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Chapter 1 : Functions

Learning Outcomes:

By completing the study of this chapter, it is expected that the student

- | will be able to:

- Define the function and discuss its basic properties.

- Do arithmetic operations on functions.

- Draw and discuss curves of some fundamental functions.

- Define polynomials and algebraic functions and determine their
properties.

- Define trigonometric, inverse trigonometric, power, and
logarithmic functions and discuss their basic properties.

- Apply the properties of the trigonometric, inverse trigonometric,

power, and logarithmic functions.

The function is the most important concept especially in calculus and in
mathematics in general. Before we discuss the mathematical concept of
the function, let’s discuss this simple example. That is how to make a
loaf of bread (output or product). The ingredients (inputs) are a glass of
water, a glass of flour, with a little salt and a spoon of yeast. Every input
of these inputs is a value that can be changed (weight, type, etc.) and
according to its variation the specifications of the output or the final

i product will change, i.e., the loaf of bread (weight, taste, etc.). From this

pomnt of view, we can call these inputs “the independent variables” and




often denoted by x4, Xy, .... and according to their variation, the value of

the dependent variable “the output” change. The dependent variable i
often denoted by y. We can say that y is a function of the variab]eg
I -

Thus, any natural system can be expressed as a function and thercl'nrc, it
is converted into an abstract mathematical form that can be handled, ang
its properties cab be mathematically studied at least from the theoretical
point of view.

In the following section, we will define the set to get the definition of the
function. We will concern only with the basic concepts and simple
examples for clarity and let details to more dedicated courses.

1.1 Sets and Subsets :

Sets are used in many scientific fields and they are one of the most
important basic concepts in mathematics. We will use the concept of the

set in this book according to the following definition:
Definition 1.1.1 “Set”:

A set is a collection of well-defined objects. Capital letters are
commonly used to denote sets (4, B, C, etc.). The objects of the set are
called elements and will be denoted by lowercase letters (a, b, c,etc.).

The set can be written in one of two ways, as in the following definition.
Definition 1.1.2:

(1) Roster or List Method: in this method, the elements of the set are

placed between braces “{}”, called the set braces, and the elements are

separated from each other by a comma “,”.
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(2) Characteristic or Rule Method: in this method the set is expressed
bya characteristic or rule that combine its elements. It will be written in
the form {x:p(x)} and is read as “all elements {x} such that the
characteristic or the rule{p(x)} is true.”

Example 1.1.1:

Let A be the set of the squares of all natural numbers, we may write A =
{x:x = n?,n € N} (characteristic or rule method) or A = {1489, ..}
(roster or list method).

The relationship between the element and the set 1s called the belonging
relationship and is given in the following definition.

Definition 1.1.3 Belonging:

It is said that an element a belongs to a set A and is denoted by @ € A if
and only if it is one of the elements of the set A. It 1s said that it does not
belong to A and is denoted by a € A if and onlv 1f it 1s not an element of
A.

Sets, according to the number of their elements, are divided into two
types, finite and infinite as in the following definition:

Definition 1.1.4:

(1) A set is said to be finite if' it contains a finite number of elements.
(2) A set 1s said to be nfinite 1 it contams an infinite number of
clements. The number of elements of the set A is denoted by|A|.

Numbers Sets:

One of the most important infinite sets 1s the sets of numbers. The set of

natural numbers that is denoted by N where N = {1,2,3, ...}, the set of




integers that is denoted by Z where Z = {0,+1,%2,...}. the set of

rational numbers Q@ where @ = [-E,:a, b € Z,b # 0}. the set of irrational

numbers that is denoted by @ includes all the numbers that cannot be
wrilten in a rational form such as V2,vV3, m,e, ... the set of real numbers
that is denoted by R is the sct of all numbers on the real line R = QU
Q = (~o,»).

Definition 1.1.5 Empty Set:

The sct that does not have any clement 1s called empty set and 1s denoted
by ¢ (phi) or {}.
Definition 1.1.6 Subset:

Let A and B be two sets. A 1s said to be a subsct of B and 1s denoted by
A € B if and only if every element that belongs to A also belongs to B,
This is expressed mathematically as:

ASB &®x€eEBVYxEA,
or in the contrapositive form as:

ASB &x¢gAVXxEB.
The set itsell and the empty sct are called improper subsets of a given set
whereas any other subset s called a proper subset.

Definition 1.1.7 Equal Sets:

Two sets A and B are said to be equal and denoted by A = B if and onlv

il they have exactly the same elements, i.e., every element that belongs

to A also belongs to B and every element that belongs to B also belongs
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A=B & AcSBand B c A.

1.2 Operations on Sets:

It is customary in mathematics to define a mathematical concept and
then using it to form other forms of it, by defining operations on this
concept and studying the properties of these operations and this is what
we will do, Insha Allah in this section for sets.

Definition 1.2.1 Union:

The union of two sets A and B which is denoted by AU B is the set
which consists of all the elements that belong to A or B or both; i.e., the
set that consists of all the elements of A in addition to all the elements of
B, without repetition and can be written as:

AUB ={x:x € Aor x € B}.

Definition 1.2.2 Intersection:

The intersection of two sets A and B which is denoted by A N B is the
set which consists of all elements that belong both to A and B; i.e., the
set that contains the common elements of A and B, and can be written
as:

ANB={x:x € Aand x € B}.
Definition 1.2.3 Difference:

If A and B are two sets, the difference of B from A which is denoted by
- A — B is the set of all elements of A that do not belong to B; i.c.,
A—B={x:x€Aand x & B},

and thus:

B—A={x:x€Bandx ¢ A}.
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Definition 1.2.4 Complement:

Let U be a universal set (i.e., contains all sets) and A cy n

» the
complement of A, which is denoted by A® or A is the set of all elemeng
are not belonging to 4; i.c.,

A = {x:x € U and x & A}.

The propertics of operations on sets is given in the following theorem.

Theorem 1.2.1 Properties of Operations on Sets:

If A, B, and C are subsets of the universal st U, then
()AUB=BUA, AnNB=BnNA,

this property is known as the Commutative Property.

(i) (AUB)UC=AU(BUA),(ANnB)NC=ANn(BnC(),

this property is known as the Associative Property.

(iii) AU(BNC)=(AUB)N(AUC), AnN(BUC)=(ANB)U
(An0),

this property is known as the Distribution Property.

(iv)(AU B) = A°N B¢, (ANB)¢ = A°U B¢,

this property is known as De Morgan's Laws.

1.3 Real Numbers and Intervals

Calculus and its theories are built on the properties of the set of real
numbers the most important of which is ordering and completeness. We
will mention here some of these properties and they will be studied in

detail, Insha Allah, in other advanced courses.
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Property 1.3.1 Properties of Real Numbers:

If a and b are two real numbers, they define the real number a + b that
is known as their summation (addition operation) and the real number
ab that is known as their product (multiplication operation) and satisfy
the following properties:

(Da+b=b+a, ab = ba.

The Commutative Property of addition and multiplication.
(id(a+b)+c=a+ (b+c) (ab)c = a(bc).

The Associative Property of addition and multiplication.

(iii) a(b + ¢) = ab + bc.

The Distribution Property.

There are 0,1 € R where:

(iv)0+a=a+0=a,la=al=q0#1

The Addition and Multiplication identities.

Property 1.3.2 Properties of Real Numbers:

If a and b are two real numbers, then only one of the following
alternatives 1s true:

(v)a>borb>aora=Ah,

this property is known as the order property and the order relation is (<
less than).

Only one of the following alternatives is true:

a is a positive number or —a 1s a positive number or a = 0.
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If @ and b are real numbers such that a < b. then

(1) The set of all real numbers between @ and bis denoted by (a, b) ang
1 called the open interval ofaand b. i.c.

(a,b) = [x:a<x < bx€R]}.

(2) The set of all real numbers between a and b including @ 15 denoted
by [a, b) and is called the right half-open mfen alofaand b, iec

[a,b) = {x:a < x < bx€R]

(3) The set of all real numbers between a and b including b 15 denoted
by (a,b] and is called the left half-open mterval ofaand b. 1¢

(a,b] ={x:a<x<bx€ R}.

(4) The set of all real numbers between a and b mcludng a and b«
denoted by [a, b] and is called the closed interval of aand b.ie

[a,b] = {x:a < x < bx €ER}

(5) The set of all real numbers greater than @ is denoted by (@, o), 1e
(a,) = {x:x > a,x € R}].

(6) The set of all real numbers greater than or equal @ 1s denoted by

[a, o). 1.c..
[a,0) = {x:x 2 a,x € R}.
(7) The set of all real numbers less than a 1s denoted by (—o0,a). e

(—o00,a) = {x:x < a,x€ER}].
(8) The set of all rcal numbers less than or equal a 1s denoted by

(—o0,al. ic.,

(—=,a] = {x:x < a,x € R}).




Y b
ve
&

i
WQ

Chapter 1 : Functions:

B

The set of real numbers and intervals are represented graphically as in

Figure (1-1).
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Figure (1-1)
1.4 Functions in One Variable:

We can define a function in one variable as a dependent variable that
changes with only one independent variable. We will use the concept
“function” in this book to express the function in one variable.




Definition 1.4.1 Ordered Pairs:

The ordered pair (2-tuple) is an ordered array of two elements and js
written as (a, b) where a is called the first projection (entry) and b is
called the second projection (entry).

Definition 1.4.2 Cartesian Product:

If A and B are two non-empty sets, the Cartesian product of A and B

which is denoted by A X B, is the set of all the ordered pairs whose first

projection is in A and its second projection is in B, that is
AXB={(a,b):a€A,bE B}.

Example 1.4.1:

If A = {a,b,c}and B = {1, 2}, then

A X B = {(a,1), (a, 2), (b, 1), (b, 2),(c,1),(c, 2)}.

What about B X A?

Definition 1.4.3 Relation:

If A and B are two non-empty sets, the relation from A into B is a subset

of the Cartesian product A X B.

In this book, we will only define the relation without examining its
properties and types, and this is what we only need in this course, for
more information see the references at the end of the book.

Now, we can define the function.

Definition 1.4.4 Function:

If X and Y are two non-empty sets, then the function f from X into Y is a

relation from X into Y such that every element of X is associated with

only one element of Y. We can formulate it in another way, that is, every
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clement of X appears as a first projection of the elements of the function
f only once. That is denoted by f: X — Y or y = f(x) and y is called
the image of the element (origin) x. X is called the domain of the
function, and Y is called the co-domain. See F igure (1-2).

Based on this, the relation y = f(x) is a function if and only if:

) =f(x) V. = xy, X1, X3 € X,

. Itis clear from the definition that the function from X into Y is a subset
of the Cartesian product X X ¥, but every element of X must appear as a
:  first projection only once. If y is the image of the element x under the
- effect of the function f expressed as y = f(x) and assuming that x is a
general clement in the domain of the function, x is known as the

independent variable and y is known as the dependent variable. We can

define this as follows.

- Definition 1.4.5 Independent Variable and Dependent Variable:

- Generally, the independent variable could be defined as a free
changeable value, according to its change another value is changed
" which is called dependent variable.

To clarify the latter definition, let us discuss the following simple
| 'example, we can say that the height of a student is an independent
 variable. The weight of the student will be changed according to the
change of the student's height, thus the weight is a dependent variable.
If the domainof the function is not stated explicitly, there is what is
known as the natural or possible domain, which is given in the following

definition.




Definition 1.4.6 Natural or Possible Domain of a Function:

The natural or possible domain of the function f is all the possip,
values of x for which f(x) is defined.

The division by zero is undefined. The definition will be sufficient 4
this stage; examples will be discussed in details after defining e
algebraic functions.

Definition 1.4.7 Range of a Function:

The range of the function f:X — Y is the set of all values of Y thqt
appear as images of the elements of X (sometimes called the set of the
images of the function and X may be called the origin set) and is denoted

byRs.ie.Rr={y€Y,y=f(x)VxeX}

x -
Origin f Y Codomain

Image

Figure (1-2)

Example 1.4.1:

If X=1{1,2,3}and Y ={a,b,c,d, e}, determine which of the following
sets is a function from X into Y. Explain.

O fi={1,a),2,c),3,e),(3 0}

() f = {1, ), (2,a),(3,0)}.
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fz = {(2,a),(3,0)}.
Solution:

f1 1s not a function because the element 3 appeared as a first projection
twice. f, is a function (note that the element a appeared twice, but this
does not affect it being a function). f3 is not a function because the
element 1 did not appear as a first projection.

Definition 1.4.8 Real-Valued Functions:

A real-valued function is a function whose codomain is the set of real
numbers. A real-valued function of a real variable is a function whose
domain is the set of real numbers or a subset of it and its codomain is the
set of real numbers.

In this course we will be concerned with studying the real-valued
functions in real variable, the term function will be used to refer to it
unless mentioned otherwise. Examples of such functions are,
polynomials, rational functions, absolute value function, square root
function, trigonometric functions, ete. We will study these functions in

details.

1.5 Graph of Function:

Graph of a function gives a pictorial form of the function which is called
the curve of the function. Let y = f(x), i.e., every x (origin) in the

domain of the function is connected to a single value y (image) in the

range of the function f. In other words, if we assume that the value of x
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is x;in the domain of f, then there is only one value, say, y, i

associated with it. Thus, the ordered pairs (x,y) are different for all the
values of x in the domain of f. In the Cartesian plan 0xy, every ordered
pair (x,y) is represented by only one point in the plane; see Figure (1-
3). We can define the curve of a function as follows:

1.5.1 Curve of Function:

The curve of the function y = f(x) is all the points in the Cartesian

plane oxy corresponding to the ordered pairs (x, ).

lny
4T b
E (’-'2:3’2)
X1
2 (xiryi) Yz
¥i
SR e R T R R e R e i
X
a2+
_4—_

h 4

Figure (1-3)
From the previous discussion, any vertical line cannot intersect the curve
of a function in more than one point. Assume a curve which is
intersected by a vertical line in two points, i.e. they have the same value

of x, say, x3 but there are two values for y, say the values ys, y,, thus

there are two ordered pairs (X3,¥3), (x3,¥,) which indicates that X3
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appeared as a first projection twice and so this curve does not represent a
[unction, and this test is known as the vertical line test.

Definition 1.5.2 Vertical Line Test;

A curve in the Carlesian planc oxy represents a function if and only if
any vertical line docs not interscet the curve in more than one point.
Using vertical line test, the curve in Figure (1-4) does not represent a

function, but the curve in Figure (1-5) represents a function,

be ﬁ:4)
4 -
(2,1.5)
2»-
[ S T TR T | T A I WA A
X
2+
.4--
Figure (1-4)
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Figure (1-5)

1.6 Polynomials:

The student studied this type of functions or some special cases of them
in previous academic stages. Polynomials are defined as in the following

definition.

Definition 1.6.1 Polynomials:
P is a polynomial of degree n > 0, if it is on the form:

P(x) = apx™ + an_1x" 1 + -+ ayx + a,,
a, #0,q; ERVi=0,1,2,..,n
From the previous definition, P(x) = a,x* + azx® + a,x? + a,x + a,
as # 0 is a polynomial of the fourth degree. A polynomial of the first
degree is called linear polynomial, of the second degree is called square

polynomial, and of the third degree is called cubic polynomial.
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Here a group of questions appear: do polynomials represent functions?

What are their domain and range? The answer is in the following
example.

Example 1.6.1:

Find the domain and the range of the polynomial?

Solution:

To find the domain of the polynomial we need to answer the question is

there a real value of x that can make the value of P(x) unreal or

undefined?

Assuming that x 1s a real number. From the properties of real numbers,
' x™ x™1... x?€R, and since aGeERVi=01,2..,n, then

X" 0y 1 X", @;x2 €ER. Thus, p(x) = @ x™ 4+ @, X" 1 4 - 4

a;x + ap € R. We now can say that for all the real values of x, P(x) is

real, so the domain of the polynomial is R, and its codomain is also R.

The range of the polynomial cannot be determined in the general case

because it will change according to its degree, and its coefficients.

Example 1.6.2:

Find the domain and the range of f(x) = 2x% — 3.

Solution:

The function f is a polynomial of the second degree so its domain is the
interval (—oo, c0),

Let us discuss the range of the function. To determine the range, we

need to find all possible values of f(x), which change according to the

change of values of x. If x is negative then the value of 2x? is positive




and the lowest value for 2x% — 3 occurs where X = 0. that is f(0) =

-3, so the range of the function is the interval [—3, ). We will discuss

algebraic methods to find the range in advanced stage of this course. See

the cunve of the function in Figure (1-6)

¥ o

53

b2 |

-
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Example 1.6.3:
Find the domain and the range of f(x) = 3x3 + 5x2 — 3.

Solution:

Figure (1-6)

The function f is a polynomial of the third degree. so its domain is the

interval (—oo, o).

We will discuss the change of the value of the function according to the

change of the value of x. Where X is negative approaching —oo. the




value of 3x3is also negative approaching —oo, while the quantity 5x? is

a positive quantity and approaches o but 3x3 is faster, so the quantity
3x3 + 5x? approaches —co, and so 3x3 + 5x2 — 3 also approaches —oo.
Similarly, the quantity 3x3 + 5x2 — 3 approaches oo when x approaches

00, 80 the range of this function is the interval (—o0, ). See Figure (1-7)

Ys

4

v

L

Figure (1-7)

1.7 The Absolute Value Function:
Before discussing the absolute value function, we will discuss the

T T e e e e . T T R R

- absolute value of a real number. The absolute value is the positive value

Rttt

of the number. For example, the absolute value of 3 is the same number
3, but the absolute value of -3 is the number 3. Based on this, the
- positive number is left as it is when finding its absolute value, but it is

A converted into a positive number if the original number is negative as if
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we are multiplying the negative number by -1 (negative sign). The

absolute value of a number x will be denoted by |x|, and is read as “the

absolute value of x”.

Definition 1.7.1 Properties of the Absolute Value:

If a and b are two real numbers, then
Dla| = |-al,
(ii)|ab| = |al|b|,
(iti)la/b] = |al/|bl,b # 0,
(iv)|la + b| < |a| + |b],
The fourth property is known as the triangle property (or the triangle
inequality).
Definition 1.7.2 The Absolute Value Function:
The absolute value function is a function that associate every real
number with its absolute value and is written as
S(x) = x|
From the definition and the previous discussion. its domain is the
interval (—o, ) and its range is the interval [0, o) (note that |0] = 0)

and it may be defined by

T =t
f(x)={—x. X< 0.

Its curve is given in Figure (1-8).




anl?

y = —X 34 y=x

Iy

41 =

Figure (1-8)

1.8 Piccewise-defined Function:

We can define the function using more than one rule or formula which
differ with the variation in the value of x in the domain of the function.
The absolute value function is an example of the piecewise-defined

functions. Another example of these functions 1s:

X, x< -2
glx) ={x+2,-2<x<2
x -2, X & 2.

The values where the function formula changes are known as the break

points. In the previous example, x = —2 and x = 2 are breakpoints for

the function g. The curve of the function g is given in Figure (1-9).
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Figure (1-9)

1.9 Rational Function:
Using polynomials, we can define what is known as the rational function
and is given in the following definition.

Definition 1.9.1 Rational Function:

If P(x) and Q(x) are two polynomials, then f(x) = g% 1s called a

rational function.

We note that if Q(x) = 0, then f(x) will be undefined and so the natural
domain of this function is all the values of x except the values that make
Q(x) = 0 that is known as the set of real numbers except the zeros of
the denominator i.c.,

Dr=R-{x:Qx) = 0
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Example 1.9.1:

x+5
x2-4

Find the domain of the function f(x) =

Solution:

Once we determine that the function is a rational function, the problem
turns into finding the values of x that make the denominator of the
function equal to zero; i.e., solving the equation:

X% —i=0

=544 =4,

= x =12,
Therefore:

Df = R —{-2,2}.

We can represent the domain graphically on the real line as shown in

. Figure (1-10).

< L P
—0~q'=3-2~190 123 4... -
R
Figure (1-10)

We can also write it as a union of intervals:

Dy = (—00,=2) U (-2,2) U (2,).

Example 1.9.2:

9

x%-
x-3

j ~ Find the domain of the function g(x) =

Byt
-'I'I.'-!l[.il'i’d 3
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Solution:

The function is a rational function, so what is needed is to find the
values of x that make the denominator of the function equal to zero; i

solving the equation:

Therefore:

Dy =R - {3} = (—,3) U (3,0).

{2

——t—
=0 -4-3-2-1

WP

al
8v

0
R
Let us do some mathematical operations on this function. We can factor
the numerator to the form;

(x=3)(x+ 3).
And then cancel (x — 3) from the numerator and the denominator to get
(x + 3). Here a question arise which is, can we write the function in the
form of g(x) = x + 3?
We can note that the domain of the function x + 3 is the set R while the
domain of the function g 1s R — {3} and therefore we cannot write it
exactly on this form, but we can write it in the form:

gx)=x+3,x#3.
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. From the discussion in the previous example, it became clear that
performing operations on the function would change its properties and
" an important concept is shown here which is equality of two functions

~ that 1s given in the following definition.

Definition 1.9.2 Equality of Two Functions:

. Two functions fand g are said to be equal and are denoted by f = g if

and only if f(x) = g(x) for all values of x and they have the same

i domain Dy = D,

~ Example 1.9.3:
Are the two functions f(x) = x — 2 and g(x) = ——4 equal?

~ Solution:

2 but

x = —2 does not belcng to the domain of the function g, while it
belongs to the domain of function f. Therefore, Dy # Dgand hence f #
g

If we delete x = —2 from the domain of the function f, then we can say

' that the two functions are equal.

1.10 Power Function:

In this section we will define the power function and mention some of its

different cases.

*  Definition 1.10.1 Power Function:

- The function f(x) = x® is known as power function, where a is

constant.

H’s?v-o eyt
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L. If a is a non-negative integer, then f(x) is a polynomial wig, ,

single term.

2.If a=1 where n>0, then f(x) =xn =V is called 5 roof
function. When n = 2 it is called the square root function gpg i
domain is [0, 00) and its range is [0, 00). see Figure (1-11), wy,,
n=3 it is called the cubic root function and its domaip is

(-OO, 00) and its range (-Qo, OO), sce Figure (1-12).

7y

. If a=-1 then f(x) =i is called the inverse function and g

domain is R — {0} and its range is R — {0}, see Figure (1-13),
Note that, in order to get a real value of a square root function the

quantity under the root sign must be positive or zero.
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Example 1.10.1:
Find the domain of the function f(x) = Vi =2.
Solution:
We note that the function is a square root function, and therefore for
f(x) to be a real value, the quantity under the root sign must be greater
than or equal to zero, i.c., x — 2 > 0 and the problem turns to find the
solution of this inequality.
x~=3 =0 %
= x =2 |
D = [2, ),
We can discuss the solution in another way, which is to study the sign of
the quantity under the root (find what makes under the root equal to zero
and then study the sign of the quantity on the right and left of this value).
x = 2 makes the quantity x — 2 = 0 and hence the values to its right
make the quantityx — 2 > 0 and so: Dy = [2, ). Note the graphical
representation of sign of x — 2 in Figure (1-14).

x—2=10
x—2<0 x=2>0
---------- ++++
< e —— (x—-Z)
~® . -4-3-2-10 12 34.
R

Figure (1-14)
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- Example 1.10.2:

Find the domain and the range of the function g(x) = Va2 —4
;" ~ Solution:
The domain is the solution of the inequality:
x4 =42=20
= x2>4
= |x| =2
Dy = (—00,=2] U [2, ).
|x| > a are the values to the right of a union of values to the left of - a,
(—0,—a) U (a, o) while |x| < a are the values that are between - a

and a, 1.e., the interval (-a, a).

iy

‘We can also find the domain by studying sign of the quantity x? — 4.

. x2—4=0

| = (x—2)(x+2)=0.

- We will study the sign of quantity(x + 2) and quantity (x — 2), then the
product of (x — 2)(x + 2) as shown in figure (1-15).

~ From Figure (1-15), then: Dy = (—00,~2] U [2, 00).

% The range of the function is [0, 00).
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Figure (1-15)

Example 1.10.3:

Find the domain and the range of the function h(x) = Vx2% — 4x — 5.

Solution:

The domain is the solution of the inequality:

x2—4x—-5>0

= x+1Dx-5=>0

=x+1>0andx—-5=20
= x=>—-1landx=5
=X 25

[5, )

or

P

)=>x+1£Oandx—5£0
= x<-landx <5

= x< -1

(—-OO, _1]

Dy, = (=00, =1] U [5, o),
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We can solve this example by studying the sign of the magnitude

(x + 1)(x — 5) as shown in Figure (1-16).

(x-l—l—g)

@) oottt ++-z;( 4
-® -4 -3- 2 10 1 2 3 4 5 ..... @
! (x—h=0
------- TR R
(0) ] —» (x—5)

+++
© ———i _=(x+1)(x—5)

R

Figure (1-16)
The range of the function is [0, ).
Example 1.10.4:

Find the domain of the function h(x) = Vx2 — 2x + §
Solution:
The domain is the solution of the inequality x2 — 2x + 5 > 0.
Note that we cannot factor this quantity, and therefore the method in the
previous examples is not suitable for solving this example (has no real
- roots). It is positive for all real values x, so the domain of the function is
R.
Example 1.10.5:

Xx+1

Find the domain of the function f(x) = —




Solution:

The function here is a rational under the square root, and therefore it
natural range is all x that make the rational function greater than or equaj

zero, and at the same time make its denominator not equal to zero.

Hence it is the solution of the inequalityi—i% > Oand x # 5. Referring to

Example 1.10.3 figure (1-16), we find that E > 0 for all values x ip

(—0,—1] U (5, ), so the domain of the function is Dy = (—o0,—1] y
(5, ).

1.11 Arithmetic Operations on Function:

Using two functions, we can create new functions by addition,

subtraction, multiplication, and division.

Definition 1.11.1:

If f and g are functions with domains Dy and D, respectively, then

1. Their summation is denoted by f + g, where (f + g)(x) =

f(x) + g(x) and its domain is Dy N D,,.
2. Their subtraction is denoted by the f — g, where (f — g)(x) =
f(x) — g(x) and its domain is Dy N Dy.

. Their multiplication is denoted by f g, where (fg)(x) = f(x)g(x)
and its domain is D¢ N Dy.

4. Their division is denoted by f /g, where (f /g)(x) = f(x)/g(x)
and its domain is (Df N Dy) — {x: g(x) = 0}.




Definition 1.11.2 Algebraic Functions:

The functions produced from finite algebraic operations on polynomials

Dr_g = [3,)
(i) (fg)(x) = f(x)g(x) = (x + 2)Vx — 3.
" ng = [3, m).

w)(f/9)(x) = f(x)/g(x) =Vx =3/(x +2).
" Desg = (Df N Dy) — {x: g(x) = 0}
- Dpjg = [3,0).
v)Bf)(x) =3f(x) = 3(x + 2).
= Dy F= (=00, ).




Example 1.11.2:

= x, then can We say that h = fg

If(x) =Vx,gx) = Jx and h(x)
Solution:
v (fg)(x) = Vxvx = x
= h(x) = (fg)(x)-
+ Dyy = [0,00) N[0,00) = [0,00) # Dp = (—00, ).
Therefore, we can not say that h=fg.
However, we can say that b = fg in the interval [0, ).
Example 1.11.3:
If f(x) = Vx — 3 and g(x) = Jx + 3, find the following functions and

their domain:

f+a f—g fg.9/f. 5

Solution:

O(f +9)() = ) +g(x) =Vx—3+ Vx + 3.
.+ Dy = [3,%0).05 = [-3,0)

- Dpag = [3,00) N [=3,20) = [3,).

GD(f —g)(x) =fl)—glx) = Vx—3—+vx+3.

oo Df_,.g = [3,00).
(i) (fg)(x) = f(x)g(x) = Vx —3Vx + 3.
~ Dpg = 3, ).

(iv) (/) = g(x)/f(x) =Vx +3/Vx = 3.
Dg/f = (Df n Dg) - {x:f(x) = 0}
& Dg/f = (3, CU)
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(W) =5f(x) = 5vx =3,
* Dgf = [3, ).

Definition 1.11.3 Composition of Functions

If f and g are functions with domains D¢ and D, respectively, then the
composition of f with g which is denoted by f o g is defined as
fog)x) =f(g (x)) and its domain is all the valuesx in the domain of
g such that g(x) in the domain of f.(If x € Dy and g(x) € Dgthen x €
Dfog. 1.e., Dpog = {x:x € Djand g(x) € D¢}, see figure (1-17).

Dfog = X

feg

Figure (1-17)
Example 1.11.4:

Let f(x) = x% and g(x) = V/x. Find a formula for the functions fog
E . g © f, and the domain for each. If h(x) = x, can we say that f o g =
E h?



Solution:

Where.

(f=0)(x) = f(g(x)) = F(Vx) = Wx)? = x.
# Df"g = [Or m)'

Thus, we cannot say that f o g = h.

Whereas.

(g° &) = g(fx)) = g(x?) = Va2 = |xl.
“+ Dgog = (—, ).
Example 1.11.5:
Let f(x) =Vx—1 and g(x) = V3 —xFindf o g, gof, fof and go

g and the domain for each.

Solution:

* (o 9@ = f9t) = (VT=7) = [VE—x -1

In the previous example, the conclusion of the domain of the function fo

g was direct while here we need some details.

x € Dy means that x < 3 and g(x) € D¢, means that V3 —x > 1 and

therefore the domain of the function is the solution of the two inequality:

V3—x=>1landx <3
=2—-—x20andx <3

=<2

e Dfog = (—m' 2]‘




(o) =g(f(x) =g(Vx—-1) = /3 —Vx—1.

X € Dymeans that x > 1 and f(x) € Dg, means that Vx—=1<3 and
hence, the domain of the function is the solution of the two inequalities
x=landVx—1<3

= X =2 1andx <10

=1<x<10

. Dg.,f = [1,10].

F (e N =F(F0) = F(Vx=1) = Vx—1-1.

. D,fﬁf = [2, 00)

“(gog)®) =g(g®) =g(V3-x) = fs N - s
- The domain of the function is the solution of the two inequalities:
V3—x<3andx<3

=3—-x<9%andx <3

j = x=—6andx <3

= —-6<x<3

“ Dgog = [-6,3].

Example 1.11.6:

xz
x2+4°

Let h(x) =

Write h as a composition of two functions f o g.

Solution:

Let f(x) = ——and g(x) = x2. Then
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xz

x2+4

In similar cases, we can always do this by finding the function f tha e

(f e 9)(x) = f(g(x)) = f(x?) =

the same as h, but only for the value x (replacing all the simij,,
quantitics with x) and then finding the function g that represents this
quantity,

In this example, we got the function f by replacing x? in the function h
with x and making g the quantity x?2.

Example 1.11.7:

Let h(x) = V4 — 3x . Write h as a composition of two functionsf o g.

Solution:

Let f(x) = vx and g(x) = 4 — 3x then

(f e 9)(x) = f(g(x)) = f(4 - 3x) = V& =3x.

The constant function is a special case of functions. i.e.. when f(x) = c.
So the addition, multiplication and division of a function with a constant
are special cases of the arithmetic operations on functions. What will be

the geometric effect of these operations on the curve of the function?

Definition 1.11.4 Translation:

Assuming the function y = f(x) and the positive constant ¢, when
adding the constant to the independent variable x, then the curve of
f(x + c) is the curve of f(x) shifted to the left by ¢ units, while when

subtracting the constant from the independent variable, the curve of the

function is the curve of the function f(x) shifted to the right by ¢ units.
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When adding the constant to the dependent variable, the curve of the
function f(x) + c is the curve of the function f(x) shifted up by cunits.
When subtracting the constant from the dependent variable, the function

curve is the curve of the function f (x) shifted down by c units.
Example 1.11.8:

Draw the graph of h(x) = x? + 2x + 1 and g(x) = x? + 2.

Solution:

The function h(x) can be written as h(x) = (x + 1), thus the curve of
this function is the curve of the function f(x) = x?2, shifted left by one
unit.

The function g(x) is the function f(x) plus the constant 2, so its curve

is the curve of the function f(x), shifted up by 2 units. As shown in
Figure (1-18).

\ y=x*+2 5

5

Figure (1-18)
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Example 1.11.9;

Draw the graph of g(x) = x% — 4x + 3

Solution:

The function g(x) can be written as g(x) = (x — 2)? — 1, thus the
curve of this function is the curve of the function f(x) = x?, shifted to

right by two units and shifted down by one unit. As shown in Figure (1-
19).

P
Figure (1-19)

Example 1.11.10:
Draw the graph of g(x) = Vx + 3 and h(x) = Vx — 3.

Solution:

The curve of g(x) is curve of f(x) = V/x shifted left by 3 units and the

curve of h(x) is the curve of f(x) shifted right by three units as shown
in the figure (1-20).




ot

Example 1.11.11:
igure (1-21) shows the graph of f(x) = Vx, f(—=x) = V=x and
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Figure (1-21)
Example 1.11.12:
Draw the graph of y = V2 — x.

Solution:

The graph is the reflection of the graph of f(x) = /x about the y axis,

shifted right by 2 units. As shown in Figure (1-22).




Figure (1-22)
Example 1.11.13:
Draw the graph of y = 2 — x3.
Solution:
The graph is the reflection of the graph off(x) = x®about the x axis,
shifted up by 2 units. As shown in Figure (1-23).
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Figure (1-23)
Example 1.11.14:
Draw the graph of y = 4 — |x — 2|.
Solution:
The graph is the reflection of the graph of f(x) = |x| about the x axis,

shifted right by 2 units and followed by shifting to up by 4 units. As
shown in Figure (1-24).

Fd
” el -~ 3l ~ ~
| o ¥y |I|/ \\ -~
-
i ,/ - 4T ~
| - ’*’)’H—lx*Zl_s“ \\.
t v ]

Figure (1-24)




Definition 1.11.6 Stretches and Compression

Assuming the function y = f(x) and positive real constant c.

1. If ¢ > 1 then cf(x) is a stretching of the graph of f in the y-direction
with the factor c, i.e., for each point of the graph, its y-coordinates is
multiplied by the factor ¢ and f(cx) is the compression of the graph in
the x-direction by factor c.

2. If ¢ <1 then cf(x)is the compression of the graph of f in the y-

direction with the factor %, i.e., for each point of the graph, its y-
- coordinates is divided by the factor -:: and f(cx) is the stretching of the

curve in the x-direction by factor %

The definition is clear in the case of stretching and compression in the y-
 direction, while confusion may occur in the case of thex-direction, so we
will discuss the definition in some detail. Let ¢ = 2, then at x = 4 the

value of f(x) is f(4) whereas f(cx) has the same value at x = 2. Then

‘we can say that the graph of f(cx) will be closer to the y axis than that
of f(x), i.e., compressed. Let c = %, then at x = 4 the value of f(x) is

- f(4) whereas f(cx) has the same value at x = 8. Then we can say that
the graph of f(cx) will be more far from the y axis than that of f(x)i.e.,
stretched.

Example 1.11.15:

E'I'he graph of f(x) = 2sinx is the stretch of the graph of y = sinxby

factor 2 in the y-direction i.e. the points of the graph of f(x) are (x, 2y).
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1 sinx is the compression of the graph of
2

While the graph of g(x) =

y = sinx by factor 2 in the y-direction i.¢, the points of the graph of

f(x) are (x,%y),

Note that if an arrow goes vertically from a point on the 0x axis in the

1.4 = of e
direction of y, it intersects glx) = S sinx, then y = sinx and then

f(x) = 2sinx. (Stretching in the y-direction). Sce figure (1-25).

y st
4
3 y = 5inx y = 2sinx
2 h‘\;/
. \
i L .1—.‘ : _}’
. = i 2 3 S~ §
-t ,. 1\1 e E:
~ Ean i, e “
. TR | I ye=sz —
a4
=
-S;

Figure (1-25)
The graph off(x) = sin2x is the compression of the graph of y = sinx
by the factor 2 in the x-direction i.c. the points of the graph of the £ (x)
are (2x,y).
While the graph of g(x) = sin %x is a stretch of the graph of y = sinX

by the factor ¢ = 2 in the x-direction i.c., the points of the curve of f(x)

are (%x, y).
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Note that if an arrow goes vertically from a point on the y axis in the

direction of x it intersects f(x) = sin2x then y = sinx and then

glx) = Sin%x. (Stretching in the x-direction). See figure (1-26).

Y35

—

Figure (1-26)
- Example 1.11.16:
The graph of f(x) = 3x? is the stretch of y = x3by factor 3 in the y-
direction i.e. the points of the curve of f(x) are (x, 3y).
While the graph of g(x) = §x3 is the compression of y = x3by the
factor ¢ = 3 in the y-direction i.e., the points of the curve of f(x) are

(x,-;j ¥). See figure (1-27).
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Figure (1-27)
The graph of f(x) = (3x)? is the compression of y = x3 by the factor 3

in the x-direction i.e., the points of the curve of f(x) are (3x, ).
While the graph of g(x) = (% x)? is the stretch of y = x3 by the factor 3 4

in the x-direction i.e., the points of the curve of f(x)are (-;-x, y). See

figure (1-28).
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Figure (1-28)
Definition 1.11.7 Symmetry:

Consider the curve of y = f(x).

.The curve is said to be symmetric about the x-axis if and only if all

oints (x, —y) are on the curve.

. The curve is said to be symmetric about the y-axis if and only if all

oints (—x, y) are on the curve.

3. The curve is said to be symmetric about the origin point (0,0) if and
bnly if all points (—x, —y) are on the curve. See F igure (1-29).
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: Figure (1-29)
'Theugx 1.11.1 Symmetry Test:

~ Consider the curve of y = f(x).

1. The curve is symmetric about the y-axis, if and only if by replacing x
y—x, we get the same curve, e, f(x) = f(—x).

2 The curve is symmetric about the x-axis, if and only if by replacing y
by-—y we get the same curve, ie., y = +f(x).

3 The curve is symmetric about the origin point (0,0), if and only if by

'-feplacing x by —x and y by —y, we get the same curve ie., f(=x) =
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Example 1.11.17:

Study the symmetry of the graph of y = x®.

Solution:

By replacing x by —x then f(—x) = —x> = —f(x) and therefore the
curve is symmetric about the origin.

Example 1.11.18:

Study the symmetry of the graph of y = x?.

Solution:

By replacing x by —x then f(—x) = x? = f(x) and therefore the curve
1s symmetric about the y-axis.

Example 1.11.19:

Study the symmetry of the graph of y? = x.

Solution:

By replacing y by —y then (—y)? = x and then we get the same
equation and hence the curve is symmetric about the x-axis or from the
equation directly then, y = ++/x.

Example 1.11.20:

Study the symmetry of the graph of x? + y? = 4.
Solution:

We can write the equation in the form y = +v4 — x2 and therefore the

curve is symmetric about the x-axis. Sincef (x) = f(—x), then it is

symmetric about the y-axis. Since f(—x) = —f(x), then it is
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Symmetric about the origin. (It is an equation of a circle with center at

.the origin and radius 2) (see Figure 1-30).

_. _ Figure (1-30)
" Definition 1.11.8 Even and Odd Functions:

Assume the function y = f(x).

. The function is said to be an even function if and only if f(—x) =
~ f(x). Geometrically, if and only if the graph of the function is

- symmetric about the y-axis.

2. The function is said to be an odd if and only if f(—x) = —f(x).
Geometrically, if and only if the graph of the function is symmetric

- about the origin.

- Otherwise, the function is neither even nor odd.




Example 1.11.21:

In the following figure, identify whether the function is even or odd?
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Solution:

- The graph in figure (i) is not symmetric and therefore the function i

neither even nor odd.
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- The graph in figure(ii) is symmetric about the y-axis and hence the

function is even.

- The graph in figure (iii) is neither symmetric about the y-axis nor

~ about the origin so the function is neither even nor odd.

- The graph in figure (iv) is symmetric about the origin, thus the

function is odd.

- - The graph in figure (v) is symmetric about the y-axis and hence the

~ function is even.

- The graph in figure (vi) is symmetric about the origin, thus the

function is odd.

~ Definition 1.11.9 Family of Functions:

- If the equation of a function is depended on a parameter, then it is called

an equation of family of functions.
In the previous definition, we used a concept we had previously studied,

but we will give it a part of the discussion, which is the parameter. The

- constant is a constant quantity that cannot be changed, we can say
- Planck's constant. We can also say that the velocity of light is a constant
| quantity, while the parameter is a quantity that does not depend on the
| independent variable, and therefore it is a constant value, but it can
change (not specified value). We say that the y = c, the value of ¢ does
~ not depend on the independent variable while it may take the constant 1,

2 or any other number and thus it is a parameter. Thus, y = c is a family

of functions, and it is geometrically represented by a family of curves

(see Figure (1-31)).
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Figure (1-31)
Example 1.11.22:

The equation y = Ewhere k is a parameter, represents a family of

functions. (here we can say that the variable y is inversely proportional

to x). (see Figure 1-32).

| 4 5
[ . ¢ X
|
L 4 __._________,..--

1 Figure (1-32)
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'_Deﬁnition 1.11.10 Identity Function:
_Thc function I where I(x) = x is called identity function.

:i)eﬁnition 1.11.11 Inverse of Function:

The function g is said to be the inverse of the function f and is denoted
by f~1,ifandonlyif fog=gof =1.

Now we will give steps to find the inverse of the function, let y = f(x).
be a function. First, we write the function in the form x = g(y) and then

'r_cplace each y by x to get the inverse of the function f.

Example 1.11.23:
Find the inverse of the function f(x) = Bk

x=2"
Solution:

Fu‘st, we write the function in the form of x = g(y) as following:




Therefore

~1
...f—I(x)=2;:_1, x # 1.
Note that:

() i g _ 2x—1 _2:__11*1
6 = (Y ("’))‘f(x—l)_f::-z
2x—1~—x+1

.'.fnf"lzf,

- ) L E-1y 265 -1
WU e NG = (@) = (3= = =y
2x =2 —x+2
=’(f_1°f)(x)=:—1-;:2 =JTC=I'

.'.f_lof=],

We mentioned previously that we will give an algebraic method to find
the range of the function. We can use the same previous procedure to get
the range of the function y = f(x). where its range 1s the domain of its

inverse. In the previous example, the domain of the function fix) =

zx_: is R — {1}. so the range of the function y = ‘:;_.1_’: is also R — {1} =

x—

(—00,1) U (1,00). See Figure (1-33).
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Figure (1-33)

. Example 1.11.24:
. Find the inverse of the function y = V2x — 1 and its domain.

Solution:

following:
y=f(x)=v2x-1
241
=>y2=2x—1=>x=y 5

1
~g0) =50 +1)

By replacing each y by x, we get

First, we write the function in the form of x = g(¥), as shown in the



L glx) = %(xz +1).

Hence

S )= %(x2 + 1),

Note that, the domain of the function g(x) is (—o0, c0)while the domajy
of f~is [0, ), in order the function to be defined.
We can formulate the previous procedure in the following theory.

If the function y = f(x) can be written in the form of the function x =
g(¥), then it is invertible and its inverse is f~1(x) = g(x).
Definition 1.11.12 One- to-One Function:

It is said that the function y = f(x) is a one-to-one function if and only
if:

X1 =Xy Vf(x1) = f(xZ), Xq1,Xy & Df.
(1.e. if the images are equal then the originals are equal)

Geometrically, any horizontal line intersects the curve at only one point
at most.

Example 1.11.25:

Determine whether the function Y = x? is one-to-one
Solution:

Let x4, x, € wahcre f(x1) = f(x2). Then

B
' =x=x, = e,

—
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Therefore, the function is not one-to-one. See Figure (1-34).

,. e $ t } -
£ -5 - 3 4 5
E ®
2
.
\ L
e 1
" Figure (1-34)
Example 1.11.26:
.n Determine whether the function flx) = i—t} is one-to-one.
P
¢ Solution:
Letx;, x, € Dy where f(x;) = f(x;). Then
X1+1 x4+1
k = = X1+ 1) (%2 —1) = (x; + 1)(x, — 1
I i =t Dm-D=(p+ -1
i =‘>x1x2+x2—x1—1=x1x2—x2+x1—1
B —on=2:, ox=1
Therefore, the function is one-to-one. See F igure (1-35).

|
|
5
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Figure (1-35)
Theorem 1.11.3:

A function is invertible (has an inverse) if and only if it is one-to-one.

Theorem 1.11.4 (Horizontal Line Test):

A function is invertible (has inverted) if and only if any horizontal lin

cuts its curve at one point at most.

Example 1.11.27:

In the following Figure, identify whether the graph represents an

invertible function.
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~ Solution:

- The graph in figure (i) represents an invertible function.

j:f - The graph figure (ii) does not represent an invertible function.

- The graph in Figure (iii) does not represent an invertible function.
- The graph figure (iv) is not a function.

| Theory 1.11.5:

If f~1 is the inverse of the function f, then the curve of each is the
reflection of the other about the line y = x.

P Figure (1-36) gives a function and its inverse.
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Figure (1-36)
An increase, decrease, and constant of a function is a description of its
behavior when we move over the graph of the function from left to right

and it is defined in the following definition.

béﬁnition 1.11.13 Increasing and Decreasing Functions:
I-_,__cty = f(x) be a function.
1.1t is said that the function is increasing if and only if

f(xz) > f(x1) Y x2 > x3,%1,%; € Dy
(i.e., the value of y increases as the value of X increases)

2. It is said that the function is decreasing if and only if

f(xZ) = f(xl) sz > X1, X1, X2 & Df‘
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(i.e.,the value of ¥ decreases as the value of x increases). See Figype (1-
a7y,

Y Y s~

" 44 f(x)
f(x) 1 3

34 it ]
2 24 I >f(-"z)l
) T f&xp) : !

—— i ——t P F—t —'.!—-'-v——h"

5 1 X 3 X3 §1

-1¢ X 1 g X
21 27T *
g ; Increasing Function
-4 5 4+
k] g

Figure (1-37)
Example 1.11.28:

Study the increase and decrease of the function f(x) = x2

Solution:

Assume that x,,x, € D¢, where

X1, X3 >0 = o > x,2

= f(x2) > f(xy).
[0, e0).

Hence the function is increasing in the interva]

Assume that X1, X2 € Dr where:

xz >x1, xl,

X, <0 =:>x22<x12

= f(x;) < Fx).
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Solution:

Assume that x;,x, € Dy where
X, > x>0 = h(xz) > h(xy).
Hence the function is increasing in the interval (—, 00).

1.12 Trigonometric and Inverse Trigonometric Functions:

The angle is measured in either radians or degrees. The radian of the

central angle @ in a circle with radius r and enclosed an arc of length s isl
defined as the number of radii in the arc length enclosed by the angle
i =s/r.

Hence, it is the arc length enclosed by the central angle in the unit circle. :

T 0
g

See Figure (1-39). Then, 7 (radian) = 180°and @ (radian) = P

from which we get the following table:

Angles in radians and degrees |
Degree |0°30°|45°|60°|90°|120°|135°|150°|180°|270° 360°§

2m 3_71' 5w T 3m | 21

Radian |0

w3
NI

3 T i
4 6 zl—*"t.

Unless otherwise indicated, radian will be used throughout this book.

A
| [

The angle in the Cartesian plane oxy in its standard form be such that its]
initial ray coincide with the positive 0x axis and it is measured in §

positive units if the direction of rotation is counter-clockwise and I

negative units if the rotation is in the direction of clockwise rotation. 5¢

figure (1-40).
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Definition 1.12.1 Periodic Functions:

The function f is said to be periodic if there is a positive numbey P sugy
that f(x +p) = f(x) for each x in the domain of the functio The |
smallest such number p is called the period of the function.
We can define trigonometric functions as we have previously stygjeq
using the acute angle in the right-angled triangle. But here we vy
develop this definition to include the obtuse and negative angles 4 °
shown in the following definition:

Definition 1.12.2 Trigonometric Functions:

Let O be an angle such that its terminal ray intersects a circle with radiyg |

7 at the point P(x, y), from the Figure (1-41), then

(Sine) sinf = %, (Cosine) cosf = g, (Tangent) tanf = %,

(Cosecant) cscf = 1, (Secant) sec = f-, (Cotangent) cotf = =
y X ¥y

ki s

Figure (1-41)
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The following tables give the properties of trigonometric functions.

Function sinf
Domain (—o0, o)
Range [-1,1]
Type Odd
Period 2T
| Curve ysl
4--
3-
1--
v = il ; ’\/Z:r 5
&t
Function cos@
Domain (—o0, )
Range [=1d]
Type Even
Period 2
Curve y ,1_
4-»-
3--
i
/ —2n ' / =1 \!/ n 0
l2--
J--
4—
s}
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Using the coordinates of the point P (X, ), where X = 1c0s6 and y .

rsin in the unit circle we get the following identities. (see Figure 1-39)

Trigonometric Identities:
(i) sin%@ + cos?6 =1,

(ii)1 + tan®0 = sec?8,
(iii)1 + cot?8 = csc?8,

(iv) cos(8, + 6,) = cosf;cosh, — sinb;sinbs,,
(v) sin(8; + 6,) = sinf, cosf, + cosf,sinb,,
(vi) cos(28) = cos?8 — sin?0,

(vii) sin(28) = 2sinfcosé,

(viii) cos?0 = %(1 + cos28),
(ix) sin%8 = %(1 — c0s20).

If a, b, c are the lengths of the sides of the triangle ABC and the side

coppositethe angle 0, then:

c? = a% + b% — 2abcosh, which is known as the law of cosines.

From the shapes of the curves of the trigonometric functions, we see that
they are not one-to-one and so we cannot find their inverses directly, so
its domain must be restricted to certain intervals to find their inverses.

The domain of the function sinf can be restricted to [-%,%], cosf can

be restricted to (0,7) , tand can be restricted to (—%,-;5), csch can be

. 8
restricted to [—-2-.0) U (0.325], sec can be restricted to [0,%) U (-E,Tr],




and cot8 can be restricted to (0, 7).The functions become as in Figure

(1-42).
ys} . 5
‘] vy = cosf 1, : y = sinf
} | 1 m
] 8 € [0,m] | . 2] E[—E'E
-\ i =2 M
5 X : E‘ ]'
; N g f H
3 i |
4 : -4
|
] | -
R X T ' ' o \
R TRt -
: ’ ’ ! : Tm
1 ; | o N
3 ! . ; vl o
§ ' ¥ ! ; l i § :
& ' 6 B IR
i | . -
I ! ! I 2 !
1 | ! 3 |
I o 1 . 1
I |9E[—-—,l'.')l.i(f.'),z]'i | ‘ |
¥y . ; ¥ |
a7 y:cote | ] : }'=S'BC8
3T 66(0,1’:): :- i
; i
1 I i 1 ) : : 5
y x ; _u: L X
a1+ 7 0 ] ! At E
2 1 ] - - 2 'i
J I 1 i s 34
3 I ! SE[O,Z)U(Z,T[] g \
44
.| i
Figure (1-42)

Now, we can define the inverses of the trigonometric functions that are
called inverse trigonometric functions as in the following definitions.
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Definition 1.12.3:

The arcsine function that is denoted by y = sin~'6 gives the angle y ;.
radians in the interval [-—g,g] whose sine is 6. It has the fi:)ll-;:.wing

properties:

Function sin"1x e
Domain [-1,1] iy
Range [_E = T e
23
Type Odd G
Curve y s}
4 .
3 ]- y=gin=ty
:: A
b |8
£l
a)

Definition 1.12.4:

The arccosine function that is denoted by y = cos™189 gives the anglejf

in radians in the interval [0, 7] whose cosine is 0. It has the following

properties:




du i oy _'d Pt
8 L
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Function cos™ lx
Domain i [—1,1]
Range - . [0, ]
i Type Neither even nor odd
& Curve ¥y st

i
\ e

- 1 1 1'
-1
=2
-3
4
-5 |

Definition 1.12.5:
The arctan function that is denoted by y = tan™'8 gives the angle y in

radians in the interval (—;—r,g) whose tangent equals 8. It has the

following properties:

Function tan~
Domain (=, )

Range (i o

Type Odd
Curve ¥sq

e e o e e e = e
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!
15 l Definition 1.12.6:
| The arc-cosccant function that is denoted by y = ¢s¢ 718 gives the angle

n ;
y in radians in the interval [—-%, 0) U (O’E] whose cosecant is g, |y hag

the following properties:

Function esy X :
". Domain (—oo’%—l] U [1,;:0)
1 Range i IVOETD 5
[ 2' ) ( '2]
i Type O::ld
! Curve b
%*}_g
‘*ﬁ—v‘r—"\i: 71 & 3
5

Definition 1.12.7:

i The arc-secant function that is denoted by y = sec™'8 gives the angle y
in radians in the interval [0, 7] whose secant is 6. It has the following

| properties:




B | : ; .':= : .‘l. rz“
"’Eﬁﬂpféﬁ_‘ﬂ"_ 9 Euh'cri;_in{ “

. Function sec—1y
Domain (=0, —1] U [1, )
Range T T
0,2V (=,
Type Neither even nor odd
Curve y s}

4T
) =3 +7 ¥ = gec™ly
2+

e e o E— — — — — —

Definition 1.12.8:

The arc-cotangent function that is denoted by y = cot™16 gives the

angle y in radians in the interval (0, 7) whose cotangent equals 6. It has

the following properties:

Function cot™1x
Domain (—o0, )
Range (0, m)
Type Neither even nor odd
Curve yst
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i: Examnle 1.12.1:
I |

.. Calculate cos ™ (— %) and sin™! (?).

Solution:
L a4 1 -
£l Lety; = cos™1(— E)’ then cosy; = —z, s0 the angle is y; = 5;_5 Note

2T
that —3— e [O; ;r[] ;

S ——

Let y, = sin~1(— g), then siny, = ?, so the angle is y, = 13"'. Note

‘ that = € [-EJE]. |
3 229 ;

See Figure (1-43).

vl , y;

S — =

i
ST

Figure (1-43)

By the same way as in the previous example we can obtain the followiiil:'
table for special angles:
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: 3 | vz | 1 T [ 2 | -3

2 2 . ? 2 2

sin"lx d T T 7 = =
2 4 6 6 | "3 | "8

cos™'x i d e 2n 3 5w
6 : 3 T LT | R

Example 1.12.1:
» i

Calculate tan™*(—V/3) and tan l(ﬁ),

Solution:

Lety, = tan‘l(—\@), then tany; = —/3, so the angle is y, = _g'

T mT
Note that — 5 E(— E'E)
RS- 1 ;
Let y, = tan (ﬁ)’ then tany, = 70 the angle is y, = E. Note that
T T T
s€ (23

See Figure (1-44).

¥ o x

Figure (1-44)
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By the same way in the previous example we can obtain the follow;
table for special angles:

— _-

% 3 1 1 ___1_ 1 ‘?\E\ |
5| %

tan~1x T T ol & BT |
3 4 6 6 4 ""3‘ u

L3

Using the unit circle we can obtain the following identities:

The Inverse Trigonometric Identities:

PRI IR Ra R e

As long as the inverse trigonometric functions are defined, we have

o et . T
(i) sin™x + cos 1x=E, -1<x<1,

(ii) cos™'x + cos™(—x) =m, -1 <x <1,
(iid)tan™*x + cot™x = -g», —00 < x < 00,

- A g T
(iv) csc™1x + sec 1x=;,—15xorx2 1.

(s — S i, ~1<xorx=1,

(vi)sec™1x = cos™ i, —lexorxal,

Coit)eot—*x = tan i, 0

(viii) cos(sin"1x) = \fl_—_;v?, S i B 8 o

(ix)sin(cos™x) =VI—-%%, -1 <x <1,
X

(O tan(sin™'x) = =, ~1<x<1.

See Figure (1-45).
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cos~i(—x) ¥

Figure (1-45)

1.13 Exponential and Logarithmic Functions:

The exponential function has a lot of applications in science and

mathematics, we will, in this section, recognize the exponential function
and its inverse and some of their properties. The exponential function is

defined as in the following definition:

Definition 1.13.1 Exponential Function:

For any real number b >0, the function f(x) = b* is called the

exponential function for the base b.

From the previous definition we can find that the power function is not

an exponential function but the following functions are exponential
functions:
f(x) =3% g(x) = (é*)", h(x) = a%,....

The natural base is an irrational number and is referred to e. The value

of e, approximated to six decimal places, is e = 2.718282 and is used to




o A ——
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function for the natural base as in the following

define the exponential

definition:

Definition 1.13.2 Natural Ex onential Function:

The function f(x) = e* is called the natural exponential function for g,
natural base e. It is sometimes written asf (x) = exp(x). Its Propertieg

are in the following table:

Function g~ LA
Domain (=%, ) sl
Range (0, ) e i
Type Neither even nor odd but increasing |
Curve yst
4t yme
3
__’/
A B S TG e L
-1+ x
ik
A
i
ST

From the shape of the curve of the natural exponential function we can
observe that it is an increasing function and increases extremely rapidly.
The range of the function is (0, ), i.e., the function increases without

bound as x increases. It is said that a function f increases without bound

as x increases, if for any number M regardless of how large it is, f(x) >

M where x increases indefinitely. Indeed, if x > InM, then e* > M, s0

it increases without bound as x increases.

e




B
2o
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Definition 1.13.3 Logarithmic Function:

The logarithmic function is denoted by y = log,, (x), where b > 0,b #
1 and is read as the logarithm to base b of xand be if and only if bY =

x. It has the following properties.

Function log, (x)
Domain (0, )
Range (—o0,00)
Type Neither even nor odd but increasing
Curve ¥ il
PR ¥ = logy(x)

R T
L & i
L] T T

[ S I
L

From the shape of the logarithmic function curve, we notice that it is an
increasing function but increases extremely slowly. The range of the

function is the interval (—o0,0) i.e., the function increases without
boundasx increases. Indeed, if x > eM. then Inx > M, so it increases

without boundasx increases.

Theorem 1.13.1:

The logarithmic function y = logpx where b > 0,b # 1 is the inverse

of the exponential function f(x) = b™.




agt’mneml Mathematics

When the base of the logarithmic function is 10,that is ca|jeq "
common base, we do not need to write the base and the functigy is |
written as y = log(x) instead of ¥ = logyo(%)-

Definition 1.13.4 Natural Lo arithmic Function:

The logarithmic function with base e 1s called the natural logarithy;, l,

function or the logarithmic function for the natural base and is denqy, d

by y = In(x).

From the definition of the logarithmic function we can prove the
following properties:

Theorem 1.13.2 Algebraic Properties of Logarithmic Function:

Ifb>0,b#1,a>0,c>0andr is areal number, then
(i) logp(ac) = logya + logyc, Multiplication property
(i) logy (%) = logpa — logyc,  Quotient property

(iit) logpa™ = rlogya Power property
7 l
(iv) logpa = % ; Change of the base formula

Example 1.13.1:

Find x such that,
(D) logx=3, (i) In(x+2)=6, (iii)3* =8,

Solution:

(i) Let logx = 3, then x = 103 = 1000
@ Letin(x+2)=6
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—x+2=e°=x=e%—2=40143.

(iii) Let 3* = 8

S n3¥=m8B=xn3=M8=x= % = 1.89.

Example 1.13.2:

Solve e* —e™* = 2 for x.

Solution:

Assuming

Multiplying the two sides of equation (1) by e*, then

6% —1 =3¢*,
s B D® Y S Winrsumrans i s A )
Replacing e* in equation (2) by u, we obtain the following equation
u?-2u—-1=0,
And it is a quadratic equation whose solution is:

24++/4+4 2—4+4
H uZ = s
2 2

U =
= =1+v2, w= 1—+2.

Since u = e* > 0, then the required solution is only u; =1 + V2 and
50

e*=1+v2=x=In(1++2)~088.

Note: The solutions of the quadratic equation on the form:

ax’+bx+c=0,a+0
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—b+Vb?-4ac —-b-Vb?-4ac '

= 2a X2 = 2a
Example 1.13.3:

Solve e2*~6 = 4 for x.

Solution:

Let

pe A e B T Lo e . L e ]

R - T

1
§

| 11 Taking In of the two sides of equation (1), then !

In(e?*~6) = Ind |

i = (2x — 6)lne = Ind = 2x — 6 = Ind = x = "2 ~ 369 .,,

?




Exercises
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() If f(x) = Vx + 1+ 4, complete the following statements:

- the domain of the function fis ............................

- the range of the functionf is .......................

(2) If the curve of the function y = f(x) is given by the figure E-1,

complete the following:

- the domain of the function fis ....................

----------

--------------

- the solutions to f(x) = —-arex = .......... and x
y T g

ol
3 b 1 1 2 xa

aL

2tk

Figure E-1
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(3) Which of the following graphs defines ¥ as a function of x.

__‘_‘-‘__—-‘"—\--‘_
1 ) |
1
71 y 5!
1 T e
3
@ @
(4) Find the domain and the range of the following functions
(analytically and graphically as possible):
. . 1
Of)=x*+1 (iDg(x) = Py (iii)h(x) = |x + 1
@)@ =V2x  Ome) =lx-1 @i)fe) = T-x=2

1] -1
(wii) f(x) = I—ﬁ%—- Wiid)f(x) = Jx2 =3




(i) g(x) =Vx*—2x +5 GOf (x) =

x—1

(xi) g(x) = V4 — x? (xi)h(x) = V3 —x

(5) The greatest integer function is denoted byf (x) = [x] and it returns
the largest integer that is less than or equal to x. Find the domain and

range of f.
(6) Determine whether each of the following statements is true or false
explaining why:
(a) The curve that intersects the x axis at two different points
cannot be a function.

(b) The domain of the real valued function consists of all the real
numbers for which the value of the function is real.

(c) The range of the absolute value function is all the positive real

numbers.
@Ifglx) = %5 then the domain of the function g consists of all
the real numbers x for which f(x) # 0.
(N Ify = x% — 2x + 5, answer the following questions:
(a) For what value of x is y = 07
(b) For what value of x is y = —10?
(c) For what value of x is y > 07?

(d) Does y have a minimum value? A maximum value? If so, find

them.
() If y = 1 + +/x, answer the following questions:
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(a) For what value ofx isy = 47

(b) For what value ofx 18y = 0?

(c) For what value ofx sy 2 67

(d) Does y have a minimum value? A maximum value? If 30, fing
them.

(9) Write the following functions as piecewise functions (Le., wig

no absolute values)
Q) f(x) = |x| +3x—1 (iDg(x) =3+ [2x - 5]
(iii) h(x) = |x| + |x — 1] (iv) g(x) =3|x — 2| — |x +5].

(10) I f(x) = 3vx — 2and g(x) = |x|, complete the following:

B F+4)08) = e and its domain is ......ceeviivennnis
B(f—g)X) = ivineniiann and its domain is «..o..uus ceuialne
C(fPDE) = oiriiiinannnn. and its domain is ...........\000
@ CF g = cileinndiiiinsn and its domainis ..................

(I If f(x) = 2 — x? and g(x) = Vx, complete the following.
@) (fog)(x) =
® (gof)x)=

(12) Using the curve of the function f given in F igure E-2, plot the
following equations

Dy =flx)—1 @y =f(x-1) (iii)y = % f(x)
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b
D = e i —— — — — —

XY

-2 _;_

Figure E-2

(13) Write the function f as a composition of two other functions, ie.,
find two functions g and h such that f = g © h.

1
Of) =Vx+2 (@(Df(x)=x*=3x+5] (@Df&) =773
2
()f(x) = [2x +5] Nf() =——35 wi)f(x) = x* + 1.
(14) Use the data in the following table to plot y = f(g(x)), then find
the domain of g © f.

X a3 B o} 0 1 3
fix) -4 w3 9 -1 0 1 %
g(x) -1 0 1 2 2 2 23
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AS)IFf(x) ===, glx) =3, and, h(x) =2° — 1, then

x-1'

(FOGOR)(X) = .cconniennnnennnes and its domainis ...~

(16) Determine whether the following function f is even, odd or Neithe;, |
x5 -X

1+ x2
(f)=x+1 Wfx) =2  @)f(x)=x>

(Df (x) = x? (iDf(x) = x| @Dfx) =

(17) If the domain of the functionf is the set of all the real numbers,
determine whether each of the following functions is even or odd.
Explain. "

(l)g(x) - f(x)+2f(—x) (H)h(JC) = f{x)"zf(—X)-

(18) Discuss the truthfulness of the following statement: the function f
is odd if and only if £(0) = 0. '

(19) If the domain of the function fis the set of al] the real numbers,

prove that it can be written as a sum of two functions one of them is
even and the other is odd.

(20) Use the symmetry test to determine Whether the graph has
symmetries about the x-axis, the y-axis, or the origin

N a2 e
(Dx =5y“+9 (i)x? - 2953 (lii)xy =5 ik




et
7N

R . Rk s 9'?,"’. :‘

(21) The following figures show a part of the curve of the function I
complete the curve of the functionassuming that
(a) f is an even function  (b) f is an odd function.

£ ¢
¥ 53 y."[
44 i
34 )
a4 1t
1+ 1
3 3 2 1 1 L] i H 4 ] 3 1 1 H 3 4
a1t x KE x
- 24
B R 34
4 44
.g¥ _,l

(22) Use the proper translations to plot each of the following equations.
Dy=1—-Vx+2 (Dy=2(x+1)32 (i) y = x4k 2x
(@) y = lxl @y =70 @)y =-3(x~2)>%

(x+1)?

(23) Determine whether f is a one to one function.

1
x—1

@) fx)=vx+2 (@) fx)=x*-9 (i) f(x) =
(iv) f(x) = |x - 5] W) f(x) = ffs (i) f(x) = x8 — 1.

(24) Show that each of the functions f and g is the inverse of the other.
Discuss this using the curves of the two functions (in the same graph).

x—1
2

Dfx) = 2x + j glE)y=
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(Dfx)=x2-9, gx)=Vvx+9,x>-9

1
Wfe) == x#1, gx)=1+-,x#0.

(25) Show that f is a one to one function and find its inverse, d
and range:

Omajp

1
Df(x) =Vx+2(i)f(x) =x—9 (i) f(x) =

X—=1

i
((V)fxX)=1+Vx=3 ) f(x) =m WD f(x) = 43 -1

5
==X, X% 2
(Wii)f (x) = { 2 (wiii)f (x) = [xfx» x<0

1 >2 1 x>0|
— Xz
X

(26) Let 0 = tan™1 G) Find the values of

sing, cos@, coté, secB, cscho.

et e s it B 2t S e sl i

(27) For which values of xis true that? 1

(i)cos™*(cosx) = x (it)cos(cos™1x) = x

(iidtan™(tanx) = x (iv)tan(tan~1x) = x.
(28) Complete the following identities.

(D) sin(cos™1x) =

...................... (i) tan(cos™1x) = ...
(ii)esc(tan™x) =............ (iv)sin(tan“lx) = .0
(W)cos(tan™x) = ... . (vi) tan(cos™x) = ... .c..biin
(wil)sin (sec™%x) =............ (viii)cot (sec i)y i e

(29) Prove each of the following:
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(i) sin~'(—x) = — sin™x (idtan~1(=x) = —tan~1x

(iii) cos™H(—=x) = w — cos™1x (iv) sec™l(~x) = w — sec™x

xl <1

x

- _ -1
v) sin~'(x) = tan ,
) V1 =x2

=1

(vi) cos™1(x) " _tan :
vi) ¢ = ;
2 V1 -2

(vii)tan™1x + tan™1y = tan™1! (f_?;_) o < tan~x + tan~'y <

T

E.
(30) Without using the calculator find the value of each of the following.

lx] <1

1
()log1016 (ii)log, — 32 (iif)log,4(0.001)

(EI?J|!0944 (13'_) 10993 ('l?i)lﬂgm(lﬂ)‘

(vii)In(e?) (viii)InVe.

(31) Without using the calculator find the value of x.

(Dogro(1 +x) =3  (iDlogioVx =—-1  (iii)In(x?) = 4

(iv) In G) . Wlogs(3) =7  (vi)logs(5%%) = 8

(wii)ln(4x) — 3in(x?) = n2  (viii) In ( 1) + In(2x%) = In3

(iX)3* = 2(%)5~%* = 3 (xi1Be™* =5 [ =T

(xiii)e* — 2xe* = 0 (xiiif)xe™ —2e™* =0

(xv)e‘zx — 3™ = -3




(32) Expand the logarithm in terms of sums, differences, al‘ldproduc‘s ¢
0

simpler logarithms.
xisin’x

(i)log(l(}x\r‘x -3)=3 (ii)In( m)

3 2
(iii)log (g) (iv) In( 23:;) =—2.

(33) Prove each of the following:

log.x

(Dlogyx =
lo

. (it) log(xy) = logx + logy
b

(iii) log G) = logx — logy(iv) log x¥ = ylogx.
(34) Write the following function as a rational function of x.
3 ln(EZx(ex)S) 4 zeln’l_

(35) Discuss the truthfulness of the following statements.

X
Ine™ = x, e¥ =y, eXInb = px 454 eninx — 41
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Chapter 2 : Limits and Continuity

Learning Outcomes:
By completing this chapter, it is expected that the student will be able to:
- Define and find limit and limit from the right from the left.
- Define and find limit at the infinity.
- State the properties of limits.
- Apply limit properties.
- Define and study continuity of some functions.

- Determine the points of discontinuity of the function and redefine

the function to be continuous.

In this chapter, we will present a basic concept of the limit, which is
extremely important and one of the most important part of calculus.

We will explain how the value of f (x) get closer and closer to the
number L where its variable x get closer and closer to a given number a.
Hence, we present the precise definition of the limit of the function
f (x) using € and §. Then we present the properties of the limit that help
to find the limit of a function in an easy way.

Our main concern with the limit is the establishment of the definition of
the continuous function, laying the technical basis for the definition of
differentiation, by the end of this chapter; we will show the importance

of limits in defining continuous functions that are widely used in

calculus,




2.1 Limits

In the first chapter, we discuss the concept of the function and fipg the
value of the function at a point in its domain, and we stopped the

points where the function is undefined, as an example, for funetio,
Fix) = -1—1 that undefined at x = 1 (it does not belong to the functioy
x—

. domain) and therefore we cannot examine the properties of the function
at that point and so we need another concept to use it to examine the
function at this point which is to examine the behavior of the function
near the point (in the vicinity of the point) x = 1 that is known as the
limit of the function, and therefore we can define the limit as
preliminary as an examination of the behavior of the function where js

independent variable gets closer and closer to a certain value as in the

following definition.

Definition 2.1.1: (Preliminary Definition of the Limit)

If the values of f(x) can be made as close as we like to L by taking

values of x sufficiently close to a (but not equal to a),
limf(x) = L,
which is I'ead “the limit Of f(X) as x approaches a iS L” or 1 (x)

approaches L as xapproaches a.” This expression can also be written as

then we write

f(x) > L where X - q.

We will discuss this concept in the following example.
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E.\'am[!lﬂ 2.1.1:

Examine the behavior of the functionf(x) = x + 1 as x approachesland
give an appropriate conjecture to its limit.

Solution:

We will examine the behavior of the function as x gets closer and closer

to 1 using some different numerical values of x as in the following table:

(see Figure 1-2)

. >
Ll -

=8 0 | 0.5]0.9(0.99]|0.999 &l 1.001 | 101 | 1.1 |1.5]2

fe 1 |15 1.9 |1.99]|1.999 (@288 2.001 | 201 | 2.1 | 2513

b o
Ll -

From the table we note that, as x gets closer and closer tol from the left
(values are less than 1) the function gets closer and closer to 2 and as x
gets closer and closer tol from the right side (the values are greater than
1) the function gets closer and closer to 2.Thus 2 is an acceptable

conjecture of the limit of the function as X approaches 1 and we can

write:

iﬁ?}f(x) = iﬁ?}(x +1) =2




S ——————————

fx)=x+1

L

Ly

Example 2.1.2:
Examine the behavior of the function g(x) = Vx as x approaches 9 and

Figure (2-1)

give an appropriate conjecture to its limit.

Solution:

By the same method in the previous example we get the following table.

-

-

X

8.9

8.95

8.98

8.99

8.999

9.001

9.01

9.1

S

10

g(x)

2,98

2.99

2.996

2,998

2.999

3.0001

3.001

3.01

3.08

32

—

B
-3

i
-+

From the table we note that, as x gets closer and closer to 9 from the left

(the values are less than 9) the function approaches 3 and as x gefs

closer and closer to 9 from the right (the values are greater than 9) the




Bt
Y.
b A

] !'-:1 4
1)
0 7
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function gets closer and closer to 3.Thus 3 is an acceptable conjecture as

the limit of the function where x approaches 9, and we can write:

I3 006) = i 7 =3

In the previous examples we have studied the behavior of a function
near a point in its domain, what will be the case where the point is not in
the domain of the function, this is what we will discuss in the following
example.

Example 2.1.13:

x2-16
x—4

Examine the behavior of the function f(x) = as x approaches 4

and give an appropriate conjecture to its limit.

Solution:

Note that: x =4 does not belong to the domain of the function,
although the limit of the function exists. By the same method in the

previous examples we get the following table:

. &
L -

x 39 | 395 398 | 3.99 | 3.999 | 4| 4.001 4.01 41 4.5 4.6

f(JC) 79 | 795 | 798 | 7.99 | 7999 | 7| 8.001 8.01 8.1 8.5 8.6

. -
> -

From the table, we notice that, as x gets closer and closer to 4 from the

left (the values are less than 4) the function approaches 8 and as x gets

closer and closer to 4 on the right (the values are greater than 4) the




function get closer and closer to 8, Thus 8 is an acceptable Conjectyr, ”

the limit of the function where x approaches 4 and we can Write:

. :ch——16_8
:lcﬂf(x)_fcﬂ x—4
See figure (2-2)
Yot

s s s : [
| I [
]5‘ mE T
T A
g x%=1467 | §4+0 e
T f= % 1 11
=T | ¥y
' l | t: 2
; t | : { . ! ; = —
1 g 3 4 5
— —

Figure (2-2)
Note:

The function f is not required to be defined at the point a (i.e., it is not

necessary to be a in the domain of the function f), but function f must

be defined in the vicinity of the point a (that means in an open interval
containing a).

Example 2.1.4:
Let f(x) = 3 + 1.Find lim f(x).

X—-8




Through the following brief table:
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x | 75| 79 | 799 | 7999 [8] 8001 | 801 | 81 | 53

f(x) 2.875| 2.975 | 2.9975 | 299975 |3| 3.00025 | 3.0025 | 3.025 3.125

We conclude that lim(lx +1) =3.
x-8 4

In this example we note the following.

¥7.5 <x < 8.5 then 2875 < f(x) < 3.125.

If7.9 < x < 8.1,then 2975 < f(x) < 3.025.

If 799 < x < 8.01, then 2.9975 < f(x) < 3.0025.

If7.999 < x < 8.001, then 2.99975 < f(x) < 3.00025.

This means, if € > 0,8 > 0 (two positive and small real numbers), then
we conclude if:

B~6<x<8+8,then3—~e<f(x)<3+¢
In the first case: § = 0.5 anda=§.

In the fourth case: § = 0.001 and € = g.

It can be written in another form as follows:
f-6<x—8<8§,then —e< f(x) —3 <&
That is, if |x — 8] < §,then [f(x) — 3| < &
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From the previous example, we can define the limit as followsg

Definition 2.1.2: (Limit)

Let f(x) be defined for all x in some open interval containing |
:

number a, with the possible exception that f(x) need not be defingg i

a.
We will write
lim f(x) =L
x-a
if given any number £ > 0 we can find a number 6 > 0 such that

|f(x) — L| < € whenever 0 < |x — a| < é.
Example 2.1.5:

Using the definition of the limit, prove that lin% 2=
X—
Solution:

We try to find § > 0 for all £ > 0, so that if |x — a| < §, then
|
lfx)-Li<e | |

Assuming € > 0 where |f(x) = L| < ¢

=>|9x—2
4 —4|<E
9x—2-16
=
Pt
x—2)
=
= <
or
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4
=>|x"2|<§8

__4 Il — 9x—
If§ =€ so for all|x 2|<6,then|i4—2—4|<a.

In all the previous examples, we discussed the approach of x to apoint
(x = a), but we have not discuss yet: Is this approach from the right or
from the left? Is the limit of the function where the approach from the

right side necessarily equals the limit where the approach from the left?

ey

Wherever does the limit of the function exist? The following example

and definition illustrate this idea.

Example 2.1.6:

Find lim f(x)if
x-0
iy x<0
Solution:

As x approaches zero from the right, we find that:
lim f(x) = 2
x=0
Asxapproacheszero from the left, we find that:
lim f(x) =0
x—0

This means that lirré f(x)is not unique and therefore we say that the
Xx—

limit of the function f(x) does not exist as x approaches zero (see

Figure 2-3).




4 -t
34
- f{x) = z’x 2 0
2 —
1_-
f(xX)=0x<0 !
| S— ¢ + t ==pe—i—] i —t—
N A A 1 2 % ool &
-1 X
-2
-3
4
-5

Figure (2-3)
2.2 One-Sided Limit

Sometimes we are interested in examining the behavior of a function a5

the variable x approaches one side-




%.'f:ﬂ‘,'«*
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(2) The function f(x) is said to have a left limit L as x approaches a

f[‘DI]'l tl‘le let‘t (x < a), that- iS Written xlim f(x) = L, if for cac_h E> 0
Y

(it does not matter how small the number € ) there is § > 0 (depends on
g) so that foreach a — 6 < x < athen |f(x) - L| < €.
(1) The symbol x = a™ means that x is greater than a and approaches
from the right, and the symbol x = a~ means that x is smaller than a
and approaches from the left.
(2) The only difference in the above definition is the restriction on the x
axis: the limit from two sides has 0 < |[x — a| < &, while the limit on
the right side has a < x < a + §, and the limit from the left side has a —
b<x<a
(3) The concept limit as defined in 2.1.2 is sometimes called "two-sided
limits".
(4) For the limit of the function to be exist, the right limit and the left
limit must be exist and equal at a.

lim, () = lim f(x) = lim (<)
(5) If one or both of the one-sided limits fail to exist or are not equal we
say that the limit does not exist.
Example 2.2.1:

x2—1 ., x52
5 : =
2+t , X€L

T

g e



Find

lim_ f(x), lim f(x),andlim (x).

x=2

Solution:

e Forx > 2, we have f(x) = x? — 1, thus xlil;.{1+(x2 -1 =3

i ¢ Forx < 2,wehave f(x) =x+ 1,50 f(x) =x+ 1.

R Since the limit from the right side equals the limit from the siqe

then the limit of the function exists and equals lin% f(x) = 3.
X—

| i Example 2.2.2:

: Let
B Ix - 3|
| '!Il-". f(x) = x — 3 '
k Find "
Jim f(x),  lim f(x),andlim £ (x).
Solution:

From the definition of the absolute value, we have
|x_3|_{ x—-3 , x-320 4
T i-E—3) 5 =310

or

|x"3|—{ xX—3 X3
“-x-3) , x<3.
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. |x=3)
im = -1,
andlLs_ e

X—-

. |x=3| .
therefor lim — does not exist.
x=3 X

2.3 Techniques for Computing Limits

In this section we will give some important properties and theorems for

computing limits that cannot be computed by direct techniques.

Theorem 2.3.1: Uniqueness of limit of function

If the limit of the functionf (x) at a point a exists, then it is unique.
Proof:
We will proof the theorem using the definition of the limit.

Let L, and M be two limits of the function f(x) at a.
ie. limf(x) =L, and }I{im f(x) = Msuchthat L # M.
X—a =a

We will show that, it is a contradiction.
Lete >0,

since lim f(x) = L then for every &, = gtherc exists §; > 0 such that
x—=a

if 0 <|x—al| <8, then |f(x)—L|<81=§.

Likewise if lim f(x) = M then for every &, = gtherc exists 6, > 0
X=a
such that if 0 < |x — a| < §,then |f(x) — M| < &, =§.

Let § = min{6,, §,} (the smallest number betweend;, §,) such that
0<|x-a|<8§.

Then |L — M| = |L — f(x) + f(x) — M| < |L— fCO] + |f(x) — M| |
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£ £
<gte=ztz=¢&

Since € > 0 is an unspecified value, then it can be chosen very -“
zero, that means that |L— M| =0, implies L =M which ;
contradiction.
So our assumption that L # M was wrong, thus, if chl_?".*tll f(x) =L then
the limit L is unique.

Theorem 2.3.2:

The limit of the constant function is the same as the constantﬁlnctio"
1.e., if f(x) = L (where L is a constant), then :
limf(x) = lim(L) = L
For every € > 0 there is 8 > 0 such that, If 0 < |x — a| < § then
|[f(x) — L| < &. We can choose any small positive number § > 0
because the function f does not depend on x (f(x) = L), ]
then |f(x) —L|=|L-Ll=0<e.
Theorem 2.3.3:

I f(x)= i, then the limit of the function where x approaches z¢

e 8 wir P _
not exist, 1.e., lim (—) does not exist.
x—=0 \X




Proof:

We assume, by the way of contradiction, that lim (l) = M i.e., for every

x=-0 \X

¢ > 0 there is 8 > 0 such that if [x — 0] < § then E—Ml < g, orin
other words if =6 < x < dthen M — & <§<M+E_
The first case: f M > 0, thenﬁ > 0, i.e., if x so that

x<;,,l+;= and 0 < x < § then for all x<§ theni>M+E, which

contradicts the assumption.

and

The second case: If M < 0, then 51:; < 0D i.e. if x so that x > -

x> —0 then for all —§ < x < 0 then % < M — & which contradicts the

assumption.

In the first case the positive number M cannot be found such that,

lim (1) =M.

x=0 \X

In the second case, the negative number M cannot be found such that,

lim (l) =M.

x—0 \x
o {1 :
Therefore, lmg --) does not exist.
x-

2.4 Limits Properties

Suppose that :EHE f(x) and il_?)?c?i g(x) exist, and if ¢ is a real

constant then;
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(1) The limit of the constant function is the same as the Otz g

function limc = c.
xX=—=

Example 2.4.1: |

i —— e e

If f(x) = 3, then lim f (x) = 3.

(2)limlcf(x)] = ¢ lim[f ()]

e E———, -

(3) If £ (x),and g(x)are polynomial such that

! f(x)=bn+b1x+b2x2+~-+bnxﬂ

g(x) = co + 1% + Cax% + -+ Cpx T

where by, by, b3, .., b, €01 €1, €21 -+, CpaT'€ real constants and nis a

; positive integer, then
)Ic!_'?&f(x) = f(ﬂ) = by + bya + bzaz o i bﬂa“.

) _ f@
m

xag(x)  g(a) g

(4) The limit of the algebraic sum of the functions f(x) and
equals the algebraic sum of the two limits of the function, i.e., :

um([f(x) £ g(0)] = lim f(x) £ lim g (x).

In general, the limit of the algebraic sum of a finite number of

functions equals the algebraic sum of the limits of these functiﬂ;"
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Example 2.4.2:
Let f(x) = x* = 3 and g(x) = x + 1. Find lim[f (x) + g(x)].
x=

Solution:

Since lim f(x) = lim(x® —=3) =23 -3 =5 and
x—2 x—2

limgx) =limx+1)=2+1=3.

x.—;Z x—2

So
lim[f(x) + g(x)] = lim f(x) + limg(x) =5+3 =8,
x—=2 x—2 xX—2

Example 2.4.3:
Let fGe) = 3x°+ 5x—19, Find lim f(x).

Solution:
limzf(x) = xlimz(sz +5x—9) = 3(—2)2 +5(-2)-9=-7.
x—— ——

G)lim[f (x)g(x)] = lim f(x) lim g(x).
x—=a X=a xX—a
Suppose the existence of these limits, the limit of the product of two

functions equals the product of the limits of the two functions.

Generally, the limit of the product of a finite number of functions

equals the product of the limits of these functions.

Example 2.4.4:
Find chfnit(x + 2)(x = 3).

Solution:

Since lim(x + 2) = 3, lim(x — 3) = —2, then
x-1 x-=1

A —— T
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l' - — Ji ] — = =
Lim(x +2)(x - 3) lim(x +2). lim(x = 3) = 3(-2) = _¢

Lim[f(x)]
(6) Let llm[g (x)] # 0. Then llm [Qg; = T;::[g(x)]
x—a

Suppose the existence of these limits, the limit of the quoti e

two functions equals the quotient of the limits of the
functions. .

Examgle 2.4.5:

Find
[ 6—3x+ 10x?
lim :
x-1|=2x%4+7x3+1
Solution:

lim(6 — 3x + 10x%) = 13,and lim (—2x* + 7x3 + 1) = 6,
e a 4

So that

1m
x-1

o [ 3%+ 1027 ] S e 10n) _= |
—2x% +7x3 + 1 lixml(-Zx" +7x3+1) iGH

n
(7) ?151_1;1‘11 [f )] = [}‘l_r)% f (x)] ,» where n is a real number

limf(x) # 0at n=0. If n is an integer, then

x—a
completely similar to the property number (5).

For example, if n = 2 then




lim[f ()]* = lim [f G f ().

x=a

Using the property No. (5)

. 2 = . — 1 2
lim [f ()] = lim f(x) lim £ (x) lim[f ()]
The same can be done for any integer n.

@)im Y7 = limlf @l = [tim fGJ" = " [lim o).

(9) limx™ = a™, where a and n are not zero in the same time, this is
x=a

a special case of the property (7).
(10) if the direct substitution results in f(a) in the indeterminate

form %, then algebraic operations must be performed to compute
lim f(x).

x—a

Example 2.4.6:

3
; . x3=1
Find lim
x=1 x—1

Solution:

; ot iy . : 0
By direct substitution we get the indeterminate form o and therefore an

algebraic operation is required (factoring the difference of two cubes).

x3-1 _ (x-1)(x%+x+1) _ . —

e x-1
so that
 x3—1
lim = lim(x*+x+1) = 3.
x=1l X — r—1

| —

by Frie
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Example 2.4.7:
Find lim x(1 + x~%).
x=0

Doy g R A

R

IR Solution:
'R
il B Where

limx(1 4 x™Y) = limx lim(1 + x71).
x=0 x-0 x-0

e ST

| By direct substitution we get the indeterminate form of 0. co.
E So we have to perform an algebraic operation. : 4

limx(1+x™ ) =lim(x+1) =1
x—0 x-0

Example 2.4.8:

; . x—V2+x
Find lim :
x—=2 Xx-2

Solution:

Rt G v s S D TR T S

By direct substitution we get the indeterminate form %, and therefo

| algebraic operation is required.

im X Y2tx . (x—V2ZEx)(x+V2+2)
x=2 Xx-2 x—2 (x__z)_(x_l_m

* . xz-——x-z
: = lim

X2 (x — 2).(x 0! \/m)

P !im (x F 2)- (x + 1)

xX—2 (x — 2),(1- 5 m




_'I_‘igeol'em:2.4_.l_

xn — a?’l
lim —__] = nat1,
ol x=u
Where n is a positive integer.
Proof:

Letx=a+h. Then h — 0 where x — a.

x™ —a” n_ n
lim —] == itm (a+h) o

X=EL X— G *»a a+h-—a

(a" +%a“‘1h + %ﬂa“‘zhz + -t h’"‘) —a®

=~ R
’ (a" + %an”lh +%a“_zh2 + -+ hn) —a"
= ko h
" h(%a"‘_1 +n(n2—:1)a"‘2h+ ---+h““1)
- hlfri]' h

=na®™1+0+0+--40




Theorem 2.4.2: Some Important Limits

sinx (1 — cos x)

S B = A e 2 =0 id) lim
) :lcli?% ¥ . i) :Ir—bo X x=0
iv) limsinx =0 v) limcosx =1

x—=0 x=0

1 : 1
iv) i:"'li.’i.(l +x)x=¢= 271828 or il_?"rg (1 P ;) = &

e —1
vii) 1im 22D _ 1 iy tim
x=0 X x=0

= 1.

We will prove some of these limits.

Proof:

1- Proof of the relation (if)

(1—cosx) .. (1—cosx)(1+cosx)
lim——=1lim
x=0 % x—0 X (1 + cos x)

. 1—cos?x
= lim
=0 x(1+ cosx)

Using the identity sin®x + cos? x = 1 then

. (l—cosx) sin? x
lim———————= =i
x-+0 X x>0 x(1 + cos x)

. Sinx sinx
= lim li

m
x50 x x=0x(1+ cosx)

0
-—"1.("-———)=
1+1 .

tan X

il
x 1
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2- Proof of the relation (iif)

 tamx . /sinx 1 . sin x
lim = lim ( ) since, tan x =
x-0 X x-0\ X COSX COS X
- (sinxy . 1
= lim )hm( ) — s 5
x=0 X x=0 \COS X

We will prove the relations (vi)and (viii) only for reading, and we will

illustrate them in more advanced courses.

'- .-3- The proof of the relation (vi), by using the binomial theorem

1-% A-01-22)
B g +‘

i W (1-x) (A-00-2x)
R L TN ’

R R
: s S— L & EEF GAW RAE EEE 8 1
e"=(1+x+21+2!+ i (1)

L 1 1. .]=
i%(1+_x)x==[1+1+ii+§-!+ ]-'3
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4- Proof of the relation (viii)

im——

1
log(1+%) _ jim=.log(1 +x)
x—0 X ¥

x-0

it
= lim log (1 + x)*

x—0
=loge =1
5- Proof of the relation (viii)

From (1), then

x2 x3
I LA s
e 1 (1+x+2!+2!+ 1)

ol s
e"'—1=(x+—+——+---)

2! 2!
dividing by x we get
8
e¥ —1 (x+%—+%+ )




=1+0+0+
Example 2.4.9
Using the limits in the theorem 2.4.2, find the following limits
sin(3x) sin(x?)
= b
(a) }Lﬂltlm 9x ( )!tl—qé x sin(x)
g 1 —cos(46) 1 —cos(x)
‘ d) lim —————=
o (c) };'f['; 1 — cos(68) (@) ELL S
g x + 3sin(x)

(&) !tr

n\/}z +4sin(x) +1—/sin?(x) —x + 1

J. X

DIt @l

sin(3x) i 1 sin(3x)
- o\3" " 3x
] sin(3x)

] 1
x-E%B _{_lll’a 3x

_here we used the property lll'n = ':L( Y -
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sin(x?) (sin(xz) X )

(b) :lcl—% x sin(x) i }cl—r*nﬂ

x2  sin(x)

. osin(x®) . «x
= lim im —
x>0 x2 “x-0sin(x)

" sin(x¥) . 1

= 1m 1M —

x-0  x2 x—0 Sin(x)
X

O i 1—cos(46) . 2sin®26
6501 — cos(68) 602 sin? 30

(sfnza o g ( 30 1)2
20 )'sin39'39

" (sinZG)z ( 36 )2 46?
~6-0\\ 20 / "\sin36/ 962

2

2

4  rsin20 , 36
='9"‘z'e-,o( 20 ) '315To(sm39)

4

9




Where we used the identity 1 — cos(x) = 2 sin2 (f)
5 )

x + 3sin(x)
(e) lim
20 VX2 +asin(x) +1— [sin2(x) —x + 1
1o x + 3sin(x)

=20 [x2 +4sin(x) + 1— [sin2(x) —x + 1

Jxz+4sin(x) + 1+ fsin?2(x) —x + 1
Jx2+4sin(x) + 1+ /sin?2(x) —x + 1

(x + 3sin(x))(x2 + 4sin(x) + 1 + fsin?(x) — x + 1)

= lim

X0 (x% + 4sin(x) + 1) — (sin2(x) — x + 1)
(x + 3sin(x))(/x2 + 4sin(x) + 1+ [sin2(x) — x + 1)
oy x? —sin?(x) + 4sin(x) + x
divide by x
sin(x) 2 2
(A 4+3=)(Vx® +4sin(x) + 1+ ysin?(x) —x+ 1)
oy iﬁ% sin (x) sin(x)
x — sin(x) + 4 +1
_42) _8
4+1° 5

E 1 5
| 6] ;lﬂ%(l + 3h)r = }lgrg(l + 3h)3k

= lim la+ 311)$]3 = 3,

T

l139
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I
L

SLESERT R - el

nction in (g) we use the

In order to compute the limit of the fu

—X_1 .

(o ] = — ve lim =1, th 1

relationship lm&?—x— = 1 for x = —x we have 2= enthe -
X 3
required limit can be written as, E
e* —eg™% e*—1+1- g - im eX—1 2 1-— e"'xl
il—?% X = Jlrlfot X x-0 X X
. el 1 ;

= lim + 3
x=00 x (—x) E

x—0 x-0

.x_ -x,_l
= lim E-~-—1—].Iim[e—-—-—]=1-|-1-_—2

L x ()

x_g—x

- I[m——'— — 4
x—=0 x

In order to compute the limit of the function in (f), we assume x =h 4
lso(x=>1)e (h-0) L

g e 1+h 1.0

1 . € =g . e-e —e
lim O S W
x21x—1 n1 h h>1

ECEh’ -— e) ‘ (eh % b 1)
= {m 0§ 1 R
h=1 h h—-1 h
=el=e¢e
. e¥—e
lim —_—
x=1 ¥ —

Theorem 2.4.3:

If f(x) < g(x) forall xin an interval containing a (except for thé DOII

itself) then }cﬂ fx) < LT}I 9(x).
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Theorem 2.4.4: Squeeze Theorem

If f(x) < h(x) < g(x) forallx in an interval containing a (except for
the point itself) and lfiﬁ?al f(x) = fﬂf&g(x) =1,

Then h(x) has the same limit as f(x),and g(x). (See Figure 2-4)

Proof:

Since lim f (x) = L,from the definition of the limit, for each £ > 0, there
x—=a

is § > 0so that if [x — a] < 6; then |f(x) — L] <e.

Also limg(x) = L, then for each £ >0 there is &, >0 so that if
x=a

|x —a| < 8, then |g(x) — L| < &.

Now by choosing & = min{8;,8,} (the smallest number between (4,

8,) if |[x—al <& then g(x),and f(x)are both lie between L —

gandL +¢ as well as f(x) < h(x) < g(x) implies that L —e <

h(x) < L + & meaning that —¢ < h(x) — L < € or |h(x) —L| < € ie.,
limh(x) = L.

X=a

5
sinx
AT cosx:T{I.:r—-O
3
2
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Theorem 2.4.5:

Let @ be a real number in the domain of the given trigﬂnome*'

function. Then

(a) limsinx = sina (b) limcos x = cos A

x=a x=a :
(c) limtanx = tana (d) lim cot x = cota :
x—a x—=a

(e) limsecx =seca  (f) lim csc x = c¢sc a.
x—=a x—=a

2.5 Infinity Limits
When we try to find the limit of the function i where the value of thcf

) ; P
variable x approaches zero from the right, we find that — ncreases

: : ..
without an upper bound, i.e., lim == 0.
x-0t X :
Noting that co expresses the behavior of the function and is not a n:

on the real line.

Definition 2.5.1:

(1) If f(x) increases without bound in the positive direction, where X
approaches a from both sides, then we say that f (x) approaches iii“

where x approaches a and written as lim f (x) = oo.
x—=a

(2) If f(x) decreases without bound in the negative direction wh
approaches a from both sides, we say that f(x) approaches the ",_-fs_;

infinity when x approaches a and written as lim f(x) = —oo.
xX—=a
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Example 2.5.1:

1
Find ilm Loy
Solution:

We note that where x gets closer and closer to1 from both sides,

(x - 1)2 1s positive and gets closer to ZE€ro, so = 11)2 increases without
an upper bound, i.e.,

li 1

im = 00

x-1(x — 1)2

Example 2.5.2:
SN T
Find lim =, if it exists.
x=0X
Solution:
1
Note that hm —=o and lim - = —o0 50 that.
x—=0 x=0" X

1
lim —# lim -
x-0"Xx x-=0*x

So the limit does not exist.

. 2.6 Limits at Infinity

i If the value of the variable x increases without bound then we say that x
'-'-"approaches +00 and write x — +00 and where the value of the variable
_x-_:deqlreases without bound we say that x approaches —co and write x —

~. For example we have,

o g .. I
lim ==0or lim == 0.
x—o—0c0 X x—=+00 X

?n&aﬂ. "
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: The result —
Values for the variable X |
x -1 -10 66T 1000 | 10000 | . | When xapproaches—o, IW
] 17 &
1y -1 01 | 001 | -0001 | -00001 { .- the function 1/yincreases to Lero :
X 1 10 100 1000 10,000 When xapproaches -+, thw _
1 .
1y 1 0.1 0.01 0.001 0.0001 the function /xdecreases to zero &
y ] .f
= 1
x)=—=0,x—x
3 f( )= x
z—l-
—00 = X 14
! i
X — 0 i
f(X)ﬁ-—}ﬂ X = =00

Figure (2-5)
Definition 2.6.1 : Limits at Infinity £

If the value of the function f(x) approaches L where the value of thc

variable x increases without bound we say that f(x) — L as x -b+ 0 of

lim f(x)=L.

x—+00

Likewise if the value of the function f(x) approaches L where valu

of the variable x decreases without bound then we say that f(x) 2

x = —ooor lim f(x)=1L.

X——00




TPy e
A

8 1“ el
e -
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General Rules for Limits of the Function at Infinity:
a) lim (f(x))n = ( lim f(JC))n, where lim f(x) # 0atn=20
yx—=+00 x—+oo X—-+coo '

p) lim kf(x) =k xl_ggim f(x), where kis constant.

- en
C) xﬁ?wk =i
o j i ; s
d) xE;nmx_“ == xljg‘tm (;E) = 0, where n is a positive number.
1 X
0 jim (1+3) =e

Limits of Functions as X — +co

1) The power function y = x™, we note that the limit of this function
as X = +001s +00, and as x - —oo, the limit depends on the
value of the number n as being an even or odd number as follows,
(see figure 2-6)

lim x™ = 400, and lim x" = ["‘00, n= 1,385

X—+c0 X——00 +00, n = 2,4,6,
¥y y s} yomal?
il = it
3T 8 $ it p
1t 1 I_| 1t /A
. . T . l_lx-:“_. o . o= ¥ 1 . X=seo
- Sl T T RS T PR T U G T T TR 1 2 3 Y T i
Hroeartarl g4+ X 1T x
i ;
8 ) st
4 4t
51
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Figure (2-6)

Example 2.6.1:

Find the limits of the following functions. %
* 2 _ &
dMner  Bipet Qfmeosd 4

Solution:

a) lim 6x?> =40 b)) lim 6x? = +o0 ¢) lim —3x7 == i}
e A0 X—-+00

d) lim —3x"7 =+ oo, 2

X==00

2) Polynomials

Let f(x) = anx™ + @n_1x™ 1 + @y 2™ 2 4 oo 4 2 + ap.

For computing the limit of a polynomial we compute only the limit Of
the term with the highest power of x, i.e.,

llm(aﬂxn+an—xn1+ +a,) = n
X+ o) = xl_i‘r_ll_'lw(anx )
n 2
xl_lﬁlw(anx T an_lxﬂ 1 + - ao) = lim (anxn)
X—=—00




(’hapter Q-:.

e

e i e b

_E’xgm]'ﬁ-@—’

; _ _ -
a) xl.ﬁnoo( 6x3 + 7x% — 2x* + 3) xl_;};_;nm 6x3 = + oo.
p) lim (10x7 + 6x? —2) = lim 10x” = —o.
x—)-—m —3—00
¢) lim (1+ x—3x7) = —oo0,
x=+0
d) xa_@m(—Bx’? + 2x + 4) = + oo,

3 ZRational Functions

Let the rational function as

aux“-i-an..ix“ 1+an 2x""2+ -++a1x+ao

_-—_' wher n arc (8]

positive integers and we wanted to find the limit of this function as x =

+oo, both the numerator and denominator approaches too and the

function becomes in the form %, which is one of the indeterminate

forms.

Q-lﬂ

Note: The indeterminate forms are 1%, (0)?, (0)%,0.c0,00 — o, E,

There are three cases that can be studied as follows.
First case: If the degree of the numerator n is equal to the degree of the
denominator m (i.e., n = m) then the limit is equal to the coefficient of

" in the numerator divided by the coefficient of x™ in the denominator

(the coefficient of x with the highest power in the numerator divided

by the coefficient of x with the highest power in the denominator).

e PP S T e £ e A .
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Example 2.6.3:
- ¥, 3
o ezl At Bt g, TT2e
a)xl—l*l-;l-]m 2x2 —1 —x—lﬂ-}n fi_i x>+ o 7
x?2  x? <2
4
===2
2
Since, lim iﬂ:o,
x—=+too X 3
1 %
BY i 14+2x—6x3 ; }_3+2x—3_6x—3="6=__3
)x-lf-nw T R T o L 2
2 3+ 3
X x

The second case: If the degree of the numerator n is less than the

degree of the denominator m (i.e., n < m) then the limit is equal tc}'-}

ZEero.

Example 2.6.4:
. 1 g

o ARl W o B B

) B Ty I s A

L x3
1
1-3x . 5—3= 1_31

_ 0
b) lim ————= lim ¥ %= |jy 2 " x__ _
)x—n—oo 2x24+9 xo-w 23‘_2 hd xl'l’g’lm Rl 2 .

The third case: if the degree of the numerator n is greater fﬁan the
degree of the denominator m (ie, n > m), the limit is equalto

400 or — oo.



Example 2.6.5:

x4 x
6x*—2x = 65—2=
) lim = lim ——=
a y—+00 3x3 —8 x—=+00 o X7 _8_
’ x3 3
1
Ix — 2~
= lim X = +o0
X—=+00 8
R
X
1 x5 )
1-8¢ . =h= = — 53
x--002x2% + 3 x—’—'mzf_+i x—>=00 9 +i
x2  x2 x2

These three results can be summarized as follows:

0, n<m
. apx™ + ap_1x™ 1+ -+ ag a,
lim =47

= n=m,
x40 | by X™ + By xM~1 4 .. 4 by

bm'
+o0, n>m

4 : (Limits of trigonometric, exponential and logarithmic functions)

In general, the limit of sin x and cos x as x = 4+ or x - —oo fail to
exist, because these functions are periodic and their range is [—1,1]
and therefore they are not constant and have no limit.

As for the limits of the exponential and Io_garift}i-”- i "c;tions, they

are as follows:

lim e* = 400, lim Inx = +
X—=+4+00 x—=400

lim Inx = —c0, lim e* =0
x-0% X——00

lim e™* =0, lim e™* =400
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As shown in Figure 2-7.

Yy

gl s!

Figure (2-7)




Exercises
1) Find the following limits, if possible.

2
: —_ -2
Olim@x=3) @) lim2x (i) lim > (iv) lim =
x-1 g 752 x-3 " : x-pz6 X - x'rz 9
X = X" —ox+ R
lim———— vi) lim i) li
o e & H—— 3 tout] e o=
i x3 — 7x2 (Ol 5 — x2
vii))lim———— (ix)lim li il
( =3 x—7 x5 \f§1— £ (?qf;mlx |
1
T X —
N lim ——— Xif) Imath__h
(f;l-)}w Vx ( h)-—ro
2) Using the definition of the limit, prove that
2
x —
(@) lim =5 (b) limx? =9
g5y X~3 x—3
li (1+2)—3 (d) li Lo
s i A
3) Let
_(4x?2-1 , x<1
: f(x)_{3x+2 i XL
Fmdxlir{;'_ Hx).
4) Let
( =8 x< -6
3x+10 , —-6<x <=2
f(x) =5 =5, x=-2
x* —2 L EZD
\ -2x+9 , % >3

a) Show thatxg_mﬁ f(x) = f(-6).
b) Show that Lim f(x) = f(-2).
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c) Show that lin;, £ (x) does not exist.
xX=

5) Find the following limits.

(a) lim(14 — 6t + ) (b) ii_:;ré(sz + 7x — 16)
. 22 -8z ) x+7
s (@ i e e =10
(€) lim/x* + 6 (f) lim (42 + ¥z - 2)
2%

(9) lim (x — (x% + 3)? h) lim __.
x==1 ) ( )xqo,j2x2+x+1_m-l

i VW =1 . V12 —x—x
(i) lim () lim
R W 4 3 V6 +x — 3
. sin(4x) 1 — cos(x)
k)l =
09 im =" Ol =2

6) Find the following Limits.

. sin(x—c) i

(a) iﬂ?—-—_ﬂ_ (b) il_?;r[?i (;C- =+ 5) sinx
sin(3x) 2x
li im (£ 1

© %0 tan(4x) () iﬁ% ( X )
7) Prove that.

_ 1+4cos2x 1 cos(=

a)lim— == i 7

( )x_,g(n—Zx)z 2 (b)iﬁ}% x-—-; =§

8) Let fg-gf(x) ==9, limg(x) =

Sl = =9, and Jlg% h(x) = 4.
Compute the following.




(@) lim2f () = 12h(x)]

(€) lim[gCR() = FGo)

(b) im[3h(x) — 6]

(@) Uim{f (x) - g(x) + h(x)]

9) Let lim f(x) = 6, lim g(x) = —4,and Lim h(x) = —1.

Compute the following.

(@ lm{f () + RGP

(c) lim /11 + [g ()]

10) Find the following limits.

tan2x

a)lim
( )x—m sinx

sinx — cosxsinx

@l

11) Find the following limits.

1
(a) lim =
X—=00 X

(D) lim / g (x)h(x)

(d) lim J f&)

x-0 | h(x) — g(x)

bY I xX—2
) =)

_ X
(@) iﬂ SinzZx

don
(f) limsm /2.

x=0 X

(b) lim A

x—)—wx3

(d) lim =

x—+00 X2
2242246

() lim

z»0z°>+3z+9



a % General Mathematics

-2
9) x{i‘r_nw '(';__-__'1_)-_2-

- 3
(1) x!—l;ﬁlm (x s 2)3

1
li
o xoo 2 + sinx

. el

10) Find the following limits.

. x—3
(@) im =9

x—00 x

‘ (c) lim 1+x

8 13) Find the following Limits.
1

(a) E"T; tz " 9

@l

. 1
€)1 (x —5)3

1
lim

(h) k400 m

VT T 7

26+9
Ji 1

(0) xf-u%xz
3—e*

(@, 1,35 ex

(m) Lim

t—o0

x2—3x+1
x—1
4x

d) lim ——
@ lim ==

(b) lim

x—00

1
(b) lim—

x—0 x3

; 1
(@) i’ﬁ (x — 3)2

P z(z — 1)




= *Gh.apt_{af;g!: Limits and Céntfnufg{é_

2.7 Continuity

m this section we will present some important theorems and

characteristics of continuous functions.
The graph of the function can be described as a continuous curve, we
mean that it does not contain any cuts or holes, and to make the idea

olearer we must understand the properties of the function with cuts or

holes.

From Figure (2-8), we see that the curve of f (x) has cuts or holes if any
of the following conditions occur.
e f(x) is undefined at ¢ (Figure 2-8a).
o The limit of £(x) does not exist as x approaches c(Fig. 2-8b, 2-8c¢).
e The value of the function and the limit of the function at care not

equal (are different) (Figure 2-8d).




!..! 1 ] I 4 + T }
1 + T +—+ +—t* T
c 51 |1 - 1

L -1 X -l T
Figure (2-8)

Mathematically, continuity can be defined as follows.

]
e | yum—

Definition 2.7.1 Continuity

It is said that the function f(x) is continuous at x = q if the following j_

conditions are satisfied.

(1) The function fis defined at x = q, i.e.,f (a) is defined.

(2) The function fhas a limit at x = q.

(3) The limit of the function equals the value of the function at x = a,
ie.lim f(x) = f(a).

If one or more of the above conditions are not satisfied, the ffunction is 3

said to be discontinuous at x = q. If the condition (3) is satisfied, then

(1) and (2) are directly satisfied. The conditions are listed in such style

for simplicity.

Example 2.7.1:

Determine whether the following function f(x) = x + 2 is continuous 2

x = 3.




Solution:

we compute the value of the function at x = 3,

f(3)=3+2=5.
we compute the limit of the function as x — 3,

limx+2=3+2=5.
x—3

We note that,
limf(x) = f(a) = 5

Then, the function is continuous at x = 3.

Example 2.7.2

. 24 ;
Determine whether the function f(x) = .’.‘E. P em——

Solution:
We compute the limit of the function at the point x — 2,

4 . x=2)(x+2
i AV llm( )(x+2) _
x—=2 X—=2 x—2 x-2

But the function is undefined at x = 2, so the function is not continuous

at x = 2. (See Figure 9-2).

-5 1-

Figure (2-9)
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2.8 Continuity on an Interval

: inte

The function f(x) is said to be continuous on the open interval (g}
in the i b).
it is continuous at each number in the interval (a, b)

Definition 2.8.1: Continuity on an Interval

The function f is said to be continuous on the interval [a, b] if the |
following conditions are satisfied. '
(1) The function f is continuous on the interval(a, b).

(2) The function f is continuous from the right at a.

(3) The function f is continuous from the left at b.
Example 2.8.1:

Discuss the continuity of the function f(x) = V9 — x2.

Solution: !
It is clear that the domain of the function is the closed interval :{;.;:i-
we first examine the continuity of this function on the interval (—3,3_.‘“
Note that for any number a € (—3,3), we have |

Im 6 = lim V9 =37 = V622 = (),

This proves that the function is continuous on the

interval (—3,3).
Also the

function is continuous at the endpoints of the interval whe

lim f(x)=£g1_\f9—-x =\/§?_-_—.f

re

BT

(3),
2 A xEﬂ+w =V9 -9 = f(=3)!

S0 the function is continuous on the closed interyal 33

It



2 .9 Properties of Continuous Functions

Theorem 2.9.1:

Let f and g be continuous functions at x = q. Then
(1) f + g 1s a continuous function at x = q_

(2) f — g 1s a continuous function at x = q.

(3) fg is a continuous function at x = q.

(4) For any real constant k, then kf is a continuous function at x = a.

5) i / gis a continuous function at x = a if g(a) # 0 and discontinuous

if g(a) = 0.

General Rules for Continuity:

(1) Polynomials are continuous functions on R.

(2) A rational function is continuous on its natural domain, and

has discontinuities at the values where the denominator is zero.

(3) Trigonometric functions are continuous on their natural

domain.

(4) If g is a continuous function at x = a and f is a continuous

function at g(a) then f o g is a continuous function at x = a.

(5) If g is continuous everywhere function, and f is continuous

everywhere function then fog is continuous everywhere

function.
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Theorem 2.10.2: The Intermediate Value Theorem
d interval [a, b!

If f is a continuous function on the close
f(a) and f(b) are nonzero with opposite signs (i.e., f(a).f (b
then there is at least a number x € (a, b) such that flx)=0. :
This theorem is very useful in computing roots of polynomials.
Example 2.9.1: _
Show that the function f(x) = x* +x?+x—1has a root :|

interval [0,1].
Solution:

Since f(x) is continuous on the closed interval [0,1] and f

—1,and f(1) = 2, so that, there is x € (0,1) such thatf (x) = 0.

2.10 Types of Discontinuity

Let y = f(x) be a function defined on the interval (a, b)
lim f(x) = L4 and ltm f(x) = L, where c € (a,b). Then

x—>c

(1) If Ly # Ly (ie, ltmf(x) does not exist) then the typ

[ _‘l

discontinuity is not removable.

QUL =L # fc) Les l:m f(x) exists and equal to L, but not cqu

to the value of the function at x = ¢, then the type of discontinuity

removable where the function can be redefined in another way 0

continuous.



fxample 2.10.1:

Examine the continuity of the following functions.

(a)f(x) =2x 4+ 3VxeR

[
wfe =" ** 0 arx=o
L 0, x=0
@f@={x—2' *Tfatx=2
\ 3, x=2
(—1, x<0
fx)=40, x=0 atx=0
L. e )
sz—g
(e)f(x):1x_3’ x¢3atx=3
\ 6, =3
_(5+x X3 _
(f)f(x)_{g-—x, i B T Wi o1
Solution:

Examination of the continuity of (a):
We note that the function f(x) = 2x + 3 is a polynomial and since

polynomials are continuous on R, then, the function f(x) = 2x + 3 is

continuous at any number x € R.
Examination of the continuity of (b):

The function is defined at x = 0, since f(0) =0,

: o1 _ ;
and chi._?;% xsin== 0 thus the function is continuous at x = 0.
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Examination of the continuity of (c):

The function is defined at x = 2 and equal to 3, £(2) = 3,

-4 . (x-
and, llm = thf_Z)E-F_Z)
x—2 x-2 x-2 x=2

=4.

We note that the limit of the function is not equal to the value g
function at the x = 2, and therefore the function is not continuousg at

2, but this type of discontinuity is removable, so the function can be

redefined to be continuous as follows:

x%—4
f@=yy_gr. **2
4, x =2,

Examination of the continuity of (d):

The function is defined at x = 0 where f(0) = 0. But 3
,Ef"—'r i) =71 and l.r.m L f(x) = —1, this means that the left and the {f'
limits are not equal, so the function has no limit.

So, the function is not continuous at X =0, and this type is '“

removable.

Examination of the continuity of (¢):

The function is defined at x = 3 and equal to 6 f@3) =

x2-9 =T (x=3)(x+3) »

and lim

x—3 x—3 x-3 x=3




Note that the limit of the function is equal to the value of the function at

x = 3 and therefore it is continuous at x = 3,

Examination the continuity of (f):

The function is defined at x = 3, f(3) =5 + 3 = 8 But

lim f(x) = lim(9—x)=9~3 =6, and

}i’;"-ﬂx) = xl_igt_(S +) =8,

This means that the left and the right limits are not equal therefore the
function has no limit. So, the function is not continuous at x = 3. This

type of discontinuity is not removable.

Theorem 2.10.1:

If f is a continuous one-to-one function on its natural domain then its

inverse f ~will be a continuous function on its natural domain.

Theorem 2.10.2:

Assume that b > 0 and b # 1, then

(1) The exponential function b* is a continuous function on (=00, +00).
(2) The logarithmic function logy, x a continuous function on (0, +00).
Example 2.10.2

) ) . 5 tan~! x+In x.
Determine the intervals on which the function fe)= x2_a B8

continuous,




g & Generol Mathematics

Solution:

We know that the quotien if both the numerato,

¢ function 18 continuous
and the denominator aré continuous functions and the denominator is n0£
equal to zero, and since tan~ > X 1s continuous on (—o0,400), and Inx ls
the numerator is 2 continuous function at the

continuous on (0, * ),
s ie., on the interval (0, +0). ,;;_

intersection of these two interval

denominator, is a continuous function onset of real numbers, except a_'

—2and 2 which make the denominator equal to zero, ie., on

(—00,—2) U (=2,2) U (2, +400). Thus, the function f is continuous on'

(0,2) U (2, +).




Exercises

1) Examine continuity of the following functions.

(a)f(t) =(14—2t+t2) (b) f(x) =(3x2+7x—16)
2x2—x+6 g ¥3 1
Of) =1 —3x+3' =" © (@f={z_1+**°
& =2 3, x=3
a - V22 +1-1
o e L Lk

0, =10

2) Find the interval or intervals on which the following functions are

continuous?
x+2 x—3 x+1
@f() == b fx) = [-— @Of)=F—3
x24+3x+5 1 x2
Of@ = @OfW = O =0
3) Find the value of a that makes the function continuous.
x*-1 ax+7, x+2
@f@={z—1" **1 ®fE={5"" 7
( a, x=1 ’ =

(at+x, x<2
1+ %7, 2

ax, x <3

(d) f(x) ={5, -

() flx) =







Chapter 3 - Differentiation

e

Learning Outcomes:

By completing the study of this chapter, it is expected that the student
will be able to:

-Define the differentiation of a  function and calculate the first
derivative and derivatives of higher orders.

- State and apply the chain rule.

- List the rules of differentiating the trigonometric, logarithmic, and
exponential functions.

- Apply the rules of differentiating the trigonometric, logarithmic,
and exponential functions.

- Define indeterminate forms and L’Hopital’s Rules.

- Apply L’Hopital’s Rules to calculate limits.

- Define and find the linear approximation of nonlinear functions.

Calculus (Differential Calculus) is a branch of mathematics that is
concerned with studying the rate of change of a function (say; y = f(x))
i relation to the independent variable x. The first issue that this
Mathematical branch is concerned with is differentiation. The derivative

of the function y = f(x) at some point describes the mathematical and

8cometrical behavior of the function at this point or at points very close
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to it, and the first derivative of the function at a given point €qualg

o
W,

value of the slope of the tangent of the function at this point, and jp

general the first derivative of the function at a certain point repres.an
the best "linear approximation” of the function is at this point. .
Differentiation has many applications. In physics, for example: the ra
of change in the displacement of a moving particle with respect to t1
is the speed of the particle which is exactly the derivative ;_;
displacement with respect to time, whereas the differentiation of '='.:
velocity with time gives the acceleration.
The differentiation is also important in Newton's laws, as the second ;
states that force is the time rate of change in the amount of movem -i:i-
(1.e. differentiation of the amount of movement in relation to time). Als
differentiation is in finding the reaction rate for a chemical reaction 2 e
in operation research the derivatives or differentials determines th
supplies for designing factories and transporting materials or ra
materials or products. '
Derivatives are used to find the maximum and minimum values oﬁl
function. Equations that include differentials (derivatives) are call
differential equations and are among the basic and important equat:l ns

for characterizing natural phenomena. Derivatives appear in many are 3

of mathematics such as numerical analysis,

functional analys
differential geometry, measure theory and abstract algebra. :




Chﬂpter 3 D:fferennatron

3.1 biffcrcntiahilitx and Tangent Line

In this section we will be show how to derive the derivative of the

function geometrically. Let y = f(x) is a continuous function, and P is
a point on the function curve with coordinates (x, f(x)).

Suppose that x changes by Ax, so the new x -coordinate of point Qis x +
Ax, see figure (1-3).

But when the value of x changes, there is a change of Ay in the value of
y, that is, in the value of f(x) and it has the new value f(x 4+ Ax). The
coordinates of point Q are (x + Ax,y + Ay).

Y J= i)

flx+ Ax)

.3:.' X+ Ax X
Figure (3-1)

50

mpg =2 L LG8 =)

We now have the definition of the slope of the tangent line at P,

The slope of the tangent line at P is the Limit of the change in the
function divided by the change in the independent variable when this

change approaches zero.
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Ay flx+8x) — f(x)

: dy . L g
f <x)=3;=§,ﬁﬁ’igz;~ﬁl% Ax

£'(x) is called the derivative of the functionf (x), and sometimeg}f

i o

derivative of f is written by the following symbols:

] df E_ (1) ! !
f! E;: dxf(x)r lf ’ Df' ¥y (x)

dy d

e —y, D
yl dxl dxy y

The value
fx +Ax) = f(x)
Ax .
is called Newton quotient or difference quotient. Again, '.i_l_

quotient is a function in Ax, as shown in Figure (2-3).

o «— V= JiX
flx+Ax) — f(x)
Fe R O
e x+ Ax X

Figure (3-2)

By = f(x + Ax) — f(x)

Difference quotient becomes




flx + Ax) - f(x)

Ax

Now we will express the definition of the derivative as follows:

Definition 3.1.1: (Derivative)

f’(x) is called the derivative of the function f(x) if the following limit

exists:

g = lim fx+Ax) — f(x)
dx Ax-0 Ax

In this case, we say that the function f is differentiable at x that is, that
is; f has a derivative.

Example 3.1.1:
By using the definition of the derivative, find the first derivative of the

following functions:
1) f(x) =x.
Solution:
af _ o [ +8%) — f(x)
dx Ax-0 Ax
_ gy ZHAD) —x . x+Ax—x . Ax
= MTO Ax = e Ax h%ﬂ
f/@) = lim1=1
2)f(x) = x2.

df= lim flx+ Ax) — f(x)

a Ax—0 Ax
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(x + Ax)? — x* %% + 2(0x)x + (Ax)* — 2
= DL = L Ax o
Ax—0 Ax 470
 (Ax)% +2(Ax)x
= ka0 Ax

Pl = J;TO(Zx + Ax) = 2x.

Example 3.1.2: _
By using the definition of the derivative, find the first derivative of the

following functions:

y = sz X
Solution: ’
;o 3+ Ax)? = (x+Ax) —3x% +x
y' = lim
Ax—0 Ax
6x — 1)A -
. T (6x — 1)Ax + 3(Ax)
Ax—0 Ax
= Vi 6x —1 = —
Ax_)g( ) +3(Ax)) = 6x — 1.
Example 3.1.3:
In Example 3.1.1; find f'(1).
Solution:
(&) =25
f’(l) =2




Examgle 3.1.4
By using the definition, find f'(4) if f(x) = Vx.

Solutioni

! s f(x)—f(4)_ . Vx —2

f(@—ilﬁ x—4 mgcl-ﬁx—tl-“
' VX — 2 1 1
lim e .8
4 (Vx—2)(x+2) 2+2 4

Example 3.1.5:
Find the first dertvative of the function y = x™

Solution:

Using Theorem 2.4.1,

A flx+ Ax) — f(x) - I (x + Ax)™ — x™
Jpx) = 250 Ax A Ax
g (B At —x® yr
5 x-lggcrix (x+Ax)—x il
Example 3.1.6: *
Find the first derivative of the function y = sinx.
Solution:
G e /1%
dy ~ sin(x + Ax) — sin(x) ~ 2cos (x s “2‘) sin (7
— = lim = {m |
dx Ax-0 Ax Ax—0 Ax

X sm?
= limcos|x +—]. lim = COSX:
Ax—0 2 Ax
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Example 3.1.7:
Find the first derivative of the function y = COSX.

—2sin (Ef
dy I cos(x + Ax) — cos(x) e =
ax - Af_?b Ax Ax=0

2 X 1
Sin— . Ax F
= —lim lim sin (x +—)=—sin
Ax-0 AX  Ax-0 2
2

Example 3.1.8:

Using the elementary principles, find the derivative of th 5;'_-

Vx.

Solution:
dy . Vx+bAx—+x  Jx+Ax—+x T
— = lim = lim :

dx Ax-0 Ax Ax—0 Ax

i (x + Ax) — (x) : Ax
m = lim

Ax—0 Ax(\/x + Ax +Vx ) Ax=0 AX(ﬂ/x + Ax + ﬁ)

. 1 ; )
= li _ i
axino(M-l-\/}) (E+E) oh

Theorem 3.1.1:

If f s differentiable at X, then f is continuous at X
0-

Proof:

Since f is differentiable at Xo then f'(x,) exists that is. thell} '- o
b L3 '._“

Flxy) = Iim M
X=xg X — xo
176



Exists. Therefore, f(xo) must exist as if it does not exist, the limit will

have no meaning, and thus the function [ is defined at x,,. But

ii’;"o[f(x) — f(x0)] = lim [(x ey Fle)— F (xo)]

x_xo

lim (x — x). lim [ﬂfi—:if—")-] = 0. F" (xg).

X=Xq X=X

Since
lim [f () = f(x0)] = Jlim f(x) - lim f(xo)
lim fx) = £(xo).

Then, the function f is continuous at x,

3.2. One Sided Derivative:

Definition 3.2.1: (Right Hand Derivative)
If the function f is defined at xq then the derivative of f at xo from the

right, which is denoted by the symbol, f{ (x,) is defined as follows:

f(xo +Ax) — f(xo)_

f—l-(xﬂ) = l—>0+ Ax
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Definition 3.2.2: (1Left Hand Derivative

Similarly, the derivative can be defined (rom the left, which

by f2(xy) and is defined as follows:

. [ (xgtAx)=[(xq)
fa(xp) = ﬂifj?(’;* o -

It can be writlen as:

By Fla)=-r (xn).

X=Xy X = Xo

Theorem 3.2.1:

The neoessary and sufficient condition for fX(x,) = fi(xy)

“has a derivative [ at the point x.
I

B
g ‘

Example 3.2.1:

Examine the cxistence of the derivative of the function f
x = (. 4
First, we find f L(xg), fi (xg), then we compare their values. -;'

[Got 80) = f(xe) _ | f(0+8x) < f
= tum —

fi(xp) = lim

Ax-0* Ax Axes0F Ax
= [im Mz lim _A_le -
Ax=0* Ax Ax-0* Ax 1
f(xo) = lim_ f(xo + A;ci f(x0) _ . £(0 + A;?C — £
e iy e ey SR
Ax=0~ Ax AX-0- Ax

Since [ (xo) (X0) # [+(Xo), the function f is not differentiable at X =
178 _




Exam le 3.2.2:
Examine the differentiability of the function

fxE . a2
f(x)_{3x-4 ; 2% 2

atx=2.
Solution:

We find f(2) , f{(2), then we compare their values.

, . fR+A)-f(2) . (2+Ax)*—-f(2)
fi(@) =l Ax = Ax
. Ax(2 + Ax)
= lim =4

Ax-2% Ax
f(2+Ax)—f(2) _ lim 3(2 +Ax) - f(2)

! -
f2(2) = A:lcl-?g' Ax Ax—0~ Ax
3Ax
= lim —=3.
a;!cl—lsl(lr Ax

Since f'(2) # f{(2), the function f is not differentiable at x = 2.
3.3 Differentiation Formulas of Some Algebraic Functions:

Theorem 3.3.1:
(a) If a is a constant andf (x) = a forall x values, then f'(x) = 0.

Proof:
Suppose that f is a constant function, that is, f (x) = aforall x in the

function domain. According to the definition of the derivative,
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f(x+Ax)—f(x)= 5
f(x)= lim e

Ax—0 Ax Ax-0 Ax
X—

®) If f(x) = x, then f'(x) = 1.
Proof

Suppose that f(x) = x. According to the definition of the denvatlve

x+ Ax) — f(x) X+ Ax—x
e = jim [ =
Ax Ax x5
(e) If n is a positive integer and f(x) = x™ then f'(x) = nx"1
Proof

Suppose that f(x) = x™. According to the definition of a derwatlv?‘

Y f(x+ﬁx) fx)  (x+Ax)" — xn
f (x) - -—) AZJE?—% Ax ;
Expanding (x + Ax)n using the bmomial formula, we obtain
fl(x) =
_ [x“ + a1 Ay 4 2O 1)x"""2 (AX* . wreat. (Ax)“
- Aliz%nb Ax
R (T, T
= lim
Axﬂow
ST W s nxn=1
Example 3.3.1:
Find f'(0) i £(x) = 45 — 202 | 3
Solution:
F(x) = 455 _ 2x2 4 73

F1) = 2028 TAX 0= 2054 4 4,




Example 3.3.2:
Find f'(x) if f(x) =12x* — 6x* + 5x + 8.

Solution:
f'(x) = 36x% — 12x + 5+ 0 = 36x% — 12x + 5.
Example 3.3.3:
Find f'(x) if () = = — 2Vx +7.
Solution:
fla) =85 = 2x% +7

P =—6x8 8 e e

x3 fx

Example 3.3.4:
Find the derivative of each of the following functions:

DF®) =mx  2)g(y) = 55° @y=—%—-®ﬂﬁ:@ﬂﬁ

Solution:

Dfe)=n

2) g'(y) = 15y2

3) y; = 16x"3 — E
x3

Hv(t) = V32V2() 71 = VBa(t) 2! = 8(t) V21,

The follow;j
ing theorem gives the differentiati
; ation rule
Yo e s of the sum, product
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Theorem 3.3.2:

(1) Hhx) = f(x) £ g(x), then k' (x) = f'(x) + g’ (x).

Proof

Pl 1o L Flx] = hi{x)
e
Him f(x+4Ax) + g(x + Ax) — [ (x) + g(x)]
Ax—0 Ax

= T (f(x +Ax) — f(x) 3 90 +Ax) — g(x))
Ax—0 Ax Ax

= lim fx+ Ax) — f(x) & Tim glx + Ax) — g(x)
Ax—0 Ax Ax=0 Ax

h'(x) = f'(x) + g'(x).

() I h(x) = f(x)g(x), then h'(x) = f(x)g'(x) + g()f' (x).

3) Khx) =¥ 1) — 9 (X)-f(x)g' ()
(3) (x) & ,g(x) # 0, then h'(x) = P :
Where f(x) and g(x) are two differentiable functions.

Proof

2) Left as an exercise.

3)
_ fG+dx) — f(x)
X (x) - ETO h(x . o .&Z’i h(x) N gim{] {g(x+ﬁxa} 9(,:)]
X—= x
= lim {f G+ Ax)g(x) — f(x)g(x + Ax)
A0 Axg(x)g(x + Ax) } :
= lim [f (x +80g9() = fF@g(x) = [F(x)g(x + ax) — F W]
e Axg(x)g(x + Ax)




g(x) [f (x+ﬁ::-f (x}] — F(®) [g(x-!-ﬂ;‘:-—g(x)]

= [i
830 g(x)g(x + Ax)

; . [fGeAx)=r ] g . [9(x+ax)-g(x)
1,00 [E54251) - im 0o [P5)

R (x) = 220 &Tug(x)gﬁ,}g(x + Ax)
oo g@)f ) —f (x)g'(x)
G T I
L g@f') - f)g' ()
W= GOF

Example 3.3.5:

Find y’ in each of the following cases:

hx
D) =7

Solution:
By applying quotient rule:
(x2 +1)(5)— (5x)(2x) _ 5x2 + 5 — 10x? _ 5— Sx_Z_I
pl= Tl T (1P (xz+1)?

2

X
2 . iy
)y = 77
Solution:

By applying quotient rule,
2x3 + 2x — 2x° + 2%

2 2x) — (x% — 1)(2%)
y'(x) = e 1)((::3 . 53:2 = (x? + 1)2

_ 4x
T @2+ 1)*
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3) y(x) = (3x2 — 2)(3x° — 5x0).

Solution:

By applying the product rule:

Y'(x) = (3x% — 2)(9x% — 5) + (3x3 — 5x)(6x).

I E) =

Solution:

By applying quotient rule:

.
y(x) =x" = P
x"0—1.nx"1 _pen-1 iy

)= [xn]2 - x2n =xn+1'

3.4 Derivatives of T

rigonometric Functions:

Derivatives of trigonometric functions are given in the following ,l-e
Function Derivative

f(x) = sinx f'(x) = cosx '_-'-"":

f(x) = cosx f'(x) = —sinx }t

fx) =WW:_§96236 ||

f(x) = cotx -—_____7"_(_:;)_:3 T

) W‘mx tanx l
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¥y b 7B Sl il adea weiik Lo e i

SR

_E_Eample 3.4.1:

Find y’ in each of the following:
sinx

1)y= tanx =FG'S_X.

Solution:

Applying the quotient rule of the derivatives,

' g)f'(x) — f(x)g'(x)
V') =T
f(x) = sinx, g(x) =cosx ,f'(x) = cosx g'(x) = —sinx
cosx. cosx — sinx.(—sinx) cos?x+sin®x 1
X = [cosx]? 7 [cosx]2  [cosx]?

= sec?x

5 coSX
= ool =—
)y sinx

Solution:

Applying the quotient rule of the derivatives,

' g f'(x) = f()g' ()
£ [g ()]
f(x) =cosx, g(x) =sinx .f '(x) = —sinx g'(x) = cosx

» 2 2 _1
sinx. (—sinx) — cosx. (cosx) _ _ si'X + cos“x

y'(x) = [Si-nx]z = [anx]z . [Sinxlz
= —csc?x.
1
3)y = cscx = ——.
sinx
Solution:

Applying the quotient rule of the derivatives,

eE Tk i e A R

S EL L

ot e P e g
SR s S e BT |3 e
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y'(x) = [g(x)]2
f(x) =1, g(x) =sinx f'x)=0
sinx. (0) — 1. (cosx) _ cosx _ —1 cosx

g'(x) = cosx.

y'(x) = [sinx]? - [sinx]? sinx  sinx _;-‘-_
= —cscx cotx.
A 1
= Mo = ’
)y COSX
Solution:

Applying the quotient rule of the derivatives,

g f'(x) — fx)g'(x)

A N FTEOIE
f)=1, gx) =cosx ,f'(x) =0 g'(x) = —si }-
: cosx.0 — 1.(—sinx)  sinx 1  sinx
¥ )= [cosx]? " [cosx]2 ~ cosx ' cosx  ¢¥ 'E
Example 3.4.2:

Find the first derivative for each of the following functions:
1) y = x2sinx.
Solution:

Applying the product rule of two functions, we get:

(") i
Y = X7cosx + sinx 2x = x%cosx + 2xsinx.

cosx

DY m——
)y 1+ sinx

Solution:

By applying quotient rule, we obtain:




, _ (1 +sinx)(—sinx) — cosx(0 + cosx)

Yy = (1 + sinx)?
—sinx — sin®x — cos?x . osinx+1 -1
(1 + sinx)? T (A +sinx)? 1+ sinx

3) y = secx tanx.
Solution:

Applying the product rule of two functions we get:
y' = secxs eclx + tanx secx tanx = sec3x + secx tan’x.

Example 3.4.3:
Find the derivative for the following functions:

1)y =3sinx —4cosx D)y =2 tah %
Solution

1)y'=3cosx + 4sinx.

2)y' = x3sec?x + 3x? tan x = x*(x sec’x + 3 tan x).
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3.5 Derivative of Composite Functions: The Chain Rule

Theorem 3.5.1:

1
o
B

Let the function g be differentiable at x, and the function f
differentiable at g(x). Then the composition fog is differentiable ; at ;.-
and the derivative of the composite function is given by the relatmns
(fog)' (x) = f'(g(x))g' ().
Letu = g(x), y = f(u). Then the chain rule takes the follo

1n!
o

equivalent form

dy dydu k.
dx  dudx
Proof:

Let the independent variable x has a small displacement Ax around -

point x, accordingly a displacement occurs in u equals Au and -u

change in y of Ay occurs and

Ay AyAu
Ax — AuAx
Since g is a continuous function. So Au - 0 where Ax — 0, so
dy . Ay L\.y Au dy du
dx = 0 ay = A gy Jim = 22

8us0 A axsg Ax  du dx’
Example 3.5.1:

Ify = (2x* + 3x + 1)5, find y'.

Letu=2x*+3x+1 Then y =

5
= U” and hence




j—z= Su* , -j—;i:ﬂxa +3.
Therefore,
! u L = 5u*(8x> + 3) = 5(2x* + 3x + 1)*(8x3 + 3)
dx dudx
4 = 5(8x3 +3)(2x* + 3% + 1)*.

' Note: When applying the chain rule, we can apply this rule starting from

outside (outside the brackets) and heading inwards until we finish finding
it the derivative.
For example, in the previous example,
y=(02x*+3x+1)°
y' =5(8x3+3)(2x* + 3x + D%
Example 3.5.2

© Find the derivative of the following functions:

=
——

1) y = sin5x.
Solution:

Letu = 5x. Then y = sinu and hence

d du
) = cosu, — =25,

du dx
Therefore
% = j—i-j—: = cosu.5 = 5cos5x.
2) y = sin(x?),
Lety = 2

- Then y = sinu and

d du
2 = cosu , — = 2X.
du x
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Therefore
dy d_yc_ig = COSU.2X = 2xcosx?.
dx  dudx

3) y = sin(vVx).

Solution:

Let u = +/x. Then y = sinu and hence

@y _ B B
i Y
Therefore,
dy dydu i cosx
{ _— = —=—— = CO5U. = 5 3
| dx dudx 2Vx  24x 4
4)y = sin(VxZ + 3z + 1).
Solution:
]
— = cos \/x2+3x+1 ( ) 2x + 3).8
dx ( ) Nerersia )
1+ sin2x
= 1 —sin2x’
Solution:

dy (1 — sin2x)2cos2x — (1 + sin2x)(— 2c052x)
dx (1 = sin2x)2

dy 4cos2x

dx (1 = sin2x)2’

Example 3.5.3:

Find the derivative of the following functions

(@) y = sin?(4x + 1)
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Solution:

The function is made from three functions, which, from inside to
outside, are 4x + 1, sin, sin®. That is

y = sin®(4x + 1) = [sin(4x + 1)]?
So, we starl by finding the derivative of this function from outside as

follows:
y' = 2[sin(4x + 1)]cosx(4x + 1) - 4

= 8cosx(4x + 1) - sin(4x + 1).

(b) y = tan®(x* — 1).

Solution:
[t is made up of three functions, which are, from inside to outside,x? —
1, tan, tand, i.c.,
y = tan3(x? — 1) = [tan(x? - 1)]3
So, we start by finding the derivative of this function from outside as
follows:
y' = 3[tan(x? — 1)]?.sec?(x* — 1).2x
= 6x sec?(x? — 1)tan?(x% — 1).

(c)y = (1 + x%csex)™>.
Solution:

Applying the chain rule, we obtain,

y' = =5(1 + x%cscx) (0 + x2. —cscx cotx + cscx. 2x)

= —5(2xcscx — x2. cscx cotx)(1 + x?cscx) 8.

(d) y = sin(tan®4x?).
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Solution:

Again applying the chain rule, we obtain, |

dy : e e

ax = cos (tan?4x?).2tan(4x?). sec?(4x?). 8x
= 16x sec?(4x?) tan(4x?) cos(tan?4x?).

Example 3.5.4:

If f(x) = cos®x, solve the equation f'(x) = 0, where x € [0,27).
Solution:

To find the derivative of f, we use the chain rule,

)= BCoszx.dE;(cos x) = 3cos?x(—sinx) = —3 sinx cos?y =
0, then

sinx=0 orcosx=0. |
If sinx = 0, the only solutions x € [0,27] are
x=0,x=m x =2

If cosx = 0, the only solutions x € [0,27] are
3n

2 2’
The only solutions x € [0,27] to the equation f'(x) = 0 are:

T 3
-2_’ x='fl', —t—

>

x =0, N =

Example 3.5.5:

Find the derivative of the following functions:

D)y =cos@x) +sin’x  2)y = tan(sin) ;_i;

sin(3x)
3)Y = 5 cos(zn) 4) ¥ = xsec?(mx)
5)y = cos®(tan(3x)) &) = X506 )

3csc(x)




Solution:

1)y =—sin(2x).(2) + 2sinx cos x = —2 sin(2x) + sin(2x)
= —sin(2x).

2)y' = sec*(sinx)(cos x) = sec?(sin x) cos x.

3)y'(x)

_ (4+5cos(2x))(cos(3x).(3)) - sin(3x). (= 5sin(2x). (2))

= (4 + 5 cos(22))2

12 cos(3x) + 15 cos(2x) cos(3x) + 10 sin(2x) sm(?,x)
(4 + 5 cos(2x))?

4) y'(x) = x 2 sec(nx) sec(nx) tan(nx) (7) + sec? (mx)

= 2mx sec?(nx) tan(mx) + sec?(nx)

= sec?®(mx)[2mx tan(nx) + 1].
5) y'(x) = 3(cos(tan(3x)))?~ sin(tann(3x)) sec?(3x)(3)
= —9(cos(tan(3x)))? sin(tann(3x)) sec?(3x).
6)y’(x)

_ 3esc(x)[x. sec(x) tan(x) + sec(x)] — x sec(x) (-3 csc(x) cot(x))
5 (3 csc(x))?

= y'(x)
_ 3xsec(x) tan(x) csc(x) + 3 sec(x) csc(x) + 3x sec(x) cot(x) csc(x)
B (3 csc(x))?

o 3x sec(x) tan(x)csc(x) + 3 sec(x) csc(x) + 3x sec(x) cot(x) csc(x)'
(3 csc(x))?
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3.6 The Derivatives of Logarithmic and Exponential Functig ns

First: The derivative of logarithmic functions

In this section we will find the derivative of the logarithm

y =logpx, x> 0, using the following fact:

lim (1 + v)v =e

v-0*

logy(x + Ax) — log,, x
Ax

T [logp x] = Lim

: l X+ Ax\] l 1 Ax\1
Txxigl?ﬁlogb( x )] Axfglﬁ_[ o‘gb( 3 )

o

Ax 1 1. 4 s
Letv= = Then = R, if Ax - 0, then v = 0 and hence,

d 1
2z L logpx] = llm——logb(l + )

ol 1 -
= }?%;C—logb(l - v)v = ~logb lirn(l + v)v,

is because the function logy x is continues, so limits o
swapped with the function to get:

sl ]

From the properties of logarithms, we know that logy x
bX

therefore:




ii b= e then Ine = 1. Therefore

d 1

MMJ-_:
Gy o ot

gince the function In|x| is defined for all real numbers except at x = 0,

so we will consider the cases x > 0 and x < 0 (see Figure 3-3)

3-2-1 0123

Figure (3-3)




E| & General Mathematics

d 1
In the case x > 0: we find that In|x| = Inx. Therefore ax Inlx| =

d 1

In the case x > 0; we find that In|x| = In(—x). So,

l = d In
e nIxI——dx

d 1
Therefore, we find in both cases that, E;lnlxl i 0.

1 1
(%) =—(1="=

Example 3.6.2:
Find ;—i in each of the following cases,
D)y = sin(In(x)).

Let u = Inx. Then y = sinu and hence

dy du 1
— = Cosu —=-
dx -

du !
Therefore
! dy dydu 3 1  cos(lnx)
dx—dudx_cosux-— x

2) y = In(x? 4+ 5x + 2).
Solution:
Letu = x® + 5x + 2. Then y = In(u) and hence

dy _ 1 du_
e dx—2x+5.
Therefore

d dy du 1

dx dudx U x245x+2




x3sinx)
3))1:“1( r—-——2+x E

First, we simplify the given function by using the properties of the

Jocarithmic function as follows:

x3sinx 1
y=In (ﬁ) = In(x3sinx) — In(2 + x)2
= In(x3) + In(sinx) — In(2 + x)

1
= 3inx + In(sinx) — Eln(Z + x)

dy 3 cosx 1 1 3

=4t —— = =—+cotx — ——,
dx x zinx 2x4+2 x e 2(x+2)

S R T R T R P SR

S

4) y = In|cosx]|.

L T
D

Solution:

ARt

& AR 5
3 by

Using the chain rule, we find that:

dy 1 d —sinx
o —(cosx) = = —tanx.
dx cosxdx cosx

)y =In(x? +1).

Using the chain rule, we find that

dy L & .5
a_x2+1a(x +1)_x2+1'
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Note

Logarithmic differentiation is a way to simplify finding the derlvatw

of functions, that are in the form of a product or quotient or nge o
functions. This is explained in the following examples.

Examnle 3.6.3:

Find & 1f
x2\4x =12
RNC T
Solution:

First note that if we try to find the derivative directly, the resultm

algebraic operations will be complicated given the fact that there are L

product functions in the numerator and a function of power 3 in the f st

place. Therefore, we first take the natural logarithm of both sides of

previous equation, then we use the properties of the logarlthm to

simplify the result and finally we differentiate the two sides with respe ;

to the independent variable .

x*Vix — 12 "
—_— -— 2 3 ='
Iny ln( G2+ 13 ) Inx® + In4x ~n(x*+1)

1 5:
= 2Inx + é-ln(f%x —12) - 3In(x? + 1).

Differentiate both sides with respect tox,
V. 8. 4 __3(2x)_h2+ 4 e
P S R e

- L"' 6x
0 3(4x—12) %217



c-l'l'
W o
g

o
s

:_, ‘
Chapter 3 : Differentiation “ o

(,1-23\!4,1' - 12) [2 4 6x
i

—+ s
(x2+1)3 x 3(4x-12) x2+1f

Example 3.6.4:

L dy

Find — if

(Hy=x", TER Qy=x% x>0.

Solution:
(1) Taking the logarithm of both sides, we get Iny = Inx" = rinx.

r
Differentiate both sides with respect tox , then y—-; — £

o O o

!
- —_—=—=TX
Y X X

r=1

(2) Taking the logarithm of both sides we get Iny = Inx* = xInx
Differentiate both sides with respect to X,

2 = E+ nx. 1
y X
y' = y(1 + Inx) = x*(1 + Inx).

Second: Derivative of Exponential Functions

We turn now fo find the derivatives of the exponential functions. Let
¥ = b*. We start taking the logarithm of both sides for the base b > 0,
log, vy = log, b* = xlogy b = x.

Then we differentiate both sides with respect to the variable x,s0 we get

I

y
yinp = 1. which implies thaty’ = b*Inb.

That is;%[bﬂ = bXInb.Ifb = e, then [nb =1and hence
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| Example 3.6.5:
‘ Find y’ in each of the following cases,
B 48

|
J —_— x —_— - [N
Dy=e¥=]+x+ortartm
Solution:
x2 x3
y =0+1+x++5!-+-3-!-+---. _.&

‘ The function e is the only function whose differentiation for x is

to it, and here is the value of the function g,

2 = g,

Solution:

Let u = 5x.Then y = e% and hence
D —eu Ly

du ° dx
Therefore
d dy du
y: y _—_311.525651:.
dx dudx
Hy=e”* -
Solution:
Let u = —x2.Then y = e™. Therefore
dy du

—_—= .u: Pothos

M
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Therefore
dy dydu
_-—=__=eu._ —_ _x2
dx  dudx 2x = =2xe™*.
4) e esinle
Solution:
. d , .
y'= esinx? —_ (sinx?) = eS"*’, 2xcosx? = 2x cosx® gsinx®,
5) e Btanx_
Solution:
i e R ln3rd—(ranx) = [n3. 3" xgec?x
dx ' '
Remember that:

Ify=fQu), u=u(x), the derivatives of the exponential and
logarithmic functions are given in the following table:

Function Derivative
y = y: =
1 In(u) 1 du
u dx

12 loga(u) 1 du

u. In(a) "dx




Note that:

d pogdu
vinu__._.(vlnu) = U a;-{-u In: ) 2

d d
—(1y?) = — vinu)y = g

dx (u ) dx (3 ) dx dxj
The logarithmic function with @ > 0is defined as:

3.7 Derivative of Inverse Trigonometric Functions

Ify = f(u) andu = u(x), then the derivative of trigonometric

functions is given in the following table.

Function Derivative
y = y’ —
sin~t(w) 1 du .
JI—uz dx’
cos~t(w) 1 du
- —, lul <1
J1—y? dx
tan™*(u) 1 du
1+u? dx
cot™(u) f gu
- -
sec 1(u) 1 1+ l:iu dx
—, |lu| >1
5 lulVu? =1 dx [ul
csc—(u) 1 o
lulVu?z — 1 dx’




Example 3.7.1;

prove that
d 1
B MOE 3 ...
ot (sin™* x) —
Proof:
Let
o T -
siny=x

Implicitly differentiate both sides with respect to x

d | d
e (siny) = o (x)

0 2l =1
€ Sydx =
dy 1 1 _ 1
dx cosy J1—sin’y YL —xF
d ;
— (cin—1 e
e (sin~tx) =%
Example 3.7.2:
Prove that
d =
R -k =
Ix (cos™ %) —
Proof:

Let
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cosy =X

Implicitly differentiae both sides with respect to X,

AP
g;(wsy) v - (%)

dy
—sin oo 1
dy | =3 . —1
dx  siny J1-costy o
4 st ===
Example 3.7.3:
Prove that
o) =
Proof:
Let
y=tan~lx
tany = x

Implicitly differentiate both sides with R

& d
dx (tan y) — :i_;(x)




d
—(tan"1x) =

dx 1+ x?
Example 3.7.4:
Prove that
d 1
a;(sec‘l ¥ = IxI\/xT——l'
Proof:
Let
y =sec ' x
sety =

Differentiate, implicitly, both sides with respect to x

d d
P (secy) = o (x)

dy
secytcmyz—- =1

dy 1 1
dx _secytany secy,fseczy 1 s~ 1,

—_—

sec”lx) =—F/————
dx(e ) xyx® =1

Exercise

Prove that:

-1 d -1
|x|Vx? — 1

(1)-:; (cot™*x) = (2) o (csc™1x) =

1+ x2
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Example 3.7.5:

Find the derivative of each of the following functions:
(1) y=sin1(2x) () y=tan™*@x) ) ¥ = sec™(3y)
@) y =sin-WWx  (5) y =sin"'x® (6) ¥ =sec™1(x2, )

(7) y=x tan™1x>.

Solution:
dy d )
1)—=— [.'S'f,‘.".'.'"1 (2x)] = :
( dx dx = 20
dy 3
D%~ TrEr
@2 3 oy
dx " 35 JGxE -1 xoxi—1
d 1 i
Fr—cmp 25 2=
dy - (3x2) (sz)
G- = 4 _
X J1-(3)2 V18
6 3_}' = 2% N ~
OO+ 121 (2 + Vat § a2
2
(2 + Va2 12
d
(7) d_J_'; = 2xtan—lx2 o 2x 2x3

m = 2xtan~1y2 4

1+ x*




Example 3.7.6:

Find the derivative of each of the following functions:
-

= - X
y an~?! - ey

1

(3) y = xcsc -

Solution:
L 1 (x + 1)? 1
1+ [ ]
(x+1)
_ 1
T x24+2x+2
(2)” = x* ——_1 . + cot™1 ( ) 2x = 2xcot™? (—-)
1 ( )2 2 2 4 + :c2
+
(3}_= S +csc‘1—.1=__|_|_+csc—1_
a % 1—x?

RCTCE

X

e I et
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3.8 Derivative of the Hyperbolic Functions

Function Derivative
P i
(a) sinhx coshx
(b) coshx st
(c) tanhx achiy
(d) cothx —csch2y
(e) sechx —sechx tanhx
(f) cschx —cschx cothx

Proof:

We will prove (a), (¢), (¢) and leave the rest of the cases as exerci: s fg

the student to prove.
d d e¥x—e™* eX +e™*
s ] = — — = h .
(a) Tx (sinhx) dx( > ) > coshx
d Chanlis) = d (sinhx) - coshx.coshx — sinhx. sinhx
(C)E:E anix) = dx \coshx) = cosh?x
3 cosh?x — sinh?x . 5
= o s sechx.
d _d 1 coshx(0) — sinhx
(e) dx (aalg = dx (coshx) a cosh?x
_ =sinhx -1 sinhx

cosh?x  coshx coshx —sechx tanhx.




Example 3.8.1:

Find y' in each of the following cases:

1)y = In(sinhx®) (2) y =tan"*(coshx?) (3)y = (coshx)%.

Solution:

! 1 3 2 2 3
1)y =W—j.coshx 3% = 3x%cothxz".

1 2xsinhx?
"= Sinhx®, 2% = ;
@y 1+ coshZx? o S T T CoshEx?
4L
3)y = (coshx)x,
take the logarithm of both sides:

1
Iny = In(coshx)% = = In(coshx),

take the derivative of both sides for the variable x:

;l—;y' = %co.:hx sinhx + In(coshx) ;3 = tm;hx — ln(c;; i)
- tanhx ln(cozshx) - (coshx)% [tanhx _ ln(co:hx) .
X X X
Example 3.8.2:
fu=x%¢y=sinhu«Findy"
Solution:
Using the chain rule,
y'= ol coshu (2x) = 2x coshu = 2x cosh(x?).
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Example 3.8.3:
If y = coth G:), find y'.
Solution:

Using the chain rule,

) () O

2(1
~ csch (x)
m—
Example 3.8.4:

If y = sech®(Inx), find y'.

Solution:

Using the chain rule,
y' = (sech?(Inx))' = 2sech((Inx)) (sech((ln :u:)))‘r
= 2sech((Inx))(—sech((in x))tanh((In x))(Inx)")

= - gsnef:h2 (In x)tanh(inx).
Example 3.8.5:
Find the first derivative of the function,
y = (sinh x)?.
Solution:

Y' = 2(sinh x)(cosh x).




}\nofher Solution:
.""‘-——__—_

o 2 - .
Letu =%,y = u’. Using the chain rule to find the derivative of Y as
follows:

dy dydu
= = T 2ucoshx = 2 sinh x cosh x.

Exﬁin',qle 3.8.6:

Fmdtheﬁrst derivative of the function:
(1)(x) = sinh x3.

29 = —sinhx + 4 cosh(x + 2). 1

cosh x?
o) = + 4 tanh(x? + 2).
hx Sinhx s (x )
Solution:

(1)f‘(x) =(3x2%) cosh x3.
(z)g' (x) = —coshx + 4 sinh(x + 2).

sinh x [(2x)sinh x?] — (cosh x*)(coshx)

(sinh x)?

+ 4 sech?(x? + 2)(2x).

(z)ﬁf-(x) =
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erbolic Functions

3.9 Derivative of the Inverse H

The following table gives the derivative of the inverse hyperbolic

functions.

If the function u = u(x) is differentiable with respect to x then:

Function Derivation

d . u’

g Sk iia

d u'

—[cosh™* a1
7= [cosh™ u] e

d I
- [tanh™" u] T lul <1
d — T

a[a:nr;vth‘1 u] T lul > 1
i rey

a[sech lu] '—‘\/'1:__2—,0<u<1

u U

d 7

— [esch™1 u] —B "
o VI + 22

Example 3.9.1:

Prove that




(1 ﬂ!ﬂ,:“
g

Chaptef 3 o foferentibbioq- ﬁ

y =sinh~1x
Sinhy =g
dy 1 1 1 1

Example 3.9.2:
Prove that
gh 1
—(cosh™1x) = :
dx( 2 ) VxZz -1
Pmof:

Let




y =tanh™1x

tanhy = x

dy
2 — =1
e Y ix

dy 1 A B i g
dx g_sechzy B 1—tanh?y  1—x2
d—ci-(tanh‘l x) = ; _-_lxz.
Example 3.9.4
Let
——(sech™1yx) = ____'_'E____
dx o
Let
Y =5sech™1y
Sechy =
T = L L
dy ¥ sechym P e
d
ar Sech™1y) o ~1




r.t‘e'f't;

12-5 g
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prove that
d -1
sl L
(1) (coth A E =
(2) ——(csch g = =
|x|V1 + x? VI %2

Example 3.9.5:

Find the derivative of each of the following functions:

(1) y =sinh™x? (2) y=x 2cosh~x% (3) y = coth™*(coshx)

(4) y=InJy1+x*—x tanh™'x.

Solution:
1 ox
(1) —_—
N T Vxi 1
d 1 2x3
(2)—y =t Ix+cosh™ 22 2x=———=+2X cosh™1x?
dx xt—-1 xt=1
dy 1 sinhx -1
el AL SN, T el
( )dx 1 — cosh?x - —sinh?x sinhx

1
4 y= ~2—ln(1 + x2) — xtanh™1x

dy 1 2x &
— tanh™1x
dx 21 4 x2 [1-—352 ban ]
X
&= — — tanh™1x).
1 + x?2 (1 — x2 )

Example 3.9.6:

Iy =tanhsl (;-t-), Find y'.




Solution:

y'(x) = % (tanh"1 (%)) = __.l.l_)-i G)

3.10 Derivative of the Parametric Functions

If x , ¥ are two continues functions in the variable t, that 1s

{x = @(t),
y =(b).

Then these two equations are called parametric equations and if we can
remove t from them, we get a direct relationship between x , .
Let @ has a continuous inverse function or 1 has a continuous inverse
function.

, ’ . B ; :
If @ has a continuous inverse function, - can be obtained for paramelric

functions as follows -

Let At is a slight change in t, accordingly a slight change Ax occurs in X

and a slight change Ay in yand we notice that from the continuity of 0~

when Ax — 0 then At - 0. Therefore,




s v by

el i e e

(@ hQPfﬁf—:" Bifﬁrénﬁatfoq“ |

Example 3.10.1:
s B s
Fmddx if
{x =acost
y =asint,

where a is constant.

Solution:
We find
dx " dy ;
— = —asint, —-=acos
dt dt
dy
dy g acost _
dx 9 —asint
dt
Example 3.10.2:

sl i .
Fmdd—iatt=g1fx= sint and y = cost.

Solution:

= t = i Int
y cos : I

. dx
x = sint = — = cost
dt




Example 3.10.3:

Find 2 ifx = at — asintandy = a—a costatt =m, whereq; -
dx

constant,
Solution:
dy sint |
=a—a cost = —=asin |
= dt |
_ dx
X=at—a sint = — = a — acost ;
dt
dy ' ) .. B t :
< asint sint 231?156055 t ¢
e o S = = = = cot—
dx % g—aqcost 1- cost e 2
sin
dt 2 2
y
. dy . T

dt

3.11 Derivative of the Implicit Functions

If the relationship between X,y is given implicitly

F(x,y) =0, (1)

with zero. That is, put

d
then solve the resulting €quation_
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Example 3.11.1:

Find the derivative of the function
x3+y3—3axy =0.

Solution:

Differentiate the left hand side of the equation and equate to zero, We

get
dy dy )
2 G — =)
3x* ¥ 3y e 3a(xdx+y
dy x*—ay

dx  ax-—y?

Example 3.11.2:

ind 2 if x3 + y* = 9xy.
Fmddxlfx +y xy
Solution:

Take the derivative of both sides with respect to X,

dy dy
2 22 =9x—+9
3= +3y e gxdx y
dy dy 5
2._— -—-=9 —-3x
BF R Mg 2 F

dy 9y —3x? _Sy-xz.
dx (3y?—-9x) y*—3x

._El'amnle 3.11.35:
Flﬁd% if y3 —3x?y+1=0.
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Solution:
Differentiating both sides with respect to X,
dy 24y _
22 _gxy—3x“-—=10
dy , 4y
2~ — — = 6x
ay dx i dx 4
dy .2 29
—Z (3y%? — 3x°) = bxy
dx

Example 3.11.4:

Find z—z for the following functions:

1) sin(xy) = xy + x> 2)xy — \fx_y —3x%2 = 0.
Solution:

1) sin(xy) = xy + x2

Take the derivative with respect to x for both sides,

dy dy
cos(xy) [y +xa] =y +xa+ 2y

d d
ycos(xy) + xd—ycos(xy) =y+ x._y_|_ 2%
x dx

ay
5 Xcos(xy) —x] =y + 2x — ycos(xy).

z)xy—\fx—}’—3x2=0,

Solution:

Take the derivative with respect to x for both sides




dy

y+xa-}—c)——6x=0

4

il o =6x—y+
dx( 2\/xy) 2./xy

d
%(2::@ —x)=2/xy(6x —y) +y

dy 2Jxy(6x—y)+y

dx Zx\@ —X

ALY
: .‘??'f‘v- o
Chapter 3 . Differentiation g
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3.12 Hisher Order Derivatives

1

: ; dy f - .
Let us assume that the first derivative —— O y = f(x) exist If he

e of the function g exists, it is called the second derivatyy, ofj

|

s . . dz
: e of the function —2 n:
if the derivativ 10n = eXisly J

derivativ

the function y = f(x) and
then it is called the third derivative of the function y = f(x) andé

derivatives are denoted by one of the following symbols

The second derivative:

d (d d? ,
(_Z) — _._}:= f(z)(x) = y(z) = f .

dx \dx)  dx?
The third derivative:
d [d*y\ d%y
e L | = —= (3) — y(38) = F11.
dx (dxz) dx* fRE =y f

For the n derivative

d dn-—iy dny
wa) =g rOR =

Some books denote the n derivative by the symbol

d‘n
Dr(y) = =2,

g

Example 3.12.1:
Find the second derivative of the function

y =In(l-x).

Solution:

' =i -1 ), 1
F 1-x)%



Example 3.12.2:

Find the second derivative of the function

3
l)y=4x2—5x+8—; 2)y =

x2+4
3)y*+3y—4x®=5x+1.
Solution:

(1) Take derivative with respect to x for both sides,

(2) Take derivative with respect to x for both sides,

dy (x% + 4)(2x) — x*(2x) _ 2x3 + 8x — 2x3 . Bx

dx (x% + 4)? (x2 + 4)2 (x2 + 4)?
y G 4-Df8(* +4) - 32%4]  I—-24x

dx? (x2 + 4)* (x2+4)3°

(3) Take derivative with respect to x for both sides,

dy dy
4y3 L i A 2 —
y dx+3dx 12x 5

dy
" fa8 - 2
dx(ﬂry +3)=12x%+5

Eoay 12x*+5
F & 4°+3

e d
dty 24x(4y® +3) - (12 +5) (12> 2)
dx? (4y3 + 3)?




12x245
24x(4y3 +3) — 12y2(12x* +5) (4y3+3 )

d’y _

dx? (4y3 +3)?

d?y 24x(4y° +3)* — 12y2(12x% + 5)2
dx? (4y3 + 3)*

Example 3.12.3
If x3 + y3 = 1, prove that,

Solution:

Take derivative with respect to x for both sides,

dy
2 32 ot
3x4—yaz—&

—x2

d d
then 3y? e —3x2. Therefore d_i =g

Take derivative with respect to x for both sides,

~ly*.2x —x*2yy'] _ -y |y 2x - x22——] —[2xy® + 2¢']
¥ ¥ yS
= -—2x[y3 <+ x3] —-2x

If u = @(x) and v = P (x) have derivatives of order n, the Leibnitzs

e

these two functions.
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Hisher ])crivativc of the Product (Leibnitz’s Rule)

e-—(fg

dr
< ()d“(f) 9)

dn -2 2 n n—1

d d
+ (Z) dxn—2 2 () 4t (n - 1) ax ) dxn S

dﬂ.
L dx™ (9),
where, (nr_‘ 1) .« a coefficients of the polynomial. For example, we

obtain:

@ 2g dfdg , df
O =f gzt e T I ax?

43 Bg _df d2g _dg d*f  d*f
=l g e T e

Higher Order Derivatives of Parametrically Represented Functions

If

[x = @(t)

y = ().

The derivatives
dy d?y d3y ary
dx’ dx?’ dx3'"" dx®

can be calculated using formulas

iy Loy ey S ey &G

FRCEEL]

dx ~ dx x2 dE sea. . 9%
dt dt dt
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Example 3.12.4:

Find the second derivative of the function

{x=aCOSt

y = b sintt.
Solution:
Since
dx dy
—— =—q sint, —=Db cost
T a si T
dy
d oy b cost b
—y-=£=——_—= L.
dx 9 —asint a
dt
d (dy d b
d’y z(a) _a(—;”“) b et b
Tdx?2 T 4x T _—_agsint | a? sint  a2sindt
dt
Example 3.12.5

If x = 4cos?6, y = 2sinf, prove that these equations represent the
parabola x + y? = 4. Then find %.

Solution:

Substituting the values of x, y, we get

x +y? = 4c0s%0 + (25in0)? = 4¢0s520 + 4sin20
= 4cos%6 + 4sin%0 = 4(cos?g + sin?@) = 4.
Therefore, the two equations satisfy the parabolic equation

dx

- 2
X = 4cos®) = 26 = —8cosBsing
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: dy
y = 2s5inf = — = 2cos0

dé
dy
ﬂ=£= e = — 5 =—'EC569.
dx 9%  —8cos0 sinf 4sinf 4
dg
E.\'ﬁm le 3.12.6:
N "
If =vEy =t - Find o5,
Solution:
1 dx 1
-.'x=\ff=t2=}_d—t?=2_\/f
1 dy (1)-_3 i1
=t— —=1—|—-=|tz =14+——
y=t tz:’dt 0 5 2 i
d 1
d_},:it'z1+m=2ﬁ(2t\ﬁ+l)=2tv’f+1=2ﬁ+l
dx 9 =2 26\t t t
dt 2Vt
d’y d (dyy d d Ly 4t
A=) = — 1) =—(2VE+ 17" )—
dx? dx(dx) dx(zﬁ.!- ) dt(\/_ )dx
E(Z 1) 1 _(1 1) 1
2Vt t? 'dx/dt_ N '1/2‘/E
i S | 2
=2~ﬁ(——_)=z-—.
W Tl tVt

:._ 3.13 Indeterminate Forms and L' Hopital's Rule

- We know, from the limit properties studied previously, that if



fog Gai
x-a g_(x_)_ iﬁﬁg (x) .

Ifhmf(;x) =0, ilmg(x) = 0, then it is said that the limit lim L&) L

x=a g(x)

specified and write it as =  for example.

x%- sinx
lim=—% and lim—
x=1 x-1 x=0 X

We also learned to find such limits by using some mathematical trigks
such as factorizing algebraic terms, multiplying by conjugate, or using
some trigonometric identities.

Here we will study a method called the L’Hopital's Rule due to a French
nobility known by this name and published a book on differentiation af
the end of the seventeenth century and this rule appeared in that book.
As we will see later, the application of this rule facilitates finding the

value of limits that may be difficult or impossible to find using the
methods previously studied.

Theorem 3.13.1:

Let the functions f', g be differentiable in an open interval [, with the

possibility that this will not be achieved at the number q € [. Also, let

w €l and g'G) # 0.1 mf(x) = 0, limg(x) = 0, and lim 2 =]
x-ad
£

then lim=——== L.

x—a 9(x)
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Find the value of each of the following limits:

2 [ X
x2=x . sinx i Bl
Nim— 2)lim— 3) lim——.
791 x-1 x-0 X x—0 Sin2x
Solution:

If the direct substitution, leads to the form g, then we differentiate both

the numerator and denominator separately, then we find the limits
provided that the derivative of the denominator is not equal to zero. This
is L' Hopital's Rule

x2-x . 2x-—1

[ =Tm — R N —
LT
sinx COSX
2) lim—— = lim = cos0 = 1.
x=0 X x=0
e* —1 e* 1
3 l' = = l. e
)ng sin2x :IcTG 2cos2x 2
Remark (1)
When the limit of;—g; is the indeterminate form © then we use the

L’Hopital’s Rule again and again as shown in the following example.
Example 3.13.2:
Find the value of the following limit:

1—x+Inx
lim .
x-1 1 + cosmx
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Solution:

With direct substitution, we aga

the numerator and the denominator agg; -

in obtain the indeterminate form of type

%. Then we differentiate both
and substitute for the value of X so we get

1

=1 45

X

im - )
x-1—T SINTTX

with direct substitution, we again obtain the indeterminate form of type
E. Then we differentiate both the numerator and the denominator again

and substitute for the value of x so we get
1

-5 -1

2z
lim —; X =
x-1—T2cosTX T

Therefore,
1l—x+nx -1
llm = .
x-1 1+ cosmx  m?2
Remark (2)

L' Hopital's Rule remains valid if the value of x increases or decreases
without a limit according to the following theorem.

Theorem 3.13.2:

Let the functions f and g be differentiable for all values of N < x whe

N is a positive constant number and also let for all values N <2
gx)#0if If ih%f(x) =0, :E%‘g(x) =0, and li

then [Emf—(x—)- = L.

x—00 g(x)
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sin(2) _ eos()(F)_ s _1_,

i —— e =iin—y = By =y
TR 142 \x2 14>
x—00 X x2

Remark (3)

L’ Hopital’s Rule als

left side exists as shown in the following example.:

o remains valid if the limit is from the right or the

Example 3.13.4:

anx

Find lim

x-0t X
Solution:

_ tanx _ see*x
lim —= lim
-0t X x—0*t 1

Remark (4)

The Theorem 2.13.3 remains valid if we substitute +00 b

= 1.

y =0o.

Example 3.13.5:

o i
Find fim "G,

X—=—00 -
X
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Solution:

. 2 E) g (:E) 2
; sm(;) ; C_C_"_g_(i__.f-z——: lim 2cos|(—) =2
lim 1 lim -1 x——00 X )
X——00 = x—=—00 (_E)
P -
Theorem 3.13.3

Let f and g be differentiable functions over the open intervall with the.

possibility that this will not be satisfied at a € I. Let's also assume x %

; : - f'(x)
rel, g'(x);t(],iﬂf(x):oo, Jl‘CJ:I:?;ILg(:’C)—Cx:i also chz_r}ﬁg(x)

L3

Then ltmf( 5 —

x—a g(x)

Example 3.13.6:

sec?x
Find lim__—
i ;f sec?3x
Solution:

With direct substitution, we again obtain the indeterminate form of type
%. Applying L' Hopital's Rule and then direct substitution we get,

- 2secx. secx. tanx im sec?x. tanx
x~—r2sec3xsec3xtan3x. g x> ™ 3sec?3xtan3x

If we try to apply the previous theorem, we will get the form — n0
[#4]

matter how many times the theorem is applied, so this direction will 1€

help in obtaining the required limit except that if we rewrite the ong

function in another way, we get the following:
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sec?x . cos?3x

m m ]
xq%secz?;x x> cos?x
by applying the L’ Hopital’s Rule and then by direct substitution we get
—2¢co0s3x.5in3x.3

M~ cosx.sinx
R=

using the identity of double-angle for both the numerator and
; ; . 0
denominator, we obtain the indeterminate form of type 7

sec?x ~ 3sinbx
lim === lim_
x_,_’fser: 3x x_;? sin2x’

by applying the L’ Hopital’s Rule one more time, we obtain
3cos6x.6 . 9cosbx 9cos3m  9(-1)

i, ———= lim_ = =
"‘":;»E coS2x. 2 X coS2x COS2T -1

The following theorem gives another form for L’ Hopital’s Rule when

limits of both the numerator and denominator tend to co.

Theorem 3.13.4

Let f and g be differentiable for all values N<x, 0 < N. Also,
let g'(x) # 0 for all N<x . If lim f(x) = co(—), Iimg(x) =
x—-a

X=00

°(~0), and hmf 9, L. Then Itmf( x) = L.

g'(x) x—a g(x)
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Example 3.13.7:

: i In(2+e*)
Find lim ;
X—=00 3x

Solution:

. i . co
By direct substitution, we obtain the indeterminate form of type = and

by differentiating the numerator and denominator separately, we obtajp |

ex
In(2 + %) 2+eX : e
im ——— 2 = lim ==—= lim —/————.
i == a3 x-0 3(2 + eX)

By differentiating the numerator and denom inator separately one more

time, we obtain

i g% 1
xlgtooSex B

Remark (8)

If li?itaf(x) =0, lir_r)tag(x) = oo, then it is said that the product of
f(x).g(x) has the indeterminate form 0.0 at x = a to find the limit of
the product f(x).g(x) at x = a, rewrite the problem to take the
indeterminate form of type gor§ by writing the product of the product

as.

— 9 = o A
fG).9(x) = 5 e | (g (x) = Y

Thus, L' Hopital's Rule can be applied as shown in the followi
example. i
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Examnlc 3.13.8:

; . =1
~d lim Sin~ ~X CSCX.
Find m

Solution:
By direct substitution, we get the indeterminate form of type 0. o, and
by rewriting the function as:
. m
[im —
x=0 Sinx

By direct substitution, we obtain the indeterminate form of type %5 by

applying the L’Hopital’s Rule we get

m
x—0 cosx

Remark (6)
If lim f(x) = oo, lir_l‘lag(x) — oo it is said that f(x) — g(x) has the

x=a
indeterminate form of type oo — oo at x = a. To find the limit of the

amount f(x) — g(x) we rewrite the problem to take the indeterminate
form of type % or% by unifying the denominators if the amount f(x) —

g(x) is in the form of fractions and we may need to factorize and take

the common multiple as shown in the following example.

Example 3.13.9:
St e e
y' li@u (x sinx)'
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Solution:

By direct substitution, we obtain the indeterminate form of type oo —

By unified the denominators and then direct substitution, we obtajy, the

indeterminate form of type %.

1| 1 . sinx—x
Col)- im ot
x—=0 Xsinx

—

lim | —=———
x=0\X Sinx

by applying the L’Hopital’s Rule we obtain the indeterminate form of

0
type E’
cosx — 1

lim =
x=0xCcosx + Sinx

by applying the L' Hopital's Rule one more time we obtain

—_—

lim — = lim -
x—=0XC0SX + sinx x—0 —XSIinx + cosx + Co0SXx

cosx — 1 —sinx 0
—§=&

Remark (7)

Any of the following is indeterminate cases:
(1)*®, (£)°, (0)°
We can solve it as shown in the following example.

_F;:_:ample 3.13.10:

Find lim x*.
x-07%

Solution: |
By direct substitution, we get the indeterminate form of type 0°. I¢

— x*and taking the natural logarithm of the two sides. Thus, W€ get |

y

Iny = Inx* = x Inx.
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[ Thei;'wc- take limit of the two sides and apply L’ Hopital's Rule we ge:

1
= e i 2 v
hmn = lim ——= im % = lim — =
x-0% &= XHQT x=0+ ~1 x-0t x i
X x2

As the exponential function is continues then:

Z:my-—e =1,
x-0%

m x'/x =
Prove that h—»co

By direct substitution, we obtain the indeterminate form of type 000, let
y = x¥s,

Then we take the natural logarithm of the two sides, we get Iny = %lnx,

then we take limit of the two sides and apply L' Hopital's Rule we get

l 1 1
lim Iny = lim kil lim —/J—Cz lim — =0,

xX—00 x—00 X x—oo 1 x—00 X

As the exponential function is continues then

lHm y=el =1,

X—00

Example 3.13.12:

Find lim (x) Eﬂ(zx-i)
x—1t

Solution:

By direct substitution, we obtain the indeterminate form of type 1%, let

EEee—
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1
y = (x)ln(zx-l).
tinues then

! Inx
iy = nx—-1)

Then we take the limit of the two sides and apply L' Hopital's Ryje W

As the exponential function 1s con

get
, Inx
l;._rfrﬁlny - l;ﬂ'* in(2x — 1)’

0 ‘ :
which gives the indeterminate form of type = and by applying the

L’Hopital’s Rule again we get

lim 1 li s I 2x=1
im Iny = lim -—————= lm

1
=

As the exponential function 1s continues then

1
lim y = ez.
x—>1+y
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3.14 Linear Approximation:

[n this section, we will discuss how to add a nonlinear function to a
linear function. Let f be a differential function at xo. The best linear
approximation of the function curve in the vicinity of point (X, f (Xo))
is the tangent line of the function curve at x, which is given by:

y = f(xp) + f'(xo) (x — x).

Thus, for the values x whichare close to xo, we can approximate it by

using the formula:
f(x) = fxo) + f'(x0) (x = xo)-
This equation is called the local linear approximation of the function f at
xo. Let Ax = x — xo. Then
f(xo + Ax) = f(xo) + f'(x0)Ax.
Example 3.14.1:

Find the linear approximation of the function f (x) = Vxat xo = 1, then
use it to find an approximate value of Y1.1and then compare your
approximation to the result produced directly by a calculator.

Solution:

Since f'(x) = %(‘{/})‘3 then f'(1) = iand put xo = 1, Ax = 0.1 in the

linear approximation equation we obtain
VI1i=F@+01) = f(1)+f (DO.1).

The approximate value of /1.1 is 1.025.

Using the calculator, V1.1 = 1.02411.
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Example 3.14.2:

Find the linear approximation of the function f(x) = sinx at x, =
then use it to find an approximate value of sin2°and then compare yg
approximation to the result produced directly by a calculator. {
Solution:
Since f'(x) = cosx, then

sinx = sin(0) + cos(0)(x — 0).
Therefore, sinx = x.
We can say that when x is close enough to zero, then sinx ~ x

Sinoe 2° in-tadians is 2 - (%) ~ 0.03492, then sin2° =~ 0.03492.

Using the calculator, sin2° =~ 0.03489.

It is clear that the accuracy of the local linear approximation of |
function f at xy will decrease with the value of x, goes away from:.
value of x,, that is the absolute error as the absolute value of |
difference between the function and its approximate value if we denofs
by the symbol E(x) then its value in the previous example is E
|sinx — x|. Noting the curve of this function, we find that the further|

value of x exceeds zero, the greater the value of the absolute error, §

Figure (4-3).

E— e



LN T
ulitd
ol

rgﬁ. o

Chapter 3 : Differentiation ﬁ

R
y »

05 T

04

03 T

E(x) = |sinx — x|

‘o 08 06 04 02 00 55 o4 @®é B4 1o
X

Figure (4-3)

3.15 Differentials

We previously used the symbol % to denote the derivative of the

functiony = f(x) . In this case, what we will call the differential

cocfficients dy and dx have no separate meaning for the other. In this

section, we will try to find

independent variable that can take any rea

meaning in this case. Let dx 1s an

| value. Let dy can be written

as:

By = FIUR)AX vorvonnnessssussursansnssmsssazanenmepsan e st (i)
Let dx = 0. We can divide both sides of the equation (i) by dx and get
the image:
dy 4 Iz
i T wermpmnsiisssssvmboppeiEt s RIS (i1)

In this case, the first derivative of the function is the ratio between dy

and dx (see Figure (5-3)) The equation (1) is called the differential

form.




Ry

1 | JIC | x +dx
Figure (5-3)

Example 3.15.1:

Express the differentiation with respect to x for the function y = x3

the differential form and discuss the relationship between dy and dx
x=1.
Solution:

Since %x'z = 3x2 so y = 3x%dx, hencedy = 3dx at x = 1which me

that whenever x is changes by dx, y changes by 3dx along the tangg
of the curve of the functiony = x3 at x = 1, see Figure(3-5).
It should be noted that there is a difference between the increase Ay a
the differential coefficient dy .To note this difference,let dx = A
therefore the amount of variation dx results in an amount of variati

whose value is dy which is a change to the tangent and Ay is the char

to the function curve, see Figure(3-6).

049
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f
AT y=f@

Figure (3-6)

Example 3.15.2:
If y = Va, find an equation for Ay and one for dy, then calculate their

values at x = 4 and dx = Ax = 3.

Solution:
Since y = Vx and Ay = f(x + Ax) — f(x) so, Ay =+/x + Ax —Vx at
x=4 Ax =3s0Ay = 0.65.

While dy = % ot x = 4, Ax = 350 dy = 0.75, see Figure (3-7).

£
y -

4+

0 1 2 3 H 5 6 7 §

Figure (3-7)




Exercises

(1) Fmd for each of the following functions:

(t)y=10x +9x — 4 (u)y (x* = 7)(2x* +3)
=8
3x+5

(ii) y = 2x%2 —4x + 1)(6x + 3)(iv) y =
8x2 — 4x + 10
X =2

(wii) y = 2x%++x
(2) For each of the following functions find f'atx = a

)y= (vi) y = x2+x_2

() fx)=x3+5x—-2vx at x = 4
(i) f(x) =(x3-5(2x-5) , atx=2
3
(ii)) f(x) = " ; at x = —5.
(3) Find the equation of the tangent of the curve y = x3 — 4 at point
(2,4).

(4) Find the equation of the vertical line on the curve y = 141152 at pot
(4,-5).
(5) Find the equation of the tangent of the curve y = 3x2 — 4x parall€
to the line 2x —y + 3 = 0.
(6) Find the equation of the tangent of the curve y = x* — 6x
perpendicular to the line x — 2y + 6 = 0.
(7) Find the value of k if the curve y = x* + k tangent to the line ¥

Zx.
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8) If f(4) =3 and f'(4) = =5, then find g'(4) in the following two
cascs:

(1) g(x) = Vx f(x) (2) gx) =
(9) Find F'(2) if f(2) = —1and f'(2) = 4, g(2) = 1land f'(2) = —5

Flx)

pr )

in the following cases.
(i) F(x) =5 f(x) +29(0) (i) F(x) = f(x) —3g(x)
(i) F(x) = f)g () () F(x) = f(x)/9(x)

(10) Find y’ of each of the following functions

@ y= ﬂ;?:— (ii) y = sinx cosx  (iii) y = 3cosx — 2sinx
tanx _ cosx
(iv) y = T (v) y = cosecx cotx (vi) y = T
. sinxsecx . cosecx ) secx
i) = 1+ xtanx (il 7= tanx =) 3= 1+ tanx
i : _ 1 + tanx
(x) y = (x — sinx)(x + coSsx) (xi) y = S hn

(11) Find y' of each of the following functions
) y=(?—3x+8)° (i) y=@Bx-87 () y= -(x—zf—l)s

1
() y = (6x—7)°@x* +9)* () Y=g 5 7m0

12) Find & |

(12) Find = if,

@) y=+vu, u=2x2-3 (i) y=wu+l u=x%2+1
(13) At any point, the slope of the tangent of the function

¥ =2x%—-2x2 + 1is equal to 12.

i
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(14) Find y' at x =2 where y =

(15) Find f'of the following: |
(D) f(x) =sinx® (@) f(x) =sin®x (i) f(x) = tan*x3}

(iv) f(x) = /4 +V2x (v) f(x) = 3x — sin?4x

sinx

(vi) F(x)=xsin"3x (it} )= e

(viii) f(x) = [x* — sec(4x? — 2)]™*

(16) Find % in each of the following functions
(i)y=—35-— (it) an-I-xy:l (ii)Inxy+x+y=2
Inx X ]

(iv)x=Inx+y+1) Wy=e 3 @)y=e*(x*+e?)
(i) y = In(e* +e™*)  (viiDe? = In(x> + 3y)
(ix)y = 2VX(x) ye X +xe? =1 (xi)y= 3Vi-x?

(xii) y = logs(2%) (xiit) y = logso(e®)
(17) By using the logarithmic differentiation; findy for the following
functions
(Dy= T
(iv) y = Vinx W)y =Vx+2Vx+2Yx2 + 2
x(x —1)(x + 2)
(x — 1)%(x —4)°

() y=x" (iDy=0Q+0)%*

W)y = @ -3+ (vi)y =

3| (x+1D(x+2) _
(viii) y = GZ+ D2 +2) (ix) y = cos(Inx)

246
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= In|tanx| (xi) y = N i In(si
(x)y J = L o (xii) y = In(sinx)

(xiii) y = (Inx)*™  (xiv) y = xsinx

)y =v2+in®x  (xvi)y = sin?(Inx)

o s il — o1/x2 ’ _-gx—e‘x
(i) y = x°e (xviii) y = el/* (xix) y = g
(xx) y = (sine*) (xxi) y = exp (1/ 1+ 5x3)

(xxii) y = e*tanx (xxiii) y = In(1 — xe™%)
; 3
(xxiv) y = In(cose™) (xxv)y = el
Vx
(xxvi) y = log, e (xxvii) y = log,, 2
(18) Find % for each of the following functions
1 x x+ &y
Dx?+y2=9 ) i = )2 =
(Dx%+y (i) = g i (iii)x =
TR . YR o
(Wx*y*=x“+y (W Jxy +2x =1 (m)—x—2+?=1
Wi)(y?2 —9)* = (4x2 +3x — 1)*> (viii)(x —y)? =4
(ix) xsiny + =1 (x) 2 =1 +y*
P e = 2 1+secy i
(xi) sin(x2y?) = x (xii) tan®(xy? +y) = x
ty
(i) x2 = %Y iv)x? + 4x%y2 = 3xy3 +2x =0
) g (xiv)x Y xy %

(19) Find ij:"l—i:-fﬂr each of the following functions, considering y as the

independent variable.




Oxt+y* =122y  (@y=2°-5c  ({i)y? =2x—3
(20) In each of the following functions, use the implicit differentiatiog
obtain the slope of the tangent to the curve at the given point.
D x*+y*=16, (1,V15)
(i) y* + yx? + x2 — 3y? = 0,(0,3)
(iii) x2/3 + y2/3 = 4, (1,3V3)
(iv) 2(x* +y2)? = 25(x*—y?),(3.1)
(21) Find the value of both a and b in the equation for the curve
ay? = b if point (1,1) is on the curve and the tangent line at this point
4x +3y=1.
(22) Find j—z and Zisz’ for each of the followings.
@ x=t?+t ,y=t+1 (D)x=t>+t ,y=t2—-t
(iii) x =1+ cost ,y = =2 +sint (iv) x = 2 + cosht,y
= —1 + sinht

(W) x=e*+t ,y=e'+e t(vi) x=3cost ,y= 2sint
it) x =4t ,y=3y1—t2(viii) x = 3sin®t ,y = 3cott
(ix) x=e+t ,y=In(t+e") (X) x =4e"t |,y =2¢"
i) x=mn(A+t) ,y=t-—tan~1t |

(xii) x = asin®t ,y = qcos3t

(23) Using the L' Hopital's Rule, calculate

, a = const

the value of the following

limits.
2%° 43 2x + sinx in)
i) lim it) li i) lim S8
@ x=14x%2 —5x +1 ) x50 tan4x =) i[flt (xsinx)gf 2




b iy

2x — 1 )l sin~12x — 2sin™1x . tan®x
(iv) 113 x-0 sm3x Y x3 ) w0 sec2x — 1
i In(1+ Vi (viid) Li 2x3 +x%2—4x -3
(wil) 1% In(1+ 3x) xo0 3x3 + 8x2 + 7x + 2 g xo0s Inx
~ In(inx) _x 1 4 )
(x) ,{ﬂ? In(x + 1) ) hm pe (xﬂilm ( —1 x2+2x-—3
i)t (s = 55) Geo) lm o o) i, i

(xvii) lim(tanx)*e™2*  (xviii) lim(1 + x2)V/x
- -
4

2X_p2

I - s e o ‘ 2
(wix) b= (ex) iﬁﬁ Ao () iﬁ?&(l + sinhx)/x

(xxii) lim (sinhx)*™*  (xxiii) lim tanhx
x—-0% x—+to0
(xxiv) xl_r;?{::zw(coshx — sinhx).

X
2N If lim ( +1) = 9«find the value of n .

n—coo

(25) In each of the following exercises, show that the L” Hopital’s Rule
cannot be applied to calculate the limit, then calculate the limit value, if

exists, using any other method.

< = X+ Einx 2x — sinx
© iﬂ X (i) h s 3x + sinx
x(2 + sin2x ) x(2 + sin2x )
[' - .
0 b1 ) M~
(26) If
1k
f(x)={(x"'1)"' o
5 x=0

Find the value of k so that f is continuous at x = 0.
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Chapter 4 : Differentiation

e -

| IM“‘CO“‘QS:

{
I
|

iB}’ completing the study of this chapter, it is expected that the student

i“-ili be able to: i

- Define increasing and decreasing functions and determines thej
intervals of increase and intervals of decrease. |

- Define concavity and define intervals of concave up and concave
down. |

- Define the relative maximum values of the function and |
determine it, if there were any. i

- Define the absolute maximum values of the function and
determine it if there were any.

- Analyze some functions and plot their curves.

- Establish a mathematical model for some applied problems,
discuss it, and find its optimum value.

- Discuss and use Newton's method to find an approximate value

for the root of the equation.

Differentiation has many important applications. We will consider some
of such applications in this chapter such as analyzing the function and
drawing its curve, as well as some applications on the maximum and

minimum values.

ﬁpphcat.rons of Dfﬁsrenﬁatfon ﬁ i 5R02
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4.1 Increasing or Decreasing Functions and Differentiation

In the first chapter of this book, we dealt with the concept of increasing
and decreasing functions, as well as studying the behavior of some
simple functions. In this part, we will study how to use the first
derivative of a function to study its increasing, decreasing, fixed
behaviors, and specifying their intervals. We identified thc increasing

and decreasing function from Figure 4-1.

8 f
1 a
[ f(x)
o 3
; 2
: 1
< x -1
L+ 2
34 Increasing function 3 Decreasing functmn
4 -4
-5 T -5
Figure (4-1)

By drawing the tangents of the curve at any point, we can say that the: '3
slope of the tangent to the increasing function at any point in the_mterval

of increase is positive, whereas in the case of the decreasin fu_n_ctton,

the slope of the tangent at any point in the interval of
negative and its value is equal to zero in the case of th onstant
function. We can formulate this intuitive conclusion in t

theory.

954



Theorem 4.1.1:

Let the function f be continuous on the closed interval [a,b] and is
diﬂerentiable over the open interval (g, b).Then:

(1) I f'(x) >0 for all values of x in the interval (a,b). then the
function f is increasing over the closed interval [q, b].

@) If f'(x) <O for all values of x in the interval (a,b), then the
function f is decreasing over the closed interval [a, b].

3 I f'(x) = 0 for all x values in the interval (a, b), then the function
f is constant over the closed interval [a, b].

Example 4.1.1:

Find the intervals of increase and decrease of the following
function, f(x) = x? — 5x + 4.

Solution:

The function f is continuous and differentiable on its domain, and its
first derivative is

f'(x) =2x -5,

We study the first derivative sign by finding the solution to the equation
fix) =0,

5
=»2x—5=0=x=5.

Thus f'(x) > 0 for all values x > % and the function increases on the

interval (g ,00),




And f'(x) <0 for all values of x < g That is the function decreases o

the interval (— S
orval (=0, ).
Remark:
The problem of finding the intervals of

the question of determining the first derivative sign of the function, and

we can do this using the same previous method to determine the sign of |

the function by drawing the line of real numbers (domain of the

function).

In the previous example, we can draw line of real numbers and define

intervals in which the function increases and decreases as shown in |

Figure (4-2)

(Zx 5)
B LT L UL S | +++ +++++++++++
S ) } ] 1 + T f - x
-0,.. 5 .00
~——3 i

R

Figure (4-2)

To study the signal f'(x). we the follow steps: -
1. We find the roots of f'(x) by solving equation f' (x) i
2. If it has one root (linear function), then f'(x) on to the right of the

root has the same sign of the coefficient of x and an OPPQMte'mgn &

to its left.

increase and decrease tums into

S SR R e L L R E T £
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3. If it has two real different roots (a quadratic function), then f '(x)
has the same sign as the coefficient of x2 on both limits of the
number line and a different sign between the two roots.

4. Tf it has two equal roots, then f'(x) is positive.

If f'(x) has more than two roots, the sign of each linear (or non-

linear) is studied individually, then the sign of the product.

Lh

Example 4.1.2:
Find the intervals on which the following function is increasing and

decreasing,

f(x)=--;-x3—x2+3x-—1.

Solution:

The function is continuous on its domain, and 1ts first

and differentiable

derivative 18

fl(x) = —x2 —2x+ 3.
ive sign by finding the solution of the equation

We study the first derivati
f'x) =0,
:)—x2—2x+3=0=¢’(—-x+1)(x+3) =0=X1 =-3,x,=1

e, we get the following plot,

), in the previous exampl

Using rule no. (3);
/ x2—2x+3

---- ——|++++++++++++++++

|
== y : 1\

-0 —-3

//J/

Figure (4-3)
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That is, the function fis decreasing on the interval (—%,—3) and th_
interval (1, ) and increasing on the interval (—3,1).

See the function curve in Figure (4-4).

10
L]
e
. 8
6
4

2

R SO =, 1oL V- S

Figure (4-4)

Example 4.1.3:

Find the intervals on which the following function is increasingl:

decreasing,
flx) =3x*+4x3—12x2 4 2.

Solution:

The function is continuous and differentiable on its domain, and its s

derivative is
f'(x) =12x3 + 12x2 — 24x = 12x(x? + x — 2)
= f'(x) = 12x(x - D(x +2).




We study the sign of the first derivative by finding the solution of the

equationf "(x) =0,

= X1 =01x2 = 1;x3 = -2.

Using rule no. (3), in the previous example, we get the following

drawing in Figure (4-5):

1 1
]
some ) EBSESSE S +++.-+++:++++++++;r-
oo 1 1 I 1 I T T T Ll
-0 __'z 0 :!_
1 : .
| : |
i : ! (x—1)
i SR R ;----I-—---|+++++++++
e L 1 I I i I 1 i U ->
-00... -2 0 :
] 1
! : ;
I
: i ! (x+2)
ot .t it T A e P
SR | I ] ] I 1 ] ] 1
—00 ._'2 0 1
1 | (]
' : :
} i ' 12x(x— 1) (x +2)
]
---- --|++++++++++----__.-—--— +++++++++
L] ] l_
_W\L// \1

Figure (4-5)

That is, the function fis increasing on the intervals (—2,0), (1,0) and

decreasing on the intervals (—, —-2), (0,1).
the function curve in Figure (4-6).

Compare this result with
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Figure (4-6)

4.2 Concavity and Inflection Points

We can call this property the curve concavity or the curve hollow, which
is an important characteristic of the curves and in which a lot of
confusion occurs from some authors, especially in the arabic references.
We will deal with this concept with some detail in this part.

Curve concavity or curve hollow means the direction of this cavity, is it
up or down? In the case of concavity up, we can visualize the curve as a
vessel in its correct position, opened it upwards, and it caﬁ hold the
water, while in the case of concavity down we can visualize it as an
inverted vessel (hollowing it down) and cannot carry the.-"'water (see
Figure 4-7). -




Concavity up
(holdthewater)

L ] + J-"'
5 4 5
5%
1 Concavity down (spilt
%+ the water)
_4 -4

Figure (4-7)

Looking at the shape of the sine function in the previous figure, we can
now understand the concept of concavity, as we can also deduce the
importance of this property, and we cannot limit ourselves to
determining the intervals of increase and decrease of the function by
looking at the curve, the intervals (—g, 0), (0, -’23) which are increasing
intervals of the function while in the first interval the curve is concave
upward while in the second interval it is concave down. From the shape
of the curve, we also notice that in the concavity region to the top of the
tangent value of the function increases by moving from left to right on
the curve while in the concavity area to the bottom the value of the

tangent diminishes by moving from left to right and we use this

phenomenon to define concavity as follows:
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Definition 4.2.1: (Concavity

Let f be differentiable over an open interval, it is said to be concave up

in this open interval if f' is increasing over this interval. It 1s said to be

concave down in this open interval if f'is decreasing in this interval,

tudying concavity turns into a study of

for the derivative of the

Consequently. the question of s
intervals of increase and decrease, but this time
function and not for the function itself, and we can certainly do that by
studying the sign of the derivative of the first derivative, i.e., the second
derivative of the function and thus we get the following theorem.
Theorem 4.2.1:

Let f be a continuous function on the closed interval [a, b] and is twice

differentiable over the open interval (a, b). Then

1. If f""(x) > 0 for all values of x on the interval (a, b), then the

function f is concave up on the interval (a, b).
2. If "' (x) < 0 for all values of x on the interval (a, b). then the
function f is concave down on the interval (a, b).

Example 4.2.1:
Study the concavity of the function in the Example 4.1.3.

Solution:

To study concavity using previous theorem, we only nee
second derivative of the function. |
w i) =122+ 12x% — 24x
— f7(x) = 36x% + 24x — 24.

262




¢ study the second derivative sign by finding the solution to the

W
sqnalionf “(x) =0,
= 36x24+24x—-24=0=3x*4+2x—-2=0

Using the Theorem. X; = %(-—1 +J7) 2 0.55, x5 = %(_.1 _..4‘7') 2

-1.21.
The sign of the second derivative is shown in Figure (4-8).

i
36:’4-241—-245‘:
+-|--¢-+++++| jprsrsrerrt
M L 2 - —
o

—on.. T —a.24 ; e 055

- e —— - =

\...___.—'/

Figure (4-8)
From the previous figure. the function is comcave ©p O the
—1.21) and the interval (—o0,—1.21). while copcave

interval (—9,
See the cunve of the function m

down on the interval (-—1.21,0.55)-
Example 4.1.3 to compar® results.

a specific point at which the behavior of the function changes

vity up to concavity down Of vice versa. This pomnt has
inflection point and i defined 2s

There 1s
from conca
maximum importance and is called the

follows.

Definition 4.2.2: (Inflection Points)
open interval (2.b) that coniains

Let f be a continuous function on the

Xo and f changes i

x, from concavity upward 1o

ts concavity direction at
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concavity down or vice versa, then we say that the function has an

inflection point at x, which is the point (xq, f (Xo))- |
Referring to the sin curve in Figure (4-7), the inflection point is the point
(0,0). In the previous example, the points are (—1.21,—16.22), and
(0.55,—0.6).

Example 4.2.2:

Ep e e s
SEEFe BLE RS E

Find the intervals in which the function f(x) = x + 2sinx increases,

sl
ESERT

decreases on the interval [0,27].

Solution:

T A e e e e
TR AR e

To find the intervals of increase and decrease, we only need to study the
first derivative of the function.

F(x) =14 2cosx.

We study the second derivative sign by finding the solution to the
equationf'(x) = 0,

1
=314 2cosx =0 = cosi = —~2—=> x = cos™ 1 (—%)

The solutions of this equation are {713—” n=42, 14, } aﬁd on the

interval (0,2m) they are only x; = 333, and x; = 43_"",

Using the cosine function curve on the interval [0,27[],

(4-9).



1+ 2cosx

e i A S [+++++++++]
t 1 t R <

Figure (4-9)

Thus, the function is increasing on the intervals (0, -2—;—) and (43—”, 2m);

while decreasing on the interval (%T, Zn).

We are now studying the second derivative sign to determine the
inflection points.

f"(x) = —2sinx.

F'(x) =0 = sinx = 0.

Thus, the solutions to this equation are {nm:n =0,+1,+2,...} and on
the interval (0,27) it is only x = m. Using the sin curve, we obtain

Figure (4-10).

—2sinx

| —————————————— +++++++++1
1 1 L

' X
TC

o T[\'-;—:-—"/z

Figure (4-10)

Thus, the function is concave down on the interval (0,7) and concave
Up on the interval (7, 27r) and the inflection point is (7, —1).




Looking at the curve of the function as having peaks and bottoms sec

Figure (4-11).

Figure (4-11)

We can give the name the relative maximum or local Vﬁll.t.lc of the peaks
and the mmimum relative or local value of the bottom's.i_h relation to a
close neighborhood of this top or bottom. and therefore the relative
maximum value docs not have to be the largest value along the curve as

well as the relative minimum value does not have to be the smallest

value along the curve and it is defined in the following défﬁtition.

Definition 4.2.3: (Relative Maxima and Minima)

- The function f is said to have a relative maximum value &utx,:l if there
is an open interval containing x, at which f(xg) is -;'._;gt of all
values on this interval that is, f(xy) > f(x) for all value :
interval.

- The function f is said to have a relative minimum value at

is an open interval containing x, on which f(xp) is the sm,l

- A



values on this mterval that is, f(x,) < f(x) for all values x on the

interval.

If the function has a relative minimum or a relative maximum value at
X, it is said to have a relative extremum at Xo:

The function curves in Figure (4-12) all contain extremum values.

¥ o ¥y

1
34
:
1

- (2] T
t ¥ t

Y=—x 1+ Y=x

y=lxl

Figure (4-12)
We note that the extremum values always occur when the tangents of the
curve are horizontal, that is, f'(x) = 0. Looking at the absolute value
function in the figure, we also note that they occur when the function is
not differentiable. Such points are known as critical points of a function

and are defined by the following definition.




EI & General Mathematics

Definition 4.2.4: (Critical Points

The critical points of the function f are the points in the dtm;ain of the
function at which the graphs of the functions have horizqtljtal tangent
lines (the first derivative of the function is zero) or the fu‘hction 1S not
differentiable. If the tangent is horizontal, it is called the statmnary pomt
of the function. e
Theorem 4.2.2:

o

e
S

k-
i
£

Let f be defined on an open interval containing X, and has a relatwe .
extremum value at x = x, then x = X, is a critical point of thc functmn

Example 4.2.3
3
Find the critical points of the function f(x) = x5(4 — x).
Solution:
Using the product rule of two functions,

(4—x)
X

£/ = —x5+ 303 (4 —x) = f(x) = w51+

).

Thus, the function is not defined at x = 0, meaning that the ﬁmmn has
a critical point at x = 0. '

By solving the equation f'(x) = 0, we get x = g SO X =>1§

[x¥]

point of the function (stationary point).

The previous theorem says that; the fact that a point is a critica
a necessary but not sufficient condition for the maximum val
necessary that the maximum point be a critical point and

sufficient that the critical point be a maximum point or in oth
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critical point 18 not a maximum point but every maximum point is a

ritical point. ”
For example, by studying the critical points of the function f(x) = x3,

we find that x = 0 1s a critical point of the function while it is not a

it

aximum value, see the curve of the cubic function (Figure 1-27). This

suggests that the critical point in order to be a maximum value, the

function must change its behavior at that point, either from increasing to

decreasing or vice versa, 1.e., changing the sign of f’(x), see Figure (4-

13)
Y & j:- ¥y s j::
aT 4 r
3t 3
2T ] 2 1
14 I 1T
l : " re + + ' -
Xg a 4 s y f 1 *o 3 A 2
gt | - Critical point 41 = Critioal point
"' - Stationary point p - Stationary point
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Figure (4-13)
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We can also say that they are relative m

function changes from increasing to decreasing and it is relatively
minimum if it changes from decreasing to increasing and this s

formulated in a rule called the first derivative test as follows,

Theorem of 4.2.3: (Fivst Derivative Test)
Let fbe a continuous function on the open interval (a,b) which
contains the critical point xq. Then

- The function has a relative maximum value at x; if f'(x) > 0 on the
open interval (a,xy) and f'(x) < 0 on the open interval (xo,b). (The
function changes its behavior at x from increasing to decreasing).

- The function has a relative minimum value at xg if f'(x) < 0 on the
open interval (a@,xy) and f'(x) > 0 on the open interval (xg,b). (The
function changes its behavior at x from decreasing to increasing)

- The function has no maximum value at xg if f'(x) has the same sign
on the open interval (a, b). (The function does not change its behavior at
Xo).

Consequently. the problem of finding the relative maximum and
minimum values turns into study of increasing and decreasing behavior
of the function around its critical points, and this is what we discussed in

detail in intervals of increase and decrease.

Example 4.2.4:
In Example 4.2.3, find the relative maximum and minimu

fﬁfué'_s_'of the

function.



Solution:

. . 3
The critical points of the function are x; = 0 and x, = ; we study the

sign of the first derivative around these points.

fl(x) = %x:s'z'(—Zx +3).

- a
Since the value %x? is always positive, we only need to study the sign

of the quantity (—2x + 3), see Figure (4-14).

++++++++|+++++++++| ----------------
- Il | i 1 1

o ¥ I

Figure (4-14)
So that the point x; =0 is only a critical point and there is no

: : ' 3 ; :
maximum value at it, while x, = = has a relative maximum value for

the function which is f (3) = 0.

We note that the relative maximum value is located on top, while the
relative minimum value falls on the bottom, and therefore we can also
use the second derivative to find the maximum relative and minimum

relative values by a test called the second derivative test and is given in

the following theorem.

S R R
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Theorem 4.2.4: (Second Derivative Test)

Let f be a twice differentiable function at the point xo. Then
- The function has a relative maximum value at xo if f'(xo) = l‘
f"(x) < 0.
- The function has a relative minimum value at xo if f'(xo) = 0;-‘
f"(x0) > 0. ]
- If f'(xo) =0 and f"(xo) =0 we cannot determine whether

function has a maximum value of X, or not.

Example 4.2.5:
Find the relative maximum and relative minimum values of the function

) =325 —5x°,

Solution:

We will use the second derivative test to solve this example.
The first derivative of the function is

f'(x) = 15x* — 15x% = 15x%(x* — 1).

By solving the equation f’(x) = 0, then the stationary points of the
function are,

x; = —1, x, =0, x3=1

The second derivative of the function is
F(x) = 60x3 —30x* = 30x2(2x — 1).
Since, f"(~1) = =90 < 0,

then the function has a relative maximum value at x = —1.

Since, f"(0) = 0.



The test does not give a result, and we cannot determine whether the

function has a maximum point at x = 0 or not.
Referring to the first derivative, the function does not change its
pehavior at x = 0 and therefore has no maximum value.

Since, f''(1) = 30 > 0, then the function has a relative minimum value

at x = 1, see the function curve in Figure (4-15).

Yy Sj‘:
4-_.

3—-
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"
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Figure (4-15)
4.3 Analysis and Graphing of Functions

In this section, we aim to use the results obtained in the previous
sections to develop a methodology for analyzing and drawing some
fundamental functions, including polynomials and fractional functions.

Before we go into polynomial analysis, we will discuss an important
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characteristic, which is the relationship between the shape_:

function curve and the multiplicity of roots.

Definition 4.3.1: Multi licity of Root:

Let the polynomial P(x) has the root x =7 (P(x) =0 at x =
said that the multiplicity of the root is m if and only if (x — )™ J'_'
P(x) while (x — r)™*! does not divide it.
The root with the multiplicity m = 1 is called the simple root.
use roots multiplicity in studying the behavior of the function i
neighborhood of the root, as in the following theorem.

Theory 4.3.1:

Let the polynomial P(x) which has the root x = r with mulliplicily
- If m 1s an even number, then the curve of the function y = :'-
tangents the ox axis at x = r but does not crosse the x-axis there,
also has no inflection point there.
- If m 1s an odd number greater than 1 then the curve of the function
P(x) tangents the ox axis at ¥ = r and then crosses it and has infled
point at it.
- If m = 1 (the root is simple), then the graph of the function y = P{
is not tangent to the x -axis at x = r, crosses the x -axis there, and m

or may not have an inflection point there, see figure (4-16).

| e e
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The root has
odd multiplicity

. The root has
evenmultiplicity

o onae

$ A 3 & 8
1
!
The roots are
simple |
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Figure (4-16)

To study the behavior of the function and to draw its graph, we need to

study some properties, namely:
* Symmetries ¢ periodicity® X -intercepts * Y
« intervals of increase and decrease * inflection points ¢

-interceptse relative extrema

* concavity

affinity lines * asymptotes behavior as x — £®.

It is not necessary to study all these properties since some of which are

specific to certain functions and not
tional functions but not to polynomials,

to other functions, for example

asymptotes are specific to frac




fractional functions. and ete.

To study the behavior and plot of the polynom
steps:

- We study symmetry.

- We define x -intercepts and y-intercepts
- We study the behavior of the function wher
- We define intervals of increase and interval
- We define the maximum and minimum val
- We study concavity and inflection points.

- We combine the results obtained in a table

curve. Follow these steps in the following ex

Example 4.3.1:

Plot the curve of the flowing the function.

flx) =2x3 = 3x* — 36x +.

Solution:

- We study the function symmetry.

» f(—x) = —2x3 — 3x% + 36x + 5,

so, the function is not symmetric.

- We determine x -intercepts and y-intercepts,
- First, y-intercepts.

When x = 0, y = 5, then y-intercepts is (0,5).

e E—

976



a Second’ X

2;\:3 — 3x2 =

So that,

X1 — 5, X2

-intercepts, let y = 0. Then
36x+5=0=(x—-5)@x*+7x—1) =0.

=2(-7+V57) =~ 0.14, x3 = 1(-7-+57) = —3.64.

The

curve crosses x-axis at (5,0), (0.14,0), and (—3.64,0).

_We study the behavior of the function where x — £0.

im (2x% — 3x% —36x +5) =
x—00
lim(2x3 — 3x% —36x + 5) = —oo.
x—00

We find intervals of increase and decrease.

The first derivative of the function is
f'(x) = 6x* — 6x — 36.
Solving the equation f "(x) =0,

6x2-6x-36=0=>x2—x—6=0=->(x+2)(x—-3)=0
=>x1=-2, x2=3.
Its sign is given from Figure (4-17).
6x2—6x—36
s o o VR S mimies| b A
| 1 ; i : : - - X

] ] ]
3/’40

Figure (4-17)

Thus, the function is increasing on the in

decreasing on the interval (—2,3)-

terval (—oo0, —2) and (3, o0) and




It has a relative maximum value at x = —2 and a relative minimum
value at x = 3.

We study concavity and inflection points.

The second derivative of the function is

f'(x) =12x - 6.

By solving the equation f”(x) =0, then x = -;- and the second
derivative sign is given in Figure (4-18).
12x—6
S e ".++ :+++L+++-I|-+++++ "
'm;_-;__ _ }_ P el 0D
R 2
Figure (4-18)
Thus, the function i1s concave up on the interval ( ) concave
down on the interval (— o) and has an inflection point at x %

We collect the results obtained in the following table.




-

Wwe draw the points in the previous table, bearing in mind that the

relative maximum point represents a peak, while the minimum point

represents 2 bottom, and we get the figure (4-19).

e

Relative Maximum (—2,49) ’
(—3.64,0) N
i TR ! R R L/'(UII:LO? t :I: —t—rt
-10 -8 =] ) ; 2 4 p . i
0.5,—13.5) x
20T
/! Inflection
40
-60 T
Relative
i 80 ¥ (3,—-67). Minimum

Figure (4-19)
When analyzing and drawing fractional functions, we follow the same

previous steps in addition to finding vertical asymptote lines. Let the

fractional function f(x) = P(X) Thevertical asymptotes are the straight

Q(x)
lines that have Q(x) = 0. We also study the behavior of the function on
these lines, as in the following example.
Example 4.3.2:

2x%-8

Plot the curve of the flowing the function, f(x) = x2-16'

Solution:

- We study the function symmetry.
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f(—X) - 2x2-8 - f(.l‘)

x%2-16

So, the function is symmetric about oy axis.

- We fined x-intercepts and y-intercepts,

First, y-intercepts, when x = 0, then y-intercepts is (0,%)-
Second, x -intercepts, let y = 0. Then

2x% -8 '
— =0 =2x?-8=0=x=12

So that, x -intercepts are (—2,0), and (2,0)

- We study the behavior of the function where x — +00.

. 2x°%-8
lim——=
x—00 X<—16

lim

x——00 X2=16

2,

2x%-8 _

So y = 2 is a horizontal asymptote.

We study vertical asymptotes

The vertical asymptotes are at x? —16 = 0 thus at thevalues of x =
+4. =

-We study the verticals asymptotes

2x2%-8
i -CXJ,

lim
x—4— x2-16
2x%-8 _

= 00,

Li
x—p?.g}“ x2-16

= 00

2

li 2x2-8
m
x—-4— x2=16

-8
2x .

2

J_Eﬁh x2—16




we find intervals of increase and decrease.

The first derivative of the function is
-48x

f (?C) = ___—_(xz—-lﬁ)z'

By solving equation f'(x) = 0,

48x

m=0=>48x=0=>x=0.

And f'(x) is not defined at the values x = +4, so the function has

critical values at
x; =—4, x =0,x3 =4.

Its sign is given in Figure (4-20).

+++++|++++++++ - o et Wi ——I—-u- --

—48x
(% - 16)2

-0, /4 L UM\A‘

R

> X

\

Figure (4-20)

Thus, the function is increasing on the intervals (-, -4) and (—4,0), and

decreasing on the intervals (0,4) and (4, ).
It has a relative maximum value at x = 0.
We study concavity and inflection points.

The second derivative of the function 1s

1 144x2+768
X = ——
f ( ) {xz._.iﬁjs
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f"(x) # 0 and the second derivative sign is determined from the 'sign'_

of (x? — 16)3 given in Fig. (4-21).

144x% + 768
(12 = 15)3

+++++l- S e et sl e ---'-—l++++++
- I 1 1 L g 4 L e
T n T T T 1 4 ' i
-00_, _4. . ) v OO

R

Figure (4-21)
Thus, the function is concave up on the intervals (—o0,—4) and
(—c0, —4) and concave down on the interval (—4,4) and there are no

inflection points.We collect the results obtained in the following table:

X -2
f(x) 0
Vertical
Asymptotes
x > o0 —00
e 2 2

the figure (4-22).
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Figure (4-22)

Example 4.3.3:
Plot the curve of the flowing the function, f (x) = xi';l.

Solution:

- We study the function symmetry.

« fl—m) = =557 = = (2,

so, the function is symmetric about the origin point.
- We find x-intercepts and y-intercepts.

- First, y-intercepts,
- Second, x-intercepts, lety = 0 then

-
s 1=0—:.>,:cz-—1=0==='x=i1

xs
x-intercepts are (—1,0); and (1,0).
- We study the behavior of the function where

x —» koo,

let x = 0. Then there is no y-intercepts




So y = 0 is a horizontal asymptote.
We study vertical asymptotes.
The vertical asymptotes are at x3 = 0 thus x = 0.

-We study the vertical asymptotes

. x%=1
lim = 00,
x=0— x3

. x2-1
lim — = —o00.
x—0t X

We find intervals of increase and decrease.

The first derivative of the function 1s

fl =28

By solving equation f'(x) = 0,

Sl
z++3=0=>—x2+3=[}=5:f=i\/§,

and f'(x) is not defined at the values x = 0, so thé-function has cﬁticﬁl

values at

x1=— 3_. x2=0,x3 =‘\(§

Its sign is given in Figure (4-23).
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Figure (4-23)
1 is increasing on the intervals (—v3,0) and (0, V3),

Thus the functio
(—c0, —V/3) and (3, 0).

and decreasing on the intervals
/3 and minimum value atx =

[t has a relative maximum value at X =

-3,

We study concavity and inflection points.

The second derivative of the function is

2x2—12

f'x) =
+\/g and the second derivative

By solving cquation f'(x) #0s0x=

of (x* — 16)3 and is given in Figure.

sign is determined from the sign

(4-24).
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Thus, the function is concave up on the inte

Relative Relative
Maximum | M inimum

X -1 1 -3 V3

0 0 | -038
fx) all




- +
ke = —0 | 0 0
& )~ 0 % = —

_____'.—-—-—‘—"'_'__—__

% we get
draw the points in the previous table and the asymptotes, sO W€ ge
We i

the Figure (4-25).
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Figure (4-25)

Example 4.3.4 ;

B,

i ion, f(x) =€
Plot the curve of the flowing the function £

Solution:
- We study the function symmetry-

¢ fl—x) = e~ % = f(X)-
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So the function is symmetric about oy ax :

- We determine x-intercepts and y-interce
First, x-intercepts; let x = 0, soy = 1 then
Second, y -intercepts; there is no y-intercep”‘

We study the behavior of the function whe
x2

lime =z = 0

X =00 ’

x2

lime 2 =0.
X——o0
So, x = 0 (0x-axis) is a horizontal asymptote. -
We study increasing and decreasing intervals.
The first derivative of the function is,

-~ xz .
f(x) = —xe z.

By solving equation f'(x) = 0,

x2

= —xe 2 =0=x=0.

The sign of the magnitude e 2 is always positiv

derivative sign depends on the sign of —x and 1s

R e at Pl

i I I 1 ! | L

0
R

amp—

Figure (4-26)



he function is increasing on the interval (—oo, 0) and decreasing

on the int

|
|
|
|
 estudy concavity and inflection points.
i
|
|
|
|

The second derivative of the function is

X2

o= -
By

erval (0,00)) and it has maximum value at x = 0.

solving equation f "(x) # 0 so x = +1 and the second derivative

sign is determined from the sign of (1 — x?) as given in Figure (4-27).

e

_x2
(1—x%e 2
e [ A TSI +++|- i e i e

- X
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Figure (4-27)

Thus, the function is concave up on the interval (—1,1) and concave

down on the intervals (—oo,—1) and (1,0) and there is an inflection

points at x = +1.

We collect the results obtained in the following table.

Relative Inflection | Inflection
Maximum
x 0 0 1 -1
e f(x) 1 . i 0.61 0.61

s

J
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Horizontal asymptotes

flx)—» 0

the figure (28-4).

0,1

Figure (4-28)
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iﬂ_}}_g_g_glllte Maxima and Minima

 the previous section, we examined the relative maximum and
pinimum values and determine these values compared to the points in
(heir neighborhood, while the absolute value, is compared to all points in
the function range or in some interval of the domain, and it is defined as
in the following definition.

Definition 4.4.1: Absolute Maxima and Minimum

If an interval in the domain of the function f contains the point xo, then

_ The function f is said to have an absolute maximum value at x, if
f (%)= 5 (x) for all x values in this interval.

- The function f is said to have an absolute minimum value at Xo if

f(x) = f (o) for all values of x in this interval.

- -The function is <aid to have an absolute extreme value at the point xg if
the function has an absolute minimum or maximum value.

From the previous definition, we can say that the absolute maximum
value of a function in an interval is the largest value of the function in

this interval, and the absolute minimum value is the smallest value of the

function in this interval.

Theorem 4.4.1:

If the function f is continuous on the closed interval [a,b
ximum value and an absolute minimum

], —o<a<

b < o then f has an absolute ma

value within this interval.
2 e { ‘.]16
From the previous theorem, we can conclude that there 18 a alue n

the function has an absolute maximum value

closed interval at which

291




there and another value at which the
value if this function is continuous on
theorem, we cannot find these values.
[a, b] into two parts, which arc the poin
interval (a,b). Thus, the absolute max

points of the limits or within the open inte val

i3
R

will discuss in the following theorent.

Theorem 4.4.2:

If f has an absolute maximum value in the Opg

t a critical point of the fu

must be located a noti'
From the previous theorem, we can use the folloy
function. '

b).

maximum values for a
cal points of fin (@,
al points and at the ene

the absolute
Step 1. Find the eritt

Evaluate /at all critic
est of the values 1

nd the gmallest valu

Step 2.
step 3. The larg
e of f on [a, b] @
wing example.

n Step 2 is thE
valu e 1S thc ab
in the follo }

Example 4.-4.1:
and minimum values of /8

Find the absolute maximum
the interval [—2,0]-
nts of the function.

- We determin

st derivative

e the critical pot

of the function is

The fir

992



—X
f®) =2
The critical points are at f'(x) = 0 and then at x = 0 there is a critical
point of the function, or when f'(x) is undefined and then at x = —2

exists a critical points of the function.

gince, f(—2) = 0and f(0) = 2, the absolute maximum value of the
function is 2 and occurs at x = 0, and an absolute minimum value at

x = —2 and its value is 0.

Example 4.4.2:

Find the absolute maximum and minimum values of f(x) = 4x% —

12x + 10 on the interval [1,2].

Solution:

-We find the critical points of the function.

The first derivative of the function is

f'(x) =8x—12.

The critical points are where f'(x) = 0, then at x = %there is a critical
point of the function.

Since f(1) =2, f @) = 1,and f(2) = 2, the absolute maximum value

of the function on the interval [1,2] is 2 and it occurs at the values of

x = 1,2. The absolute minimum value for it on the same interval is 1

. . 3
and its value is at x = Fes




-If lim f(x) = oo, then there is an a

x—too
function while there is no absolute maximu

-If lim f(x) = —oo, then there is an absol
x—+oo 3

function while there is no absolute minimum

-If lim f(x) = 400 or li?:t f(x) = Foo,
x—)_w

x-tow

minimum value and there is no absolule maximums

29).

s 4 3 : - . § 4 3
a4 x
2 1 -Absolute Maximum value
3
-4 =
Ky
o |
L]
Yt
i+
o0, 00 g
(—oo, ) =
l -
S . * + 4 + + ¢ B ¢ .y
K 4 -3 2 8] 1 2 3 4 E] L] 1 8]
1 x
34 -Neo absolute Maximum
value
—00. 00
21 . Noabselute Minimum ( ' )
4+ value
4 1.

Figure (4-29)



Exam[!le 4.4.3:

In the previous example, determine whether the function has maximum

or Minimum values on the interval (—o, ). Find those values, if any

Solution:
Since
: = i 2 _
xl_mof () = lim (4x"—12x 4 10) = o».

Thus, the function has an absolute minimum value, while it has no

absolute maximum value, and this value occurs al the critical points of

the function, therefore it is 1 and it occurs at X = -Z See the function

curve in Figure (4-30).

r'Y

y st
4-—

3T
2

-1 -
Figure (4-30)
o conclude that the absolute maximum and min
exist on an open in b) by studying the behavior
+and X

imum values

We can als

of the function

of the function where x—a
intervals (—, @) and (b, ) 1t has the fo

terVal (a:
p~, we can also use that for

lowing cases.
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-

- If lim f(x) =c0 andlim f(x) = 995
x=at x=b~

absolute minimum value on the interval (i

maximum value on (a, b).

- If lim f(x) = —o0 and lim f(x) = =%, h
x-=at x-b~

absolute maximum value on interval (a,b

minimum value on (a, b).

- If lim f(x) = +c and xli?gl_f(l’) = Foo,

x—=at

neither an absolute maximum nor an absolute minim

Example 4.4.4

Are there absolute minimum or absolute m

function f(x) = L on the interval (0,1)? Find th

x%—x

Solution:
Since
i = lim = 00,
;gi?(ﬁ'f(x) I
i = lim =09, ,
xlﬂi?"f(x) X1 X*=x p

The function has an absolute minimum value on the integ
has no absolute maximum value.

The first derivative of the function 1s

—2x+1

[ =7

9296




£
o

The critical points of the function on the interval (0,1) are x = > and
' T2

1 . £
f('i) = —4, so the absolute minimum value of the function is —4 which

occurs at X = %, see the Figure (4-31).

B3] =

Figure (4-31)

If the continuous function has a single relative extreme value in a finite
or infinite interval, then this relative extreme value must be the absolute
extreme. Let that the function has a relative maximum value in an
interval and that it is at xp . Let that f(x) is not an absolute maximum
value of the function. Therefore there is another relative maximum value
at which the function is greater than f(xo) therefore there is another
maximum locale point and this is contradicts the assumption that a

single value exists and therefore the absolute maximum value of the

function is at xg.




an mterval and it is at x,, then

-If f has a relative maximum value at
maximum value of the function in this interv
-If f has a relative minimum value at X

minimum value for the function in this interval.

Example 4.4.5:;

Find the absolute maximum and minimum valu
the interval (0, o).

Solution:

Since

lim f(x) = lim ex =3x" = 1
x—=0% x-0% ’

3_3x2 >

limf(x) = lime* 0.
x—00 x—00

The function does not have an absolute maximum va
(0, o).

The first derivative of the function is

F'(x) = (3x2 — 6x)e* ~3%",

So, the critical point of the function on the interval;

x3=3x2

Since the valuee is always positive, the second

depends on the sign of (3x? — 6x) as shown in Figure f‘_c




!_ e ] G

(3x% — 6%)

]++-+I++++++++++++
1 ]

f > X

Thus, the function has a single relative minimum value on the interval

Figure (4-32)

(0,0) at x = 2, and the absolute minimum value isf (2) = g%, sEk

Figure (4-33).

Figure (4-33)
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5.4 Optimization Problems:

Calculus is used to solve many applie
method is to find the maximum and min
that represent those quantities to be studie
of industry, the necessary conditions that
production at the necessary costs can be
attention on those applications that need to b
mathematical model of the problem to be solv¢
y (dependent variable) in terms of the inde
search for x values that make y the larges
possible depending on the type of problem to
procedure for solving applied maximum and m
following steps. '
Step 1. Draw an appropriate figure and label th !
the problem.
Step 2. Find a formula for the quantity to be t
Step 3. Use the conditions stated in the problem to €l
express the quantity to be maximized or minimized
variable. |
Step 4. Find the interval of possible values for th'll
physical restrictions in the problem.
Step 5. If applicable, use the techniques of the previoﬁ :

the maximum or minimum values.
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An open box is to be made from a card board by cutting out squares of

equal $12€ from the four comers and bending up the sides (Figure 4-34).
What size should the squares be to obtain a box with the largest volume?
We Suppose that the length of the side of the cut out part is x, and the
volume of the box is V, so we have the length of the base of the box

equal to (@ — 2x) and the height of the box equal to x as shown in the

following figure. Note that 0 < x < % and the volume is given by:

V = x(a—2x)* = x(a? — 4ax + 4x?)
=a?x —4ax® +4x3 . oo (1)
V' =a%—-8ax +12x° ... . ... (2) : :
V" = —=8a + 24X .. ve v 00+ (3) Figure (4-34)

V has a maximum value if V' = 0 and V" < 0
From equation (2) we put V' = 0.
Then,
a? —8ax + 12x? = (a—2x)(a— 6x) = 0.

a a
Therefore, x = SOy =

Since,

v (%) = —8a+ 24(%) = —8a41%a=14a30

and
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P (g-) = —8a + 24(%) — —8a+4a=—4a<0

Then, the variable V has a maximum value (i.c., the volume of the box

as large as possible) if x = 2

o

So, the base a—2x=a—§ =53‘E

The height of the box is equal to (%).
(Note that the other solution gives the length of thesquareof the base

equal to zero.)

Example 4.5.2:

Find a largest rectangular areca whose lower base on the x-axis and its

upper side limits are on the curve

y=12 = x* -
Solution: R

Suppose that o

Rectangle length =2x : .

X

Rectaﬂgle Wldth == y 3 4-233 2 4 0 1 IR .\" ..
Figure (4-35) ?

Rectangle area =A

As shown in Figure (4-35)
Note that 0 < x = 2+/3.
Then A = 2xy. Suppose that the point P(x,y) is on the curve y = 12 —

x2,



the coordinate of the point P satisfies the equation of this curve

Thus,
and hence the variable y in the relation of the area of the rectangle can
be climinated as follows:
A=2x(12 — x3) = 24x = 2x% o sie v e (1)
dA .
EJ_\’,'- = 28— 0X" v irs siviusi (2)
d2A
i D sl et D)

The area A is a maximum value if A" = 0.

So that 24 — 6x* = 0
x?=4.x=1%2

The negative answer is rejected because the length is always positive.

So, the length of the rectangle is 4 and its width T e

8 and the area is 32.

Example 4.5.3:
Prove that the size of the largest right circul

cone equals to g— of the volume

ar cylinder that can be drawn

inside an existing circular of the cone.

Solution: -
Let the cone’s base radius be a, its height 18 b, I
_ ma’b
and its size is Vy so that We have V3 =3 ‘ i .
Suppose also that the cylinder base radivs x | /| || _ 5
length, y height, and V; size. By this we have, — = A::__. E— e
__________ g
Vy = mx?y. -




Note that 0 < x < q.

From the similarity of the two triangles in ABC and BED in Figure
36), we find that: '

o D o x
¥ =cta—g] =5~
Substituting the value of y in V, we get (1):

Vo = nx?b (1 — g) =nh (xz —ﬁ) THIRARE: &

a
dv. ¢ e
S (Zx " —x—) s ssoss a2

s .o dV. d2v.
So V; has a maximum value ﬁ;f = 0 and ?.:' < 1.

From equation (2) we obtain

3x2 3
nb(Zx—-—x—) =nbx(2—-—x-) = ]
a a

2a
So, x = 0 and x= =,

Substituting these values for the variable x into equation (3), we gef

. :
dxrz > 0 where x = 0 (neglected. Why?) Whereas ‘:V; < 0 where x
X




So, the cylinder size is the largest when x = z?a and y = % and therefore

its size 18
40> b 4
V=Trx2 = _— -
2 =g g~ g
v, 4
Vv, 9

That is, the volume of the cylinder equals z- of the size of the cone.

Example 4.5.4:

A water tank in the form of parallel rectangles with a square base with
an open top of capacity 32 m® of water. Find the dimensions of the tank
that make the costs of making it 1s the minimum.

Solution:

Let the length of the base side be x, height y, and its
volume V.

As shown in Figure (37-4), notice that 0 < x < co.

The volume of the tank is given by V = x?y such
that V. = 32. Figure (4-37)

Accordingly:
32
7= srasn L L)
Cost is the minimum when the surface area of the tank S is the

minimum. Therefore, we assume that the surface area of the tank 1s

Tank surface area = base area + area of the four sides.

That is,
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S =4xy+x2 .. (2)
Substituting from (1) for the value of y, we get

2 e D)

G0 T e D anees ()

So S has a minimum value where S’ = 0 and S” > 0. Using equation

(3): we Obtain
—128
xz
2™ =128 - x3 = 64.

+2x=0

Therefore, x = 4 andy = % =2

So, the length of the tank side should be 4m and height 2 in order to
make the costs of making it the minimum.

Example 4.5.5:

A square floor room whose walls are to be painted with a square meter
cost of 40 riyals and whose ceiling is to be painted with another type of
paint the cost of one square meter of which is 50 riyals. Find the
dimensions of the room so that the costs are the minimum, where the |
room size is 216 cubic meters.

Solution:

Let the length of the room bex meters and its height y meters. Since the

room is a square floor, then we have x2y = 216, so




Let that the cost of painting 1s S,

S = 4xy(40) + x*(50) = (160) (2—31;) S BDx i {2)
S = —4(40) (3;) + 100% oo . (3)

5" = 2(160) (o) + 100 . (4

The cost of the painting is the minimum when S’ = Oand §" >0, and

using equation (3) we obtain:

,_160x216 _

X ="7900 %

So. x = 7.018mand y = —— 2 — 2 4,446
o, X = LIRA Y = et -

216

(7.018)(7.018) 4.446m and x = 7.018m

Then y =

Example 4.5.6:
A cylindrical cane is made of tin is intended to be filled with honey,

provided that the can contain 250mcm?® of honey. How should we
choose the height and radius to minimize the amount of material needed

to manufacture the can?

Solution: °

Let the cylinder base radius be X, its height y, its

volume V and its surface area S.

As shown in Figure (4-38).

Figure (4-38)
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Y = g e - (1)

The surface area S of the cane is given by

250
S = 2nxy + 2nx% =2n (-x—) 4 TR i e (2)

500
d_S e o (_—) S PR |
dx

xz
d?s 71000
Wzﬁ(

Fabrication costs are minimal when the surface area is minimized.

)-i- B ouise 55 (4)

x3

2
That 1s, when g =0 and ﬁ > 0, using equation (3) we obtain
—-500m
=—+4nx =0
X
% =128,

Then y = % = 10cm and x = 5cm

Therefore, the required oylinder radius is 5¢cm, while the height is 10cm.
4.6 Mean Value Theorem

Mean value Theorem is one of the most important theorems in
differential calculus. The mathematician Michel Rolle developed 2
special case of this result which states that if a continuous curve

intercepts the ox axis, then there is at least a point on the curve where

the tangent of the curve is horizontally, see Figure (4-39).




3
ol
A i

Figure (4-391)
Theorem 4.6.1: (Rolle’s Theorem)
Let f be a continuous function on the closed interval [a,b],
differentiable on the open interval (a,b) and f(a) = f(b) = 0. Then
there is at least a point ¢ on the interval (a, b) such that f'(c) = 0.

Proof:

We will divide the proof into three cases, the case where f(x) =0 for
all x in (a, b), the case where f(x) > 0 at some point in (a, b), and the
case where f(x) < 0 at some point in (a, b).

Case 1: If f(x) = O for all x in (a, b), then f’ =0 at every point c €
(a, b) because f is a constant function on that interval.

Case 2: Suppose that f(x) >0 at some point in (a,b). Since f is
continuous on [a, b], it follows from the Extreme-Value Theorem (4.4.2)

that f has an absolute maximum on [a, b]. The absolute maximum value

cannot occur at an endpoint of [a, b] because we have supposed that
f(a) = f(b) =0, and that f(x) > 0 at some point in (a, b). Thus, the

absolute maximum must occur at some point ¢ in (a, b). So that ¢ is a
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critical point of f, and since f 1s differentiable on (a, b), this critj
point must be a stationary point; that is, f'(¢) = 0. ..
Case 3: Suppose that f(x) < 0 at some point in (a, b). The proof of th:
case is similar as Case 2. |
Example 4.6.1:

Show that the function f(x) = x? + x — 2 satisfies a Roll's theorem of
the closed interval [—2, 1] and then find a number ¢ on the open interva
(—2,1) so that f'(c) = 0.

Solution:

Note that the function f is continues on the closed interval [—2,1
because it is a polynomial of the second order (in fact any polynomial of
degree n where n is a positive integer is a continuous function).
We also note that the function f is differentiable in the open interval
(—2,1) so,

f'(x) =2x+ 1.
Finally, we note that f(—=2) = f(1) = 0.
This indicates that the conditions have been satisfied. That is, the
function f satisfies Roll's theorem.
So, there is a number c in the open interval (—2,1) so that, f'(c) = 2c +
1=0.

So, ¢ = --;-12- this number actually is in the open interval (—2,1).



Example 4.6.2

Show that the function f(x) = x3 — 4x satisfies Roll's theorem on the
closed interval [—2,2] and then find a number c in the open interval
(—2.2)sothat f'(c) =0,

Solution:

As in the previous example, the function fulfills Roll's theorem and

f'(x) = 3x* = 4. Thus ¢ = +2/v/3, is on the interval (=2,2).
Corollary 4.6.1:

If f is a continuous function on the closed interval [a,b], is
differentiable on the open interval (a, b) and f(a), f(b) is of different
sign then there is at least one root of the function f on the interval (a, b).
That 1s, the function curve intersects the o0x axis at least one point.
Example 4.6.3:

Prove that the function curve f(x) = x3 + 3x + 1 intersects o0x axis at
one point on the closed interval [—1,0] without solving the equation
fG)=o0.

Solution:

Since, f(x) = x® + 3x + 1, then f'(x) = 3x2 + 3.

So f'(x) > 0 for all real x and this indicates that the function is always

increasing.

Since, f(0) =1>0and f(-1) = -3 < 0.




For the equation f(x) = 0, there is only one root in the open intewa_
(—1,0), so the curve of the function flx)=x 3+3x+ 1 intersects 0
axis in only one point. |
Theorem 4.6.2 (Mean Value Theorem):

Let f be a continuous function of the closed interval [a,b] and,

differentiable on the open interval (a,b) then there is at least a point
f(b)-f (@)

b—-a

¢ on the interval (a, b) such that f'(c) =
Proof:

Since, the equation of the straight line connecting the two points
(a,f(a)) and (b, f(b)) is

SO )t @ )

Thus, the distance between any point (x,y) on the curve of the function
f and the line (1) is g(x) where

b
) = Fio) — £ () - ﬂ) f@u—@mm4m

Note the Figure (4-40).




(b, f(B))

.

P
X

Figure (4-40)
Since the function f is continues on the closed interval [a,b] and is
differentiable on the interval (a,b) and g(a) = 0,g(b) = 0then the
function g fulfills Roll’s theorem and thus there is a number c¢ in the

open interval (a, b) so that,

g'© =f’(c)—f(b;:£(a) = 0.
Then
il ) = la)
[lab=—=—"—=

Example 4.6.4:
Apply the mean value theory for the function f(x) = x3, and then find a

number ¢ on the open interval (1,4) which satisfies the theorem.
Solution:

It is clear that f(x) = x3 is a continuous function on the closed interval

[1,4] and that it is differentiable on the open interval (1,4) and f1lx) =
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2 : :
3x* and thus the mean value theorem holds and there is a number C on

the open interval (1,4), so that,

o f@® = f()

Q) =————
Then

362:643—1!

which implies that ¢ = ++/7.
Since, —/7 ¢ (1,4), then we conclude that ¢ = /7.

Corollary 4.6.2:

If f'(x) = 0 for all values on the open interval (a, b) then the function
f (%) is constant over the whole interval.
Proof:

Let f'(x) = 0 for all values x € (a,b) and x;,x, be any two points on
the open interval (a,b) so that a < x; < x, < b. Since the function is
differentiable for all the x between x;, x, that is, X1 < x < X5, and this
function is continuous on the closed interval [a, b], by applying the
mean value theorem we can say that there is at least a point ¢ between
X1, X so that,

_ fxz) - f(x1)

X2 — X

f'()

that 1s,

(xz —x1)f'(c) = f(x2) = f(xy).



Since f'(x) = 0, then £ (x;) - f(x,) = 0.

Therefore f(x;) = f(x,) , that is, f(x) is a constant value.

Corollary 4.6.3:

If fi and f, are functions and their derivatives are equal to f(x)

wherea<x < bie,

d d
E;ﬁ(x) = a;fz(x) = f(x)
For all values of x that such that a < x < b, then f;(x) — f2(x) equals a

constant value on the interval (a, b).

Proof:

= - U0k, 4.
Suppose that f(x) = fy(x) — f2(x) and so we have —=—"——""=0

and using the result 2.6.4 we find that f(x) is a constant value, and from
it f, (x) — f>(x) equals to a constant value.
Corollary 4.6.4:

Let f be a continuous function on the closed interval [a, b] and is

differentiable on the open interval (a,b). If f'(x) is positive on (a, b)
then f is an increasing function on the closed interval [a, b]. If f'(x) is

negative on the open interval (a,b) then f is a decreasing function on

the closed interval [a, b].

Proof:

Suppose that x; , Xp are any two numbers in the closed interval [a, b]

such that x; < x, and applying the mean value theorem, we find
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flxp) — flxy) = (2 — x1)f'(€)

where ¢ € (a,b). Since the right side 18 positive because f(c) is

supposed positive.
Then the value of f(x;) — f(x;) must also be positive. That is

FG) > Fro)-
Consequently, f(x) is an increasing function on the closed interval
[a,b]. Similarly, if f'(x) is negative then f (x,) — f(x1) is also
negative. Therefore, f(x;) < f(¥1)) and hence f(x) is a decreasing
function on the closed interval [a, b].

4.7 Newton’s Method

If we can solve some equations algebraically, there are many of them

that are difficult and even impossible to solve by known algebraic
methods. Therefore, approximate methods are used to find such
solutions, including the Newtﬁn method, which is one of the first
applications of the derivative of function.

Let the equation y = f(x) and x; be an approximate value for the root
of the equation 7.This value can be determined by drawing the equation
or by finding an interval that contains this root which is an interval
within it the equation sign changes. If f(x;) =0 then x; = r and if
f(x1) # 0 then the tangent of the function curve at x,; intersects the ox
axis at a point x, which represents a better approximation to the root
values. If f(xz) = 0 then x; =7 and if f(x;) # 0, then the tangent of

the function curve at x, intersects the ox axis at a point; say X3, which
2 3



represents a better approximation of the root values. Thus, we can repeat

this until a certain precision is obtained and this method is called the

Newton's method, see Figure (4-41).

&
5
y

Figure (4-41)
We can formulate the previous method in the form of an iterative

equation as follows.
Let x; be the starting value, then the tangent equation is
V=) = FO)E =% oo, (1)
Let the tangent intersects the horizontal axis at the point (x5, 0). Then it

satisfies equation (1), and hence

i f(x1)

X =X I ’ JI(x ) ¢ 0‘
2 1 f (1’1) f 1
Repeating this for x,, we obtain
x ,
X3 = f( 2) fr(xz) + 0.

= oy
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Generally, if x,, is the n'™ approximation, then the X;+1 approximation is

given by

f(xn)

B R

xn-i-l = Xn

Example 4.7.1

Use Newton's method to find an approximation of the real solutions of
the function f(x) = x3 — x — 1, for four iterations.

Solution:

The function f(x) = x3 — x — 1 has a root on the interval(1,2)

sincef (1) = —1 and f(2) = 5, so that the function changes its signon
the interval. Thus, we suppose that x; = 1.5 (any other value on the
interval is also an appropriate value).

Since f'(x) = 3x? — 1, Newton's iterative equation is

Xn2 —x,— 1

3x,2—1

Xn+1 = Xn —

Then we get:
xy = 1.5,x; = 1.3478,x3 = 1.3252, and x, = 1.3247.

Example 4.7.2

Use Newton's method to find an approximation to the solution of the

equation €OSX = X where x is measured in radians with an initial value

x; = 1 (four iterations).



Solution:

Let the equation f(x)=x—cosx. Since f'(x) =1+ sinx then

Newton’s iterative equation is

oy _%nCOSZy
n+l1 — = e
"1+ sinx,

Then we get
x; = 1.0,x; = 0.5704x3 = 0.7391,and x, = 0.7391.

When discussing the Newton's method, we supposed that the tangent at
the point would intersects the ox axis. It is possible that this may not
happen, and the tangent is parallel to the axis. In this case f'(x,) =0
for a given value n, and therefore Newton's method failed to find the
approximate value X,,,;. Also, sometimes Newton's method fails to find

the required root and converges to another root of the function, or it does

not converge at all.
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Exercises
(1) Find the intervals of increase, decrease, and concavity up and down

and the inflection points, if any, for the function f.

(Df(x) =x —12x+1 (i) f(x) = (x? = 1)?

EDf () = o ()f () = (4 — 27

W)f (x) = x3Inx (Wi)f(x) = e /2

Wid) f(x) = x — sinx (wit))f (x) = Inyfx? + 4

(ix)f(x) = x*/3 — x/? (Of(x) = x*/3 — x

x)f (x) = xe*’ iD)f() = Va2 +x +1

(2) Plot the curve of the continuous function y = f(x) which has
properties:

@Df@) =4 [f@=0 f"(x)>0Vx.

(i))f(2) = 4, F2)=0, fix)<0&<2,f"(x)>0x> 2
@Df@) =4 f'@=0 f'@)<0x#2 lim f"(x) = o,
i 169 = o

(()f(2)=41f'2)=0, f"x) <0Vx

Wf@) =4 f2D=0, f"(x)<0,x<2,f"(x)<0,x>2.
wi)f2) =4, f'2)=0, f"(x)>0,x # 2, lim f7(x) = o,

lim f'(x) = co.
x—2




(3) Show, by using the properties of increasing functions, that

1
DVx+1<1l+=x%x>0 (r:i)::c--it.'.r.rrwc,l'.li‘:‘..7c<E

3 2
1
(i) In(x+1) <x,x>0 ((v)in(x+1)>x— -é-xz
1
(w)e*>1+x,x>0 (wi)e* 21+ x+-x%,x>0.

2
(4) Determine whether the following statements are true or false, with

explanation

(i) If f, gareincreasing functions on an interval, then f + g is also

increasing on this interval.

(ii) If f, g are increasing functions on an interval, then fgis also

increasing on this interval.

(5) Find two increasing functions f, g on (—o0, ©), such that f — g has
the following property,

(i)f — g is decreasing on the interval (—oo, 00).
(ii)f — g is constant on the interval (—oo, 00).

(iii)f — g is increasing on the interval (—oo, ).

(6) Find the increasing functions f, g on (—0, ) such that f /g has the
property,

(i) f/g is decreasing on the interval (—co, ).
(ii) f /g is constant on the interval (—oo, ).

(iii)f /g is increasing on the interval (—oo, ).




(7) Plot the function y = f(x). Use all the information you can get from

the function and its first and second derivatives.

1—x
Dy =x2—-4)3 ()y=x(x?-4)?% (iDy=
. %= - E
(w)y-x+2 (v)y=x+2 (m)y_-x2+1
2
(wid)y = ey (viid)y = pr (ix)y = e *sinx,x > 0
e g X e I
Xy =e* (xi)y = R (xii)y = xe”*.

(8) Find the local and absolute maximum and minimum values of the
function f whenever possible.

(Df(x)=x+1,[-11] () f(x) =x+ 2,(—,0]
(i) f(x) =x*—1,[-2,3] (iv)f(x) =x3+x—2,[a,b]

1
W)f () = ——7.[23] wi)f(x) = |x = 1|, [-2,2].
(9) Find the maximum and minimum local (relative) values of f.
Dfx) = xzi 7 @f@=x2-x (DfQ) = e~*"/2

()f(x) =x27*  (@)f(x) = |x*-1]
W) f(x) = (x — 1)?/3 + (x + 1)?/3,
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