المملك العربية السعودية المملك المراكز التي المراكز المراكز

لكل المهتمين و المهتمات بدروس و مراجع الجامعية

مدونة المناهج السعودية eduschool40.blog

(2.2) The Limit Of A Function

$$\lim_{x\to a} f(x) = L \text{ is } f(x) \to L \text{ as } x \to a$$

$$\lim_{x\to a} f(x) = L \text{ if and only if } \lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = L$$

Example (1)

$$a) \lim_{x\to 2} f(x) = 4$$
 and $f(2) = 4$

b)
$$\lim_{x\to -1} f(x) = 4$$
 and $f(-1) = 3$

c)
$$\lim_{x\to 0} f(x) = 2$$
 and $f(0) =$ undefind or not defind

Example (2)

$$\lim_{x\to 1} g(x) = 0.5$$
 and $f(1) = 2$

Example (3)

 $\lim_{x\to 0} f(x) = 1$ and f(0) = undefind or not defind

Example (4)

a)
$$\lim_{x\to 0} f(x) = D.N.E$$
 and $f(0) =$ undefind or not defind

$$b)\lim_{x\to 1} f(x) = 0$$
 and $f(1) = 0$

One side limits

Example (5)

$$\lim_{x\to 0^+} f(t) = \mathbf{1}$$

$$\lim_{x\to 0^-} f(t) = \mathbf{0}$$

$$\because \lim_{x\to 0^+} f(t) \neq \lim_{x\to 0^-} f(t)$$

$$\lim_{x\to 0} f(t) = D. N. E$$

Example (6)

$$a)\lim_{x\to 0^+}g(x)=2.5$$

$$\lim_{x\to 0^-} g(x) = 2.5$$

$$\lim_{x\to 0} g(x) = 2.5 \text{ since : } \lim_{x\to 0^+} g(x) = \lim_{x\to 0^-} g(x)$$

$$g(0) = 2.5$$

$$b)\lim_{x\to 2^+}g(x)=1$$

$$\lim_{x\to 2^-}g(x)=3$$

$$\lim_{x\to 2} g(x) = D. N. E \text{ since : } \lim_{x\to 2^+} g(x) \neq \lim_{x\to 2^-} g(x)$$

$$g(2) = undefind$$

$$c)\lim_{x\to 5^+}g(x)=2$$

$$\lim_{x\to 5^-}g(x)=2$$

$$\lim_{x\to 5} g(x) = 2$$
 since: $\lim_{x\to 5^+} g(x) = \lim_{x\to 5^-} g(x)$

$$g(5) = 1$$

Example (7)

$$a) \lim_{x\to 0} g(x) = 3$$
 and $g(0) = 3$

$$b)\lim_{x\to 3^-}g(x)=1$$

$$\lim_{x\to 3^+} g(x) = 4$$

$$\lim_{x\to 3} g(x) = D. N. E \text{ since : } \lim_{x\to 3^+} g(x) \neq \lim_{x\to 3^-} g(x)$$

c)
$$g(3) = 3$$

Example (8)

$$a)\lim_{x\to 4}g(x)=4$$

$$b)\lim_{x\to 2^-}g(x)=3$$

$$\lim_{x\to 2^+}g(x)=\mathbf{1}$$

$$\lim_{x\to 2} g(x) = D. N. E \text{ since : } \lim_{x\to 2^+} g(x) \neq \lim_{x\to 2^-} g(x)$$

c)
$$g(2) = 3$$

g(4) is not defind

Example (9)

$$a)\lim_{x\to 0^+}g(x)=-2$$

$$\lim_{x\to 0^-}g(x)=-1$$

$$\therefore \lim_{x\to 0^+} g(x) \neq \lim_{x\to 0^-} g(x)$$

$$\therefore \lim_{x\to 0} g(x) = D. N. E$$

$$b)\lim_{x\to 2^-}g(x)=2$$

$$\lim_{x\to 2^+} g(x) = \mathbf{0}$$

$$\lim_{x\to 2} g(x) = D. N. E \text{ since : } \lim_{x\to 2^+} g(x) \neq \lim_{x\to 2^-} g(x)$$

$$c) g(2) = 1$$

$$g(0) = -1$$

Infinite limits

 $\lim_{x\to a} f(x) = \pm \infty$ if and only if x = a is a vertical asymptote

 $\lim_{x\to a^+} f(x) = \pm \infty$ if and only if x = a is a vertical asymptote

 $\lim_{x\to a^-} f(x) = \pm \infty$ if and only if x = a is a vertical asymptote

Example (10)

 $\therefore x = 0$ is a vertical asymptote

Example (11)

 $\therefore x = 0$ is a vertical asymptote

Example (12)

$$\lim_{x \to 0^{+}} f(x) = \infty$$

$$\lim_{x \to 0^{-}} f(x) = -\infty$$

$$\lim_{x \to 0} f(x) = D. N. E \text{ since : } \lim_{x \to 0^{+}} f(x) \neq \lim_{x \to 0^{-}} f(x)$$

$$\therefore x = 0 \text{ is a vertical asymptote}$$

Example (13)

$$\lim_{x\to 3^+} f(x) = -\infty$$

$$\lim_{x\to 3^-} f(x) = \infty$$

$$\lim_{x \to 3} f(x) = D. N. E \text{ since : } \lim_{x \to 3^{+}} f(x) \neq \lim_{x \to 3^{-}} f(x)$$

 $\therefore x = 3$ is a vertical asymptote

Example (14)

$$\lim_{x \to 1^{-}} f(x) = -\infty$$

$$\lim_{x \to 1^{+}} f(x) = D. N. E$$

$$\lim_{x \to 1} f(x) = D. N. E \text{ since : } \lim_{x \to 1^{+}} f(x) \neq \lim_{x \to 1^{-}} f(x)$$

 $\therefore x = 1$ is a vertical asymptote

Example (15)

$$\lim_{x \to -2^{+}} f(x) = -\infty$$

$$\lim_{x \to -2^{-}} f(x) = D. N. E$$

$$\lim_{x \to -2} f(x) = D. N. E \text{ since } : \lim_{x \to 2^{+}} f(x) \neq \lim_{x \to 2^{-}} f(x)$$

 $\therefore x = -2$ is a vertical asymptote

Example (16)

Find the vertical asymptotes of $f(x) = \tan(x)$

 $\lim_{x \to \left(\pm \frac{n\pi}{2}\right)^{\pm}} \tan x = \mp \infty \quad \text{for all n is an odd number}$

$$\lim_{x\to\pm\frac{n\pi}{2}}\tan x=D.\,N.\,E\,\,\text{since:}\,\lim_{x\to\left(\pm\frac{n\pi}{2}\right)^+}\tan x\neq\lim_{x\to\left(\pm\frac{n\pi}{2}\right)^-}\tan x$$

 $\therefore x = \pm \frac{n\pi}{2}$ are a vertical asymptotes for all n is an odd number

Example (17)

Find the vertical asymptotes of $f(x) = \ln(x)$

x = 0 is a vertical asymptote since : $\lim_{x \to 0^+} \ln x = -\infty$

Example (18)

Find the vertical asymptotes of f(x) = x

f(x) has no vertical asymptotes

Example (19)

Find the vertical asymptotes of $f(x) = x^2$

f(x) has no vertical asymptotes

Example (20)

Find the vertical asymptotes of $f(x) = e^x$

f(x) has no vertical asymptotes

Example (21)

Find the vertical asymptotes of $f(x) = \cos x$

f(x) has no vertical asymptotes

Example (22)

Find the vertical asymptotes of $f(x) = \sin x$

f(x) has no vertical asymptotes

Example (23)

Find the vertical asymptotes of $f(x) = \sqrt{9 - x^2}$

f(x) has no vertical asymptotes

Example (24)

Find the vertical asymptotes of $f(x) = \sqrt[3]{x}$

f(x) has no vertical asymptotes

Note

- 1. Any polynomial function has no vertical asymptote
- 2. Any exponintial function has no vertical asymptote
- 3. Any radical function has no vertical asymptote
- 4. Only $\sin x$ and $\cos x$ has no vertical asymptote

Summary of infinte limits

$$\lim_{x\to a} f(x) = \infty$$

 $\therefore x = a$ is a vertical asymptote

$$\lim_{x\to a} f(x) = -\infty$$

 $\therefore x = a$ is a vertical asymptote

x = a is a vertical asymptote

 $\lim_{x\to a^-} f(x) = \infty$

 $\therefore x = a$ is a vertical asymptote

Example(25)

$$a) \lim_{x\to 5} f(x) = \infty$$

 $\therefore x = 5$ is a vertical asymptote

$$b) \lim_{x\to 2} f(x) = -\infty$$

 $\therefore x = 2$ is a vertical asymptote

c)
$$\lim_{x \to -3^{+}} f(x) = \infty$$
$$\lim_{x \to -3^{-}} f(x) = -\infty$$

 $\therefore x = -3$ is a vertical asymptote

Example(26)

$$a) \lim_{x\to 0} f(x) = \infty$$

x = 0 is a vertical asymptote

$$b) \lim_{x\to -3} f(x) = \infty$$

x = -3 is a vertical asymptote

$$b) \lim_{x\to -7} f(x) = -\infty$$

 $\therefore x = -7$ is a vertical asymptote

c)
$$\lim_{x \to 6^+} f(x) = \infty$$
$$\lim_{x \to 6^-} f(x) = -\infty$$

x = 6 is a vertical asymptote

Example(27)

Find the vertical asymptotes of the following functions

$$a) f(x) = \frac{2x}{x-3}$$

Zeros of the denominator : $x - 3 = 0 \implies x = 3$

Let
$$g(x) = 2x$$

$$g(3) = 2(3) = 6 \neq 0$$

 $\therefore x = 3$ is vertical asymptote

$$b) f(x) = \frac{x+3}{x^2-4}$$

Zeros of the denominator: $x^2 - 4 = 0 \implies x = \pm 2$

Let
$$g(x) = x + 3$$

 $g(2) = 2 + 3 = 5 \neq 0$
 $g(-2) = -2 + 3 = 1 \neq 0$

 $\therefore x = -2$ and x = 2 are vertical asymptote

c)
$$f(x) = \frac{x^2 + 1}{3x - 2x^2}$$

Zeros of the denominator : $3x - 2x^2 = 0 \Rightarrow x(3 - 2x) = 0$

$$x = 0 \text{ or } 3 - 2x = 0 \Rightarrow x = \frac{3}{2}$$
Let $g(x) = x^2 + 1$

$$g(0) = 0 + 1 = 1 \neq 0$$

$$g\left(\frac{3}{2}\right) = \frac{9}{4} + 1 = \frac{9+4}{4} = \frac{13}{4} \neq 0$$

$$\therefore x = 0 \text{ and } x = \frac{3}{2} \text{ are vertical asymptote}$$

d)
$$f(x) = \frac{x^2 - 3x - 10}{x^2 - 6x + 5}$$

Zeros of the denominator: $x^2 - 6x + 5 = 0$

$$(x-1)(x-5) = 0 \Rightarrow x = 1 \text{ or } x = 5$$

Let $g(x) = x^2 - 3x - 10$
 $g(1) = 1 - 3 - 10 = -12 \neq 0$
 $x = 1$ is a vertical asymptote
 $g(5) = 25 - 15 - 10 = 0$
 $x = 5$ is not vertical asymptote

$$e) f(x) = \csc x$$
$$= \frac{1}{\sin x}$$

Zeros of the denominator : $\sin x = 0 \Rightarrow x = n\pi \ \forall \ n \in Z$

Let
$$g(x) = 1$$

 $g(n\pi) = 1 \neq 0$

 $\therefore x = n\pi$ is a vertical asymptoe

$$f) f(x) = \sec x$$

$$=\frac{1}{\cos x}$$

Zeros of the denominator : $\cos x = 0 \Longrightarrow x = \frac{(2n+1)\pi}{2} \ \forall \ n \in \mathbb{Z}$

Let
$$g(x) = 1$$

$$g\left(\frac{(2n+1)\pi}{2}\right) = 1 \neq 0$$

$$\therefore x = \frac{(2n+1)\pi}{2} \text{ is a vertical asymptote}$$

$$g) f(x) = \cot x$$

$$=\frac{1}{\tan x}$$

Zeros of the denominator : $\tan x = 0 \Rightarrow x = n\pi \ \forall \ n \in Z$

Let
$$g(x) = 1$$

 $g(n\pi) = 1 \neq 0$

 $x = n\pi$ is a vertical asymptoe

$$h) f(x) = \log_2(1 - x^2)$$

$$1 - x^2 = 0 \Longrightarrow x = \pm 1$$

 $\therefore x = \pm 1$ are a vertical asymptoe

$$i) f(x) = \log_2(x+2)$$

$$x + 2 = 0 \Longrightarrow x = -2$$

 $\therefore x = -2$ are a vertical asymptoe since: $\lim_{x \to -2^+} \log_2(x+2) = -\infty$

2.3_ calculating Limits Using the Limit Laws.

Limit Laws.

Suppose that c is a constant and the limits Limf(x) and limg(x) exist Then x->a

1)
$$\lim_{x\to a} \left[f(x) \pm g(x) \right] = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x)$$

2)
$$\lim_{x\to a} \left[f(x) \cdot g(x) \right] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$$

3)
$$\lim_{x\to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{x\to a} f(x)$$
 $\lim_{x\to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{x\to a} \frac{f(x)}{h(x)}$

5)
$$\lim_{x \to a} x^n = a^n$$
 $\forall n \in \mathbb{Z}^t$

$$\int_{x \to a} x^n = a^n \quad \forall n \in \mathbb{Z}^t$$

Example (1)

Given that :.

that:

$$\lim_{x\to 2} f(x) = 4 \quad \text{im } g(x) = -2 \quad \text{im } h(x) = 0$$

$$\lim_{x\to 2} f(x) = 4 \quad \text{im } g(x) = -2 \quad \text{im } h(x) = 0$$

a)
$$\lim_{x\to 2} \left[3f(x) - \frac{5}{2}g(x) \right] = \lim_{x\to 2} 3f(x) - \lim_{x\to 2} \frac{5}{2}g(x)$$

$$= 3 \lim_{x \to 2} f(x) - \frac{5}{2} \lim_{x \to 2} g(x)$$

$$= 3 \lim_{x \to 2} f(x) - \frac{5}{2} \lim_{x \to 2} g(x)$$

b)
$$\lim_{x\to 2} \frac{3f(x)}{g(x)} = \lim_{x\to 2} \frac{3f(x)}{x\to 2} = \lim_{x\to 2} \frac{3\lim_{x\to 2} f(x)}{\lim_{x\to 2} g(x)}$$

$$=\frac{3(4)}{-2}=\frac{12}{-2}=-6$$

$$= \frac{3(1)}{-2} = \frac{1}{-2}$$
c) $\lim_{x\to 2} \sqrt{f(x)} = \sqrt{4} = 2$

c)
$$\lim_{x\to 2} \frac{1}{x} = \lim_{x\to 2} \frac{1}{x} = 0$$
d) $\lim_{x\to 2} \frac{1}{x} = \lim_{x\to 2} \frac{1}{x} = 0$

e)
$$\lim_{x\to 2} \frac{e^c}{\ln(c)} = \frac{e^c}{\ln(c)}$$

$$x \rightarrow 2$$
h) Lim $tan^{-1}(-1) = tan^{-1}(-1) = -tan^{-1}(1) = -\frac{\pi}{4}$

$$\lim_{x \to -2} f(x) + \lim_{x \to -2} 5g(x)$$

$$\lim_{x \to -2} f(x) + 5\lim_{x \to -2} g(x)$$

$$\lim_{x \to -2} f(x) + 5\lim_{x \to -2} g(x)$$

$$1 - 5$$

$$\lim_{x\to 1^4} f(x)g(x) = \lim_{x\to 1^4} f(x) \cdot \lim_{x\to 1^4} g(x)$$

$$= (\pm 1)(-1)$$

$$\therefore \frac{1}{x-N} f(x) g(x) = D. N. E$$

$$\therefore \lim_{x\to N} f(x) g(x) = D. N. E$$

Example (3)

a)
$$\lim_{x\to 9} \frac{x-9}{(x+9)} = \frac{9-9}{\sqrt{9+9}} = \frac{0}{3+9} = \frac{0}{12} = 0$$

b)
$$\lim_{x\to 5} (2x^2 - 3x + 4) = 2(5)^2 - 3(5) + 4 = 2(25) - 3(5) + 4$$

= $50 - 15 + 4 = 35 + 4$
= 39

c)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)} = \frac{-8 + 2(4) - 1}{5 + 6}$$
$$= \frac{-8 + 8 - 1}{11} = -\frac{1}{11}$$

Example(4)

a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{(1)^2 - 1}{1 - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0}$$
 $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)} = \lim_{x \to 1} (x + 1) = 1 + 1 = 2$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)} = \lim_{x \to 1} (x + 1) = 1 + 1 = 2$$

b)
$$\lim_{x\to 1} \frac{x+6}{x^2-36} = \frac{-6+6}{(-6)^2-36} = \frac{-6+6}{36-36} = \frac{0}{0}$$
 is superprise and $\lim_{x\to -6} \frac{x+6}{x^2-36} = \lim_{x\to -6} \frac{(x+6)}{(x-6)(x+6)} = \lim_{x\to -6} \frac{1}{x-6} = \frac{1}{-6-6} = \frac{1}{12}$

C)
$$\lim_{x \to 2} \frac{x^{-2}}{x^3 - 8} = \frac{2^{-2}}{(2)^3 - 8} = \frac{2^{-2}}{8^{-8}} = \frac{0}{0}$$
 is into $\lim_{x \to 2} \frac{x^{-2}}{x^3 - 8} = \lim_{x \to 2} \frac{x^{-2}}{x^3 - 2^3} = \lim_{x \to 2} \frac{(x^{-2})}{(x^2 + 2x + 4)}$ $\lim_{x \to 2} \frac{x^{-2}}{x^2 + 2x + 4} = \frac{1}{(2)^2 + 2(2) + 4} = \frac{1}{4 + 4 + 4} = \frac{1}{12}$

F)
$$\lim_{t \to 3} \frac{t^2 - 9}{2t^2 - 7t + 3} = \frac{(3)^2 - 9}{2(3)^2 - 7(3) + 3} = \frac{9 - 9}{2(9) - 7(3) + 3}$$

$$= \frac{9 - 9}{18 - 21 + 3} = \frac{9 - 9}{-3 + 3}$$

$$= \frac{0}{0} = \frac{3 + 3}{2t^2 - 7t + 3} = \lim_{t \to 3} \frac{(t - 3)(t + 3)}{(t - 3)(2t - 1)}$$

$$= \lim_{t \to 3} \frac{t + 3}{2t - 1} = \frac{3 + 3}{2(3) - 1} = \frac{3 + 3}{6 - 1}$$

$$= \frac{6}{5}$$

طرريقة تحليل المقدار الجبري: 3+ 2+2-7t

9)
$$\lim_{x\to 2} \frac{x^2 + x - 6}{x - 2} = \frac{(2)^2 + 2 - 6}{2 - 2} = \frac{4 + 2 - 6}{2 - 2} = \frac{6 - 6}{2 - 2} = \frac{0}{0}$$
 $|x-x| = \frac{2}{2} + \frac{2}{2} + \frac{2}{2} = \frac{6}{2} = \frac{6$

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 3)}{(x - 2)} = \lim_{x \to 2} (x + 3) = 2 + 3 = 5$$

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 3)}{(x - 2)} = \lim_{x \to 2} (x + 3) = 2 + 3 = 5$$

h)
$$\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1} = \frac{(1)^4 - 1}{(1)^3 - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0}$$
 $\lim_{x \to 2} \frac{x^4 - 1}{x^3 - 1} = \lim_{x \to 1} \frac{(x^2 - 1)(x^2 + 1)}{(x - 1)(x^2 + x + 1)}$

$$= \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x^2 + x + 1)}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 2} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 2} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{2(x^2 + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{2(x + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{2(x + 1)}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x \to 3} \frac{1}{(x^2 + x + 1)}$$

$$= \lim_{x$$

طرريقة تحلير المقدار الجبري: 25- x2+5x

$$3x - 3.95 - 10x$$

$$2x + 35 + 15x$$

$$+ 5x$$

Example (5)

a)
$$\lim_{h\to 0} (3+h)^2 - 9 = (3+0)^2 - 9 = 3^2 - 9 = 9 - 9$$

$$= 9 \quad \text{minimize}$$

$$= 9 \quad \text{minimize}$$

$$= 9 \quad \text{minimize}$$

$$= 9 \quad \text{minimize}$$

$$= 12 \quad 9 \quad 3$$

$$\lim_{h\to 0} \frac{9+2(3)h+h^2-9}{h} = \lim_{h\to 0} \frac{6h+h^2}{h} = \frac{0}{0}$$
 axis

$$h \to 0$$
 $h \to 0$
 $h \to 0$

h
$$\rightarrow 6$$
 h

h $\rightarrow 6$ h

h $\rightarrow 6$ h

 $= (2+6)^3 - 8 = 2^3 - 8 = 8^{-8}$

h $\rightarrow 6$ h

 $= (2+6)^3 - 8 = 2^3 - 8 = 8^{-8}$
 $= (2+6)^3 - 8 = 2^3 - 8 = 8^{-8}$
 $= (2+6)^3 - 8 = 2^3 - 8 = 8^{-8}$

$$\lim_{h\to 0} \frac{(2+h)^{2}-8}{h} = 0$$

$$\lim_{h\to 0} \frac{(2+h)^{3}-8}{h} = \lim_{h\to 0} \frac{8+3(4)h+3(2)h^{2}+h^{3}-8}{h}$$

$$\lim_{h\to 0} \frac{(2+h)^{3}-8}{h} = \lim_{h\to 0} \frac{8+3(4)h+3(2)h^{2}+h^{3}-8}{h}$$

$$\lim_{h\to 0} \frac{(12h+6h^2+h^3)}{h} = \frac{0}{0} \implies \lim_{h\to 0} \frac{(12+6h+h^2)}{h}$$

$$\lim_{h\to 0} \frac{(12h+6h^2+h^3)}{h} = \frac{0}{0} \implies \lim_{h\to 0} \frac{h(12+6h+h^2)}{h}$$

$$h \rightarrow 0$$
 $h \rightarrow 0$
 $h \rightarrow 0$

Example (6)

a)
$$\lim_{h \to 0} \frac{(3+h)^{-1} - 3^{-1}}{h} = \frac{3^{-1} - 3^{-1}}{3} = \frac{0}{0}$$
 $\lim_{h \to 0} \frac{1}{3(3+h)}$ $\lim_{h \to 0} \frac{1}{3(3+h)}$ $\lim_{h \to 0} \frac{1}{3(3+h)}$ $\lim_{h \to 0} \frac{3 - 3 - h}{(h - 1)}$ $\lim_{h \to 0} \frac{3 - 3 - h}{3(3+h)}$ $\lim_{h \to 0} \frac{3 - 3 - h}{3(3+h)}$ $\lim_{h \to 0} \frac{1}{3(3+h)}$ $\lim_{h \to 0} \frac{1}{3(3+$

b)
$$\lim_{x \to 4} \frac{1}{4 + x} = \frac{1}{4 - 4} = \frac{0}{0}$$
 $= 2000 \text{ in } \frac{1}{4 + x}$
 $\lim_{x \to 4} \frac{1}{4 + x} = \lim_{x \to 6} \frac{1}{4 +$

$$\lim_{x \to T_{\underline{z}}} \frac{\sin^2 x - 1}{\sin x - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0}$$

$$\lim_{x \to T_{\underline{z}}} \frac{(\sin x - 1)(\sin x + 1)}{(\sin x - 1)}$$

$$\lim_{x \to T_{\underline{z}}} \frac{(\sin x + 1)}{(\sin x + 1)} = \lim_{x \to T_{\underline{z}}} \frac{\sin (T_{\underline{z}}) + 1}{(\cos x + 1)} = \lim_{x \to T_{\underline{z}}} \frac{1}{1 + 1} = 2$$

$$\lim_{x \to T_{\underline{z}}} \frac{\sin x + \cos x}{(\cos^2 x - \sin^2 x)} = \frac{\sin (-T_{\underline{z}}) + \cos (T_{\underline{z}})}{(\cos x + \sin x)} = \frac{1}{1 + 1}$$

$$\lim_{x \to T_{\underline{z}}} \frac{1}{(\cos x + \sin x)} \frac{1}{(\cos x - \sin x)} = \frac{1}{\cos (-T_{\underline{z}}) - \sin (-T_{\underline{z}})} = \frac{1}{\sqrt{2}}$$

$$\lim_{x \to T_{\underline{z}}} \frac{1}{(\cos x - \sin x)} = \frac{1}{\cos (-T_{\underline{z}}) - \sin (-T_{\underline{z}})} = \frac{1}{\sqrt{2}}$$

$$\lim_{x \to T_{\underline{z}}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{2\sin x - 1}{x - 3\pi} = \frac{2\sin(\pi) - 1}{6\sin^2(\pi) + 10\sin(\pi) - 5}$$

$$=\frac{2(1/2)-1}{6(1/2)^2+10(1/2)-5}$$

$$=\frac{1-1}{\frac{6}{4}+5-5}$$

$$=\frac{0}{\frac{6}{4}}$$

$$\lim_{x \to T_0} \frac{2^{\sin 2x} - 1}{6^{\sin 2x} + 7^{\sin 2x} - 5} = \frac{2(\frac{1}{2}) - 1}{6(\frac{1}{2})^2 + 7(\frac{1}{2}) - 5}$$

$$= \frac{1 - 1}{\frac{6}{4} + \frac{7}{2} - 5}$$

$$= \frac{0}{\frac{3}{2} + \frac{7}{2} - 5} = \frac{0}{\frac{10}{2} - 5}$$

$$= \frac{0}{5 - 5} = \frac{0}{0}$$

$$\lim_{x \to T_6} \frac{(2\sin x + 5)}{(3\sin x + 5)} = \lim_{x \to T_6} \frac{1}{3\sin x + 5}$$

$$= \frac{1}{3(k_2) + 5} = \frac{1}{\frac{3}{2} + 5} = \frac{1}{\frac{3+10}{2}}$$

$$= \frac{2}{13}$$

حرریقة ت= لیل المقدار: 5 - xin² + 7 Sinҳ − 1 | -3 Sinҳ − 1 | -3 Sinҳ + 10 Sinҳ + 4 Sinҳ + 4

Example(7)

a)
$$\lim_{t \to 0} \frac{1}{t^2 + 9 - 3} = \frac{\sqrt{9 - 3}}{0^2} = \frac{3 - 3}{0} = \frac{0}{0}$$
 $\lim_{z \to \infty} \frac{1}{2}$ $\lim_{t \to 0} \frac{1}{t^2} \frac{1}{2} = \lim_{t \to 0} \frac{1}{t^2} \frac{1}{2} = \lim_{t \to 0} \frac{1}{t^2} \frac{1}{2} = \lim_{t \to 0} \frac{1}{2} \frac{1}{2} = \lim_{t \to 0} \frac{1}{2} \frac{1}{2} = \lim_{t \to 0} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \lim_{t \to 0} \frac{1}{2} \frac{1}{2} = \lim_{t \to 0} \frac{1}{2} \frac{1}{2} = \lim_{t \to 0} \frac{1}{2} = \lim_{t \to 0}$

b)
$$\lim_{h\to 0} \frac{(q+h-3)}{h} = \frac{\sqrt{q-3}}{0} = \frac{3-3}{0} = \frac{0}{0}$$
 $\lim_{h\to 0} \frac{(q+h-3)}{h} \times \frac{(q+h+3)}{(q+h+3)}$

$$= \lim_{h\to 0} \frac{(\sqrt{q+h-3})(\sqrt{q+h+3})}{h \cdot (\sqrt{q+h+3})}$$

$$= \lim_{h\to 0} \frac{(\sqrt{q+h-3})(\sqrt{q+h+3})}{h \cdot (\sqrt{q+h+3})}$$

$$= \lim_{h\to 0} \frac{\sqrt{q+h-3}}{h \cdot (\sqrt{q+h+3})}$$

$$= \lim_{h\to 0} \frac{\sqrt{q+h-3}}{h \cdot (\sqrt{q+h+3})}$$

$$= \lim_{h\to 0} \frac{\sqrt{q+h+3}}{h \cdot \sqrt{q+h+3}}$$

$$= \lim_{h\to 0} \frac{\sqrt{q+h+3}}{\sqrt{q+h+3}}$$

$$= \frac{1}{\sqrt{q+3}}$$

$$= \frac{1}{\sqrt{q+3}}$$

$$= \frac{1}{\sqrt{q+3}}$$

c)
$$\lim_{u \to 2} \frac{4u+1-3}{u-2} = \frac{\sqrt{4(2)+1}-3}{2-2} = \sqrt{\frac{9}{3}-3}$$

$$= \frac{3-3}{0} = \frac{0}{0} = \frac{5}{5}, \frac{\sqrt{4u+1}+3}{5}$$

$$= \lim_{u \to 2} \frac{\sqrt{4u+1}-3}{(u-2)} \times \frac{\sqrt{4u+1}+3}{\sqrt{4u+1}+3}$$

$$= \lim_{u \to 2} \frac{(\sqrt{4u+1}-3)(\sqrt{4u+1}+3)}{(u-2)(\sqrt{4u+1}+3)}$$

$$= \lim_{u \to 2} \frac{4u+1-9}{(u-2)(\sqrt{4u+1}+3)}$$

$$= \lim_{u \to 2} \frac{4u-8}{(u-2)(\sqrt{4u+1}+3)}$$

$$= \lim_{u \to 2} \frac{4u-8}{(u-2)(\sqrt{4u+1}+3)}$$

$$= \lim_{u \to 2} \frac{4(u-2)}{(u-2)(\sqrt{4u+1}+3)}$$

$$= \lim_{u \to 2} \frac{4(u-2)}{\sqrt{4u+1}+3}$$

$$= \lim_{u \to 2} \frac{4(u-2)}{\sqrt{4u+1}+3}$$

$$= \lim_{u \to 2} \frac{4(u-2)}{\sqrt{4u+1}+3} = \frac{4}{\sqrt{9}+3}$$

$$= \frac{4}{3+3} = \frac{4+2}{6+2} = \frac{2}{3}$$

d)
$$\lim_{t \to 0} \left[\frac{1+t}{t} - \sqrt{1-t} \right] = \frac{1-1}{0} = \frac{0}{0}$$
 $\lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1+t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1-t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1-t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1-t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1-t}{t} - \sqrt{1-t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1-t}{t} - \sqrt{1-t} - \frac{1-t}{t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1-t}{t} - \sqrt{1-t} - \frac{1-t}{t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1-t}{t} - \sqrt{1-t} - \frac{1-t}{t} - \frac{1-t}{t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1-t}{t} - \sqrt{1-t} - \frac{1-t}{t} - \frac{1-t}{t} - \frac{1-t}{t} - \frac{1-t}{t} \right) \times \frac{1-t}{t} = \lim_{t \to 0} \left(\frac{1-t}{t} - \sqrt{1-t} - \frac{1-t}{t} - \frac{1-t}{t$

d)
$$\lim_{x\to 0} \frac{3+x}{x} = \sqrt{3} = \frac{3}{0} = \frac{0}{0}$$

$$\lim_{x\to 0} \frac{(\sqrt{3}+x)^{2} - (\sqrt{3})}{x} \times \frac{(\sqrt{3}+x)^{2} + (\sqrt{3})}{(\sqrt{3}+x)^{2} + (\sqrt{3})}$$

$$\lim_{x\to 0} \frac{(\sqrt{3}+x)^{2} - (\sqrt{3})^{2}}{x(\sqrt{3}+x)^{2} + (\sqrt{3})}$$

$$\lim_{x\to 0} \frac{(\sqrt{3}+x)^{2} - (\sqrt{3})^{2}}{x(\sqrt{3}+x)^{2} + (\sqrt{3})}$$

$$\lim_{x\to 0} \frac{3+x-3}{x(\sqrt{3}+x)^{2} + (\sqrt{3})} = \lim_{x\to 0} \frac{x}{x(\sqrt{3}+x)^{2} + (\sqrt{3})}$$

$$\lim_{x\to 0} \frac{1}{\sqrt{3}+x} + \frac{1}{3} = \frac{1}{\sqrt{3}}$$

e)
$$\lim_{x\to 0} \frac{x}{\sqrt{1+3x}-1} = \frac{0}{\sqrt{1-\sqrt{1}}} = \frac{0}{0}$$
 $\lim_{x\to 0} \frac{x}{(\sqrt{1+3x}-1)} \times \frac{(\sqrt{1+3x}+1)}{(\sqrt{1+3x}+1)}$
 $\lim_{x\to 0} \frac{x}{(\sqrt{1+3x}-1)(\sqrt{1+3x}+1)}$
 $\lim_{x\to 0} \frac{x}{(\sqrt{1+3x}-1)(\sqrt{1+3x}+1)}$
 $\lim_{x\to 0} \frac{x}{(\sqrt{1+3x}-1)(\sqrt{1+3x}+1)}$
 $\lim_{x\to 0} \frac{x}{(\sqrt{1+3x}-1)(\sqrt{1+3x}+1)}$
 $\lim_{x\to 0} \frac{x}{(\sqrt{1+3x}+1)} = \frac{1+1}{3}$
 $\lim_{x\to 0} \frac{x}{3}$
 $\lim_{x\to 0} \frac{x}{3}$

F)
$$\lim_{x\to 16} \frac{4-\sqrt{x}}{16x-x^2} = \frac{4-\sqrt{16}}{16(16)-(16)^2} = \frac{4-4}{256-256}$$

$$= \frac{0}{0}$$

$$\lim_{x\to 16} \frac{(4-\sqrt{x})}{(16x-x^2)} \times \frac{(4+\sqrt{x})}{(4+\sqrt{x})}$$

$$\lim_{x\to 16} \frac{(4-\sqrt{x})(4+\sqrt{x})}{(16x-x^2)(4+\sqrt{x})}$$

$$\lim_{x\to 16} \frac{(4)^2-(\sqrt{x})^2}{(16x-x^2)(4+\sqrt{x})}$$

$$\lim_{x\to 16} \frac{(16-x)}{(16x-x^2)(4+\sqrt{x})}$$

$$\lim_{x\to 16} \frac{(16-x)}{x\cdot(16-x)(4+\sqrt{x})}$$

$$\lim_{x\to 16} \frac{1}{16(4+\sqrt{16})}$$

$$= \frac{1}{16(4+\sqrt{16})}$$

$$= \frac{1}{16(4+\sqrt{16})}$$

$$= \frac{1}{128}$$

9)
$$\lim_{x \to -4} \frac{x^2 + q - 5}{x + 4} = \frac{\sqrt{16+q} - 5}{-4 + 44} = \frac{(25 - 5)}{0}$$

$$= \frac{5 - 5}{0} = \frac{0}{0}$$

$$\lim_{x \to -4} \frac{(\sqrt{x^2 + q} - 5)}{(x + 4)} \times \frac{(\sqrt{x^2 + q} + 5)}{(x^2 + q + 5)}$$

$$\lim_{x \to -4} \frac{(\sqrt{x^2 + q} - 5)}{(x + 4) \cdot (\sqrt{x^2 + q} + 5)}$$

$$\lim_{x \to -4} \frac{(\sqrt{x^2 + q})^2 - (5)^2}{(x + 4) \cdot (\sqrt{x^2 + q} + 5)}$$

$$\lim_{x \to -4} \frac{x^2 + q - 25}{(x + 4)(\sqrt{x^2 + q} + 5)}$$

$$\lim_{x \to -4} \frac{(x^2 + q)^2 - (5)^2}{(x + 4)(\sqrt{x^2 + q} + 5)}$$

$$\lim_{x \to -4} \frac{(x^2 + q)^2 - (5)^2}{(x + 4)(\sqrt{x^2 + q} + 5)}$$

$$\lim_{x \to -4} \frac{(x^2 + q)^2 - (5)^2}{(x + 4)(\sqrt{x^2 + q} + 5)}$$

$$\lim_{x \to -4} \frac{(x + 4)(x^2 + q + 5)}{(x^2 + q)(x^2 + q + 5)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x \to -4} \frac{x - 4}{(x^2 + q)(x^2 + q)}$$

$$\lim_{x$$

1)
$$\lim_{t \to 0} \left(\frac{1}{t \sqrt{1+t}} - \frac{1}{t} \right) = \frac{1}{0} - \frac{1}{0}$$
 $\lim_{t \to 0} \left(\frac{1}{t \sqrt{1+t}} - \frac{1}{t} \right) = \frac{0}{0}$
 $\lim_{t \to 0} \left(\frac{1}{t \sqrt{1+t}} - \frac{1}{t} \right) = \lim_{t \to 0} \left(\frac{1 - \sqrt{1+t}}{t \sqrt{1+t}} \right) = \frac{0}{0}$
 $\lim_{t \to 0} \frac{(1 - \sqrt{1+t})(1 + \sqrt{1+t})}{t \sqrt{1+t}}$
 $\lim_{t \to 0} \frac{(1)^2 - (\sqrt{1+t})^2}{t \sqrt{1+t}(1 + \sqrt{1+t})}$
 $\lim_{t \to 0} \frac{1 - (1 + t)}{t \sqrt{1+t}(1 + \sqrt{1+t})}$
 $\lim_{t \to 0} \frac{1 - (1 + t)}{t \sqrt{1+t}(1 + \sqrt{1+t})}$
 $\lim_{t \to 0} \frac{1 - (1 + t)}{t \sqrt{1+t}(1 + \sqrt{1+t})}$
 $\lim_{t \to 0} \frac{1}{t \sqrt{1+t}(1 + \sqrt{1+t})}$

= - 1

i)
$$\lim_{x \to 2} \frac{6-x}{\sqrt{3-x}-1} = \frac{6-x}{\sqrt{3-x}-1} = \frac{2-2}{1-1} = \frac{0}{0}$$
 $\lim_{x \to 2} \frac{6-x}{\sqrt{3-x}-1} \times \frac{\sqrt{6-x}+2}{\sqrt{6-x}+2}$
 $\lim_{x \to 2} \frac{(\sqrt{6-x}-2)(\sqrt{6-x}+2)}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)} = \lim_{x \to 2} \frac{(\sqrt{6-x}-2)(\sqrt{3-x}-1)}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)}$
 $\lim_{x \to 2} \frac{6-x-4}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)} = \lim_{x \to 2} \frac{92-x}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)}$
 $\lim_{x \to 2} \frac{(2-x)}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)} \times \frac{\sqrt{3-x}+1}{\sqrt{3-x}+1}$
 $\lim_{x \to 2} \frac{(2-x)(\sqrt{3-x}+1)}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)(\sqrt{3-x}+1)}$
 $\lim_{x \to 2} \frac{(2-x)(\sqrt{3-x}+1)}{(\sqrt{6-x}+2)(\sqrt{3-x}+1)} \times \frac{(2-x)(\sqrt{3-x}+1)}{(\sqrt{6-x}+2)(\sqrt{3-x}+1)}$
 $\lim_{x \to 2} \frac{(2-x)(\sqrt{3-x}+1)}{(\sqrt{6-x}+2)(\sqrt{3-x}+1)} = \frac{\sqrt{3-2}+1}{(\sqrt{6-2}+2)} = \frac{1+1}{2+2}$
 $\lim_{x \to 2} \frac{(2-x)(\sqrt{3-x}+1)}{(\sqrt{6-x}+2)(2-x)} = \frac{\sqrt{3-2}+1}{(\sqrt{6-2}+2)} = \frac{1+1}{2+2}$

Example (8)

$$\int_{\sqrt{8-x}}^{3\sqrt{8-x}} = 112$$

$$\lim_{x\to 0}^{3\sqrt{8-x}} = 112$$

$$\lim_{x\to 0}^{3\sqrt{8-x}} = 112$$

$$\lim_{x\to 0}^{3\sqrt{8-x}} = 112$$

$$\int_{5\sqrt{2}x-32}^{5\sqrt{2}x-32} = \int_{5\sqrt{-3}}^{5\sqrt{2}} = \int_{5\sqrt{-2}}^{5\sqrt{2}} =$$

$$||||_{\chi^2-49}$$

$$||||_{\chi^2-49} = |||_{49-49} = |||_{0} = 0$$

$$\sum_{\sqrt{x^{2}-9}}^{\sqrt{x^{2}-9}} = 1$$

$$\lim_{x \to 2} \sqrt{x^{2}-9} = \sqrt[3]{2^{2}-9} = \sqrt[3]{8-9} = \sqrt[3]{-1} = -1$$

$$\lim_{x \to 2} \sqrt{x^{2}-9} = \sqrt[3]{2^{2}-9} = \sqrt[3]{8-9} = \sqrt[3]{-1} = -1$$

Example (9)

Domain of
$$\sqrt{3-x}$$
: $3-x>0 => -x>-3 => x<3$

$$=) D_{\sqrt{3-x}} = (-\omega/3) \frac{1}{\sqrt{3-x}}$$

Domain at
$$\sqrt{25-x^2} = [-5,5]$$

..
$$4 \in [-5,5]$$

.. $4 \in [-5,5]$
.. $4 \in [-5,5]$
 $4 \in [$

Domain of
$$\sqrt{x^2-6x+5}$$
: $x^2-6x+5 > 0$

$$x^{2}-6x+3/7$$
 $x^{2}-6x+5=0$
 $(x-1)(x-5)=0$

$$D_{6\sqrt{x^2-6x+5}} = (-\infty, 1] U[5, \infty)$$

$$D_{6\sqrt{x^{2}-6x+5}} = (-\infty)[U(5),\infty)$$

$$\therefore 2 \notin D_{6\sqrt{x^{2}-6x+5}} \therefore \lim_{x \to 2} 6\sqrt{x^{2}-6x+5} = D, N.E$$

$$\frac{1}{26-36} = \frac{1}{36-36} =$$

$$D_{\sqrt{x^2-4}} = (-\infty, -2]U[2/\infty)$$

$$\lim_{x \to 2^{+}} \sqrt{x^{2} - 4} = \sqrt{4 - 4} = 0$$

Example (10)

a)
$$\lim_{x\to 2} |x+3| = |2+3| = |5| = 5$$

$$|x-y|^{4}$$

c) $|x^{2}-5| = |2^{2}-5| = |4-5| = |-1| = |x-y|^{2}$

d)
$$\lim_{x\to 0} \frac{|x|}{x} = \frac{|0|}{0} = \frac{0}{0}$$
 is since $\lim_{x\to 0} \frac{|x|}{x} = \frac{|x|}{0}$

$$|x| = \begin{cases} x & \text{if } x \neq 0 \\ -x & \text{if } x \neq 0 \end{cases}$$

$$\lim_{x\to 0^{+}} \frac{|x|}{|x|} = \lim_{x\to 0^{+}} \frac{x}{|x|} = \lim_{x\to 0^{+}} \frac{1}{|x|} = 1$$

$$\begin{array}{ll}
x \to 0^{\dagger} & x \to 0^{\dagger} \\
(x \neq 0) & (x \neq 0)
\end{array}$$

$$\begin{array}{ll}
\lim_{x \to 0^{-}} \frac{|x|}{x} & = \lim_{x \to 0^{-}} \frac{1}{x} = \lim_{x \to 0^{-}}$$

e)
$$\lim_{x\to 3} \frac{|3-x|}{2x-6} = \frac{|3-3|}{2(3)-6} = \frac{|0|}{6-6} = \frac{0}{0}$$

$$|3-x| = \begin{cases} 3-x & \text{if } 3-x \neq 0 \\ -(3-x) & \text{if } 3-x < 0 \end{cases}$$

$$= \begin{cases} 3-x & \text{if } -x \neq -3 \\ -(3-x) & \text{if } -x < 3 \end{cases}$$

$$= \begin{cases} 3-x & \text{if } x < 3 \\ -(3-x) & \text{if } x > 3 \end{cases}$$

$$\lim_{x\to 3^{+}} \frac{|3-x|}{2x-6} = \lim_{x\to 3^{+}} \frac{-(3-x)}{2x-6} = \frac{0}{0}$$

$$= \lim_{x\to 3^{+}} \frac{(x-3)}{2(x-3)} = \lim_{x\to 3^{+}} \frac{1}{2} = \frac{1}{2}$$

$$= \lim_{x\to 3^{+}} \frac{(x-3)}{2(x-3)} = \lim_{x\to 3^{+}} \frac{1}{2} = \frac{1}{2}$$

$$\lim_{x \to 3^{-}} \frac{|3-x|}{2\pi^{-6}} = \lim_{x \to 3^{-}} \frac{3-x}{2x-6} = 0$$

$$\lim_{x \to 3^{-}} \frac{3-x}{2(x-3)}$$

$$\lim_{x \to 3^{-}} \frac{3-x}{2(x-3)} = \lim_{x \to 3^{-}} \frac{1}{2} = -\frac{1}{2}$$

$$\lim_{x \to 3^{-}} \frac{-(x-3)}{2(x-3)} = \lim_{x \to 3^{-}} \frac{1}{2} = -\frac{1}{2}$$

••
$$\lim_{x\to 3^+} \frac{|3-x|}{2x-6} + \lim_{x\to 3^-} \frac{|3-x|}{2x-6}$$

•• $\lim_{x\to 3^+} \frac{|3-x|}{2x-6} = D.N.E$

f)
$$\lim_{x \to -6^{-}} \frac{2x + 12}{|x + 6|} = \frac{2(-6) + 12}{|-6 + 6|} = \frac{-|2 + |^2}{|o|} = \frac{0}{0}$$
 $|x + 6| = \begin{cases} x + 6 & \text{if } x + 6 > 0 \\ -(x + 6) & \text{if } x + 6 < 0 \end{cases} = \begin{cases} x + 6 & \text{if } x > -6 \\ -(x + 6) & \text{if } x < -6 \end{cases}$
 $\lim_{x \to -6^{-}} \frac{2x + 12}{|x + 6|} = \lim_{x \to -6^{-}} \frac{2x + 12}{-(x + 6)} = \frac{0}{0}$
 $\lim_{x \to -6^{-}} \frac{2(x + 6)}{|x + 6|} = \lim_{x \to -6^{-}} \frac{2(x + 6)}{-(x + 6)} = \lim_{x \to -6^{-}} \frac{2(x + 6)}{-(x + 6)} = \frac{0}{0}$
 $\lim_{x \to -6^{-}} \frac{2(x + 6)}{-(x + 6)} = \lim_{x \to -6^{-}} \frac{2}{-(x + 6)} = \frac{0}{0}$
 $|x| = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$
 $\lim_{x \to -2^{-}} \frac{2 - |x|}{2 + x} = \lim_{x \to -2^{-}} \frac{2 - (-x)}{2 + x} = \lim_{x \to -2^{-}} \frac{2 - (x + 6)}{2 + x} = \lim_{x \to -2^{-}} \frac{2 - (x + 6)}{2 + x} = \lim_{x \to -2^{-}} \frac{2 - (x + 6)}{2 + x} = \lim_{x \to -2^{-}} \frac{2 - (x + 6)}{2 + x} = \lim_{x \to -2^{-}} \frac{2 - (-x$

$$\lim_{x \to -2} \frac{2 - |x|}{2 + x} = \lim_{x \to -2} \frac{2 - (-x)}{2 + x} = \lim_{x \to -2} \frac{2 + x}{2 + x}$$

$$= \lim_{x \to -2} \frac{2 - (-x)}{2 + x} = \lim_{x \to -2} \frac{2 - (-x)}{2 + x}$$

$$x \to -2$$

$$y \lim_{x \to 3} (2x + |x-3|) = 2(3) + |3-3| = 6 + 0 = 6$$

$$x \to 3$$

$$\lim_{x\to 2} \frac{x^2 + x - 6}{|x - 2|} = \frac{0}{0}$$

$$\frac{\sqrt{\lim \frac{x^2 + x - 6}{x - 2}}}{x - 2^{+}} = \frac{0}{0}$$

$$\lim_{x\to 2^{+}} \frac{(x-2)(x+3)}{(x-2)} = \lim_{x\to 2^{+}} (x+3) = 2+3=5$$

$$\lim_{x \to 2^{-}} \frac{x^{2} + x - 6}{-(x - 2)} = \lim_{x \to 2^{-}} \frac{(x - 2)(x + 3)}{-(x - 2)}$$

$$= \lim_{x \to 2^{-}} -(x + 3) = -(2 + 3)$$

$$= -5$$

$$\frac{x^2+x-6}{2x-21} + \lim_{x\to 2^+} \frac{x^2+x-6}{|x-2|}$$

:
$$(im \frac{x^2 + x - 6}{1x - 21} = 1)$$
, N. E

trample (11)

Example (11)
a) if
$$f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > \frac{4}{4} \\ 8 - 2x & \text{if } x < \frac{4}{4} \end{cases}$$
then find $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{8 - 2x}{x \to 2}$

$$= \frac{8 - 2(2)}{8 - 4}$$

$$= \frac{4}{8 - 2}$$

$$= \frac{8 - 4}{8 - 4}$$

$$= \frac{4}{8 - 4}$$

Lim
$$f(x)$$

 $x \rightarrow 4$
 $\lim_{x \rightarrow 4^{+}} f(x) = \lim_{x \rightarrow 4^{+}} f(x) = \lim_{x \rightarrow 4^{-}} (8 - 2x) = 8 - 2(4) = 8 - 8 = 0$
 $\lim_{x \rightarrow 4^{-}} f(x) = \lim_{x \rightarrow 4^{-}} f(x)$

$$\frac{x-y^{4}}{x-y^{4}}$$

$$\frac{1}{x-y^{4}}$$

$$\frac{1}{x-y^{4}}$$

$$\frac{1}{x-y^{4}}$$

$$\frac{1}{x-y^{4}}$$

b)
$$f(\alpha) = \begin{cases} 1+x & \text{if } x < -1 \\ x^2 & \text{if } -1 \le x < 1 \\ 2-x & \text{if } x > 1 \end{cases}$$
 $\lim_{x \to -3} f(x) = \lim_{x \to -3} \frac{1+x}{2-x} = 1-3 = -2$
 $\lim_{x \to -3} f(x) = \lim_{x \to -3} \frac{2-x}{2-x} = 2-5 = -3$
 $\lim_{x \to 1} f(x) = \lim_{x \to -3} \frac{x^2}{3} = (\frac{1}{3})^2 = \frac{1}{9}$
 $\lim_{x \to 1} f(x) = \lim_{x \to -1} x^2 = (-1)^2 = 1$
 $\lim_{x \to -1} f(x) = \lim_{x \to -1} x^2 = 1 = 0$
 $\lim_{x \to -1} f(x) = \lim_{x \to -1} f(x)$
 $\lim_{x \to -1} f(x) = \lim_{x \to -1} f(x)$
 $\lim_{x \to -1} f(x) = \lim_{x \to -1} f(x)$
 $\lim_{x \to -1} f(x) = \lim_{x \to -1} f(x)$
 $\lim_{x \to -1} f(x) = \lim_{x \to -1} f(x)$
 $\lim_{x \to -1} f(x) = \lim_{x \to -1} f(x)$

c)
$$f(x) = \begin{cases} 1 + \sin x & \text{if } x \in \mathbb{Z} \\ \cos x & \text{if } x \neq \mathbb{Z} \end{cases}$$

$$\begin{cases} \cos x & \text{if } x \neq \mathbb{Z} \\ \sin x & \text{if } x \neq \mathbb{Z} \end{cases}$$

$$\begin{cases} \sin x & \text{if } x \neq \mathbb{Z} \\ \sin x & \text{if } x \neq \mathbb{Z} \end{cases}$$

$$\begin{cases} \lim_{x \to -\mathbb{T}} f(x) = \lim_{x \to -\mathbb{T}} (1 + \sin x) = 1 + \sin(-\frac{\pi}{4}) = 1 - \sin \frac{\pi}{4} \\ = 1 - \frac{\pi}{4} = \frac{\pi}{4} \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = \lim_{x \to -1} (\cos x) = \cos((\frac{\pi}{4})) = 0 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = \lim_{x \to -1} (\cos x) = (\cos(0)) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = \lim_{x \to -1} (\cos x) = 1 + \sin(0) = 1 + 0 = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = \lim_{x \to -1} f(x) \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

$$\begin{cases} \lim_{x \to -1} f(x) = 1 \\ \lim_{x \to -1} f(x) = 1 \end{cases}$$

 $\lim_{x\to \pi} f(x)$ $\lim_{x\to \pi} f(x) = \lim_{x\to \pi^+} \sin x = \sin(\pi) = 0$ $\lim_{x\to \pi^+} f(x) = \lim_{x\to \pi^-} \cos x = \cos(\pi) = -1$ $\lim_{x\to \pi^-} f(x) = \lim_{x\to \pi^-} f(x)$ $\lim_{x\to \pi^-} f(x) = \lim_{x\to \pi^-} f(x)$ $\lim_{x\to \pi^+} f(x) = \lim_{x\to \pi^-} f(x)$ $\lim_{x\to \pi^+} f(x) = \lim_{x\to \pi^-} f(x) = 0$

$$d)_{if}g(x) = \begin{cases} x & \text{if } x < 1 \\ 3 & \text{if } x = 1 \\ 2-x^2 & \text{if } 1 < x \leq 2 \\ x-3 & \text{if } x > 2 \end{cases}$$

Lim
$$g(x)$$

 $x \to 1$
Lim $g(x) = \lim_{x \to 1^{+}} (2 - x^{2}) = 2 - 1 = 1$
 $\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{+}} (x) = 1$
 $\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} g(x)$
 $\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{-}} g(x)$
 $\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{-}} g(x)$

 $x\rightarrow 2$

$$x \rightarrow 2$$

 $\lim_{x \rightarrow 2^{+}} g(x) = \lim_{x \rightarrow 2^{+}} (x - 3) = 2 - 3 = -1$
 $\lim_{x \rightarrow 2^{+}} g(x) = \lim_{x \rightarrow 2^{+}} (x - 3) = 2 - 3 = -1$

$$x\rightarrow 2^{+}$$
 $x\rightarrow 2^{+}$
 $x\rightarrow 2^{-}$
 $x\rightarrow 2^{-}$
 $x\rightarrow 2^{-}$
 $x\rightarrow 2^{-}$
 $x\rightarrow 2^{-}$
 $x\rightarrow 2^{-}$
 $x\rightarrow 2^{-}$

$$\lim_{x \to 3} g(x) = \lim_{x \to 3} (x-3) = 3-3 = 0$$

$$\lim_{x \to 3} g(x) = \lim_{x \to 4} x = -4$$

$$\lim_{x \to -4} g(x) = \lim_{x \to -4} (2-x^2) = 2 - (\frac{3}{2})^2$$

$$\lim_{x \to -3/2} g(x) = \lim_{x \to 3/2} (-2-x^2)^2 = 2 - \frac{9}{4}$$

$$= \frac{8-9}{4} = -\frac{1}{4}$$

$$= \frac{8-9}{4} = -\frac{1}{4}$$

$$= \frac{1}{1} = -\frac{1}{4}$$

$$= \frac{1}{1} = -\frac{1}{4}$$

$$\lim_{\substack{x \to 1 \\ x \to 1}} 9(x) = \lim_{\substack{x \to 1 \\ x \neq 1}} (x+1) = 1+1=2$$

$$9(1) = \prod$$

f) if
$$h(x) = \begin{cases} x^2 + 3 & \text{if } x \neq 3 \\ 5x - 3 & \text{if } x = 3 \end{cases}$$

$$\lim_{x \to 3} h(x) = \lim_{x \to 3} (x^2 + 3) = 3^2 + 3 = 9 + 3 = 12.$$

$$h(3) = 5(3) - 3 = 15 - 3 = 12$$

Example (12)

a)
$$\lim_{x\to 1} \ln(2-x)$$

$$-.1 \in D$$

$$\ln(2-x)$$

$$\ln(2-x) = \ln(2-1)$$

$$\ln(2-x) = \ln(1)$$

$$= 0$$

$$x \rightarrow 3$$
Domain of $\log (9 - x^2) : 9 - x^2 > 0$

$$-x^2 > -9$$

$$\bigcap_{109(9-x^2)} = (-3/3)$$

$$\lim_{x \to 3^{+}} \log (9 - x^{2}) = 0.0 \cdot E$$

$$\lim_{x \to 3^{+}} \log (9 - x^{2}) = \log (9 - 9) = \log (9 -$$

- : Lim 109 (9-x2) + him 109 (9-x2) x-)3t
- : Limlog (9-x²)=D.N.E x->3
- c) lim Log (x)

- .. 5E (0,00)
- : Limlog $x = \log_5 = 1$ $x \to 5$

Example 13

a)
$$\lim_{x\to 0} \frac{1}{x} = \frac{1}{0}$$

$$\lim_{x\to 0^+} \frac{1}{x} = \frac{1}{0} = \infty$$

$$\lim_{x\to 0^{-}} \frac{1}{x} = \frac{1}{0} = -\infty$$

$$f(x) = \frac{1}{x}$$

b)
$$\lim_{x\to 0} \frac{1}{x^2} = \frac{1}{0} = \infty$$

الطريقة الأولى

الطريقة الشانية

الطريقةالأوي

انس
$$\frac{x+5}{x-5} = \frac{5+5}{25-25}$$
 $x>5$
 $x>5$
 $x>5$
 $x>5$
 $x>5$
 $x=5.1$
 $x=$

الطريقة المثانية

$$\lim_{x \to 5^{+}} \frac{x+5}{25-x^{2}} = \frac{5+5}{25-25}$$

$$= \frac{10}{0}$$

$$= \frac{1}{25-25}$$

P)
$$\lim_{x \to 1} \frac{x-2}{(x-1)^2} = \frac{1-2}{(1-1)^2}$$

= $\frac{-1}{2}$

جما أنه المقام كله أسة خروجي فإنه المقام دائي موجب فلا نحتاع دراسة نهاية الدائة منه جهة اليمبن واليسار اذنه بنالم المناه على المناه المناه المناه على المناه المن

f)
$$\lim_{x\to 5} \frac{e^x}{(x-5)^3}$$

الطريقة الأوبي

$$\frac{\sum_{x\to 5}^{2} \frac{e^{x}}{(x-5)^{3}} = \frac{e^{5}}{(5-5)^{3}}}{x\to 5}$$

$$x = 6.1$$

$$x = 6.1$$

$$(5.1-5)^{3} = (0.1)^{3}$$

$$4 = 6.1$$

$$(5.1-5)^{3} = (0.1)^{3}$$

$$4 = 6.1$$

$$(5.1-5)^{3} = (0.1)^{3}$$

$$(5.1-5)^{3} = (0.1)^{3}$$

$$\therefore \lim_{x\to 5^+} \frac{e^x}{(x-5)^3} + \lim_{x\to 5^-} \frac{e^x}{(x-5)^3}$$

:.
$$\lim_{x\to 5} \frac{e^x}{(x-5)^3} = 0.N.E #$$

$$|| \text{im} || \frac{e^{x}}{(x-5)^3} = \frac{e^5}{(5-5)^3}$$

$$x < 5 = \frac{e^5}{0}$$

$$x = 4.9$$

$$|| \text{isosoper} || = \frac{1}{100} = -20$$

$$|| (4.9 - 5)^3 = (-0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

$$= -(0.1)^3$$

الطريقة النانبة

$$\lim_{x \to 5^{+}} \frac{e^{x}}{(x-5)^{3}} = \frac{e^{5}}{(5-5)^{3}}$$

$$= \frac{e^{5}}{0}$$

$$= \frac{+}{1}$$

$$\lim_{x \to 5^{-}} \frac{e^{x}}{(x-5)^{3}} = \frac{e^{5}}{(5-5)^{3}}$$

$$= \frac{e^{5}}{6}$$

$$= \frac{+}{6}$$

يوحد أحفارا لمقام:

2 = 5

ينضع أحفار المقام على خط الأعداد

··
$$\lim_{x\to 5^+} \frac{e^x}{(x-5)^3} + \lim_{x\to 5^-} \frac{e^x}{(x-5)^3}$$

:.
$$\lim_{x\to 5} \frac{e^x}{(x-5)^3} = D.N.E$$

h)
$$\lim_{x \to 2^+} \frac{x^2 - 2x - 8}{x^2 - 5x + 6}$$

الطربيقة الاوبى

$$\frac{|\text{im}|}{x \to 2^{+}} \frac{x^{2} - 2x - 8}{x^{2} - 5x + 6} = \frac{4 - 4 - 8}{4 - 10 + 6}$$

$$x > 2$$

$$x = 2.1$$

$$p(ab) (a |a | p = 0)$$

$$x^{2} - 5x + 6 = (x - 2)(x - 3)$$

$$= (2.1 - 2)(2.1 - 3)$$

$$= (0.1)(-0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

$$= (0.1)(0.9)$$

المربيقة النانبة

$$\lim_{x \to 2^{+}} \frac{x^{2} - 2x - 8}{x^{2} - 5x + 6} = \frac{4 - 4 - 8}{4 - 10 + 6}$$

$$= \frac{-8}{0}$$

$$= \frac{-8}{0}$$

منوهد أصفار المعام! $x^2 - 5x + 6 = 0$ (x-2)(x-3)=0

ينضع أصفا راطقام على خط الأعداد: ح

x2-5x+6 6 miles

سفس اشارة عكس اشارة معامل

+ معامد فحد

$$x \rightarrow 2^{-}$$
 $x^{2} - 43L + L$

$$\begin{array}{ll}
\text{lim} & \frac{\chi(\chi - \chi)}{(\chi - \chi)(\chi - 2)} &= \lim_{\chi \to 2^{-}} \frac{\chi(\chi - \chi)}{\chi - \chi} &= \lim_{\chi \to 2^{-}} \frac{\chi(\chi - \chi)}{\chi} &= \lim_{\chi \to 2^$$

$$|| \frac{\chi(\chi^{-2})}{2} || = || \frac{\chi(\chi^{-2})}{(\chi^{-2})(\chi^{-2})} = || \frac{\chi}{\chi^{-2}} || = \frac{2}{6}$$

$$= \pm \frac{1}{6} = 0$$

$$|| \frac{\chi(\chi^{-2})}{(\chi^{-2})(\chi^{-2})} || = \frac{1}{6} = 0$$

$$|| \frac{\chi(\chi^{-2})}{(\chi^{-2})(\chi^{-2})(\chi^{-2})} || = \frac{1}{6} = 0$$

م ضفع أحفار المقام على خط الأعداد

i)
$$\lim_{x\to 2\pi^{-}} x \csc x = \lim_{x\to 2\pi^{-}} \frac{x}{\sin x}$$
 $x \to 2\pi^{-}}$
 $x < 2\pi^{-}$
 $x < 360$
 $x = 359$
 $x = 360^{\circ}$
 $x = 100^{\circ}$
 $x = 100^{\circ}$
 $x \to 2\pi^{-}$
 $x \to 2\pi^$

$$|x| = \begin{cases} x & \text{if } x \neq 0 \\ -x & \text{if } x \neq 0 \end{cases}$$

$$|x| = \begin{cases} x & \text{if } x \neq 0 \\ -x & \text{if } x \neq 0 \end{cases}$$

$$|x| = \begin{cases} x & \text{if } x \neq 0 \\ -x & \text{if } x \neq 0 \end{cases}$$

$$= \lim_{x \to 0^{-}} \left(\frac{1}{x} - \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{2}{x} + \frac{1}{x} \right)$$

Example(14)

If
$$\lim_{x \to 5} \frac{f(x) - 8}{x - 1} = 10$$
 the $\lim_{x \to 5} f(x) = ?$

$$\lim_{x \to 5} \left(\frac{f(x) - 8}{x - 1} \right) = 10$$

$$\lim_{x \to 5} \left(\frac{f(x) - 8}{x - 1} \right) = 10$$

$$\lim_{x \to 5} \left(\frac{f(x) - 8}{x - 1} \right) = 10$$

$$\lim_{x \to 5} \frac{f(x) - \lim_{x \to 5} \frac{f(x)}{x - 1} = 10$$

$$\lim_{x \to 5} \frac{f(x) - 8}{x - 1} = 10$$

$$\lim_{x \to 5} \frac{f(x) - 8}{x - 1} = 10$$

$$\lim_{x\to 5} f(x) - 8 = 10$$

$$\lim_{x\to 5} f(x) = 10$$

$$\lim_{x\to 5} f(x) = 8 = 4(10) \implies \lim_{x\to 5} f(x) = 40 + 8 = 48$$

Theorem

If f(x) < g(x) when x is near a and $\lim_{x\to a} f(x)$, $\lim_{x\to a} g(x)$ are exist then limf(x) < lim g(x)

Note

If f(x) = g(x) when $x \neq q$ and $\lim_{x \to a} f(x)$,

lim g(x) are exists then $\lim_{x\to a} f(x) = \lim_{x\to a} g(x)$

Theorem: "The Squeeze Theorem

if $f(x) \leq g(x) \leq h(x)$ and $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$

then limg(x) = L

Example (15)

a) if
$$4x-9 \le f(x) \le x^2-4x + 7$$
 $4x > 0$

Then find $\lim_{x \to 4} f(x)$?

hen Find
$$\frac{1111}{3c-34}$$

Lim $(4x-9) = 4(4)-9 = 16-9 = 7$
 $\frac{1}{x-34}$
Lim $(x^2-4x+7) = 4^2-4(4)+7=16-16+7=7$
 $\frac{1}{x-34}$

$$\lim_{x \to 4} (x^{2} - 1) = \lim_{x \to 4} (x^{2} - 4x + 7) = 7$$

$$\lim_{x \to 4} (4x - 9) = \lim_{x \to 4} (x^{2} - 4x + 7) = 7$$

i.
$$\lim_{x\to 9} f(x) = T$$

b) if $\log x \leq f(x) \leq \frac{1}{6}x$ then find $\lim_{x\to 3} f(x)$?

Lim $\log_q x = \log_q 3 = \frac{1}{2}$ " section 1.6"

 $\lim_{x\to 3} \log_q x = \log_q 3 = \frac{1}{2}$

$$\lim_{x \to 3} (3) = \frac{3(1)}{3(2)} = \frac{1}{2}$$

 $\lim_{x \to 3} x \to \frac{1}{2}$

$$\lim_{x\to 3} \log_{\alpha} x = \lim_{x\to 3} \frac{1}{6}x = \frac{1}{2}$$

$$\lim_{x\to 3} \log_{\alpha} x = \lim_{x\to 3} \frac{1}{6}x = \frac{1}{2}$$

$$\lim_{x\to 3} f(x) = \frac{1}{2}$$

c) if
$$Sin x \leq F(x) \leq \frac{1}{\sqrt{2}}$$
 thu find $\lim_{x \to 1} F(x)$

$$\lim_{x \to 1} Sin(x) = Sin(\pi) = \frac{1}{2} \times \sqrt{2} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\lim_{x \to 1} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\lim_{x \to 1} \frac{1}{\sqrt{2}} = \lim_{x \to 1} \frac{1}{\sqrt{2}} = \lim_{x \to 1} \frac{1}{\sqrt{2}}$$

$$\lim_{x \to 1} F(x) = \lim_{x \to 1} \frac{1}{\sqrt{2}}$$

$$\lim_{x \to 1} F(x) = \lim_{x \to 1} \frac{1}{\sqrt{2}}$$

$$\lim_{x \to 1} F(x) = \lim_{x \to 1} \frac{1}{\sqrt{2}}$$

$$\lim_{x \to 1} F(x) = \lim_{x \to 1} \frac{1}{\sqrt{2}}$$

Example (16)

a)
$$\lim_{x\to\infty} x^2 \sin(\frac{1}{x}) = 0.5 \sin(\frac{1}{6})$$

$$-1 \leq Sin(\frac{1}{x}) \leq 1$$

$$-\infty_{5} < \infty_{5} < \infty_{5} < \infty_{5}$$

$$\frac{\sum_{i=0}^{\infty} -x^2}{x \to 0}$$

$$\lim_{x\to 0} -x^2 = \lim_{x\to 0} x^2 = 0$$

$$\lim_{x\to 0} x^2 \sin(\frac{1}{x}) = 0$$

2.5 - Continuity

Definition

A function f is continuous at a number a if $\lim_{x\to a} f(x) = f(a)$

Note

Notice that Definition implicitly requires three things if f is continuous at a:

- 1) fray is defined
- 2) Limf(x). exists
- 3) $\lim_{x\to a} f(x) = f(a)$

Example(1)

Explain why the function is continuous at a number[a]

1)
$$f(x) = x^2 + \sqrt{7-x}$$
 $a = 4$

.. from O, @ and 6 we get f(x) is continuous at 4

2) $f(x) = (x+2x^3)^4$ a = -1

$$\int_{-(2)}^{4} = (24)^{3} = (-1 - 2)^{4} = (-3)^{4} = 81$$

$$\int_{-(-1)}^{4} = (-1 + 2(-1)^{3})^{4} = (-1 - 2)^{4} = (-3)^{4} = 81$$

①
$$f(-1) = (-1+2(-1)^{3})^{4} = (-1-2)^{4} = (-3)^{4} = 81$$

② $\lim_{x \to -1} (x + 2x^{3})^{4} = (-1+2(-1)^{3})^{4} = (-1-2)^{4} = 81$

3
$$\lim_{x \to 1} f(x) = 81 = f(-1)$$

.. from 0, 2 and 3 we get fix) is continuous at -1

3)
$$h(t) = 2t - 3t^{3}$$
 $a=1$

(1)
$$h(1) = \frac{2(1) - 3(1)^2}{1 + (1)^3} = \frac{2 - 3}{1 + 1} = \frac{-1}{2}$$
 is defined.

(2)
$$\lim_{t \to 1} h(t) = \lim_{t \to 1} \frac{2t - 3t^2}{1 + t^3} = \frac{2(1) - 3(1)^2}{1 + (1)^3} = \frac{2 - 3}{1 + (1)^3} = \frac{2}{1 + (1)^3}$$

.. from D, @ and B me get hit) is continuous at a=1

4)
$$G(x) = \begin{cases} 2x^2-5x-3 & \text{if } x \neq 3 \\ \hline x-3 & \text{if } x = 3 \end{cases}$$

$$7 \qquad \text{if } x = 3$$

(1)
$$G(3) = 7$$
 15 ab) mov.
(2) $\lim_{x \to 3} G(x) = \lim_{x \to 3} \frac{2x^2 - 5x - 3}{x - 3} = \frac{0}{0}$

$$\lim_{x \to 3} \frac{(2x + 1)(x - 3)}{(x - 3)} = \lim_{x \to 3} (2x + 1) = 2(3) + 1$$

$$= 6 + 1 = 7$$

.. from O, @ and 3 we get G(x) is continuous at a=3

5) $f(x) = \int \cos x$ if x < 0 $1 - x^2$ if x > 0

(1)
$$f(0) = 1 - (0)^2 = 1 - 0 = 1$$
 is defind

②
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (1-x^2) = 1-0 = 1 = f(0)$$

: f(x) is continuous at a=o from the right

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} \cos x = \cos(0) = 1 = f(0)$$

.: fix) is continuous at a = o from the left

from O, Q and 3 we get fix) is continuous at a=0

Example (2)

Explain Why the function is disContinuous at number [a]

1)
$$f(x) = \frac{1}{x+2}$$

$$0 f(-2) = \frac{1}{-2+2} = \frac{1}{0}$$

$$\therefore f(-2) \text{ is not defind}$$

- ·· f(-2) is undefined.
- .. F(x) is discontinuous at a=-2

2)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$
 $a = 2$

$$0 f(2) = 2^{2} - 2 - 2 = 4 - 4 = 0$$

: f(+2) is not defined.

- .. f(+2) is undefined.
- .. f(x) is discontinuous at a=2

:. F(8) is undefined

4)
$$f(x) = \sqrt{x-5}$$
 at $a = 5$

(1) F(5) = \(\sigma = 0\) is defined.

$$\therefore D_{\sqrt{x-5}} = [5, \infty)$$

Lim
$$f(x) = \lim_{x \to 5^+} \sqrt{x-5} = \sqrt{5-5} = \sqrt{0} = 0 = f(5)$$
 $x \to 5^+$
 $x \to 5^+$

: f(x) is continuous at 5 from the right

$$\therefore f(x) \text{ is commuted}$$

$$\text{Lim } f(x) = \lim_{x \to 5^{-}} \sqrt{x-5} = D.N.E$$

$$x \to 5^{-}$$

$$\text{Lim } f(x) = \lim_{x \to 5^{-}} \sqrt{x-5} = f(x)$$

: fox) is discontinuous at 5 from the left

$$\Rightarrow$$
 $f(x)$ is discontinuous at 5

5)
$$f(x) = \begin{cases} \frac{1}{2}, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases}$$

6)
$$f(x) = \begin{cases} \frac{1}{(x-4)^3} & \text{if } x \neq 4 \\ \frac{1}{2} & \text{if } x = 4 \end{cases}$$

2
$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \frac{-1}{(x-4)^3} = \frac{-1}{0} = \frac{-1}{1} = -1$$

$$\lim_{x\to 4^{-}} f(x) = \lim_{x\to 4^{-}} \frac{-1}{(x-4)^{3}} = \frac{-1}{0} = \frac{-1}{0} = +\infty$$

Gettin (3.9-4)...

Since
$$\lim_{x\to 4} f(x) + \lim_{x\to 4} f(x)$$

$$\lim_{x\to 4} f(x) = D.N.E$$

Since $\lim_{x\to 4} f(x) + \lim_{x\to 4} f(x)$

=> frx) is discontinuous at a= 4

7)
$$f(x) = \begin{cases} \frac{2x^2 - x}{x^2 - 1} & \text{if } x \neq 1 \\ \frac{2x^2 - 1}{1} & \text{if } x = 1 \end{cases}$$

Of(1) = 1 is defined

(2)
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - x}{x^2 - x} = \frac{0}{0}$$

 $\lim_{x \to 1} \frac{x(x-1)}{(x-1)(x+1)} = \lim_{x \to 1} \frac{x}{x+1} = \frac{1}{1+1} = \frac{1}{2}$

:. lim f(x) = 1 exist

-> fix) is discontinuous at a=1

$$=) f(x) is discontinuous and (3) f(x) = \begin{cases} e^{x} & \text{if } x < 0 \\ x^{2} & \text{if } x > 0 \end{cases}$$
8)
$$f(x) = \begin{cases} x^{2} & \text{if } x > 0 \\ x^{2} & \text{if } x > 0 \end{cases}$$

Of(0) = 02 = 0 is defined

(1)
$$f(0) = 0^2 = 0$$
 is derinated
(1) $f(0) = 0^2 = 0$ is derinated
(2) $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \chi^2 = 4 = 0$
 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \chi^2 = 4 = 0$
 $\lim_{x\to 0^+} f(x) = 0$ is continuous at $\alpha = 0$ from the right
 $\lim_{x\to 0^+} f(x) = 0$ is continuous at $\alpha = 0$ from the right

: f(x) is discontinuous at a=o from the left

Note

- 1) Fais continuous at a from the right if lim f(x) = f(a). x->at
- 2) fixis continuous from the left at number a if lim f(x) = f(a) x->a-
- 3) if fex is continuous at then fex is continuous at a from the left and from the right i.e: lim f(x) = lim f(x) = f(a)
 x->a
- 4) if f(x) is discontinuous at a then $\underset{x\to 9}{\not\leftarrow} f(a) \text{ is not defined.}$

Whimf(x) = D.N.E

* F(x) is discontinuous at a from the left

of Fix) is discontinuous at a from the right

* F(x) is discontinuous at a from the left and from the righ.

Continuity on the Interval

-) f(x) is continuous on [a,b] if
 - f(x) is Continuous on (9,b)
 i.e: f(x) is continuous at every number
 in the interval (9,b)
 - F(x) is continuous at a number a From the right but f(x) is discontinuous at a
 - f(x) is continuous at a number ⓑ From the left but f(x) is discontinuous at ⓑ
 - 2) f(x) is continuous on (a,b) if
 - f(x) is continuous at every number in the interval (a,b)

Note

- f(x) is discontinuous at a since: f(a) is not defined or a ∉ (a,b)
- fcx) is discontinuous at b since: f(b) is not defined or b & (a,b)

Example (3)

1) if F(x) is continuous on [-3,5] then

a fix) is continuous at number -3 from the right but discontinuous from the left

(b) f-(x) is continuous at number 5 from the left but discontinuous from the right

- © From @ we get f(x) is discontinuous at number -3.
 - (d) from (b) we get fix) is discontinuous at number
 - @ f(x) is continuous at every number in the interval (-3,5)

For example. F(x) is continuous at 2 Since 2 E(-3,5)

f(x) is continuous at -1 Since $-1 \in (-3,5)$ f(x) is continuous at 0 Since $0 \in (-3,5)$ f(x) is discontinuous at 6 Since $6 \notin (-3,5)$ f(x) is discontinuous at -4 Since $-4 \notin (-3,5)$ f(x) is discontinuous at -4 Since $-4 \notin (-3,5)$ (3) if fex is continuous on (-5,0) then F(x) is discontinuous at o

4) if f(x) is continuous on (-5,0) then

F(x) is continuous at +1

X

5) if fix) is continuous on (-5,0) then
fix) is discontinuous at -8

6) if fix is continuous on (-5,0) then
f(x) is continuous at -3 X

Theorem

If f and g are Continuous at a and c is constant then the following functions are Continuous at a

Note

If f and g are continuous on interval I
Then the following functions are continuous
on interval I

Theorem

If g is continuous at a and f is continuous at a g(a) then fog is continuous at a.

Theorem

- a) Any polynomial is continuous everywhere i.e Any polynomial is continuous on IR = (-00,00)
- b) Any rational function is continuous on the Domain.
- 6) The following Types of functions are Continuous at every number in their Domains:
 - polynomails rational root functions functions
 - Radical Functions Erigonometric
 - inverse trigonometric exponential functions
 - logarithmic algabric functions functions
 - / not algabric function

Example (4)

1 Lim tan
$$\left(\frac{x^2-4}{3x^2-6x}\right)$$

$$\tan^{-1}\left(\lim_{x\to 2}\frac{x^2-4}{3x^2-6x}\right)$$

$$\tan^{-1}\left(\lim_{x\to 2}\frac{(x-2)(x+2)}{3x(x-2)}\right)$$

$$\tan^{-1}\left(\lim_{x\to 2}\frac{x+2}{3x}\right)$$

$$+ an' \left(\frac{2+2}{3(2)} \right) .$$

$$\lim_{x\to 2^{+}} \tan^{-1}\left(\frac{1}{x-2}\right)$$

Note

Example(5)

Where are the following functions continuous?

$h(x) = Sin(x^2)$

0 let $h_1(x) = Sin(x)$ and $h_2(x) = x^2$

2 $O_{h_1(x)} = \mathbb{IR}$ and $O_{h_2(x)} = \mathbb{IR}$

3 $D_{h_1(x)} = D_{h_1(x)} \cap D_{h_2(x)} = IR \cap IR = IR$

4 h(x) is continuous on IR

h(x) = Sin'(2t+1)

① -1<2t+1<1 -1-1<2t<1-1 -2<2t<0 -1<t<0

@ Dha = [-1,0]

3 hex) is cont on [-1,0]

(i) h(x) is cont at x=-1 from the right and discont at x=-1 from the left

(5) h(x) is cont at x = 0 from the left and discont at x = 0 from the right 6) f(x) is alsow at x=0 and x=1

$$G(x)$$
, $\frac{x}{x^2+5x+6}$

$$\begin{array}{ccc}
C(x) & x^2 + 5x + 6 = 0 \\
(x + 2)(x + 3) = 0 \\
x + 2 = 0 \\
x + 2 = 0 \\
x = -3 \\
x = -2
\end{array}$$

$$\bigcap_{G(x)} = |R - \{-2, -3\} \}
= (-\infty, -3) u (-3, -2) u (-2, \infty)$$

G(x) is continuous on $1R - \{-2, -3\}$ G(x) is discontat x = -2 and x = -3

$$F(x) = \sqrt[3]{x} \left(1 + x^2\right)$$

$$D_{F(x)} = D_{\sqrt{x}} \wedge D_{(1+x^2)}$$

$$= 1R \wedge 1R = 1R$$

F(x) is continuous on IR

$$f(x) = \frac{\sin x}{2 + \cos x}$$

Let $F_1(x) = \sin x \implies \bigcap_{F_1(x)} = |R|$

$$f_2(x) = 2 + \cos x \implies \bigcap_{F_2(x)} |F_2(x)| = |R|$$

$$2 + \cos x = 0$$

$$\cos x = -2$$

$$-1 < \cos x | = 0$$

$$|F_{(x)}| = |F_{(x)}| = |F_{(x)$$

$$f(x) = L_{N(x)} + t_{\alpha N(x)}$$

$$2^{2} - 1$$

$$x^{2} - 1$$

$$2^{2} - 1$$

$$x^{2} - 1$$

$$x^{2} - 1$$

$$x^{2} - 1$$

$$= L_{N(x)} + t_{\alpha N'}(x)$$

$$= (0, \infty) \cap 1R$$

$$= (0, \infty)$$

$$= (0, \infty)$$

$$1R$$

$$= (0, \infty)$$

$$x^{2} - 1 = 0$$

$$x^{2} - 1 = 0$$

$$x^{2} - 1$$

$$x^{2$$

$$h(x) = \frac{\cos x}{\sqrt{4-x^2}}$$

0 let
$$h_1(x) = \cos x$$
 and $h_2(x) = \sqrt{4-x^2}$

(2)
$$D_{h_1(x)} = IR$$
 and $D_{h_2(x)} = \begin{bmatrix} -2/2 \end{bmatrix}$

$$\begin{array}{ll}
\left(\frac{1}{2}\right) & = \sum_{h_{1}(x)} \bigcap_{h_{2}(x)} -\left\{\frac{1}{2}\right\} \\
& = \left[\frac{1}{2}, 2\right] - \left\{-\frac{2}{2}, 2\right\} \\
& = \left[-\frac{2}{2}\right] - \left\{-\frac{2}{2}, 2\right\} \\
& = \left(-\frac{2}{2}, 2\right)
\end{array}$$

but hex is discont at x = -2 and x = 2

12 -2

 $x = \pm 2$

Old
$$F_1(x) = \sin x$$
 and $F_2(x) = 1 - 1$
 $(2) D_{F_1(x)} = 1R$ and $D_{F_2(x)} = 1R$
 $(3) D_{F_3(x)} = 1$ $D_{F_3(x)} = 1$
 $(3) D_{F_3(x)} = 1$ $D_{F_3(x)} = 1$ $D_{F_3(x)}$

(a)
$$P_{F,(x)}$$

p(x) | $p(x) = 1 = 0 = 0 = 0 = 0 = 0 = 0$

(b) $P_{F,(x)} = 0$

(c) $P_{F,(x)} = 0$

(d) $P_{F,(x)} = 0$

(e) $P_{F,(x)} = 0$

(e) $P_{F,(x)} = 0$

(f) $P_{F,(x)} = 0$

(g) $P_{F,($

- Grain is cont on (-00, 1) u(1,00) but fex is discontated

$$R(x) = x^2 + \sqrt{2x-1}$$

$$\begin{array}{ll}
P_{R(x)} &= P_{32} \wedge P_{\sqrt{2}x-1} \\
&= IR \wedge [\frac{1}{2}I^{\infty}) \\
&= [\frac{1}{2}I^{\infty}) \\
R(x) \text{ is continuous on } [\frac{1}{2}I^{\infty})
\end{array}$$

g(x) = tan'(1+1x)

$$D_{g(x)} = D_{tan^{\prime}(x)} \cap D_{1+\sqrt{x}}$$

$$= IR \cap [O_{1}\infty)$$

$$= [O_{1}\infty)$$

$$= [O_{1}\infty)$$

$$g(x) is continuous on [O_{1}\infty)$$

$$F(x) = \sqrt{2x-10}$$

$$2x-10 \neq 0$$

$$2x \neq 10$$

$$\frac{2x}{2} \neq \frac{10}{2}$$

$$x \neq 5$$

$$D_{F(x)} = [5, \infty)$$

$$F(x) \text{ is Cont on } [5, \infty)$$

$$F(x) \text{ is discont at } x=5 \text{ but}$$

$$F(x) \text{ is Cont at 5 from the right and}$$

$$discont at 5 \text{ from the left}$$

$$f(x) = \sqrt{2 + \cos x}$$

$$2 + \cos x \neq 0$$

$$\cos x \neq -2$$

$$-1 \leq \cos x \leq 1$$

$$\therefore D_{f(x)} = |R| = (-\omega_1 \omega)$$

$$f(x) \text{ is conton } |R|$$

$$f(x) = \sqrt{1 + \cos x}$$

$$1 + \cos x = 70$$

$$\cos x = 70$$

$$-1 \le \cos x \le 1$$

Fax is conton IR

$$f(x) = L_n(1+\cos x) = \frac{1+\cos x}{\cos x}$$

(2)
$$1 + \cos x = 0$$

 $\cos x = -1$
 $x = \pm \pi, \pm 3\pi, \pm 5\pi, ...$

$$= \mathbb{I} \mathbb{R} - \left\{ \pm \pi / \pm 3\pi / \pm 5\pi / \cdots \right\}$$

(3)
$$P_{f(x)} = IR - \{\pm \pi, \pm 3\pi, \pm 5\pi, \dots\}$$

(3) $P_{f(x)} = IR - \{\pm \pi, \pm 3\pi, \pm 5\pi, \dots\}$

(4) $P_{f(x)} = IR - \{\pm \pi, \pm 3\pi, \pm 5\pi, \dots\}$

(5) $P_{f(x)} = IR - \{\pm \pi, \pm 3\pi, \pm 5\pi, \dots\}$

(6) $P_{f(x)} = IR - \{\pm \pi, \pm 3\pi, \pm 5\pi, \dots\}$

(7) $P_{f(x)} = IR - \{\pm \pi, \pm 3\pi, \pm 5\pi, \dots\}$

(8) $P_{f(x)} = IR - \{\pm \pi, \pm 3\pi, \pm 5\pi, \dots\}$

f(x) = tanxf(x) = secx

f(x) = t and f(x) = Secxare Cont on IR - $\left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{3\pi}{2}, \dots \right\}$ but f(x) = t and f(x) = Secx arediscort at $x = t \frac{\pi}{2} / t \frac{3\pi}{2} / t \frac{3\pi}{2} / \dots$

F(x) = Cot x f(x) = Cot x f(x) = Cot x and f(x) = CSC x are f(x) = Cot x and f(x) = CSC x are $Cont \text{ on } IR - \{o, \pm \Pi, \pm 2\Pi/\pm 3\Pi/\pm 4\Pi/...\}$ but f(x) = Cot x and f(x) = CSC x are $disCont \text{ of } x = 0, \pm \Pi/\pm 2\Pi/\pm 3\Pi/\pm 4\Pi/...$

Example f(x) = Secx is discont at $x = \frac{21}{4}IT(T-E)$ f(x) = CSCx is discont at x = ---IZ IG O

$$f(x) = \begin{cases} -\frac{1}{(x-6)^4} & \text{if } x \neq 6 \\ 6 & \text{if } x = 6 \end{cases}$$

①
$$f(6) = 6$$
 defind

② $\lim_{x \to 6} f(x) = \lim_{x \to 6} \frac{-1}{(x-6)} = \frac{-1}{0} = \frac{-1}{1} = -\infty$ "D.N.E"

$$f(x) = \begin{cases} \frac{2^2-4}{2x-2} & \text{if } x \neq 2\\ \frac{2}{x}-\frac{2}{x} & \text{if } x \neq 2\\ 4 & \text{if } x = 2 \end{cases}$$

$$D f(2) = 4 defined$$

①
$$f(z) = 4$$
 defined
② $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 0$
② $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)} = \lim_{x \to 2} (x + 2) = 2 + 2 = 4$
 $\lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)} = \lim_{x \to 2} f(x)$ is Continuous at $x = 2$

3
$$\lim_{x\to 2} f(x) = f(x) = 4$$
 $f(x) = f(x) = f(x)$
 $f(x) = f(x) = f(x)$

$$f(x) = \begin{cases} 1+x^2 & \text{if } x < 6 \\ 2-x & \text{if } 0 < x < 2 \\ (x-2)^2 & \text{if } x > 2 \end{cases}$$

$$\nu f(0) = 1 + (0)^2 = 1 + 0 = 1$$
 isolatineel.

$$V \lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (2-x) = 2-0=2 + f(0)$$

- .. F(x) is discontinuous at o from the right
- => f(x) is discontinuous at o

$$F(2) = 2 - 2 = 0$$
 is defined

$$f(2) = 2 - 2 = 0 \text{ is all-mean}$$

$$f(2) = 2 - 2 = 0 \text{ is all-mean}$$

$$f(2) = 2 - 2 = 0 \text{ is all-mean}$$

$$f(x) = \lim_{x \to 2^{+}} (x - 2)^{2} = (2 - 2)^{2} = 0^{2} = 0 = f(2)$$

$$x \to 2^{+}$$

.: f(x) is continuous at 2 from the right

:
$$f(x)$$
 is continuous at $2 + 100$.
Lim $f(x) = \lim_{x \to 2^{-}} (2-x) = 2-2 = 0 = f(z)$
 $5(-)2^{-}$
Limbous at 2 from the le

: fex) is continuous at 2 from the left

=>
$$f(x)$$
 is continuous at $f(x) = \frac{1}{4}$
 $f(x) = \lim_{x \to 1^{-}} \frac{1}{x}$

Examp (6)

For what value of c is the function

Fix) is Continuous on IR = (-0)

(i)
$$f(x) = \begin{cases} Cx^2 + x^3 & \text{if } x < 2 \\ x^2 - Cx & \text{if } x > 2 \end{cases}$$

- .. f(x) is continuous on IR
 - .. f(x) is continuous of x=2

$$\lim_{x\to 2^+} f(x) = \lim_{x\to 2^-} f(x)$$

$$(2)^2 - 2C = (2)^2C + (2)^3$$

$$-6c = 4$$

$$-\frac{6c}{-6} = \frac{4 \div 2}{-6 \div 2}$$

$$C = -\frac{2}{3}$$

(2)
$$f(x) = \begin{cases} K^2x - 4 & \text{if } x > 1 \\ 12x & \text{if } x \leq 1 \end{cases}$$

- . . Frex is continuous on IR
- .. F(x) is continuous at x=1

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} f(x)$$
 $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} 12x$
 $\lim_{x \to 1^{+}} (K^{2}x - 4) = \lim_{x \to 1^{-}} 12x$
 $K^{2} - 4 = 12$
 $K^{2} = 12 + 4$
 $K^{2} = 16$

$$\sqrt{K^{2}} = \sqrt{16}$$

From (1) and (2) we get: f(x) is discontal x=3

:. f(x) is discort at x=1

2.6: Limit at infinity and Horizontal Asymptotes.

Example(1)

- · · · Lim F(x) = 4 or lim f(x) = 4
 - .. y = 4 is Horizontal Asymptote

If lim
$$f(x) = L$$
, then $y = L$, is $H \cdot A$
 $x \rightarrow t.\infty$

If $\lim_{x \rightarrow -\infty} f(x) = L$, then $y = L_2$ is $H \cdot A$

if $\lim_{x \rightarrow -\infty} f(x) = L$ then $\lim_{x \rightarrow t.\infty} f(x) = L$

Scanned with CamScanner

Example(4)

Find the Horizontal Asymptote af and Vertical Asymptote of Me Following Functions.

① $f(x) = 2x^2 + 3x + 1$

Fix) has no Vertical and Horizontal Asymptotes.

(2) $f(x) = \cos x$ or $f(x) = \sin x$

Fix) has no Vertical and Horizontal Asymptotes.

(3) $f(x) = e^{x}$ or $f(x) = (\frac{1}{2})^{x}$ or $f(x) = 3^{x}$ or $f(x) = 11^{-x}$

F(z) has no vertical Asymptote
but F(z) has Horizontal asymptote (y=0)

(4) f(x) = 4x + 2 y = 2 is H. A of f(x) f(x) has no Vertical Asymptote.

(b) $f(x) = 3^{\infty} - 1$

Vy=-1 is H.A at f(x)

F(x) has no Vertical asymptote.

6)f(x) = Ln(x+5)or f(x) = 109(x+5)

Fix) has no Horizontal Asymptote

x = -5 is V.A

那(汉) = 一文

x=0 is V.A y=0 is H.A f(x) = tan'x

1.e
$$\lim_{x \to \infty} \tan^{-1}x = \frac{\pi}{2}$$
 $\lim_{x \to \infty} \tan^{-1}x = -\frac{\pi}{2}$

Note: -Dlim = 0 for all n>0

2)
$$\lim_{z\to\infty} x^n = \infty$$
 for all $n > 0$

2)
$$\lim_{z\to\infty} x^n = \infty$$
 for all $n>0$
 $\lim_{z\to\infty} x^n = \infty$ if n is an odd.
 $\lim_{z\to\infty} x^n = \infty$ if n is an odd.

4)
$$\lim_{x\to\pm\infty} (a_n x^n + a_{n-1} x^{n-1} + a_n x + a_n) = \lim_{x\to\pm\infty} a_n x^n$$

Example (5)

$$\frac{1}{2} = 0$$

$$\lim_{x \to \pm 0} x^{5} = \lim_{x \to \pm 0} \frac{3}{x^{5}} = 0$$

$$\lim_{x \to \pm 0} 3x^{-5} = \lim_{x \to \pm 0} \frac{3}{x^{5}} = 0$$

$$\lim_{x \to \infty} \frac{1}{\sqrt{x}} = \lim_{x \to \infty} \frac{1}{x^{3}} = 0$$

$$\lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0$$

2)
$$\lim_{x\to\infty} x^3 = \infty$$
 $\lim_{x\to\infty} x^3 = -\infty$
 $\lim_{x\to\infty} x^3 = -\infty$
 $\lim_{x\to\infty} x^3 = -\infty$
 $\lim_{x\to\infty} x^3 = -\infty$
 $\lim_{x\to\infty} x^3 = -\infty$

$$\lim_{x \to \infty} x^3 = \infty$$

$$\lim_{x \to \infty} x = \infty$$

$$\lim_{x \to \infty} x = \infty$$

$$\lim_{x \to \infty} x = -5\lim_{x \to \infty} x^7$$

$$\lim_{x \to \infty} -5x^7 = -5\lim_{x \to \infty} x^7$$

$$\lim_{x \to \infty} -5x^7 = -5\lim_{x \to \infty} x^7$$

$$= -5(-\infty)$$

$$\lim_{x \to \infty} -5(-\infty)$$

$$= -5(\infty)$$

$$= -5(\infty)$$

$$\lim_{x \to \infty} x^{-4} = \frac{1}{2} \lim_{x \to \infty} x^{-4}$$

$$= \frac{1}{2} \lim_{x \to \infty} \frac{1}{x^{4}}$$

$$= \frac{1}{2} (0)$$

$$= 0$$

$$\lim_{x \to -\infty} x^{2}$$

$$= e^{2} \lim_{x \to -\infty} x^{3}$$

$$= -e^{2} (\infty)$$

$$= -\infty$$

$$\lim_{x \to \infty} (x^{3} - x^{3}) = \lim_{x \to \infty} x^{3/4}$$

$$= 5 (\infty)$$

$$= -\infty$$

$$\lim_{x \to \infty} (x^{3} - x^{3}) = \lim_{x \to \infty} x^{3/4}$$

$$= 5 (\infty)$$

$$= -\infty$$

$$\lim_{x \to \infty} (x^{3} - x^{3}) = \lim_{x \to \infty} x^{3/4}$$

$$= -\infty$$

$$\lim_{x \to \infty} (x^{3} - x^{3}) = \lim_{x \to \infty} x^{3/4}$$

$$= -\infty$$

$$\lim_{x \to \infty} (x^{3} - x^{3}) = \lim_{x \to \infty} x^{3/4}$$

$$= -\infty$$

$$\lim_{x \to \infty} (x^{3} - x^{3/4}) = \lim_{x \to \infty} x^{3/4}$$

$$= -\infty$$

$$\lim_{x \to \infty} (x^{3} - x^{3/4}) = \lim_{x \to \infty} x^{3/4}$$

$$= -\infty$$

$$\lim_{x \to \infty} (x^{3} - x^{3/4}) = \lim_{x \to \infty} x^{3/4}$$

$$= -\infty$$

$$\lim_{x \to \infty} (x^{3} - x^{3/4}) = \lim_{x \to \infty} x^{3/4}$$

$$= -\infty$$

$$= -\infty$$

Note

If $f(x) = \frac{P(x)}{Q(x)}$ is a Rational function then

- اد ا كانت در هية البسط ا مفر من درجة المقام المعام المعام
 - 2) Lim f(x) = 00 or -00

 x > +00

 p labl ap 10 in or -10 in or -10
- معامل أكبر أ من في البسط عند المعام عدد عدم المعام عدد عدم المعام المعا

Example(6)

$$\lim_{x\to 2^{\infty}} \frac{5x^3}{x^4+1} = 0 \implies y = 0 \text{ is } H-A$$

$$x\to \infty \quad \xrightarrow{x^4+1} = 0 \quad \implies y = 0 \text{ is } H-A$$

 $\frac{1-x^2-2x^4}{3x^4-2} = \frac{-2}{3}$ plat $\frac{1-x^2-2x^4}{3x^4-2} = \frac{-2}{3}$ is H.A

 $\lim_{x \to -\infty} \frac{3x+5}{15x-4} = \frac{3+3}{15+3} = \frac{1}{5} \implies y = \frac{1}{5} \text{ is H.A}$

$$\lim_{x \to \infty} \frac{1+x^6}{x^4+1} = \frac{\omega}{\omega}$$

$$\lim_{x \to \infty} \frac{x^6}{x^4+1} = \lim_{x \to \infty} x^2 = \omega$$

$$\lim_{x \to \infty} \frac{x^6}{x^4+1} = \lim_{x \to \infty} x^2 = \omega$$

$$\lim_{x \to \infty} \frac{x^2+x}{3-x} = \frac{\omega}{x^3+1}$$

$$\lim_{x \to \infty} \frac{x^2+x}{3-x} = \lim_{x \to \infty} -x = -\omega$$

$$\lim_{x \to \infty} \frac{x^2}{3-x} = \lim_{x \to \infty} -x = -\omega$$

$$\lim_{x \to \infty} \frac{x^2}{3-x} = \lim_{x \to \infty} -x = +\omega$$

$$\lim_{x \to -\omega} \frac{x^3}{-x^2} = \lim_{x \to -\omega} -x = +\omega$$

$$\lim_{x \to -\omega} \frac{x^3}{-x^2} = \lim_{x \to -\omega} -x = +\omega$$

$$f(x) = \frac{2+x^3}{1-x^2}$$
 has no H.A

Example (7)

$$\left(\int Lim\left(\sqrt{x^2+1}-x\right)=\infty-\infty$$

$$\lim_{x\to\infty} \frac{(\sqrt{x^2+1}-x)}{1} \times \frac{(\sqrt{x^2+1}+x)}{(\sqrt{x^2+1}+x)}$$

$$(\sqrt{x^2+1}-x)(\sqrt{x^2+1}+x)$$

$$(\sqrt{x^2+1}+x)$$

$$\frac{(\sqrt{3x^2+1})^2-(x)^2}{(\sqrt{3x^2+1})^2-(x)^2}$$

$$\frac{2}{x\rightarrow\infty}\frac{3x^2+1-x^2}{\left(\sqrt{x^2+1}+x\right)}$$

$$\frac{1}{x\to\infty} = \frac{1}{x^2+1} = \frac{1}{x^2+1} = 0$$

Not
$$\lim_{x\to\infty} (\sqrt{x^2+1} + x) = \infty + \infty = 2 \infty = \infty$$
has no H.A

3 Lim
$$\sqrt{9x^6-x} = \frac{8}{-8}$$

$$\lim_{|x| \to -\infty} \frac{\sqrt{9x^6 - x}}{-x^3} = \lim_{|x| \to -\infty} \frac{\sqrt{\frac{9x^6}{(x^3)^2} - \frac{x}{(x^3)^2}}}{-1 + \frac{1}{x^3}}$$

$$\lim_{x \to -\infty} \sqrt{\frac{9x^6}{x^6} - \frac{x}{x^6}} = \lim_{x \to -\infty} \sqrt{\frac{9 - \frac{1}{x^5}}{-1 + \frac{1}{x^3}}}$$

$$= \lim_{x \to -\infty} \sqrt{q - \frac{1}{x^5}}$$

$$=\frac{3}{1}=-3$$

$$\Rightarrow$$
 $y=-3$ is H.A

Example(8)

Find Vertical Asymptote and Horizon Asymptote of Functions.

$$y = 2x^2 + x - 1$$

$$\lim_{x \to \pm \infty} \frac{2x^2 + x - 1}{x^2 + x - 2} = 2$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

(2)
$$g(x) = 2x^{2} + x - 1$$

 $g(1) = 2(1)^{2} + (1) - 1 = 2(1) + 1 - 1 = 2 + 1 - 1 = 2 + 0$
 $g(-2) = 2(-2)^{2} + (-2) - 1 = 2(4) - 2 - 1 = 8 - 2 - 1$
 $= 5 + 0$

(3) x = -2 and x = 1 are V. A

(2)
$$F(x) = \sqrt{x^6 - 1}$$

 $x^3 - 1$

H.A

$$\lim_{x\to\infty} \sqrt{x^6-1} = \frac{80}{8}$$

$$\frac{1}{x \rightarrow \infty} \frac{\sqrt{x^6 - 1}}{x^3 - \frac{1}{x^3}}$$

$$\lim_{x\to\infty} \sqrt{\frac{x^6}{x^6}} - \frac{1}{x^6}$$

$$\sqrt{1 - \lim_{x \to \infty} \frac{1}{x^3}}$$

$$1 - \lim_{x \to \infty} \frac{1}{x^3}$$

$$\sqrt{1-0} = \sqrt{1}=1$$

$$\lim_{x\to\infty} \frac{x^6-1}{x^3-1} = \frac{\infty}{-\infty}$$

$$\frac{1}{x^3} - \frac{1}{x^3}$$

$$\frac{1}{2} \times \frac{1}{26} = \frac{1}{26}$$

$$\frac{1}{26} = \frac{1}{26}$$

$$\frac{1}{26} = \frac{1}{26}$$

$$\int \frac{1}{1} = 0$$
 = $\int \frac{1}{1} = -1$

(1) plably lie of
$$x^3 - 1 = 0$$

$$5x^3 = 1$$

$$3\sqrt{5x^3} = 3\sqrt{1}$$

(2)
$$g(x) = \sqrt{x^6 - 1}$$
 **
$$g(1) = \sqrt{1 - 1} = \sqrt{0} = 6$$

A-H 21 1 -- 1.

A.H ar 1 = 12 :.

$$2)f(\infty) = \sqrt{4x^2+1}$$

H.A

$$\lim_{x\to\infty} \frac{4x^2+1}{x+1}$$

$$= \lim_{x \to \infty} \frac{\sqrt{4x^2 + 1}}{\frac{x}{x} + \frac{1}{x}}$$

$$= \frac{\sqrt{4 + \lim_{x \to \infty} \frac{1}{x^2}}}{1 + \lim_{x \to \infty} \frac{1}{x}}$$

$$=\frac{\sqrt{4+0}}{1+0}$$

$$=\frac{\sqrt{4}}{1}=2$$

$$\lim_{x \to -\infty} \frac{4x^2 + 1}{x + 1}$$

$$= \lim_{x \to -\infty} \frac{4x^2 + 1}{-x}$$

$$= \lim_{x \to -\infty} \frac{4x^2 + \frac{1}{x^2}}{-1 - \frac{1}{x}}$$

$$= \lim_{x \to -\infty} \frac{4 + \frac{1}{x^2}}{-1 - \frac{1}{x}}$$

$$= \lim_{x \to -\infty} \frac{4 + \lim_{x \to -\infty} \frac{1}{x^2}}{-1 - \lim_{x \to -\infty} \frac{1}{x^2}}$$

$$= \frac{4 + \lim_{x \to -\infty} \frac{1}{x^2}}{-1 - \lim_{x \to -\infty} \frac{1}{x^2}}$$

$$= \frac{4 + 0}{-1 - 0} = \frac{4 - 1}{-1} = -2$$

$$4 = -2 \text{ is H.A}$$

J.A

(1)
$$z + 1 = 0$$
 $\Rightarrow x = -1$ $z + 1 = 0$ $\Rightarrow x = -1$ $z + 1 = 0$

2)
$$9^{1/2} = \sqrt{4x^2 + 1}$$

 $9(-1) = \sqrt{4(-v^2 + 1)} = \sqrt{4(1) + 1} = \sqrt{4 + 1} = \sqrt{5} \neq 0$

3)
$$x = -1$$
 is V.A of $f(x)$

Land 1-

$$\lim_{x\to\infty} \frac{\sqrt{2x^2+1}}{3x-5} = \frac{\infty}{\infty}$$

$$\lim_{x\to\infty} \frac{\sqrt{2x^2+1}}{x}$$

$$\lim_{x\to\infty} \frac{3-\frac{x}{2x^2+1}}{3-\frac{5}{x}}$$

$$\lim_{x\to\infty} \frac{\sqrt{\frac{2x^2}{x^2} + \frac{1}{x^2}}}{3 - \frac{5}{x}}$$

$$\lim_{x\to\infty} \sqrt{2+\frac{1}{2}}$$

$$\sqrt{2+0} = \sqrt{2}$$

$$\lim_{x \to -\infty} \frac{2x^2 + 1}{3x - 5} = \frac{\infty}{-\infty}$$

$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{x^2 + 2}$$

$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{x^2}$$

$$-\lim_{2 \to -\infty} \frac{\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}}$$

$$-\sqrt{\frac{2+0}{3}} = -\sqrt{\frac{2}{3}}$$

$$3x - 5 = 0$$

$$3x = 5$$

$$x = \frac{5}{3}$$
Let $g(x) = \sqrt{2x^2 + 1}$

$$g(\frac{5}{3}) = \sqrt{2(\frac{25}{9}) + 1}$$

$$= \sqrt{\frac{59}{9}}$$

$$= \sqrt{\frac{59}{9}} + 0$$

$$= \sqrt{\frac{59}{3}} + 0$$

$$\therefore x = \frac{5}{3} \text{ is V. A cal } F(x) = \sqrt{2x^2 + 1}$$

$$3x - 5$$

Example (9)

$$=-\sqrt{1}$$

$$\lim_{t\to\infty} e^{-2t}\cos(t) = e^{-\infty}\cos(\infty) = 0.(0.N.E)$$

$$-1 \le \cos(t) \le 1$$

$$-e^{-2t} \le e^{-2t}\cos(t) \le e^{-2t}$$

$$\lim_{t\to\infty} e^{-2t} = -e^{-\infty} = 0$$

$$\lim_{t\to\infty} e^{-2t} = \lim_{t\to\infty} e^{-2t} = 0$$

$$\lim_{t\to\infty} e^{-2t}\cos(t) \le e^{-2t}$$

$$\lim_{t\to\infty} e^{-2t} = -e^{-\infty} = 0$$

$$\lim_{t\to\infty} e^{-2t}\cos(t) \le e^{-2t}$$

$$\lim_{t\to\infty} e^{-2t} = 0$$

$$\lim_{t\to\infty} e^{-2t}\cos(t) \le e^{-2t}$$

Example (10) Iim ($4x^2+3x+2x$) = $\infty-\infty$ x-3-00

$$(\sqrt{4x^2+3x} + 2x)$$
. $(\sqrt{4x^2+3x} - 2x)$
 $(\sqrt{4x^2+3x} - 2x)$

$$(1 - (\sqrt{4x^2+3x} + 2x)(\sqrt{4x^2+3x} - 2x)$$

 $(1 - (\sqrt{4x^2+3x} - 2x)$

$$\lim_{x\to -\infty} \frac{4x^2+3x-4x^2}{\sqrt{4x^2+3x}-2x} = \lim_{x\to -\infty} \frac{3x}{4x^2+3x-2x}$$

$$\lim_{x \to -\infty} \frac{3x}{-x} = \lim_{x \to -\infty} \frac{-3}{\sqrt{4x^2 + 3x} + 2}$$

$$\lim_{x \to -\omega} \frac{-3}{\sqrt{4+\frac{3}{2}}+2} = \frac{-3}{\sqrt{4+6}+2} = \frac{-3}{2+2} = \frac{-3}{4}$$

Lim [Ln(1+22)-ln(1+x)]=00-00

$$\lim_{x\to\infty} \left[\ln \left[\frac{1+x^2}{1+x} \right] \right] = \ln \left(\lim_{x\to\infty} \frac{1+x^2}{1+x} \right)$$

$$= \ln \left(\infty \right)$$

Lim [h(2+x)-hn(1+x)]=10-10

$$\lim_{x\to\infty} \ln\left(\frac{2+x}{1+x}\right) = \ln\left(\lim_{x\to\infty}\frac{2+x}{1+x}\right)$$

$$= \ln\left(\frac{1}{1+x}\right)$$

$$= \ln\left(\frac{1}{1+x}\right)$$

$$\lim_{x\to\infty} \ln\left(\frac{x+3}{x^2-1}\right) = \ln\left(\lim_{x\to\infty}\frac{x+3}{x^2-1}\right) = \ln\left(0\right)$$

$$= -\infty$$

$$\begin{array}{ll}
\text{lim} & \frac{\text{Sir}^2 x}{1 + x^2} = \frac{D.N.E}{\infty} \\
-1 & \leq \sin^2 x \leq 1 \\
0 & \leq \sin^2 x \leq \frac{1}{1 + x^2} \leq \frac{1}{x^2 + 1} \\
0 & \leq \frac{\sin^2 x}{1 + x^2} \leq \frac{1}{x^2 + 1} \\
\text{lim} & 0 & = 0 \\
1 & \text{lim} & \frac{1}{1 + x^2} = 0
\end{array}$$

$$\lim_{x\to\infty} \frac{1}{1+x^2} = 0$$

$$\lim_{x\to\infty} \frac{\sin^2 x}{1+x^2} = 0$$

$$\lim_{x\to\infty} \frac{\sin^2 x}{1+x^2} = 0$$

$$\lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}} = \frac{e^{\infty} - e^{\infty}}{e^{\infty} + e^{-\infty}} = \frac{\infty}{\omega + 0} = \frac{\infty}{\omega}$$

$$\lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{e^{3x}} = \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}}$$

$$= \lim_{x$$

$$\frac{1-e^{x}}{x-\infty}$$

$$\lim_{x \to \infty} \frac{\frac{1}{e^{x}} - \frac{e^{x}}{e^{x}}}{\frac{1}{e^{x}} + \frac{2e^{x}}{e^{x}}} = \lim_{x \to \infty} \frac{e^{-x} - 1}{e^{-x} + 2}$$

$$= \frac{e^{-\infty} - 1}{e^{-\infty} + 2} = \frac{o - 1}{o + 2}$$

$$= -\frac{1}{1 + 2e^{-\infty}} = \frac{1 - o}{1 + o} = \frac{1 - o}{1 + o} = \frac{1 - o}{1 + o}$$

lim
$$\frac{1-e^2}{1+2e^{-20}} = \frac{1-e^{-20}}{1+0} = \frac{1-e^{-20}}{1+0}$$

The H. A of
$$f(x) = \frac{1 - e^{2x}}{1 + 2e^{2x}}$$
; $y = -\frac{1}{2}$

Find the H.A and V.A of $y = \frac{2e^x}{e^x-5}$

V.A

$$0 e^{x} - 5 = 0 \implies e^{x} = 5 \implies \ln e^{x} = \ln 5$$

$$\Rightarrow x = \ln 5$$

$$0 \text{ (at } 9(x) = 2e^{x}$$

$$9(\ln(5)) = 2e^{\ln 5} = 2(5) = 10 \Rightarrow 0$$

$$1 \times 2e^{x} = \ln(5) \text{ is } V.A \text{ of } y = \frac{2e^{x}}{e^{x} - 5}$$

$$\lim_{x \to \infty} \frac{2e^{x}}{e^{x} - 5} = \frac{80}{80}$$

$$\lim_{x \to \infty} \left[\frac{2e^{x}}{e^{x}} - \frac{1}{6e^{x}} \right] = \lim_{x \to \infty} \frac{1 - \frac{5}{6e^{x}}}{1 - \frac{5}{6e^{x}}} = \frac{2 - \frac{1}{1 - \frac{5}{6e^{x}}}}{1 - \frac{5}{1 - \frac{5}{6e^{x}}}} = \frac{2 - \frac{1}{1 - \frac{5}{1 - \frac{5}{6e^{x}}}}{1 - \frac{5}{1 - \frac{5}{1 - \frac{5}{1 - \frac{5}{1 - \frac{5}{1 - \frac$$

2.7: The Derivatives of the Functions at number a

- 1) The Derivative of f(x) at number a is $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a}$ or $f(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$
- 2) The Derivative of f(x) at number a is a Slope of the tangethe line at number a i.e m=f'(a)
 - 3) The equation of the tangent line to the curve y=f(x) at the Point (a, f(a)) is y-f(a)=m(x-a) y-f(a)=f'(a)(x-a)

Example:

a)
$$f(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^3 - 2^3}{x - 2} = \lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$

b)
$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{(2+h)^3 - 2^3}{h} = \lim_{h \to 0} \frac{(2+h)^3 - 8}{h}$$

c)
$$f(x) = x^3$$

 $f'(x) = 3x^{3-1} = 3x^2$
 $f'(2) = 3(2)^2 = 3(4) = 12$

Example:

If
$$f(x) = \sqrt{x}$$
 then $f'(9) = \dots$

a)
$$f'(q) = \lim_{x \to q} \frac{f(x) - f(q)}{x - q} = \lim_{x \to q} \frac{\sqrt{x} - \sqrt{q}}{x - q} = \lim_{x \to q} \frac{\sqrt{x} - 3}{x - q}$$

b)
$$f'(9) = \lim_{h \to 0} \frac{f(9+h) - f(9)}{h} = \lim_{h \to 0} \frac{\sqrt{9+h} - \sqrt{9}}{h} = \lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h}$$

$$f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2x^{\frac{1}{2}}} = \frac{1}{2\sqrt{x}}$$

$$f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{2(3)} = \frac{1}{6}$$

Example:

If
$$f(x) = \frac{3}{x}$$
 then find the Slope of the tangent line at 2

a)
$$m = f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{3}{x - 2} = \lim_{x \to 2} \frac{6 - 3x}{2x(x - 2)}$$

b)
$$m = f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{\frac{3}{2+h} - \frac{3}{2}}{h} = \lim_{h \to 0} \frac{6 - 3(2+h)}{2h(2+h)}$$

c)
$$f(x) = \frac{3}{2}$$

$$f'(x) = 3(-1)x^{-1-1} = -3x^{-2} = \frac{-3}{x^2}$$

:
$$m = f'(2) = \frac{-3}{(2)^2} = \frac{-3}{4}$$

Example Find the equation of tangent line to the curve $y = x^2 - 8x + 9$ at (4,-7)0y = 2x - 8 $\bigcirc m = y'(a)$ = 9'(4)-2(4)-8=8-8 3) if m=0 then the tanget line is HoriZontal (4) The equation of tangent line is y = f(a) $\left[y = -7 \right]$

Example
Find the equation of tangent line
to the curve $y = x^2$ at (1,1)

(1) y' = 2x(2) M = y'(a) = y'(1)= 2(1) 3) The equation of tangent line is $y - f(\alpha) = m(x - \alpha)$ y - 1 = 2(x - 1)y - 1 = 2x - 2y - 2x - 1 + 2 = 0 $[y_{-2x+1}=0]$ or 19-2x =-1 or [y=-1+2x]

Example

Find the equation of normal line of $f(x) = \sqrt{x}$ at x = 4

(1)
$$f(a) = f(4) = \sqrt{4} = 2$$

(3)
$$f'(x) = \frac{1}{2}x^{\frac{1}{2}-1}$$

$$= \frac{1}{2}x^{-\frac{1}{2}}$$

$$= \frac{1}{2}x^{\frac{1}{2}-1}$$

$$= \frac{1}{2}x^{\frac{1}{2}-1}$$

$$= \frac{1}{2}x^{\frac{1}{2}-1}$$

(4)
$$M = f^{-1}(a)$$

$$= f^{-1}(4)$$

$$= \frac{1}{2\sqrt{4}}$$

$$= \frac{1}{2(2)}$$

$$= \frac{1}{4}$$

(5)
$$M_{L} = \frac{1}{m}$$

$$= \frac{(-1)}{(+1)}$$

$$= -1 \div \frac{1}{4}$$

$$= (-1) \times (H)$$

$$- - H$$

6) The equation of the normal line is $y - f(a) = M_L(x-a)$ y-2=-4(x-4) $y_{-2} = -4x + 16$ y + 4x - 2 - 16 = 0[y + 4x - 18 = 0]or [4+4x = 18) or M = 18 - 42

Example

Find the Points on the Curve $y = x^4 - 6x^2 + 2$ where $y = x^4 - 6x^2 + 2$ where

the Eangent line is Horizontal

If The tangent line is Horizontal then m=0 y' = 0 $4x^{3}-12x=0$ 4x(x2-3)=0 4x=0 x2-3-0 $x^{2} = 3$ $\sqrt{3c^2} = \sqrt{3}$ /oc/ = \3 x = 0) () = ± \(\frac{3}{3}\)

... The Curve $y = x^4 - 6x^2 + 2$ have Hori Zontal tangent line When x = 0 and $x = \pm \sqrt{3}$

The Curve
$$y = x^4 - 6x^2 + 2$$

have Horizontal tangent at

Points: $(0, y(0)) = (0, 0^4 - 6(0)^2 + 2) = (0, 2)$
 $(\sqrt{3}, y(\sqrt{3})) = (\sqrt{3}, (\sqrt{3})^4 - 6(\sqrt{3})^2 + 2)$
 $= (\sqrt{3}, (3^{1/2})^4 - 6(3^{1/2})^2 + 2)$
 $= (\sqrt{3}, 3^2 - 6(3) + 2)$
 $= (\sqrt{3}, 9 - 18 + 2)$
 $= (\sqrt{3}, -7)$
 $(-\sqrt{3}, y(-\sqrt{3})) = (-\sqrt{3}, (\sqrt{3})^4 - 6(-\sqrt{3})^2 + 2)$
 $= (-\sqrt{3}, 9 - 6(3) + 2)$
 $= (-\sqrt{3}, 9 - 18 + 2)$
 $= (-\sqrt{3}, -7)$

2.8 - The Derivative as the Function

$$f'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$
 \Longrightarrow التفاض بالتعربف

Example:

a)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^3 - (x+h) - (x^3 - x)}{h}$$

b)
$$F'(x) = 3x^{3-1} - 1$$

Note

(1) Other notation of F(x)

$$f'(x)$$
 or y' or $\frac{dy}{dx}$ or $\frac{df}{dx}$ or $\frac{d}{dx}$ [fox]

- 2) Afunction f is differentiable at number a if f'(a) exists
- 3) A function f is differentiable on (a,b)if it is differentiable at every number in the (a,b)(a,b)(a,b)(a,b)

Theorem

If Fix) is differentiable at a then fix) is continuous at a "the converse not true"

Note

fix) is discontinuous at a the fix) is not differentiable at a

Example

where is the following functions differentiable.

(1) F(x) = 1 is cont on IR - 8-13

.. fix) is discont at x=-1

=> f(x) is odifferentiable at x=-1

=> fix) is differentiable on IR-{-1}

(2) f(x)= \(\sigma = 4\) is cont on [4,00)

=> Fix, is discont at x=4

=> F(x) is not differentiable at x=4

=> fcx) is differentiable on (40)

* f(x)=3/5x-4 is cont on IR

ولحينه الدالة غبر قابلة للتنفاخل عند أصفارالمفداح الذي بداحل الجذر أ مفار المقدار: المعدد و- 4- عد

fix) is not differentiable at 4 Fix) is differentiable on IR - {43

Scanned with CamScanne

(3)
$$f(x) = |x+5|$$
 is cont on IR دالة القيمة المطلقة غيرقابلة المتفاخل عند نقاط الإنكسار وهي أصفار المقدار الذي دا على الفيمة المطلقة ألم عند المقدار الذي دا على المقدار ال

f(x) is not differentiable at
$$x=-5$$

F(x) is differentiable on $1R-1-5$

(4)
$$f(x) = x^2 + 2x + 3$$
 is cont on IR and differentiable on IR

If
$$f(x) = 2 - 3x + 5x^2 - 2x^3 + 10x^4$$

then find of the following:

a)
$$f'(x)$$
, $f''(x)$

$$f'(x) = -3 + 10x - 6x^2 + 40x^3$$

 $F''(x) = 10 - 12x + 120x^2$

Example

If
$$f(x) = |12 - 4x|$$
 thun

$$f(x) = |12 - 4x| = \begin{cases} 12 - 4x & \text{if } |2 - 4x| \\ -(12 - 4x) & \text{if } |2 - 4x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |2 - 4x| \\ -(12 - 4x) & \text{if } |2 - 4x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |2 - 4x| \\ 4x - 12 & \text{if } |4x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases} 12 - 4x & \text{if } |x| \end{cases}$$

$$= \begin{cases}$$

$$F'(3) = D.N.E$$
 $[F'(3)]^{+} = 4$
 $[F'(3)]^{-} = -4$
 $F'(3)^{+} + [F'(3)]^{-}$
 $F'(3) = 4$
 $F'(4) = 4$

3.1. Derivatives of Polynomials and Exponential Functions

1) Derivative of a Constant function

Example: -

$$\frac{d}{dx} \left[\pi^2 \right] = 0$$

$$\frac{d}{dx} \left[\sqrt{36} \right] = 0$$

$$\frac{d}{dx}[\ln(9)] = 0$$

$$\frac{d}{dx} \left[Sin\left(\frac{\pi}{2}\right) \right] = 0$$

$$\frac{d}{dx} \left[Cos^{2}(5) \right] = 0$$

if
$$f(x) = \sqrt{1+C^2}$$
 then $f'(x) = 0 - -$

Example:

$$\frac{d}{dx} \left[10x \right] = 10$$

$$dx$$
 L

if $F(x) = -\frac{3}{4}x$ then $f'(x) = -\frac{3}{4}$...

If $F(x) = -\frac{3}{4}x$ then $f'(x) = -\frac{3}{4}$...

3) if
$$f(x) = x^n$$
 then $f(x) = n x^{n-1}$

Example:

$$\frac{d}{dx} [x^2] = 2x \quad \frac{d}{dx} [x^3] = 3x^2 \quad \frac{d}{dx} [x^4] = 4x^3$$

$$\frac{d}{dx} [x^2] = \frac{d}{dx} [x^5] \quad \frac{d}{dx} [x^4] = 4x^3$$

$$= -5x^5 \qquad = \frac{d}{dx} [x^2]$$

$$= -5x^6 \qquad = \frac{2}{3} x^{3}$$

$$= -5x^6 \qquad = \frac{2}{3} x^{3}$$

$$= \frac{2}{3} x^{$$

$$\frac{1}{dx} \left[cf(x) \right] = c \cdot d \left[f(x) \right]$$

$$\frac{1}{dx} \left[f(x) \pm g(x) \right] = d \left[f(x) \right] \pm d \left[g(x) \right]$$

$$\frac{1}{dx} \left[f(x) \pm g(x) \right] = d \left[f(x) \right] \pm d \left[g(x) \right]$$

txample.

Example:
a)
$$\frac{d}{dx} \left[x^8 + 12x^5 - 4x^4 + 10x^3 - 6x + \frac{2}{5} \right]$$

 $8x^7 + 12(5)x^4 - 4(4)x^3 + 10(3)x^2 - 6 + 6$
 $8x^7 + 60x^4 - 16x^3 + 30x^2 - 6$
 $8x^7 + 60x^4 - 16x^3 + 30x^2 - 6$

$$8x^{7} + 60x^{4} - 16x^{2} + 300$$

$$8x^{7} + 60x^{4} - 16x^{2} + 300$$

$$11. \quad F(x) = (3x - 2)^{2} \quad \text{Then } F(x) = ---$$

$$F(x) = 9x^{2} - 2(3x)(2) + 4$$

$$= 9x^{2} - 12x + 4$$

$$= 9x^{2} - 12x + 4$$

$$= 18x - 12$$

(i)
$$\frac{d}{dx} \left[x^2 (1-2x) \right] = \frac{d}{dx} \left[x^2 - 2x^3 \right]$$

= $2x - 6x^2$

c)
$$\frac{d}{dx} \left[x^2 (1-2x) \right] = \frac{d}{dx} \left[x^2 \left(1-2x \right) \right] = \frac{d}{dx} \left[x^2 \left(1-2x \right) \right]$$

$$= 2x - 6x^2$$

$$\frac{1}{1+1} = \frac{1}{1+1} \left[\frac{1}{1+1} (t-1) \right] = \frac{1}{1+1} \left[\frac{1}{1+1} (t-1) \right] = \frac{1}{1+1} \left[\frac{3}{1+1} (t-1) \right] = \frac{3}{1+1} \left[\frac{3}{1+1} (t$$

e)
$$\frac{d}{dx} \left[(2x+3)(4x-5) \right]$$

$$\frac{d}{dx} \left[2x(4x-5) + 3(4x-5) \right]$$

$$\frac{d}{dx} \left[8x^2 - 10x + 12x - 15 \right]$$

$$\frac{d}{dx} \left[8x^2 + 2x - 15 \right] = 16x + 2$$

$$\frac{d}{dx} \left[(x-2)^3 \right] = \frac{d}{dx} \left[x^3 - 3(2)x^2 + 3(4)x - 2^3 \right]$$

$$= \frac{d}{dx} \left[x^3 - 6x^2 + 12x - 8 \right]$$

$$= 3x^2 - 16x + 12$$

$$f) \frac{d}{dx} \left[(x-2)^3 \right] = \frac{d}{dx} \left[x^3 - 3(2)x^2 + 3(4)x - 2 \right]$$

$$= \frac{d}{dx} \left[x^3 - 6x^2 + 12x - 8 \right]$$

$$= 3x^2 - 16x + 12$$

$$= 3x^2 - 12x + 12$$

9)
$$\int_{x} \left[x (2x+3)^{2} \right] = \int_{dx} \left[x (4x^{2}+12x+9) \right]$$

 $= \int_{dx} \left[4x^{3}+12x^{2}+9x \right]$
 $= 12x^{2}+24x+9$

h)
$$f(t) = (3x^2+2)(x^3-5)$$

 $f'(t) = H.W$

If
$$G(x) = 5x^{2} + 4x + 3$$
 then $G'(x) = \frac{5x^{2}}{x^{2}} + \frac{4x}{x^{2}} + \frac{3}{x^{2}}$

$$= 5 + \frac{4}{x} + \frac{3}{x^{2}}$$

$$= 5 + 4(-1)x^{-1-1} + 3(-2)x^{-2-1}$$

$$= -4x^{-2} - 6x^{-3}$$

$$= -\frac{4}{x^{2}} - \frac{6}{x^{3}}$$

$$= -\frac{4x}{x^{3}} - \frac{6}{x^{3}}$$

$$= -\frac{4x - 6}{x^{3}}$$

$$= -\frac{4x - 6}{x^{3}}$$
If $y = \sqrt{x} + x$ then $y' = -x$

$$y' = \frac{x^{3/2} + x^{3/2}}{x^{4}} = \frac{x^{3/2}}{x^{4}} + \frac{x^{1}}{x^{4}} = x^{3/2} + x^{1-2}$$

$$= x^{-3/2} + x^{-1}$$

$$= x^{-3/2} + x^{-1}$$

$$= x^{-3/2} + x^{-1}$$

$$= x^{-3/2} - x^{-1-1} = -\frac{3}{2}x^{-5/2} - x^{-2} = -\frac{3}{2x^{5/2}} - \frac{1}{x^{2}} = -\frac{3}{2x^{5/2}} - \frac{1}{x^{2}}$$

$$\frac{d}{dx} \left[a^{x} \right] = a^{x} \cdot Lna$$

$$\frac{d}{dx} \left[e^{x} \right] = e^{x}$$

$$\frac{d}{dx} \left[\pi^{x} \right] = \pi^{x}, L_{n}\pi = L_{n}\pi^{x} . (\pi)^{x}$$

$$\frac{d}{dx} \left[\sqrt{2^{x}} \right] = \frac{d}{dx} \left[\left(\sqrt{2} \right)^{x} \right]$$

$$= \left(\sqrt{2} \right)^{x} \cdot \left[\ln \sqrt{2} \right]$$

$$= \left(\sqrt{2} \right)^{x} \cdot \left[\ln 2^{\frac{1}{2}} \right]$$

$$\frac{d}{dx} \left[3^{x} + x^{3} \right] = \frac{d}{dx} \left[3^{x} \right] + \frac{d}{dx} \left[x^{3} \right]$$

$$= 3^{x}, \ln(3) + 3x^{2}$$

$$\frac{d}{dx} \left[e^{x} - x^{e} \right] = \frac{d}{dx} \left[e^{x} \right] - \frac{d}{dx} \left[x^{e} \right]$$

$$= e^{x} - e^{x}$$

$$= e \left(e^{x-1} - x^{e-1} \right)$$

if
$$y = e^{x+1} + x^2$$
 then find $\frac{dy}{dx^3}$
 $y' = e^{x+1} + 2x$
 $y'' = e^{x+1} + 2$
 $y''' = e^{x+1}$
 $y''' = e^{x+1}$
 $y^{(4)} = e^{x+1}$
 $y^{(5)} = e^{x+1}$
 $y^{(100)} = e^{x+1}$

2 y (100)

SECOND EXAM-MATH 110 FROM SECTION 2.2 TO SECTION 3.1

1. If f(x) is a function whose graph is shown

then
$$\lim_{x\to 0} f(x) = \dots$$

- a) 0 b) -1 c) -2 d) does not exist
- 2. If f(x) is a function whose graph is shown

then
$$\lim_{x\to 2^{-}} f(x) =$$

- a) 1 b) 3 c) 2 d) does not exist

3. If f(x) is a function whose graph is shown

then $\lim_{x\to -3^+} f(x) = -\infty$

a) True

- b) False
- 4. If f(x) is a function whose graph is shown is discontinuous

- a) x = -3 b) x = -1 c) x = -2 d) x = 0

- 5. The vertical asymptote(s) of the function whose graph is shown below is (are).....

- a) y = 2
- b) x = 2
- c) y = -1 and y = 1
- d) x = -1 and x = 1

6. The horizontal asymptote(s) of the function whose graph is shown below is (are).....

- a) y = 1
- b) x = 1
- c) y = -2 and y = 2
- d) x = -2 and x = 2
- 7. If f(x) is a function whose graph is shown

then $\lim_{x\to\infty} f(x) = 4$

- **a**)
- **True**

- b) False
- $8. \lim_{x \to 1} \frac{\sqrt{x} 4}{x^2 4x} = \dots$

- a) $\frac{1}{5}$ b) $\frac{1}{5}$ c) -1 d) $-\frac{1}{5}$
- $9.\lim_{h\to 0}\frac{(h+5)^2-25}{h}=.....$
 - a) 0
- b) 1 c) <mark>10</mark> d) 5

10.
$$\lim_{x \to -3} \frac{x^2 + 3x}{x^2 - x - 12} = \dots$$

- a) 3 b) -3 c) $\frac{3}{7}$ d) $-\frac{3}{7}$

11.
$$\lim_{x \to 5} \frac{\frac{1}{5} - \frac{1}{x}}{5 - x} = \dots$$

- a) $-\frac{1}{25}$ b) $\frac{1}{25}$ c) $\frac{1}{5}$ d) $-\frac{1}{5}$

12.
$$\lim_{u\to 2} \frac{u-2}{\sqrt{2u^2+1}-3} = \dots$$

- b) 1 b) 0 c) $\frac{3}{4}$ d) $\frac{3}{2}$

13.
$$\lim_{t\to 1^{-}} \ln(1-t) = \dots$$

- a) 1 b) 0 c) $-\infty$ d) $\ln(2)$

14.
$$\lim_{x\to 4} \frac{e^c}{\sqrt{c}} = \frac{e^4}{2}$$

a) True

b) False

15.
$$\lim_{x\to 7^-} \frac{x^2-49}{|x-7|} = \dots$$

- a) 14 b) -14 c) does not exist d) 0

16.
$$\lim_{x\to 8} \frac{6-x}{(x-8)^2} = -\infty$$

a) True

17.If
$$\lim_{x\to 4} \frac{10f(x)-6}{3x+4f(x)} = 2$$
 then $\lim_{x\to 4} f(x) = \dots$

- a) 15 b) 14 c) 30 d) 28

18. If
$$f(x) = \begin{cases} \frac{\tan 5x}{\sin 3x} & \text{if } x \neq 0 \\ 2x + 10 & \text{if } x = 0 \end{cases}$$
 then $\lim_{x \to 0} f(x) = \dots$

- a) $\frac{5}{3}$ b) 10 c) $\frac{3}{5}$ d) 1

19. If
$$2\sin x \le f(x) \le \sec x$$
 then $\lim_{x \to \frac{\pi}{4}} f(x) =$

- a) $\frac{1}{\sqrt{2}}$ b) does not exist c) 2 d) $\sqrt{2}$

20. If
$$\lim_{x\to 2} f(x) = 4$$
 then $\lim_{x\to 2} \left(2f(x) - \frac{1}{x} \right) = \frac{15}{2}$
a) True
b) False

- $21.\lim_{x\to\sqrt{\pi}}\left(\frac{\cos(x^2)-1}{x^2}\right)=\dots$

- a) 0 b) 1 c) $\frac{-2}{\pi}$ d) $\frac{2}{\pi}$

22.
$$\lim_{x\to\infty} \frac{6-x-14x^2}{2x^2-x-12} = \dots$$

- b) 1 b) 7 c) -7 d) 3

23.
$$\lim_{x\to\infty} \frac{\sqrt{3x^2-x}}{1-4x} = \dots$$

a)
$$\frac{\sqrt{3}}{4}$$

a)
$$\frac{\sqrt{3}}{4}$$
 b) 0 c) $-\frac{\sqrt{3}}{4}$ d) ∞

24.
$$\lim_{x\to\infty} \sqrt{4+5x^{-2}} = \dots$$

a)
$$\infty$$
 b) 2 c) $-\infty$ d) 3

25.
$$\lim_{x \to -\infty} (x^2 - 5x^7) = \dots$$

$$\mathbf{c}$$
) $-\infty$

a)
$$\infty$$
 b) -4 c) $-\infty$ d) -5

26. The vertical asymptote(s) of the function

$$f(x) = \frac{4-x^2}{3x^2-5x-2}$$
 is (are)

a)
$$x = 2$$
 and $x = -\frac{1}{3}$ b) $x = -\frac{1}{3}$ c) $x = 2$

c)
$$x = 2$$

$$\mathbf{d)} \quad \mathbf{y} = \mathbf{2}$$

d)
$$y = 2$$
 e) $y = -\frac{1}{3}$

27. The horizontal asymptote(s) of the function

$$f(x) = \frac{2e^x}{3e^x - 5}$$
 is (are)

a)
$$x = \frac{2}{3}$$
 and $x = -\frac{2}{3}$ b) $x = \frac{2}{3}$ and $x = 0$

b)
$$x = \frac{2}{3}$$
 and $x = 0$

c)
$$y = \frac{2}{3}$$
 and $y = 0$

c)
$$y = \frac{2}{3}$$
 and $y = 0$ d) $y = \frac{2}{3}$ and $y = -\frac{2}{3}$

28. $f(x) = \tan(x)$ is discontinuous at.....

a)
$$x = \frac{7\pi}{4}$$
 b) $x = \frac{7\pi}{3}$ c) $x = \frac{7\pi}{2}$ d) $x = 0$

b)
$$x = \frac{7\pi}{3}$$

c)
$$x = \frac{7\pi}{2}$$

$$\mathbf{d}) \quad x = \mathbf{0}$$

29. If
$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x \ge 3 \\ x^3 - cx & \text{if } x < 3 \end{cases}$$
 is continuous on \mathbb{R}

then $c = \dots$

- a) $\frac{7}{4}$ b) $\frac{1}{3}$ c) $\frac{7}{2}$ d) 1

30. $f(x) = \ln(x) - \sqrt{3-x}$ is continuous on.....

- a) $(0, \infty)$ b) (0,3] c) [0,3] d) $(-\infty,3]$

31. $f(x) = \frac{x-2}{x^3+9x}$ is discontinuous at.....

- a) x = 2 b) x = 0 c) x = 0 and $x = \pm 3$

32. $f(x) = \begin{cases} x^2 - 3x - 8 & \text{if } x \ge 3 \\ \frac{\sin(x - 3)}{(x - 3)} & \text{if } x < 3 \end{cases}$ is continuous on \mathbb{R}

a) True

b) <mark>False</mark>

33. If f(x) = |3x - 6| then f(x) is not differentiable at

- a) x = 2 b) x = -2 c) x = 3 d) x = 6

34. If $y = \sqrt{\pi}$ then $y' = \frac{1}{2\sqrt{\pi}}$

a) True

35. The equation of the tangent line of the curve

$$f(x) = 4x - 3x^2$$
 at $x = 2$ is

a)
$$y = 12 - 8x$$

a)
$$y = 12 - 8x$$
 b) $y = \frac{1}{8}x - \frac{17}{4}$

c)
$$x = 12 - 8y$$

c)
$$x = 12 - 8y$$
 d) $x = \frac{1}{8}x - \frac{17}{4}$

36. If $g(x) = e^x + x^e$ then $g'(1) = \dots$ a) 2 b) e^2 c) $\frac{2e}{}$ d) 1

37. If $g(x) = \frac{15x^6 - 12x^4 + 6x^2}{3x^2}$ then $g''(x) = \dots$

- a) $5x^4 4x^2 + 2$ b) 120x
- c) $60x^2 8$ d) $20x^3 8x$

38. If $h(x) = \sqrt{1 + 2x}$ then $h'(2) = \dots$

a)
$$\lim_{x\to 2} \frac{\sqrt{1+2x}-\sqrt{5}}{x-2}$$
 b) $\lim_{x\to 2} \frac{\sqrt{5}-\sqrt{1+2x}}{x-2}$

b)
$$\lim_{x\to 2} \frac{\sqrt{5}-\sqrt{1+2x}}{x-2}$$

c)
$$\lim_{h\to 0} \frac{\sqrt{1+2h}-\sqrt{5}}{h}$$
 d) $\lim_{h\to 2} \frac{\sqrt{4+2h}-\sqrt{5}}{h}$

$$d) \lim_{h\to 2} \frac{\sqrt{4+2h}-\sqrt{5}}{h}$$

39. If $f(x) = \frac{1}{3}x^3 - \frac{7}{2}x^2 + 10x$ then f(x) has horizontal tangents when

- a) x = 5, -2 b) x = -5, 2
- c) x = 5, 2 d) x = -5, -2

40. If f is differentiable at a, then f is continuous at a

a) True

SECOND EXAM-MATH 110 FROM SECTION 2.2 TO SECTION 3.1

1. If f(x) is a function whose graph is shown

then
$$\lim_{x\to 0} f(x) = \dots$$

- a) 0

- b) -1 c) -2 d) does not exist

2. If f(x) is a function whose graph is shown

then
$$\lim_{x\to 2^{-}} f(x) =$$

- a) 1 b) 3 c) 2 d) does not exist

3. If f(x) is a function whose graph is shown

then
$$\lim_{x\to -3^+} f(x) = -\infty$$

a) True

- b) False
- 4. If f(x) is a function whose graph is shown is discontinuous

- a) x = -3 b) x = -1 c) x = -2 d) x = 0

- 5. The vertical asymptote(s) of the function whose graph is shown below is (are).....

- a) y = 2
- b) x = 2
- c) y = -1 and y = 1
- d) x = -1 and x = 1

6. The horizontal asymptote(s) of the function whose graph is shown below is (are).....

- a) y = 1
- b) x = 1
- c) y = -2 and y = 2
- d) x = -2 and x = 2
- 7. If f(x) is a function whose graph is shown

then $\lim_{x\to\infty} f(x) = 4$

a) True

$$8. \lim_{x \to 1} \frac{\sqrt{x} - 4}{x^2 - 4x} = \dots$$

- a) 1 b) $\frac{1}{5}$ c) -1 d) $-\frac{1}{5}$

$$9.\lim_{h\to 0}\frac{(h+5)^2-25}{h}=.....$$

- a) 0
- b) 1 c) 10
- d) 5

10.
$$\lim_{x \to -3} \frac{x^2 + 3x}{x^2 - x - 12} = \dots$$

- a) 3 b) -3 c) $\frac{3}{7}$ d) $-\frac{3}{7}$

11.
$$\lim_{x \to 5} \frac{\frac{1}{5} - \frac{1}{x}}{5 - x} = \dots$$

- a) $-\frac{1}{25}$ b) $\frac{1}{25}$ c) $\frac{1}{5}$ d) $-\frac{1}{5}$

12.
$$\lim_{u\to 2} \frac{u-2}{\sqrt{2u^2+1}-3} = \dots$$

- b) 1 b) 0 c) $\frac{3}{4}$ d) $\frac{3}{2}$

13.
$$\lim_{t\to 1^{-}} \ln(1-t) = \dots$$

- a) 1 b) 0 c) $-\infty$ d) $\ln(2)$

14.
$$\lim_{x\to 4} \frac{e^c}{\sqrt{c}} = \frac{e^4}{2}$$

a) True

b) False

15.
$$\lim_{x \to 7^{-}} \frac{x^2 - 49}{|x - 7|} = \dots$$

- a) 14 b) -14 c) does not exist d) 0

16.
$$\lim_{x\to 8} \frac{6-x}{(x-8)^2} = -\infty$$

a) True

17.If
$$\lim_{x\to 4} \frac{10f(x)-6}{3x+4f(x)} = 2$$
 then $\lim_{x\to 4} f(x) = \dots$

- a) 15 b) 14 c) 30 d) 28

18. If
$$f(x) = \begin{cases} \frac{\tan 5x}{\sin 3x} & \text{if } x \neq 0 \\ 2x + 10 & \text{if } x = 0 \end{cases}$$
 then $\lim_{x \to 0} f(x) = \dots$

- a) $\frac{5}{2}$ b) 10 c) $\frac{3}{5}$ d) 1

19. If
$$2\sin x \le f(x) \le \sec x$$
 then $\lim_{x \to \frac{\pi}{4}} f(x) =$

- a) $\frac{1}{\sqrt{2}}$ b) does not exist c) 2 d) $\sqrt{2}$

20. If
$$\lim_{x\to 2} f(x) = 4$$
 then $\lim_{x\to 2} \left(2f(x) - \frac{1}{x} \right) = \frac{15}{2}$
a) True b) False

- $21.\lim_{x\to\sqrt{\pi}}\left(\frac{\cos(x^2)-1}{x^2}\right)=\dots$

- a) 0 b) 1 c) $\frac{-2}{\pi}$ d) $\frac{2}{\pi}$

22.
$$\lim_{x\to\infty} \frac{6-x-14x^2}{2x^2-x-12} = \dots$$

- b) 1 b) 7 c) -7 d) 3

23.
$$\lim_{x\to\infty} \frac{\sqrt{3x^2-x}}{1-4x} = \dots$$

a)
$$\frac{\sqrt{3}}{4}$$

a)
$$\frac{\sqrt{3}}{4}$$
 b) 0 c) $-\frac{\sqrt{3}}{4}$ d) ∞

24.
$$\lim_{x\to\infty} \sqrt{4+5x^{-2}} = \dots$$

$$a) \propto$$

a)
$$\infty$$
 b) 2 c) $-\infty$ d) 3

25.
$$\lim_{x \to -\infty} (x^2 - 5x^7) = \dots$$

$$\mathbf{b})$$
 -4

$$\mathbf{c}$$
) $-\infty$

a)
$$\infty$$
 b) -4 c) $-\infty$ d) -5

26. The vertical asymptote(s) of the function

$$f(x) = \frac{4-x^2}{3x^2-5x-2}$$
 is (are)

a)
$$x = 2$$
 and $x = -\frac{1}{3}$ b) $x = -\frac{1}{3}$ c) $x = 2$

c)
$$x = 2$$

$$\mathbf{d)} \quad \mathbf{y} = \mathbf{2}$$

d)
$$y = 2$$
 e) $y = -\frac{1}{3}$

27. The horizontal asymptote(s) of the function

$$f(x) = \frac{2e^x}{3e^x - 5}$$
 is (are)

a)
$$x = \frac{2}{3}$$
 and $x = -\frac{2}{3}$ b) $x = \frac{2}{3}$ and $x = 0$

b)
$$x = \frac{2}{3}$$
 and $x = 0$

c)
$$y = \frac{2}{3}$$
 and $y = 0$

c)
$$y = \frac{2}{3}$$
 and $y = 0$ d) $y = \frac{2}{3}$ and $y = -\frac{2}{3}$

28.
$$f(x) = \tan(x)$$
 is discontinuous at.....

a)
$$x = \frac{7\pi}{4}$$
 b) $x = \frac{7\pi}{3}$ c) $x = \frac{7\pi}{2}$ d) $x = 0$

b)
$$x = \frac{7\pi}{3}$$

c)
$$x = \frac{7\pi}{2}$$

$$\mathbf{d)} \quad \boldsymbol{x} = \mathbf{0}$$

29. If
$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x \ge 3 \\ x^3 - cx & \text{if } x < 3 \end{cases}$$
 is continuous on \mathbb{R}

then $c = \dots$

- a) $\frac{7}{4}$ b) $\frac{1}{3}$ c) $\frac{7}{2}$ d) 1

30. $f(x) = \ln(x) - \sqrt{3-x}$ is continuous on.....

- a) $(0, \infty)$ b) (0,3] c) [0,3] d) $(-\infty,3]$

31. $f(x) = \frac{x-2}{x^3+9x}$ is discontinuous at.....

- a) x = 2 b) x = 0 c) x = 0 and $x = \pm 3$

32. $f(x) = \begin{cases} x^2 - 3x - 8 & \text{if } x \ge 3 \\ \frac{\sin(x - 3)}{(x - 3)} & \text{if } x < 3 \end{cases}$ is continuous on \mathbb{R}

a) True

b) False

33. If f(x) = |3x - 6| then f(x) is not differentiable at

- a) x = 2 b) x = -2 c) x = 3 d) x = 6

34. If $y = \sqrt{\pi}$ then $y' = \frac{1}{2\sqrt{\pi}}$

a) True

35. The equation of the tangent line of the curve

$$f(x) = 4x - 3x^2$$
 at $x = 2$ is

a)
$$y = 12 - 8x$$

a)
$$y = 12 - 8x$$
 b) $y = \frac{1}{8}x - \frac{17}{4}$

c)
$$x = 12 - 8y$$

c)
$$x = 12 - 8y$$
 d) $x = \frac{1}{8}x - \frac{17}{4}$

36. If $g(x) = e^x + x^e$ then $g'(1) = \dots$

- a) 2 b) e² c) 2e d) 1

37. If $g(x) = \frac{15x^6 - 12x^4 + 6x^2}{3x^2}$ then $g''(x) = \dots$

- a) $5x^4 4x^2 + 2$ b) 120x
- c) $60x^2 8$ d) $20x^3 8x$

If $h(x) = \sqrt{1 + 2x}$ then h'(2) =

a)
$$\lim_{x\to 2} \frac{\sqrt{1+2x}-\sqrt{5}}{x-2}$$

a)
$$\lim_{x\to 2} \frac{\sqrt{1+2x}-\sqrt{5}}{x-2}$$
 b) $\lim_{x\to 2} \frac{\sqrt{5}-\sqrt{1+2x}}{x-2}$

c)
$$\lim_{h\to 0} \frac{\sqrt{1+2h}-\sqrt{5}}{h}$$
 d) $\lim_{h\to 2} \frac{\sqrt{4+2h}-\sqrt{5}}{h}$

$$d) \lim_{h\to 2} \frac{\sqrt{4+2h}-\sqrt{5}}{h}$$

39. If $f(x) = \frac{1}{3}x^3 - \frac{7}{2}x^2 + 10x$ then f(x) has horizontal tangents when

$$a) x = 5, -2$$

a)
$$x = 5$$
, -2 b) $x = -5$, 2

$$(c) x = 5, 2$$

c)
$$x = 5$$
, 2 d) $x = -5$, -2

40. If f is differentiable at a, then f is continuous at a

a) True

Workshop Solutions to Sections 3.4 and 3.5(2.2 & 2.5)

1)	lim -	2		_
1)	$x \rightarrow 3^+ \chi$: —	3	_

If
$$x \to 3^+$$
, then $x > 3 \implies x - 3 > 0$

$$\lim_{x \to 3^+} \frac{2}{x - 3} = \infty$$

$$\therefore \lim_{x \to 3^+} \frac{2}{x - 3} = \infty$$

2)
$$\lim_{x \to 3^{-}} \frac{2}{x - 3} =$$

If
$$x \to 3^-$$
, then $x < 3 \implies x - 3 < 0$

If
$$x \to 3^-$$
, then $x < 3 \implies x - 3 < 0$

$$\therefore \lim_{x \to 3^-} \frac{2}{x - 3} = -\infty$$

$$\lim_{x \to 3^+} \frac{-2}{x - 3} =$$

If
$$x \to 3^+$$
, then $x > 3 \implies x - 3 > 0$

$$\therefore \lim_{x \to 3^+} \frac{-2}{x - 3} = -\infty$$

4)
$$\lim_{x \to 3^{-}} \frac{-2}{x - 3} =$$

Solution:

If
$$x \to 3^-$$
, then $x < 3 \implies x - 3 < 0$

$$\therefore \lim_{x \to 3^{-}} \frac{2}{x - 3} = \infty$$

5)
$$\lim_{x \to -3^+} \frac{2}{x+3} =$$

If
$$x \to -3^+$$
, then $x > -3 \implies x + 3 > 0$

$$\lim_{x \to -3^+} \frac{2}{x+3} = \infty$$

6)
$$\lim_{x \to -3^-} \frac{2}{x+3} =$$

Solution:

If
$$x \to -3^-$$
, then $x < -3 \implies x + 3 < 0$

$$\lim_{x \to -3^{-}} \frac{2}{x+3} = -\infty$$

7)
$$\lim_{x \to 2^+} \frac{3x - 1}{x - 2} =$$

Solution:

If
$$x \to 2^+$$
, then $x > 2 \implies x - 2 > 0$ and $3x - 1 > 0$

$$\therefore \lim_{x \to 2^+} \frac{3x - 1}{x - 2} = \infty$$

$$8) \quad \lim_{x \to 2^{-}} \frac{3x - 1}{x - 2} =$$

Solution:

If
$$x \to 2^-$$
, then $x < 2 \implies x - 2 < 0$ and $3x - 1 > 0$

$$\therefore \lim_{x \to 2^-} \frac{3x - 1}{x - 2} = -\infty$$

9)
$$\lim_{x \to -2^+} \frac{1-x}{(x+2)^2} =$$

Solution:

If
$$x \to -2^+$$
, then $x > -2$

$$\Rightarrow 1 - x > 0 \text{ and } (x+2)^2 > 0$$

$$\therefore \lim_{x \to -2^+} \frac{1 - x}{(x+2)^2} = \infty$$

10)
$$\lim_{x \to -2^{-}} \frac{1-x}{(x+2)^2} =$$

Solution:

If
$$x \to -2^-$$
, then $x < -2$

⇒
$$1-x > 0$$
 and $(x+2)^2 > 0$
∴ $\lim_{x \to -2^+} \frac{1-x}{(x+2)^2} = \infty$

11)
$$\lim_{x \to -2^+} \frac{x-1}{(x+2)^2} =$$

Solution:

If
$$x \to -2^+$$
, then $x > -2$

$$\Rightarrow x - 1 < 0 \text{ and } (x + 2)^2 > 0$$

$$\therefore \lim_{x \to -2^+} \frac{x - 1}{(x + 2)^2} = -\infty$$

12)
$$\lim_{x \to -2^{-}} \frac{x-1}{(x+2)^2} =$$

Solution:

If
$$x \to -2^-$$
, then $x < -2$

⇒
$$x-1 < 0$$
 and $(x+2)^2 > 0$
∴ $\lim_{x \to -2^-} \frac{x-1}{(x+2)^2} = -\infty$

13)
$$\lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} =$$

Solution:

If
$$x \to 2^+$$
, then $x^2 > 4$

$$\Rightarrow x^2 - 4 > 0 \text{ and } 6x - 1 > 0$$

$$\therefore \lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = \infty$$

14)
$$\lim_{x \to 2^{-}} \frac{6x - 1}{x^2 - 4} =$$

Solution:

If
$$x \to 2^-$$
, then $x^2 < 4$

$$\Rightarrow x^2 - 4 < 0 \text{ and } 6x - 1 > 0$$

$$\therefore \lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = -\infty$$

15) $\lim_{x \to -2^+} \frac{6x - 1}{x^2 - 4} =$	16) $\lim_{x \to -2^{-}} \frac{6x - 1}{x^2 - 4} =$
Solution:	Solution:
If $x \to -2^+$, then $x^2 < 4$	If $x \to -2^-$, then $x^2 > 4$
$\Rightarrow x^2 - 4 < 0 \text{ and } 6x - 1 < 0$	$\Rightarrow x^2 - 4 > 0 \text{ and } 6x - 1 < 0$
$\lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = \infty$	$\lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = -\infty$
17) $\lim_{x \to -2^{-}} \frac{6x - 1}{x^2 - x - 6} =$	18) $\lim_{x \to -2^+} \frac{6x - 1}{x^2 - x - 6} =$
$\begin{array}{c} x \rightarrow -2^{-} x^{2} - x - 6 \\ \underline{\text{Solution:}} \end{array}$	$x \to -2^+ x^2 - x - 6$ Solution:
$f(x) = \frac{6x - 1}{x^2 - x - 6} = \frac{6x - 1}{(x - 3)(x + 2)}$	$f(x) = \frac{6x - 1}{x^2 - x - 6} = \frac{6x - 1}{(x - 3)(x + 2)}$
x = x = (x - 3)(x + 2)	x = x = 0 (x = 0)(x + 2)
If $x \to -2^-$, then $x < -2$	If $x \to -2^+$, then $x > -2$
$\Rightarrow x - 3 < 0, x + 2 < 0 \text{ and } 6x - 1 < 0$	$\Rightarrow x - 3 < 0$, $x + 2 > 0$ and $6x - 1 < 0$
$\lim_{x \to -2^-} \frac{6x-1}{x^2-x-6} = -\infty$	$\lim_{x \to -2^+} \frac{6x-1}{x^2-x-6} = \infty$
19) $\lim_{x \to 3^+} \frac{-1}{x^2 - x - 6} =$	$\lim_{x \to 3^{-}} \frac{-1}{x^{2} - x - 6} =$
$x \rightarrow 3^+ x^2 - x - 6$ Solution:	$x \rightarrow 3^- x^2 - x - 6$ Solution:
$f(x) = \frac{-1}{x^2 - x - 6} = \frac{-1}{(x - 3)(x + 2)}$	$f(x) = \frac{-1}{x^2 - x - 6} = \frac{-1}{(x - 3)(x + 2)}$
$\lambda \lambda $	λ
If $x \to 3^+$, then $x > 3$	If $x \to 3^-$, then $x < 3$
$\Rightarrow x - 3 > 0, x + 2 > 0 \text{ and } -1 < 0$	$\Rightarrow x - 3 < 0$, $x + 2 > 0$ and $-1 < 0$
$\lim_{x \to 3^+} \frac{-1}{x^2 - x - 6} = -\infty$	$\therefore \lim_{x \to 3^-} \frac{-1}{x^2 - x - 6} = \infty$
$\lim_{x \to (\pi/2)^+} \tan x =$	$\lim_{x \to (\pi/2)^{-}} \tan x =$
Solution:	Solution:
$\lim_{x \to (\pi/2)^+} \tan x = -\infty$	$\lim_{x \to (\pi/2)^{-}} \tan x = \infty$
x → (¹ / ₂)	(12)
23) The vertical asymptote of $f(x) = \frac{1-x}{2x+1}$ is	24) The vertical asymptote of $f(x) = \frac{3-x}{x^2-4}$ is
Solution:	Solution:
We see that the function $f(x)$ is not defined when	We see that the function $f(x)$ is not defined when
$2x + 1 = 0 \implies x = -\frac{1}{2}$. Since	$x^2 - 4 = 0 \implies x = \pm 2$. Since
$\lim_{x \to \infty} \frac{1-x}{1-x} = \infty$	$\lim_{x \to 2^+} \frac{3 - x}{x^2 - 4} = \infty, \qquad \lim_{x \to 2^-} \frac{3 - x}{x^2 - 4} = -\infty$
$\lim_{x \to \left(-\frac{1}{2}\right)^{+}} \frac{1 - x}{2x + 1} = \infty$	$x \rightarrow 2 \cdot x = 4$ $x \rightarrow 2 \cdot x = 4$
and	and
$\lim_{x \to \left(-\frac{1}{2}\right)^{-}} \frac{1-x}{2x+1} = -\infty$	$\lim_{x \to -2^{+}} \frac{3 - x}{x^{2} - 4} = -\infty, \qquad \lim_{x \to -2^{-}} \frac{3 - x}{x^{2} - 4} = \infty$
. \ 2/	$x \rightarrow -2^+ x^2 - 4$ $x \rightarrow -2^- x^2 - 4$ then, $x = \pm 2$ are vertical asymptotes.
then, $x = -\frac{1}{2}$ is a vertical asymptote.	<u></u>
_	
1	

25) The vertical asymptote of $f(x) = \frac{3-x}{x^2-x-6}$ is Solution:

$$f(x) = \frac{3-x}{x^2 - x - 6} = \frac{3-x}{(x-3)(x+2)} = \frac{-(x-3)}{(x-3)(x+2)}$$
$$= -\frac{1}{x+2}$$

We see that the function f(x) is not defined when

$$x^2 - x - 6 = 0 \implies (x - 3)(x + 2) = 0$$

 $\implies x = 3 \text{ or } x = -2$. Since

$$\lim_{x \to 3} \frac{3 - x}{x^2 - x - 6} = \lim_{x \to 3} \frac{3 - x}{(x - 3)(x + 2)}$$
$$= \lim_{x \to 3} \frac{-(x - 3)}{(x - 3)(x + 2)} = \lim_{x \to 3} \frac{-1}{x + 2} = -\frac{1}{5}$$

then, x = 3 is a removable discontinuity.

$$\lim_{x \to -2^+} \frac{3-x}{x^2 - x - 6} = \lim_{x \to -2^+} \frac{3-x}{(x-3)(x+2)} = \infty$$

and

$$\lim_{x\to -2^-}\frac{3-x}{x^2-x-6}=\lim_{x\to -2^-}\frac{3-x}{(x-3)(x+2)}=-\infty$$
 then, $x=-2$ is a vertical asymptote only.

27) The vertical asymptote of $f(x) = \frac{x-7}{x^2+5x+6}$ is Solution:

$$f(x) = \frac{x-7}{x^2 + 5x + 6} = \frac{x-7}{(x+3)(x+2)}$$

We see that the function f(x) is not defined when x+3=0 or $x+2=0 \implies x=-3$ or x=-2 . Since

$$\lim_{x \to -3^{+}} \frac{x-7}{x^{2}+5x+6} = \lim_{x \to -3^{+}} \frac{x-7}{(x+3)(x+2)} = \infty$$

$$\lim_{x \to -3^{-}} \frac{x-7}{x^{2}+5x+6} = \lim_{x \to -3^{-}} \frac{x-7}{(x+3)(x+2)} = -\infty$$

and

$$\lim_{x \to -2^{+}} \frac{x - 7}{x^{2} + 5x + 6} = \lim_{x \to -2^{+}} \frac{x - 7}{(x + 3)(x + 2)} = -\infty$$

$$\lim_{x \to -2^{-}} \frac{x - 7}{x^{2} + 5x + 6} = \lim_{x \to -2^{-}} \frac{x - 7}{(x + 3)(x + 2)} = \infty$$

then, x = -3 and x = -2 are vertical asymptotes.

29) The vertical asymptote of $f(x) = \frac{x-7}{x^2-3x}$ is Solution:

$$f(x) = \frac{x-7}{x^2 - 3x} = \frac{x-7}{x(x-3)}$$

We see that the function f(x) is not defined when x = 0 or $x - 3 = 0 \implies x = 0$ or x = 3. Since

$$\lim_{x \to 3^{+}} \frac{x - 7}{x^{2} - 3x} = \lim_{x \to 3^{+}} \frac{x - 7}{x(x - 3)} = -\infty$$

$$\lim_{x \to 3^{-}} \frac{x - 7}{x^{2} - 3x} = \lim_{x \to 3^{-}} \frac{x - 7}{x(x - 3)} = \infty$$

and

$$\lim_{x \to 0^{+}} \frac{x - 7}{x^{2} - 3x} = \lim_{x \to 0^{+}} \frac{x - 7}{x(x - 3)} = \infty$$

$$\lim_{x \to 0^{-}} \frac{x - 7}{x^{2} - 3x} = \lim_{x \to 0^{-}} \frac{x - 7}{x(x - 3)} = -\infty$$

then, x = 3 and x = 0 are vertical asymptotes.

26) The vertical asymptote of $f(x) = \frac{7-x}{x^2-5x+6}$ is Solution:

$$f(x) = \frac{7 - x}{x^2 - 5x + 6} = \frac{7 - x}{(x - 3)(x - 2)}$$

We see that the function f(x) is not defined when x-3=0 or $x-2=0 \implies x=3$ or x=2 . Since

$$\lim_{x \to 3^{+}} \frac{7 - x}{x^{2} - 5x + 6} = \lim_{x \to 3^{+}} \frac{7 - x}{(x - 3)(x - 2)} = \infty$$

$$\lim_{x \to 3^{-}} \frac{7 - x}{x^{2} - 5x + 6} = \lim_{x \to 3^{-}} \frac{7 - x}{(x - 3)(x - 2)} = -\infty$$

and

$$\lim_{x \to 2^{+}} \frac{7 - x}{x^{2} - 5x + 6} = \lim_{x \to 2^{+}} \frac{7 - x}{(x - 3)(x - 2)} = -\infty$$

$$\lim_{x \to 2^{-}} \frac{7 - x}{x^{2} - 5x + 6} = \lim_{x \to 2^{-}} \frac{7 - x}{(x - 3)(x - 2)} = \infty$$

then, x = 3 and x = 2 are vertical asymptotes.

28) The vertical asymptote of $f(x) = \frac{x-7}{x^2+3x}$ is Solution:

$$f(x) = \frac{x-7}{x^2+3x} = \frac{x-7}{x(x+3)}$$

We see that the function f(x) is not defined when x = 0 or $x + 3 = 0 \implies x = 0$ or x = -3. Since

$$\lim_{x \to -3^{+}} \frac{x-7}{x^{2}+3x} = \lim_{x \to -3^{+}} \frac{x-7}{x(x+3)} = \infty$$

$$\lim_{x \to -3^{-}} \frac{x-7}{x^{2}+3x} = \lim_{x \to -3^{-}} \frac{x-7}{x(x+3)} = -\infty$$

and

$$\lim_{x \to 0^{+}} \frac{x - 7}{x^{2} + 3x} = \lim_{x \to 0^{+}} \frac{x - 7}{x(x + 3)} = -\infty$$

$$\lim_{x \to 0^{-}} \frac{x - 7}{x^{2} + 3x} = \lim_{x \to 0^{-}} \frac{x - 7}{x(x + 3)} = \infty$$

then, x = -3 and x = 0 are vertical asymptotes.

30) The vertical asymptotes of $f(x) = \frac{2x^2+1}{x^2-9}$ are Solution:

$$f(x) = \frac{2x^2 + 1}{x^2 - 9} = \frac{2x^2 + 1}{(x+3)(x-3)}$$

We see that the function f(x) is not defined when $x^2 - 9 = 0 \implies x = \pm 3$. Since

$$\lim_{x \to 3^{+}} \frac{2x^{2} + 1}{x^{2} - 9} = \lim_{x \to 3^{+}} \frac{2x^{2} + 1}{(x+3)(x-3)} = \infty$$

$$\lim_{x \to 3^{-}} \frac{2x^{2} + 1}{x^{2} - 9} = \lim_{x \to 3^{-}} \frac{2x^{2} + 1}{(x+3)(x-3)} = -\infty$$

and

$$\lim_{x \to -3^{+}} \frac{2x^{2} + 1}{x^{2} - 9} = \lim_{x \to -3^{+}} \frac{2x^{2} + 1}{(x+3)(x-3)} = -\infty$$

$$\lim_{x \to -3^{-}} \frac{2x^{2} + 1}{x^{2} - 9} = \lim_{x \to -3^{-}} \frac{2x^{2} + 1}{(x+3)(x-3)} = \infty$$

then, $x = \pm 3$ are vertical asymptotes.

31) The function
$$f(x) = \frac{x+1}{x^2-9}$$
 is continuous at $a=2$ because

1 -
$$f(2) = \frac{(2)+1}{(2)^2-9} = \frac{3}{-5} = -\frac{3}{5}$$

$$2 - \lim_{x \to 3^{-}} \frac{x+1}{x^{2}-9} = \lim_{x \to 2} \frac{(2)+1}{(2)^{2}-9} = \frac{3}{-5} = -\frac{3}{5}$$

$$3 - \lim_{x \to 2} \frac{x+1}{x^2 - 9} = f(2)$$

OR

We know that $D_f = \mathbb{R} \setminus \{\pm 3\}$, so $\{2\} \in D_f$.

33) The function $f(x) = \frac{x+1}{x^2-9}$ is discontinuous at ± 3 because $\{\pm 3\} \notin D_f$.

32) The function $f(x) = \frac{x+1}{x^2-9}$ is discontinuous at

 $a = \pm 3$ because we know that $D_f = \mathbb{R} \setminus \{\pm 3\}$,

Note: Any function is continuous on its domain.

- 34) The function $f(x) = \frac{x+1}{x^2-9}$ is continuous on its domain which is $D_f = \mathbb{R} \setminus \{\pm 3\}$.
- 35) The function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ 3, & x = 0 \end{cases}$ is continuous at a = 0 because

1-
$$f(0) = 3$$

1-
$$f(0) = 3$$

2- $\lim_{x \to 0} \frac{\sin 3x}{x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3(1) = 3$
3- $\lim_{x \to 0} f(x) = f(0)$

3-
$$\lim_{x \to 0} f(x) = f(0)$$

so $\{\pm 3\} \notin D_f$.

- 36) The function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ 5, & x = 0 \end{cases}$ is discontinuous at a = 0 because
- 1- f(0) = 5
- 2- $\lim_{x \to 0} \frac{\sin 3x}{x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3(1) = 3$ 3- $\lim_{x \to 0} f(x) \neq f(0)$

- 37) The function $f(x) = \begin{cases} \frac{2x^2 3x + 1}{x 1}, & x \neq 1 \\ 7, & x = 1 \end{cases}$ is discontinuous at a = 1 because
- 2- $\lim_{x \to 1} \frac{2x^2 3x + 1}{x 1} = \lim_{x \to 1} \frac{(2x 1)(x 1)}{x 1} = \lim_{x \to 1} (2x 1) = 1$ 3- $\lim_{x \to 1} f(x) \neq f(1)$
- 38) The function $f(x) = \begin{cases} \frac{2x^2 3x + 1}{x 1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$ is continuous at a = 1 because
- 2- $\lim_{x \to 1} \frac{2x^2 3x + 1}{x 1} = \lim_{x \to 1} \frac{(2x 1)(x 1)}{x 1} = \lim_{x \to 1} (2x 1) = 1$ 3- $\lim_{x \to 1} f(x) = f(1)$

- 39) The function $f(x) = \frac{x^2 x 2}{x 2}$ is discontinuous at a=2 because $\{2\} \notin D_f$.
- 40) The function $f(x) = \begin{cases} 2x + 3, & x > 2 \\ 3x + 1, & x \le 2 \end{cases}$ is continuous at a = 2 because
- 1- f(2) = 3(2) + 1 = 7
- 2- $\lim_{x \to 0} (2x + 3) = 2(2) + 3 = 7$ $\lim_{x \to 0} (3x + 1) = 3(2) + 1 = 7$ $\lim_{x \to 2} f(x) = 7$
- 3- $\lim_{x \to 0} f(x) = f(2)$

41) The function $f(x) = \frac{x+3}{\sqrt{x^2-4}}$ is continuous on its domain where f(x) is defined, we mean that $x^2 - 4 > 0 \implies x^2 > 4 \implies \sqrt{x^2} > \sqrt{4}$

 \Rightarrow $|x| > 2 \Leftrightarrow x > 2$ or x < -2Hence,

$$D_f = (-\infty, -2) \cup (2, \infty) .$$

- 42) The function $f(x) = \sqrt{x^2 4}$ is continuous on its domain where f(x) is defined, we mean that $x^2 - 4 \ge 0 \implies x^2 \ge 4 \implies \sqrt{x^2} \ge \sqrt{4}$ \Rightarrow $|x| \ge 2 \Leftrightarrow x \ge 2 \text{ or } x \le -2$
- Hence,

$$D_f = (-\infty, -2] \cup [2, \infty) \ .$$

- 44) The function $f(x) = \frac{x+3}{\sqrt{4-x^2}}$ is continuous on its domain where f(x) is defined, we mean that
- $4 x^2 > 0 \implies -x^2 > -4 \implies x^2 < 4$ $\Rightarrow \sqrt{x^2} < \sqrt{4} \Rightarrow |x| < 2 \Leftrightarrow -2 < x < 2$ Hence,
 - $D_f = (-2,2) .$

- 43) The function $f(x) = \sqrt{4 x^2}$ is continuous on its domain where f(x) is defined, we mean that $4 - x^2 \ge 0 \implies -x^2 \ge -4 \implies x^2 \le 4$ $\Rightarrow \sqrt{x^2} \le \sqrt{4} \implies |x| \le 2 \iff -2 \le x \le 2$ Hence, $D_f = [-2,2]$.
- 45) The function $f(x) = \frac{x+1}{x^2-4}$ is continuous on its domain where f(x) is defined, we mean that $x^2 - 4 \neq 0 \implies x^2 \neq 4 \implies x \neq \pm 2$

Hence,

$$D_f = \mathbb{R} \setminus \{\pm 2\}$$

 $= (-\infty, -2) \cup (-2, 2) \cup (2, \infty) = \{x \in \mathbb{R} : x \neq \pm 2\}.$

16) The function $f(x) = \log_2(x+2)$ is con	tinuous on		
its domain where $f(x)$ is defined, we m	ean that		
$r+2>0 \implies r>-2$			

Hence,

$$D_f = (-2, \infty)$$
.

48) The function $f(x) = 5^x$ is continuous on its domain.

Hence,

$$D_f = \mathbb{R} = (-\infty, \infty)$$
.

50) The function $f(x) = \sin^{-1}(3x - 5)$ is continuous on its domain where f(x) is defined, we mean that $-1 \le 3x - 5 \le 1 \iff 4 \le 3x \le 6 \iff \frac{4}{3} \le x \le 2$. Hence,

$$D_f = \left[\frac{4}{3}, 2\right].$$

52) The number c that makes $f(x) = \begin{cases} c+x, & x > 2 \\ 2x-c, & x \le 2 \end{cases}$ is continuous at x = 2 is

Solution:

 $\lim_{x \to \infty} f(x)$ exists if

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{-}} f(x)$$

$$\lim_{x \to 2^{+}} (c + x) = \lim_{x \to 2^{-}} (2x - c)$$

$$c + 2 = 4 - c$$

$$c + c = 4 - 2$$

$$2c = 2$$

$$c = 1$$

54) The number c that makes

$$f(x) = \begin{cases} \frac{\sin cx}{x} + 2x - 1, & x < 0 \\ 3x + 4, & x \ge 0 \end{cases}$$
 is continuous at 0 is Solution:

Solution:

 $\lim_{x\to 0} f(x)$ exists if

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} f(x)$$

$$\lim_{x \to 0^{+}} (3x + 4) = \lim_{x \to 0^{-}} \left(\frac{\sin cx}{x} + 2x - 1 \right)$$

$$3(0) + 4 = c(1) + 2(0) - 1$$

$$4 = c - 1$$

$$c = 4 + 1$$

$$c = 5$$

56) The number c that makes $f(x) = \begin{cases} c^2x^2 - 1, & x \le 3 \\ x + 5, & x > 3 \end{cases}$ is continuous at 3 is

Solution:

 $\lim_{x \to \infty} f(x)$ exists if

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{-}} f(x)$$

$$\lim_{x \to 3^{+}} (x+5) = \lim_{x \to 3^{-}} (c^{2}x^{2} - 1)$$

$$(3) + 5 = c^{2}(3)^{2} - 1$$

$$8 = 9c^{2} - 1$$

$$9c^{2} = 8 + 1$$

$$c^{2} = 1$$

$$c = \pm 1$$

47) The function $f(x) = \sqrt{x-1} + \sqrt{x+4}$ is continuous on its domain where f(x) is defined, we mean that $x-1 \ge 0$ and $x+4 \ge 0 \implies x \ge 1 \cap x \ge -4$ Hence,

$$D_f = [1, \infty)$$
.

49) The function $f(x) = e^x$ is continuous on its domain.

Hence,

$$D_f = \mathbb{R} = (-\infty, \infty)$$
.

51) The function $f(x) = \cos^{-1}(3x + 5)$ is continuous on its domain where f(x) is defined, we mean that $-1 \le 3x + 5 \le 1 \Leftrightarrow -6 \le 3x \le -4 \Leftrightarrow -2 \le x \le -\frac{4}{3}$ Hence,

$$D_f = \left[-2, -\frac{4}{3}\right]$$

 $D_f = \left[-2, -\frac{4}{3}\right].$ 53) The number c that makes

$$f(x) = \begin{cases} cx^2 - 2x + 1, & x \le -1 \\ 3x + 2, & x > -1 \end{cases}$$
 is continuous at -1 is

Solution:

 $\lim_{x \to -1} f(x)$ exists if

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{-}} f(x)$$

$$\lim_{x \to -1^{+}} (3x + 2) = \lim_{x \to -1^{-}} (cx^{2} - 2x + 1)$$

$$3(-1) + 2 = c(-1)^{2} - 2(-1) + 1$$

$$-1 = c + 3$$

$$c = -1 - 3$$

$$c = -4$$

55) The value c that makes $f(x) = \begin{cases} cx^2 + 2x, & x \le 2\\ x^3 - cx, & x > 2 \end{cases}$ is continuous at 2 is

Solution:

 $\lim_{x\to 2} f(x)$ exists if

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{-}} f(x)$$

$$\lim_{x \to 2^{+}} (x^{3} - cx) = \lim_{x \to 2^{-}} (cx^{2} + 2x)$$

$$(2)^{3} - c(2) = c(2)^{2} + 2(2)$$

$$8 - 2c = 4c + 4$$

$$-2c - 4c = 4 - 8$$

$$-6c = -4$$

$$c = \frac{-4}{-6}$$

$$c = \frac{2}{3}$$
57) The number c that makes $f(x) = \begin{cases} x - 2, & x > 5 \\ cx - 3, & x \le 5 \end{cases}$

is continuous at 5 is

Solution:

 $\lim f(x)$ exists if

$$\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{-}} f(x)$$

$$\lim_{x \to 5^{+}} (x - 2) = \lim_{x \to 5^{-}} (cx - 3)$$

$$(5) - 2 = c(5) - 3$$

$$3 = 5c - 3$$

$$5c = 3 + 3$$

$$5c = 6$$

$$c = \frac{6}{5}$$

58) The number c that makes $f(x) = \begin{cases} x+3, & x > -1 \\ 2x-c, & x \le -1 \end{cases}$ is continuous at -1 is Solution: $\lim_{x \to -1} f(x) \text{ exists if}$ $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$ $\lim_{x \to -1^+} (x+3) = \lim_{x \to -1^-} (2x-c)$ (-1) + 3 = 2(-1) - c 2 = -2 - c c = -2 - 2

c = -4

Workshop Solutions to Section 3.3 (2.6 & page 192,193)

1) If $f(x) = \begin{cases} 2x+3; & x \ge -2 \\ 2x+5; & x < -2 \end{cases}$ then	2) If $f(x) = \begin{cases} 2x+3; & x \ge -2 \\ 2x+5; & x < -2 \end{cases}$ then
$\lim_{x \to (-2)^{-}} f(x) =$	$\lim_{x \to (-2)^+} f(x) =$
Solution: $x \rightarrow (-2)^{-3}$	$x \rightarrow (-2)^{+}$ Solution:
$ \overline{\lim_{x \to (-2)^{-}}} f(x) = \lim_{x \to (-2)^{-}} (2x + 5) = 2(-2) + 5 = -4 + 5 $	$\overline{\lim_{x \to (-2)^+} f(x)} = \lim_{x \to (-2)^+} (2x + 3) = 2(-2) + 3 = -4 + 3$
$ = 1 $ 3) If $f(x) = \begin{cases} 2x+3; & x \ge -2 \\ 2x+5; & x < -2 \end{cases}$ then	$= -1$ 4) If $f(x) = \begin{cases} x^2 - 2x + 3; & x \ge 3 \\ x^3 - 3x - 12; & x < 3 \end{cases}$ then
$\lim_{x \to -2} f(x) =$	$\lim_{x \to 3} f(x) =$
Solution: $\lim_{x \to -2} f(x)$ does not exist because	<u>Solution:</u>
	$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (x^3 - 3x - 12) = (3)^3 - 3(3) - 12$ $= 27 - 9 - 12 = 6$
$\lim_{x \to (-2)^{-}} f(x) \neq \lim_{x \to (-2)^{+}} f(x)$	$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (x^2 - 2x + 3) = (3)^2 - 2(3) + 3$
	= 9 - 6 + 3 = 6
2 7	$\lim_{x \to 3} f(x) = 6$
5) If $f(x) = \begin{cases} x^2 - 7x; & x < 1 \\ 5; & 1 \le x \le 3 \text{ then } \\ 3x + 1; & x > 3 \\ \lim_{x \to 1^-} f(x) = \end{cases}$	
(3x+1; x>3)	(3x+1; x>3)
Solution: $\lim_{x \to 1^{-}} f(x) = \frac{1}{x}$	$\lim_{x \to 1^+} f(x) =$ Solution:
$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^2 - 7x) = (1)^2 - 7(1) = 1 - 7 = -6$	$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (5) = 5$
$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{2} - 7x) = (1)^{2} - 7(1) = 1 - 7 = -6$ 7) If $f(x) = \begin{cases} x^{2} - 7x; & x < 1 \\ 5; & 1 \le x \le 3 \text{ then } \\ 3x + 1; & x > 3 \end{cases}$	$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (5) = 5$ 8) If $f(x) = \begin{cases} x^{2} - 7x; & x < 1 \\ 5; & 1 \le x \le 3 \text{ then } \\ 3x + 1; & x > 3 \end{cases}$
7) If $f(x) = \begin{cases} 5 ; & 1 \le x \le 3 \text{ then } \\ 3x + 1 ; & x > 3 \end{cases}$	(a) If $f(x) = \begin{cases} 5 ; & 1 \le x \le 3 \text{ then} \\ 3x + 1 ; & x > 3 \end{cases}$
$\lim_{x \to 3^-} f(x) =$	$\lim_{x \to 3^+} f(x) =$
Solution: $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (5) = 5$	Solution: $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (3x + 1) = 3(3) + 1 = 9 + 1 = 10$
$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (5) = 5$ $(x^{2} + x - 6, x^{2} = 4 > 0$	4.3
9) If $f(x) = \begin{cases} \frac{x^{-3}}{x^{2} - 4}; & x^{2} - 4 > 0\\ \frac{x^{2} + x - 6}{4 - x^{2}}; & x^{2} - 4 < 0 \end{cases}$ then	10) If $f(x) = \begin{cases} \frac{x^2 + x - 6}{x^2 - 4}; & x^2 - 4 > 0\\ \frac{x^2 + x - 6}{4 - x^2}; & x^2 - 4 < 0 \end{cases}$ then
$\left(\frac{x^2-x^2}{4-x^2}; x^2-4<0\right)$	$\left(\frac{1}{4-x^2}; x^2-4<0\right)$ $\lim_{x\to 0} f(x) = 0$
$\lim_{x \to 2^+} f(x) =$ Solution:	$\lim_{x \to 2^{-}} f(x) =$ Solution:
$f(x) = \begin{cases} \frac{x^2 + x - 6}{x^2 - 4}; & x^2 - 4 > 0\\ \frac{x^2 + x - 6}{4 - x^2}; & x^2 - 4 < 0 \end{cases}$	$f(x) = \begin{cases} \frac{x^2 + x - 6}{x^2 - 4}; & x^2 - 4 > 0\\ \frac{x^2 + x - 6}{4 - x^2}; & x^2 - 4 < 0 \end{cases}$
$= \begin{cases} \frac{x^2 + x - 6}{x^2 - 4}; & x^2 > 4\\ \frac{x^2 + x - 6}{-(x^2 - 4)}; & x^2 < 4 \end{cases}$	$= \begin{cases} \frac{x^2 + x - 6}{x^2 - 4}; & x^2 > 4\\ \frac{x^2 + x - 6}{-(x^2 - 4)}; & x^2 < 4 \end{cases}$
$= \begin{cases} x^2 - 4 \\ x^2 + x - 6 \end{cases}, x^2 < 4$	$= \begin{cases} x - 4 \\ x^2 + x - 6 \end{cases}, x^2 < 4$
	$\left(-(x^2-4)^{\frac{1}{2}}\right)^{\frac{1}{2}}$
$= \begin{cases} \frac{(x+3)(x-2)}{(x-2)(x+2)}; x > 4\\ \frac{(x+3)(x-2)}{-(x-2)(x+2)}; x < 4 \end{cases}$	$=\begin{cases} \frac{(x+3)(x-2)}{(x-2)(x+2)}; x > 4\\ \frac{(x+3)(x-2)}{-(x-2)(x+2)}; x < 4 \end{cases}$
$= \begin{cases} \frac{(x+3)(x-2)}{(x+3)(x+3)}; x < 4 \end{cases}$	$= \frac{(x+3)(x-2)}{(x+3)(x+2)}; x < 4$
$= \begin{cases} \frac{x+3}{x+2}; & x > 2 \text{ or } x < -2\\ -\frac{x+3}{x+2}; & -2 < x < 2 \end{cases}$ then	$= \begin{cases} \frac{x+3}{x+2}; & x > 2 \text{ or } x < -2\\ -\frac{x+3}{x+2}; & -2 < x < 2 \end{cases}$ then
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \left(\frac{x+3}{x+2} \right) = \frac{(2)+3}{(2)+2} = \frac{5}{4}$	$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \left(-\frac{x+3}{x+2} \right) = -\frac{(2)+3}{(2)+2} = -\frac{5}{4}$
1	I and the second se

$$\lim_{x \to a^{-}} \frac{|x - a|}{x - a} =$$

$$f(x) = \frac{|x-a|}{x-a} = \begin{cases} \frac{x-a}{x-a} & ; \ x-a > 0 \\ \frac{-(x-a)}{x-a} & ; \ x-a < 0 \end{cases} = \begin{cases} 1; \ x > a \\ -1; \ x < a \end{cases}$$

$$\therefore \lim_{x \to a^{-}} \frac{|x-a|}{x-a} = \lim_{x \to a^{-}} \frac{-(x-a)}{x-a} = \lim_{x \to a^{-}} (-1) = -1$$

$$\therefore \lim_{x \to a^{+}} \frac{|x-a|}{x-a} = \lim_{x \to a^{+}} \frac{(x-a)}{x-a} = \lim_{x \to a^{+}} \frac{(x-a)}{x-a} = \lim_{x \to a^{+}} (1) = 1$$

12)

$$\lim_{x \to a^+} \frac{|x - a|}{x - a} =$$

Solution:

$$\frac{1}{f(x)} = \frac{|x-a|}{|x-a|} = \begin{cases} \frac{x-a}{x-a} & ; & x-a>0 \\ \frac{-(x-a)}{x-a} & ; & x-a<0 \end{cases} = \begin{cases} 1; & x>a \\ -1; & x\$\$\therefore \lim_{x \to a^+} \frac{|x-a|}{x-a} = \lim_{x \to a^+} \frac{\(x-a\)}{x-a} = \lim_{x \to a^+} \(1\) = 1\$\$$$

$$\lim_{x \to a} \frac{|x - a|}{x - a} =$$

Solution:

 $\lim_{x \to a} \frac{|x - a|}{|x - a|}$ does not exist because

$$\lim_{x \to a^{-}} \frac{|x-a|}{x-a} \neq \lim_{x \to a^{+}} \frac{|x-a|}{x-a}$$

It is clearly obvious from questions (11) and (12) above.

$$\lim_{x \to a^+} \frac{|a - x|}{x - a} =$$

Solution:

$$f(x) = \frac{|a-x|}{x-a} = \begin{cases} \frac{a-x}{x-a} & ; \ a-x > 0 \\ \frac{-(a-x)}{x-a} & ; \ a-x < 0 \end{cases}$$

$$= \begin{cases} \frac{-(x-a)}{x-a} & ; \ a > x \\ \frac{(x-a)}{x-a} & ; \ a < x \end{cases}$$

$$\therefore \lim_{x \to a^+} \frac{|a-x|}{x-a} = \lim_{x \to a^+} (1) = 1$$

15)

$$\lim_{x \to a^{-}} \frac{|a - x|}{x - a} =$$

$$f(x) = \frac{|a-x|}{x-a} = \begin{cases} \frac{a-x}{x-a} & ; & a-x > 0\\ \frac{-(a-x)}{x-a} & ; & a-x < 0 \end{cases}$$

$$= \begin{cases} \frac{-(x-a)}{x-a} & ; & a > x\\ \frac{(x-a)}{x-a} & ; & a < x \end{cases}$$

$$\therefore \lim_{x \to a^{-}} \frac{|a-x|}{x-a} = \lim_{x \to a^{-}} (-1) = -1$$

$$\lim_{x \to a} \frac{|a - x|}{x - a} =$$

 $\lim_{x \to a} \frac{|a - x|}{x - a}$ does not exist because

$$\lim_{x \to a^{-}} \frac{|a - x|}{x - a} \neq \lim_{x \to a^{+}} \frac{|a - x|}{x - a}$$

It is clearly obvious from questions (14) and (15) above.

17)

$$\lim_{x \to (-a)^{-}} \frac{|x+a|}{x+a} =$$

$$f(x) = \frac{|x+a|}{x+a} = \begin{cases} \frac{x+a}{x+a} & ; \ x+a > 0 \\ \frac{-(x+a)}{x+a} & ; \ x+a < 0 \end{cases} = \begin{cases} 1; \ x > -a \\ -1; \ x < -a \end{cases}$$
$$\therefore \lim_{x \to (-a)^{-}} \frac{|x+a|}{x+a} = \lim_{x \to (-a)^{-}} (-1) = -1$$

$$\lim_{x \to (-a)^+} \frac{|x+a|}{x+a} =$$

$$f(x) = \frac{|x+a|}{x+a} = \begin{cases} \frac{x+a}{x+a} & ; \ x+a > 0 \\ \frac{-(x+a)}{x+a} & ; \ x+a < 0 \end{cases} = \begin{cases} 1; \ x > -a \\ -1; \ x < -a \end{cases} \\$$

$$\vdots \quad \lim_{x \to (-a)^{-}} \frac{|x+a|}{x+a} = \lim_{x \to (-a)^{-}} (-1) = -1 \end{cases} = \begin{cases} 1; \ x > -a \\ -1; \ x < -a \end{cases}$$

$$\vdots \quad \lim_{x \to (-a)^{+}} \frac{|x+a|}{x+a} = \lim_{x \to (-a)^{+}} (-1) = 1$$

$$\vdots \quad \lim_{x \to (-a)^{+}} \frac{|x+a|}{x+a} = \lim_{x \to (-a)^{+}} (1) = 1$$

19)

$$\lim_{x \to -a} \frac{|x+a|}{x+a} =$$

 $\lim_{x \to -a} \frac{\overline{|x+a|}}{x+a}$ does not exist because

$$\lim_{x \to (-a)^{-}} \frac{|x+a|}{x+a} \neq \lim_{x \to (-a)^{+}} \frac{|x+a|}{x+a}$$

It is clearly obvious from questions (17) and (18) above.

20)
$$\lim_{x \to 0^{+}} \frac{2x - |x|}{x^{2} + |x|} = \frac{\text{Solution:}}{2x - |x|} \left(\frac{2x - (x)}{x^{2} + (x)} ; x > 0 \right)$$

$$f(x) = \frac{2x - |x|}{x^2 + |x|} = \begin{cases} \frac{2x - (x)}{x^2 + (x)} & ; x > 0 \\ \frac{2x - (-x)}{x^2 + (-x)} & ; x < 0 \end{cases}$$

$$= \begin{cases} \frac{2x - x}{x^2 + x} & ; x > 0 \\ \frac{2x + x}{x^2 - x} & ; x < 0 \end{cases} = \begin{cases} \frac{x}{x^2 + x} & ; x > 0 \\ \frac{3x}{x^2 - x} & ; x < 0 \end{cases}$$

$$= \begin{cases} \frac{x}{x^2 + x} & ; x < 0 \\ \frac{3x}{x^2 - x} & ; x < 0 \end{cases}$$

$$= \begin{cases} \frac{3x}{x(x + 1)} & ; x < 0 \\ \frac{3}{x - 1} & ; x < 0 \end{cases}$$

$$\vdots \lim_{x \to 0^+} \frac{2x - |x|}{x^2 + |x|} = \lim_{x \to 0^+} \frac{1}{x + 1} = \frac{1}{0 + 1} = 1$$

$$\lim_{x \to 0^{-}} \frac{2x - |x|}{x^2 + |x|} =$$

$$f(x) = \frac{2x - |x|}{x^2 + |x|} = \begin{cases} \frac{2x - (x)}{x^2 + (x)} & ; x > 0 \\ \frac{2x - (-x)}{x^2 + (-x)} & ; x < 0 \end{cases}$$

$$= \begin{cases} \frac{2x - x}{x^2 + x} & ; x > 0 \\ \frac{2x + x}{x^2 - x} & ; x < 0 \end{cases} = \begin{cases} \frac{x}{x^2 + x} & ; x > 0 \\ \frac{3x}{x^2 - x} & ; x < 0 \end{cases}$$

$$= \begin{cases} \frac{x}{x^2 + x} & ; x < 0 \\ \frac{3x}{x^2 - x} & ; x < 0 \end{cases}$$

$$= \begin{cases} \frac{1}{x + 1} & ; x > 0 \\ \frac{3}{x - 1} & ; x < 0 \end{cases}$$

$$\therefore \lim_{x \to 0^-} \frac{2x - |x|}{x^2 + |x|} = \lim_{x \to 0^-} \frac{3}{x - 1} = \frac{3}{0 - 1} = -3$$

$$\lim_{x \to 0} \frac{2x - |x|}{x^2 + |x|} =$$

 $\frac{2x - |x|}{\lim_{x \to 0} \frac{2x - |x|}{x^2 + |x|}}$ does not exist because

$$\lim_{x \to 0^{-}} \frac{2x - |x|}{x^{2} + |x|} \neq \lim_{x \to 0^{+}} \frac{2x - |x|}{x^{2} + |x|}$$

It is clearly obvious from questions (20) and (21) above.

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x - \sin x}{\cos^2 x - \sin^2 x} =$$

$$\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos^2 x - \sin^2 x} = \lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{(\cos x - \sin x)(\cos x + \sin x)}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{1}{\cos x + \sin x} = \frac{1}{\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)}$$

$$= \frac{1}{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}} = \frac{1}{\frac{2}{\sqrt{2}}} = \frac{\sqrt{2}}{2}$$

$$\lim_{x \to 0} \frac{\cos^2 x + 2\cos x - 3}{2\cos^2 x - \cos x - 1} =$$

$$\lim_{x \to 0} \frac{\cos^2 x + 2\cos x - 3}{2\cos^2 x - \cos x - 1} = \lim_{x \to 0} \frac{(\cos x + 3)(\cos x - 1)}{(2\cos x + 1)(\cos x - 1)}$$

$$= \lim_{x \to 0} \frac{\cos x + 3}{2\cos x + 1} = \frac{\cos(0) + 3}{2\cos(0) + 1}$$

$$= \frac{1 + 3}{2(1) + 1} = \frac{4}{3}$$

25)

$$\lim_{x \to 0} (\sin^2 x + 3 \tan x - 4) =$$

Solution:

$$\overline{\lim_{x \to 0} (\sin^2 x + 3 \tan x - 4)} = \sin^2(0) + 3 \tan(0) - 4$$
$$= 0 + 3(0) - 4 = -4$$

26) If $m \neq 0$, then

$$\lim_{x \to 0} \frac{\sin(nx)}{mx} =$$

Solution:

$$\overline{\lim_{x \to 0} \frac{\sin(nx)}{mx}} = \frac{n}{m} \lim_{x \to 0} \frac{\sin(nx)}{nx} = \frac{n}{m} (1) = \frac{n}{m}$$

27) If $m \neq 0$, then

$$\lim_{x \to 0} \frac{\tan(nx)}{mx} =$$

Solution:

$$\lim_{x \to 0} \frac{\tan(nx)}{mx} = \frac{n}{m} \lim_{x \to 0} \frac{\tan(nx)}{nx} = \frac{n}{m} (1) = \frac{n}{m}$$

28) If $m \neq 0$, then

$$\lim_{x\to 0}\frac{nx}{\sin(mx)}=$$

Solution:

$$\lim_{x \to 0} \frac{nx}{\sin(mx)} = \frac{n}{m} \lim_{x \to 0} \frac{mx}{\sin(mx)} = \frac{n}{m} (1) = \frac{n}{m}$$

29) If $m \neq 0$, then

$$\lim_{x\to 0}\frac{nx}{\tan(mx)}=$$

Solution:

$$\overline{\lim_{x\to 0} \frac{nx}{\tan(mx)}} = \frac{n}{m} \lim_{x\to 0} \frac{mx}{\tan(mx)} = \frac{n}{m} (1) = \frac{n}{m}$$

30) If $m \neq 0$, then $\lim_{x \to 0} \frac{\sin(nx)}{\sin(mx)} = \frac{\sin(nx)}{\sin(mx)}$ $\lim_{x \to 0} \frac{\sin(nx)}{\sin(mx)} = \frac{n}{m} \left(\lim_{x \to 0} \frac{\sin(nx)}{nx} \right) \left(\lim_{x \to 0} \frac{mx}{\sin(mx)} \right)$ $= \frac{n}{m} (1)(1) = \frac{n}{m}$ 32) If $m \neq 0$, then	31) If $m \neq 0$, then $\lim_{x \to 0} \frac{\sin(nx)}{\tan(mx)} = \frac{\sin(nx)}{\tan(mx)} = \frac{n}{m} \left(\lim_{x \to 0} \frac{\sin(nx)}{nx} \right) \left(\lim_{x \to 0} \frac{mx}{\tan(mx)} \right) = \frac{n}{m} (1)(1) = \frac{n}{m}$ 33) If $m \neq 0$, then
$\lim_{x \to 0} \frac{\tan(nx)}{\tan(mx)} = \frac{\operatorname{Solution:}}{\lim_{x \to 0} \frac{\tan(nx)}{\tan(mx)}} = \frac{n}{m} \left(\lim_{x \to 0} \frac{\tan(nx)}{nx} \right) \left(\lim_{x \to 0} \frac{mx}{\tan(mx)} \right)$ $= \frac{n}{m} (1)(1) = \frac{n}{m}$	$\lim_{x \to 0} \frac{\tan(nx)}{\sin(mx)} = \frac{\sin(nx)}{\sin(mx)} = \frac{1}{m} \left(\lim_{x \to 0} \frac{\tan(nx)}{nx} \right) \left(\lim_{x \to 0} \frac{mx}{\sin(mx)} \right) = \frac{n}{m} (1)(1) = \frac{n}{m}$ 35)
$\lim_{x \to 0} \frac{\sin(1 - \cos x)}{1 - \cos x} =$ $\lim_{x \to 0} \frac{\sin(1 - \cos x)}{1 - \cos x} = 1$	$\lim_{x \to 0} \frac{\sin(\sin(2x))}{\sin(2x)} =$ $\lim_{x \to 0} \frac{\sin(\sin(2x))}{\sin(2x)} = 1$
36) $\lim_{x \to 0} \frac{1 - \cos(2x)}{x^2} = \frac{\text{Solution:}}{\lim_{x \to 0} \frac{1 - \cos(2x)}{x^2} = \lim_{x \to 0} \frac{2\sin^2 x}{x^2} = 2\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2$ $= 2\left(\lim_{x \to 0} \frac{\sin x}{x}\right)^2 = 2(1)^2 = 2$	$\lim_{x \to \infty} \sqrt{\frac{1}{x^2} - \frac{3}{x} + 4} =$ Solution: $\lim_{x \to \infty} \sqrt{\frac{1}{x^2} - \frac{3}{x} + 4} = \sqrt{\lim_{x \to \infty} \left(\frac{1}{x^2} - \frac{3}{x} + 4\right)} = \sqrt{0 - 0 + 4}$ $= 2$
$\lim_{x \to \infty} \left(\frac{1}{x^{2/5}} + 2 \right) =$ Solution: $\lim_{x \to -\infty} \left(\frac{1}{x^{2/5}} + 2 \right) = 0 + 2 = 2$	39) $\lim_{x \to \infty} \frac{3x + 15}{9x^2 + 4x - 13} = \frac{\text{Solution:}}{1 + \frac{3x}{9x^2} + \frac{3x}{4x} - \frac{15}{x^2}} = \frac{3x + 15}{9x^2 + 4x - 13} = \lim_{x \to \infty} \frac{\frac{3x}{x^2} + \frac{15}{x^2}}{\frac{9x^2}{x^2} + \frac{4x}{x^2} - \frac{13}{x^2}} = \lim_{x \to \infty} \frac{\frac{3}{x} + \frac{15}{x^2}}{\frac{15}{x^2} + \frac{15}{x^2}} = \frac{0 + 0}{9 + 0 + 0} = 0$
$\lim_{x \to \infty} \frac{3x^2 - 8x + 15}{9x^2 + 4x - 13} = \frac{\text{Solution:}}{\lim_{x \to \infty} \frac{3x^2 - 8x + 15}{9x^2 + 4x - 13}} = \lim_{x \to \infty} \frac{\frac{3x^2}{x^2} - \frac{8x}{x^2} + \frac{15}{x^2}}{\frac{9x^2}{x^2} + \frac{4x}{x^2} - \frac{13}{x^2}}$ $= \lim_{x \to \infty} \frac{3 - \frac{8}{x} + \frac{15}{x^2}}{9 + \frac{4}{x} - \frac{13}{x^2}} = \frac{3 - 0 + 0}{9 + 0 + 0} = \frac{1}{3}$	41) $\lim_{x \to -\infty} \frac{3x^2 - 8x + 15}{9x^2 + 4x - 13} = \frac{3x^2 - 8x + 15}{9x^2 + 4x - 13} = \lim_{x \to -\infty} \frac{3x^2 - 8x + 15}{9x^2 + 4x - 13} = \lim_{x \to -\infty} \frac{\frac{3x^2}{-x^2} - \frac{8x}{-x^2} + \frac{15}{-x^2}}{\frac{9x^2}{-x^2} + \frac{4x}{-x^2} - \frac{13}{-x^2}} = \lim_{x \to -\infty} \frac{-3 + \frac{8}{x} - \frac{15}{x^2}}{-9 - \frac{4}{x} + \frac{13}{x^2}} = \frac{-3 + 0 - 0}{-9 - 0 + 0} = \frac{1}{3}$

$$\lim_{x \to \infty} \frac{3x^5 - 8x + 15}{9x^2 + 4x - 13} =$$

$$\lim_{x \to \infty} \frac{3x^5 - 8x + 15}{9x^2 + 4x - 13} = \lim_{x \to \infty} \frac{\frac{3x^5}{x^2} - \frac{8x}{x^2} + \frac{15}{x^2}}{\frac{9x^2}{x^2} + \frac{4x}{x^2} - \frac{13}{x^2}}$$
$$= \lim_{x \to \infty} \frac{3x^3 - \frac{8}{x} + \frac{15}{x^2}}{9 + \frac{4}{x} - \frac{13}{x^2}} = \frac{3(\infty) - 0 + 0}{9 + 0 + 0} = \infty$$

43)

$$\lim_{x \to -\infty} \frac{3x^5 - 8x + 15}{9x^2 + 4x - 13} =$$

Solution:

$$\lim_{x \to -\infty} \frac{3x^5 - 8x + 15}{9x^2 + 4x - 13} = \lim_{x \to -\infty} \frac{\frac{3x^5}{-x^2} - \frac{8x}{-x^2} + \frac{15}{-x^2}}{\frac{9x^2}{-x^2} + \frac{4x}{-x^2} - \frac{13}{-x^2}}$$
$$= \lim_{x \to -\infty} \frac{-3x^3 + \frac{8}{x} - \frac{15}{x^2}}{-9 - \frac{4}{x} + \frac{13}{x^2}} = \frac{-3(-\infty) + 0 - 0}{-9 - 0 + 0} = -\infty$$

$$\lim_{x \to \infty} \left(\sqrt{x^2 - 3x + 7} - x \right) =$$

Solution:

$$\lim_{x \to \infty} \left(\sqrt{x^2 - 3x + 7} - x \right)$$

$$= \lim_{x \to \infty} \left[\left(\sqrt{x^2 - 3x + 7} - x \right) \times \frac{\left(\sqrt{x^2 - 3x + 7} + x \right)}{\left(\sqrt{x^2 - 3x + 7} + x \right)} \right]$$

$$= \lim_{x \to \infty} \left(\frac{\left(x^2 - 3x + 7 \right) - x^2}{\sqrt{x^2 - 3x + 7} + x} \right) = \lim_{x \to \infty} \left(\frac{-3x + 7}{\sqrt{x^2 - 3x + 7} + x} \right)$$

$$= \lim_{x \to \infty} \frac{\frac{-3x}{x} + \frac{7}{x}}{\sqrt{x^2 - 3x + 7} + \frac{x}{x}}$$

$$= \lim_{x \to \infty} \frac{-3 + \frac{7}{x}}{\sqrt{x^2 - 3x + 7} + \frac{7}{x^2} + 1}$$

$$= \lim_{x \to \infty} \frac{-3 + \frac{7}{x}}{\sqrt{1 - \frac{3}{x} + \frac{7}{x^2} + 1}}$$

$$= \frac{-3 + 0}{\sqrt{1 - 0 + 0} + 1} = \frac{-3}{1 + 1} = -\frac{3}{2}$$

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) =$$

Solution:

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right)$$

$$= \lim_{x \to \infty} \left[\left(\sqrt{x^2 + x} - x \right) \times \frac{\sqrt{x^2 + x} + x}{\sqrt{x^2 + x} + x} \right]$$

$$= \lim_{x \to \infty} \left(\frac{(x^2 + x) - x^2}{\sqrt{x^2 + x} + x} \right)$$

$$= \lim_{x \to \infty} \left(\frac{x}{\sqrt{x^2 + x} + x} \right)$$

$$= \lim_{x \to \infty} \frac{\frac{x}{x}}{\sqrt{x^2 + x} + \frac{x}{x}} = \lim_{x \to \infty} \frac{1}{\sqrt{\frac{x^2}{x^2} + \frac{x}{x^2}} + 1}$$

$$= \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x}} + 1} = \frac{1}{\sqrt{1 + 0} + 1} = \frac{1}{1 + 1}$$

$$= \frac{1}{2}$$

46)

$$\lim_{x\to\infty}(x^2-5x+4)=$$

Solution:

$$\lim_{x \to \infty} (x^2 - 5x + 4) = \lim_{x \to \infty} x^2 \left(\frac{x^2}{x^2} - \frac{5x}{x^2} + \frac{4}{x^2} \right)$$
$$= \lim_{x \to \infty} x^2 \left(1 - \frac{5}{x} + \frac{4}{x^2} \right) = (\infty)^2 (1 - 0 + 0) = \infty$$

OR

$$\lim_{x \to \infty} (x^2 - 5x + 4) = \lim_{x \to \infty} (x^2) = \infty$$

$$\lim_{x \to -\infty} (x^4 - 2x^3 + 9) =$$

Solution:

$$\lim_{x \to -\infty} (x^4 - 2x^3 + 9) = \lim_{x \to -\infty} x^4 \left(\frac{x^4}{x^4} - \frac{2x^3}{x^4} + \frac{9}{x^4} \right)$$
$$= \lim_{x \to -\infty} x^4 \left(1 - \frac{2}{x} + \frac{9}{x^4} \right) = (-\infty)^4 (1 - 0 + 0) = \infty$$

$$\lim_{x \to -\infty} (x^4 - 2x^3 + 9) = \lim_{x \to -\infty} (x^4) = \infty$$

$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} =$$

$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \lim_{x \to -\infty} \frac{\frac{\sqrt{3x^2 - 8} + \frac{2}{-x}}{\frac{x}{-x} + \frac{5}{-x}}}{\frac{x}{-x} + \frac{5}{-x}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{\frac{3x^2 - 8}{x^2} - \frac{2}{x}}}{-1 - \frac{5}{x}} = \lim_{x \to -\infty} \frac{\sqrt{\frac{3x^2}{-x} + \frac{5}{-x}}}{-1 - \frac{5}{x}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{3 - \frac{8}{x^2} - \frac{2}{x}}}{-1 - \frac{5}{x}} = \frac{\sqrt{3 - 0} - 0}{-1 - 0} = -\sqrt{3}$$

50) The horizontal asymptotes of

$$f(x) = \frac{\sqrt{3x^2 - 8} + 2}{x + 5}$$

Solution:

First, we have to find

$$\lim_{x \to \pm \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5}$$

It is clear from the previous questions (48) and (49) that

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \sqrt{3}$$

and

$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = -\sqrt{3}$$

Thus, the horizontal asymptotes are

$$y = \pm \sqrt{3}$$

52) The horizontal asymptote of

$$f(x) = \frac{7x^2 + 5}{3x^2 + 2}$$

Solution:

First, we have to find

$$\lim_{x \to +\infty} \frac{7x^2 + 5}{3x^2 + 2}$$

$$\lim_{x \to \infty} \frac{7x^2 + 5}{3x^2 + 2} = \lim_{x \to \infty} \frac{\frac{7x^2}{x^2} + \frac{5}{x^2}}{\frac{3x^2}{x^2} + \frac{2}{x^2}} = \lim_{x \to \infty} \frac{7 + \frac{5}{x^2}}{3 + \frac{2}{x^2}} = \frac{7 + 0}{3 + 0} = \frac{7}{3}$$

$$\lim_{x \to -\infty} \frac{7x^2 + 5}{3x^2 + 2} = \lim_{x \to -\infty} \frac{\frac{7x^2}{-x^2} + \frac{5}{-x^2}}{\frac{3x^2}{-x^2} + \frac{2}{-x^2}}$$

$$= \lim_{x \to -\infty} \frac{-7 - \frac{5}{x^2}}{-3 - \frac{2}{x^2}} = \frac{-7 - 0}{-3 - 0} = \frac{7}{3}$$

Thus, the horizontal asymptote is

$$y = \frac{7}{3}$$

49)

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} =$$

Solution:

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 - 8} + 2}{x + 5} = \lim_{x \to \infty} \frac{\frac{\sqrt{3x^2 - 8}}{x} + \frac{2}{x}}{\frac{x}{x} + \frac{5}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{\frac{3x^2 - 8}{x^2}} + \frac{2}{x}}{1 + \frac{5}{x}} = \lim_{x \to \infty} \frac{\sqrt{\frac{3x^2}{x^2} - \frac{8}{x^2}} + \frac{2}{x}}{1 + \frac{5}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 - \frac{8}{x^2}} + \frac{2}{x}}{1 + \frac{5}{x}} = \frac{\sqrt{3 - 0} + 0}{1 + 0} = \sqrt{3}$$

51) The horizontal asymptote of

$$f(x) = \frac{1-x}{2x+1}$$

Solution:

First, we have to find

$$\lim_{x \to \pm \infty} \frac{1 - x}{2x + 1}$$

$$\lim_{x \to \infty} \frac{1 - x}{2x + 1} = \lim_{x \to \infty} \frac{\frac{1}{x} - \frac{x}{x}}{\frac{2x}{x} + \frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{1}{x} - 1}{2 + \frac{1}{x}} = \frac{0 - 1}{2 + 0} = -\frac{1}{2}$$

$$\lim_{x \to -\infty} \frac{1 - x}{2x + 1} = \lim_{x \to -\infty} \frac{\frac{1}{-x} - \frac{x}{-x}}{\frac{2x}{-x} + \frac{1}{-x}} = \lim_{x \to -\infty} \frac{\frac{1}{-x} + 1}{-2 - \frac{1}{x}} = \frac{0 + 1}{-2 - 0}$$
$$= -\frac{1}{2}$$

Thus, the horizontal asymptote is

$$y = -\frac{1}{2}$$

53) The horizontal asymptote of

$$f(x) = \frac{\sqrt{x^2 + 2x - 3}}{2x + 7}$$

Solution:

First, we have to find

$$\lim_{x \to \pm \infty} \frac{\sqrt{x^2 + 2x - 3}}{2x + 7}$$

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} = \lim_{x \to \infty} \frac{\sqrt{x^2 + 2x - 3}}{\frac{2x}{x} + \frac{7}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{\frac{x^2 + 2x - 3}{x^2}}}{2 + \frac{7}{x}} = \lim_{x \to \infty} \frac{\sqrt{\frac{x^2 + 2x - 3}{x^2}}}{2 + \frac{7}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{1 + \frac{2}{x} - \frac{3}{x^2}}}{2 + \frac{7}{x}} = \frac{\sqrt{1 + 0 - 0}}{2 + 0} = \frac{1}{2}$$

$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 2x - 3}}{2x + 7} = \lim_{x \to -\infty} \frac{\sqrt{x^2 + 2x - 3}}{\frac{2x}{-x} + \frac{7}{-x}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{\frac{x^2 + 2x - 3}{2x^2}}}{-2 - \frac{7}{x}} = \lim_{x \to -\infty} \frac{\sqrt{\frac{x^2 + 2x - 3}{x^2}}}{-2 - \frac{7}{x}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{1 + \frac{2}{x} - \frac{3}{x^2}}}{-2 - \frac{7}{x}} = \frac{\sqrt{1 + 0 - 0}}{-2 - 0} = -\frac{1}{2}$$

Thus, the horizontal asymptotes are

$$y = \pm \frac{1}{2}$$

55)

$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 - 8} + 3}{x + 1} =$$

Solution:

$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 - 8} + 3}{x + 1} = \lim_{x \to -\infty} \frac{\frac{\sqrt{4x^2 - 8} + \frac{3}{-x}}{\frac{x}{-x} + \frac{1}{-x}}}{\frac{x}{-x} + \frac{1}{-x}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{\frac{4x^2 - 8}{x^2} - \frac{3}{x}}}{-1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{\sqrt{\frac{4x^2 - 8}{x^2} - \frac{8}{x^2}} - \frac{3}{x}}{-1 - \frac{1}{x}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{4 - \frac{8}{x^2}} - \frac{3}{x}}{-1 - \frac{1}{x}} = \frac{\sqrt{4 - 0} - 0}{-1 - 0} = -2$$

54) The horizontal asymptote of

$$f(x) = \frac{\sqrt{2x-3}}{2x^2 + 7x - 1}$$

Solution:

First, we have to find

$$\lim_{x \to \pm \infty} \frac{\sqrt{2x-3}}{2x^2 + 7x - 1}$$

$$\lim_{x \to \infty} \frac{\sqrt{2x - 3}}{2x^2 + 7x - 1} = \lim_{x \to \infty} \frac{\frac{\sqrt{2x - 3}}{x^2}}{\frac{2x^2}{x^2} + \frac{7x}{x^2} - \frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{\frac{2x - 3}{x^4}}}{2 + \frac{7}{x} - \frac{1}{x^2}} = \lim_{x \to \infty} \frac{\sqrt{\frac{2x}{x^4} - \frac{3}{x^4}}}{2 + \frac{7}{x} - \frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{\frac{2}{x^3} - \frac{3}{x^4}}}{2 + \frac{7}{x} - \frac{1}{x^2}} = \frac{\sqrt{0 - 0}}{2 + 0 - 0} = \frac{0}{2} = 0$$

$$\lim_{x \to -\infty} \frac{\sqrt{2x - 3}}{2x^2 + 7x - 1} = \lim_{x \to -\infty} \frac{\frac{\sqrt{2x - 3}}{-x^2}}{\frac{2x^2}{-x^2} + \frac{7x}{-x^2} - \frac{1}{-x^2}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{\frac{2x - 3}{x^4}}}{-2 - \frac{7}{x} + \frac{1}{x^2}} = \lim_{x \to -\infty} \frac{\sqrt{\frac{2x}{x^4} - \frac{3}{x^4}}}{-2 - \frac{7}{x} + \frac{1}{x^2}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{\frac{2}{x^3} - \frac{3}{x^4}}}{-2 - \frac{7}{x} + \frac{1}{x^2}} = \frac{\sqrt{0 - 0}}{-2 - 0 + 0} = \frac{0}{-2} = 0$$

Thus, the horizontal asymptote is

$$v = 0$$

56)

$$\lim_{x \to \infty} \frac{\sqrt{4x^2 - 8} + 3}{x + 1} =$$

Solution:

$$\lim_{x \to \infty} \frac{\sqrt{4x^2 - 8} + 3}{x + 1} = \lim_{x \to \infty} \frac{\frac{\sqrt{4x^2 - 8} + \frac{3}{x}}{x} + \frac{1}{x}}{\frac{x}{x} + \frac{1}{x}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{\frac{4x^2 - 8}{x^2}} + \frac{3}{x}}{1 + \frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{\frac{4x^2}{x^2} - \frac{8}{x^2}} + \frac{3}{x}}{1 + \frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{4 - \frac{8}{x^2}} + \frac{3}{x}}{1 + \frac{1}{x}} = \frac{\sqrt{4 - 0} + 0}{1 + 0} = 2$$

Workshop Solutions to Chapter 4 (chapter 3)

•	(chapter 3)
1) If $f(x)$ is a differentiable function, then $f'(x) = \frac{\text{Solution:}}{x}$	2) If $f(x) = 4x^2$, then $f'(x) =$ Solution:
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{4(x+h)^2 - 4x^2}{h}$
3) If $f(x) = x^2 - 3$, then $f'(x) =$ Solution:	4) If $f(x) = \sqrt{x}$, $x \ge 0$, then $f'(x) = \frac{\text{Solution:}}{}$
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{[(x+h)^2 - 3] - [x^2 - 3]}{h}$	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$
5) If f is a differentiable function at a , then f is a continuous function at a .	6) If f is a continuous function at a, then f is a differentiable function at a. Solution: False
7) If $y = x^4 + 5x^2 + 3$, then $y' =$	8) If $y = x^4 - 5x^2 + 3$, then $y' =$
Solution:	Solution:
$y' = 4x^3 + 10x$	
$y' = 4x^3 + 10x$ 9) If $y = x^{-5/2}$, then $y' = \frac{\text{Solution:}}{}$	$y' = 4x^{3} - 10x$ 10) If $y = \frac{1}{3x^{3}} + 2\sqrt{x} = \frac{1}{3}x^{-3} + 2x^{1/2}$, then $y' = \frac{1}{3}x^{-3} + 2x^{1/2}$
$y' = -\frac{5}{2}x^{-\frac{5}{2}-1} = -\frac{5}{2}x^{-7/2}$	Solution: $y' = (-3)\left(\frac{1}{3}\right)x^{-3-1} + \left(\frac{1}{2}\right)(2)x^{\frac{1}{2}-1}$
	$= -x^{-4} + x^{-1/2} = -\frac{1}{x^4} + \frac{1}{x^{1/2}} = -\frac{1}{x^4} + \frac{1}{\sqrt{x}}$ 12) If $y = (x^3 + 3)(x^2 - 1)$, then $y' =$
11) If $y = (x - 3)(x - 2)$, then $y' =$	12) If $y = (x^3 + 3)(x^2 - 1)$, then $y' =$
Solution:	Solution:
$y = (x-3)(x-2) = x^2 - 5x + 6$ $y' = 2x - 5$ 13) If $y = \sqrt{x}(2x + 1)$, then $y' = 0$	$y = (x^{3} + 3)(x^{2} - 1) = x^{5} - x^{3} + 3x^{2} - 3$ $y' = 5x^{4} - 3x^{2} + 6x$ 14) If $y = \frac{x+3}{x-2}$, then $y' = x^{2} + 3x^{2} + 3x^{2}$
Solution:	Solution:
$y = \sqrt{x}(2x+1) = 2x\sqrt{x} + \sqrt{x} = 2x^{\frac{3}{2}} + x^{\frac{1}{2}}$ $y' = \left(\frac{3}{2}\right)(2)x^{\frac{3}{2}-1} + \left(\frac{1}{2}\right)x^{\frac{1}{2}-1} = 3x^{\frac{1}{2}} + \frac{1}{2}x^{-\frac{1}{2}}$	Use the rule $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$
$= 3\sqrt{x} + \frac{1}{2\sqrt{x}}$	$y' = \frac{(1)(x-2) - (x+3)(1)}{(x-2)^2} = \frac{x-2-x-3}{(x-2)^2} = \frac{-5}{(x-2)^2}$
OR Use the rule $(f.g)' = f'g + fg'$	$=-\frac{5}{(x-2)^2}$
$y' = (2)(\sqrt{x}) + (\frac{1}{2\sqrt{x}})(2x+1) = 2\sqrt{x} + \frac{2x+1}{2\sqrt{x}}$	
15) If $y = \frac{x+3}{x-2}$, then $y' _{x=4} =$	16) If $y = \frac{x-1}{x+2}$, then $y' =$
Solution: $y' = \frac{(1)(x-2) - (x+3)(1)}{(x-2)^2} = \frac{x-2-x-3}{(x-2)^2}$	Solution: Use the rule $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$
$= \frac{-5}{(x-2)^2} = -\frac{5}{(x-2)^2}$ $y' _{x=4} = -\frac{5}{(4-2)^2} = -\frac{5}{4}$	$y' = \frac{(1)(x+2) - (x-1)(1)}{(x+2)^2} = \frac{x+2-x+1}{(x+2)^2} = \frac{3}{(x+2)^2}$
(7-2) 4	
1	ı .

17) If $y = \sqrt{3x^2 + 6x}$,	then $y' =$
Solution:	

 $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$ Use the rule

$$y' = \frac{6x+6}{2\sqrt{3}x^2+6x} = \frac{6(x+1)}{2\sqrt{3}x^2+6x} = \frac{3(x+1)}{\sqrt{3}x^2+6x}$$

19) The tangent line equation to the curve $y = x^2 + 2$ at the point (1,3) is

Solution:

First, we have to find the slope of the curve which is

$$y' = 2x$$

Thus, the slope at x = 1 is

$$y'|_{x=1} = 2(1) = 2$$

Hence, the tangent line equation passing through the point (1,3) with slope m=2 is

$$y-3 = 2(x-1) y-3 = 2x-2 y = 2x-2+3 y = 2x + 1$$

21) The tangent line equation to the curve $y = 3x^2 - 13$ at the point (2,-1) is

Solution:

First, we have to find the slope of the curve which is

$$y' = 6x$$

Thus, the slope at x = 2 is

$$y'|_{x=2} = 6(2) = 12$$

Hence, the tangent line equation passing through the point (2,-1) with slope m=12 is

$$y - (-1) = 12(x - 2)$$

$$y + 1 = 12x - 24$$

$$y = 12x - 24 - 1$$

$$y = 12x - 25$$

23) If $y = xe^x$, then y' =

Solution:

Use the rules (f.g)' = f'g + fg' and $(e^u) = e^u.u'$

$$y' = (1)(e^x) + (x)(e^x) = e^x + xe^x = e^x(1+x)$$

25) If $x^2 - y^2 = 4$, then y' =

Solution:

$$2x - 2yy' = 0$$

$$-2yy' = -2x$$

$$y' = \frac{-2x}{-2y}$$

$$y' = \frac{x}{-2}$$

 $y' = \frac{x^2}{y}$ 27) If $y = \frac{x+1}{x+2}$, then $y' = \frac{\text{Solution:}}{y' + y' + y'}$

Use the rule $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$

$$y' = \frac{(1)(x+2) - (x+1)(1)}{(x+2)^2} = \frac{x+2-x-1}{(x+2)^2}$$
$$= \frac{1}{(x+2)^2}$$

18) If $y = \sqrt{3x^2 + 6x}$, then $y'|_{x=1} =$

$$y' = \frac{6x+6}{2\sqrt{3x^2+6x}} = \frac{6(x+1)}{2\sqrt{3x^2+6x}} = \frac{3(x+1)}{\sqrt{3x^2+6x}}$$

$$y'|_{x=1} = \frac{3((1)+1)}{\sqrt{3(1)^2+6(1)}} = \frac{6}{\sqrt{9}} = \frac{6}{3} = 2$$

20) The tangent line equation to the curve $y = \frac{2x}{x+1}$ at the point (0.0) is

Solution:

First, we have to find the slope of the curve which is

$$y' = \frac{(2)(x+1) - (2x)(1)}{(x+1)^2} = \frac{2x+2-2x}{(x+1)^2} = \frac{2}{(x+1)^2}$$

Thus, the slope at x = 0 is

$$y'|_{x=0} = \frac{2}{(0+1)^2} = 2$$

Hence, the tangent line equation passing through the point (0.0) with slope m=2 is

$$y - 0 = (2)(x - 0)$$
$$y = 2x$$

22) The tangent line equation to the curve

$$y = 3x^2 + 2x + 5$$
 at the point (0,5) is

Solution:

First, we have to find the slope of the curve which is

$$y' = 6x + 2$$

Thus, the slope at x = 2 is

$$y'|_{x=0} = 6(0) + 2 = 2$$

Hence, the tangent line equation passing through the point

(0,5) with slope m=2 is

$$y-5 = 2(x-0)$$

$$y-5 = 2x$$

$$y = 2x + 5$$

24) If $y = x - e^x$, then y'' =

Solution:

Use the rules (f-g)' = f' - g' and $(e^u) = e^u \cdot u'$

$$y' = 1 - e^{x}$$

$$y'' = -e^{x}$$
26) If $x^{2} + y^{2} = 4$, then $y' = 0$

Solution:

$$2x + 2yy' = 0$$

$$2yy' = -2x$$

$$y' = \frac{-2x}{2y}$$

$$y' = -\frac{x}{2}$$

$$y' = -\frac{x}{y}$$
28) If $y = \frac{1}{\sqrt[2]{x^5}} + \sec x$, then $y' = \frac{\text{Solution:}}{\sqrt{x^5}}$

Use the rules

$$(f+g)' = f' + g'$$
 and $(\sec u)' = \sec u \tan u \cdot u'$

$$y = \frac{1}{\sqrt[2]{x^5}} + \sec x = x^{-\frac{5}{2}} + \sec x$$
$$y' = \left(-\frac{5}{2}\right)x^{-\frac{5}{2}-1} + \sec x \tan x = -\frac{5}{2}x^{-7/2} + \sec x \tan x$$

29) If $y = \tan^{-1}(x^3)$, then $y' =$	30) If $y = \tan x - x$, then $y' =$
Solution:	Solution:
Use the rule $(\tan^{-1} u)' = \frac{u'}{1+u^2}$	Use the rules
	$(f-g)' = f' - g' \text{and} (\tan u)' = \sec^2 u \cdot u'$
$y' = \frac{1}{1 + (x^3)^2} \cdot (3x^2) = \frac{3x^2}{1 + x^6}$	$y' = \sec^2 x - 1$
2 4 11 1	con con ging
31) If $y = \sec^2 x - 1$, then $y' =$	32) If $y = x^{\sin x}$, then $y' =$
Solution:	Solution:
Use the rules $(f - g)' = f' - g'$, $(u)^n = n(u)^{n-1} \cdot u'$	Use the rule $(\sin u)' = \cos u \cdot u'$
and $(\sec u)' = \sec u \tan u \cdot u'$	cin «
	$y = x^{\sin x}$
$y' = 2 \sec x \cdot \sec x \tan x = 2 \sec^2 x \tan x$	$ \ln y = \ln x^{\sin x} $
	$\ln y = \sin x \cdot \ln x$
	$\frac{y'}{y} = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x} = \cos x \cdot \ln x + \frac{\sin x}{x}$
	$y' = y \left(\cos x \cdot \ln x + \frac{\sin x}{x}\right) = x^{\sin x} \left(\cos x \cdot \ln x + \frac{\sin x}{x}\right)$ 34) If $y = (2x^2 + \csc x)^9$, then $y' =$
$22) \text{ If } \alpha = \alpha \cos x \text{th } \alpha = \alpha' = 0$	$\frac{\chi}{\chi}$
33) If $y = x^{\cos x}$, then $y' =$	
Solution:	Solution:
Use the rule $(\cos u)' = -\sin u \cdot u'$	Use the rules $\binom{n}{2}$
cosx	$(u)^n = n(u)^{n-1} \cdot u' \text{and} (\csc u)' = -\csc u \cot u \cdot u'$
$y = x^{\cos x}$	1 0/2 2
$\ln y = \ln x^{\cos x}$	$y' = 9(2x^2 + \csc x)^8 \cdot (4x - \csc x \cot x)$
$\ln y = \cos x \cdot \ln x$	
$\frac{y'}{y} = -\sin x \cdot \ln x + \cos x \cdot \frac{1}{x} = -\sin x \cdot \ln x + \frac{\cos x}{x}$	
$y' = y\left(-\sin x \cdot \ln x + \frac{\cos x}{x}\right)$	
$=x^{\cos x}\left(\frac{\cos x}{\cos x}-\sin x\cdot \ln x\right)$	
$= x^{\cos x} \left(\frac{\cos x}{x} - \sin x \cdot \ln x \right)$ 35) If $y = \frac{5^x}{\cot x}$, then $y' =$	26) 15
35) If $y = \frac{s}{\cot x}$, then $y' = \frac{s}{\cot x}$	36) If $y = e^{2x}$, then $y^{(6)} =$
Solution:	Solution:
Use the rules	Use the rule $(e^u)' = e^u \cdot u'$
(f)' $f'g - fg'$	2 -2x
$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}, (a^u)' = a^u \cdot \ln a \cdot u'$	$y' = 2e^{2x}$
and $(\csc u)' = -\csc u \cot u \cdot u'$	$y'' = 4e^{2x}$ $y''' = 8e^{2x}$
	$y = 6e^{-x}$ $v^{(4)} = 16e^{2x}$
$(5^x \ln 5)(\cot x) - (5^x)(-\csc^2 x)$	$y^{(5)} = 10e^{-x}$ $y^{(5)} = 32e^{2x}$
$y' = \frac{(5^x \ln 5)(\cot x) - (5^x)(-\csc^2 x)}{(\cot x)^2}$	$y^{(6)} = 32e^{-x}$ $y^{(6)} = 64e^{2x}$
$5^x(\ln 5 \cot x + \csc^2 x)$	$y^{(e)} = 64e^{-x}$
$=\frac{1}{\cot^2 x}$	
$= \frac{5^{x}(\ln 5 \cot x + \csc^{2} x)}{\cot^{2} x}$ 37) If $y = x^{-2}e^{\sin x}$, then $y' =$	38) If $y = 5^{\tan x}$, then $y' =$
Solution:	Solution:
Use the rules $(f.g)' = f'g + fg'$, $(e^u) = e^u.u'$	Use the rules
and $(\sin u)' = \cos u \cdot u'$	$(a^u)' = a^u \cdot \ln a \cdot u'$ and $(\tan u)' = \sec^2 u \cdot u'$
$\int_{-\infty}^{\infty} \frac{1}{2\pi i} \left(\frac{1}{2\pi i} - \frac{1}{2\pi i} \left(\frac{1}{2\pi i} - \frac{1}{2\pi i} \right) \right) dx$	$v' = 5^{\tan x} \cdot \ln 5 \cdot \sec^2 x$
$y' = (-2x^{-3})(e^{\sin x}) + (x^{-2})(e^{\sin x} \cdot \cos x)$	y = 3 . If 3 . Sec x
$= -2x^{-3}e^{\sin x} + x^{-2}\cos x e^{\sin x}$	
$= x^{-3}e^{\sin x}(-2 + x\cos x)$	
$= x^{-3}e^{\sin x}(x\cos x - 2)$	(6)
39) If $x^2 + y^2 = 3xy + 7$, then $y' =$	40) If $y = \sin^3(4x)$, then $y^{(6)} = \frac{1}{y'}$
Solution:	Solution:
2x + 2yy' = 3y + 3xy'	Use the rules
2yy' - 3xy' = 3y - 2x	$(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$
y'(2y - 3x) = 3y - 2x	

 $y' = 3\sin^2(4x).\cos(4x).(4)$ = 12 \sin^2(4x).\cos(4x)

43) If $y = 3^x \cot x$, then $y' = \frac{1}{\text{Solution:}}$ Use the rules $(f,g)' = f'g + fg'$, $(a^u)' = a^u \cdot \ln a \cdot u'$ $y' = (3^x \cdot \ln 3)(\cot x) + (3^x)(-\csc^2 x)$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \csc^2 x$ $= 3^x \cdot \ln 3 \cot x - 3^x \cot^2 x$ $= x \cdot \ln f^{(4x)}(x) = \cos x$ $f'''(x) = -\sin x$ $f'''(x) = -\cos x$ $f'''(x) = -\cos x$ $f^{(4x)}(x) = \cos x$ $f^{(4x)}(x) = \sin x$ $f^{(4x)}(x) = \cos x$ $f^{(4x)}(x) = \sin x$ $f^{(4x)}(x) = \cos x$ $f^{(4x)}(x) = \sin x$ $f^{(4x)}$		
Use the rules $(f,g)' = f'g + fg', \ (a'')' = a'' \ln a \cdot a' \ y' = (3^x \ln 3)(\cot x) + (3^x)(-\csc^2 x) \ = 3^x \ln 3 \cot x - 3^x \csc^2 x \ = 3^x (\ln 3 \cot x - \csc^2 x)$ 43) If $f(x) = \cos x$, then $f^{(15)}(x) = 50$ Into $f^{(10)}(x) = \cos x$ whenever n is a multiple of 4. Hence, $f^{(12)}(x) = \cos x \ f^{(43)}(x) = -\sin x \ f^{(43)}(x) = -\sin x$ Note: $f^{(19)}(x) = \cos x \ f^{(43)}(x) = -\sin x$ $f^{(43)}(x) = \cos x \ f^{(43)}(x) = -\sin x$ $f^{(43)}(x) = \cos x \ f^{(43)}(x) = -\sin x$ Note: $f^{(19)}(x) = \cos x \ f^{(43)}(x) = -\sin x$ $f^{(43)}(x) = -\sin x$ $f^{(43)}(x) = -\sin x$ Note: $f^{(43)}(x) = \cos x \ f^{(43)}(x) = -\sin x$ $f^{(43)}(x) = -\sin x$ $f^{(43)}(x) = -\sin x$ $f^{(43)}(x) = -\sin x$ $f^{(43)}(x) = -\sin x$ Note: $f^{(43)}(x) = \sin x$ $f^{(43)}(x) = -\sin x$ $f^{(53)}(x) = -\sin x$ f	41) If $y = 3^x \cot x$, then $y' =$	42) If $y = (2x^2 + \sec x)^7$, then $y' =$
and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = (3^x \ln 3)(\cot x) + (3^x)(-\csc^2 x) = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \csc^2 x = 3^x \ln 3 \cot x - 3^x \cot $	Solution:	Solution:
$y' = (3^{x} \ln 3)(\cot x) + (3^{x})(-\csc^{2} x) \\ = 3^{x} \ln 3 \cot x - 3^{x} \csc^{2} x \\ = 3^{x}(\ln 3 \cot x - \csc^{2} x)$ $43) \text{ if } f(x) = \cos x \text{ , then } f^{(45)}(x) = \\ \frac{50\text{lution:}}{f''(x) = -\cos x} \\ f'''(x) = -\cos x \\ f'''(x) = \cos x \\ f^{(165)}(x) = -\cos x \\ f^{(45)}(x) = \cos x \\ f^{(45)}(x) = -\sin x \\ \frac{5^{(45)}(x) = -\sin x}{f^{(45)}(x) = -\sin x} \\ \frac{5^{(45)}(x) = -\sin x}{f^{(45)}(x) = -\cos x} \\ \frac{5^{(45)}(x) = -\sin x}{f^{(55)}(x) = -\sin x} \\ \frac{5^{(45)}(x) = -\sin x}{f^{(55)}(x) = -\sin x} \\ \frac{5^{(45)}(x) = -\sin x}{f^{(55)}(x) = -\sin x} \\ \frac{5^{(45)}(x) = -\cos x}{f^{(55)}(x) = -\sin x} \\ \frac{5^{(45)}(x) = -\sin x}{f^{(55)}(x) = -\sin x} \\ \frac{5^{(45)}(x) = -\sin x}{f^{(55)}(x) = -\cos x} \\ \frac{5^{(45)}(x) = -\sin x}{f^{(55)}(x) = -\sin x} \\ \frac{5^{(45)}(x) = -\sin x}{f^{(55)}(x) = -\sin x} \\ \frac{f^{(45)}(x) = -\sin x}{f^{(55)}(x) = -\cos x} \\ \frac{f^{(45)}(x) = -\cos x}{f^{(55)}(x) = -\cos x} \\ \frac{f^{(45)}(x) = -\sin x}{f^{(55)}(x) = -\cos x} \\ \frac{f^{(55)}(x) = -\cos x}{f^{(55)}(x) = -\cos x} \\ \frac{f^{(55)}(x) = -\cos x}{f^{(55)}(x) = -\cos x} \\ \frac$	Use the rules $(f.g)' = f'g + fg'$, $(a^u)' = a^u \cdot \ln a \cdot u'$	Use the rules
$ = 3^{x} \ln 3 \cot x - 3^{x} \csc^{2} x \\ = 3^{x} (\ln 3 \cot x - \csc^{2} x) $ 43) If $f(x) = \cos x$, then $f^{(45)}(x) = \cos x$ f''(x) = $-\sin x$ f''(x) = $-\cos x$ f'(x) cos x f'(x) = $-\sin x$ D'(x) in x = $-\cos x$ D'(x) cos x f'(x) = $-\sin x$ D'(x) cos x f'(x) = $-\sin x$ D'(x) cos x f'(x) = $-\sin x$ D'(x) cos x f'(x) = $-\sin x$ D'(x) cos x f'(x) = $-\sin x$ D'(x) cos x D'(x) cos	and $(\cot u)' = -\csc^2 u \cdot u'$	$(u)^n = n(u)^{n-1} \cdot u'$ and $(\sec u)' = \sec u \tan u \cdot u'$
		$y' = 7(2x^2 + \sec x)^6 \cdot (4x + \sec x \tan x)$
43) If $f(x) = \cos x$, then $f^{(45)}(x) = \frac{1}{\text{Solution:}}$ $f'(x) = -\sin x \\ f''(x) = -\cos x \\ f^{(4)}(x) = \cos x \\ f^{(4)}(x) = \cos x \\ f^{(45)}(x) = \cos x \\ f^{(45)}(x) = -\cos x \\ f^{(45)}(x) = -\sin x \\ f^{$		
Solution: $f''(x) = -\sin x \\ f'''(x) = -\cos x \\ f'''(x) = -\cos x \\ f'''(x) = -\cos x \\ f'(x) = -\sin x \\ Note: f^{(n)}(x) = \cos x \\ f'(x) = -\cos x \\ f'(x) = -\sin x \\ Note: f^{(n)}(x) = \cos x \\ f'(x) = -\sin x \\ f'(x) = -\sin x \\ Note: D^{n}(\sin x) = \sin x \\ D^{4}(\sin x) = \sin x \\ D^{4}(\sin x) = \sin x \\ D^{4}(\sin x) = -\cos x \\ D^{4$	` ,	45
$f''(x) = -\sin x \\ f''(x) = \cos x \\ f''(x) = \sin x \\ f''$, , , , ,
$ \begin{aligned} f'''(x) &= -\cos x \\ f'''(x) &= -\cos x \\ f'''(x) &= \cos x \\ f^{(4)}(x) &= \cos x \\ f^{(4)}(x) &= \cos x \end{aligned} \\ \text{Note: } f^{(n)}(x) &= \cos x \text{ whenever } n \text{ is a multiple of 4.} \\ \text{Hence, } \\ f^{(44)}(x) &= \cos x \\ f^{(45)}(x) &= -\sin x \end{aligned} \\ \textbf{Note: } f^{(n)}(x) &= \cos x \text{ whenever } n \text{ is a multiple of 4.} \\ \text{Hence, } \\ f^{(45)}(x) &= -\sin x \end{aligned} \\ \textbf{Note: } D^{n}(\sin x) &= \sin x \\ D^{45}(\sin x) &= -\cos x \end{aligned} \\ \textbf{Note: } D^{n}(\sin x) &= \sin x \\ D^{45}(\sin x) &= \sin x \\ D^{45}(\sin x) &= -\cos x \end{aligned} \\ \textbf{Note: } D^{n}(\sin x) &= \sin x \\ D^{45}(\sin x) &= \sin x \\ D^{45}(\sin x) &= -\sin x \\ D^{46}(\sin x) &= -\cos x \\ D^{46}(\sin x) &= -\sin x \\ D^{47}(\sin x) &= -\cos x \\ D^{46}(\sin x) &= -\sin x \\ D^{47}(\sin x) &= -\cos x \\ D^{46}(\sin x) &= -\sin x \\ D^{47}(\sin x) &= -\cos x \\ D^{46}(\sin x) &= -\sin x \\ D^{47}(\sin x) &= -\sin x \\ D^{48}(\sin x) &= -\cos x \\ D^{46}(\sin x) &= -\cos x \\ D^{48}(\sin x) &= -\cos x \\ D^{48}(\sin x) &= -\cos x \\ D^{48}(\sin x) &= -\cos x \\ D^{49}(\sin x) &= -\cos x \\ D^{49}(\sin x) &= -\cos x \\ D^{49}(\sin x) &= -$		
$ f^{(*)}(x) = \sin x \\ f^{(4)}(x) = \cos x \\ \text{Note: } f^{(n)}(x) = \cos x \text{ whenever } n \text{ is a multiple of 4.} \\ \text{Hence, } f^{(44)}(x) = \cos x \\ f^{(45)}(x) = -\sin x \\ \text{Note: } f^{(35)}(x) = -\sin x \\ \text{Note: } f^{(44)}(x) = -\sin x \\ \text{Note: } f^{(45)}(x) = $		· · ·
Note: $f^{(4)}(x) = \cos x$ whenever n is a multiple of 4. Hence, $f^{(4)}(x) = \cos x \text{ whenever } n \text{ is a multiple of 4.}$ Hence, $f^{(44)}(x) = \cos x \\ f^{(45)}(x) = -\sin x$ Note: $f^{(8)}(x) = \sin x \text{ whenever } n \text{ is a multiple of 4.}$ Hence, $f^{(44)}(x) = \cos x \\ f^{(45)}(x) = -\sin x \text{ whenever } n \text{ is a multiple of 4.}$ Hence, $f^{(44)}(x) = \cos x \\ f^{(45)}(x) = -\sin x \text{ whenever } n \text{ is a multiple of 4.}$ Hence, $f^{(44)}(x) = \cos x \\ f^{(45)}(x) = -\sin x \text{ whenever } n \text{ is a multiple of 4.}$ Hence, $f^{(44)}(x) = \cos x \\ f^{(45)}(x) = -\sin x \text{ whenever } n \text{ is a multiple of 4.}$ Hence, $f^{(44)}(x) = \cos x \\ f^{(45)}(x) = -\sin x \text{ whenever } n \text{ is a multiple of 4.}$ Hence, $f^{(44)}(x) = \cos x \\ f^{(45)}(x) = -\sin x \\ f^{(45)}(x) = -\sin x \\ f^{(45)}(x) = -\sin x \\ f^{(46)}(x) = -\sin x \\ f^{45}(\sin x) = \sin x \\ f^{45}(\sin x) = \sin$, , ,
Note: $f^{(n)}(x) = \cos x$ whenever n is a multiple of 4. Hence, $f^{(44)}(x) = \cos x \\ f^{(45)}(x) = -\sin x$ $f^{(45)}(x) = -\sin x$ $f^{(1)} = \frac{\sin x}{f^{(2)}}(1) = \cos x$ $f^{(1)} = \frac{1 - 2 \ln x}{f^{(2)}}(1) = \frac{1 - 2 \ln x}{f^{$, ,
$ f^{(44)}(x) = \cos x \\ f^{(45)}(x) = -\sin x \\ $	Note: $f^{(n)}(x) = \cos x$ whenever n is a multiple of 4.	Note: $D^n(\sin x) = \sin x$ whenever n is a multiple of 4.
$D^{46}_{(\sin x)} = -\sin x \\ D^{47}_{(\sin x)} = -\sin x \\ D^{47}_{(\sin x)} = -\cos x$ $D^{47}_{(\sin x)} = -\cos x$ $46) \text{ If } f(x) = \frac{\ln x}{x^2}, \text{ then } f'(1) = \frac{1}{\sin x}$ $\ln y = \ln x^{x}$ $\ln y = \ln x + 1$ $y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $Use the rules (\cot^{-1} u)' = -\frac{u'}{1 + u^{2}} \text{ and } (e^{u}) = e^{u}.u'$ $y' = -\frac{1}{1 + (e^{x})^{2}}.e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ $29) \text{ If } y = \sin^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = -\frac{e^{x}}{\sqrt{1 - u^{2}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If } y = \cos^{-1}(e^{x}), \text{ then } y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}}.e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $29) \text{ If }$		` ,
45) If $y = x^{x}$, then $y' = \frac{Solution:}{Solution:}$ Use the rule $(\ln u)' = \frac{u'}{u}$ $y = x^{x}$ $\ln y = \ln x^{x}$ $\ln y = \ln x + 1$ $y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ 46) If $f(x) = \frac{\ln x}{x^{2}}$, then $f'(1) = \frac{Solution:}{Solution:}$ Use the rules $(\frac{f}{g})' = \frac{f'g - fg'}{g^{2}}$ and $(\ln u)' = \frac{u'}{u}$ $f'(x) = \frac{\left(\frac{1}{x}\right)(x^{2}) - (\ln x)(2x)}{x^{4}} = \frac{x - 2x \ln x}{x^{4}}$ $= \frac{x(1 - 2 \ln x)}{x^{4}} = \frac{x - 2x \ln x}{x^{4}}$ $= \frac{x(1 - 2 \ln x)}{x^{4}} = \frac{x - 2x \ln x}{x^{4}}$ $= \frac{x(1 - 2 \ln x)}{x^{4}} = \frac{x - 2x \ln x}{x^{4}}$ $= \frac{x(1 - 2 \ln x)}{x^{4}} = \frac{x - 2x \ln x}{x^{4}}$ $= \frac{x(1 - 2 \ln x)}{x^{4}} = \frac{x - 2x \ln x}{x^{4}}$ $= \frac{x(1 - 2 \ln x)}{x^{4}} = \frac{x - 2x \ln x}{x^{4}}$ $= \frac{x - 2x \ln x}{x^{4}} = \frac{x - 2x \ln x}{x^{4}}$ $= \frac{x - 2x \ln x}{x^{4}} = \frac{x - 2x \ln x}{x^{4}} = \frac{x - 2x \ln x}{x^{4}} = \frac{x - 2x \ln x}{x^{4}}$ $= \frac{x - 2x \ln x}{x^{4}} = \frac{x - 2x \ln x}{x^$	$\int_{C} f(x) = -\sin x$	` ,
45) If $y = x^x$, then $y' = \frac{1}{1 + (e^x)^2}$. $e^x = \frac{e^x}{1 + e^{2x}}$ 46) If $f(x) = \frac{\ln x}{x^2}$, then $f'(1) = \frac{1}{1 + (e^x)^2}$. $e^x = \frac{e^x}{1 + e^{2x}}$ 46) If $f(x) = \frac{\ln x}{x^2}$, then $f'(1) = \frac{1}{1 + (e^x)^2}$. $f'(1) = \frac{1}{2} = \frac{1}{$		
Solution: Use the rule $(\ln u)' = \frac{u'}{u}$ Use the rule $(\ln u)' = \frac{u'}{u}$ $y = x^{x}$ $\ln y = \ln x^{x}$ $\ln y = x \ln x$ $\frac{y'}{y} = (1)(\ln x) + (x)\left(\frac{1}{x}\right)$ $\frac{y'}{y} = \ln x + 1$ $y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $\frac{47}{1} \text{ if } y = \cot^{-1}(e^{x}) \text{ , then } y' = \frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ 48) If $y = \tan^{-1}(e^{x}) \text{ , then } y' = \frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ 49) If $y = \sin^{-1}(e^{x})$, then $y' = \frac{1}{1 - (e^{x})^{2}} \cdot e^{x} = \frac{e^{x}}{1 - e^{2x}}$ 49) If $y = \cos(2x^{3})$, then $y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 50) If $y = \csc^{-1}(e^{x})$, then $y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 50) If $y = \cos^{-1}(e^{x})$, then $y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 51) If $y = \cos(2x^{3})$, then $y' = \frac{1}{2}$ 52) If $y = \csc^{-1}(e^{x})$ and $(e^{u}) = e^{u} \cdot u'$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 52) If $y = \csc^{-1}(e^{x})$ and $(e^{u}) = e^{u} \cdot u'$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 51) If $y = \cos(2x^{3})$, then $y' = \frac{1}{2}$ 52) If $y = \csc^{-1}(e^{x})$ and $(e^{u}) = e^{u} \cdot u'$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 52) If $y = \csc^{-1}(e^{x})$ and $(e^{u}) = e^{u} \cdot u'$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 51) If $y = \cos(2x^{3})$, then $y' = \frac{1}{2}$ 52) If $y = \csc^{-1}(e^{x})$ and $(e^{u}) = e^{u} \cdot u'$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 52) If $y = \csc^{-1}(e^{x})$ and $(e^{u}) = e^{u} \cdot u'$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 52) If $y = \csc^{-1}(e^{x})$ and $(e^{u}) = e^{u} \cdot u'$ Use the rules $(\cos^{-1}(e^{x})) = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 51) If $y = \cos(2x^{3})$, then $y' = \cos(2x^{3})$ and $(e^{u}) = e^{u} \cdot u'$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 52) If $y = \csc^{-1}(e^{x}) = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ 53) If $y = \cot^{-1}(e^{x}) = -\frac{e^{x}}{$	45) If $v = r^x$ then $v' =$	$\frac{D}{\ln x} = \frac{1}{\ln x}$
Use the rule $(\ln u)' = \frac{u}{u}$ $y = x^{x}$ $\ln y = \ln x^{x}$ $\ln y = x \ln x$ $\ln y = x \ln x$ $\int y' = (1)(\ln x) + (x)(\frac{1}{x})$ $\frac{y'}{y} = \ln x + 1$ $y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $\frac{y'}{y} = \ln x + 1$ $y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $\frac{y'}{y} = \frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ $\frac{y'}{y} = \frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ $\frac{y'}{y} = \frac{1}{1 - (e^{x})} \cdot \frac{e^{x}}{1 - e^{2x}}$ Use the rules $(\cos^{-1} u)' = -\frac{u'}{1 + u^{2}}$ and $(e^{u}) = e^{u} \cdot u'$ $y' = \frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 - (e^{x})} \cdot \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 - (e^{x})} \cdot \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 - (e^{x})} \cdot \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 - (e^{x})^{2}} \cdot e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 - (e^{x})^{2}} \cdot e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = -\frac{1}{1 - (e^{x})^{2}} \cdot e^{x} = \frac{e^{x}}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 - (e^{x})} \cdot \frac{e^{x}}{1 + e^{2x}} \text{and} (e^{u}) = e^{u} \cdot u'$ $y' = \frac{1}{1 - (e^{x})^{2}} \cdot e^{x} = \frac{e^{x}}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = -\frac{1}{1 - (e^{x})^{2}} \cdot e^{x} = -\frac{e^{x}}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot \frac{1 - 2 \ln x}{1 - 2 \ln x}$ $y' = \frac{1}{1 + (e^{x})} \cdot 1$	Solution:	χ.
	Use the rule $(\ln u)' = \frac{u'}{u}$	
	$v = x^x$	
$\frac{y'}{y} = (1)(\ln x) + (x)\left(\frac{1}{x}\right)$ $\frac{y'}{y} = \ln x + 1$ $y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $\frac{y'}{y} = \ln x + 1$ $y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $\frac{Solution:}{1}$ Use the rules $(\cot^{-1}u)' = -\frac{u'}{1 + u^{2}}$ and $(e^{u}) = e^{u}.u'$ $y' = -\frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = \frac{e^{x}}{1 + e^{2x}}$ Use the rules $(\sin^{-1}u)' = \frac{u'}{\sqrt{1 - u^{2}}}$ and $(e^{u}) = e^{u}.u'$ $y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1 - u^{2}}}$ and $(e^{u}) = e^{u}.u'$ $y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1 - u^{2}}}$ and $(e^{u}) = e^{u}.u'$ $y' = -\sin(2x^{3}) \cdot (6x^{2}) = -6x^{2}\sin(2x^{3})$ $y'' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc x)$	$\ln y = \ln x^x$	$\left(\frac{1}{x}\right)(x^2) - (\ln x)(2x) \qquad x - 2x \ln x$
$\frac{y'}{y} = (1)(\ln x) + (x)\left(\frac{1}{x}\right)$ $\frac{y'}{y} = \ln x + 1$ $y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $\frac{y'}{y} = \ln x + 1$ $y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $\frac{Solution:}{1}$ Use the rules $(\cot^{-1}u)' = -\frac{u'}{1 + u^{2}}$ and $(e^{u}) = e^{u}.u'$ $y' = -\frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} \cdot e^{x} = \frac{e^{x}}{1 + e^{2x}}$ Use the rules $(\sin^{-1}u)' = \frac{u'}{\sqrt{1 - u^{2}}}$ and $(e^{u}) = e^{u}.u'$ $y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1 - u^{2}}}$ and $(e^{u}) = e^{u}.u'$ $y' = \frac{1}{\sqrt{1 - (e^{x})^{2}}} \cdot e^{x} = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1 - u^{2}}}$ and $(e^{u}) = e^{u}.u'$ $y' = -\sin(2x^{3}) \cdot (6x^{2}) = -6x^{2}\sin(2x^{3})$ $y'' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc x)$	$\ln y = x \ln x$	$f'(x) = \frac{(x)^{3/2}}{(x^2)^2} = \frac{x^4}{x^4}$
$y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = \frac{Solution:}{(1)^{3}} = \frac{1}{(1)^{3}} = 1$ $48) \text{ If } y = \tan^{-1}(e^{x}) \text{ , then } y' = \frac{Solution:}{1 + u^{2}} \text{ and } (e^{u}) = e^{u}.u'$ $y' = -\frac{1}{1 + (e^{x})^{2}} . e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} . e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} . e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} . e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} . e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} . e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} . e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = -\sin(2x^{3}) . (6x^{2}) = -6x^{2} \sin(2x^{3})$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^{2} x)$	y' (1) (1)	
$y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = \frac{Solution:}{(1)^{3}} = \frac{1}{(1)^{3}} = 1$ $48) \text{ If } y = \tan^{-1}(e^{x}) \text{ , then } y' = \frac{Solution:}{1 + u^{2}} \text{ and } (e^{u}) = e^{u}.u'$ $y' = -\frac{1}{1 + (e^{x})^{2}} . e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} . e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} . e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} . e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} . e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} . e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} . e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = -\sin(2x^{3}) . (6x^{2}) = -6x^{2} \sin(2x^{3})$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^{2} x)$	$\frac{-}{y} = (1)(\ln x) + (x)(\frac{-}{x})$	$=\frac{x(1-2\pi x)}{x^4}=\frac{1-2\pi x}{x^3}$
$y' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = y(1 + \ln x) = x^{x}(1 + \ln x)$ $x' = \frac{Solution:}{(1)^{3}} = \frac{1}{(1)^{3}} = 1$ $48) \text{ If } y = \tan^{-1}(e^{x}) \text{ , then } y' = \frac{Solution:}{1 + u^{2}} \text{ and } (e^{u}) = e^{u}.u'$ $y' = -\frac{1}{1 + (e^{x})^{2}} . e^{x} = -\frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} . e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} . e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^{x})^{2}} . e^{x} = \frac{e^{x}}{1 + e^{2x}}$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} . e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} . e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^{x})^{2}}} . e^{x} = -\frac{e^{x}}{\sqrt{1 - e^{2x}}}$ $y' = -\sin(2x^{3}) . (6x^{2}) = -6x^{2} \sin(2x^{3})$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^{2} x)$	y'	X X X
Solution: Use the rules $(\cot^{-1}u)' = -\frac{u'}{1+u^2}$ and $(e^u) = e^u.u'$ Use the rules $(\tan^{-1}u)' = \frac{u'}{1+u^2}$ and $(e^u) = e^u.u'$ $y' = -\frac{1}{1+(e^x)^2} \cdot e^x = -\frac{e^x}{1+e^{2x}}$ $y' = \frac{1}{1+(e^x)^2} \cdot e^x = \frac{e^x}{1+e^{2x}}$ 49) If $y = \sin^{-1}(e^x)$, then $y' = \frac{1}{1+e^{2x}}$ 50) If $y = \cos^{-1}(e^x)$, then $y' = \frac{1}{1+e^{2x}}$ Use the rules $(\sin^{-1}u)' = \frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ $y' = \frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = \frac{e^x}{\sqrt{1-e^{2x}}}$ $y' = -\frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = -\frac{e^x}{\sqrt{1-e^{2x}}}$ 51) If $y = \cos(2x^3)$, then $y' = \frac{1}{1+e^{2x}}$ Solution: Use the rule $(\cos u)' = -\sin u \cdot u'$ Use the rules $(f \cdot g)' = f'g + fg'$, $(\csc u)' = -\csc u \cot u \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$	$\frac{1}{v} = \ln x + 1$	$1 - 2 \ln(1)$ $1 - 2(0)$
Solution: Use the rules $(\cot^{-1}u)' = -\frac{u'}{1+u^2}$ and $(e^u) = e^u.u'$ Use the rules $(\tan^{-1}u)' = \frac{u'}{1+u^2}$ and $(e^u) = e^u.u'$ $y' = -\frac{1}{1+(e^x)^2} \cdot e^x = -\frac{e^x}{1+e^{2x}}$ $y' = \frac{1}{1+(e^x)^2} \cdot e^x = \frac{e^x}{1+e^{2x}}$ 49) If $y = \sin^{-1}(e^x)$, then $y' = \frac{1}{1+e^{2x}}$ 50) If $y = \cos^{-1}(e^x)$, then $y' = \frac{1}{1+e^{2x}}$ Use the rules $(\sin^{-1}u)' = \frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ $y' = \frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = \frac{e^x}{\sqrt{1-e^{2x}}}$ $y' = -\frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = -\frac{e^x}{\sqrt{1-e^{2x}}}$ 51) If $y = \cos(2x^3)$, then $y' = \frac{1}{1+e^{2x}}$ Solution: Use the rule $(\cos u)' = -\sin u \cdot u'$ Use the rules $(f \cdot g)' = f'g + fg'$, $(\csc u)' = -\csc u \cot u \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$	$y' = y(1 + \ln x) = x^{x}(1 + \ln x)$	$f'(1) = \frac{1}{(1)^3} = \frac{1}{(1)^3} = 1$
Solution: Use the rules $(\cot^{-1}u)' = -\frac{u'}{1+u^2}$ and $(e^u) = e^u.u'$ Use the rules $(\tan^{-1}u)' = \frac{u'}{1+u^2}$ and $(e^u) = e^u.u'$ $y' = -\frac{1}{1+(e^x)^2} \cdot e^x = -\frac{e^x}{1+e^{2x}}$ $y' = \frac{1}{1+(e^x)^2} \cdot e^x = \frac{e^x}{1+e^{2x}}$ 49) If $y = \sin^{-1}(e^x)$, then $y' = \frac{1}{1+e^{2x}}$ 50) If $y = \cos^{-1}(e^x)$, then $y' = \frac{1}{1+e^{2x}}$ Use the rules $(\sin^{-1}u)' = \frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ $y' = \frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = \frac{e^x}{\sqrt{1-e^{2x}}}$ $y' = -\frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = -\frac{e^x}{\sqrt{1-e^{2x}}}$ 51) If $y = \cos(2x^3)$, then $y' = \frac{1}{1+e^{2x}}$ Solution: Use the rule $(\cos u)' = -\sin u \cdot u'$ Use the rules $(f \cdot g)' = f'g + fg'$, $(\csc u)' = -\csc u \cot u \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$		48) If $y = \tan^{-1}(e^x)$ then $y' =$
Use the rules $(\cot^{-1}u)' = -\frac{u'}{1+u^2}$ and $(e^u) = e^u.u'$ $y' = -\frac{1}{1 + (e^x)^2}.e^x = -\frac{e^x}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^x)^2}.e^x = \frac{e^x}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^x)^2}.e^x = \frac{e^x}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^x)^2}.e^x = \frac{e^x}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^x)^2}.e^x = \frac{e^x}{1 + e^{2x}}$ $y' = \frac{1}{1 + (e^x)^2}.e^x = \frac{e^x}{1 + e^{2x}}$ $y' = -\frac{1}{1 + (e^x)^2}.e^x = \frac{e^x}{1 + e^{2x}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}}.e^x = -\frac{1}{$		
Solution: Use the rules $(\sin^{-1}u)' = \frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ $y' = \frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = \frac{e^x}{\sqrt{1-e^{2x}}}$ $y' = -\frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = -\frac{e^x}{\sqrt{1-e^{2x}}}$ 51) If $y = \cos(2x^3)$, then $y' = \frac{1}{1+(\cos u)} \cdot \frac{1}{1+(\cos u)$		
Solution: Use the rules $(\sin^{-1}u)' = \frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ $y' = \frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = \frac{e^x}{\sqrt{1-e^{2x}}}$ $y' = -\frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = -\frac{e^x}{\sqrt{1-e^{2x}}}$ 51) If $y = \cos(2x^3)$, then $y' = \frac{1}{1+(\cos u)}$ Solution: Use the rule $(\cos u)' = -\sin u.u'$ $y' = -\sin(2x^3) \cdot (6x^2) = -6x^2 \sin(2x^3)$ 52) If $y = \csc x \cot x$, then $y' = \frac{1}{1+(\cos u)}$ Solution: Use the rules $(f \cdot g)' = f'g + fg'$, $(\csc u)' = -\csc u \cot u.u'$ and $(\cot u)' = -\csc^2 u.u'$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$		
Solution: Use the rules $(\sin^{-1}u)' = \frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ $y' = \frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = \frac{e^x}{\sqrt{1-e^{2x}}}$ $y' = -\frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = -\frac{e^x}{\sqrt{1-e^{2x}}}$ 51) If $y = \cos(2x^3)$, then $y' = \frac{1}{1+(\cos u)} \cdot \frac{1}{1+(\cos u)$	$y' = -\frac{1}{1 + (e^x)^2} \cdot e^x = -\frac{e^x}{1 + e^{2x}}$	$y' = \frac{1}{1 + (a^x)^2} \cdot e^x = \frac{e^x}{1 + a^{2x}}$
Solution: Use the rules $(\sin^{-1}u)' = \frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ Use the rules $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u.u'$ $y' = \frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = \frac{e^x}{\sqrt{1-e^{2x}}}$ $y' = -\frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x = -\frac{e^x}{\sqrt{1-e^{2x}}}$ 51) If $y = \cos(2x^3)$, then $y' = \frac{1}{1+(\cos u)} \cdot \frac{1}{1+(\cos u)$	49) If $v = \sin^{-1}(e^x)$, then $v' =$	50) If $v = \cos^{-1}(e^x)$ then $v' =$
$y' = \frac{1}{\sqrt{1 - (e^x)^2}} \cdot e^x = \frac{e^x}{\sqrt{1 - e^{2x}}}$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}} \cdot e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ 51) If $y = \cos(2x^3)$, then $y' = \frac{\sin(2x^3) \cdot (6x^2)}{\sin(2x^3)}$ $y' = -\sin(2x^3) \cdot (6x^2) = -6x^2 \sin(2x^3)$ $y' = -\frac{1}{\sqrt{1 - (e^x)^2}} \cdot e^x = -\frac{e^x}{\sqrt{1 - e^{2x}}}$ 52) If $y = \csc x \cot x$, then $y' = \frac{\sin(x^2 + e^x)}{\sin(x^2 + e^x)}$ Use the rules $(f \cdot g)' = f'g + fg'$, $(\csc u)' = -\csc u \cot u \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$	Solution:	Solution:
Solution: Use the rule $(\cos u)' = -\sin u \cdot u'$ Use the rule $(\cos u)' = -\sin u \cdot u'$ Use the rules $(f \cdot g)' = f'g + fg'$, $(\csc u)' = -\csc u \cot u \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = -\sin(2x^3) \cdot (6x^2) = -6x^2 \sin(2x^3)$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$	Use the rules $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u \cdot u'$	Use the rules $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$ and $(e^u) = e^u \cdot u'$
Solution: Use the rule $(\cos u)' = -\sin u \cdot u'$ Use the rule $(\cos u)' = -\sin u \cdot u'$ Use the rules $(f \cdot g)' = f'g + fg'$, $(\csc u)' = -\csc u \cot u \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = -\sin(2x^3) \cdot (6x^2) = -6x^2 \sin(2x^3)$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$	$v' = \frac{1}{1}$ $e^x = \frac{e^x}{1}$	$v' = -\frac{1}{e^x}$ $e^x = -\frac{e^x}{e^x}$
Solution: Use the rule $(\cos u)' = -\sin u \cdot u'$ Use the rule $(\cos u)' = -\sin u \cdot u'$ Use the rules $(f \cdot g)' = f'g + fg'$, $(\csc u)' = -\csc u \cot u \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = -\sin(2x^3) \cdot (6x^2) = -6x^2 \sin(2x^3)$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$	$\sqrt{1-(e^x)^2} \qquad \sqrt{1-e^{2x}}$	$\sqrt{1-(e^x)^2} \qquad \sqrt{1-e^{2x}}$
Use the rule $(\cos u)' = -\sin u \cdot u'$ Use the rules $(f \cdot g)' = f'g + fg'$, $(\csc u)' = -\csc u \cot u \cdot u'$ and $(\cot u)' = -\csc^2 u \cdot u'$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$		52) If $y = \csc x \cot x$, then $y' =$
$y' = -\sin(2x^3) \cdot (6x^2) = -6x^2 \sin(2x^3)$ $y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$		Use the rules $(f.g)' = f'g + fg'$,
$y' = (-\csc x \cot x)(\cot x) + (\csc x)(-\csc^2 x)$	$y' = -\sin(2x^3) \cdot (6x^2) = -6x^2 \sin(2x^3)$	$(\csc u)' = -\csc u \cot u \cdot u' \text{ and } (\cot u)' = -\csc^2 u \cdot u'$
$-\frac{1}{2} \left(\frac{1}{2} \right) $		
	i de la companya de	•

53) If $y = \sqrt{x^2 - 2 \sec x}$, then $y' =$	54) If $y = (3x^2 + 1)^6$, then $y' =$
Solution:	Solution:
Use the rules	Use the rule $(u)^n = n(u)^{n-1} \cdot u'$
$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$ and $(\sec u)' = \sec u \tan u \cdot u'$	$y' = 6(3x^2 + 1)^5 \cdot (6x) = 36x(3x^2 + 1)^5$
$y' = \frac{2x - 2\sec x \tan x}{2\sqrt{x^2 - 2\sec x}} = \frac{2(x - \sec x \tan x)}{2\sqrt{x^2 - 2\sec x}}$ $= \frac{x - \sec x \tan x}{\sqrt{x^2 - 2\sec x}}$	
55) If $xy + \tan x = 2x^3 + \sin y$, then $y' =$ Solution:	56) If $y = x^{-1} \sec x$, then $y' =$
$\frac{\text{Solution:}}{[(1)(y) + (x)(y')] + \sec^2 x = 6x^2 + \cos y \cdot y'}$	Solution: Use the rules
$y + xy' + \sec^2 x = 6x^2 + y' \cos y$	ose the rules $(f,g)' = f'g + fg'$ and $(\sec u)' = \sec u \tan u \cdot u'$
$xy' - y'\cos y = 6x^2 - y - \sec^2 x$	$(y,y) = y y + y y$ and $(see u) = see u tan u \cdot u$
$y'(x - \cos y) = 6x^2 - y - \sec^2 x$	$y' = (-x^{-2})(\sec x) + (x^{-1})(\sec x \tan x)$
	$= x^{-1} \sec x \tan x - x^{-2} \sec x$
$y' = \frac{6x^2 - y - \sec^2 x}{x - \cos y}$	$= x^{-2} \sec x (x \tan x - 1)$
14.2	4.1.2
57) If $y = \sin^{-1}(x^3)$, then $y' = \frac{\text{Solution:}}{}$	58) If $y = \cos^{-1}(x^3)$, then $y' = \frac{\text{Solution:}}{}$
Use the rule $(\sin^{-1} u)' = \frac{u'}{\sqrt{1-u^2}}$	Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1-u^2}}$
$y' = \frac{1}{\sqrt{1 - (x^3)^2}} .3x^2 = \frac{3x^2}{\sqrt{1 - x^6}}$	$\frac{1}{x^2} = \frac{3x^2}{x^2}$
•	$y' = -\frac{1}{\sqrt{1 - (x^3)^2}} .3x^2 = -\frac{3x^2}{\sqrt{1 - x^6}}$ 60) If $y = \csc^{-1}(x^3)$, then $y' =$
59) If $y = \sec^{-1}(x^3)$, then $y' = \frac{\text{Solution:}}{x^3}$	Solution:
Use the rule $(\sec^{-1} u)' = \frac{u'}{ u \sqrt{u^2-1}}$	Use the rule $(\csc^{-1} u)' = -\frac{u'}{ u \sqrt{u^2-1}}$
$y' = \frac{1}{x^3 \sqrt{(x^3)^2 - 1}} \cdot 3x^2 = \frac{3x^2}{x^3 \sqrt{x^6 - 1}} = \frac{3}{x\sqrt{x^6 - 1}}$	$y' = -\frac{1}{x^3 \sqrt{(x^3)^2 - 1}} \cdot 3x^2 = -\frac{3x^2}{x^3 \sqrt{x^6 - 1}} = -\frac{3}{x\sqrt{x^6 - 1}}$ 62) If $y = \ln(\cos x)$, then $y' =$
61) If $y = \ln(x^3 - 2 \sec x)$, then $y' = \frac{1}{2}$	62) If $y = \ln(\cos x)$, then $y' = \frac{\text{Solution:}}{}$
Use the rules	Use the rules
$(\ln u)' = \frac{u'}{u}$ and $(\sec u)' = \sec u \tan u \cdot u'$	$(\ln u)' = \frac{u'}{u}$ and $(\cos u)' = -\sin u \cdot u'$
$y' = \frac{1}{x^3 - 2\sec x} \cdot (3x^2 - 2\sec x \tan x)$ $= \frac{3x^2 - 2\sec x \tan x}{x^3 - 2\sec x}$	$y' = \frac{1}{\cos x} \cdot (-\sin x) = -\frac{\sin x}{\cos x} = -\tan x$
$x^3 - 2\sec x$	
63) If $y = \ln(\sin x)$, then $y' =$	64) If $y = \ln \sqrt{3x^2 + 5x}$, then $y' =$
Solution: Use the rules	Solution: Use the rules $(\ln u)' = \frac{u'}{u}$ and $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$
$(\ln u)' = \frac{u'}{u}$ and $(\sin u)' = \cos u \cdot u'$	
$y' = \frac{1}{\sin x} \cdot (\cos x) = \frac{\cos x}{\sin x} = \cot x$	$y' = \frac{1}{\sqrt{3x^2 + 5x}} \cdot \left(\frac{6x + 5}{2\sqrt{3x^2 + 5x}}\right) = \frac{6x + 5}{2(3x^2 + 5x)}$

65) If $y = \log_5(x^3 - 2\csc x)$,	then $y' =$
Solution:	

Use the rules

$$(\log_a u)' = \frac{u'}{u \ln a}$$
 and $(\csc u)' = -\csc u \cot u \cdot u'$

$$y' = \frac{1}{(x^3 - 2\csc x)(\ln 5)} \cdot [3x^2 - 2(-\csc x\cot x)]$$
$$= \frac{3x^2 + 2\csc x\cot x}{(x^3 - 2\csc x)(\ln 5)}$$

67) If
$$y = 2x^3 - \sin x$$
, then $y' = \frac{1}{2}$

Use the rule $(\sin u)' = \cos u \cdot u'$

$$y' = 6x^2 - \cos x$$

68) If
$$y = x^3 \cos x$$
, then $y' =$ Solution:

Use the rules

$$(f.g)' = f'g + fg'$$
 and $(\cos u)' = -\sin u \cdot u'$

$$y' = (3x^{2})(\cos x) + (x^{3})(-\sin x)$$

= $3x^{2}\cos x - x^{3}\sin x$

69) If
$$y = x^{\sqrt{x}}$$
, then $y' =$ Solution:

Use the rule $\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$

$$y = x^{\sqrt{x}}$$

$$\ln y = \ln x^{\sqrt{x}}$$

$$\ln y = \sqrt{x} \ln x$$

$$\frac{y'}{y} = \left(\frac{1}{2\sqrt{x}}\right) (\ln x) + \left(\sqrt{x}\right) \left(\frac{1}{x}\right)$$

$$\frac{y'}{y} = \frac{\ln x}{2\sqrt{x}} + \frac{\sqrt{x}}{x} = \frac{x \ln x + 2x}{2x\sqrt{x}} = \frac{x(\ln x + 2)}{2x\sqrt{x}}$$

$$= \frac{\ln x + 2}{2\sqrt{x}}$$

$$y' = y \left(\frac{\ln x + 2}{2\sqrt{x}}\right) = x^{\sqrt{x}} \left(\frac{\ln x + 2}{2\sqrt{x}}\right)$$

66) If
$$y = \ln \frac{x-1}{\sqrt{x+2}}$$
, then $y' =$

Solution:

Use the rules

$$(\ln u)' = \frac{u'}{u}$$
, $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ and $\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$

$$y' = \frac{1}{\frac{x-1}{\sqrt{x+2}}} \cdot \left(\frac{(1)(\sqrt{x+2}) - (x-1)(\frac{1}{2\sqrt{x+2}})}{(\sqrt{x+2})^2} \right)$$

$$= \frac{\sqrt{x+2}}{x-1} \cdot \left(\frac{\sqrt{x+2} - \frac{x-1}{2\sqrt{x+2}}}{x+2} \right)$$

$$= \frac{\sqrt{x+2}}{x-1} \cdot \left(\frac{\frac{2(x+2) - (x-1)}{2\sqrt{x+2}}}{x+2} \right)$$

$$= \frac{\sqrt{x+2}}{x-1} \cdot \left(\frac{\frac{x+5}{2\sqrt{x+2}}}{x+2} \right)$$

$$= \frac{\sqrt{x+2}}{x-1} \left(\frac{x+5}{2(x+2)\sqrt{x+2}} \right)$$

$$= \frac{x+5}{2(x-1)(x+2)}$$
70) If $y = (\sin x)^x$, then $y' = \frac{x+5}{2(x-1)(x+2)}$

Solution:

Use the rule $(\sin u)' = \cos u \cdot u'$

$$y = (\sin x)^{x}$$

$$\ln y = \ln(\sin x)^{x}$$

$$\ln y = x \ln(\sin x)$$

$$\frac{y'}{y} = (1)(\ln(\sin x)) + (x)\left(\frac{\cos x}{\sin x}\right)$$

$$\frac{y'}{y} = \ln(\sin x) + \frac{x \cos x}{\sin x} = \ln(\sin x) + x \cot x$$

$$y' = y(\ln(\sin x) + x \cot x)$$

$$= (\sin x)^{x}(\ln(\sin x) + x \cot x)$$

71) If
$$y = \log_7(x^3 - 2)$$
, then $y' =$ Solution:

Use the rule

$$(\log_a u)' = \frac{u'}{u \ln a}$$

$$y' = \frac{1}{(x^3 - 2)(\ln 7)} \cdot (3x^2) = \frac{3x^2}{(x^3 - 2)(\ln 7)}$$

72) If
$$y = \cos(x^5)$$
, then $y' =$

Solution:

Use the rule $(\cos u)' = -\sin u \cdot u'$

$$y' = -\sin(x^5) \cdot (5x^4) = -5x^4 \sin(x^5)$$

73) If $y = \sec x \tan x$, then $y' =$	74) If $D^{99}(\cos x) =$
Solution:	Solution:
$\overline{(f.g)'} = f'g + fg'$, $(\sec u)' = \sec u \tan u \cdot u'$ and	$D(\cos x) = -\sin x$
$(\tan u)' = \sec^2 u \cdot u'$	$D^2(\cos x) = -\cos x$
	$D^3(\cos x) = \sin x$
	$D^4(\cos x) = \cos x$
$y' = (\sec x \tan x)(\tan x) + (\sec x)(\sec^2 x)$	Note: $D^n(\cos x) = \cos x$ whenever n is a multiple of 4.
$= \sec x \tan^2 x + \sec^3 x = \sec x (\tan^2 x + \sec^2 x)$	Hence,
	$D^{96}(\cos x) = \cos x$
	$D^{97}(\cos x) = -\sin x$
	$D^{98}(\cos x) = -\cos x$
	$D^{99}(\cos x) = \sin x$
75) If $y = (x + \sec x)^3$, then $y' =$	76) If $x^2 = 5y^2 + \sin y$, then $y' =$
Solution:	Solution:
Use the rules	$2x = 10yy' + \cos y \cdot y'$
$(u)^n = n(u)^{n-1} \cdot u'$ and $(\sec u)' = \sec u \tan u \cdot u'$	$y'(10y + \cos y) = 2x$
	$y' = \frac{2x}{10y + \cos y}$
$y' = 3(x + \sec x)^2 \cdot (1 + \sec x \tan x)$	$\int 10y + \cos y$
77) If $x^2 - 5y^2 + \sin y = 0$, then $y' =$	78) If $y = \sin x \sec x$, then $y' =$
Solution:	Solution:
$2x - 10yy' + \cos y \cdot y' = 0$	$(f.g)' = f'g + fg'$, $(\sin u)' = \cos u \cdot u'$ and
$y'(-10y + \cos y) = -2x$	$(\sec u)' = \sec u \tan u \cdot u'$
$y' = \frac{-2x}{-10y + \cos y} = \frac{2x}{10y - \cos y}$	
$-10y + \cos y \qquad 10y - \cos y$	$y' = (\cos x)(\sec x) + (\sin x)(\sec x \tan x)$
	$= 1 + \sin x \cdot \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} = 1 + \frac{\sin^2 x}{\cos^2 x} = 1 + \tan^2 x$
	$\cos x \cos x + \cos^2 x$
	$= \sec^2 x$
70) If $f(x) = \sin^2(x^3 + 1)$ then $f'(x) =$	(x) $ (x) (x) $ $ (x) $ $ (x) $
79) If $f(x) = \sin^2(x^3 + 1)$, then $f'(x) =$	80) If $y = (x + \cot x)^3$, then $y' =$
Solution:	Solution:
Solution: Use the rules	Solution: Use the rules
Solution:	Solution:
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$	Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^2 u.u'$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u' \text{and} (\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$	Solution: Use the rules
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2\sin(x^3 + 1)\cos(x^3 + 1)$	Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^2 u.u'$ $y' = 3(x + \cot x)^2.(1 - \csc^2 x)$
Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^3 + 1).(\cos(x^3 + 1)).(3x^2)$ $= 6x^2\sin(x^3 + 1)\cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$	Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^2 u.u'$ $y' = 3(x + \cot x)^2.(1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$
Solution: Use the rules $(u)^n = n(u)^{n-1} \cdot u'$ and $(\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^3 + 1) \cdot (\cos(x^3 + 1)) \cdot (3x^2)$ $= 6x^2\sin(x^3 + 1)\cos(x^3 + 1)$	Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^2 u.u'$ $y' = 3(x + \cot x)^2.(1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$	Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^2 u.u'$ $y' = 3(x + \cot x)^2.(1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$
Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^3 + 1).(\cos(x^3 + 1)).(3x^2)$ $= 6x^2\sin(x^3 + 1)\cos(x^3 + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' =$	Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^2 u.u'$ $y' = 3(x + \cot x)^2.(1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' =$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{\sin(x^{3} + 1)}$ Use the rule $(\tan^{-1}u)' = \frac{u'}{1 + u^{2}}$	Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^2 u.u'$ $y' = 3(x + \cot x)^2.(1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$ Solution: Use the rule $(\cot^{-1}u)' = -\frac{u'}{1+u^2}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{\sin(x^{3} + 1)}$ Use the rule $(\tan^{-1}u)' = \frac{u'}{1 + u^{2}}$	Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^2 u.u'$ $y' = 3(x + \cot x)^2.(1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$ Solution: Use the rule $(\cot^{-1}u)' = -\frac{u'}{1+u^2}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{\sin(x^{3} + 1)}$ Use the rule $(\tan^{-1}u)' = \frac{u'}{1 + u^{2}}$	Solution: Use the rules $(u)^n = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^2 u.u'$ $y' = 3(x + \cot x)^2.(1 - \csc^2 x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{\sin(x^{3} + 1)}$ Use the rule $(\tan^{-1}u)' = \frac{u'}{1 + u^{2}}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2}u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2}x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\text{Solution:}}{\text{Use the rule}}$ $(\cot^{-1}u)' = -\frac{u'}{1+u^{2}}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^{2}}.\frac{1}{2} = -\frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4+x^{2}}{4}\right)}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{\sin(x^{3} + 1)}$ Use the rule $(\tan^{-1}u)' = \frac{u'}{1 + u^{2}}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2}u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2}x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\text{Solution:}}{\text{Use the rule}}$ $(\cot^{-1}u)' = -\frac{u'}{1+u^{2}}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^{2}}.\frac{1}{2} = -\frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4+x^{2}}{4}\right)}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{\sin(x^{3} + 1)}$ Use the rule $(\tan^{-1}u)' = \frac{u'}{1+u^{2}}$ $y' = \frac{1}{1+\left(\frac{x}{2}\right)^{2}}.\frac{1}{2} = \frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4+x^{2}}{4}\right)} = \frac{2}{4+x^{2}}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2}u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2}x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\text{Solution:}}{\text{Use the rule}}$ $(\cot^{-1}u)' = -\frac{u'}{1+u^{2}}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^{2}}.\frac{1}{2} = -\frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4+x^{2}}{4}\right)}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{1 + \left(\frac{x}{2}\right)^{2}}$. Then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. Then $y' = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{2}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2}u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2}x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$ Solution: Use the rule $(\cot^{-1}u)' = -\frac{u'}{1+u^{2}}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^{2}}.\frac{1}{2} = -\frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4+x^{2}}{4}\right)}$ $= -\frac{2}{4+x^{2}}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{2}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1} \cdot u' \text{and} (\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^{3} + 1) \cdot (\cos(x^{3} + 1)) \cdot (3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{1 + \left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2} = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{\sin(x^{3} + 1)} \cdot \frac{1}{\sin(x^{3} + 1)} \cdot \frac{1}{\sin(x^{3} + 1)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2}u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2}x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. The equation $\frac{1}{2} = -\frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4 + x^{2}}{4}\right)}$ $y' = -\frac{1}{1 + \left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2} = -\frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4 + x^{2}}{4}\right)}$ $= -\frac{2}{4 + x^{2}}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{3}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{1 + \left(\frac{x}{2}\right)^{2}}$. Then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. Then $y' = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{2}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2}u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2}x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$ Solution: Use the rule $(\cot^{-1}u)' = -\frac{u'}{1+u^{2}}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^{2}}.\frac{1}{2} = -\frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4+x^{2}}{4}\right)}$ $= -\frac{2}{4+x^{2}}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{2}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{1 + \left(\frac{x}{2}\right)^{2}}.\frac{1}{2} = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{\cos(x^{3} + 1)}{2\cos(x^{3} + 1)}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2}u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2}x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$ Solution: Use the rule $(\cot^{-1}u)' = -\frac{u'}{1+u^{2}}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4+x^{2}}{4}\right)}$ $= -\frac{2}{4+x^{2}}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{2}$ Solution:
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{1+(\frac{x}{2})^{2}}$. $\frac{1}{2} = \frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4+x^{2}}{4}\right)} = \frac{2}{4+x^{2}}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{2}$ Solution: Use the rule $(\sin^{-1}u)' = \frac{u'}{\sqrt{1-u^{2}}}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2} u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2} x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. $\frac{1}{2} = -\frac{u'}{1 + u^{2}}$ $y' = -\frac{1}{1 + \left(\frac{x}{2}\right)^{2}}.\frac{1}{2} = -\frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4 + x^{2}}{4}\right)}$ $= -\frac{2}{4 + x^{2}}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{3}$ Solution: Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1 - u^{2}}}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{1+(\frac{x}{2})^{2}}$. $\frac{1}{2} = \frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4+x^{2}}{4}\right)} = \frac{2}{4+x^{2}}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{2}$ Solution: Use the rule $(\sin^{-1}u)' = \frac{u'}{\sqrt{1-u^{2}}}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2} u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2} x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. $\frac{1}{2} = -\frac{u'}{1 + u^{2}}$ $y' = -\frac{1}{1 + \left(\frac{x}{2}\right)^{2}}.\frac{1}{2} = -\frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4 + x^{2}}{4}\right)}$ $= -\frac{2}{4 + x^{2}}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{3}$ Solution: Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1 - u^{2}}}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1} \cdot u' \text{and} (\sin u)' = \cos u \cdot u'$ $f'(x) = 2\sin(x^{3} + 1) \cdot (\cos(x^{3} + 1)) \cdot (3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{1 + \left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2} = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{\sin(x^{3} + 1)}{\sin(x^{3} + 1)} \cdot \frac{1}{\sin(x^{3} + 1)} \cdot \frac{1}{\sin(x^{3} + 1)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2}u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2}x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{2}$ Solution: Use the rule $(\cot^{-1}u)' = -\frac{u'}{1+u^{2}}$ $y' = -\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2} = -\frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4+x^{2}}{4}\right)}$ $= -\frac{2}{4+x^{2}}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{2}$ Solution:
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x)}{1 + \left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2} = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$ $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2} = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{\sin(x)}{1 + \sin(x)}$ Use the rule $(\sin^{-1}u)' = \frac{u'}{\sqrt{1 - u^{2}}}$ $y' = \frac{1}{\sqrt{1 - \left(\frac{x}{3}\right)^{2}}} \cdot \frac{1}{3} = \frac{1}{3\sqrt{1 - \frac{x^{2}}{9}}} = \frac{1}{3\sqrt{\frac{9 - x^{2}}{9}}}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2}u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2}x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. Then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. Then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. Then $y' = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4 + x^{2}}{4}\right)}$ $y' = -\frac{1}{1 + \left(\frac{x}{3}\right)^{2}}.$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{3}$ Solution: Use the rule $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1 - u^{2}}}$ $y' = -\frac{1}{\sqrt{1 - \left(\frac{x}{3}\right)^{2}}}.$ $y' = -\frac{1}{\sqrt{1 - \left(\frac{x}{3}\right)^{2}}}.$ $\frac{1}{3} = -\frac{1}{3\sqrt{1 - \frac{x^{2}}{9}}} = -\frac{1}{3\sqrt{\frac{9 - x^{2}}{9}}}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{1+(\frac{x}{2})^{2}}$. $\frac{1}{2} = \frac{1}{2\left(1+\frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4+x^{2}}{4}\right)} = \frac{2}{4+x^{2}}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{2}$ Solution: Use the rule $(\sin^{-1}u)' = \frac{u'}{\sqrt{1-u^{2}}}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2} u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2} x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. $\frac{1}{2} = -\frac{u'}{1 + u^{2}}$ $y' = -\frac{1}{1 + \left(\frac{x}{2}\right)^{2}}.\frac{1}{2} = -\frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4 + x^{2}}{4}\right)}$ $= -\frac{2}{4 + x^{2}}$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{3}$ Solution: Use the rule $(\cos^{-1} u)' = -\frac{u'}{\sqrt{1 - u^{2}}}$
Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\sin u)' = \cos u.u'$ $f'(x) = 2\sin(x^{3} + 1).(\cos(x^{3} + 1)).(3x^{2})$ $= 6x^{2}\sin(x^{3} + 1)\cos(x^{3} + 1)$ 81) If $y = \tan^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{\sin(x)}{1 + \left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2} = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$ $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2} = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = \frac{1}{2\left(\frac{4 + x^{2}}{4}\right)} = \frac{2}{4 + x^{2}}$ 83) If $y = \sin^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{\sin(x)}{1 + \sin(x)}$ Use the rule $(\sin^{-1}u)' = \frac{u'}{\sqrt{1 - u^{2}}}$ $y' = \frac{1}{\sqrt{1 - \left(\frac{x}{3}\right)^{2}}} \cdot \frac{1}{3} = \frac{1}{3\sqrt{1 - \frac{x^{2}}{9}}} = \frac{1}{3\sqrt{\frac{9 - x^{2}}{9}}}$	Solution: Use the rules $(u)^{n} = n(u)^{n-1}.u' \text{and} (\cot u)' = -\csc^{2}u.u'$ $y' = 3(x + \cot x)^{2}.(1 - \csc^{2}x)$ 82) If $y = \cot^{-1}\left(\frac{x}{2}\right)$, then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. Then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. Then $y' = \frac{1}{1 + \left(\frac{x}{2}\right)^{2}}$. Then $y' = \frac{1}{2\left(1 + \frac{x^{2}}{4}\right)} = -\frac{1}{2\left(\frac{4 + x^{2}}{4}\right)}$ $y' = -\frac{1}{1 + \left(\frac{x}{3}\right)^{2}}.$ 84) If $y = \cos^{-1}\left(\frac{x}{3}\right)$, then $y' = \frac{1}{3}$ Solution: Use the rule $(\cos^{-1}u)' = -\frac{u'}{\sqrt{1 - u^{2}}}$ $y' = -\frac{1}{\sqrt{1 - \left(\frac{x}{3}\right)^{2}}}.$ $1 = -\frac{1}{3\sqrt{1 - \frac{x^{2}}{9}}} = -\frac{1}{3\sqrt{\frac{9 - x^{2}}{9}}}$

Workshop Solutions to Sections 3.1 and 3.2 (2.3)

$$\begin{array}{c} 1) \lim_{x \to 2} (x^2 - 2x + 1) = (-2)^3 - 2(-2) + 1 \\ = -8 + 4 + 1 = -3 \\ 3) \lim_{x \to 1} (x^2 + 3x - 5)^3 = (1)^2 + 3(1) - 5)^3 \\ = (1 + 3 - 5)^3 = (-1)^3 = -1 \\ 5) \lim_{x \to 2} \frac{x^2 - 2}{x - 2} = \frac{(-2)^2 - 2}{(-2)^2 - 2} = \frac{4 - 2}{-2 - 2} = \frac{2}{-4} = -\frac{1}{2} \\ 5) \lim_{x \to 2} \frac{x^2 - 3}{x^2 - 3} = \frac{(0)^2 + 3(0) + 5}{(0)^2 - 3} = \frac{0 + 0 + 5}{0 - 3} \\ = \frac{5}{-3} = \frac{5}{-3} \\ 9) \lim_{x \to -1} \sqrt{x^3 - 10x + 7} = \sqrt{(-1)^3 - 10(-1) + 7} \\ = \sqrt{-1 + 10 + 7} = \sqrt{16} = 4 \\ 11) \lim_{x \to 1} \frac{x^3 + 2x}{8 - 2x} = \frac{(-1)^3 + 2(-1)}{5 + (4)} = \frac{-1 - 2}{8 + 2} = \frac{3}{10} \\ 12) \lim_{x \to 4} \frac{x^3 + 2x}{5 + x} = \frac{(4)^2 + 3(4)}{5 + (4)} = \frac{1 - 1 - 2}{5 + 4 - x} = \frac{3}{10} \\ 13) \lim_{x \to 4} \frac{x^3 - 4x}{5 + x} = \frac{(4)^2 - 4(4)}{5 + (4)} = \frac{16 - 16}{5 + 4} = \frac{0}{9} = 0 \\ 14) \lim_{x \to 3} \frac{x^3 - (2x - 5)^{-1}}{4 - x} = \lim_{x \to 3} \frac{1}{3(2x - 5)} = \lim_{x \to 3} \frac{1}{3(2x - 5)} = \lim_{x \to 3} \frac{-2}{3(2(4 - 5))} = \lim_{x \to 3} \frac{-2}{3(2(2x - 5)(4 - x))} = \lim_{x \to 3} \frac{-2}{3(2(2x - 5)(4 - x))} = \lim_{x \to 3} \frac{x^3 - 27}{x^3 - x^3} = \frac{-2}{3(2(4) - 5)} = \frac{-2}{3(4)} = \frac{-2}{3(2(4) - 5)} = \frac{-2}{3(2(4) - 5)}$$

 $=\frac{}{9+9+9}=\frac{}{2}$

21)
$$\lim_{x \to 2} \frac{x + 2}{x^2 + 8} = \lim_{x \to 2} \frac{x + 2}{(x + 2)(x^2 - 2x + 4)} = \lim_{x \to 2} \frac{x + 2}{(x + 2)(x^2 - 2x + 4)} = \lim_{x \to 2} \frac{x + 2}{(x + 4)} = \lim_{x \to 3} \frac{x^2 - 3x - 4}{x - 4} = \lim_{x \to 4} \frac{(x - 4)(x + 1)}{x - 4} = \lim_{x \to 4} \frac{(x - 2)(x + 6)}{x - 2} = \lim_{x \to 3} \frac{(x - 2)(x + 6)}{x - 2} = \lim_{x \to 3} \frac{(x - 2)(x + 6)}{x - 2} = \lim_{x \to 3} \frac{(x - 2)(x + 6)}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 6)}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 6)}{x - 2} = \lim_{x \to 2} \frac{(x + 25) - 25}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{x - 4 + 4} = \frac{1}{12} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 6)^2 + 2\sqrt{x + 6} + 4} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 25) - 25} = \lim_{x \to 3} \frac{(x - 2)(x + 6) - 4}{x - 4 + 4} = \frac{1}{12} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 6) - 4}{(x + 4) - 4} = \lim_{x \to 2}$$

32) If $2x \le f(x)$	$\leq 3x^2 - 8$, then
	$\lim_{x\to 2}f(x)=$
Solution:	$\lim 2x = 2(2)$
and	$\underset{x\to 2}{\text{min}} 2x - 2(2)$

$$\lim_{x \to 0} (3x^2 - 8) = 3(2)^2 - 8 = 12 - 8 = 4$$

= 4

It follows from the Sandwich Theorem that

$$\lim_{x \to 2} f(x) = 4$$

33)
$$\lim_{x \to 0} \left[x \cos \left(x + \frac{1}{x} \right) \right] =$$

We know that the cosine of any angle is between -1 and 1. So,

$$-1 \le \cos\left(x + \frac{1}{x}\right) \le 1$$

Now, multiply throughout by x, we get

$$-x \le x \cos\left(x + \frac{1}{x}\right) \le x$$

But $\lim_{x\to 0} x = 0$ and $\lim_{x\to 0} (-x) = 0$. It follows from the Sandwich Theorem that

$$\lim_{x \to 0} \left[x \cos \left(x + \frac{1}{x} \right) \right] = 0$$

34)
$$\lim_{x \to 0} \left[x \sin\left(\frac{1}{x}\right) \right] =$$

We know that the sine of any angle is between -1 and 1. So,

$$-1 \le \sin\left(\frac{1}{x}\right) \le 1$$

Now, multiply throughout by x, we get

$$-x \le x \sin\left(\frac{1}{x}\right) \le x$$

But $\lim_{x\to 0} x = 0$ and $\lim_{x\to 0} (-x) = 0$. It follows from the Sandwich Theorem that

$$\lim_{x \to 0} \left[x \sin\left(\frac{1}{x}\right) \right] = 0$$

$$\lim_{x \to 0} \left[x \sin\left(\frac{1}{x}\right) \right] = 0$$
36) If $4(x-1) \le f(x) \le x^3 + x - 2$, then
$$\lim_{x \to 1} f(x) =$$

Solution:

$$\lim_{\substack{x \to 1 \\ x \to 1}} (4(x-1)) = 4((1)-1) = 4 \times 0 = 0$$

and

$$\lim_{x \to 1} (x^3 + x - 2) = (1)^3 + (1) - 2 = 1 + 1 - 2 = 0$$

It follows from the Sandwich Theorem that

$$\lim_{x \to 1} f(x) = 0$$

 $\lim_{x \to 0} \left[x \cos \left(x + \frac{1}{x} \right) \right] = 0$ 35) If $\frac{x^2 + 1}{x - 1} \le f(x) \le x - 1$, then

$$\lim_{x \to 0} f(x) =$$

Solution:

$$\lim_{x \to 0} \frac{x^2 + 1}{x - 1} = \frac{(0)^2 + 1}{(0) - 1} = \frac{1}{-1} = -1$$

and

$$\lim_{x \to 0} (x - 1) = (0) - 1 = -1$$

It follows from the Sandwich Theorem that

$$\lim_{x \to 0} f(x) = -1$$

37) If

$$\lim_{x \to 3} \frac{f(x) + 4}{x - 1} = 3,$$

then

$$\lim_{x\to 3} f(x) =$$

Solution:

$$\lim_{x \to 3} \frac{f(x) + 4}{x - 1} = \frac{\lim_{x \to 3} (f(x) + 4)}{\lim_{x \to 3} (x - 1)} = \frac{\lim_{x \to 3} f(x) + \lim_{x \to 3} (4)}{\lim_{x \to 3} (x) - \lim_{x \to 3} (1)}$$
$$= \frac{\lim_{x \to 3} f(x) + 4}{3 - 1} = \frac{\lim_{x \to 3} f(x) + \lim_{x \to 3} (4)}{2}$$

Now

$$\frac{\lim_{x\to 3} f(x) + 4}{2} = 3$$

$$\lim_{x \to 3} f(x) + 4 = 6 \quad \Leftrightarrow \quad \lim_{x \to 3} f(x) = 2$$

38)
$$\lim_{x \to 2} \frac{2^{-1} - (3x - 4)^{-1}}{2 - x}$$

$$= \lim_{x \to 2} \frac{\frac{1}{2} - \frac{1}{3x - 4}}{\frac{3x - 4 - 2}{2 - x}}$$

$$= \lim_{x \to 2} \frac{\frac{1}{2} - \frac{1}{3x - 4}}{\frac{3x - 4 - 2}{2 - x}}$$

$$= \lim_{x \to 2} \frac{\frac{3x - 6}{2(3x - 4)}}{\frac{3(x - 2)}{2 - x}}$$

$$= \lim_{x \to 2} \frac{\frac{3(x - 2)}{2(3x - 4)}}{\frac{2 - x}{3(x - 2)}}$$

$$= \lim_{x \to 2} \frac{3(x - 2)}{2(3x - 4)(2 - x)}$$

$$= \lim_{x \to 2} \frac{-3}{2(3(2) - 4)} = \lim_{x \to 2} \frac{-3}{2 \times 2} = -\frac{3}{4}$$

39)
$$\lim_{x \to 0} \frac{(x+1)^3 - 1}{x} = \lim_{x \to 0} \frac{(x^3 + 3x^2 + 3x + 1) - 1}{x}$$
$$= \lim_{x \to 0} \frac{x^3 + 3x^2 + 3x}{x}$$
$$= \lim_{x \to 0} \frac{x(x^2 + 3x + 3)}{x} = \lim_{x \to 0} (x^2 + 3x + 3)$$
$$= (0)^2 + 3(0) + 3 = 3$$

40) If

$$\lim_{x \to 1} \frac{f(x) + 3x}{x^2 - 5f(x)} = 1,$$

then

$$\lim_{x\to 1} f(x) =$$

Solution:

$$\frac{\lim_{x \to 1} \frac{f(x) + 3x}{x^2 - 5f(x)}}{\lim_{x \to 1} \frac{\lim_{x \to 1} (f(x) + 3x)}{\lim_{x \to 1} (x^2 - 5f(x))}}$$

$$= \frac{\lim_{x \to 1} f(x) + \lim_{x \to 1} (3x)}{\lim_{x \to 1} (x^2) - \lim_{x \to 1} (5f(x))}$$

$$= \frac{\lim_{x \to 1} f(x) + 3(1)}{(1)^2 - 5\lim_{x \to 1} f(x)} = \frac{\lim_{x \to 1} f(x) + 3}{1 - 5\lim_{x \to 1} f(x)}$$

Now

$$\frac{\lim_{x \to 1} f(x) + 3}{1 - 5 \lim_{x \to 1} f(x)} = 1$$

$$\lim_{x \to 1} f(x) + 3 = (1) \left(1 - 5 \lim_{x \to 1} f(x) \right)$$

$$\Leftrightarrow \lim_{x \to 1} f(x) + 3 = 1 - 5 \lim_{x \to 1} f(x)$$

$$\Leftrightarrow \lim_{x \to 1} f(x) + 5 \lim_{x \to 1} f(x) = 1 - 3$$

$$\Leftrightarrow 6 \lim_{x \to 1} f(x) = -2$$

$$\Leftrightarrow \lim_{x \to 1} f(x) = \frac{-2}{6} = -\frac{1}{3}$$

41)
$$\lim_{x \to 4} \frac{x^2 - 6x + 8}{x^2 + x - 20}$$

$$= \lim_{x \to 4} \frac{(x - 2)(x - 4)}{(x - 4)(x + 5)}$$

$$= \lim_{x \to 4} \frac{x - 2}{x + 5} = \frac{(4) - 2}{(4) + 5} = \frac{2}{9}$$

42)
$$\lim_{x \to -2} \frac{x^3 + 8}{x^2 - x - 6}$$

$$= \lim_{x \to -2} \frac{(x + 2)(x^2 - 2x + 4)}{(x - 3)(x + 2)}$$

$$= \lim_{x \to -2} \frac{x^2 - 2x + 4}{x - 3} = \frac{(-2)^2 - 2(-2) + 4}{(-2) - 3}$$

$$= \frac{4 + 4 + 4}{-5} = \frac{12}{-5} = -\frac{12}{5}$$

43)
$$\lim_{x \to 1} \left[\frac{x^2 - 2}{x + 4} + x^2 - 2x \right] = \frac{(1)^2 - 2}{(1) + 4} + (1)^2 - 2(1)$$
$$= \frac{1 - 2}{1 + 4} + 1 - 2 = \frac{-1}{5} - 1 = \frac{-1 - 5}{5} = -\frac{6}{5}$$

44)
$$\lim_{x \to -2} \frac{4x^2 + 6x - 4}{2x^2 - 8}$$

$$= \lim_{x \to -2} \frac{2(2x^2 + 3x - 2)}{2(x^2 - 4)}$$

$$= \lim_{x \to -2} \frac{2x^2 + 3x - 2}{x^2 - 4}$$

$$= \lim_{x \to -2} \frac{(2x - 1)(x + 2)}{(x - 2)(x + 2)}$$

$$= \lim_{x \to -2} \frac{2x - 1}{x - 2} = \frac{2(-2) - 1}{(-2) - 2} = \frac{-4 - 1}{-2 - 2}$$

$$= \frac{-5}{-4} = \frac{5}{4}$$

$$= \frac{\sqrt{2x + 1}(x^2 - 9)}{\sqrt{2x + 1}(x^2 - 9)}$$

$$\lim_{x \to -1} \frac{x^2 - 2x - 3}{x^5 - x^3} \\
= \lim_{x \to -1} \frac{(x - 3)(x + 1)}{x^3(x^2 - 1)} \\
= \lim_{x \to -1} \frac{(x - 3)(x + 1)}{x^3(x - 1)(x + 1)} \\
= \lim_{x \to -1} \frac{x - 3}{x^3(x - 1)} = \frac{(-1) - 3}{(-1)^3((-1) - 1)} \\
= \frac{-1 - 3}{(-1)(-2)} = \frac{-4}{2} = -2$$

46)
$$\lim_{x \to 3} \frac{\sqrt{2x+1}(x^2-9)}{(2x+3)(x-3)}$$

$$= \lim_{x \to 3} \frac{\sqrt{2x+1}(x-3)(x+3)}{(2x+3)(x-3)}$$

$$= \lim_{x \to 3} \frac{\sqrt{2x+1}(x+3)}{2x+3} = \frac{\sqrt{2(3)+1}((3)+3)}{2(3)+3}$$

$$= \frac{6\sqrt{7}}{9} = \frac{2\sqrt{7}}{3}$$

$$47) \lim_{x \to 1} \frac{\sqrt{3 - 2x} - 1}{x - 1} = \lim_{x \to 1} \left[\frac{\sqrt{3 - 2x} - 1}{x - 1} \times \frac{\sqrt{3 - 2x} + 1}{\sqrt{3 - 2x} + 1} \right]$$

$$= \lim_{x \to 1} \frac{(3 - 2x) - 1}{(x - 1)(\sqrt{3 - 2x} + 1)}$$

$$= \lim_{x \to 1} \frac{2 - 2x}{(x - 1)(\sqrt{3 - 2x} + 1)}$$

$$= \lim_{x \to 1} \frac{2(1 - x)}{(x - 1)(\sqrt{3 - 2x} + 1)} =$$

$$= \lim_{x \to 1} \frac{-2(x - 1)}{(x - 1)(\sqrt{3 - 2x} + 1)} =$$

$$= \lim_{x \to 1} \frac{-2}{\sqrt{3 - 2x} + 1} = \frac{-2}{\sqrt{3 - 2(1)} + 1}$$

$$= \frac{-2}{\sqrt{3 - 2} + 1} = \frac{-2}{2} = -1$$

$$49) \lim_{x \to 1} \frac{\sqrt{2x + 2} - 2}{\sqrt{3x - 2} - 1}$$

$$= \lim_{x \to 1} \left[\frac{\sqrt{2x + 2} - 2}{\sqrt{3x - 2} - 1} \times \frac{\sqrt{2x + 2} + 2}{\sqrt{3x - 2} + 1} \times \frac{\sqrt{3x - 2} + 1}{\sqrt{3x - 2} + 1} \right]$$

48)
$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \lim_{x \to 0} \frac{(x^2 + 2x + 1) - 1}{x}$$
$$= \lim_{x \to 0} \frac{x^2 + 2x}{x} = \lim_{x \to 0} \frac{x(x+2)}{x}$$
$$= \lim_{x \to 0} (x+2) = (0) + 2 = 2$$

$$49) \lim_{x \to 1} \frac{\sqrt{2x + 2} - 2}{\sqrt{3x - 2} - 1}$$

$$= \lim_{x \to 1} \left[\frac{\sqrt{2x + 2} - 2}{\sqrt{3x - 2} - 1} \times \frac{\sqrt{2x + 2} + 2}{\sqrt{2x + 2} + 2} \times \frac{\sqrt{3x - 2} + 1}{\sqrt{3x - 2} + 1} \right]$$

$$= \lim_{x \to 1} \left[\frac{(2x + 2) - 4}{(3x - 2) - 1} \times \frac{\sqrt{3x - 2} + 1}{\sqrt{2x + 2} + 2} \right]$$

$$= \lim_{x \to 1} \left[\frac{2x - 2}{3x - 3} \times \frac{\sqrt{3x - 2} + 1}{\sqrt{2x + 2} + 2} \right]$$

$$= \lim_{x \to 1} \left[\frac{2(x - 1)}{3(x - 1)} \times \frac{\sqrt{3x - 2} + 1}{\sqrt{2x + 2} + 2} \right]$$

$$= \lim_{x \to 1} \left[\frac{2}{3} \times \frac{\sqrt{3x - 2} + 1}{\sqrt{2x + 2} + 2} \right] = \frac{2}{3} \times \frac{\sqrt{3(1) - 2} + 1}{\sqrt{2(1) + 2} + 2}$$

$$= \frac{2}{3} \times \frac{\sqrt{1} + 1}{\sqrt{4} + 2} = \frac{2}{3} \times \frac{2}{4} = \frac{1}{3}$$

50)
$$\lim_{x \to 2} \frac{3 - \sqrt{2x + 5}}{x - 2}$$

$$= \lim_{x \to 2} \left[\frac{3 - \sqrt{2x + 5}}{x - 2} \times \frac{3 + \sqrt{2x + 5}}{3 + \sqrt{2x + 5}} \right]$$

$$= \lim_{x \to 2} \frac{9 - (2x + 5)}{(x - 2)(3 + \sqrt{2x + 5})}$$

$$= \lim_{x \to 2} \frac{4 - 2x}{(x - 2)(3 + \sqrt{2x + 5})}$$

$$= \lim_{x \to 2} \frac{2(2 - x)}{(x - 2)(3 + \sqrt{2x + 5})}$$

$$= \lim_{x \to 2} \frac{-2(x - 2)}{(x - 2)(3 + \sqrt{2x + 5})}$$

$$= \lim_{x \to 2} \frac{-2}{3 + \sqrt{2x + 5}} = \frac{-2}{3 + \sqrt{2(2) + 5}}$$

$$= \frac{-2}{3 + \sqrt{9}} = \frac{-2}{6} = -\frac{1}{3}$$
53)
$$\lim_{x \to 2} \frac{\sqrt{x + 4} - 2}{x + 4 - 2} = \lim_{x \to 2} \frac{\sqrt{x + 4} + 2}{x + 4 - 2}$$

51)
$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^2 + 1} = \frac{(-1)^2 + 3(-1) + 2}{(-1)^2 + 1} = \frac{1 - 3 + 2}{1 + 1}$$
$$= \frac{0}{2} = 0$$

52) If

$$\lim_{x \to k} f(x) = -\frac{1}{2}$$

and

$$\lim_{x \to k} g(x) = \frac{2}{3}$$

Then

$$\lim_{x \to k} \frac{f(x)}{g(x)} = \frac{-\frac{1}{2}}{\frac{2}{3}} = -\frac{1}{2} \times \frac{3}{2} = -\frac{3}{4}$$

$$\begin{aligned}
&= \frac{-2}{3+\sqrt{9}} = \frac{-2}{6} = -\frac{1}{3} \\
&= \lim_{x \to 0} \frac{\sqrt{x+4}-2}{x} = \lim_{x \to 0} \left[\frac{\sqrt{x+4}-2}{x} \times \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2} \right] \\
&= \lim_{x \to 0} \frac{(x+4)-4}{x(\sqrt{x+4}+2)} \\
&= \lim_{x \to 0} \frac{x}{x(\sqrt{x+4}+2)} \\
&= \lim_{x \to 0} \frac{1}{\sqrt{x+4}+2} = \frac{1}{\sqrt{(0)+4}+2} \\
&= \frac{1}{\sqrt{4}+2} = \frac{1}{4}
\end{aligned}$$

54)
$$\lim_{x \to -1} \frac{x^2 - 5x - 6}{x + 1} = \lim_{x \to -1} \frac{(x - 6)(x + 1)}{x + 1} = \lim_{x \to -1} (x - 6)$$
$$= (-1) - 6 = -7$$

55)
$$\lim_{x \to 0} \frac{(x+3)^{-1} - 3^{-1}}{x} = \lim_{x \to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x} = \lim_{x \to 0} \frac{\frac{3 - (x+3)}{3(x+3)}}{x}$$
$$= \lim_{x \to 0} \frac{-x}{3x(x+3)} = \lim_{x \to 0} \frac{-1}{3(x+3)}$$
$$= \frac{-1}{3(0)+3} = \frac{-1}{9} = -\frac{1}{9}$$

56) If

$$\lim_{x \to 1} f(x) = 3$$

$$\lim_{x \to 1} g(x) = -4$$

and

$$\lim_{x \to 1} h(x) = -1$$

then

$$\lim_{x \to 1} \left[\frac{5f(x)}{2g(x)} + h(x) \right] = \frac{\lim_{x \to 1} 5f(x)}{\lim_{x \to 1} 2g(x)} + \lim_{x \to 1} h(x)$$

$$= \frac{5\lim_{x \to 1} f(x)}{2\lim_{x \to 1} g(x)} + \lim_{x \to 1} h(x)$$

$$= \frac{5(3)}{2(-4)} + (-1) = \frac{15}{-8} - 1 = -\frac{15}{8} - 1$$

$$= \frac{-15 - 8}{8} = -\frac{23}{8}$$

57) If

$$\lim_{x \to 1} g(x) = -4$$

and

$$\lim_{x \to 1} h(x) = -1$$

then

$$\lim_{x \to 1} \sqrt{g(x)h(x)} = \sqrt{\left[\lim_{x \to 1} g(x)\right] \left[\lim_{x \to 1} h(x)\right]} = \sqrt{(-4)(-1)}$$
$$= \sqrt{4} = 2$$

58) If

$$\lim_{x \to 1} f(x) = 3$$
$$\lim_{x \to 1} g(x) = -4$$

and

$$\lim_{x \to 1} h(x) = -1$$

then

$$\lim_{x \to 1} [2f(x)g(x)h(x)] = 2 \left[\lim_{x \to 1} f(x) \right] \left[\lim_{x \to 1} g(x) \right] \left[\lim_{x \to 1} h(x) \right]$$
$$= 2(3)(-4)(-1) = 24$$

Part from Section 3.3

1 Lim Sino = 1
$$\lim_{\theta \to 0} \frac{\sin \theta}{\sin \theta} = 1$$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\sin \theta} = 1$$

3 Lim
$$\frac{\cos \theta - 1}{\theta} = 0$$

Example (17)

Lim xcotx =
$$\lim_{x\to 0} \frac{x}{\tan x} = 1$$

 $\lim_{x\to 0} \frac{\sin 7x}{4x} = 0$
 $\lim_{x\to 0} \frac{\sin 7x}{4x} = \lim_{x\to 0} \frac{1}{4x} = \frac{7}{4} \lim_{x\to 0} \frac{\sin 7x}{7x}$
 $\lim_{x\to 0} \frac{\sin 7x}{4x} = \lim_{x\to 0} \frac{1}{4x} = \frac{7}{4} \lim_{x\to 0} \frac{\sin 7x}{7x}$
 $\lim_{x\to 0} \frac{1}{4x} = \frac{7}{4x} \lim_{x\to 0} \frac{\sin 7x}{7x}$

Note

$$\lim_{x \to 0} \frac{\sin mx}{nx} = \frac{m}{n} \lim_{x \to 0} \frac{\sin 6x}{2x} = \frac{6}{2} = 3$$

$$\lim_{x \to 0} \frac{mx}{\sin nx} = \frac{m}{n} \lim_{x \to 0} \frac{8x}{\sin 6x} = \frac{8^{\frac{1}{2}}}{6^{\frac{1}{2}}} = \frac{4}{3}$$

$$\lim_{x \to 0} \frac{\tan mx}{nx} = \frac{m}{n} \lim_{x \to 0} \frac{8x}{\sin 6x} = \frac{8^{\frac{1}{2}}}{6^{\frac{1}{2}}} = \frac{4}{3}$$

$$\lim_{x \to 0} \frac{\tan mx}{nx} = \frac{m}{n} \lim_{x \to 0} \frac{2x}{\tan (\frac{5}{2})x} = \frac{10}{2}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(nx)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(4x)}{\sin(2x)} = \frac{4in}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(nx)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(4x)}{\tan(3x)} = \frac{1}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\tan(nx)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\tan(12x)} = \frac{11}{4} = 2$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(nx)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\tan(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\tan(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\tan(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\tan(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

$$\lim_{x \to 0} \frac{3in(mx)}{\sin(12x)} = \frac{m}{n} \lim_{x \to 0} \frac{3in(14x)}{\sin(12x)} = \frac{11}{3}$$

Example (18)

a)
$$\lim_{\delta \to 0} \frac{\cos \delta - 1}{\sin \delta} = \frac{0}{0}$$
 $\lim_{\delta \to 0} \frac{\cos \delta - 1}{\sin \delta} = \lim_{\delta \to 0} \frac{\cos \delta - 1}{\delta} = 0$
 $\lim_{\delta \to 0} \frac{\cos \delta - 1}{\sin \delta} = \lim_{\delta \to 0} \frac{\cos \delta - 1}{\delta} = 0$

b)
$$\lim_{X \to 0} \frac{\sin 3x}{5x^3 - 4x} = \frac{0}{0}$$

$$\lim_{X \to 0} \frac{\sin 3x}{5(5x^2 - 4)} = \lim_{X \to 0} \frac{\sin 3x}{x} \cdot \frac{1}{5x^2 - 4}$$

$$= \lim_{X \to 0} (\frac{\sin 3x}{x}) \cdot \lim_{X \to 0} (\frac{1}{5x^2 - 4})$$

$$= (\frac{3}{1}) (\frac{1}{5(0)^2 - 4}) = 3(\frac{1}{0 - 4})$$

$$= 3(\frac{1}{4}) = -\frac{3}{4}$$

C)
$$\lim_{x\to 0} \frac{\sin 3x \sin 5x}{4x^2} = \lim_{x\to 0} \frac{\sin 3x \cdot \sin 5x}{x \cdot x}$$

$$= \frac{1}{4} \left[\lim_{x\to 0} \frac{\sin 3x}{x} \cdot \lim_{x\to 0} \frac{\sin 5x}{x} \right]$$

$$= \frac{1}{44} \left[\frac{3(5)}{7(7)} \right] = \frac{15}{4}$$

$$\frac{15}{10} + \frac{3}{10} = \frac{18^{\frac{1}{2}}}{10^{\frac{1}{2}}} = \frac{9}{5}$$

$$\lim_{\delta \to 0} \left\{ \frac{\sin \phi}{\phi} \right\} = \lim_{\delta \to 0} \frac{\sin \phi}{\phi}$$

$$\lim_{\delta \to 0} \left\{ \frac{\sin \phi}{\phi} \right\} = \lim_{\delta \to 0} \frac{\sin \phi}{\phi}$$

$$\lim_{\delta \to 0} \left\{ \frac{\sin \phi}{\phi} \right\} = \lim_{\delta \to 0} \frac{\sin \phi}{\phi}$$

$$=\frac{1}{1+1}=\frac{1}{2}$$

F)
$$\lim_{x \to T} \frac{1 - \tan x}{\sin x - \cos x} = \frac{1 - 1}{12 - 12} = \frac{0}{0}$$

=
$$\lim_{x \to II} \frac{\cos x - \sin x}{\cos x}$$

Sinx - $\cos x$

=
$$\lim_{x \to \mathbb{I}} \frac{\cos x - \sin x}{\cos x} = \frac{\sin x - \cos x}{\cos x}$$

$$= \lim_{x \to \overline{4}} \frac{1}{\cos x} = \frac{1}{\cos (\overline{4})}$$

$$= \frac{-1}{\sqrt{2}} = -1 \div \sqrt{2}$$

$$= -1 \cdot \sqrt{2}$$

$$= -\sqrt{2}$$

9)
$$\lim_{x\to 0} \frac{\sin(x^2)}{x} = \frac{0}{0}$$

$$\lim_{x\to 0} \frac{x \cdot \sin(x^2)}{x} = \lim_{x\to 0} \frac{x \cdot \sin(x^2)}{x^2}$$

$$= \lim_{x\to 0} \frac{x \cdot \sin(x^2)}{x^2}$$

$$= \lim_{x\to 0} \frac{x \cdot \sin(x^2)}{x^2}$$

$$= 0.1$$

$$= 0$$

h)
$$\lim_{x\to 3} \frac{\sin(x-3)}{(x-3)} = \frac{0}{0}$$
 $\lim_{x\to 3} \frac{\sin(x-3)}{(x-3)} = 1$
 $\lim_{x\to 3\to 0} \frac{\sin(x-3)}{(x-3)} = 0$

Sin(cosx)

 $\lim_{x\to \frac{\pi}{2}} \frac{\sin(\cos x)}{\cos(x)} = \frac{0}{0}$

Lim $\frac{\sin(\cos x)}{\cos(x)} = 1$
 $\lim_{x\to \frac{\pi}{2}} \frac{\sin(\cos x)}{\cos x} = 1$
 $\lim_{x\to \frac{\pi}{2}} \frac{\sin(\cos x)}{\cos x} = 1$

*
$$\lim_{x\to 0} \frac{\sin(\sin x)}{\sin(\sin x)} = \frac{1}{2}$$
 $\lim_{x\to 0} \frac{\sin(\sin x)}{\sin(\sin x)} = \frac{1}{2}$
 $\lim_{x\to 0} \frac{\sin(\sin x)}{\sin(\sin x)} = 1$
 $\lim_{x\to 0} \frac{\cos(x^2) - 1}{x^2 - x^2} = 0$
 $\lim_{x\to 0} \frac{\cos(x^2) - 1}{x^2} = 0$
 $\lim_{x\to 0} \frac{\cos(x^2) - 1}{x^2} = 0$

Scanned by CamScanner

h)
$$\lim_{x\to 1} \frac{\sin(x-1)}{x^2+x-2} = \frac{0}{0}$$

$$\lim_{x\to 1}\frac{\sin(x-1)}{(x-1)(x+2)}$$

$$1.\left(\frac{1}{1+2}\right) = 1.\frac{1}{3} = \frac{1}{3}$$

$$\lim_{x\to a} \frac{\tan(x-a)}{(x-a)} = 1 \lim_{f(x)\to o} \frac{\sin(f(x))}{f(x)} = 1$$

$$\lim_{x\to a} \frac{(x-a)}{(x-a)} = \lim_{x\to a} \frac{f(x)}{\sin(f(x))} = \lim$$

$$\lim_{x\to a} \frac{(x-a)}{\sin(x-a)} = 1$$

$$\lim_{x\to a} \frac{\sin(x-a)}{(x-a)} = 1$$

$$\lim_{x\to a} \frac{\cos(x-a)-1}{(x-a)} = 0$$

$$\lim_{F(x)\to 0} \frac{f(x)}{Sin(f(x))} = 1$$

$$\lim_{f(x)\to 0} \frac{\cos(f(x))-1}{f(x)}=0$$

Example (19)

$$\lim_{x\to 2} \frac{\tan(x^2-4)}{3x^2-12} = 0$$

$$\lim_{x\to 2} \frac{\tan(x^2-4)}{3(x^2-4)} = \lim_{3\to 2} \frac{\tan(x^2-4)}{(x^2-4)} = \frac{1}{3}(1) = \frac{1}{3}$$

$$\lim_{x\to 2} \frac{\tan(x^2-4)}{3(x^2-4)} = \frac{1}{3}(1) = \frac{1}{3}$$

$$\lim_{t\to 2} \frac{5t^2 - 10t}{tan(t-2)} = \frac{0}{0}$$

$$\lim_{t\to 2} \frac{5t(t-2)}{tan(t-2)} = \lim_{t\to 2} \frac{(5t)(t-2)}{(1)tan(t-2)}$$

$$= \lim_{t\to 2} \frac{(5t)}{1} \cdot \lim_{t\to 2} \frac{(t-2)}{tan(t-2)}$$

$$= \frac{1}{2} \frac{(5t)}{1} \cdot \lim_{t\to 2} \frac{(t-2)}{tan(t-2)} = 10(1) = 10$$

$$\lim_{t\to 2} \frac{\sin(20+5)}{120+30} = \frac{0}{0}$$

$$\lim_{6 \to -\frac{5}{2}} \frac{\sin(20+5)}{6(20+5)}$$

$$\frac{1}{6} \lim_{0 \to -\frac{5}{2}} \frac{\sin(20+5)}{(20+5)}$$

$$\frac{1}{6} \lim_{20 \to -5} \frac{\sin(20 + 5)}{(20 + 5)} = \frac{1}{6} (1) = \frac{1}{6}$$

$$\begin{array}{lll}
\text{Lim} & \frac{1-\cos^2\theta}{\sin(\sin^2\theta)} = \frac{0}{0} \\
\text{Lim} & \frac{(\sin^2\theta)}{\sin(\sin^2\theta)} = \frac{1}{0} \\
\text{Sin}\theta \to \sin(\sin^2\theta) = 0 \\
\text{Sin}\theta \to 0
\end{array}$$

$$\begin{array}{lll}
\text{Lim} & \frac{\sin(1-\cos\theta)}{\sin(\sin^2\theta)} = \frac{0}{0} \\
\text{Lim} & \frac{\sin(1-\cos\theta)}{1-\cos^2\theta} = \frac{0}{0} \\
\text{Lim} & \frac{\sin(1-\cos\theta)}{1-\cos^2\theta} = \frac{0}{0} \\
\text{Lim} & \frac{\sin(1-\cos\theta)}{1-\cos\theta} = \frac{0}{0} \\$$

$$\lim_{Q \to 0} \frac{\cos(Q) - 1}{2Q^2} = \frac{\cos(Q) - 1}{2(Q)^2} = \frac{1 - 1}{Q} = \frac{Q}{Q}$$

$$\lim_{Q \to 0} \frac{\cos(Q) - 1}{2Q^2} \cdot \frac{\cos(Q) + 1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{(\cos(Q)) \cdot (\cos(Q) + 1)}{2Q^2 \cdot (\cos(Q) + 1)}$$

$$\lim_{Q \to 0} \frac{(\cos^2(Q) - 1)^2}{2Q^2 \cdot (\cos(Q) + 1)}$$

$$\lim_{Q \to 0} \frac{\cos^2(Q) - 1}{2Q^2 \cdot (\cos(Q) + 1)} = \lim_{Q \to 0} \frac{-\sin^2(Q)}{2Q^2 \cdot (\cos(Q) + 1)}$$

$$\lim_{Q \to 0} \frac{\cos^2(Q) - 1}{Q^2 \cdot (\cos(Q) + 1)} = \lim_{Q \to 0} \frac{-\sin^2(Q)}{Q^2 \cdot (\cos(Q) + 1)}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$

$$\lim_{Q \to 0} \frac{\sin^2(Q)}{Q^2} \cdot \lim_{Q \to 0} \frac{1}{\cos(Q) + 1}$$