KINGDOOM OF SAUDI ARABIA

King Saud University

**Deanship of Common First Year** 

**Basic Sciences Department** 



# Second Homework for Introduction to Probability and Statistics (101 Stat)

# (3 marks)

# 1) Give an example for each of the following:

- a) A random experiment with finite space of elementary events.
- b) A random experiment with infinite countable space of elementary events.
- c) A random experiment with continuous space of elementary events.

# (5 marks)

### 2) Classify each of the following as discrete or continuous.

- a) The space of elementary events of the experiment of throwing a stone randomly in a well.
- b) The space of elementary events of the experiment of tossing a coin 1000 times.
- c) The random variable that recording the minimum appearance numbers by the experiment of rolling two dice for three times.
- d) The random variable that recording the number of tails by the experiment of tossing a coin infinite times.
- e) The random variable that measures the depth of the hole caused by a falling meteorites on the Earth's surface.

# (8 marks)

# 3) Any of the following function is a probability mass function (explaining why) ?

a) 
$$P(X = k) = \frac{1}{k}$$
;  $k = 1, 2, 3, 4, 5$ .  
b)  $P(X = q) = 1 / q$ ;  $k = -2, 1, 2, 3, 4, 5$ .  
c)  $P(X = j) = \frac{1}{9}$ ;  $j = 1, 2, 3, 4, 5, 6, 7, 8, 9$ .

**d**) 
$$P(X = x) = -x$$
;  $x \in [0,1]$ .

# (6 marks)

# 4) Any of the following function is a probability density function (explaining why) ?

a) 
$$f(x) = \begin{cases} \frac{8}{3}x & \text{for } x \in [-0.5, 1] \\ 0 & \text{otherwise} \end{cases}$$
  
b) 
$$f(x) = \begin{cases} 2x & \text{for } x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$
  
c) 
$$f(x) = \begin{cases} x & \text{for } x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

# (18 marks)

### 5) Answer all following questions:

- a) There are eight men who want to sit on eight chairs. How many ways can these men sitting on these chairs if:
  - i) The chairs have a straight side ?

ii) The chairs have circle form ?

- b) We have 12 students in a semester, and we want to form a committee of 5 students. How many ways can we select these committees if:
  - i) We select student after another ?
  - ii) We select all 5 students at the same time ?
- c) How many possible different hands of 7 cards can be selected (at the same time) from a standard deck of 52 cards ?
   (2 marks)
- d) If an automobile license plate must consist 2 Arabic letters followed by 4 single-digit numbers or 3 English letters followed by 5 single-digit numbers, how many different license plates are possible ? (2 marks)
- e) In a school, there are 16 teachers and 6 administrative staffs. Then, if a committee of 6 teachers and 3 administrative staffs is to be chosen. How many different possibilities are there ? (6 marks)

### (30 marks)

6) Let  $[\Omega, \mathcal{A}, P]$  be a probability space, and A, B and  $C \in \mathcal{A}$  with:  $P(A \setminus B) = P(B \setminus A) = P(C \setminus A) = 0.25$ 

and  $P(A \cap B) = P(A \cap C) = P(B \cap C) = 0.25$  and

```
P(A \cap B \cap C) = 0.125. Then:
```

a) Calculate the probabilities P(A), P(B), P(C),  $P(A \setminus C)$ ,  $P(C \setminus B)$ ,  $P(B \setminus C)$ ,  $P(A \mid B)$  and  $P(C \mid A \cap B)$ . (16 marks)

**b**) Calculate the probabilities  $P(\overline{A} \cup \overline{B} \cup \overline{C})$  and  $P(A \cup B \cup C)$ . (4 marks)

c) Are the events A, B and C statically independent?

# (20 marks)

- 7) In a residential neighborhood there are four schools  $S_1$ ,  $S_2$ ,  $S_3$  and  $S_4$ . If the number of students in this neighborhood is distributed equally to these schools. But the percentage of those who excellent in these schools are 6%, 5%, 2% and 7% respectively. If a student from this neighborhood selected at random, then:
  - a) Calculate the probability that the selected student is excellent.
  - b) If we find that, the selected student is not excellent, what is the probability that this student from the school  $S_3$ ? (5 marks)

#### (18 marks)

- 8) We select 4 balls randomly of a box contains 7 black, 4 green and 2 yellow balls. If all balls have the same chance at selecting. Then:
  - a) If we select the balls at the same time, and we consider A the event that all balls are yellow, then calculate P(A). (5 marks)
  - b) If we select the balls one after another, and we consider B the event that the selected balls have the same colors, then calculate P(B). (5 marks)
  - c) If we select the balls at the same time, What is the probability that the selected balls have thee colors ?

(5 marks) (3 marks)

c) What is the probability that the selected balls have four colors ?

(2 marks)

(2 marks)

(15 marks)

(10 marks)

(2 marks) (2 marks)



#### (25 marks)

| 9) | Cars arrive | successive at a    | a gas s | station | independently. | If you | know | that | the | possibility | that | the | car |
|----|-------------|--------------------|---------|---------|----------------|--------|------|------|-----|-------------|------|-----|-----|
|    | wants to r  | cefuel is 0.95, th | ien:    |         |                |        |      |      |     |             |      |     |     |

- a) What is the possibility that a car entered the station and do not want refueling ? (3 marks)
- b) If two cars enter the station, what is the probability that two cars will be refueling ? (4 marks)
- c) What is the probability that three cars will be not refueling ? (4 marks)
- d) What is the probability that of the next 10 cars, at least one want refueling ? (4 marks)
- d) Let X be a random variable recording the number of cars which has refueled in particular day. Now, if 10 cars arrive in this day. What is the probability that 7 cars had refueled ? (5 marks)
- e) If the time required to supply a car with fuel is exponential distributed with an average of 5 minutes, what is the probability that a car will come and be refueled within two minutes at most ? (5 marks)

#### (40 marks)

# 10) Let X be a discrete random variable representing the maximum value of the two numbers on throwing two identical balanced dice for one time only. Then:

| <b>a</b> ) Find the possible values of the random variable $X$ for the following cases:   | (3 marks)  |
|-------------------------------------------------------------------------------------------|------------|
| <b>b</b> ) Determine the probability mass function $P(X = \bullet)$ .                     | (3 marks)  |
| c) Draw the graphical representation of the probability mass function $P(X = \bullet)$ .  | (3 marks)  |
| <b>d</b> ) Determine the distribution function $F_X$ .                                    | (3 marks)  |
| e) Sketch the functions in part (a).                                                      | (3 marks)  |
| <b>f</b> ) Calculate the mean and variance for the random variable $X$ .                  | (5 marks)  |
| g) Calculate the standard deviation of $X$ .                                              | (8 marks)  |
| <b>h</b> ) Calculate the standard deviation of the random variable $Y \coloneqq 2X + 5$ . | (12 marks) |

#### (35 marks)

11) A probability density function of a continuous random variable X is given by:

$$f_X(x) = \begin{cases} ax + b & for -1 < x < 1 \\ 0 & for otherwise \end{cases}$$

# And verifying the equation P(X > 0) = 0.25. Then:

**a**) Use the properties of  $f_x$  and the above probability to determine the values of **a** and **b**. (8 marks)

- **b**) Calculate P(-1.2 < X < 0.5) (7 marks)
- c) Derive the distribution function  $F_{\chi}$ . (10 marks)

f) Calculate the mean and standard deviation for the random variable X. (10 marks)

#### (16 marks)

12) Assume that heights of men are normal distributed with mean equals to 175 cm and standard deviation equals to 15 cm. Then:

| a) What is the probability that a man has height less than 155?       | (5 marks) |
|-----------------------------------------------------------------------|-----------|
| b) What is the probability that a man has height between 177 and 188? | (6 marks) |
| c) What is the probability that a man has height greater than 195?    | (5 marks) |

#### (10 marks)

### 13) Let *X* be a discrete random variable with the following probability mass function:

$$P(X = k) = \frac{c}{5k}$$
;  $k = 1, 2, 3, 4, 5$ 

Then:

a) Determine the value of the constant *c*.

**b**) Construct the tabular representation for the given random variable *X*.

#### (4 marks)

14) Determine the value of k in the following probability distribution of a random variable X.

| x      | 0    | 1    | 2 | 3    | 4    | 5    |
|--------|------|------|---|------|------|------|
| P(X=k) | 0.01 | 0.29 | k | 0.20 | 0.35 | 0.02 |

# **End of Questions**

(5 marks)

(5 marks) (5 marks)