -2.1 | 0.0179 | 0.0174 | 0.0170 | 0.0166 | 0.0162 | 0.0158 | 0.0154 | 0.0150 | 0.0146 | 0.0143 |
| -2.0 | 0.0228 | 0.0222 | 0.0217 | 0.0212 | 0.0207 | 0.0202 | 0.0197 | 0.0192 | 0.0188 | 0.0183 |
| -1.9 | 0.0287 | 0.0281 | 0.0274 | 0.0268 | 0.0262 | 0.0256 | 0.0250 | 0.0244 | 0.0239 | 0.0233 |
| -1.8 | 0.0359 | 0.0351 | 0.0344 | 0.0336 | 0.0329 | 0.0322 | 0.0314 | 0.0307 | 0.0301 | 0.0294 |
| -1.7 | 0.0446 | 0.0436 | 0.0427 | 0.0418 | 0.0409 | 0.0401 | 0.0392 | 0.0384 | 0.0375 | 0.0367 |
| -1.6 | 0.0548 | 0.0537 | 0.0526 | 0.0516 | 0.0505 | 0.0495 | 0.0485 | 0.0475 | 0.0465 | 0.0455 |
| -1.5 | 0.0668 | 0.0655 | 0.0643 | 0.0630 | 0.0618 | 0.0606 | 0.0594 | 0.0582 | 0.0571 | 0.0559 |
| -1.4 | 0.0808 | 0.0793 | 0.0778 | 0.0764 | 0.0749 | 0.0735 | 0.0721 | 0.0708 | 0.0694 | 0.0681 |
| -1.3 | 0.0968 | 0.0951 | 0.0934 | 0.0918 | 0.0901 | 0.0885 | 0.0869 | 0.0853 | 0.0838 | 0.0823 |
| -1.2 | 0.1151 | 0.1131 | 0.1112 | 0.1093 | 0.1075 | 0.1056 | 0.1038 | 0.1020 | 0.1003 | 0.0985 |
| -1.1 | 0.1357 | 0.1335 | 0.1314 | 0.1292 | 0.1271 | 0.1251 | 0.1230 | 0.1210 | 0.1190 | 0.1170 |
| -1.0 | 0.1587 | 0.1562 | 0.1539 | 0.1515 | 0.1492 | 0.1469 | 0.1446 | 0.1423 | 0.1401 | 0.1379 |
| -0.9 | 0.1841 | 0.1814 | 0.1788 | 0.1762 | 0.1736 | 0.1711 | 0.1685 | 0.1660 | 0.1635 | 0.1611 |
| -0.8 | 0.2119 | 0.2090 | 0.2061 | 0.2033 | 0.2005 | 0.1977 | 0.1949 | 0.1922 | 0.1894 | 0.1867 |
| -0.7 | 0.2420 | 0.2389 | 0.2358 | 0.2327 | 0.2296 | 0.2266 | 0.2236 | 0.2206 | 0.2177 | 0.2148 |
| -0.6 | 0.2743 | 0.2709 | 0.2676 | 0.2643 | 0.2611 | 0.2578 | 0.2546 | 0.2514 | 0.2483 | 0.2451 |
| -0.5 | 0.3085 | 0.3050 | 0.3015 | 0.2981 | 0.2946 | 0.2912 | 0.2877 | 0.2843 | 0.2810 | 0.2776 |
| -0.4 | 0.3446 | 0.3409 | 0.3372 | 0.3336 | 0.3300 | 0.3264 | 0.3228 | 0.3192 | 0.3156 | 0.3121 |
| -0.3 | 0.3821 | 0.3783 | 0.3745 | 0.3707 | 0.3669 | 0.3632 | 0.3594 | 0.3557 | 0.3520 | 0.3483 |
| -0.2 | 0.4207 | 0.4168 | 0.4129 | 0.4090 | 0.4052 | 0.4013 | 0.3974 | 0.3936 | 0.3897 | 0.3859 |
| -0.1 | 0.4602 | 0.4562 | 0.4522 | 0.4483 | 0.4443 | 0.4404 | 0.4364 | 0.4325 | 0.4286 | 0.4247 |
| -0.0 | 0.5000 | 0.4960 | 0.4920 | 0.4880 | 0.4840 | 0.4801 | 0.4761 | 0.4721 | 0.4681 | 0.4641 |
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |

4) T.H of the Difference between two Means $(\mu 1-\mu 2) \sigma_{1}^{2}$ and $\sigma_{2}^{2}$ are unknown

5) Test statistic

$$
I=\frac{\left(\overline{x_{1}}-\bar{\alpha}_{2}\right)-d}{\sqrt{\frac{s_{p}^{2}}{h_{1}}+\frac{s p^{2}}{h_{2}}}}
$$

3) الرسم


$$
\nabla_{1-\alpha}
$$

$$
-T_{1-\alpha}
$$

4) Decision


Alceste H.
reject $H$.

Example: ( $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$ is unknown)
An experiment was performed to compare the abrasive wear of two different materials used in making artificial teeth. 12 pieces of material 1 were tested by exposing each piece to a machine measuring wear. 10 pieces of material 2 were similarly tested. In each case, the depth of wear was observed. The samples of material 1 gave an average wear of 85 units with a sample standard deviation of 4 , while the samples of materials 2 gave an average wear of 81 and a sample standard deviation of 5. Can we conclude at the 0.05 level of significance that the mean abrasive wear of materia 1 is greater than that of material

(1) Hyp

$$
\begin{aligned}
& H_{0}: \underline{M}_{1}=M_{2} \\
& t_{1} \Rightarrow M_{1}>M_{2}
\end{aligned}
$$

( T.s

$$
T=\frac{\left(\bar{s}_{1}-\bar{\alpha}_{2}\right)-\delta^{0}}{\sqrt{\frac{s_{p}^{2}}{h_{1}}+\frac{s_{p}^{2}}{h_{2}}}}
$$


$\longrightarrow$ Since $\quad J \leqslant T_{1-\alpha}$

$$
\longrightarrow A \text { cente region ofto } \quad(-\infty, 1.725)
$$

$\longrightarrow$ revico region otto $(1.725, \infty)$
5) T.H of a Proportion


Use $\alpha$ level of significance


Example:
A researcher was interested in the proportion of females in the population of all patients visiting a certain clinic. The researcher claims that $70 \%$ of all patients in this population are females. Would you agree with this claim if a random survey shows that 24 out of 45 patients are females? Use a 0.10 level of significance.
(1) $H_{0}: P=P$.

(2)

$$
\begin{aligned}
z= & \frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} \varepsilon_{0}}{n}}} \\
& =\frac{0.533-0.7}{\sqrt{\frac{(6.7)(0.3)}{45}}}
\end{aligned}
$$



$$
4.45
$$

$$
\longrightarrow \hat{p}=\frac{\pi}{n}=\frac{24}{45}=0.533
$$



3


$$
\begin{aligned}
b_{1-\frac{4}{2}} & =z_{1-\frac{0.10}{2}} \\
& =b_{0.95}=\frac{1.64+1.65}{2} \\
& =1.645
\end{aligned}
$$

ABO MOHANNAD/0509891763/stat 109/150/140/106/111/151/200/244/204/sta324
$40 e$
reject to

$$
z<-\gamma_{1-\frac{1}{2}}
$$

$\longrightarrow$ acceptregion of tho $(-1.645,1.695)$
resect region of $H$ o

$$
(-\infty,-1.645) \cup(1.645, \infty)
$$

6) T.H of the Difference between Two Proportions

A


B
السؤال

$$
\begin{aligned}
& \mathrm{n}_{1}= \\
& \mathrm{x}_{1}=
\end{aligned}
$$

$$
{\hat{p_{1}}}_{1}=\frac{x_{1}}{n_{1}}
$$

$$
\text { Pooled estimate } p^{\wedge}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}
$$

$\xrightarrow{\text { نستّتُت }}$

$$
q^{n}=1-\hat{p}
$$

Use $\alpha$ level of significance

1) Hypothesis

$$
\begin{array}{l:l|l|l}
H_{0}: & P_{1}=P_{2} & r_{1}=r_{2} & r_{1}=r_{2} \\
H_{1}: & r_{1} \neq r_{2} & r_{1}>r_{2} & r_{1}<r_{2}
\end{array}
$$

2) Test statistic

$$
2=\frac{\hat{p_{1}}-\hat{\rho_{2}}}{\sqrt{\frac{\hat{p} \hat{q}}{n_{1}}+\frac{\hat{p} \tilde{q}}{h_{2}}}} \sqrt{\hat{r}_{1}-\hat{\rho_{2}}}
$$

3) الرسم


$$
+z_{1-\tau}-z_{L \tau}
$$

4) Decision

ACcented to
robicat $t$.

## Example:

In a study about the obesity (overweight), a researcher was interested in comparing the proportion of obesity between males and females. The researcher has obtained a random sample of 150 males and another independent random sample of 200 females. The following results were obtained from this study.

|  | n | Number of obese people |
| :--- | :---: | :---: |
| Males | 150 | 21 |
| Females | 200 | 48 |

Can we conclude from these data that there is a difference between the proportion of obese males and proportion of obese females? Use $\alpha=0.05$.


$$
h_{1}=150
$$

$$
x_{1}=21
$$

$$
\hat{p}_{1}=\frac{21}{15^{2}}=0.14
$$

$$
\hat{p}=\frac{x_{1}+x_{2}}{u_{1}+u_{2}}
$$

$$
\hat{l}=1-\hat{p}=0.8
$$

$$
\sqrt{\frac{\hat{p} \hat{q}}{41}+\frac{\hat{p} \hat{\tilde{p}}}{22}}=\sqrt{\frac{(0.12 t)(6.8)}{150}+\frac{(0.197 /(0.8)}{200}} 0.043
$$

(1) Hyp

$$
\begin{aligned}
& H_{0}, P_{1}=R_{2} \\
& H_{1}, P_{1} \neq P_{2}
\end{aligned}
$$

(2) T.S

$$
=\frac{0.14-0.24}{0.247}
$$

$$
-\frac{2.328}{}
$$

$25^{11}$



Doe
rebiect tho

$$
\longrightarrow \text { Since } z<-z_{1-\frac{z}{z}}
$$

CEAccester region of tio $(-1.96,1.96)$

$$
\begin{aligned}
& \text { reo'eo tegcio-ot } t_{c} \\
& \qquad(-\infty, 1.96) \cup(1.96, \infty)
\end{aligned}
$$

descriptive
Statisticis: field of stady concerned with.
$\rightarrow$ (1) collecting data "? "?

(3) Analysis. "كَيِ البِانة" $\rightarrow[b y$ tablets, and charts]

 $L$ [inferential statics]


Data: Raw material of statistics.

Quanifitative [numbers age, weights].

Qualitative $\rightarrow$ os,
[tetter:
?
un lon, sources
Da $a^{\text {f }}$,

III Population
lar gest collection
of entities.

[2] Sample "n"
Part of population. Pf
the characteristic to be measured on the elements iscalles


How to chose
Sample?
(1] Simple
random
[2] Stratified sample
sample
ع

?
Po so $0^{2}$
noes
clubs

$$
\begin{gathered}
\not \not \text { Mid-point }=\frac{\text { UPPER LIMIT H LOWER LIMIT }}{2} \\
\nrightarrow d=\text { LOWER LIMIT 2 EUPPER LIMIT } 1 \\
\end{gathered}
$$

-TRUE UPPER LIMIT UPPER LIMITs $\frac{d}{2}$

- TRUE LOWER LIMIT

LOWER LIMIT -D/2
$0.20 \star \underset{\text { Proportion }}{\text { RELATIVE }}=F R E Q U E N C Y / n$
$\% *$ PERCENTAGE $=$ RELATIVE 100
Percent


C
|fano anañ (1)
-ajna
ag,



Population

- $X_{r}, X_{2}, \ldots, X_{N}$
- any measure here it called "parameter"
sample
- $x_{1}, x_{2}, \ldots, x_{n}$
- any measure here it called "staistic"

Unknown $x$ Known $V$


(1) Probability measure used to measure the chance Join-r| of occurrence of event (which is between oandi)

$$
P(E)=0 \leqslant P(E)=\frac{n(E)}{n(\Omega)} \leqslant 1 \stackrel{\leftrightarrows}{\leftrightarrows P(Q)=0}
$$

(2 )Sample space set of all possible outcomes of experiment $(\Omega)$ (where $n(\Omega)$ is the number of outcomes-elements-in $\Omega$ )
(3Experiment some procedure or process that we do. Equally likely outcomes: If the outcomes have the ashorgabius, same chance of occurrence.
(4) Event ( $E$ ) Any subset of $\Omega$ (where $n(E)$ is the number of out comes in $E$ $\because, \boldsymbol{\prime} \quad \varnothing \leqslant \Omega$ (impossible event) $/ / \Omega \leqslant \Omega$ (sure event) operations on events



|  | $B$ | $\bar{B}$ | TOTAL |
| :---: | :---: | :---: | :---: |
| $A$ | 0.2 | 0.3 | 0.5 |
| $\bar{A}$ | 0.4 | 0.1 | 0.5 |
| TOTAL | 0.6 | 0.4 | 1.00 |

$$
\begin{aligned}
& P(\bar{A})=0.5 \\
& P(\bar{B})=0.4 \\
& P(\bar{A} \cap \bar{B})=0.3 \\
& P(\bar{A} \cap B)=0.4 \\
& P(\bar{A} \cap \bar{B})=0.1
\end{aligned}
$$

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.5+0.6-0.2=0.9
$$

$$
P(A \cup \bar{B})=P(A)+P(\bar{B})-P(A \cap \bar{B})=0.5+0.4-0.3=0.6
$$

$$
P(\bar{A} \cup B)=\text { exercise }
$$

$$
P(\bar{A} \cup \bar{B})=\text { exercise }
$$

exhaustive $N J v_{0}$
Are $A, B$ exhaustive?


$$
P(A \cup B) \stackrel{\varrho}{=} 1 \leftarrow \text { الشرها }
$$

35 il:

disjoint so.
Are $A, B$ disjoint? nzownitait


$$
\begin{aligned}
& P(A \cap B) \stackrel{\Gamma}{=} 0 \\
& \text { d.S100 } \\
& \text { 20 जे } \\
& A, B \\
& \text { O } \\
& \longdiv { 0 . 2 } \\
& \text { io }{ }^{0}{ }^{51} \\
& \begin{array}{l}
0.2 \frac{s}{=} 0(\text { not disjoint }) \\
0.2 \neq 0\left(\begin{array}{l}
\text { n }
\end{array}\right.
\end{array}
\end{aligned}
$$

ajomalios
*Independent Events


(1) $P(A \mid B)=P(A)$

Ex: $P(B \mid A)=0.5$
$P(A)=0.5$

$$
P(B)=0.3
$$

(2) $P(B \mid A)=P(B)$
(3) $P(B \cap A)=P(A) \times P(B)$
ulierslems paris a sse, Lion

* Are $A, B$ independent?

$$
\begin{aligned}
& P(B \mid A)=P(B) \\
& 0.5 \neq 0.3
\end{aligned}
$$

$A, B$ are not independent.

* Conditional probability

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B) \Rightarrow P(B)} \\
&
\end{aligned}
$$

$\therefore$ almond

- given that
- Knowing the
- Found that
 Lest $\frac{\text { tue }}{\text { Lent }}$ mid 2
 indicates a positive status when the
true status is negative true status is negative.

$$
F n-P(\bar{T} \mid D)=\frac{P(T \bar{T}) D)}{P(D)} \begin{aligned}
& \text { This result happens when a test } \\
& \text { indicates a negative status when the } \\
& \text { true status is positive. }
\end{aligned}
$$

$$
\operatorname{sen} P(T \mid D)=\frac{P(T \cap D)}{P(D)}
$$

The sensitivity of a test is the Probability of a positive test result given the presence of the
disease.

$$
S P P(T \mid D)=\frac{P(\bar{T} \cap \bar{D})}{P(\bar{D})}
$$

The specificity of a test is the Probability of a negative test result given the absence of the disease.

Predictive $P(D)$ roy Rate of the clisease.


The predictive value positive
The probability that a subject has the disease, given that the subject has a positive screening.

$$
P(D \mid T)=\frac{\operatorname{sen} \times P(D) \rightarrow \text { the }}{\text { in }+(1-S P) \times P(\bar{D})}
$$

The predictive value negative
The probability that a subject doesn't have the disease, giventhat the subject has a a negative

$$
\begin{aligned}
& \text { screening. } \\
& P(\bar{D} \mid \bar{T})=\begin{array}{l}
\text { screening. } \\
=\operatorname{sP} \times P(\bar{D}) \\
\text { Rom }+(1-s(\pi) \times P(D)
\end{array}
\end{aligned}
$$







تسَ بَر 7
test statistic

[5] 6 Un-known

$$
\int_{\substack{\text { Un-known } \\ n>30}}^{n>x \rightarrow z=}=\frac{\bar{x}-M_{0}}{\sqrt{\frac{s^{2}}{n}}}
$$

$\operatorname{ch} 7$
Test Hypothesis
 الزُ هُسات نتَا

٪/ خلود باسا لم

Hypothese Tests a bout Unknown parameters:

(1) Hypothese:


(2) Test statistic (T.S.):
ashao

$\alpha=P($ Type $I$ eror $)=P\left(\right.$ Rejecting $H_{0} \mid H_{0}$ true $)$
$\alpha=$ Level significance
(3) Rejection region of $H_{0}$ (Critical region)

* Reliability Cofficient (Critical values): legist Two-sided one sided one sided (left) doled iv e

$$
\begin{array}{c|c|c} 
\pm Z_{1-\frac{\alpha}{2}} & Z_{1-\alpha} & -Z_{1-\alpha} \\
\pm t_{1-\frac{\alpha}{2}} & t_{1-\alpha} & -t_{1-\alpha}
\end{array}
$$

* الـ الومات :

(4) Decision:



## H.W3

One of the purposes of an investigation by Porcellini et al. (A-19) was to investigate the effect on CD4 T cell count of administration of intermittent interleukin (IL-2) in addition to highly active antiretroviral therapy (HAART). The following table shows the CD4 T cell count at baseline and then again after 12 months of HAART therapy with IL-2. Do the data show, at the .05 level, a significant change in CD 4 T cell count?

$n=7$
$\bar{D}=-144$.

$$
\begin{array}{lll}
\text { 2-Hypothesis is? } \\
H_{0}: \mu_{x}-\mu_{y}=0 & \text { vs } H_{A}: \mu_{x}-\mu_{y} \neq 0 \\
H_{0}: \mu_{D}=0 & \text { vs } & H_{A}: \mu_{D} \neq 0
\end{array}
$$

$T=\frac{\bar{D}}{s_{D} / \sqrt{n}}=\frac{-144.43}{85.677-\sqrt{7}}=-4.46$
$\alpha=0.05 \quad$ 4-Rejection region is?
$d f=n-1=7-1=6 \quad(-\infty,-2.447) \quad(2.447, \infty)$
a) reject H0 b) accept H0

## rost ubsoul F ropowifs



$$
1-u=n=f p
$$

$\frac{u \Lambda}{S}^{\frac{z}{x-1}} 7-\underline{x}: \nmid \omega!\eta$ - $m 07$

pulitso fo uolsimald. II
sels fo uibsow.


$$
\pi
$$

o $\sum>u+$
umousun a proutol o

2foulitsa ref to Holsizald. lala to Ulbsow.


$$
\frac{u 1}{0} \cdot \frac{2}{x}-1 z
$$

$$
\pi
$$

 ymouy _ $_{2}+$ pouldi. 5

$$
\begin{aligned}
& \stackrel{u}{0}^{\frac{2}{x}-1} Z-\underline{x}: \nmid \omega i \eta \text { sm0 } \\
& \left.\frac{\frac{4}{9}}{\frac{2}{b-1}}\right)^{\frac{x}{x}}: 71 w!? \text { soddn }
\end{aligned}
$$

(n) fo apoultist paspui :
(1) fo ponazui auapi.fuas.


$z^{2} u+{ }^{2} u=n=f p$
$\frac{z-{ }^{2} u+1 u}{\sum_{2}^{2}\left(1--^{z} u\right)+z_{2} s\left(1-l^{u} u\right)}=d s$
dfon! 450 fo irois! ate ${ }^{\circ}$
sous to uibrow.


apoulysa to 4oisbaid.
sols to uibrom.


нориичэя

undouy: ${ }^{2}$ puro 10
$\Gamma$

? ${ }^{2}$ - W-W Losul amy laampa
douapftip tof parafui ajuppifuog.
apul.fso fo 40 is pald. roug to uibrow.

$\pi$

$\uparrow$
(y-y wojpultsy punduI.




$$
\begin{aligned}
& \frac{u}{b d} \int^{\frac{\tau}{b-1}} Z-d: f_{i}[\mathrm{w}!7 \text { smof }
\end{aligned}
$$

apouitsa to volsicold.
tolly fo uifow.


$\pi$
$[g<b u=(d-1) u \quad 6 \quad g<d u \quad 6 \quad \circ \varepsilon そ u]$
(d) U01.fonlis? paratuI:
(d) pansifit aviapytura.

Estimation

(C.I) Interval Estimetic

1) ${ }^{2}$ known, norms , non-normal $(n \quad(n \geqslant 30)$

$$
\bar{x} \pm z_{1-\frac{e}{2}} \frac{\frac{2}{\sqrt{n}}}{}
$$

2) $b^{2}$ unknown, normal, $(n s$ mall $) \rightarrow(n<30)$

$$
\bar{x} \pm t_{1-\frac{a}{2}} \frac{s}{\sqrt{n}} \quad(d f=n-1)
$$

3) $b^{2}$ unknown, normal, ( $n$ large) $\times(n \geqslant 30$ )

$$
\bar{x} \pm z_{1-\frac{a}{2}} \frac{s}{\sqrt{n}}
$$


:CAI Jr $\underbrace{\sim}$
1 Find acc alpha

2 calculate $1-\frac{a}{2}$
 4 4.



$$
: \underline{\varepsilon^{-}}
$$



$$
\bar{x}_{1}-\bar{x}_{2}
$$



1 -Point Estimate: A point estimate is single value used to estimate the corresponding population parameter.

2 - Interval Estimate (or Confidence Interval): An interval estimate consists of two numerical values defining a range of values that most likely includes the parameter being estimated with a specified degree of confidence.

## 6.1: The Point Estimates of the Population Parameters:

| des 1 Population مَ - ر, ぶ | $\cdots 3$ | "2,yro. |
| :---: | :---: | :---: |
|  | Population Parameters | Point estimator |
| Mean | $\mu$ | $\Rightarrow \bar{X}$ |
| Variance | $\sigma^{2}$ | $\bigcirc \mathrm{S}^{2}$ |
| Standard Deviation | $\sigma$ | s |
| Proportion | P | $\widehat{p}$ |
| The Difference between Two Means | $\mu_{1}-\mu_{2}$ | $\overline{X_{1}}-\overline{X_{2}}$ |
| The Difference between Two Proportion | $P_{1}-P_{2}$ | $\widehat{P_{1}}-\widehat{P_{2}}$ |

## 7．1 Introduction：



Consider a population with some unknown parameter $\theta$ ．We are interested in testing（confirming or denying）some conjectures about $\theta$ ．For example，we might be interested in testing the conjecture that $\theta>\theta_{0}$, where $\theta_{0}$ is a given value．${ }^{2} \mu_{\mu_{0}}, p_{0}$ definition A hypothesis is a statement about one or more． （
－A research hypothesis is the conjecture or supposition that motivates the research．
－A statistical hypothesis is a conjecture（or a statement） concerning the population which can be evaluated by appropriate statistical technique．
－For example，if $\theta$ is an unknown parameter of the population，we might be interested in testing the conjecture sating that $\theta \geq \theta_{\mathrm{o}}$ against $\theta<\theta_{\mathrm{o}}$（for some specific value $\theta_{0}$ ）．《分行
－We usually test the null hypothesis $\left(\mathrm{H}_{0}\right)$ against the alternative（or the research）hypothesis $\left(\mathrm{H}_{1}\right.$ or $\left.\mathrm{H}_{A}\right)$ by choosing one of the following situations：
（i） $\mathrm{H}_{0}: \theta=\theta_{0}$ against $\mathrm{H}_{\mathrm{A}}: \theta \neq \theta_{0} \stackrel{\text { Li g }}{=}$
（ii） $\mathrm{H}_{0}: \theta \geq \theta_{0}$ against $\mathrm{H}_{\mathrm{A}}: \theta<\theta_{0}$
（iii）$H_{0}: \theta \leq \theta_{0}$ against $H_{A}: \theta>\theta_{0}$
－Equality sign must appear in the null hypothesis．
－ $\mathrm{H}_{0}$ is the null hypothesis and $\mathrm{H}_{\mathrm{A}}$ is the alternative hypothesis．$\left(\mathrm{H}_{0}\right.$ and $\mathrm{H}_{\mathrm{A}}$ are complement of each other）
The null hypothesis $\left(\mathrm{H}_{0}\right)$ is also called＂the hypothesis of no difference＂．$\rightarrow \rightarrow H_{0}=H_{0}$
－The alternative hypothesis $\left(\mathrm{H}_{A}\right)$ is also called the research hypothesis．
King Said University $\quad$ Dr．Abdullah Al－Shiha

- There are 4 possible situations in testing a statistical hypothesis:

Condition of Null Hypothesis $\mathrm{H}_{\mathrm{o}}$ (Nature/reality)

|  | $\mathrm{H}_{0}$ is true |  | $\mathrm{H}_{\mathrm{o}}$ is false |
| :---: | :---: | :---: | :---: |
| Possible <br> Action <br> (Decision) | Accepting $\mathrm{H}_{\mathrm{o}}$ | Correct Decision | Type II error <br> $(\beta)$ |
|  | Rejecting $\mathrm{H}_{\mathrm{o}}$ | Type I error <br> $(\alpha)$ | Correct Decision |

- There are two types of Errors:
- Type I error $=$ Rejecting $\mathrm{H}_{0}$ when $\mathrm{H}_{o}$ is true $\mathrm{P}($ Type $I$ error $)=\mathrm{P}($ Rejecting Ho $\mid$ Ho is true $)=\boldsymbol{\alpha}$
- Type 11 error - Accepting Ho when Ho is false $\mathrm{P}($ Type II error $)=\mathrm{P}($ Accepting Ho $\mid$ Ho is false $)=\beta$
- The level of significance of the test is the probability of rejecting true $\mathrm{H}_{0}$ :

$$
\alpha=P\left(\text { Rejecting } H_{o} \mid H_{\alpha} \text { is true }\right)-P(\text { Type } I \text { error })
$$

- There are 2 types of alternative hypothesis:
- One-sided alternative hypothesis:
- $H_{0}: \theta \geq \theta_{0}$ against $H_{A}: 0<0$ o
- $\mathrm{H}_{\mathrm{o}}: 0 \leq 0_{0}$ against $\mathrm{H}_{\mathrm{A}}: 0>0_{\mathrm{o}}$
a Two-sided alternative hypothesis:
- $\mathrm{H}_{0}: 0=0$ against $\mathrm{H}_{\mathrm{A}}: 0 \neq 0$ 。
- We will use the terms "accepting" and "not rejecting" interchangeably. Also, we will use the terms "acceptance" and "nonrejection" interchangeably.
- We will use the terms "accept" and "fail to reject" interchangeably


## The Procedure of Testing $\mathrm{H}_{\mathrm{g}}$ (against $\mathrm{H}_{\mathrm{A}}$ ):

The test procedure for rejecting $\mathrm{H}_{\mathrm{o}}$ (accepting $\mathrm{H}_{\mathrm{A}}$ ) or accepting $\mathrm{H}_{\mathrm{o}}$ (rejecting $\mathrm{H}_{\mathrm{A}}$ ) involves the following steps:


## 3 Note: Using P - Value as a decision tool:

Definition
P-value is the smallest value of $\alpha$ for which we can reject
res the null hypothesis $\mathrm{H}_{0}$.
$!$ ك

Calculating P -value:

