
 MINISTRY OF EDUCATION

لكل المـهتمين و المـهتمـات بدروس و مراجع الجامعيـة eduschool40.blog مدونةّ المناهـج اللسعودية

(2.2) The Limit Of A Function

$\lim _{x \rightarrow a} f(x)=L$ is $f(x) \rightarrow L$ as $x \rightarrow a$
$\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L$
Example (1)

a) $\lim _{x \rightarrow 2} f(x)=4$ and $f(2)=4$
b) $\lim _{x \rightarrow-1} f(x)=4$ and $f(-1)=3$
c) $\lim _{x \rightarrow 0} f(x)=2$ and $f(0)=$ undefind or not defind

Example (2)

$\lim _{x \rightarrow 1} g(x)=0.5$ and $f(1)=2$

Example (3)

$\lim _{x \rightarrow 0} f(x)=1$ and $f(0)=$ undefind or not defind

Example (4)

a) $\lim _{x \rightarrow 0} f(x)=D . N . E$ and $f(0)=$ undefind or not defind
b) $\lim _{x \rightarrow 1} f(x)=0$ and $f(1)=0$

One side limits

Example (5)

$\lim _{x \rightarrow 0^{+}} f(t)=1$

$$
\lim _{x \rightarrow 0^{-}} f(t)=0
$$

$\because \lim _{x \rightarrow 0^{+}} f(t) \neq \lim _{x \rightarrow 0^{-}} f(t)$
$\therefore \lim _{x \rightarrow 0} f(t)=$ D.N.E

Example (6)

a) $\lim _{x \rightarrow 0^{+}} g(x)=2.5$

$$
\lim _{x \rightarrow 0^{-}} g(x)=2.5
$$

$\lim _{x \rightarrow 0} g(x)=2.5$ since $: \lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{-}} g(x)$
$g(0)=2.5$
b) $\lim _{x \rightarrow 2^{+}} g(x)=1$

$$
\lim _{x \rightarrow 2^{-}} g(x)=3
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} g(x)=\text { D. } N . E \text { since }: \lim _{x \rightarrow 2^{+}} g(x) \neq \lim _{x \rightarrow 2^{-}} g(x) \\
& g(2)=\text { undefind }
\end{aligned}
$$

c) $\lim _{x \rightarrow 5^{+}} g(x)=2$
$\lim _{x \rightarrow 5^{-}} g(x)=2$

$$
\begin{aligned}
& \lim _{x \rightarrow 5} g(x)=2 \text { since }: \lim _{x \rightarrow 5^{+}} g(x)=\lim _{x \rightarrow 5^{-}} g(x) \\
& g(5)=1
\end{aligned}
$$

Example (7)

a) $\lim _{x \rightarrow 0} g(x)=3$ and $g(0)=3$
b) $\lim _{x \rightarrow 3^{-}} g(x)=1$
$\lim _{x \rightarrow 3^{+}} g(x)=4$
$\lim _{x \rightarrow 3} g(x)=$ D.N.E since : $\lim _{x \rightarrow 3^{+}} g(x) \neq \lim _{x \rightarrow 3^{-}} g(x)$
c) $g(3)=3$

Example (8)

a) $\lim _{x \rightarrow 4} g(x)=4$
b) $\lim _{x \rightarrow 2^{-}} g(x)=3$
$\lim _{x \rightarrow 2^{+}} g(x)=1$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} g(x)=D . N . E \text { since }: \lim _{x \rightarrow 2^{+}} g(x) \neq \lim _{x \rightarrow 2^{-}} g(x) \\
& \text { c) } g(2)=3
\end{aligned}
$$

$g(4)$ is not defind

Example (9)

a) $\lim _{x \rightarrow 0^{+}} g(x)=-2$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} g(x)=-1 \\
& \because \lim _{x \rightarrow 0^{+}} g(x) \neq \lim _{x \rightarrow 0^{-}} g(x) \\
& \therefore \lim _{x \rightarrow 0} g(x)=\text { D.N.E }
\end{aligned}
$$

b) $\lim _{x \rightarrow 2^{-}} g(x)=2$

$$
\lim _{x \rightarrow 2^{+}} g(x)=0
$$

$\lim _{x \rightarrow 2} g(x)=$ D. N. E since: $\lim _{x \rightarrow 2^{+}} g(x) \neq \lim _{x \rightarrow 2^{-}} g(x)$
c) $g(2)=1$

$$
g(0)=-1
$$

Infinite limits

$\lim _{x \rightarrow a} f(x)= \pm \infty$ if and only if $x=a$ is a vertical asymptote $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ if and only if $x=a$ is a vertical asymptote $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ if and only if $x=a$ is a vertical asymptote

Example (10)

$$
\lim _{x \rightarrow 0} f(x)=\infty
$$

$\therefore x=0$ is a vertical asymptote

Example (11)

$\lim _{x \rightarrow 0} f(x)=-\infty$
$\therefore x=0$ is a vertical asymptote

$$
\lim _{x \rightarrow 0^{+}} f(x)=\infty
$$

$\lim _{x \rightarrow 0^{-}} f(x)=-\infty$
$\lim _{x \rightarrow 0} f(x)=D . N . E$ since $: \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)$
$\therefore x=0$ is a vertical asymptote

Example (13)

$\lim _{x \rightarrow 3^{+}} f(x)=-\infty$
$\lim _{x \rightarrow 3^{-}} f(x)=\infty$
$\lim _{x \rightarrow 3} f(x)=$ D. N. E since : $\lim _{x \rightarrow 3^{+}} f(x) \neq \lim _{x \rightarrow 3^{-}} f(x)$
$\therefore x=3$ is a vertical asymptote

Example (14)

$\lim _{x \rightarrow 1^{-}} f(x)=-\infty$
$\lim _{x \rightarrow 1^{+}} f(x)=$ D.N.E
$\lim _{x \rightarrow 1} f(x)=D . N . E$ since $: \lim _{x \rightarrow 1^{+}} f(x) \neq \lim _{x \rightarrow 1^{-}} f(x)$
$\therefore x=1$ is a vertical asymptote

Example (15)

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}} f(x)=-\infty \\
& \lim _{x \rightarrow-2^{-}} f(x)=\text { D.N.E } \\
& \lim _{x \rightarrow-2} f(x)=\text { D.N.E since: }: \lim _{x \rightarrow 2^{+}} f(x) \neq \lim _{x \rightarrow 2^{-}} f(x)
\end{aligned}
$$

$\therefore x=-2$ is a vertical asymptote

Example (16)

Find the vertical asymptotes of $f(x)=\tan (x)$

$\lim \tan x=\mp \infty$ for all n is an odd number $x \rightarrow\left(\pm \frac{n \pi}{2}\right)^{ \pm}$

$$
\lim _{x \rightarrow \pm \frac{n \pi}{2}} \tan x=\text { D.N.E since : } \lim _{x \rightarrow\left(\pm \frac{n \pi}{2}\right)^{+}} \tan x \neq \lim _{x \rightarrow\left(\pm \frac{n \pi}{2}\right)^{-}} \tan x
$$

$\therefore x= \pm \frac{n \pi}{2}$ are a vertical asymptotes for all n is an odd number

Example (17)

Find the vertical asymptotes of $f(x)=\ln (x)$

$x=0$ is a vertical asymptote since : $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$

Example (18)

Find the vertical asymptotes of $f(x)=x$

$f(x)$ has no vertical asymptotes

Example (19)

Find the vertical asymptotes of $f(x)=x^{2}$

$f(x)$ has no vertical asymptotes
Example (20)
Find the vertical asymptotes of $f(x)=e^{x}$

$f(x)$ has no vertical asymptotes

Example (21)

Find the vertical asymptotes of $f(x)=\cos x$

$f(x)$ has no vertical asymptotes

Example (22)

Find the vertical asymptotes of $f(x)=\sin x$

$f(x)$ has no vertical asymptotes

Example (23)

Find the vertical asymptotes of $f(x)=\sqrt{9-x^{2}}$

$f(x)$ has no vertical asymptotes

Example (24)

Find the vertical asymptotes of $f(x)=\sqrt[3]{x}$

$f(x)$ has no vertical asymptotes

Note

1. Any polynomial function has no vertical asymptote
2. Any exponintial function has no vertical asymptote
3. Any radical function has no vertical asymptote
4. Only $\sin x$ and $\cos x$ has no vertical asymptote Summary of infinte limits

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

$\therefore \boldsymbol{x}=\boldsymbol{a}$ is a vertical asymptote

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

$\therefore \boldsymbol{x}=\boldsymbol{a}$ is a vertical asymptote

$\lim _{x \rightarrow a^{+}} f(x)=\infty$
$\therefore \boldsymbol{x}=\boldsymbol{a}$ is a vertical asymptote

$$
\lim _{x \rightarrow a^{-}} f(x)=\infty
$$

$\therefore x=a$ is a vertical asymptote

Example(25)

							y	y						

a) $\lim _{x \rightarrow 5} f(x)=\infty$
$\therefore x=5$ is a vertical asymptote
b) $\lim _{x \rightarrow 2} f(x)=-\infty$
$\therefore \boldsymbol{x}=\mathbf{2}$ is a vertical asymptote
c) $\lim _{x \rightarrow-3^{+}} f(x)=\infty$

$$
\lim _{x \rightarrow-3^{-}} f(x)=-\infty
$$

$\therefore x=-3$ is a vertical asymptote

Example(26)

								y								
					-3		0						6	x		

a) $\lim _{x \rightarrow 0} f(x)=\infty$
$\therefore \boldsymbol{x}=\mathbf{0}$ is a vertical asymptote
b) $\lim _{x \rightarrow-3} f(x)=\infty$
$\therefore x=-3$ is a vertical asymptote
b) $\lim _{x \rightarrow-7} f(x)=-\infty$
$\therefore x=-7$ is a vertical asymptote
c) $\lim _{x \rightarrow 6^{+}} f(x)=\infty$

$$
\lim _{x \rightarrow 6^{-}} f(x)=-\infty
$$

$\therefore x=6$ is a vertical asymptote

Example(27)

Find the vertical asymptotes of the following functions

a) $f(x)=\frac{2 x}{x-3}$

Zeros of the denominator : $x-3=0 \Rightarrow x=3$
Let $g(x)=2 x$
$g(3)=2(3)=6 \neq 0$
$\therefore x=3$ is vertical asymptote
b) $f(x)=\frac{x+3}{x^{2}-4}$

Zeros of the denominator : $x^{2}-4=0 \Rightarrow x= \pm 2$
Let $g(x)=x+3$
$g(2)=2+3=5 \neq 0$
$g(-2)=-2+3=1 \neq 0$
$\therefore x=-2$ and $x=2$ are vertical asymptote
c) $f(x)=\frac{x^{2}+1}{3 x-2 x^{2}}$

Zeros of the denominator : $3 x-2 x^{2}=0 \Rightarrow x(3-2 x)=0$

$$
x=0 \text { or } 3-2 x=0 \Rightarrow x=\frac{3}{2}
$$

$$
\begin{aligned}
& \text { Let } g(x)=x^{2}+1 \\
& g(0)=0+1=1 \neq 0 \\
& g\left(\frac{3}{2}\right)=\frac{9}{4}+1=\frac{9+4}{4}=\frac{13}{4} \neq 0 \\
& \quad \therefore x=0 \text { and } x=\frac{3}{2} \text { are vertical asymptote }
\end{aligned}
$$

d) $f(x)=\frac{x^{2}-3 x-10}{x^{2}-6 x+5}$

Zeros of the denominator : $x^{2}-6 x+5=0$

$$
(x-1)(x-5)=0 \Rightarrow x=1 \text { or } x=5
$$

Let $g(x)=x^{2}-3 x-10$
$g(1)=1-3-10=-12 \neq 0$
$x=1$ is a vertical asymptote
$g(5)=25-15-10=0$
$x=5$ is not vertical asymptote
e) $f(x)=\csc x$

$$
=\frac{1}{\sin x}
$$

Zeros of the denominator : $\sin x=0 \Rightarrow x=n \pi \forall n \in Z$

$$
\begin{aligned}
& \text { Let } g(x)=\mathbf{1} \\
& g(n \pi)=\mathbf{1} \neq \mathbf{0}
\end{aligned}
$$

$\therefore \boldsymbol{x}=\boldsymbol{n} \boldsymbol{\pi}$ is a vertical asymptoe
f) $f(x)=\sec x$

$$
=\frac{1}{\cos x}
$$

Zeros of the denominator : $\cos x=0 \Rightarrow x=\frac{(2 n+1) \pi}{2} \forall n \in Z$
Let $g(x)=1$

$$
\begin{aligned}
& g\left(\frac{(2 n+1) \pi}{2}\right)=1 \neq 0 \\
& \therefore x=\frac{(2 n+1) \pi}{2} \text { is a vertical asymptote }
\end{aligned}
$$

g) $f(x)=\cot x$

$$
=\frac{1}{\tan x}
$$

Zeros of the denominator : $\tan x=0 \Rightarrow x=n \pi \forall n \in Z$

$$
\begin{aligned}
& \text { Let } g(x)=\mathbf{1} \\
& g(n \boldsymbol{\pi})=\mathbf{1} \neq \mathbf{0}
\end{aligned}
$$

$\therefore \boldsymbol{x}=\boldsymbol{n \pi}$ is a vertical asymptoe
h) $f(x)=\log _{2}\left(1-x^{2}\right)$

$$
1-x^{2}=0 \Rightarrow x= \pm 1
$$

$\therefore x= \pm 1$ are a vertical asymptoe
i) $f(x)=\log _{2}(x+2)$

$$
x+2=0 \Rightarrow x=-2
$$

$\therefore x=-2$ are a vertical asymptoe since: $\lim _{x \rightarrow-2^{+}} \log _{2}(x+2)=-\infty$

2.3. Calculating Limits Using the Limit Lams.
Limit Lams.
Suppose that c is a constant and the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist Then

1) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
2) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
3) $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$
4) $\lim _{x \rightarrow a} x=a$
5) $\lim _{x \rightarrow a} x^{n}=a^{n} \quad \sum_{j \leq 1}^{\forall n \in Z^{+}}$
6) $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n} \quad \forall n \in Z^{+}$

7] $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a} \quad \forall n$ is an odd number

8] $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)} \quad \forall n$ is an odd number $\operatorname{Lim}_{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\operatorname{Lim}_{x \rightarrow a} f(x)}$ such that $\lim _{x \rightarrow a} f(x)>0 \quad \forall n$ is an even
number.

9] $\operatorname{Lim}_{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
10] $\operatorname{Lim}_{x \rightarrow a} c=c$
Example (1)
Given that:-

$$
\begin{aligned}
& \text { n that: } \\
& \operatorname{Lim}_{x \rightarrow 2} f(x)=4 ; \lim _{x \rightarrow 2} g(x)=-2 ; \lim _{x \rightarrow 2} h(x)=0
\end{aligned}
$$

$$
\lim _{x \rightarrow 2}\left[3 f(x)-\frac{5}{2} g(x)\right]=\lim _{x \rightarrow 2} 3 f(x)-\lim _{x \rightarrow 2} \frac{5}{2} g(x)
$$

$$
=3 \lim _{x \rightarrow 2} f(x)-\frac{5}{2} \lim _{x \rightarrow 2} g(x)
$$

$$
=3(4)-\frac{5}{2}(-2)
$$

$$
=12+5
$$

b)

$$
\begin{aligned}
\text { b) } \begin{aligned}
& \lim _{x \rightarrow 2} \frac{3 f(x)}{g(x)}=\frac{\lim _{x \rightarrow 2} 3 f(x)}{\lim _{x \rightarrow 2} g(x)}=\frac{3 \lim _{x \rightarrow 2} f(x)}{\lim _{x \rightarrow 2} g(x)} \\
&=\frac{3(4)}{-2}=\frac{12}{-2}=-6 \\
& \text { c) } \lim _{x \rightarrow 2} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow 2} f(x)}=\sqrt{4}=2 \\
&
\end{aligned}
\end{aligned}
$$

d) $\lim _{x \rightarrow 2}[h(x)]^{3}=\left[\lim _{x \rightarrow 2} h(x)\right]^{3}=0^{3}=0$
e) $\operatorname{Lim}_{x \rightarrow 2} \frac{e^{c}}{\operatorname{Ln}(c)}=\frac{e^{c}}{\operatorname{Ln}(c)} \quad ; \lim _{x \rightarrow 2} \frac{c^{2}}{\sqrt{2}}=H . W$
F) $\operatorname{Lim}_{x \rightarrow 2} \sin (\pi / 12)=\sin (\pi / 2)$
g) $\lim _{x \rightarrow 2} \cos \left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
h) $\lim _{x \rightarrow 2} \tan ^{-1}(-1)=\tan ^{-1}(-1)=-\tan ^{-1}(1)=-\frac{\pi}{4}$
(i) $\lim _{x \rightarrow 2} a \sqrt[3]{b}=a \sqrt[3]{b}$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow-2}[f(x)+5 g(x)] \\
& \operatorname{Lim}_{x \rightarrow-2} f(x)+\operatorname{Lim}_{x \rightarrow-2} 5 g(x) \\
& \lim _{x \rightarrow-2} f(x)+5 \lim _{x \rightarrow-2} g(x) \\
& 1+5(-1) \\
& \text { 1-5 } \\
& -4 \\
& \operatorname{Lim}_{x \rightarrow 1} f(x) g(x) \\
& \operatorname{Lim}_{x \rightarrow 1^{+}} f(x) g(x)=\lim _{x \rightarrow 1^{+}} f(x) \cdot \lim _{x \rightarrow 1^{+}} g(x) \\
& =(+2)(-1)
\end{aligned}
$$

$$
\begin{aligned}
& =2(-2)=-4 \\
& \because \because \lim _{x \rightarrow 1^{+}} f(x) g(x) \neq \lim _{x \rightarrow 1^{-}} f(x) g(x) \\
& \therefore \operatorname{Lim}_{x \rightarrow 1} f(x) g(x)=D \cdot N \cdot E
\end{aligned}
$$

Example (3)
a) $\operatorname{Lim}_{x \rightarrow 9} \frac{x-9}{\sqrt{x}+9}=\frac{9-9}{\sqrt{9}+9}=\frac{0}{3+9}=\frac{0}{12}=0$

$$
\text { b) } \begin{aligned}
\lim _{x \rightarrow 5}\left(2 x^{2}-3 x+4\right) & =2(5)^{2}-3(5)+4=2(25)-3(5)+4 \\
& =50-15+4=35+4 \\
& =39 \\
\text { c) } \lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x} & =\frac{(-2)^{3}+2(-2)^{2}-1}{5-3(-2)}=\frac{-8+2(4)-1}{5+6} \\
& =\frac{-8+8-1}{11}=-\frac{1}{11}
\end{aligned}
$$

Example(4)
a)

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\frac{(1)^{2}-1}{1-1}=\frac{1-1}{1-1}=\frac{0}{0} \text { b } \\
& \operatorname{Lim}_{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\operatorname{Lim}_{x \rightarrow 1} \frac{(x-1)(x+1)}{(x-1)}=\operatorname{Lim}_{x \rightarrow 1}(x+1)=1+1=2
\end{aligned}
$$

b)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 1} \frac{x-1}{x-1}=x \rightarrow 1 \\
& \operatorname{Lim}_{x \rightarrow-6} \frac{x+6}{x^{2}-36}=\frac{-6+6}{(-6)^{2}-36}=\frac{-6+6}{36-36}=\frac{0}{0}=\lim _{x \rightarrow-6} \frac{1}{x-6}=\frac{1}{-6-6}=-\frac{1}{12} \\
& \operatorname{Lim}_{x \rightarrow-6} \frac{x+6}{x^{2}-36}=\operatorname{Lim}_{x \rightarrow-6} \frac{(x+6)}{(x-6)(x+6)}
\end{aligned}
$$

c)

$$
\begin{aligned}
& x \rightarrow-6 x^{2}-36 \\
& \operatorname{Lim}_{x \rightarrow 2} \frac{x-2}{x^{3}-8}=\frac{2-2}{(2)^{3}-8}=\frac{2-2}{8-8}=\frac{0}{0}=\operatorname{Lim}_{x \rightarrow 2} \frac{(x-2)}{(x-2)\left(x^{2}+2 x+4\right)} \\
& \operatorname{Lim}_{x \rightarrow 2} \frac{x-2}{x^{3}-8^{3}}=\frac{x-2}{x \rightarrow 2} \frac{1}{x^{3}-2^{3}}=\frac{1}{(2)^{2}+2(2)+4}=\frac{1}{4+4+4}=\frac{1}{12} \\
& \operatorname{Lim}_{x \rightarrow 2} \frac{1}{x^{2}+2 x+4}=
\end{aligned}
$$

d)

$$
\begin{aligned}
\begin{aligned}
& \lim _{x \rightarrow-4} \frac{x^{2}+5 x+4}{x^{2}+3 x-4}=\frac{(-4)^{2}+5(-4)+4}{(-4)^{2}+3(-4)-4}=\frac{16-20+4}{16-12-4} \\
&=\frac{-4+4}{4-4}=\frac{0}{0} \\
& \begin{aligned}
\lim _{x \rightarrow-4} \frac{x^{2}+5 x+4}{x^{2}+3 x-4} & =\lim _{x \rightarrow-4} \frac{(x+1)(x+4)}{(x+4)(x-1)} \\
& =\lim _{x \rightarrow-4} \frac{x+1}{x-1}=\frac{-4+1}{-4-1}=\frac{-3}{-5}=\frac{3}{5}
\end{aligned}
\end{aligned}=\left\{\begin{array}{l}
\text { e- }
\end{array}\right.
\end{aligned}
$$

e)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x^{2}-2 x-3}=\lim _{x-2} \frac{2(-1)^{2}+3(-1)+1}{(-1)^{2}-2(-1)-3} \\
& =\frac{2(1)+3(-1)+1}{1-2(-1)-3}=\frac{2-3+1}{1+2-3}=\frac{-1+1}{3-3} \\
& \text { = }
\end{aligned}
$$

$$
\begin{array}{rl}
\lim _{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x^{2}-2 x-3}= & \lim _{x \rightarrow-1} \frac{(2 x+1)(x+1)}{(x-3)(x+1)}=\lim _{x \rightarrow-1} \frac{2 x+1}{x-3} \\
= & \frac{2(-1)+1}{-1-3}=\frac{-2+1}{-1-3}=\frac{-1}{-4}=\frac{1}{4} \\
2 x^{2}+3 x+1 & 2 x+1+1 x \\
& \therefore 2 x^{2}+3 x+1=(2 x+1)(x+1)
\end{array}
$$

$$
\text { f) } \begin{aligned}
\operatorname{Lim}_{t \rightarrow 3} \frac{t^{2}-9}{2 t^{2}-7 t+3} & =\frac{(3)^{2}-9}{2(3)^{2}-7(3)+3}=\frac{9-9}{2(9)-7(3)+3} \\
& =\frac{9-9}{18-21+3}=\frac{9-9}{-3+3} \\
& =\frac{0}{0}=\frac{\lim _{t \rightarrow 3}}{} \frac{(t-3)(t+3)}{(t-3)(2 t-1)} \\
\lim _{t \rightarrow 3} \frac{t^{2}-9}{2 t^{2}-7 t+3} & \\
& =\operatorname{Lim}_{t \rightarrow 3} \frac{t+3}{2 t-1}=\frac{3+3}{2(3)-1}=\frac{3+3}{6-1} \\
& =\frac{6}{5}
\end{aligned}
$$

$2 t^{2}-7 t+3:$ بُرِّ

g)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}=\frac{(2)^{2}+2-6}{2-2}=\frac{4+2-6}{2-2}=\frac{6-6}{2-2}=\frac{0}{0} \\
& \operatorname{Lim}_{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}=\operatorname{Lim}_{x \rightarrow 2} \frac{(x-2)(x+3)}{(x-2)}=\lim _{x \rightarrow 2}(x+3)=2+3=5
\end{aligned}
$$

h) $\operatorname{Lim}_{x \rightarrow 1} \frac{x^{4}-1}{x^{3}-1}=\frac{(1)^{4}-1}{(1)^{3}-1}=\frac{1-1}{1-1}=0 \quad 0 \quad 0,0,0$

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 1} \frac{x^{4}-1}{x^{3}-1} & =\lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{(x-1)\left(x^{2}+x+1\right)} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)\left(x^{2}+1\right)}{(x-1)\left(x^{2}+x+1\right)} \\
& =\operatorname{Lim}_{x \rightarrow 1} \frac{(x+1)\left(x^{2}+1\right)}{\left(x^{2}+x+1\right)}
\end{aligned}
$$

$\ddot{\partial} \rightarrow \mu$

$$
\begin{aligned}
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{2}-b^{2}=(a+b)(a-b) \\
& a^{2}+b^{2}=(1) \\
& (a+b)^{2}=a^{2} \pm 2 a b+b^{2} \\
& (a \pm b)^{3}=a^{3} \pm 3 a^{2} b+3 a b^{2} \pm b^{3}
\end{aligned}
$$

$$
\text { i) } \begin{aligned}
& \lim _{x \rightarrow \frac{5}{3}} \frac{3 x-5}{6 x^{2}+5 x-25}= \frac{3\left(\frac{5}{3}\right)-5}{6\left(\frac{25}{9}\right)+5\left(\frac{5}{3}\right)-25}=\frac{5-5}{2\left(\frac{25}{3}\right)+\frac{25}{3}-25} \\
&=\frac{0}{\frac{50}{3}+\frac{25}{3}-25}=\frac{0}{\frac{75}{3}-25}=\frac{0}{25-25}=\frac{0}{0} \\
& \lim _{x \rightarrow \frac{5}{3}} \frac{(3 x-5)}{(3 x-5)(2 x+5)}=\lim _{x \rightarrow 5 / 3} \frac{1}{2 x+5}=\frac{1}{2\left(\frac{5}{3}\right)+5}=\frac{1}{\frac{10}{3}+5} \\
&=\frac{1}{\frac{10+15}{3}}=\frac{1}{\frac{25}{3}}=\frac{3}{2.5}
\end{aligned}
$$

$6 x^{2}+5 x-25: \circlearrowleft, y^{\prime}$

Example (5)
a)

$$
\begin{aligned}
\operatorname{Lim}_{h \rightarrow 0} \frac{(3+h)^{2}-9}{h} & =\frac{(3+0)^{2}-9}{0}=\frac{3^{2}-9}{0}=\frac{9-9}{0} \\
& =\frac{0}{0} \quad \begin{array}{l}
0,0 \\
0,0 \\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{9+2(3) h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\frac{0}{0} \\
& \operatorname{Lim}_{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{h(6+h)}{h}=\lim _{h \rightarrow 0}^{(6+h)}=6+0=6
\end{aligned}
$$

b)

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}=\frac{(2+0)^{3}-8}{0}=\frac{2^{3}-8}{0}=\frac{8-8}{0} \\
& \lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}=\lim _{h \rightarrow 0} \frac{8+3(4) h+3(2) h^{2}+h^{3}-8}{h} \\
& \lim _{h \rightarrow 0} \frac{\left(12 h+6 h^{2}+h^{3}\right)}{h}=\frac{0}{0} \Rightarrow \lim _{h \rightarrow 0} \frac{h\left(12+6 h+h^{2}\right)}{h} \\
& \lim _{h \rightarrow 0}\left(12+6 h+h^{2}\right)=12+6(0)+0^{2}=12
\end{aligned}
$$

Example (6)
a)

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h} & =\frac{3^{-1}-3^{-1}}{0}=\frac{0}{0} \\
\lim _{h \rightarrow 0} \frac{1}{h+h}-\frac{1}{3} & =\lim _{h \rightarrow 0} \frac{\frac{3-(3+h)}{3(3+h)}}{\left(\frac{h}{1}\right)} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3-3-h}{3(3+h)}}{\left(\frac{h}{1}\right)} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{3(3+h)}}{\frac{h}{1}} \\
& =\lim _{h \rightarrow 0} \frac{-h}{3(3+h)} \div \frac{h}{1} \\
& =\lim _{h \rightarrow 0} \frac{-h}{3(3+h)} \times \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{3(3+h)} \\
& =\frac{-1}{3(3)} \\
& =\frac{-1}{9}
\end{aligned}
$$

b) $\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}=\frac{\frac{1}{4}-\frac{1}{4}}{4-4}=\frac{0}{0} \quad$ ة.

$$
\begin{aligned}
\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x} & =\lim _{x \rightarrow-4} \frac{\left(\frac{x+4}{4 x}\right)}{\left(\frac{4+x}{1}\right)} \\
& =\lim _{x \rightarrow-4} \frac{(x+4)}{4 x} \div \frac{(4+x)}{1} \\
& =\lim _{x \rightarrow-4} \frac{(x+4)}{4 x} \times \frac{1}{(4+x)} \\
& =\lim _{x \rightarrow-4} \frac{(x+4)}{4 x} \times \frac{1}{(x+4)} \\
& =\lim _{x \rightarrow-4} \frac{1}{4 x} \\
& =\frac{1}{4(-4)} \\
& =-\frac{1}{16}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right) & =\frac{1}{0}-\frac{1}{0} \\
\operatorname{Lim}_{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right) & =\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t(t+1)}\right) \\
& =\lim _{t \rightarrow 0}\left(\frac{t+1-1}{t(t+1)}\right)=\lim _{t \rightarrow 0} \frac{t}{t(t+1)} \\
& =\lim _{t \rightarrow 0} \frac{1}{t+1}=\frac{1}{0+1}=\frac{1}{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow \frac{\pi}{2}} \frac{\sin ^{2} x-1}{\sin x-1}=\frac{1-1}{1-1}=\frac{0}{0} \\
& \operatorname{Lim}_{x \rightarrow \frac{\pi}{2}} \frac{(\sin x-1)(\sin x+1)}{(-\sin x-1)} \\
& \operatorname{Lim}_{x \rightarrow \frac{\pi}{2}}(\sin x+1)=\sin \left(\frac{\pi}{2}\right)+1=1+1=2 \\
& \operatorname{Lim}_{x \rightarrow-\frac{\pi}{4}} \frac{\sin x+\cos x}{\cos ^{2} x-\sin ^{2} x}=\frac{\sin \left(-\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{4}\right)}{\cos ^{2}\left(\frac{\pi}{4}\right)-\sin ^{2}\left(-\frac{\pi}{4}\right)}=-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
& \frac{1}{2}-\frac{1}{2} \\
& \operatorname{Lim}_{x \rightarrow-\frac{\pi}{4}} \frac{(\sin x+\cos x)}{(\cos x+\sin x)(\cos x-\sin x)} \\
& \operatorname{Lim}_{x \rightarrow-\frac{\pi}{4}} \frac{1}{\cos x-\sin x}=\frac{1}{\cos \left(-\frac{\pi}{4}\right)-\sin \left(-\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
& =\frac{1}{\frac{2}{\sqrt{2}}}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow \frac{\pi}{6}} \frac{2 \sin x-1}{6 \sin ^{2} x+10 \sin x-5}=\frac{2 \sin \left(\frac{\pi}{6}\right)-1}{6 \sin ^{2}\left(\frac{\pi}{6}\right)+10 \sin 1\left(\frac{1}{6}-5\right.} \\
&=\frac{\left(\frac{1}{2}\right)-1}{6\left(\frac{1}{2}\right)^{2}+10(1 / 2)-5} \\
&=\frac{1-1}{\frac{6}{4}+5-5} \\
&=\frac{0}{\frac{6}{4}}=0 \\
& \operatorname{Lim}_{x \rightarrow \frac{\pi}{6} \frac{2 \sin x-1}{6 \sin 2 x+7 \sin x-5}}=\frac{2\left(\frac{1}{2}\right)-1}{6\left(\frac{1}{2}\right)^{2}+7\left(\frac{1}{2}\right)-5} \\
&=\frac{1-1}{\frac{6}{4}+\frac{7}{2}-5} \\
&=\frac{0}{\frac{3}{2}+\frac{7}{2}-5}=\frac{0}{\frac{10}{2}-5} \\
&=\frac{0}{5-5}=\frac{0}{0} \\
& \lim _{x \rightarrow \frac{\pi}{6}}^{(2 \sin x-1)}(3 \sin x+5)(2 \sin x-1)=\lim _{x \rightarrow \frac{\pi}{6}}^{3 \sin x+5} \\
&= \frac{1}{3(1 / 2)+5}=\frac{1}{\frac{3}{2}+5}=\frac{1}{\frac{3+10}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 6 \sin ^{2} x+7 \sin x-5 \text { : } \\
& \begin{array}{l|l}
2 \sin x-7 & -3 \sin x \\
3 \sin x+7 \sin x
\end{array}
\end{aligned}
$$

Example(7)
a)

$$
\begin{aligned}
& \operatorname{Lim}_{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}=\frac{\sqrt{9}-3}{0^{2}}=\frac{3-3}{0}=\frac{0}{0} \\
& \operatorname{Lim}_{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}=\operatorname{Lim}_{t \rightarrow 0} \frac{\left(\sqrt{t^{2}+9}-3\right)}{t^{2}} \times \frac{\left(\sqrt{t^{2}+9}+3\right)}{\left(\sqrt{t^{2}+9}+3\right)} \\
& =\lim _{t \rightarrow 0} \frac{\left(\sqrt{t^{2}+9}-3\right)\left(\sqrt{t^{2}+9}+3\right)}{t^{2}\left(\sqrt{t^{2}+9}+3\right)} \\
& =\lim _{t \rightarrow 0} \frac{\left(\sqrt{t^{2}+9}\right)^{2}-(3)^{2}}{t^{2} \cdot\left(\sqrt{t^{2}+9}+3\right)} \\
& =\lim _{t \rightarrow 0} \frac{t^{2}+9-9}{t^{2} \cdot\left(\sqrt{t^{2}+9}+3\right)} \\
& =\lim _{t \rightarrow 0} \frac{t^{2}}{t^{2} \cdot\left(\sqrt{t^{2}+9}+3\right)} \\
& =\operatorname{Lim}_{t \rightarrow 0} \frac{1}{\sqrt{t^{2}+9}+3} \\
& =\frac{1}{\sqrt{9}+3} \\
& =\frac{1}{3+3} \\
& =\frac{1}{6}
\end{aligned}
$$

b)

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h} & =\frac{\sqrt{9}-3}{0}=\frac{3-3}{0}=\frac{0}{0} \\
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h} & =\lim _{h \rightarrow 0} \frac{(\sqrt{9+h}-3)}{h} \times \frac{(\sqrt{9+h}+3)}{(\sqrt{9+h}+3)} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{9+h}-3)(\sqrt{9+h}+3)}{h \cdot(\sqrt{9+h}+3)} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{9+h})^{2}-(3)^{2}}{h \cdot(\sqrt{9+h}+3)} \\
& =\lim _{h \rightarrow 0} \frac{9+h-9}{h \cdot(\sqrt{9+h}+3)} \\
& =\lim _{h \rightarrow 0} \frac{h}{h \cdot(\sqrt{9+h}+3)} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{9+h}+3} \\
& =\frac{1}{\sqrt{9}+3} \\
& =\frac{1}{3+3} \\
& =\frac{1}{6}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \lim _{u \rightarrow 2} \frac{\sqrt{4 u+1}-3}{u-2}=\frac{\sqrt{4(2)+1}-3}{2-2}=\frac{\sqrt{9}-3}{0} \\
&=\frac{3-3}{0}=\frac{0}{0} \\
& \lim _{u \rightarrow 2} \frac{\sqrt{4 u+1}-3}{u-2}=\lim _{u \rightarrow 2} \frac{(\sqrt{4 u+1}-3)}{(u-2)} \times \frac{(\sqrt{4 u+1}+3)}{(\sqrt{4 u+1}+3)} \\
&=\lim _{u \rightarrow 2} \frac{(\sqrt{4 u+1}-3)(\sqrt{4 u+1}+3)}{(u-2)(\sqrt{4 u+1}+3)} \\
&=\lim _{u \rightarrow 2} \frac{(\sqrt{4 u+1})^{2}-(3)^{2}}{(u-2)(\sqrt{4 u+1}+3)} \\
&=\lim _{u \rightarrow 2} \frac{4 u+1-9}{(u-2)(\sqrt{4 u+1}+3)} \\
&=\lim _{u \rightarrow 2} \frac{4 u-8}{(u-2)(\sqrt{4 u+1}+3)} \\
&=\lim _{u \rightarrow 2} \frac{4(u-2)}{(u-2)(\sqrt{4 u+1}+3)} \\
&=\frac{4}{3+3} \frac{4}{\sqrt{4 u+1}+3}=\frac{4}{\sqrt{9}+3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \begin{aligned}
\lim _{t \rightarrow 0}\left[\frac{\sqrt{1+t}-\sqrt{1-t}}{t}\right] & =\frac{\sqrt{1}-\sqrt{1}}{0}=\frac{1-1}{0}=\frac{0}{0} \\
\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t} & =\lim _{t \rightarrow 0} \frac{(\sqrt{1+t}-\sqrt{1-t})}{t} \times \frac{(\sqrt{1+t}+\sqrt{1-t})}{(\sqrt{1+t}+\sqrt{1-t})} \\
& =\lim _{t \rightarrow 0} \frac{(\sqrt{1+t}-\sqrt{1-t})(\sqrt{1+t}+\sqrt{1-t})}{t \cdot(\sqrt{1+t}+\sqrt{1-t})} \\
& =\lim _{t \rightarrow 0} \frac{(\sqrt{1+t})^{2}-(\sqrt{1-t})^{2}}{t \cdot(\sqrt{1+t}+\sqrt{1-t})} \\
& =\lim _{t \rightarrow 0} \frac{(1+t)-(1-t)}{t \cdot(\sqrt{1+t}+\sqrt{1-t})} \\
& =\lim _{t \rightarrow 0} \frac{1+t-1+t}{t(\sqrt{1+t}+\sqrt{1-t})} \\
& =\lim _{t \rightarrow 0} \frac{2 t}{t \cdot(\sqrt{1+t}+\sqrt{1-t})} \\
& =\lim _{t \rightarrow 0} \frac{2}{\sqrt{1+t}+\sqrt{1-t}} \\
& =1
\end{aligned} \\
&=1+\sqrt{1} \\
& \\
&=1
\end{aligned}
$$

d)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}=\frac{\sqrt{3}-\sqrt{3}}{0}=\frac{0}{0} \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{(\sqrt{3+x}-\sqrt{3})}{x} \times \frac{(\sqrt{3+x}+\sqrt{3})}{(\sqrt{3+x}+\sqrt{3})} \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{(\sqrt{3+x}-\sqrt{3})(\sqrt{3+x}+\sqrt{3})}{x(\sqrt{3+x}+\sqrt{3})} \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{(\sqrt{3+x})^{2}-(\sqrt{3})^{2}}{x(\sqrt{3+x}+\sqrt{3})} \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{3+x-3}{x(\sqrt{3+x}+\sqrt{3})}=\lim _{x \rightarrow 0} \frac{x}{x \cdot(\sqrt{3+x}+\sqrt{3})} \\
& \operatorname{Lim}_{x \rightarrow 0}=\frac{1}{\sqrt{3}+\sqrt{3}} \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{1}{\sqrt{3+x}+\sqrt{3}}=\frac{1}{2 \sqrt{3}} \\
& =\frac{1}{2 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& x(3)
\end{aligned}=\frac{\sqrt{3}}{6}
$$

$$
\begin{aligned}
& \text { e) } \lim _{x \rightarrow 0} \frac{x}{\sqrt{1+3 x}-1}=\frac{0}{\sqrt{1}-\sqrt{1}}=\frac{0}{0} \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{x}{(\sqrt{1+3 x}-1)} \times \frac{(\sqrt{1+3 x}+1)}{(\sqrt{1+3 x}+1)} \\
& \lim _{x \rightarrow 0} \frac{x(\sqrt{1+3 x}+1)}{(\sqrt{1+3 x}-1)(\sqrt{1+3 x}+1)} \\
& \lim _{x \rightarrow 0} \frac{x \cdot(\sqrt{1+3 x}+1)}{(\sqrt{1+3 x})^{2}-(1)^{2}} \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{x \cdot(\sqrt{1+3 x}+1)}{x+3 x-1} \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{x \cdot(\sqrt{1+3 x}+1)}{3 x}=\frac{\sqrt{1}+1}{3} \\
& \lim _{x \rightarrow 0} \frac{(\sqrt{1+3 x}+1)}{3}=\frac{1+1}{3} \\
& \lim _{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { f) } \operatorname{Lim}_{x \rightarrow 16} \frac{4-\sqrt{x}}{16 x-x^{2}}=\frac{4-\sqrt{16}}{16(16)-(16)^{2}}=\frac{4-4}{256-256} \\
& =\frac{0}{0} \\
& \operatorname{Lim}_{x \rightarrow 16} \frac{(4-\sqrt{x})}{\left(16 x-x^{2}\right)} \times \frac{(4+\sqrt{x})}{(4+\sqrt{x})} \\
& \lim _{x \rightarrow 16} \frac{(4-\sqrt{x})(4+\sqrt{x})}{\left(16 x-x^{2}\right)(4+\sqrt{x})} \\
& \lim _{x \rightarrow 16} \frac{(4)^{2}-(\sqrt{x})^{2}}{\left(16 x-x^{2}\right)(4+\sqrt{x})} \\
& \lim _{x \rightarrow 16} \frac{(16-x)}{\left(16 x-x^{2}\right)(4+\sqrt{x})} \\
& \lim _{x \rightarrow 16} \frac{(16-x)}{x \cdot(16-x)(4+\sqrt{x})} \\
& \lim _{x \rightarrow 16} \frac{1}{x(4+\sqrt{x})}=\frac{1}{16(4+\sqrt{16})} \\
& =\frac{1}{16(4+4)} \\
& =\frac{1}{16(8)}=\frac{1}{128}
\end{aligned}
$$

g)

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4} & =\frac{\sqrt{16+9}-5}{-4+4}=\frac{\sqrt{25}-5}{0} \\
& =\frac{5-5}{0}=\frac{0}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-4} \frac{\left(\sqrt{x^{2}+9}-5\right)}{(x+4)} \times \frac{\left(\sqrt{x^{2}+9}+5\right)}{\left(\sqrt{x^{2}+9}+5\right)} \\
& \lim _{x \rightarrow-4} \frac{\left(\sqrt{x^{2}+9}-5\right)\left(\sqrt{x^{2}+9}+5\right)}{(x+4) \cdot\left(\sqrt{x^{2}+9}+5\right)}
\end{aligned}
$$

$$
\lim _{x \rightarrow-4} \frac{\left(\sqrt{x^{2}+9}\right)^{2}-(5)^{2}}{(x+4) \cdot\left(\sqrt{x^{2}+9}+5\right)}
$$

$$
\lim _{x \rightarrow-4} \frac{x^{2}+9-25}{(x+4)\left(\sqrt{x^{2}+9}+5\right)}
$$

$$
\begin{aligned}
\lim _{x \rightarrow-4} \frac{\left(x^{2}-16\right)}{(x+4)\left(\sqrt{x^{2}+9}+5\right)} & =\lim _{x \rightarrow-4} \frac{(x+4)(x-4)}{(x+4)\left(\sqrt{x^{2}+9}+5\right)} \\
& =\lim _{x \rightarrow-4} \frac{x-4}{\sqrt{x^{2}+9}+5} \\
& =\frac{-4-4}{\sqrt{16+9}+5}=\frac{-8}{\sqrt{25}+5} \\
& =\frac{-8}{5+5}=\frac{-8}{10} \div 2 \\
& =-\frac{4}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { i) } \operatorname{Lim}_{t \rightarrow 0}\left(\frac{1}{t \sqrt{1+t}}-\frac{1}{t}\right)=\frac{1}{0}-\frac{1}{0} \quad \text { ii } \\
& \text { 0) } \\
& \operatorname{Lim}_{t \rightarrow 0}\left(\frac{1}{t \sqrt{1+t}}-\frac{1}{t}\right)=\operatorname{Lim}_{t \rightarrow 0}\left(\frac{1-\sqrt{1+t}}{t \sqrt{1+t}}\right)=\frac{0}{0} \\
& =\lim _{t \rightarrow 0} \frac{(1-\sqrt{1+t})(1+\sqrt{1+t})}{t \sqrt{1+t}(1+\sqrt{1+t})} \\
& =\lim _{t \rightarrow 0} \frac{(1)^{2}-(\sqrt{1+t})^{2}}{t \sqrt{1+t}(1+\sqrt{1+t})} \\
& =\lim _{t \rightarrow 0} \frac{1-(1+t)}{t \sqrt{1+t}(1+\sqrt{1+t})} \\
& =\operatorname{Lim}_{t \rightarrow 0} \frac{x-1-t}{t \sqrt{1+t}(1+\sqrt{1+t})} \\
& =\operatorname{Lim}_{t \rightarrow 0} \frac{-t}{t \sqrt{1+t}(1+\sqrt{1+t})} \\
& =\operatorname{Lim}_{t \rightarrow 0} \frac{-1}{\sqrt{1+t}(1+\sqrt{1+t})} \\
& =\frac{-1}{\sqrt{1}(1+\sqrt{1})}=\frac{-1}{1(1+1)}=\frac{-1}{1(2)} \\
& =-\frac{1}{2}
\end{aligned}
$$

j)

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}=\frac{\sqrt{6-2}-2}{\sqrt{3-2}-1}=\frac{2-2}{1-1}=\frac{0}{0} \\
& \lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} \times \frac{\sqrt{6-x}+2}{\sqrt{6-x}+2} \\
& \lim _{x \rightarrow 2} \frac{(\sqrt{6-x}-2)(\sqrt{6-x}+2)}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)}=\lim _{x \rightarrow 2} \frac{(\sqrt{6-x})^{2}-2^{2}}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)} \\
& \lim _{x \rightarrow 2} \frac{6-x-4}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)}=\lim _{x \rightarrow 2} \frac{2-x}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)} \\
& \lim _{x \rightarrow 2} \frac{(2-x)}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)} \times \frac{\sqrt{3-x}+1}{\sqrt{3-x}+1} \\
& \lim _{x \rightarrow 2} \frac{(2-x)(\sqrt{3-x}+1)}{(\sqrt{6-x}+2)(\sqrt{3-x}-1)(\sqrt{3-x}+1)} \\
& \lim _{x \rightarrow 2} \frac{(2-x)(\sqrt{3-x}+1)}{\left.(\sqrt{6-x}+2)(\sqrt{3-x})^{2}-1^{2}\right)} \\
& \lim _{x \rightarrow 2} \frac{(2-x)(\sqrt{3-x}+1)}{(\sqrt{6-x}+2)(3-x-1)} \\
& \lim _{x \rightarrow 2} \frac{(2-x)(\sqrt{3-x}+1)}{(\sqrt{6-x}+2)(2-x)}=\frac{\sqrt{3-2}+1}{\sqrt{6-2}+2}=\frac{1+1}{2+2} \\
& \lim _{x \rightarrow 2}^{4}
\end{aligned}
$$

Example (8)
a)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0} \sqrt[3]{8-x} \\
& D_{\sqrt[3]{8-x}}=\mathbb{R} \\
& \operatorname{Lim}_{x \rightarrow 0} \sqrt[3]{8-x}=\sqrt[3]{8}=\sqrt[3]{2^{3}}=2^{3 / 3}=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \lim _{x \rightarrow 0} \sqrt[5]{x-32} \\
& D_{\sqrt[5]{x-32}}=\mathbb{R} \\
& \lim _{x \rightarrow 0} \sqrt[5]{x-32}=\sqrt[5]{-32}=\sqrt[5]{(-2)^{5}}=(-2)^{5 / 5}=-2
\end{aligned}
$$

c) $\operatorname{Lim}_{x \rightarrow 7} \sqrt[11]{x^{2}-49}$

$$
\begin{aligned}
& D_{\sqrt[11]{x^{2}-49}}=\mathbb{R} \\
& \lim _{x \rightarrow 7} \sqrt[11]{x^{2}-49}=\sqrt[11]{49-49}=\sqrt[11]{0}=0
\end{aligned}
$$

d)

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \sqrt[7]{x^{3}-9} \\
& D_{7} \sqrt{x^{3}-9}=\mathbb{R} \\
& \lim _{x \rightarrow 2} \sqrt[7]{x^{3}-9}=\sqrt[7]{2^{3}-9}=\sqrt[7]{8-9}=\sqrt[7]{-1}=-1
\end{aligned}
$$

Example (9)
a) $\lim _{x \rightarrow 0} \sqrt{x}$

Domain of $\sqrt{x}: x>0 \Rightarrow D_{\sqrt{x}}=[0, \infty)$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \sqrt{x}=\sqrt{0}=0 \\
& \lim _{x \rightarrow 0^{-}} \sqrt{x}=\text { D.N.E } \\
\because & \lim _{x \rightarrow 0^{+}} \sqrt{x} \neq \lim _{x \rightarrow 0^{-}} \sqrt{x} \\
\therefore & \lim _{x \rightarrow 0} \sqrt{x}=\text { D.N.E }
\end{aligned}
$$

b)

$$
\lim _{x \rightarrow 3} \sqrt[4]{3-x}
$$

Domain of $\sqrt[4]{3-x}: 3-x \geqslant 0 \Rightarrow-x \geqslant-3 \Rightarrow x \leqslant 3$

$$
\begin{aligned}
& \Rightarrow D_{\sqrt[4]{3-x}}=(-\infty, 3] \underset{-\infty}{\stackrel{4}{3}}=\sqrt[4]{3-3}=\sqrt[4]{0}=0 \\
& \lim _{x \rightarrow 3^{-}} \sqrt[4]{3-x}=\lim _{x \rightarrow 3^{+}} \sqrt[4]{3-x}=\text { D.N.E } \\
& \because \lim _{x \rightarrow 3^{+}} \sqrt[4]{3-x} \neq \lim _{x \rightarrow 3^{-}} \sqrt[4]{3-x} \\
& \therefore \lim _{x \rightarrow 3} \sqrt[4]{3-x}=\text { D.N.E }
\end{aligned}
$$

c)

$$
\operatorname{Lim}_{x \rightarrow 4} \sqrt{25-x^{2}}
$$

Domarin at $\sqrt{25-x^{2}}=[-5,5]$

$$
\begin{aligned}
& \because 4 \in[-5,5] \\
& \therefore \lim _{x \rightarrow 4} \sqrt{25-x^{2}}=\sqrt{25-4^{2}}=\sqrt{25-16}=\sqrt{9}=3
\end{aligned}
$$

d)

$$
\lim _{x \rightarrow 2} \sqrt[6]{x^{2}-6 x+5}
$$

Domain of $\sqrt[6]{x^{2}-6 x+5}: x^{2}-6 x+5 \geqslant 0$

$$
x^{2}-6 x+5=0
$$

$$
(x-1)(x-5)=0
$$

$$
x=1
$$

$$
x=5
$$

$$
\begin{aligned}
& D_{\sqrt[6]{x^{2}-6 x+5}}=(-\infty,] u[5, \infty) \\
& \because 2 \notin D_{\sqrt[6]{x^{2}-6 x+5}} \therefore \lim _{x \rightarrow 2} \sqrt[6]{x^{2}-6 x+5}=D . N . E
\end{aligned}
$$

e) $\lim _{x \rightarrow-6^{+}} \sqrt{36-x^{2}}$

Domain of $\sqrt{36-x^{2}}=[-6,6]$

$$
\lim _{x \rightarrow 6^{+}} \sqrt{36-x^{2}}=\sqrt{36 \cdot(-6)^{2}}=\sqrt{36-36}=\sqrt{0}=0
$$

f) $\lim _{x \rightarrow 6^{-}} \sqrt{36-x^{2}}$

Domain of $\sqrt{36-x^{2}}=[-6,6]$

$$
\lim _{x \rightarrow 6^{-}} \sqrt{36-x^{2}}=\sqrt{36-6^{2}}=\sqrt{36-36}=\sqrt{0}=0
$$

$$
\begin{aligned}
& \text { 9) } \lim _{x \rightarrow 2} \sqrt{x^{2}-4} \\
& D \sqrt{x^{2}-4}=(-\infty,-2] u[2, \infty) \\
& \lim _{x \rightarrow 2^{+}} \sqrt{x^{2}-4}=\sqrt{4-4}=0 \\
& \lim _{x \rightarrow 2^{-}} \sqrt{x^{2}-4}=D \cdot N \cdot E \\
& \because \lim _{x \rightarrow 2^{+}} \sqrt{x^{2}-4} \neq \lim _{x \rightarrow 2} \sqrt{x^{2}-4} \Rightarrow \lim _{x \rightarrow 2} \sqrt{x^{2}-4}=D \cdot N \cdot E
\end{aligned}
$$

Example (10)
a) $\lim _{x \rightarrow 2}|x+3|=|2+3|=|5|=5$
b) $\lim _{x \rightarrow 4}|4-x|=|4-4|=\mid 01=0$
c) $\lim _{x \rightarrow 2}\left|x^{2}-5\right|=\left|2^{2}-5\right|=|4-5|=|-1|=1$
d) $\lim _{x \rightarrow 0} \frac{|x|}{x}=\frac{|0|}{0}=\frac{0}{0} 0,000$

$$
\begin{aligned}
& |x|=\left\{\begin{array}{ccc}
x & \text { if } \quad x \geqslant 0 \\
-x & \text { if } \quad x<0
\end{array}\right. \\
& \lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{\substack{x \rightarrow 0^{+} \\
(x>0)}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}} 1=1 \\
& \lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{\substack{x \rightarrow 0^{-} \\
(x<0)}} \frac{-x}{x}=\lim _{x \rightarrow 0^{-}}-1=-1 \\
\because & \lim _{x \rightarrow 0^{+}} \frac{|x|}{x} \neq \lim _{x \rightarrow 0^{-}} \frac{|x|}{x} \\
\therefore & \lim _{x \rightarrow 0} \frac{|x|}{x x}=D . N . E
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } \lim _{x \rightarrow 3} \frac{|3-x|}{2 x-6}=\frac{|3-3|}{2(3)-6}=\frac{|0|}{6-6}=\frac{0}{0} \\
& |3-x|=\left\{\begin{array}{clc}
3-x & \text { if } & 3-x \geqslant 0 \\
-(3-x) & \text { if } & 3-x<0
\end{array}\right. \\
& =\left\{\begin{array}{lll}
3-x & \text { if } & -x \geqslant-3 \\
-(3-x) & \text { if } & -x<-3
\end{array}\right. \\
& =\left\{\begin{array}{lll}
3-x & \text { if } & x \leqslant 3 \\
-(3-x) & \text { if } & x>3
\end{array}\right. \\
& \lim _{x \rightarrow 3^{+}} \frac{|3-x|}{2 x-6}=\lim _{\substack{x \rightarrow 3^{+} \\
(x>3)}} \frac{-(3-x)}{2 x-6}=\frac{0}{0} \\
& =\lim _{x \rightarrow 3^{+}} \frac{(x-3)}{2(x-3)}=\lim _{x \rightarrow 3^{+}} \frac{1}{2}=\frac{1}{2} \\
& \lim _{x \rightarrow 3^{-}} \frac{|3-x|}{2 x-6}=\lim _{\substack{x \rightarrow 3^{-} \\
(x<3)}} \frac{3-x}{2 x-6}=\frac{0}{0} \\
& \lim _{x \rightarrow 3^{-}} \frac{3-x}{2(x-3)} \\
& \lim _{x \rightarrow 3^{-}} \frac{-(x-3)}{2(x-3)}=\lim _{x \rightarrow 3^{-}}-\frac{1}{2}=-\frac{1}{2} \\
& \because \lim _{x \rightarrow 3^{+}} \frac{|3-x|}{2 x-6} \neq \lim _{x \rightarrow 3^{-}} \frac{|3-x|}{2 x-6} \\
& \therefore \lim _{x \rightarrow 3} \frac{|3-x|}{2 x-6}=\text { D.N.E }
\end{aligned}
$$

$$
\begin{aligned}
& \text { f) } \begin{array}{l}
\lim _{x \rightarrow-6^{-}} \frac{2 x+12}{|x+6|}=\frac{2(-6)+12}{1-6+6 \mid}=\frac{-12+12}{10 \mid}=\frac{0}{0} \\
|x+6|=\left\{\begin{array}{rr}
x+6 & \text { if } x+6 \geqslant 0 \\
-(x+6) & \text { if } x+6<0
\end{array}\right. \\
\begin{aligned}
\lim _{x \rightarrow-6^{-}} \frac{2 x+12}{|x+6|} & =\lim _{x \rightarrow-6^{-}} \frac{2 x+12}{(x+6)}=\frac{0}{(x+6)} \text { if } x \geqslant-6
\end{aligned} \\
\\
\\
=\lim _{x \rightarrow-6}=\frac{2(x+6)}{-(x+6)}=\lim _{x \rightarrow-6}-2=-2
\end{array}
\end{aligned}
$$

9)

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}} \frac{2-|x|}{2+x}=\frac{2-|-2|}{2-2}=\frac{2-2}{0}=\frac{0}{0} \\
& |x|=\left\{\begin{array}{lll}
x & \text { if } \quad x \geqslant 0 \\
-x & \text { if } \quad x<0
\end{array}\right.
\end{aligned}
$$

$$
\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}=\lim _{\substack{x \rightarrow-2 \\(x<0) \\-2<0}} \frac{2-(-x)}{2+x}=\lim _{x \rightarrow-2} \frac{(2+x)}{(2+x)}
$$

$$
=\lim _{x \rightarrow-2} 1=1
$$

h) $\lim _{x \rightarrow 3}(2 x+|x-3|)=2(3)+|3-3|=6+0=6$

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{|x-2|}=\frac{0}{0} \\
\lim _{x \rightarrow 2^{+}} \frac{x^{2}+x-6}{x-2}=\frac{0}{0} \\
\lim _{x \rightarrow 2^{+}} \frac{(x-2)(x+3)}{(x-2)}=\lim _{x \rightarrow 2^{+}}(x+3)=2+3=5 \\
\lim _{x \rightarrow 2^{-}} \frac{x^{2}+x-6}{-(x-2)}=\lim _{x \rightarrow 2^{-}} \frac{(x-2)(x+3)}{-(x-2)} \\
=\lim _{x \rightarrow 2^{-}} \\
\therefore \lim _{x \rightarrow 2^{+}} \frac{(x+3)=-(2+3)}{} \frac{x^{2}+x-6}{|x-2|} \neq-5 \\
\lim _{x \rightarrow 2^{-}} \frac{x^{2}+x-6}{|x-2|} \\
\therefore \lim _{x \rightarrow 2} \frac{x^{2}+x-6}{|x-2|}=D . N . E
\end{aligned}
$$

Example (II)
a) if $f(x)= \begin{cases}\sqrt{x-4} & \text { if } x>\underline{4} \\ 8-2 x & \text { if } x<4=\end{cases}$
then find $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} 8-2 x$

$$
\lim _{x \rightarrow 13} f(x)=\lim _{x \rightarrow 13} \sqrt{x-4}=\sqrt{13-4}=\sqrt{9}=3
$$

$$
\lim _{x \rightarrow 4} f(x)
$$

$$
\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}}
$$

$$
\begin{aligned}
& x \rightarrow 4^{-} \\
& \because \lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{-}} f(x)
\end{aligned}
$$

$$
\therefore \lim _{x \rightarrow+} f(x)=0
$$

$$
\begin{aligned}
& \text { b) } \\
& f(x)=\left\{\begin{array}{lll}
1+x & \text { if } & x<-1 \\
x^{2} & \text { if } & -1 \leq x<1 \\
2-x & \text { if } & x \geqslant 1
\end{array}\right. \\
& \lim _{x \rightarrow-3} f(x)=\lim _{\substack{x \rightarrow-3 \\
-3<-1}} 1+x=1-3=-2 \\
& \lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5} 22-x=2-5=-3 \\
& \lim _{x \rightarrow \frac{1}{3}} f(x)=\lim _{\substack{x \rightarrow 1 / 3 \\
-1<\frac{1}{3}<1}} x^{2}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9} \\
& \lim _{x \rightarrow-1} f(x) \\
& \lim _{x \rightarrow-1^{+}} f(x)=\lim _{\substack{x \rightarrow-1^{+} \\
x>-1}} x^{2}=(-1)^{2}=1 \\
& \operatorname{Lim}_{x \rightarrow--^{-}} f(x)=\lim _{\substack{x \rightarrow-^{-} \\
x<-1}} 1+x=1-1=0 \\
& \because \lim _{x \rightarrow-1^{+}} f(x) \neq \lim _{x \rightarrow-1^{-}} f(x) \\
& \therefore \lim _{x \rightarrow-1} f(x)=D \cdot N \cdot E
\end{aligned}
$$

c) $f(x)=\left\{\begin{array}{rlr}1+\sin x & \text { if } & x<0 \\ \cos x & \text { if } 0 \leqslant x \leqslant \frac{\pi}{=} \\ \sin x & \text { if } & x>\frac{\pi}{=}\end{array}\right.$

$$
\begin{aligned}
& \begin{array}{l}
\lim _{x \rightarrow-\frac{\pi}{4}} f(x)=\lim _{x \rightarrow-\frac{\pi}{4}}(1+\sin x)=1+\sin \left(-\frac{\pi}{4}\right)=1-\sin \frac{1}{4} \\
=1-\frac{1}{\sqrt{2}}=\frac{\sqrt{2}-1}{\sqrt{2}} \\
\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} \cos x=\cos \left(\frac{\pi}{2}\right)=0 \\
\lim _{x \rightarrow \frac{3 \pi}{2}} f(x)=\lim _{x \rightarrow \frac{3 \pi}{2}} \sin x=\sin \left(\frac{3 \pi}{2}\right)=-1
\end{array}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} f(x)
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x) \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \cos x=\cos (0)=1 \\
& \quad \lim _{x}(1+\sin x)=1+\sin
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x)= & \lim _{x \rightarrow 0^{+}} \cos x \\
\lim _{x \rightarrow 0^{-}} f(x)= & \lim _{x \rightarrow 0^{-}}(1+\sin x)=1+\sin (0)=1+0=1 \\
& \lim _{x} f(x)
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(1+5 \ln x) \\
& \because \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x) \\
& \therefore \lim _{x \rightarrow 0^{-}} f(x)=1
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \pi^{\prime}} f(x) \\
& \lim _{x \rightarrow \pi^{+}} f(x)=\lim _{x \rightarrow \pi^{+}} \sin x=\sin (\pi)=0 \\
& \lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{-}} \cos x=\cos (\pi)=-1 \\
& \because \lim _{x \rightarrow \pi^{+}} f(x) \neq \lim _{x \rightarrow \pi^{-}} f(x) \\
& \therefore \lim _{x \rightarrow \pi} f(x)=1 \text { D.N.E }
\end{aligned}
$$

d) if $g(x)=\left\{\begin{array}{lll}x & \text { if } & x<1 \\ 3 & \text { if } & x=1 \\ 2-x^{2} & \text { if } & 1<x \leqslant 2 \\ x-3 & \text { if } & x>2\end{array}\right.$
then $g(1)=3$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 1} g(x) \\
& \operatorname{Lim}_{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}}\left(2-x^{2}\right)=2-1=1 \\
& \lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}}^{x \rightarrow 1}<\lim _{x \rightarrow 1}(x)=1 \\
& \because \lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{-}} g(x) \quad \therefore \lim _{x \rightarrow 1} g(x)=1 \\
& \operatorname{Lim}_{x \rightarrow 2} g(x) \\
& \lim _{x \rightarrow 2^{+}} g(x)=\lim _{\substack{x \rightarrow 2^{+} \\
x>2}}(x-3)=2-3=-1 \\
& \lim _{x \rightarrow 2^{-}} g(x)=\lim _{\substack{x \rightarrow 2^{-} \\
x<2}}\left(2-x^{2}\right)=2-4=-2 \\
& \because \lim _{x \rightarrow 2^{+}} g(x) \neq \lim _{x \rightarrow 2^{-}} g(x) \\
& \because \lim _{x \rightarrow 2^{+}} g(x)=D \cdot N \cdot E
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 3} g(x) & =\lim _{\substack{x \rightarrow 3 \\
3>2}}(x-3)=3-3=0 \\
\operatorname{Lim}_{x \rightarrow-4} g(x) & =\lim _{\substack{x \rightarrow-4 \\
-4<1}} x=-4 \\
\lim _{x \rightarrow \frac{3}{2}} g(x)=\lim _{x \rightarrow \frac{3}{x}}^{\left.1<3 / 2<x^{2}\right)}= & =2-\left(\frac{3}{2}\right)^{2} \\
& =2-\frac{9}{4} \\
& =\frac{8-9}{4}=-\frac{1}{4}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \text { if } g(x)=\left\{\begin{array}{cc}
x+1 & \text { if } x \neq 1 \\
\pi & \text { if } x=1
\end{array}\right. \\
& \lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1}(x+1)=1+1=2 \\
& g(1)=\pi
\end{aligned}
$$

f) if $h(x)= \begin{cases}x^{2}+3 & \text { if } x \neq 3 \\ 5 x-3 & \text { if } x=3\end{cases}$

$$
\begin{aligned}
& \lim _{x \rightarrow 3} h(x)=\lim _{x \rightarrow 3}\left(x^{2}+3\right)=3^{2}+3=9+3=12 \\
& h(3)=5(3)-3=15-3=12
\end{aligned}
$$

Example (12)
a) $\operatorname{Lim}_{x \rightarrow 1} \operatorname{Ln}(2-x)$

Domain of $\ln (2-x): 2-x>0$

$$
\begin{gathered}
-x>-2 \\
x<2
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{\operatorname{Ln}(2-x)}=(-\infty, 2) \\
& 1 \in D_{\operatorname{Ln}(2-x)} \quad \therefore \lim _{x \rightarrow 1} \ln (2-x)
\end{aligned}=\ln (2-1) 8=\ln (1)
$$

b) $\operatorname{Lim}_{x \rightarrow 3} \log _{3}\left(9-x^{2}\right)$

Domain of $\log _{3}\left(9-x^{2}\right): 9-x^{2}>0$

$$
\begin{gathered}
-x^{2}>-9 \\
x^{2}<9 \\
\sqrt{x^{2}}<\sqrt{9} \\
|x|<3 \\
-3<x<3
\end{gathered}
$$

$$
\begin{aligned}
& \log _{3}\left(9-x^{2}\right)=(-3,3) \\
& \operatorname{Lim}_{x \rightarrow 3^{+}} \log _{3}\left(9-x^{2}\right)=D \cdot N \cdot E \\
& \lim _{x} \log _{3}\left(9-x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(9-x^{2}\right)=D \cdot N \cdot E \\
& \lim _{x \rightarrow 3^{-}} \log _{3}\left(9-x^{2}\right)=\log _{3}(9-9)=\log _{3}(0)=-\infty
\end{aligned}
$$

$$
\begin{aligned}
& \because \lim _{x \rightarrow 3^{+}} \log _{3}\left(9-x^{2}\right) \neq \lim _{x \rightarrow 3^{-}} \log _{3}\left(9-x^{2}\right) \\
& \therefore \lim _{x \rightarrow 3} \log _{3}\left(9-x^{2}\right)=\text { D.N.E }
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } & \lim _{x \rightarrow 5} \log _{5}(x) \\
& D_{\log _{5}(x)}=(0, \infty) \\
\because & 5 \in(0, \infty) \\
\therefore & \lim _{x \rightarrow 5} \log _{5} x=\log _{5} 5=1
\end{aligned}
$$

Example 13

$$
\text { a) } \begin{aligned}
& \lim _{x \rightarrow 0} \frac{1}{x}=\frac{1}{0} \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\frac{1}{0}=\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{1}{x}=\frac{1}{0}=-\infty \\
\because & \lim _{x \rightarrow 0^{-}} \frac{1}{x} \neq \lim _{x \rightarrow 0^{+}} \frac{1}{x} \\
\therefore & \lim _{x \rightarrow 0} \frac{1}{x}=\text { D.N.E }
\end{aligned}
$$

b) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\frac{1}{0}=\infty$

c) $\lim _{x \rightarrow 4^{+}} \frac{3-x}{4-x}$

الرضريقة إ'ورد

$$
\begin{aligned}
& \lim _{x \rightarrow 4^{+}} \frac{3-x}{4-x}=\frac{3-4}{4-4} \\
& x>4 \\
& x=4.1 \\
& \begin{array}{c}
\text { is iongra } \\
\text { ptal }
\end{array} \\
& \begin{array}{c}
3 \text { lopgri } \\
\text { ptebl }
\end{array} \\
& 4-4.1=-0.1 \\
& =\frac{-1}{0} \\
& =\frac{-}{\square}=+\infty=\infty \\
& \text { 䢂 }
\end{aligned}
$$

الصرُ جبقَة الرتانبة

$$
\begin{aligned}
& \lim _{x \rightarrow 4^{+}} \frac{3-x}{4-x}=\frac{3-4}{4-4} \\
& =\frac{-1}{0} \\
& =\frac{-}{\square}=+\infty=\infty \\
& 4-x=0: \text { : } \\
& x=4
\end{aligned}
$$

d) $\lim _{x \rightarrow 5^{+}} \frac{x+5}{25-x^{2}}$

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{+}} \frac{x+5}{25-x^{2}}=\frac{5+5}{25-25} \\
& x>5 \\
& =\frac{10}{0} \\
& x=5.1 \\
& \text { نموْما خِي المَام } \\
& \text { 25-(5.1) } \\
& 25-26.01=-1.01 \\
& \text { إِ بار شار سال1 }
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 5^{+}} \frac{x+5}{25-x^{2}} & =\frac{5+5}{25-25} \\
& =\frac{10}{0} \\
& =\frac{+}{\square}=-\infty
\end{aligned}
$$

e)

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x-2}{(x-1)^{2}} & =\frac{1-2}{(1-1)^{2}} \\
& =\frac{-1}{0}
\end{aligned}
$$

 فن نحتا

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x-2}{(x-1)^{2}} & =\frac{-1}{0} \\
& =\frac{-}{+} \\
& =-\infty
\end{aligned}
$$

f) $\lim _{x \rightarrow 5} \frac{e^{x}}{(x-5)^{3}}$

$$
\underbrace{\text { Sوシ }}_{-e^{5}}
$$

$$
\because \lim _{x \rightarrow 5^{+}} \frac{e^{x}}{(x-5)^{3}} \neq \lim _{x \rightarrow 5^{-}} \frac{e^{x}}{(x-5)^{3}}
$$

$$
\therefore \lim _{x \rightarrow 5} \frac{e^{x}}{(x-5)^{3}}=D \cdot N \cdot E \quad \#
$$

الاهُريقة الانانٍخ

$$
\begin{aligned}
\lim _{x \rightarrow 5^{+}} \frac{e^{x}}{(x-5)^{3}} & =\frac{e^{5}}{(5-5)^{3}} \\
& =\frac{e^{5}}{0} \\
& =\frac{+}{\square+\infty} \\
& =+\infty
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 5^{-}} \frac{e^{x}}{(x-5)^{3}} & =\frac{e^{5}}{(5-5)^{3}} \\
& =\frac{e^{5}}{0} \\
& =\frac{+}{\square} \\
& =\infty \Delta
\end{aligned}
$$

$$
x-5=0
$$

$$
x=5
$$

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow 5^{+}} \frac{e^{x}}{(x-5)^{3}} \neq \lim _{x \rightarrow 5^{-}} \frac{e^{x}}{(x-5)^{3}} \\
& \left.\therefore \lim _{x \rightarrow 5} \frac{e^{x}}{(x-5)^{3}}=1\right) \cdot N \cdot E
\end{aligned}
$$

h) $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-2 x-8}{x^{2}-5 x+6}$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} \frac{x^{2}-2 x-8}{x^{2}-5 x+6}=\frac{4-4-8}{4-10+6} \\
& \begin{aligned}
x>2 \\
x=2.1
\end{aligned} \\
& \begin{aligned}
& p^{2}+3 \text { (3) } \\
& x^{2}-5 x+6= \\
&=\frac{-8}{0} \\
&=(2-2)(x-3) \\
&=\frac{-}{\square}=+\infty \\
&=-(0.1)(-0.9)(2.1-3)(0.9)
\end{aligned}
\end{aligned}
$$

الا شا
ارصريسةَة الرن:انِح

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} \frac{x^{2}-2 x-8}{x^{2}-5 x+6}=\frac{4-4-8}{4-10+6} \\
& =\frac{-8}{0} \\
& =\frac{-}{\square}=+\Delta 0 \\
& x^{2}-5 x+6=0 \\
& (x-2)(x-3)=0 \\
& x-2=0 \text { or } \begin{array}{l}
x-3=0 \\
x=2
\end{array} \\
& x=2
\end{aligned}
$$

1)

$$
x \rightarrow 2^{-}-x^{2}-4 x+4
$$

$1)$

$$
\lim _{x \rightarrow 2^{-}} \frac{x(x-2)}{(x-2)(x-2)}=\lim _{x \rightarrow 2^{-}} \frac{x}{x-2}=\frac{2}{0}=+
$$

2)

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} \frac{x(x-2)}{(x-2)(x-2)}=\lim _{x \rightarrow 2^{-}} \frac{x}{x-2} & =\frac{2}{0} \\
& =+
\end{aligned}
$$

$\rightarrow x-2=0$

$$
x=2
$$

3

و إسارة الـ

j)

$$
\lim _{x \rightarrow \pi^{-}} \cot x=\lim _{x \rightarrow \pi^{-}} \frac{1}{\tan x}
$$

$$
\begin{aligned}
& x<\pi \\
& x<180
\end{aligned} \quad=\frac{1}{\tan (\pi)}
$$

$$
\begin{aligned}
& \text { i) } \\
& \lim _{x \rightarrow 2 \pi^{-}} x \csc x=\lim _{x \rightarrow 2 \pi^{-}} \frac{x}{\sin x} \\
& x<2 \pi \\
& x<360 \\
& =\frac{2 \pi^{*}}{\sin (2 \pi)} \\
& x=359
\end{aligned}
$$

$$
\begin{aligned}
& \text { k) } \begin{array}{l}
\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)=\frac{1}{0}-\frac{1}{0} \\
|x|= \begin{cases}x \quad \text { if } x \geqslant 0 \\
-x \text { if } x<0\end{cases} \\
\begin{aligned}
\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right) & =\lim _{\substack{x \rightarrow 0^{-} \\
x<0}}\left(\frac{1}{x}-\frac{1}{-x}\right) \\
& =\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}+\frac{1}{x}\right) \\
& =\lim _{x \rightarrow 0^{-}}\left(\frac{2}{x}\right) \\
& =\frac{+2}{x<0} \\
& \left.=\frac{+0}{x}\right)
\end{aligned} \\
\end{array}
\end{aligned}
$$

Example(14)
if $\lim _{x \rightarrow 5} \frac{f(x)-8}{x-1}=10$ the $\lim _{x \rightarrow 5} f(x)=$?

$$
\lim _{x \rightarrow 5}\left[\frac{f(x)-8}{x-1}\right]=10
$$

$$
\operatorname{Lim}_{x \rightarrow 5}(f(x)-8)=10
$$

$$
\frac{\lim _{x \rightarrow 5} f(x)-\lim _{x \rightarrow 5} 8}{\lim _{x \rightarrow 5} x-\lim _{x \rightarrow 5} 1}=10
$$

$$
\frac{\lim _{x \rightarrow 5} f(x)-8}{5-1}=10
$$

$$
\lim _{x \rightarrow 5} f(x)-8
$$

$$
\lim _{x \rightarrow 5} f(x)-8=4(10) \Rightarrow \lim _{x \rightarrow 5} f(x)=40+8=48
$$

Theorem
If $f(x) \leqslant g(x)$ when x is near a and $\lim _{x \rightarrow a} f(x), \lim _{x \rightarrow a} g(x)$ are exist then $\lim _{x \rightarrow a} f(x) \leqslant \lim _{x \rightarrow a} g(x)$

If $f(x)=g(x)$ when $x \neq a$ and $\lim _{x \rightarrow a} f(x)$,
Note $\lim _{x \rightarrow a} g(x)$ are exists then

$$
\begin{aligned}
& y(x) \text { are exist } \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)
\end{aligned}
$$

Theorem: The squeeze Theorem if $f(x) \leqslant g(x) \leqslant h(x)$ and

$$
\begin{aligned}
& f(x) \leqslant g(x) \leqslant h(x) \\
& \operatorname{Lim}_{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
\end{aligned}
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Example (15)
a) if $4 x-9 \leqslant f(x) \leqslant x^{2}-4 x+7 \quad \forall x \geqslant 0$ then find $\lim _{x \rightarrow 4} f(x)$?

$$
\begin{aligned}
& \text { then find } x \rightarrow 4 \\
& \lim _{x \rightarrow 4}(4 x-9)=4(4)-9=16-9=7 \\
& \lim _{x \rightarrow 4}\left(x^{2}-4 x+7\right)=4^{2}-4(4)+7=16-16+7=7 \\
& \lim _{x \rightarrow 4}(4 x-9)=\lim _{x \rightarrow 4}\left(x^{2}-4 x+7\right)=7 \\
\therefore & \lim _{x \rightarrow 4} f(x)=7
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 4}\left(x^{2}-4 x+7\right. \\
& \because \lim _{x \rightarrow 4}(4 x-9)=\lim _{x \rightarrow 4}\left(x^{2}-4 x+7\right)=7 \\
& 7
\end{aligned}
$$

b) if $\log _{9} x \leqslant f(x) \leqslant \frac{1}{8} x$ then find $\lim _{x \rightarrow 3} f(x)$? "section 1.6"

$$
\begin{aligned}
& \text { if } \log _{9} x=\log _{9} 3=\frac{1}{2} \\
& \operatorname{Lim}_{x \rightarrow 3} \log _{9} x=\frac{\beta(1)}{3(2)}=\frac{1}{2} \\
& \operatorname{Lim}_{x \rightarrow 3} \frac{1}{6} x=\frac{1}{6}(3)=\frac{\beta}{3}
\end{aligned}
$$

$$
\because \lim _{x \rightarrow 3} \log _{9} x=\lim _{x \rightarrow 3} \frac{1}{6} x=\frac{1}{2}
$$

$$
\therefore \lim _{x \rightarrow 3} f(x)=\frac{1}{2}
$$

c) if $\sin x \leqslant f(x) \leqslant \frac{1}{\sqrt{2}}$ then find $\lim _{x \rightarrow \frac{\pi}{4}} f(x)$

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{4}} \sin (x)=\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \times \sqrt{2} \times \frac{\pi}{4} \\
& \lim _{x \rightarrow \frac{\pi}{4}} \frac{1}{\sqrt{2}}=\frac{2}{7 \sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \lim _{x \rightarrow \frac{\pi}{4}} \sin (x)=\lim _{x \rightarrow \frac{\pi}{4}} \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\therefore \lim _{x \rightarrow \frac{\pi}{4}} f(x)=\frac{1}{\sqrt{2}}
$$

Example (16)
a)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0 \cdot \sin \left(\frac{1}{0}\right) \\
& -1 \leqslant \sin \left(\frac{1}{x}\right) \leqslant 1 \\
& -x^{2} \leqslant x^{2} \sin \left(\frac{1}{x}\right) \leqslant x^{2} \\
& \operatorname{Lim}_{x \rightarrow 0}-x^{2}=0 \\
& \lim _{x \rightarrow 0} x^{2}=0 \\
& \because \lim _{x \rightarrow 0} x^{2}=\lim _{x \rightarrow 0} x^{2}=0 \\
& \therefore \lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0
\end{aligned}
$$

2.5-Continuity

Definition
A function f is continuous at a number $[a]$ if $\lim _{x \rightarrow a} f(x)=f(a)$
Note
Notice that Definition implicitly requires three things if f is continuous at a:

1) $f(a)$ is defined
2) $\lim _{x \rightarrow a} f(x) \cdot$ exists
3) $\lim _{x \rightarrow a} f(x)=f(a)$

Example (1)
Explain why the function is
continuous at a number a

1) $f(x)=x^{2}+\sqrt{7-x} \quad a=4$
(1) $f(4)=4^{2}+\sqrt{7-4}=4^{2}+\sqrt{3}=16+\sqrt{3}$
$\therefore f(4)$ is defined
(2)

$$
\begin{aligned}
& \therefore f(4) \text { is defined } \\
& \begin{aligned}
\lim _{x \rightarrow 4} f(x) & =\lim _{x \rightarrow 4}\left[x^{2}+\sqrt{7-x}\right] \\
& =\lim _{x \rightarrow 4} x^{2}+\lim _{x \rightarrow 4} \sqrt{7-x} \\
& =(4)^{2}+\sqrt{7-4} \\
& =16+\sqrt{3}
\end{aligned}
\end{aligned}
$$

(3)

$$
\lim _{x \rightarrow 4} f(x)=f(4)
$$

\therefore From (1), (2) and (3) we get $f(x)$ is continuous at 4
2) $f(x)=\left(2 x+2 x^{3}\right)^{4} a=1$
(1) $f(-1)=\left(-1+2(-1)^{3}\right)^{4}=(-1-2)^{4}=(-3)^{4}=81$
$\therefore f(-1)$ is defined
(2) $\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1}(x+2$
(3) $\lim _{x \rightarrow 1} f(x)=81=f(-1)$
\therefore from (1), (2) and (3) we get $f(x)$ is continuous at -1
3) $h(t)=\frac{2 t-3 t^{2}}{1+t^{3}} \quad a=1$
(1) $h(1)=\frac{2(1)-3(1)^{2}}{1+(1)^{3}}=\frac{2-3}{1+1}=\frac{-1}{2}$ is defined.
(2) $\lim _{t \rightarrow 1} h(t)=\lim _{t \rightarrow 1} \frac{2 t-3 t^{2}}{1+t^{3}}=\frac{2(1)-3(1)^{2}}{1+(1)^{3}}=\frac{2-3}{1+1}=\frac{-1}{2}$
(3) $\lim _{t \rightarrow 1} h(t)=-\frac{1}{2}=h(1)$
\therefore From (1) (2) and (3) we get $h(t)$ is continuous at $a=1$
4) $G(x)=\left\{\begin{array}{ll}\frac{2 x^{2}-5 x-3}{x-3} & \text { if } x+3 \\ 7 & \text { if } x=3\end{array} a=3\right.$
(1) $G(3)=7$ is defined
(2)

$$
\begin{aligned}
\lim _{x \rightarrow 3} G(x) & =\lim _{x \rightarrow 3} \frac{2 x^{2}-5 x-3}{x-3}=\frac{0}{0} \\
& =\lim _{x \rightarrow 3} \frac{(2 x+1)(x-3)}{(x-3)}=\lim _{x \rightarrow 3}(2 x+1)=2(3)+1 \\
& =6+1=7
\end{aligned}
$$

(3) $\lim _{x \rightarrow 3} G(x)=7=6(3)$
\therefore from (1), (2) and (3) me g et $G(x)$ is continuous at $a=3$
5) $f(x)=\left\{\begin{array}{lll}\cos x & \text { if } & x<0 \\ 1-x^{2} & \text { if } & x \geqslant 0\end{array} \quad a=0\right.$
(1) $f(0)=1-(0)^{2}=1-0=1$ is defined
(2)

$$
\begin{aligned}
& f(0)=1-(0)=1 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(1-x^{2}\right)=1-0=1=f(0)
\end{aligned}
$$

$\therefore f(x)$ is continuous at $a=0$ from the right

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \cos x=\cos (0)=1=f(0) \\
& \text { at } a=0 \text { from } t
\end{aligned}
$$

$\therefore f(x)$ is continuous at $a=0$ from the left

$$
\begin{aligned}
& \because \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x) \\
& \therefore \lim _{x \rightarrow 0} f(x)=1 \text { exist }
\end{aligned}
$$

(3) $\lim _{x \rightarrow 0} f(x)=1=f(0)$
from (1) (2) and (3) we get $f(x)$ is continuous at $a=0$

Example (2)
Explain why the function is discontinuous at number

1) $f(x)=\frac{1}{x+2} \quad a=-2$
(1) $f(-2)=\frac{1}{-2+2}=\frac{1}{0}$
$\therefore f(-2)$ is not defind
$\because f(-2)$ is undefined.
$\therefore f(x)$ is discontinuous at $a=-2$
2)

$$
f(x)=\frac{x^{2}-x-2}{x-2} \quad a=2
$$

(1) $f(2)=\frac{2^{2}-2-2}{2-2}=\frac{4-4}{2-2}=\frac{0}{0}$
$\therefore f(+2)$ is not defined.
$\because f(+2)$ is undefined.
$\therefore f(x)$ is discontinuous at $a=2$
3)

$$
\begin{aligned}
& \therefore f(x) \text { is discontinuous } \\
& f(x)=\sqrt[6]{49-2^{2}} \quad a=8 \\
& f(8)=\sqrt[6]{49-64}=\sqrt[6]{-15} \notin \mathbb{R} \\
& \therefore f(8) \text { is undefined }
\end{aligned}
$$

$\Rightarrow f(x)$ is discontinuous at $a=8$
4) $f(x)=\sqrt{x-5}$ at $a=5$
(1) $f(5)=\sqrt{5-5}=\sqrt{0}=0$ is defined.
(2)

$$
\begin{aligned}
& \lim _{x \rightarrow 5} \sqrt{x-5} \\
& \text { Domain of } \sqrt{x-5}: x-5 \geqslant 0 \\
& \therefore D_{\sqrt{x-5}}=[5, \infty)<{ }_{x} \\
& \operatorname{Lim}_{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}} \sqrt{x-5}=\sqrt{5-5}=\sqrt{0}=0=f(5) \\
& \quad \text { tinuous at } 5 \text { from the right }
\end{aligned}
$$

$\therefore f(x)$ is continuous at 5 from the right

$$
\begin{aligned}
& \therefore f(x) \text { is } \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}} \sqrt{x-5}=D \cdot N \cdot E \\
&
\end{aligned}
$$

$\therefore f(x)$ is discontinuous at 5 from the left

$$
\begin{aligned}
& \because \lim _{x \rightarrow 5^{+}} f(x) \neq \lim _{x \rightarrow 5^{-}} \\
& \therefore \lim _{x \rightarrow 5^{-}} f(x)=\cap \cdot N \cdot E
\end{aligned}
$$

$\Rightarrow f(x)$ is discontinuous at 5
5) $f(x)=\left\{\begin{array}{ll}\frac{1}{x^{2}} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{array} \quad a=0\right.$
(1) $f(0)=1$ defind
(2) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\frac{1}{0}=\frac{+}{+}=+\infty$ D.N.E
$\Rightarrow F(x)$ is discont at $a=0$
6) $f(x)= \begin{cases}\frac{-1}{(x-4)^{3}} & \text { if } x \neq 4 \\ 1 / 2 & \text { if } x=4\end{cases}$
(1) $f(4)=\frac{1}{2}$ defined
(2) $\lim _{x \rightarrow 4^{+}} f(x)=\lim _{\substack{x \rightarrow 4^{+} \\ x 4^{4}}} \frac{-1}{(x-4)^{3}}=\frac{-1}{0}=\frac{-}{\oplus}=-\infty$

$$
\lim _{x \rightarrow 4^{-}} f(x)=\lim _{\substack{x \rightarrow 4^{-} \\ x \\ x=3.9}} \frac{-1}{(x-4)^{3}}=\frac{-1}{0}=\frac{-}{\theta}=+\infty
$$

G<
$\Rightarrow F(x)$ is discont at $x=4$
$\Longrightarrow f(x)$ is discontinuous at $a=4$
7) $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-x}{x^{2}-1} & \text { if } x+1 \\ 1 & \text { if } x=1\end{array} a=1\right.$
(1) $f(1)=1$ is defined
(2)

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-x}{x^{2}-1}=\frac{0}{0} \\
& =\lim _{x \rightarrow 1} \frac{x(x-1)}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{x}{x+1}=\frac{1}{1+1}=\frac{1}{2}
\end{aligned}
$$

$$
\therefore \lim _{x \rightarrow 1} f(x)=\frac{1}{2} \text { exist }
$$

(3) $\lim _{x \rightarrow 1} f(x)=\frac{1}{2} \neq f(1)$
$\Rightarrow f(x)$ is discontinuous at $a=1$
(8) $f(x)=\left\{\begin{array}{ll}e^{x} & \text { if } x<0 \\ x^{2} & \text { if } x>0\end{array} \quad a=0\right.$
(1) $f(0)=0^{2}=0$ is defined
(2) $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2}=0=f(0)$
$\therefore f(x)$ is continuous at $a=0$ from the right

$$
\begin{aligned}
& x \rightarrow 0^{+} \\
& \therefore f(x) \text { is continuous at } a=0 \text { rom } \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} e^{x}=e^{0}=1 \neq f(0)
\end{aligned}
$$

$\therefore f(x)$ is discontinuous at $a=0$ from the left

$$
\begin{aligned}
& \because \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)=\text { D.N.E }
\end{aligned}
$$

$\because \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)$
$\therefore \lim _{x \rightarrow 0} f(x)=0 . N \cdot E \Rightarrow f(x)$ is discontinuous at $a=0$

Note

1) $f(x)$ is continuous at a from the right if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
2) $f(x)$ is continuous from the let t at number a if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$
3) if $f(x)$ is continuous at then $f(x)$ is continuous at a from the lett and from the right

$$
\text { i.e: } \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

4) if $f(x)$ is discontinuous at a then if $f(a)$ is not defined.
or

$$
\& \lim _{x \rightarrow a} f(x) \neq f(a)
$$

or

$$
\begin{aligned}
& x \rightarrow a \\
\because & \lim _{x \rightarrow a} f(x)=D \cdot N \cdot E
\end{aligned}
$$

or

* $f(x)$ is discontinuous at a from the lett

08
\% $f(x)$ is discontinuous at a from the right
or

* $F(x)$ is discontinuous at a from the let and from the righ.

Continuity on the Interval

1) $F(x)$ is continuous on $[a, b]$ if

- $f(x)$ is continuous on (a, b)
i.e:- $f(x)$ is continuous at every number in the interval (a, b)
- $f(x)$ is continuous at a number a from the right but $f(x)$ is discontinuous a
- $f(x)$ is continuous at a number (b) from the left but $f(x)$ is discontinuous at b

2) $f(x)$ is continuous on (a, b) if

- $f(x)$ is continuous at every number in the interval (a, b)

Note

- $f(x)$ is discontinuous at a since: $f(a)$ is not defined or $a \notin(a, b)$
- $f(x)$ is discontinuous at b since: $f(b)$ is not defined or $b \notin(a, b)$

Example (3)
(1) If $f(x)$ is continuous on $[-3,5]$ then
(a) $f(x)$ is continuous at number -3 from the right but discontinuous from the left

(b) $f(x)$ is continuous at number 5 from the bet but discontinuous from the right

(c) From (a) me get $f(x)$ is dis continuous at number -3 .
(d) From (b) we get $f(x)$ is discontinuous at number 5
(e) $f(x)$ is continuous at every number in the interval $(-3,5)$
For example. $f(x)$ is continuous at 2 Since $2 \in(-3,5)$
$f(x)$ is continuous at -1 since $-1 \in(-3,5)$
$F(x)$ is continuous at 0 since $0 \in(-3,5)$
$f(x)$ is discontinuous at 6 since $6 \&(-3,5)$
$f(x)$ is dis continuous at -4 since $-4 \in(-3,5)$
(2) If $f(x)$ is continuous on $(-5,0)$ then $f(x)$ is continuous at -5 from the right
(3) if $f(x)$ is continuous on $(-5,0)$ then $f(x)$ is discontinuous at 0
(4) If $f(x)$ is continuous on $(-5,0)$ then $f(x)$ is continuous at +1
(5) If $f(x)$ is continuous on $(-5,0)$ then $f(x)$ is discontinuous at -8
6) if $f(x)$ is continuous on $(-5,0)$ then $f(x)$ is continuous at -3

Theorem
If f and g are Continuous at a and c is constant then the following functions are Continuous at a

1] $f+g$
2] $f-g$
3] $c f$
$4 f g$
5) $\frac{f}{g}$ if $g(a) \neq 0$

Note
If f and g are continuous on interval I then the following functions are continuous on interval I
I] $f+g$ 2] $f-g$ 3] cf $\forall \llbracket \in R$ 4] $f-g$
5] $\frac{f}{g}$ if $g(x) \neq 0$
Theorem
If g is continuous at a and f is continuous at $g(a)$ then $f \circ g$ is continuous at a.

Theorem
a) Any polynomial is continuous everywhere i.e Any polynomial is continuous on $R=(-\infty, \infty)$
b) Any rational function is continuous on the Domain.
6) The follouning Types of functions are Continuous at every number in their Domains:
polynomails rational functions
functions root functions

Radical functions trigonometric functions
inverse trigonometric exponential functions
logarithmic algabric functions functions
not algabric Function

Example (4)
(1)

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \tan ^{-1}\left(\frac{x^{2}-4}{3 x^{2}-6 x}\right) \\
& \tan ^{-1}\left(\lim _{x \rightarrow 2} \frac{x^{2}-4}{3 x^{2}-6 x}\right) \\
& \tan ^{-1}\left(\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{3 x(x-2)}\right) \\
& \tan ^{-1}\left(\lim _{x \rightarrow 2} \frac{x+2}{3 x}\right) \\
& \tan ^{-1}\left(\frac{2+2}{3(2)}\right) \\
& \tan ^{-1}\left(\frac{4}{3(2)}\right) \\
& \tan ^{-1}\left(\frac{2}{3}\right)
\end{aligned}
$$

(2)

$$
\operatorname{Lim}_{x \rightarrow 1} \arcsin \left(\frac{1-\sqrt{x}}{1-x}\right)
$$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 1} \operatorname{Sin}^{-1}\left(\frac{1-\sqrt{x}}{1-x}\right)=\operatorname{Sin}^{-1}\left(\operatorname{Lim}_{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x}\right) \\
& \operatorname{Sin}^{-1}\left(\operatorname{Lim}_{x \rightarrow 1} \frac{(1-\sqrt{x})(1+\sqrt{x})}{(1-x)(1+\sqrt{x})}\right)=\sin ^{-1}\left(\lim _{x \rightarrow 1} \frac{(1)^{2}-(\sqrt{x})^{2}}{(1-x)(1+\sqrt{x})}\right) \\
& \operatorname{Sin}^{-1}\left(\lim _{x \rightarrow 1} \frac{(1-x)}{(1-x)(1+\sqrt{x})}\right)=\sin ^{-1}\left(\lim _{x \rightarrow 1} \frac{1}{1+\sqrt{x}}\right) \\
& \operatorname{Sin}^{-1}\left(\frac{1}{1+\sqrt{1}}\right)=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \\
& \text { 3) } \operatorname{Lim}_{x \rightarrow 1} e^{x^{2}-x}=e^{\operatorname{Lim}_{x \rightarrow 1}\left(x^{2}-x\right)}=e^{1^{2}-1}=e^{1-1} \\
&
\end{aligned}
$$

4) $\lim _{x \rightarrow 0^{+}}\left(\frac{2}{3}\right)^{\frac{1}{x}}=\left(\frac{2}{3}\right)^{\lim _{x \rightarrow 0^{+}} \frac{1}{x}}=\left(\frac{2}{3}\right)^{\infty}=0$

5] $\lim _{x \rightarrow 0^{-}}\left(\frac{2}{3}\right)^{\frac{1}{x}}=\left(\frac{2}{3}\right)^{\lim _{x \rightarrow 0^{-}} \frac{1}{x}}=\left(\frac{2}{3}\right)^{-\infty}=\infty$
6] $\lim _{x \rightarrow 1^{+}} 3^{\frac{-1}{x-1}}=3^{\lim _{x \rightarrow 1^{+}} \frac{-1}{x-1}}=3^{-\infty}=\frac{1}{3^{\infty}}=\frac{1}{\infty}=0$
7) $\lim _{x \rightarrow 1^{-}} 3^{\frac{-1}{x-1}}=3^{\lim _{x \rightarrow 1^{-}} \frac{-1}{x-1}}=3^{\infty}=\infty$
$8 \operatorname{Lim}_{x \rightarrow 2^{+}} \arctan \left(\frac{1}{x-2}\right)$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 2^{+}} \tan ^{-1}\left(\frac{1}{x-2}\right) \\
& \tan ^{-1}\left(\lim _{x \rightarrow 2^{+}} \frac{1}{x-2}\right)=\tan ^{-1}\left(\frac{1}{0}\right) \\
& \tan ^{-1}(\infty)=\frac{\pi}{2}
\end{aligned}
$$

Note
(1) $\frac{\Delta x}{ \pm \infty}=0$
(2) if $a>1$ then $\begin{aligned} a^{\infty} & =\infty \\ a^{-\infty} & =0\end{aligned}$

$$
a^{-\infty}=0
$$

(3) if $0<a<1$ then $\begin{aligned} & a^{\infty}=0 \\ & a^{-\infty}=\infty\end{aligned}$

$$
a^{-\infty}=\infty
$$

Example (5)
Where are the following functions continuous?

$$
h(x)=\operatorname{Sin}\left(x^{2}\right)
$$

(1) Let $h_{1}(x)=\sin (x)$ and $h_{2}(x)=x^{2}$
(2) $D_{h_{1}(x)}=\mathbb{R}$ and $D_{h_{2}(x)}=\mathbb{R}$
(3) $D_{h(x)}=D_{h_{1}(x)} \cap D_{h_{2}(x)}=\mathbb{R} \cap \mathbb{R}=\mathbb{R}$
(4) $h(x)$ is continuous on \mathbb{R}

$$
\begin{array}{r}
h(x)=\sin ^{-1}(2 t+1) \\
\text { (1) }-1 \leqslant 2 t+1 \leqslant 1 \\
-1-1 \leqslant 2 t \leqslant 1-1 \\
-\frac{2}{2} \leqslant \frac{2 t}{2} \leqslant \frac{0}{2} \\
-1 \leqslant t \leqslant 0
\end{array}
$$

(2) $D_{h(x)}=[-1,0]$
(3) $h(x)$ is cont on $[-1,0]$
(4) $h(x)$ is cont at $x=-1$ from the right and discount at $x=-1$ from the left
(5) $h(x)$ is cont at $x=0$ from the left and discount at $x=0$ from the right 6) $f(x)$ is discout at $x=0$ and $x=-1$
$x^{2}+5 x+6$

$$
\begin{aligned}
& D_{G(x)}: \quad x^{2}+5 x+6=0 \\
& (x+2)(x+3)=0
\end{aligned}
$$

$$
\begin{aligned}
D_{G(x)} & =\mathbb{R}-\{-2,-3\} \\
& =(-\infty,-3) \cup(-3,-2) \cup(-2, \infty)
\end{aligned}
$$

$G(x)$ is continuous on $\mathbb{R}-\{-2,-3\}$
$G(x)$ is discount at $x=-2$ and $x=-3$

$$
\begin{aligned}
G(x) & \text { is } \\
F(x) & =\sqrt[3]{x}\left(1+x^{2}\right) \\
P_{F(x)} & =D_{\sqrt[3]{x}} \cap D_{\left(1+x^{2}\right)} \\
& =\mathbb{R} \cap \| R=1 R
\end{aligned}
$$

$F(x)$ is continuous on \mathbb{R}

$$
f(x)=\frac{\sin x}{2+\cos x}
$$

let

$$
\begin{aligned}
& f_{1}(x)=\sin x \Rightarrow D_{f_{1}(x)}=\mathbb{R} \\
& f_{2}(x)=2+\cos x \Rightarrow D_{f_{2}(x)}=\mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& 2+\cos x=0 \\
& \cos x=-2
\end{aligned}
$$

任

$$
\begin{aligned}
D_{f(x)} & =D_{F_{1}(x)} \cap D_{f_{2}(x)}-\left\{p(\bar{b}), \operatorname{le\rho } \rho^{i}\right\} \\
& =\mathbb{R} \cap \mathbb{R} \\
& =\mathbb{R}
\end{aligned}
$$

$f(x)$ is cont on \mathbb{R}

$$
f(x)=\frac{\ln (x)+\tan ^{-1}(x)}{x^{2}-1}
$$

\checkmark Let $f_{1}(x)=\operatorname{Ln}(x)+\tan ^{-1}(x)$

$$
\begin{aligned}
f_{1}(x) & =\operatorname{Ln}(x) \cap \cap \tan ^{-1}(x) \\
D_{f_{1}(x)} & =\operatorname{Ln}_{\operatorname{Ln}(x)} \\
& =(0, \infty) \cap \mathbb{R} \\
& =(0, \infty)
\end{aligned}
$$

\checkmark Let $f_{2}(x)=x^{2}-1 \Rightarrow D_{f_{2}(x)}=1 R$

$$
\begin{aligned}
& x^{2}-1=0 \quad:(26), \operatorname{le} \uparrow+ \\
& x^{2}=1
\end{aligned}
$$

$$
\sqrt{x^{2}}=\sqrt{1}
$$

$$
|x|=1
$$

$$
\begin{aligned}
& x= \pm 1 \\
& D_{f(x)}\left.=D_{F_{1}(x)} \cap D_{f_{2}(x)}-\left\{p()^{\prime}, \text { les }\right\}\right\} \\
&=(0, \infty) \cap \mid R-\{-1,1\} \\
&=(0, \infty)-\{-1,1\} \\
&=(0,1) \cup(1, \infty) \Rightarrow f(x) \text { is cont on } \\
&(0,1) \cup(1, \infty)
\end{aligned}
$$

$$
h(x)=\frac{\cos x}{\sqrt{4-x^{2}}}
$$

(1) Let $h_{1}(x)=\cos x$ and $h_{2}(x)=\sqrt{4-x^{2}}$
(2) $D_{h_{1}(x)}=\mathbb{R}$ and $D_{h_{2}(x)}=[-2,2]$

(3)

م尼 1
(4)

$$
\begin{aligned}
4-x^{2} & =0 \\
-x^{2} & =-4 \\
x^{2} & =4 \\
\sqrt{x^{2}} & =\sqrt{4} \\
|x| & =2 \\
x & = \pm 2
\end{aligned}
$$

5) $h(x)$ is cont on $(-2,2)$
but $h(x)$ is discont at $x=-2$ and $x=2$

$$
f(x)=\frac{\sin x}{x-1}
$$

(1) Let $f_{1}(x)=\sin x$ and $f_{2}(x)=x-1$
(2) $D_{F_{1}(x)}=\mathbb{R}$ and $D_{f_{2}(x)}=\mathbb{R}$

- $f(x)$ is cont on $(-\infty, 1) u(1, \infty)$ but $f(x)=\mathbb{R o p}\}=\mathbb{R}-\{1\}=\mathbb{R}-\{1\}$

$$
\begin{aligned}
& R^{R(x)}= \\
& \begin{aligned}
D_{R(x)} & =D_{x^{2}} \cap \sqrt{2 x-1} \\
& =\|_{\sqrt{2 x-1}} \\
& R \cap[1 / 2, \infty) \\
& =[1 / 2, \infty)
\end{aligned}
\end{aligned}
$$

$R(x)$ is continuous on $[1 / 2, \infty)$

$$
\begin{aligned}
g(x) & =\tan ^{-1}(1+\sqrt{x}) \\
D_{g(x)} & =D_{\tan ^{-1}(x)} \cap D_{1+\sqrt{x}} \\
& =\operatorname{RR}^{(x}[0, \infty) \\
& =[0, \infty)
\end{aligned}
$$

$g(x)$ is continuous on $[0, \infty)$

$$
\begin{gathered}
f(x)=\sqrt{2 x-10} \\
2 x-10 \geqslant 0 \\
2 x \geqslant 10 \\
\frac{2 x}{2} \geqslant \frac{10}{2} \\
x \geqslant 5 \\
D_{f(x)}=[5, \infty)
\end{gathered}
$$

$f(x)$ is cont on $[5, \infty)$
$f(x)$ is discont at $x=5$ but
$f(x)$ is cont at 5 from the right and discant at 5 from the left

$$
\begin{aligned}
f(x)= & \sqrt{2+\cos x} \\
2 & +\cos x \geqslant 0 \\
& \cos x \geqslant-2
\end{aligned} \quad-1 \leqslant \cos x \leqslant 1 .
$$

$f(x)$ is cont on \mathbb{R}

$$
\begin{aligned}
& f(x)= \sqrt{1+\cos x} \\
& 1+\cos x \geqslant 0 \\
& \cos x \geqslant-1 \\
&-1 \leqslant \cos x \leqslant 1 \\
& \therefore D_{F(x)}=\mathbb{R}
\end{aligned}
$$

$f(x)$ is cont on IR

$$
\begin{array}{ll}
F(x)=\operatorname{Ln}(1+\cos x) & \begin{array}{l}
1+\begin{array}{l}
\cos x>0 \\
\cos x>-1 \\
1<\cos x \leqslant 1
\end{array} \\
\text { (2) } 1+\cos x=0
\end{array}
\end{array}
$$

$$
\begin{aligned}
1+\cos x & =0 \\
\cos x & =-1 \\
x & = \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots
\end{aligned}
$$

(3) $D_{f(x)}=\mathbb{R}-\{ \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots\}$
(4) $f(x)$ is continuous on $\mathbb{R}-\{ \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots\}$ but $F(x)$ is discont at $x= \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots$

$$
\begin{aligned}
& f(x)=\tan x \\
& f(x)=\sec x
\end{aligned}
$$

$$
f(x)=\tan x \text { and } f(x)=\sec x
$$

are cont on $\mathbb{R}-\left\{ \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots\right\}$
but $f(x)=\tan x$ and $f(x)=\sec x$ are discount at $x= \pm \frac{\pi}{2} 1 \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots$.

$$
\begin{aligned}
& f(x)=\cot x \\
& f(x)=\csc x
\end{aligned}
$$

$f(x)=\cot x$ and $f(x)=\csc x$ are
cont on $\mathbb{R}-\{0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \pm 4 \pi, \ldots\}$
but $f(x)=\cot x$ and $f(x)=\csc x$ are discount at $x=0, \pm \pi, \pm 2 \pi / \pm 3 \pi, \pm 4 \pi, \ldots$
Example. $F(x)=\sec x$ is discant at $x=\frac{21 \pi}{4}(T-(F)$ $f(x)=\csc x$ is discount at $x=\ldots$

$$
\frac{\pi}{2} \quad \frac{\pi}{4} \quad \frac{\pi}{6} \quad \text { (0) }
$$

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{-1}{(x-6)^{4}} & \text { if } x \neq 6 \\
6 & \text { if } x=6 \\
D_{f(x)}=\mathbb{R} \\
x=6\end{cases}
\end{aligned}
$$

(1) $f(6)=6$ defind
(2) $\lim _{x \rightarrow 6} f(x)=\lim _{x \rightarrow 6} \frac{-1}{(x-6)}=\frac{-1}{0}=\frac{-}{\Phi}=-\infty$ "D.N.E"
$\therefore f(x)$ is discontinuous at $x=6$
$\Rightarrow f(x)$ is continuous $\bigcirc \cap \cap \mathbb{R}-\left\{6^{\}}\right\}$

$$
\Rightarrow f(x) \text { is continuous }=\left\{\begin{array}{ccc}
\frac{x^{2}-4}{x-2} & \text { if } & x \neq 2 \\
4 & \text { if } & x=2
\end{array}\right.
$$

$$
D_{f(x)}=\mathbb{R}
$$

$$
x=2
$$

(1) $f(2)=4$ defined
(2)

$$
\begin{aligned}
& f(2)=4 \text { defined } \\
& \begin{aligned}
\lim _{x \rightarrow 2} f(x) & =\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{0}{0} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)}=\lim _{x \rightarrow 2}(x+2)=2+2=4
\end{aligned}
\end{aligned}
$$

(3) $\lim _{x \rightarrow 2} f(x)=f(2)=4 \Rightarrow f(x)$ is continuous at $x=2$
$\Rightarrow f(x)$ is continuous on \mathbb{R}

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lll}
1+x^{2} & \text { if } & x \leqslant 0 \\
2-x & \text { if } & 0<x \leqslant 2 \\
(x-2)^{2} & \text { if } & x>2
\end{array}\right. \\
& D_{f(x)}=(-\infty, 0] \cup(0,2] \cup(2, \infty)=\mid R \\
& x=0
\end{aligned}
$$

$$
\begin{aligned}
& x=0 \\
& v f(0)=1+(0)^{2}=1+0=1 \text { is defineel. }
\end{aligned}
$$

$$
\begin{aligned}
& r f(0)=1+(0)=1+0=f(0) \\
& r \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(2-x)=2-0=2 \neq f
\end{aligned}
$$

$\therefore f(x)$ is discontinuous at o from the right
$\Rightarrow f(x)$ is discontinuous at 0

$$
x=2
$$

$F(2)=2-2=0$ is defined

$$
\begin{aligned}
& f(2)=2-2=0 \text { is detinear } \\
& \int \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(x-2)^{2}=(2-2)^{2}=0^{2}=0=f(2) \\
& \text { limusus at } 2 \text { from the right }
\end{aligned}
$$

$\therefore f(x)$ is continuous at 2 from the right

$$
\begin{aligned}
& f(x) \text { is } \\
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(2-x)=2-2=0=f(2) \\
& \text { Linlous at } 2 \text { from the le }
\end{aligned}
$$

$\therefore f(x)$ is continuous at 2 from the left.
$\Rightarrow f(x)$ is continous at 2
$\Rightarrow F(x)$ is cont inuous on $\mathbb{R}-\{0\}$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
\tan ^{-1}(x) \quad \text { if } x \leqslant 1 \\
-\frac{\pi}{4} x+\frac{\pi}{2} \quad \text { if } x>1
\end{array}\right. \\
& D_{f(x)}=(-\infty, 1] u(1, \infty)=\mathbb{R} \\
& x=1 \\
& f(1)=\tan ^{-1}(1)=\frac{\pi}{4} \\
& \therefore \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(-\frac{\pi}{4} x+\frac{\pi}{2}\right)=-\frac{\pi}{4}+\frac{\pi}{2}=\frac{-\pi 1+2 \pi}{4}=\frac{\pi}{4} \\
& \therefore \lim _{x \rightarrow 1^{+}} f(x)=\frac{\pi}{4}=f(1)
\end{aligned}
$$

$\Rightarrow f(x)$ is continuous at (1) from the right

$$
\begin{aligned}
& \Rightarrow f(x) \text { is continuous at } \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \tan ^{-1}(x)=\tan ^{-1}(1)=\frac{\pi}{4} \\
& \therefore \lim _{x \rightarrow 1^{-}} f(x)=\frac{\pi}{4}=f(1)
\end{aligned}
$$

$\Rightarrow f(x)$ is continuous at Π from the Get

$$
\begin{aligned}
& \Rightarrow f(x)=\lim _{x \rightarrow 1^{-}} f(x)=\frac{\pi}{4} \text { exist } \\
& \because \lim _{x \rightarrow 1} f(x)=\frac{\pi}{4}=f(1) \\
& \therefore \lim _{x \rightarrow 1}
\end{aligned}
$$

$\Rightarrow F(x)$ is continuous at 11
$\Rightarrow f(x)$ is Continuous on \mathbb{R}.

Examp (6)
for what value of c is the function
$f(x)$ is continuous on $\mathbb{R}=(-\infty, \infty)$
(1)

$$
f(x)= \begin{cases}c x^{2}+x^{3} & \text { if } x<2 \\ x^{2}-c x & \text { if } x y_{2}^{2}\end{cases}
$$

$\because f(x)$ is continuous on \mathbb{R}
$\therefore f(x)$ is continuous at $x=2$

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{-}} f(x) \\
(2)^{2}-2 c & =(2)^{2} c+(2)^{3} \\
4-2 c & =4 c+8 \\
-2 c-4 c & =8-4 \\
-6 c & =4 \\
\frac{-6 c}{-6} & =\frac{4 \div 2}{-6 \div 2} \\
c & =-\frac{2}{3}
\end{aligned}
$$

(2) $f(x)=\left\{k^{2} x-4\right.$ if $x>1$
$12 x$ if $x \leqslant 1$
$\because F(x)$ is continuous on \mathbb{R}
$\therefore F(x)$ is continuous at $x=1$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x) \\
& \lim _{x \rightarrow 1^{+}}\left(k^{2} x-4\right)=\lim _{x \rightarrow 1^{-}} 12 x \\
& k^{2}-4=12 \\
& k^{2}=12+4 \\
& k^{2}=16 \\
& \sqrt{k^{2}}=\sqrt{16} \\
&|k|=4 \\
& k= \pm 4
\end{aligned}
$$

Example

(2) $\operatorname{Lim} f(x)=\infty \quad$ d.N.E $x \rightarrow 3$
From (1) and (2) we get: $f(x)$ is discont al $x=3$

Excompl
$f(1)=5$ defined.
$f(1)=5$ detind.
$\lim _{x \rightarrow 1^{+}} f(x)=4 \neq f(1) \Rightarrow f(x)$ is discount at $x=1$ from
the right
$\begin{array}{ll}\operatorname{Lim}_{x \rightarrow 1^{-}} f(x)=5=f(1) \Rightarrow & f(x) \text { is cont at } x=1 \text { from } \\ & \text { the left }\end{array}$

$$
\lim _{x \rightarrow 1^{+}} f(x) \neq \lim _{x \rightarrow 1^{-}} f(x) \Rightarrow \lim _{x \rightarrow 1} f(x)=D \cdot N \cdot E
$$

$\therefore f(x)$ is discount at $x=1$

Example

(1) $f(6)=7$ defind
(2) $\lim _{x \rightarrow 6} f(x)=6$ exist
(3) $\lim _{x \rightarrow 6} f(x) \neq f(6)$ $x \rightarrow 6$
$\therefore f(x)$ is discont at $x=6$
(1) $f(-2)=4$ defind
(2) $\lim _{x \rightarrow-2} f(x)=4$
(3) $\lim _{x \rightarrow-2} f(x)=f(-2)$
$\therefore f(x)$ is cont at

$$
x=-2
$$

2.6: Limit at infinity and Horizontal Asymptotes.
Example(1)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow \infty} f(x)=4 \\
& \operatorname{Lim}_{x \rightarrow-\infty} f(x)=4 \\
& \because \lim _{x \rightarrow \infty} f(x)=4 \text { or } \lim _{x \rightarrow-\infty} f(x)=4
\end{aligned}
$$

$\therefore y=4$ is Horizontal Asymptote
if $\lim _{x \rightarrow+\infty} f(x)=L_{1}$ then $y=L$, is H.A if $\lim _{x \rightarrow-\infty} f(x)=L_{2}$ then $y=L_{2}$ is H.A if $y=L$ is H.A then $\lim _{x \rightarrow \pm \infty} f(x)=L$

Example (2)

$$
\because \lim _{x \rightarrow \infty} f(x)=1
$$

$\therefore y=1$ is H.A

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=0 \\
& \because \lim _{x \rightarrow \infty} f(x)=3 \text { and } \lim _{x \rightarrow-\infty} f(x)=0
\end{aligned}
$$

$\therefore y=3$ and $y=0$ are H.A

Example (3)

Find Hoxizontal asymptote and Vertical asymptote
$H \cdot A$
$y=2$ and $y=4$ are
H.A Since:

$$
\operatorname{Lim}_{x \rightarrow \infty} f(x)=4 \text { and }
$$

$$
\lim _{x \rightarrow-\infty} f(x)=2
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} F(x)=\infty \\
& \lim _{x \rightarrow 3^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow 3} f(x)=\infty
\end{aligned}
$$

Example (4)
Find the Horizontal Asymptote and Vertical Asymptote of the following functions.
(1) $f(x)=2 x^{2}+3 x+1$
$f(x)$ has no vertical and Horizontal Asymptotes.
(2)

$$
\begin{aligned}
& f(x)=\cos x \text { or } \\
& f(x)=\sin x
\end{aligned}
$$

$f(x)$ has no Vertical and Horizontal Asymptotes.
(3) $f(x)=e^{x}$ or $f(x)=\left(\frac{1}{2}\right)^{x}-x$ or $f(x)=3^{x}$ or $f(x)=\pi^{-x}$
$f(x)$ has no vertical Asymptote but $f(x)$ has Horizontal asymptote $(y=0)$
(4) $f(x)=4^{x}+2$
$\triangle y=2$ is H.A of $f(x)$

- $f(x)$ has no Vertical As ymptote.
(5) $f(x)=3^{-x}-1$
, $y=-1$ is H.A at $f(x)$
- $F(x)$ has no Vertical asymptote.

$$
\begin{aligned}
& \text { 0) } f(x)=\operatorname{Ln}(x+5) \\
& \text { or } f(x)=\log _{3}(x+5)
\end{aligned}
$$

- $f(x)$ has no Horizontal Asymptote

$$
x=-5 \text { is V.A }
$$

$$
\Rightarrow f(x)=\frac{1}{x}
$$

$x=0$ is V.A
$y=0$ is H.A

8) $f(x)=\tan ^{-1} x$

$y=\frac{\pi}{2}$ and $y=-\frac{\pi}{2}$ are H.A
ie

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow \infty} \tan ^{-1} x=\frac{\pi}{2} \\
& \lim _{x \rightarrow-\infty} \tan ^{-1} x=-\frac{\pi}{2}
\end{aligned}
$$

Note $:-1 \lim _{x \rightarrow \pm \infty} \frac{c}{x^{n}}=0$ for all $n>0$
2) $\operatorname{Lim}_{x \rightarrow \infty} x^{n}=\infty$ for all $n>0$
3) $\lim _{x \rightarrow-\infty} x^{n}=\left\{\begin{aligned} \infty & \text { if } n \text { is an even } \\ -\infty & \text { if } n \text { is an odd. }\end{aligned}\right.$
4) $\lim _{x \rightarrow \pm \infty}\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} x+a_{0}\right)=\lim _{x \rightarrow+\infty} a_{n} x^{n}$

Exampe(5)
1)

$$
\begin{aligned}
& \operatorname{limp}_{x \rightarrow \pm \infty} \lim _{x \rightarrow \infty^{\infty}} \frac{1}{x}=0 \\
& \lim _{x \rightarrow \pm} \frac{3}{x^{3}}=0 \quad \lim _{x \rightarrow \pm \infty} 3 x^{-5}=\lim _{x \rightarrow \pm \infty} \frac{3}{x^{5}}=0 \\
& \lim _{x \rightarrow \infty} \frac{-3}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{-3}{x^{1 / 2}}=0 \\
& \lim x^{3}=-\infty
\end{aligned}
$$

2)

$$
\lim _{x \rightarrow \infty} x^{3}=\infty
$$

$$
\lim _{x \rightarrow \infty} x^{3}=-\infty
$$

$$
\lim _{x \rightarrow \infty} x^{4} \equiv \infty
$$

$$
\lim _{x \rightarrow-\infty}^{x \rightarrow \infty} x^{6}=\infty
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty}-5 x^{7} & =-5 \lim _{x \rightarrow \infty} x^{7} \\
& =-5(+\infty)
\end{aligned}
$$

$$
\lim _{x \rightarrow-\infty}-5=
$$

$$
\begin{aligned}
& x \rightarrow \infty \\
= & -5(-\infty)
\end{aligned}
$$

$$
\begin{gathered}
x(+\infty) \\
=-5(+\infty)=-\infty
\end{gathered}
$$

$$
=5(\infty)
$$

$$
=\infty
$$

$$
\begin{aligned}
& 2 \lim _{x \rightarrow \infty} \frac{1}{2} x^{-4}=\frac{1}{2} \lim _{x \rightarrow \infty} x^{-4} \\
&=\frac{1}{2} \lim _{x \rightarrow \infty} \frac{1}{x^{4}} \\
&=\frac{1}{2}(0) \\
&=0 \\
& \begin{aligned}
\lim _{x \rightarrow-\infty} \frac{e^{2}}{x^{-3}} & =e^{2} \lim _{x \rightarrow-\infty} \frac{1}{x^{-3}} \\
& =e^{2} \lim _{x \rightarrow-\infty} x^{3} \\
& =e^{2}(-\infty) \\
& =-e^{2}(\infty) \\
& =-\infty \\
& =5 \lim _{x \rightarrow \infty} \frac{1}{x^{-5 / 4}} \\
& =5 \lim _{x \rightarrow \infty} x^{5 / 4} \\
& =5(\infty) \\
\lim _{x \rightarrow \infty} \frac{5}{x^{-5 / 4}} & =x_{x}^{\infty}
\end{aligned}
\end{aligned}
$$

4)

$\lim _{x \rightarrow \infty}\left(x^{3}-x^{-\infty}\right)=\lim _{x \rightarrow \infty}-x^{7}=-\lim _{x \rightarrow \infty} x^{7}$

$$
\begin{aligned}
\lim _{2 \rightarrow \infty}\left(2 x+32^{2}+1\right) & =\lim _{x \rightarrow-\infty} 2 x^{4}={ }_{2} \lim _{x \rightarrow-\infty} x^{4} \\
& =2(\infty)=\infty
\end{aligned}
$$

Note
If $f(x)=\frac{P(x)}{Q(x)}$ is a Rational function then
（1） $\operatorname{Lim}_{x \rightarrow \pm \infty} f(x)=0$

（2） $\lim _{x \rightarrow \pm \infty} f(x)=\infty$ or $-\infty$
م国
（3）

マレا
Example（6）
$\operatorname{Lim}_{x \rightarrow \infty} \frac{1}{2 x+3}=0$ لا

$$
\lim _{x \rightarrow \pm} \frac{5 x^{3}}{x^{7}+1}=0 \Rightarrow y=0 \text { is H.A }
$$

$$
\operatorname{Lim}_{x \rightarrow-\infty} \frac{3 x+5}{15 x-4}=\frac{3 \div 3}{15 \div 3}=\frac{1}{5} \Rightarrow y=\frac{1}{5} \text { is H.A }
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1+x^{6}}{x^{4}+1}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow \infty} \frac{x^{6}}{x^{4}}=\lim _{x \rightarrow \infty} x^{2}=\infty \\
& f(x)=\frac{1+x^{6}}{x^{4}+1} \text { has no H.A } \\
& \lim _{x \rightarrow \infty} \frac{x^{2}+x}{3-x}=\frac{\infty}{-\infty} \\
& \lim _{x \rightarrow \infty} \frac{x^{2}}{-x}=\lim _{x \rightarrow \infty}-x=-\infty \\
& f(x)=\frac{x^{2}+x}{3-x} \text { has no H.A } \\
& \lim _{x \rightarrow-\infty} \frac{2+x^{3}}{1-x^{2}}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow-\infty} \frac{x^{3}}{-x^{2}}=\lim _{x \rightarrow-\infty}-x=+\infty \\
& \quad f(x)=\frac{2+x^{3}}{1-x^{2}} \text { has no H.A }
\end{aligned}
$$

Example (7)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+1}-x\right)}{1} \times \frac{\left(\sqrt{x^{2}+1}+x\right)}{\left(\sqrt{x^{2}+1}+x\right.} \\
& \lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+1}-x\right)\left(\sqrt{x^{2}+1}+x\right)}{\left(\sqrt{x^{2}+1}+x\right)}
\end{aligned}
$$

$$
\operatorname{Lim}_{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+1}\right)^{2}-(x)^{2}}{\left(\sqrt{x^{2}+1}+x\right)}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{2}+1-x^{2}}{\left(\sqrt{x^{2}+1}+x\right)} \\
& \operatorname{Lim}_{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}+1}+x}=\frac{1}{\infty+\infty}=\frac{1}{\infty}=0
\end{aligned}
$$

$$
\Longrightarrow y=0 \text { is } H \cdot A
$$

Not

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}+x\right)=\infty+\infty=2 \infty=\infty
$$

has no H.A
(2)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow \infty} \frac{\sqrt{2 x^{2}+1}}{3 x-5}=\frac{\infty}{\infty} \\
& x \text { : باللـِ } \\
& \lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x^{2}+1}}{x}}{\frac{3 x}{x}-\frac{5}{x}} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2 x^{2}}{x^{2}}+\frac{1}{x^{2}}}}{3-\frac{5}{x}} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{2+\frac{1}{x^{2}}}}{3-\frac{5}{x}}=\frac{\sqrt{2+\cdot \lim _{x \rightarrow \infty} \frac{1}{x^{2}}}}{3-\lim _{x \rightarrow \infty} \frac{5}{x}} \\
& =\frac{\sqrt{2+0}}{3-0} \\
& =\frac{\sqrt{2}}{3} \\
& \Rightarrow y=\frac{\sqrt{2}}{3} \text { is H.A }
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}=\frac{\infty}{-\infty} \\
& \operatorname{Lim}_{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{\frac{-x^{3}}{\frac{x^{3}}{-x^{3}}+\frac{1}{-x^{3}}}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{9 x^{6}}{\left(x^{3}\right)^{2}}-\frac{x}{\left(x^{3}\right)^{2}}}}{-1+\frac{1}{x^{3}}} \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{9 x^{6}-\frac{x}{x^{6}}}{-1+\frac{1}{x^{3}}}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{9-\frac{1}{x^{5}}}}{-1+\frac{1}{x^{3}}}}{-1} \\
& =\frac{\sqrt{9-\lim _{x \rightarrow-\infty} \frac{1}{x^{5}}}}{-1+\lim _{x \rightarrow-\infty} \frac{1}{x^{3}}} \\
& =\frac{\sqrt{9-0}}{-1+0} \\
& =\frac{\sqrt{9}}{-1} \\
& =\frac{3}{-1}=-3 \\
& \Rightarrow y=-3 \text { is H.A }
\end{aligned}
$$

Example(z)
Find Vertical Asymptote and Horizonw Asymptote of functions.
(1) $y=\frac{2 x^{2}+x-1}{x^{2}+x-2}$
$\stackrel{\text { H.A }}{\lim _{x \rightarrow \pm \infty}} \frac{2 x^{2}+x-1}{x^{2}+x-2}=2$
$\Rightarrow y=2$ is H.A of $f(x)$
V.A
trysex (1) (1)

$$
\begin{aligned}
& x^{2}+x-2=0 \\
& (x+2)(x-1)=0 \\
& x+2=0 \text { or } x-1=0 \\
& x=-2 \quad x=1
\end{aligned}
$$

(2)

$$
\begin{aligned}
& g(x)=2 x^{2}+x-1 \\
& \begin{aligned}
g(1) & =2(1)^{2}+(1)-1=2(1)+1-1=2+1-1=2 \neq 0 \\
g(-2)=2(-2)^{2}+(-2)-1=2(4)-2-1 & =8-2-1 \\
& =5 \neq 0
\end{aligned}
\end{aligned}
$$

(3) $x=-2$ and $x=1$ are V.A

$$
\begin{aligned}
& \text { (2) } f(x)=\frac{\sqrt{x^{6}-1}}{x^{3}-1} \\
& \operatorname{Lim}_{x \rightarrow \infty} \frac{\sqrt{x^{6}-1}}{x^{3}-1}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{x^{6}-1}}{\frac{x^{3}-x^{3}}{x^{3}}-\frac{1}{x^{3}}} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{\frac{x^{6}}{x^{6}}-\frac{1}{x^{6}}}}{1-\frac{1}{x^{3}}} \\
& \frac{\sqrt{1-\lim _{x \rightarrow \infty} \frac{1}{x^{6}}}}{1-\lim _{x \rightarrow \infty} \frac{1}{x^{3}}} \\
& \frac{\sqrt{1-0}}{1-0}=\frac{\sqrt{1}}{1}=1 \\
& \therefore y=1 \text { is H.A } \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{6}-1}}{x^{3}-1}=\frac{\infty}{-\infty} \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{6}-1}}{\frac{-x^{3}}{\frac{x^{3}}{-x^{3}}-\frac{1}{-x^{3}}}} \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{x^{6}}{x^{6}}-\frac{1}{x^{6}}}}{-1+\frac{1}{x^{3}}} \\
& \frac{\sqrt[5]{1-\lim _{x \rightarrow \infty} \frac{1}{x^{6}}}}{-1+\lim _{x \rightarrow-\infty} \frac{1}{x^{3}}} \\
& \frac{\sqrt{1-0}}{-1+0}=\frac{\sqrt{1}}{-1}=-1 \\
& \Rightarrow y=1 \text { and } y=-1 \text { are } H \cdot A \text {. }
\end{aligned}
$$

N.A
(1) $>$

$$
\begin{gathered}
x^{3}-1=0 \\
x^{3}=1 \\
\sqrt[3]{x^{3}}=\sqrt[3]{1} \\
x=1
\end{gathered}
$$

(2)

$$
\begin{aligned}
& g(x)=\sqrt{x^{6}-1} \\
& g(1)=\sqrt{1-1}=\sqrt{0}=0
\end{aligned}
$$

(3) $x=1$ is not V.A
$\Longrightarrow f(x)$ has no V.A
2) $f(x)=\sqrt{4 x^{2}+1}$
$H \cdot A$

$$
\begin{array}{rl}
& \operatorname{Lim}_{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+1}}{x+1} \\
= & \lim _{x \rightarrow \infty} \frac{\frac{\sqrt{4 x^{2}+1}}{x}}{\frac{x}{x}+\frac{1}{x}} \\
= & \lim _{x \rightarrow \infty} \frac{\sqrt{\frac{4 x^{2}}{x^{2}+\frac{1}{x^{2}}}}}{1+\frac{1}{x}} \\
\operatorname{Lim}_{x \rightarrow \infty} \frac{\sqrt{4+\frac{1}{x^{2}}}}{1+\frac{1}{x}} \\
= & \frac{\sqrt{4+\lim _{x \rightarrow \infty} \frac{1}{x^{2}}}}{1+\lim _{x \rightarrow \infty} \frac{1}{x}} \\
= & \frac{\sqrt{4+0}}{1+0} \\
= & \frac{\sqrt{4}}{1}=2 \\
y & 2 \text { is H.YA }
\end{array}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+1}}{x+1} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+1}}{\frac{-x}{\frac{x}{-x}+\frac{1}{-x}}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4 x^{2}}{x^{2}}+\frac{1}{x^{2}}}}{-1-\frac{1}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{4+\frac{1}{x^{2}}}}{-1-\frac{1}{x}} \\
& =\sqrt{4+\lim _{x \rightarrow-\infty} \frac{1}{x^{2}}} \\
& =\frac{-1-\lim _{x \rightarrow-\infty} \frac{1}{x}}{\sqrt{4+0}}=\frac{\sqrt{4}}{-1-0}=-2 \\
& y=-2 \text { is H.A }
\end{aligned}
$$

(1)

$$
\begin{gathered}
\text { RLébl let } \\
x+1=0 \Longrightarrow x=-1<\sum_{\text {not V.A }}^{\text {V.A }}
\end{gathered}
$$

(2) $\quad g(x)=\sqrt{4 x^{2}+1}$

$$
g(-1)=\sqrt{4(-1)^{2}+1}=\sqrt{4(1)+1}=\sqrt{4+1}=\sqrt{5} \neq 0
$$

(3) $x=-1$ is V.A of $f(x)$
$\underline{\underline{1}+8}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\sqrt{2 x^{2}+1}}{3 x-5}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x^{2}+1}}{x}}{\frac{3 x}{x}-\frac{5}{x}} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2 x^{2}+1}{x^{2}}}}{3-\frac{5}{x}} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2 x^{2}}{x^{2}}+\frac{1}{x^{2}}}}{3-\frac{5}{x}} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{2+\frac{1}{x^{2}}}}{3-\frac{5}{x}} \\
& \sqrt{\lim _{x \rightarrow \infty}+\lim _{x \rightarrow \infty} \frac{1}{x^{2}}} \\
& \frac{\lim _{x \rightarrow \infty} 3-\lim _{x \rightarrow \infty} \frac{5}{x^{x}}}{3+0}=\frac{\sqrt{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}+1}}{3 x-5}=\frac{\infty}{-\infty} \\
& -\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{2 x^{2}+1}}{x}}{\frac{3 x}{+x}-\frac{5}{+x}} \\
& -\lim _{x \rightarrow+\infty} \frac{\sqrt{\frac{2 x^{2}+1}{x^{2}}}}{3-\frac{5}{x}} \\
& -\lim _{x \rightarrow-\infty} \frac{\sqrt{2+\frac{1}{x^{2}}}}{3-\frac{5}{x}} \\
& -\frac{\lim _{x \rightarrow-\infty} 2+\lim _{x \rightarrow-\infty} \frac{1}{x^{2}}}{\lim _{x \rightarrow-\infty} 3-\lim \frac{5}{x}} \\
& -\frac{\sqrt{2+0}}{3}=-\frac{\sqrt{2}}{3}
\end{aligned}
$$

$\therefore f(x)$ have H.A at $y=\frac{\sqrt{2}}{3}$ and $y=-\frac{\sqrt{2}}{3}$

$$
\begin{aligned}
& \begin{aligned}
3 x-5 & =0 \\
3 x & =5 \\
x & =5 / 3 \\
\text { Let } g(x) & =\sqrt{2 x^{2}+1} \\
g\left(\frac{5}{3}\right) & =\sqrt{2\left(\frac{25}{9}\right)+1} \\
& =\sqrt{\frac{50}{9}+1} \\
& =\sqrt{\frac{59}{9}} \\
& =\frac{\sqrt{59}}{3} \neq 0 \\
\therefore x & =\frac{5}{3} \text { is }
\end{aligned} \\
& \therefore . A \text { af } f(x)=\frac{\sqrt{2 x^{2}+1}}{3 x-5}
\end{aligned}
$$

Example (9)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \tan ^{-1}\left(e^{x}\right) \\
\begin{aligned}
& \tan ^{-1}\left(\lim _{x \rightarrow \infty} e^{x}\right)=\tan ^{-1}\left(e^{\infty}\right)=\tan ^{-1}(\infty) \\
&=\frac{\pi}{2} \\
& \Rightarrow y=\frac{\pi}{2} \text { is H.A } \\
& \lim _{x \rightarrow 0^{+}} \tan ^{-1}(\ln x)=\tan ^{-1}\left(\lim _{x \rightarrow 0^{+}} \ln (x)\right) \\
&=\tan ^{-1}(\ln (0)) \\
&=\tan ^{-1}(-\infty) \\
&=-\frac{\pi}{2} \\
&
\end{aligned} \\
\begin{aligned}
\operatorname{Lim}_{x \rightarrow \infty} \sin x & =\sin (\infty)^{\prime} D \cdot N \cdot E^{n}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} e^{-2 t} \cos (t)=e^{-\infty} \cos (\infty)=O \cdot(D \cdot N \cdot E) \\
& -1 \leqslant \cos (t) \leqslant 1 \\
& -e^{-2 t} \leq e^{-2 t} \leqslant \cos (t) \leqslant e^{-2 t} \\
& \lim _{t \rightarrow \infty}-e^{-2 t}=-e^{-\infty}=0 \\
& \lim _{t \rightarrow \infty} e^{-2 t}=+e^{-\infty}=0 \\
& \because \lim _{t \rightarrow \infty} e^{-2 t}=\lim _{t \rightarrow \infty^{\infty}}-e^{-2 t}=0 \\
& \therefore \lim _{t \rightarrow \infty} e^{-2 t} \cos t=0 \\
& \lim _{x \rightarrow \infty} \sqrt{x^{2}+1}=\sqrt{\lim _{x \rightarrow \infty}\left(x^{2}+1\right)} \\
& =\sqrt{\lim _{x \rightarrow \infty} x^{2}} \\
& =\sqrt{\infty} \\
& =\infty
\end{aligned}
$$

Example (10)
$\lim _{x \rightarrow-\infty}\left(\sqrt{4 x^{2}+3 x}+2 x\right)=\infty$
$2 x \rightarrow-10$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{\left(\sqrt{4 x^{2}+3 x}+2 x\right)}{1} \cdot \frac{\left(\sqrt{4 x^{2}+3 x}-2 x\right)}{\left(\sqrt{4 x^{2}+3 x}-2 x\right)} \\
& \lim _{x \rightarrow-\infty} \frac{\left(\sqrt{4 x^{2}+3 x}+2 x\right)\left(\sqrt{4 x^{2}+3 x}-2 x\right)}{1 \cdot\left(\sqrt{4 x^{2}+3 x}-2 x\right)} \\
& \lim _{x \rightarrow-\infty} \frac{4 x^{2}+3 x-4 x^{2}}{\sqrt{4 x^{2}+3 x}-2 x}=\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{4 x^{2}+3 x}-2 x}=\frac{-\infty}{\infty} \\
& \lim _{x \rightarrow-\infty} \frac{\frac{3 x}{-x}}{\frac{\sqrt{4 x^{2}+3 x}}{-x}-\frac{2 x}{-x}}=\lim _{x \rightarrow-\infty} \frac{-3}{\sqrt{\frac{4 x^{2}}{x^{2}}+\frac{3 x}{x^{2}}}+2} \\
& \lim _{x \rightarrow-\infty} \frac{-3}{\sqrt{4+\frac{3}{x}}+2}=\frac{-3}{\sqrt{4+0}+2} \\
& \lim _{x \rightarrow-3}^{2+2}=\frac{-3}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \operatorname{Lim}_{x \rightarrow \infty}\left[\ln \left(1+x^{2}\right)-\ln (1+x)\right]=\infty-\infty \\
& \lim _{x \rightarrow \infty}\left[\ln \left[\frac{1+x^{2}}{1+x}\right]\right]=\ln \left(\lim _{x \rightarrow \infty} \frac{1+x^{2}}{1+x}\right) \\
&=\ln (\infty) \\
&=\infty
\end{aligned} \\
& \begin{aligned}
& \lim _{x \rightarrow \infty}[\ln (2+x)=\ln (1+x)]=\infty-\infty \\
& \lim _{x \rightarrow \infty} \operatorname{Ln}\left(\frac{2+x}{1+x}\right)=\ln \left(\lim _{x \rightarrow \infty} \frac{2+x}{1+x}\right) \\
&=\ln \left(\frac{1}{1}\right) \\
&=\ln (1) \\
&=0
\end{aligned} \\
& \begin{aligned}
\operatorname{Lim}_{x \rightarrow \infty}[\ln (x+3) & \left.=\ln \left(x^{2}-1\right)\right]=\infty-\infty
\end{aligned} \\
& \lim _{x \rightarrow \infty} \ln \left(\frac{x+3}{x^{2}-1}\right)=\ln \left(\lim _{x \rightarrow \infty} \frac{x+3}{x^{2}-1}\right)=\ln (0)
\end{aligned}
$$

$$
\begin{gathered}
\lim _{X \rightarrow \infty} \frac{\sin ^{2} x}{1+x^{2}}=\frac{D \cdot N \cdot E}{\infty} \\
-1 \leq \sin x \leq 1 \\
0 \leq \sin ^{2} x \leq 1 \\
\frac{0}{1+x^{2}} \leq \frac{\sin ^{2} x}{1+x^{2}} \leq \frac{1}{x^{2}+1} \\
0 \leq \frac{\sin ^{2} x}{1+x^{2}} \leq \frac{1}{x^{2}+1} \\
\lim _{x \rightarrow \infty} 0=0 \\
\lim _{x \rightarrow \infty} \frac{1}{1+x^{2}}=0 \\
\therefore \lim _{x \rightarrow \infty} \frac{\sin ^{2} x}{1+x^{2}}=0
\end{gathered}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{e^{3 x}-e^{-3 x}}{e^{3 x}+e^{-3 x}}=\frac{e^{\infty}-e^{-\infty}}{e^{\infty}+e^{-\infty}}=\frac{\infty-0}{\infty+0}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow \infty} \frac{\left(\frac{e^{3 x}}{e^{3 x}}-\frac{e^{-3 x}}{e^{3 x}}\right)}{\left(\frac{e^{3 x}}{e^{3 x}}+\frac{e^{-3 x}}{e^{3 x}}\right)}=\lim _{x \rightarrow \infty} \frac{1-e^{-6 x}}{1+e^{-6 x}} \\
& =\frac{1-e^{-\infty}}{1+e^{-\infty}} \\
& =\frac{1-0}{1+0} \\
& =\frac{1}{1}=1 \\
& \lim _{x \rightarrow \infty} \frac{e^{3 x}-e^{-3 x}}{e^{3 x}+e^{-3 x}}=\frac{e^{-\infty}-e^{\infty}}{e^{-\infty}+e^{\infty}}=\frac{0-\infty}{0+\infty}=-\frac{\infty}{\infty} \\
& \lim _{x \rightarrow-\infty}\left(\frac{\left(\frac{e^{3 x}}{e^{-3 x}}-\frac{e^{-3 x}}{e^{-3 x}}\right)}{\left(\frac{e^{3 x}}{e^{-3 x}}+\frac{e^{-3 x}}{e^{3 x}}\right.}\right)=\lim _{x \rightarrow-\infty} \frac{e^{6 x}-1}{e^{6 x}+1} \\
& =\frac{e^{-\infty}-1}{e^{-\infty}+1}=\frac{0-1}{0+1}=\frac{-1}{1}=- \\
& \therefore F(x)=\frac{e^{3 x}-e^{-3 x}}{e^{3 x}+e^{-3 x}} \text { have H.A }
\end{aligned}
$$

the H.A are $y= \pm 1$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow \infty} \frac{1-e^{x}}{1+2 e^{x}}=\frac{-\infty}{\infty} \\
& \begin{aligned}
\lim _{x \rightarrow \infty} \frac{\frac{1}{e^{x}}-\frac{e^{x}}{e^{x}}}{\frac{1}{e^{2}}+\frac{2 e^{x}}{e^{x}}} & =\lim _{x \rightarrow \infty} \frac{e^{-x}-1}{e^{-x}+2} \\
& =\frac{e^{-\infty}-1}{e^{-\infty}+2}+\frac{0-1}{0+2} \\
& =-\frac{1}{2}
\end{aligned} \\
& \lim _{x \rightarrow-\infty} \frac{1-e^{x}}{1+2 e^{x}}=\frac{1-e^{-\infty}}{1+e^{-e^{-\infty}}=\frac{1-0}{1+0}=h=1} \\
& \text { the H.A of } f(x)=\frac{1-e^{x}}{1+e^{x}}: \frac{y=-1 / 2}{y=1}
\end{aligned}
$$

Find the H.A and V.A

$$
\text { of } y=\frac{2 e^{x}}{e^{x}-5}
$$

V.A
(1)

$$
\begin{aligned}
& e^{x}-5=0 \Rightarrow e^{x}=5 \Rightarrow \ln e^{x}=\ln 5 \\
& \Rightarrow x=\ln 5
\end{aligned}
$$

(2) let $g(x)=2 e^{x}$

$$
\begin{aligned}
& \text { (2) Let } g(x)=2 e^{x} \\
& g(\ln (5))=2 e^{\ln 5}=2(5)=10 \neq 0 \\
& \therefore x=\ln (5) \text { is V,A of } y=\frac{2 e^{x}}{e^{x}-5}
\end{aligned}
$$

H.A

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{2 e^{x}}{e^{x}-5}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow \infty}\left[\frac{\frac{2 e^{x}}{e^{x}}}{\frac{e^{x}}{e^{x}}-\frac{5}{e^{x}}}\right]=\lim _{x \rightarrow \infty} \frac{2}{1-\frac{5}{e^{x}}}=\frac{2}{1-\frac{5}{e^{\infty}}}=\frac{2}{1-\frac{5}{e n}} \\
&=\frac{2}{1-0}=\frac{2}{1}=2 \\
& \int \lim _{x \rightarrow-\infty} \frac{2 e^{x}}{e^{x}-5}=\frac{2 e^{-\infty}}{e^{-\infty}-5}=\frac{2(0)}{0-5}=\frac{0}{-5}=0 \\
& \therefore y=2 \text { and } y=0 \text { are H.A of } y=\frac{2 e^{x}}{e^{x}-5}
\end{aligned}
$$

2.7: The Derivatives of the functions at number a

1) The Derivative of $f(x)$ at number a is $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
or

$$
f(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

2) The Derivative of $f(x)$ at number a is a Slope of the tangent line at number a i.e $m=f^{\prime}(a)$
3) The equation of the tangent line to the curve $y=f(x)$ at the point $(a, f(a))$ is $y-f(a)=m(x-a)$

$$
y-f(a)=f^{\prime}(a)(x-a
$$

Example:
If $f(x)=x^{3}$ then find $f^{\prime}(2)$
a) $f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{x^{3}-2^{3}}{x-2}=\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$
b) $f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{(2+h)^{3}-2^{3}}{h}=\lim _{h \rightarrow 0} \frac{\left(2+h h^{3}-8\right.}{h}$
c)

$$
\begin{aligned}
& f(x)=x^{3} \\
& F^{\prime}(x)=3 x^{3-1}=3 x^{2} \\
& F^{\prime}(2)=3(2)^{2}=3(4)=12
\end{aligned}
$$

Example:
If $f(x)=\sqrt{x}$ then $f^{\prime}(9)=\ldots$.
a) $f^{\prime}(9)=\lim _{x \rightarrow 9} \frac{f(x)-f(9)}{x-9}=\lim _{x \rightarrow 9} \frac{\sqrt{x}-\sqrt{9}}{x-9}=\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
b) $f^{\prime}(9)=\lim _{h \rightarrow 0} \frac{f(9+h)-f(9)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-\sqrt{9}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}$
c)

$$
\begin{aligned}
f(x) & =\sqrt{x} \\
& =x^{1 / 2} \\
f^{\prime}(x) & =\frac{1}{2} x^{1 / 2-1}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 x^{1 / 2}}=\frac{1}{2 \sqrt{x}} \\
f^{\prime}(9) & =\frac{1}{2 \sqrt{9}}=\frac{1}{2(3)}=\frac{1}{6}
\end{aligned}
$$

Example:
If $f(x)=\frac{3}{x}$ then find the slope of the tangent line at 2
a) $m=f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{\frac{3}{x}-\frac{3}{2}}{x-2}=\lim _{x \rightarrow 2} \frac{6-3 x}{2 x(x-2)}$
b) $m=f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{\frac{3}{2+h}-\frac{3}{2}}{h}=\lim _{h \rightarrow 0} \frac{6-3(2+h)}{2 h(2+h)}$
c)

$$
\begin{aligned}
f(x) & =\frac{3}{x} \\
& =3 x^{-1} \\
f^{\prime}(x) & =3(-1) x^{-1-1}=-3 x^{-2}=\frac{-3}{x^{2}} \\
\therefore m & =f^{\prime}(x)=\frac{-3}{(2)^{2}}=\frac{-3}{4}
\end{aligned}
$$

Example
Find the equation of tangent line to the curve $y=x^{2}-8 x+9$ at $(4,-7)$
(1) $y^{\prime}=2 x-8$
(2)

$$
\begin{aligned}
m= & y^{\prime}(a) \\
& =y^{\prime}(4) \\
& =2(4)-8 \\
& =8-8 \\
& =0
\end{aligned}
$$

(3) if $m=0$ then the tangent line is Horizontal
(4) the equation af tangent line is

$$
\begin{aligned}
& y=f(a) \\
& y=-7
\end{aligned}
$$

Example
Find the equation of tangent line to the curve $y=x^{2}$ at $(1,1)$
(1) $y^{\prime}=2 x$
(2)

$$
\begin{aligned}
y & =2 x \\
m & =y^{\prime}(a)=y^{\prime}(1) \\
& =2(1) \\
& =2
\end{aligned}
$$

(3) the equation of tangent line is $y-f(a)=m(x-a)$

$$
\begin{aligned}
& y-1=2(x-1) \\
& y-1=2 x-2 \\
& y-2 x-1+2=0 \\
& y-2 x+1=0
\end{aligned}
$$

or $y-2 x=-1$
or $y=-1+2 x$

Example
find the equation of normal line of $f(x)=\sqrt{x}$ at $x=4$
(1) $f(a)=f(4)=\sqrt{4}=2$
(2) $f(x)=\sqrt{x}=x^{1 / 2}$
(3)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2} x^{\frac{1}{2}-1} \\
& =\frac{1}{2} x^{-1 / 2} \\
& =\frac{1}{2 x^{1 / 2}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

(4)

$$
\begin{aligned}
m & =f^{\prime}(a) \\
& =f^{\prime}(4) \\
& =\frac{1}{2 \sqrt{4}} \\
& =\frac{1}{2(2)} \\
& =\frac{1}{4}
\end{aligned}
$$

(5)

$$
\begin{aligned}
m_{\perp} & =\frac{-1}{m} \\
& =\frac{(-1)}{\left(\frac{1}{4}\right)} \\
& =-1 \div \frac{1}{4} \\
& =(-1) \times(4) \\
& =-4
\end{aligned}
$$

(6) The equation of the normal line is $y-f(a)=m_{\perp}(x-a)$

$$
\begin{aligned}
& y-2=-4(x-4) \\
& y-2=-4 x+16 \\
& y+4 x-2-16=0 \\
& y+4 x-18=0
\end{aligned}
$$

or $y+4 x=18$
or $y=18-4 x$
Example
Find the points on the curve $y=x^{4}-6 x^{2}+2$ where the tangent line is Horizontal

If The tangent line is Horizontal then $m=0$

$$
\begin{aligned}
& y^{\prime}=0 \\
& 4 x^{3}-12 x=0 \\
& 4 x\left(x^{2}-3\right)=0 \\
& \begin{array}{rl}
\sqrt{4} \quad \text { or } \quad x^{2}-3 & =0 \\
4 x=0 & x^{2}=3 \\
\frac{4 x}{4}=\frac{0}{4} \quad & \sqrt{x^{2}}=\sqrt{3} \\
x=0 \quad|x|=\sqrt{3} \\
x & x= \pm \sqrt{3}
\end{array}
\end{aligned}
$$

\therefore The Curve $y=x^{4}-6 x^{2}+2$ have Horizontal tangent line when $x=0$ and $x= \pm \sqrt{3}$
or
the curve $y=x^{4}-6 x^{2}+2$
have Horizontal tangent at
Points: $(0, y(0))=\left(0,0^{4}-6(0)^{2}+2\right)=(0,2)$

$$
\begin{aligned}
(\sqrt{3}, y(\sqrt{3})) & =\left(\sqrt{3},(\sqrt{3})^{4}-6(\sqrt{3})^{2}+2\right) \\
& =\left(\sqrt{3},\left(3^{1 / 2}\right)^{4}-6\left(3^{\prime 2}\right)^{2}+2\right) \\
& =\left(\sqrt{3}, 3^{4 / 2}-6\left(3^{\frac{3}{2}} 2\right)+2\right) \\
& =\left(\sqrt{3}, 3^{2}-6(3)+2\right) \\
& =(\sqrt{3}, 9-18+2) \\
& =(\sqrt{3},-7) \\
(-\sqrt{3}, y(-\sqrt{3})) & =\left(-\sqrt{3},(-\sqrt{3})^{4}-6(-\sqrt{3})^{2}+2\right) \\
& =(-\sqrt{3}, 9-6(3)+2) \\
& =(-\sqrt{3}, 9-18+2) \\
& =(-\sqrt{3},-7)
\end{aligned}
$$

2.8 - The Derivative as the function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \Rightarrow \text { التناذ بالتمربف| }
$$

Example:
If $f(x)=x^{3}-x$ then find $f^{\prime}(x)$
a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-(x+h)-\left(x^{3}-x\right)}{h}
\end{aligned}
$$

b)

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{3-1}-1 \\
& =3 x^{2}-1
\end{aligned}
$$

Note
(1) other notation of $f^{\prime}(x)$
$f^{\prime}(x)$ or y^{\prime} (or) $\frac{d y}{d x}$ (or $\frac{d f}{d x}$ (of) $\frac{d}{d x}[f(x)]$
(or) $P_{f(x)}$ (or) $D_{x} f(x)$ or $D[f(x)]$
(2) Afunction f is differentiable at number a if $f^{\prime}(a)$ exists
(3) A function F is differentiable on (a, b)
if it is differentiable at every number in the (a, b)
(4) $D_{f^{\prime}(x)} \subseteq D_{F(x)}$

Theorem
If $f(x)$ is differentiable at a then $f(x)$ is continuous at a "the converse not true"

Note
$f(x)$ is discontinuous at a the $f(x)$ is not differentiable at a

Example
where is the following functions differentiable.
(1) $f(x)=\frac{1}{x+1}$ is cont on $\mathbb{R}-\{-1\}$
$\therefore f(x)$ is discount at $x=-1$
$\Rightarrow F(x)$ is ${ }^{\text {not }}$ differentiable at $x=-1$
$\Rightarrow F(x)$ is diff erentiable on $\mathbb{R}-\{-1\}$
(2) $f(x)=\sqrt{x-4}$ is cont on $[4, \infty)$
$\Rightarrow F(x)$ is discount at $x=4$
$\Rightarrow F(x)$ is not differentiable at $x=4$
$\Rightarrow F(x)$ is differentiable on ($4, \infty$).

* $f(x)=\sqrt[3]{x-4}$ is cont on \mathbb{R}
 $x-4=0 \Rightarrow x=4:$,
$f(x)$ is not differentiable at 4
$F(x)$ is differentiable on $\mathbb{R}-\left\{4^{2}\right\}$
Scanned with CamScanne
Scanned with CamScanner
(3) $f(x)=|x+5|$ is cont on \mathbb{R}

$$
\begin{aligned}
& x=-5
\end{aligned}
$$

$f(x)$ is not differentiable at $x=-5$
$f(x)$ is differentiable on $\left.\left.\mathbb{R}_{-\{-5]}\right\}^{-\infty}\right\}^{-\infty}$
(4) $f(x)=x^{2}+2 x+3$ is cont on \mathbb{R} and differentiable on \mathbb{R}

Example

$$
\text { If } f(x)=2-3 x+5 x^{2}-2 x^{3}+10 x^{4}
$$

then find of the following:
a)

$$
\begin{aligned}
& f^{\prime}(x), f^{\prime \prime}(x) \\
& f^{\prime}(x)=-3+10 x-6 x^{2}+40 x^{3} \\
& f^{\prime \prime}(x)=10-12 x+120 x^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& f(x) \xrightarrow{(4) \rightarrow 0} 1 \\
& f^{(4)}(x)=10(4!)
\end{aligned}
$$

(b) $f^{(100)}(x)$

$$
\Rightarrow F_{(x)}^{(100)}=0
$$

Example
If $f(x)=|12-4 x|$ then

$$
\begin{aligned}
& \text { find } \begin{aligned}
& f^{\prime}(3), f^{\prime}(7), f^{\prime}(2) \\
& f(x)=|12-4 x|=\left\{\begin{array}{lll}
12-4 x & \text { if } & 12-4 x \geqslant 0 \\
-(12-4 x) & \text { if } & 12-4 x<0
\end{array}\right. \\
&=\left\{\begin{array}{lll}
12-4 x & \text { if } & -4 x \geqslant-12 \\
4 x-12 & \text { if } & -4 x<-12
\end{array}\right. \\
&=\left\{\begin{array}{lll}
12-4 x & \text { if } & x \leqslant 3 \\
4 x-12 & \text { if } & x>3
\end{array}\right. \\
& f^{\prime}(x)=\left\{\begin{array}{lll}
-4 & \text { if } & x<3 \\
4 & \text { if } & x>3
\end{array}\right.
\end{aligned}>. l
\end{aligned}
$$

$$
\sqrt{F^{\prime}}(3)=D \cdot N \cdot E
$$

$$
\begin{aligned}
& {\left[f^{\prime}(3)\right]^{+}=4} \\
& {\left[f^{\prime}(3)\right]^{-}=-4} \\
& \because\left[F^{\prime}(3)\right]^{+} \neq\left[F^{\prime}(3)\right]^{-} \\
& \therefore f^{\prime}(3) D \cdot N \cdot E \\
& f^{\prime}(7)=4 \\
& f^{\prime}(2)=-4
\end{aligned}
$$

3.1-Derivatives of Polynomials and Exponential functions

1) Derivative of a constant function

$$
\begin{aligned}
& \text { Eve of a Constant function } \\
& \frac{d}{d x}[c]=0 \text { for all } c \in \mathbb{R}
\end{aligned}
$$

Example: -

$$
\begin{array}{ll}
\frac{d}{d x}\left[\pi^{2}\right]=0 & \frac{d}{d x}\left[5^{c}\right]=0 \quad \frac{d}{d y}[18,5]=0 \\
\frac{d}{d x}[\sqrt{30}]=0 & \frac{d}{d x}[\ln (9)]=0 \\
\frac{d}{d x}\left[\sin \left(\frac{\pi}{2}\right)\right]=0 & \frac{d}{d x}\left[\cos ^{2}(5)\right]=0 \\
\text { if } f(x)=\sqrt{4+c^{2}} & \text { then } f^{\prime}(x)=0 \\
\text { in then } f^{\prime}(x)=0
\end{array}
$$

2) if $f(x)=a x$ for all $a \in \mathbb{R}$ then $f^{\prime}(x)=a$

Example:

$$
\frac{d}{d x}[10 x]=10
$$

if $f(x)=\frac{-3}{4} x$ then $f^{\prime}(x)=-\frac{3}{4} \ldots$
if $f(x)=-x$ then $f^{\prime}(x)=-1$.

$$
\frac{d}{d t}[2 t]=2
$$

if $f(0)=18.50$ then $f^{\prime}(\theta)=18.5$.
3) if $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$

Example:

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{2}\right]=2 x \quad \frac{d}{d x}\left[x^{3}\right]=3 x^{2} \quad \frac{d}{d x}\left[x^{4}\right]=4 x^{3} \\
&\left.\begin{array}{rl}
\frac{d}{d x}\left[\frac{1}{x^{5}}\right] & =\frac{d}{d x}\left[x^{-5}\right] \quad \frac{d}{d x}\left[\sqrt[3]{x^{2}}\right]
\end{array}\right]=\frac{d}{d x}\left[\left(x^{2}\right)^{1 / 3}\right] \\
&=-5 x^{-5-1} \\
&=-5 x^{-6} \\
&=\frac{d}{d x}\left[x^{\frac{2}{3}}\right] \\
& x^{6} \\
&=\frac{2}{3} x^{\frac{2}{3}-1} \\
& \begin{aligned}
\frac{d}{d x}\left[x^{2} \sqrt{x}\right] & =\frac{d}{d x}\left[x^{2} \cdot x^{1 / 2}\right] \\
& =\frac{2}{3} x^{-\frac{1}{3}} \\
& =\frac{2}{3 x}\left[x^{2+\frac{1}{2}}\right] \\
& =\frac{d}{d x}\left[x^{5 / 3}\right] \\
& =\frac{5}{2 \sqrt[3]{x}} x^{5 / 2}-1 \\
& =\frac{5}{2} x^{3 / 2} \\
& =\frac{5}{2} \sqrt{x^{3}}
\end{aligned}
\end{aligned}
$$

4]

$$
\begin{aligned}
& \frac{d}{d x}[c f(x)]=c \cdot \frac{d}{d x}[f(x)] \\
& \frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)]
\end{aligned}
$$

Example:
a)

$$
\begin{aligned}
& \text { mple: } \\
& \frac{d}{d x}\left[x^{8}+12 x^{5}-4 x^{4}+10 x^{3}-6 x+\frac{\sqrt{2}}{5}\right] \\
& 8 x^{7}+12(5) x^{4}-4(4) x^{3}+10(3) x^{2}-6+0 \\
& 8 x^{7}+60 x^{4}-16 x^{3}+30 x^{2}-6 \\
&
\end{aligned}
$$

b)

$$
\begin{aligned}
& f(x)=(3 x-2) \\
& f(x)=9 x^{2}-2(3 x)(2)+4 \\
& 9 x^{2}-12 x+4
\end{aligned}
$$

$$
\begin{aligned}
& =9 x^{2}-12 x+4 \\
& =9 x^{2}-12
\end{aligned}
$$

$$
f^{\prime}(x)=18 x-12
$$

c)

$$
\begin{aligned}
& f^{\prime}(x)=18 x-12 \\
& \frac{d}{d x}\left[x^{2}(1-2 x)\right]=\frac{d}{d x}\left[x^{2}-2 x^{3}\right] \\
&=2 x-6 x^{2}
\end{aligned}
$$

$$
=2 x-6 x^{2}
$$

d) $\frac{d}{d t}[\sqrt{t}(t-1)]=\frac{d}{d t}\left[t^{1 / 2}(t-1)\right]$

$$
\begin{aligned}
& =\frac{d}{d t}\left[t^{1 / 2}(t-1)\right] \\
& =\frac{d}{d t}\left[t^{1 / 2} \cdot t^{1}-t^{1 / 2}\right]=\frac{d}{d t}\left[t^{3 / 2}-t^{1 / 2}\right] \\
& 2,-1 \quad 1 t^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{d}{d t} t^{1 /-1} \\
& =\frac{3}{2} t^{3 / 2}-\frac{1}{2} t^{1 / 2}-1 \frac{1}{2} t^{1 / 2}=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{2} t^{3 / 2-1}-\frac{1}{2} t \\
& =\frac{3}{2} t^{1 / 2}-\frac{1}{2} t^{1 / 2}=\frac{3}{2} \sqrt{t}-\frac{1}{2 t^{1 / 2}} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{2} t^{1 / 2}-1 / 2 \\
& =\frac{3}{2} \sqrt{t}-\frac{1}{2 \sqrt{t}}=\frac{3 \sqrt{t} \cdot \sqrt{t}-1}{2 \sqrt{t}} \\
& =\frac{3 t-\sqrt{t}}{2 n}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \frac{d}{d x}[(2 x+3)(4 x-5)] \\
& \frac{d}{d x}[2 x(4 x-5)+3(4 x-5)] \\
& \frac{d}{d x}\left[8 x^{2}-10 x+12 x-15\right] \\
& \frac{d}{d x}\left[8 x^{2}+2 x-15\right]=16 x+2
\end{aligned}
$$

f)

$$
\begin{aligned}
\frac{d}{d x}\left[(x-2)^{3}\right] & =\frac{d}{d x}\left[x^{3}-3(2) x^{2}+3(4) x-2^{3}\right] \\
& =\frac{d}{d x}\left[x^{3}-6 x^{2}+12 x-8\right] \\
& =3 x^{2}-2(6) x+12 \\
& =3 x^{2}-12 x+12
\end{aligned}
$$

9)

$$
\begin{aligned}
\frac{d}{d x}\left[x(2 x+3)^{2}\right] & =\frac{d}{d x}\left[x\left(4 x^{2}+12 x+9\right)\right] \\
& =\frac{d}{d x}\left[4 x^{3}+12 x^{2}+9 x\right] \\
& =12 x^{2}+24 x+9
\end{aligned}
$$

h)

$$
\begin{aligned}
& f(t)=\left(3 x^{2}+2\right)\left(x^{3}-5\right) \\
& f^{\prime}(t)=H \cdot W
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } G(x)=\frac{5 x^{2}+4 x+3}{x^{2}} \text { then } G^{\prime}(x)= \\
& G(x)=\frac{5 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}+\frac{3}{x^{2}} \\
& =5+\frac{4}{x}+\frac{3}{x^{2}} \\
& =5+4 x^{-1}+3 x^{-2} \\
& G^{\prime}(x)=0+4(-1) x^{-1-1}+3(-2) x^{-2-1} \\
& =-4 x^{-2}-6 x^{-3} \\
& =\frac{-4}{x^{2}}-\frac{6}{x^{3}} \\
& =\frac{-4 x}{x^{2} \cdot x}-\frac{6}{x^{3}} \\
& =\frac{-4 x}{x^{3}}-\frac{6}{x^{3}} \\
& =\frac{-4 x-6}{x^{3}} \\
& \text { if } y=\frac{\sqrt{x}+x}{x^{2}} \text { then } y^{\prime}=\cdots \\
& y=\frac{x^{1 / 2}+x^{1}}{x^{2}}=\frac{x^{1 / 2}}{x^{2}}+\frac{x^{1}}{x^{2}}=x^{1 / 2-2}+x^{1-2} \\
& =x^{-3 / 2}+x^{-1} \\
& y^{\prime}=\frac{-3}{2} x^{-\frac{3}{2}-1}-x^{-1-1}=\frac{-3}{2} x^{-\frac{5}{2}}-x^{-2}=\frac{-3}{2 x^{5 / 2}}-\frac{1}{x^{2}}=\frac{-3}{2 \sqrt{x^{5}}}-\frac{1}{x^{2}}
\end{aligned}
$$

5

$$
\begin{aligned}
& \frac{d}{d x}\left[a^{x}\right]=a^{x} \cdot \ln a \\
& \frac{d}{d x}\left[e^{x}\right]=e^{x}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \frac{d}{d x}\left[\pi^{x}\right]=\pi^{x} \cdot \ln \pi=\operatorname{Ln}(\pi) \cdot(\pi)^{x} \\
& \frac{d}{d x}\left[\sqrt{2^{x}}\right]=\frac{d}{d x}\left[(\sqrt{2})^{x}\right] \\
& =(\sqrt{2})^{x} \cdot \ln \sqrt{2} \\
& =(\sqrt{2})^{x} \cdot \ln 2^{1 / 2} \\
& =(\sqrt{2})^{x} \cdot \frac{1}{2} \ln 2 \\
& =\frac{1}{2} \ln 2 \cdot(\sqrt{2})^{x} \\
& \frac{d}{d x}\left[3^{x}+x^{3}\right]=\frac{d}{d x}\left[3^{x}\right]+\frac{d}{d x}\left[x^{3}\right] \\
& =3^{x} \cdot \ln (3)+3 x^{2} \\
& \frac{d}{d x}\left[e^{x}-x^{e}\right]=\frac{d}{d x}\left[e^{x}\right]-\frac{d}{d x}\left[x^{e}\right] \\
& =e^{x}-e x^{e-1} \\
& =e\left(e^{x-1}-x^{e-1}\right)
\end{aligned}
$$

if $y=e^{x+1}+x^{2}$ then findoy'l or $\frac{d^{3} y}{d x^{3}}$

$$
\begin{aligned}
& y^{\prime}=e^{x+1}+2 x \\
& y^{\prime \prime}=e^{x+1}+2 \\
& y^{\prime \prime \prime}=e^{x+1} \\
& y^{(4)}=e^{x+1} \\
& y^{(5)}=e^{x+1} \\
& \vdots y^{(100)}=e^{x+1}
\end{aligned}
$$

(2) $y^{(100)}$

SECOND EXAM-MATH 110 FROM SECTION 2.2 TO SECTION 3.1

1. If $\boldsymbol{f}(\boldsymbol{x})$ is a function whose graph is shown

then $\lim _{x \rightarrow 0} f(x)=\ldots \ldots$
a) 0
b) -1
c) - 2
d) does not exist
2. If $f(x)$ is a function whose graph is shown

then $\lim _{x \rightarrow 2^{-}} f(x)=\ldots \ldots$.
a) 1
b) 3
c) 2
d) does not exist
3. If $f(x)$ is a function whose graph is shown

then $\lim _{x \rightarrow-3^{+}} f(x)=-\infty$
a) True
b) False
4. If $f(x)$ is a function whose graph is shown is discontinuous at

a) $x=-3$
b) $x=-1$
c) $x=-2$
d) $x=0$
5. The vertical asymptote(s) of the function whose graph is shown below is (are)

a) $\boldsymbol{y}=\mathbf{2}$
b) $x=2$
c) $y=-1$ and $y=1$
d) $x=-1$ and $x=1$
6. The horizontal asymptote(s) of the function whose graph is shown below is (are)

a) $y=1$
b) $x=1$
c) $y=-2$ and $y=2$
d) $x=-2$ and $x=2$
7. If $f(x)$ is a function whose graph is shown

then $\lim _{x \rightarrow \infty} f(x)=4$
a) True
b) False
8. $\lim _{x \rightarrow 1} \frac{\sqrt{x}-4}{x^{2}-4 x}=\ldots . .$.
a) 1
b) $\frac{1}{5}$
c) -1
d) $-\frac{1}{5}$
9. $\lim _{h \rightarrow 0} \frac{(h+5)^{2}-25}{h}=\ldots . .$.
a) 0
b) 1
c) 10
d) 5
10. $\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}-x-12}=\ldots \ldots$.
a) 3
b) -3
c) $\frac{3}{7}$
d) $-\frac{3}{7}$
11. $\lim _{x \rightarrow 5} \frac{\frac{1}{5}-\frac{1}{x}}{5-x}=\ldots \ldots$
a) $-\frac{1}{25}$
b) $\frac{1}{25}$
c) $\frac{1}{5}$
d) $-\frac{1}{5}$
12. $\lim _{u \rightarrow 2} \frac{u-2}{\sqrt{2 u^{2}+1}-3}=\ldots \ldots$.
b) 1
b) 0
c) $\frac{3}{4}$
d) $\frac{3}{2}$
13. $\lim _{t \rightarrow 1^{-}} \ln (1-t)=\ldots . .$.
a) 1
b) 0
c) $-\infty$
d) $\ln (2)$
14. $\lim _{x \rightarrow 4} \frac{e^{c}}{\sqrt{c}}=\frac{e^{4}}{2}$
a) True
b) False
15. $\lim _{x \rightarrow 7^{-}} \frac{x^{2}-49}{|x-7|}=\ldots .$.
a) 14
b) $\mathbf{- 1 4}$
c) does not exist
d) $\mathbf{0}$
16. $\lim _{x \rightarrow 8} \frac{6-x}{(x-8)^{2}}=-\infty$
a) True
b) False
17.If $\lim _{x \rightarrow 4} \frac{10 f(x)-6}{3 x+4 f(x)}=2$ then $\lim _{x \rightarrow 4} f(x)=\ldots . .$.
a) 15
b) 14
c) 30
d) 28
17. If $f(x)=\left\{\begin{array}{lll}\frac{\tan 5 x}{\sin 3 x} & \text { if } & x \neq 0 \\ 2 x+10 & \text { if } & x=0\end{array}\right.$ then $\lim _{x \rightarrow 0} f(x)=\ldots . .$.
a) $\frac{5}{3}$
b) 10
c) $\frac{3}{5}$
d) 1
18. If $2 \sin x \leq f(x) \leq \sec x$ then $\lim _{x \rightarrow \frac{\pi}{4}} f(x)=\ldots \ldots$.
a) $\frac{1}{\sqrt{2}}$
b) does not exist
c) 2
d) $\sqrt{2}$
19. If $\lim _{x \rightarrow 2} f(x)=4$ then $\lim _{x \rightarrow 2}\left(2 f(x)-\frac{1}{x}\right)=\frac{15}{2}$
a) True
b) False
20. $\lim _{x \rightarrow \sqrt{\pi}}\left(\frac{\cos \left(x^{2}\right)-1}{x^{2}}\right)=\ldots . .$.
a) 0
b) 1
c) $\frac{-2}{\pi}$
d) $\frac{2}{\pi}$
21. $\lim _{x \rightarrow \infty} \frac{6-x-14 x^{2}}{2 x^{2}-x-12}=\ldots . .$.
b) 1
b) 7
c) -7
d) 3
22. $\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{2}-x}}{1-4 x}=\ldots \ldots$
a) $\frac{\sqrt{3}}{4}$
b) 0
c) $-\frac{\sqrt{3}}{4}$
d) ∞
23. $\lim _{x \rightarrow \infty} \sqrt{4+5 x^{-2}}=\ldots \ldots$.
a) ∞
b) 2
c) $-\infty$
d) 3
24. $\lim _{x \rightarrow-\infty}\left(x^{2}-5 x^{7}\right)=\ldots . .$.
a) ∞
b) -4
c) $-\infty$
d) -5
25. The vertical asymptote(s) of the function

$$
f(x)=\frac{4-x^{2}}{3 x^{2}-5 x-2} \text { is (are) }
$$

a) $x=2$ and $x=-\frac{1}{3}$
b) $x=-\frac{1}{3}$
c) $x=2$
d) $y=2$
e) $y=-\frac{1}{3}$
27. The horizontal asymptote(s) of the function

$$
f(x)=\frac{2 e^{x}}{3 e^{x}-5} \text { is (are) } \ldots \ldots \ldots
$$

a) $x=\frac{2}{3}$ and $x=-\frac{2}{3}$
b) $x=\frac{2}{3}$ and $x=0$
c) $y=\frac{2}{3}$ and $y=0$
d) $y=\frac{2}{3}$ and $y=-\frac{2}{3}$
28. $f(x)=\tan (x)$ is discontinuous at......
a) $x=\frac{7 \pi}{4}$
b) $x=\frac{7 \pi}{3}$
c) $x=\frac{7 \pi}{2}$
d) $\boldsymbol{x}=\mathbf{0}$
29. If $f(x)=\left\{\begin{array}{lll}c x^{2}+2 x & \text { if } & x \geq 3 \\ x^{3}-c x & \text { if } & x<3\end{array}\right.$ is continuous on \mathbb{R} then $c=\ldots . .$.
a) $\frac{7}{4}$
b) $\frac{1}{3}$
c) $\frac{7}{2}$
d) 1
30. $f(x)=\ln (x)-\sqrt{3-x}$ is continuous on.
a) $(0, \infty)$
b) $(0,3]$
c) $[0,3]$
d) $(-\infty, 3]$
31. $f(x)=\frac{x-2}{x^{3}+9 x}$ is discontinuous at......
a) $x=2$
b) $x=0$
c) $x=0$ and $x= \pm 3$
32. $f(x)=\left\{\begin{array}{lll}x^{2}-3 x-8 & \text { if } & x \geq 3 \\ \frac{\sin (x-3)}{(x-3)} & \text { if } & x<3\end{array}\right.$ is continuous on \mathbb{R}
a) True
b) False
33. If $f(x)=|3 x-6|$ then $f(x)$ is not differentiable at
a) $x=2$
b) $x=-2$
c) $x=3$
d) $x=6$
34. If $y=\sqrt{\pi}$ then $y^{\prime}=\frac{1}{2 \sqrt{\pi}}$
a) True
b) False
35. The equation of the tangent line of the curve $f(x)=4 x-3 x^{2}$ at $x=2$ is.
a) $y=12-8 x$
b) $y=\frac{1}{8} x-\frac{17}{4}$
c) $x=12-8 y$
d) $x=\frac{1}{8} x-\frac{17}{4}$
36. If $g(x)=\mathbf{e}^{x}+x^{e}$ then $g^{\prime}(1)=$.
a) 2
b) e^{2}
c) 2 e
d) 1
37. If $g(x)=\frac{15 x^{6}-12 x^{4}+6 x^{2}}{3 x^{2}}$ then $g^{\prime \prime}(x)=\ldots . .$.
a) $5 x^{4}-4 x^{2}+2$
b) $120 x$
c) $60 x^{2}-8$
d) $20 x^{3}-8 x$
38. If $h(x)=\sqrt{1+2 x}$ then $h^{\prime}(2)=$ \qquad
a) $\lim _{x \rightarrow 2} \frac{\sqrt{1+2 x}-\sqrt{5}}{x-2}$
b) $\lim _{x \rightarrow 2} \frac{\sqrt{5}-\sqrt{1+2 x}}{x-2}$
c) $\lim _{h \rightarrow 0} \frac{\sqrt{1+2 h}-\sqrt{5}}{h}$
d) $\lim _{h \rightarrow 2} \frac{\sqrt{4+2 h}-\sqrt{5}}{h}$
39. If $f(x)=\frac{1}{3} x^{3}-\frac{7}{2} x^{2}+10 x$ then $f(x)$ has horizontal tangents when
a) $x=5,-2$
b) $x=-5,2$
c) $x=5,2$
d) $x=-5,-2$
40. If \boldsymbol{f} is differentiable at a , then f is continuous at a
a) True
b) False

SECOND EXAM-MATH 110 FROM SECTION 2.2 TO SECTION 3.1

1. If $\boldsymbol{f}(\boldsymbol{x})$ is a function whose graph is shown

then $\lim _{x \rightarrow 0} f(x)=\ldots \ldots$
a) 0
b) -1
c) - 2
d) does not exist
2. If $f(x)$ is a function whose graph is shown

then $\lim _{x \rightarrow 2^{-}} f(x)=\ldots \ldots$.
a) 1
b) 3
c) 2
d) does not exist
3. If $f(x)$ is a function whose graph is shown

then $\lim _{x \rightarrow-3^{+}} f(x)=-\infty$
a) True
b) False
4. If $f(x)$ is a function whose graph is shown is discontinuous at

a) $x=-3$
b) $x=-1$
c) $x=-2$
d) $\boldsymbol{x}=\mathbf{0}$
5. The vertical asymptote(s) of the function whose graph is shown below is (are)

a) $\boldsymbol{y}=\mathbf{2}$
b) $x=2$
c) $y=-1$ and $y=1$
d) $x=-1$ and $x=1$
6. The horizontal asymptote(s) of the function whose graph is shown below is (are)

a) $y=1$
b) $x=1$
c) $y=-2$ and $y=2$
d) $x=-2$ and $x=2$
7. If $f(x)$ is a function whose graph is shown

then $\lim _{x \rightarrow \infty} f(x)=4$
a) True
b) False
8. $\lim _{x \rightarrow 1} \frac{\sqrt{x}-4}{x^{2}-4 x}=\ldots . .$.
a) 1
b) $\frac{1}{5}$
c) -1
d) $-\frac{1}{5}$
9. $\lim _{h \rightarrow 0} \frac{(h+5)^{2}-25}{h}=\ldots . .$.
a) 0
b) 1
c) 10
d) 5
10. $\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}-x-12}=\ldots \ldots$.
a) 3
b) -3
c) $\frac{3}{7}$
d) $-\frac{3}{7}$
11. $\lim _{x \rightarrow 5} \frac{\frac{1}{5}-\frac{1}{x}}{5-x}=\ldots \ldots$
a) $-\frac{1}{25}$
b) $\frac{1}{25}$
c) $\frac{1}{5}$
d) $-\frac{1}{5}$
12. $\lim _{u \rightarrow 2} \frac{u-2}{\sqrt{2 u^{2}+1}-3}=\ldots \ldots$
b) 1
b) 0
c) $\frac{3}{4}$
d) $\frac{3}{2}$
13. $\lim _{t \rightarrow 1^{-}} \ln (1-t)=\ldots . .$.
a) 1
b) 0
c) $-\infty$
d) $\ln (2)$
14. $\lim _{x \rightarrow 4} \frac{e^{c}}{\sqrt{c}}=\frac{e^{4}}{2}$
a) True
b) False
15. $\lim _{x \rightarrow 7^{-}} \frac{x^{2}-49}{|x-7|}=\ldots \ldots$
a) 14
b) $\mathbf{- 1 4}$
c) does not exist
d) $\mathbf{0}$
16. $\lim _{x \rightarrow 8} \frac{6-x}{(x-8)^{2}}=-\infty$
a) True
b) False
17.If $\lim _{x \rightarrow 4} \frac{10 f(x)-6}{3 x+4 f(x)}=2$ then $\lim _{x \rightarrow 4} f(x)=\ldots . .$.
a) 15
b) 14
c) 30
d) 28
17. If $f(x)=\left\{\begin{array}{lll}\frac{\tan 5 x}{\sin 3 x} & \text { if } & x \neq 0 \\ 2 x+10 & \text { if } & x=0\end{array}\right.$ then $\lim _{x \rightarrow 0} f(x)=\ldots . .$.
a) $\frac{5}{3}$
b) 10
c) $\frac{3}{5}$
d) 1
18. If $2 \sin x \leq f(x) \leq \sec x$ then $\lim _{x \rightarrow \frac{\pi}{4}} f(x)=\ldots \ldots$.
a) $\frac{1}{\sqrt{2}}$
b) does not exist
c) 2
d) $\sqrt{2}$
19. If $\lim _{x \rightarrow 2} f(x)=4$ then $\lim _{x \rightarrow 2}\left(2 f(x)-\frac{1}{x}\right)=\frac{15}{2}$
a) True
b) False
20. $\lim _{x \rightarrow \sqrt{\pi}}\left(\frac{\cos \left(x^{2}\right)-1}{x^{2}}\right)=\ldots \ldots$.
a) 0
b) 1
c) $\frac{-2}{\pi}$
d) $\frac{2}{\pi}$
21. $\lim _{x \rightarrow \infty} \frac{6-x-14 x^{2}}{2 x^{2}-x-12}=\ldots . .$.
b) 1
b) 7
c) $\mathbf{- 7}$
d) 3
22. $\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{2}-x}}{1-4 x}=\ldots \ldots$
a) $\frac{\sqrt{3}}{4}$
b) 0
c) $-\frac{\sqrt{3}}{4}$
d) ∞
23. $\lim _{x \rightarrow \infty} \sqrt{4+5 x^{-2}}=\ldots \ldots$.
a) ∞
b) 2
c) $-\infty$
d) 3
24. $\lim _{x \rightarrow-\infty}\left(x^{2}-5 x^{7}\right)=\ldots . .$.
a) ∞
b) -4
c) $-\infty$
d) -5
25. The vertical asymptote(s) of the function

$$
f(x)=\frac{4-x^{2}}{3 x^{2}-5 x-2} \text { is (are) }
$$

a) $x=2$ and $x=-\frac{1}{3}$
b) $x=-\frac{1}{3}$
c) $x=2$
d) $y=2$
e) $y=-\frac{1}{3}$
27. The horizontal asymptote(s) of the function

$$
f(x)=\frac{2 e^{x}}{3 e^{x}-5} \text { is (are) } \ldots \ldots \ldots
$$

a) $x=\frac{2}{3}$ and $x=-\frac{2}{3}$
b) $x=\frac{2}{3}$ and $x=0$
c) $y=\frac{2}{3}$ and $y=0$
d) $y=\frac{2}{3}$ and $y=-\frac{2}{3}$
28. $\boldsymbol{f}(x)=\tan (x)$ is discontinuous at......
a) $x=\frac{7 \pi}{4}$
b) $x=\frac{7 \pi}{3}$
c) $x=\frac{7 \pi}{2}$
d) $\boldsymbol{x}=\mathbf{0}$
29. If $f(x)=\left\{\begin{array}{lll}c x^{2}+2 x & \text { if } & x \geq 3 \\ x^{3}-c x & \text { if } & x<3\end{array}\right.$ is continuous on \mathbb{R} then $c=\ldots . .$.
a) $\frac{7}{4}$
b) $\frac{1}{3}$
c) $\frac{7}{2}$
d) 1
30. $f(x)=\ln (x)-\sqrt{3-x}$ is continuous on.
a) $(0, \infty)$
b) $(0,3]$
c) $[0,3]$
d) $(-\infty, 3]$
31. $f(x)=\frac{x-2}{x^{3}+9 x}$ is discontinuous at......
a) $x=2$
b) $x=0$
c) $x=0$ and $x= \pm 3$
32. $f(x)=\left\{\begin{array}{lll}x^{2}-3 x-8 & \text { if } & x \geq 3 \\ \frac{\sin (x-3)}{(x-3)} & \text { if } & x<3\end{array}\right.$ is continuous on \mathbb{R}
a) True
b) False
33. If $f(x)=|3 x-6|$ then $f(x)$ is not differentiable at
a) $x=2$
b) $x=-2$
c) $x=3$
d) $x=6$
34. If $y=\sqrt{\pi}$ then $y^{\prime}=\frac{1}{2 \sqrt{\pi}}$
a) True
b) False
35. The equation of the tangent line of the curve $f(x)=4 x-3 x^{2}$ at $x=2$ is.
a) $y=12-8 x$
b) $y=\frac{1}{8} x-\frac{17}{4}$
c) $x=12-8 y$
d) $x=\frac{1}{8} x-\frac{17}{4}$
36. If $g(x)=\mathrm{e}^{x}+x^{e}$ then $g^{\prime}(1)=$ \qquad
a) 2
b) e^{2}
c) 2 e
d) 1
37. If $g(x)=\frac{15 x^{6}-12 x^{4}+6 x^{2}}{3 x^{2}}$ then $g^{\prime \prime}(x)=\ldots . .$.
a) $5 x^{4}-4 x^{2}+2$
b) $120 x$
c) $60 x^{2}-8$
d) $20 x^{3}-8 x$

If $h(x)=\sqrt{1+2 x}$ then $h^{\prime}(2)=$ \qquad
a) $\lim _{x \rightarrow 2} \frac{\sqrt{1+2 x}-\sqrt{5}}{x-2}$
b) $\lim _{x \rightarrow 2} \frac{\sqrt{5}-\sqrt{1+2 x}}{x-2}$
c) $\lim _{h \rightarrow 0} \frac{\sqrt{1+2 h}-\sqrt{5}}{h}$
d) $\lim _{h \rightarrow 2} \frac{\sqrt{4+2 h}-\sqrt{5}}{h}$
39. If $f(x)=\frac{1}{3} x^{3}-\frac{7}{2} x^{2}+10 x$ then $f(x)$ has horizontal tangents when
a) $x=5,-2$
b) $x=-5,2$
c) $x=5,2$
d) $x=-5,-2$
40. If \boldsymbol{f} is differentiable at a, then f is continuous at a
a) True
b) False

1) $\lim _{x \rightarrow 3^{+}} \frac{2}{x-3}=$

Solution:

If $x \rightarrow 3^{+}$, then $x>3 \Rightarrow x-3>0$

$$
\therefore \lim _{x \rightarrow 3^{+}} \frac{2}{x-3}=\infty
$$

3) $\lim _{x \rightarrow 3^{+}} \frac{-2}{x-3}=$

Solution:
If $x \rightarrow 3^{+}$, then $x>3 \Rightarrow x-3>0$

$$
\therefore \quad \lim _{x \rightarrow 3^{+}} \frac{-2}{x-3}=-\infty
$$

5) $\lim _{x \rightarrow-3^{+}} \frac{2}{x+3}=$

Solution:

If $x \rightarrow-3^{+}$, then $x>-3 \Rightarrow x+3>0$

$$
\therefore \lim _{x \rightarrow-3^{+}} \frac{2}{x+3}=\infty
$$

7) $\lim _{x \rightarrow 2^{+}} \frac{3 x-1}{x-2}=$

Solution:
If $x \rightarrow 2^{+}$, then $x>2 \Rightarrow x-2>0$ and $3 x-1>0$

$$
\therefore \lim _{x \rightarrow 2^{+}} \frac{3 x-1}{x-2}=\infty
$$

9) $\lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=$

Solution:
If $x \rightarrow-2^{+}$, then $x>-2$

$$
\Rightarrow 1-x>0 \text { and }(x+2)^{2}>0
$$

$$
\therefore \lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=\infty
$$

11) $\lim _{x \rightarrow-2^{+}} \frac{x-1}{(x+2)^{2}}=$

Solution:
If $x \rightarrow-2^{+}$, then $x>-2$

$$
\begin{gathered}
\Rightarrow \quad x-1<0 \text { and }(x+2)^{2}>0 \\
\therefore \lim _{x \rightarrow-2^{+}} \frac{x-1}{(x+2)^{2}}=-\infty
\end{gathered}
$$

13) $\lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow 2^{+}$, then $x^{2}>4$

$$
\begin{gathered}
\Rightarrow x^{2}-4>0 \text { and } 6 x-1>0 \\
\therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=\infty
\end{gathered}
$$

2) $\lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=$

Solution:

If $x \rightarrow 3^{-}$, then $x<3 \Rightarrow x-3<0$

$$
\therefore \lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=-\infty
$$

4) $\lim _{x \rightarrow 3^{-}} \frac{-2}{x-3}=$

Solution:
If $x \rightarrow 3^{-}$, then $x<3 \Rightarrow x-3<0$

$$
\therefore \quad \lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=\infty
$$

6) $\lim _{x \rightarrow-3^{-}} \frac{2}{x+3}=$

Solution:

If $x \rightarrow-3^{-}$, then $x<-3 \Rightarrow x+3<0$

$$
\therefore \lim _{x \rightarrow-3^{-}} \frac{2}{x+3}=-\infty
$$

8) $\lim _{x \rightarrow 2^{-}} \frac{3 x-1}{x-2}=$

Solution:

If $x \rightarrow 2^{-}$, then $x<2 \Rightarrow x-2<0$ and $3 x-1>0$

$$
\therefore \lim _{x \rightarrow 2^{-}} \frac{3 x-1}{x-2}=-\infty
$$

10) $\lim _{x \rightarrow-2^{-}} \frac{1-x}{(x+2)^{2}}=$

Solution:

If $x \rightarrow-2^{-}$, then $x<-2$

$$
\begin{gathered}
\Rightarrow \quad 1-x>0 \text { and }(x+2)^{2}>0 \\
\therefore \lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=\infty
\end{gathered}
$$

12) $\lim _{x \rightarrow-2^{-}} \frac{x-1}{(x+2)^{2}}=$

Solution:

$$
\begin{aligned}
& \text { If } x \rightarrow-2^{-} \text {, then } x<-2 \\
& \qquad \quad x-1<0 \text { and }(x+2)^{2}>0 \\
& \therefore \quad \lim _{x \rightarrow-2^{-}} \frac{x-1}{(x+2)^{2}}=-\infty
\end{aligned}
$$

14) $\lim _{x \rightarrow 2^{-}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow 2^{-}$, then $x^{2}<4$

$$
\begin{gathered}
\Rightarrow x^{2}-4<0 \text { and } 6 x-1>0 \\
\therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=-\infty
\end{gathered}
$$

15) $\lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-4}=$

Solution:

If $x \rightarrow-2^{+}$, then $x^{2}<4$

$$
\begin{aligned}
& \Rightarrow x^{2}-4<0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=\infty
\end{aligned}
$$

17) $\lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{6 x-1}{x^{2}-x-6}=\frac{6 x-1}{(x-3)(x+2)}
$$

If $x \rightarrow-2^{-}$, then $x<-2$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2<0 \text { and } 6 x-1<0 \\
& \quad \therefore \lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-x-6}=-\infty
\end{aligned}
$$

19) $\lim _{x \rightarrow 3^{+}} \frac{-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{-1}{x^{2}-x-6}=\frac{-1}{(x-3)(x+2)}
$$

If $x \rightarrow 3^{+}$, then $x>3$

$$
\begin{aligned}
& \Rightarrow x-3>0, x+2>0 \text { and }-1<0 \\
& \therefore \quad \lim _{x \rightarrow 3^{+}} \frac{-1}{x^{2}-x-6}=-\infty
\end{aligned}
$$

21) $\lim _{x \rightarrow(\pi / 2)^{+}} \tan x=$

Solution:

$$
\lim _{x \rightarrow(\pi / 2)^{+}} \tan x=-\infty
$$

23) The vertical asymptote of $f(x)=\frac{1-x}{2 x+1}$ is

Solution:
We see that the function $f(x)$ is not defined when
$2 x+1=0 \Rightarrow x=-\frac{1}{2}$. Since

$$
\lim _{x \rightarrow\left(-\frac{1}{2}\right)^{+}} \frac{1-x}{2 x+1}=\infty
$$

and

$$
\lim _{x \rightarrow\left(-\frac{1}{2}\right)^{-}} \frac{1-x}{2 x+1}=-\infty
$$

then, $x=-\frac{1}{2}$ is a vertical asymptote.
16) $\lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow-2^{-}$, then $x^{2}>4$

$$
\begin{aligned}
& \Rightarrow x^{2}-4>0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=-\infty
\end{aligned}
$$

18) $\lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{6 x-1}{x^{2}-x-6}=\frac{6 x-1}{(x-3)(x+2)}
$$

If $x \rightarrow-2^{+}$, then $x>-2$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2>0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-x-6}=\infty
\end{aligned}
$$

20) $\lim _{x \rightarrow 3^{-}} \frac{-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{-1}{x^{2}-x-6}=\frac{-1}{(x-3)(x+2)}
$$

If $x \rightarrow 3^{-}$, then $x<3$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2>0 \text { and }-1<0 \\
& \quad \therefore \lim _{x \rightarrow 3^{-}} \frac{-1}{x^{2}-x-6}=\infty
\end{aligned}
$$

22) $\lim _{x \rightarrow(\pi / 2)} \tan x=$

Solution:

$$
\lim _{x \rightarrow(\pi / 2)^{-}} \tan x=\infty
$$

24) The vertical asymptote of $f(x)=\frac{3-x}{x^{2}-4}$ is

Solution:
We see that the function $f(x)$ is not defined when $x^{2}-4=0 \Rightarrow x= \pm 2$. Since

$$
\lim _{x \rightarrow 2^{+}} \frac{3-x}{x^{2}-4}=\infty, \quad \lim _{x \rightarrow 2^{-}} \frac{3-x}{x^{2}-4}=-\infty
$$

and

$$
\lim _{x \rightarrow-2^{+}} \frac{3-x}{x^{2}-4}=-\infty, \quad \lim _{x \rightarrow-2^{-}} \frac{3-x}{x^{2}-4}=\infty
$$

then, $x= \pm 2$ are vertical asymptotes.
25) The vertical asymptote of $f(x)=\frac{3-x}{x^{2}-x-6}$ is

Solution:

$$
\begin{gathered}
f(x)=\frac{3-x}{x^{2}-x-6}=\frac{3-x}{(x-3)(x+2)}=\frac{-(x-3)}{(x-3)(x+2)} \\
=-\frac{1}{x+2}
\end{gathered}
$$

We see that the function $f(x)$ is not defined when

$$
x^{2}-x-6=0 \Rightarrow(x-3)(x+2)=0
$$

$\Rightarrow x=3$ or $x=-2$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow 3} \frac{3-x}{(x-3)(x+2)} \\
& \quad=\lim _{x \rightarrow 3} \frac{-(x-3)}{(x-3)(x+2)}=\lim _{x \rightarrow 3} \frac{-1}{x+2}=-\frac{1}{5}
\end{aligned}
$$

then, $x=3$ is a removable discontinuity.

$$
\lim _{x \rightarrow-2^{+}} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow-2^{+}} \frac{3-x}{(x-3)(x+2)}=-\infty
$$

and

$$
\lim _{x \rightarrow-2^{-}} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow-2^{-}} \frac{3-x}{(x-3)(x+2)}=-\infty
$$

then, $x=-2$ is a vertical asymptote only.
27) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}+5 x+6}$ is

Solution:

$$
f(x)=\frac{x-7}{x^{2}+5 x+6}=\frac{x-7}{(x+3)(x+2)}
$$

We see that the function $f(x)$ is not defined when $x+3=0$ or $x+2=0 \Rightarrow x=-3$ or $x=-2$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{+}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-3^{+}} \frac{x-7}{(x+3)(x+2)}=\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-3^{-}} \frac{x-7}{(x+3)(x+2)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-2^{+}} \frac{x-7}{(x+3)(x+2)}=-\infty \\
& \lim _{x \rightarrow-2^{-}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-2^{-}} \frac{x-7}{(x+3)(x+2)}=\infty
\end{aligned}
$$

then, $x=-3$ and $x=-2$ are vertical asymptotes.
29) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}-3 x}$ is Solution:

$$
f(x)=\frac{x-7}{x^{2}-3 x}=\frac{x-7}{x(x-3)}
$$

We see that the function $f(x)$ is not defined when $x=0$ or $x-3=0 \Rightarrow x=0$ or $x=3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 3^{+}} \frac{x-7}{x(x-3)}=-\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 3^{-}} \frac{x-7}{x(x-3)}=\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 0^{+}} \frac{x-7}{x(x-3)}=\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 0^{-}} \frac{x-7}{x(x-3)}=-\infty
\end{aligned}
$$

then, $x=3$ and $x=0$ are vertical asymptotes.
26) The vertical asymptote of $f(x)=\frac{7-x}{x^{2}-5 x+6}$ is Solution:

$$
f(x)=\frac{7-x}{x^{2}-5 x+6}=\frac{7-x}{(x-3)(x-2)}
$$

We see that the function $f(x)$ is not defined when $x-3=0$ or $x-2=0 \Rightarrow x=3$ or $x=2$.
Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{+}} \frac{7-x}{(x-3)(x-2)}=\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{-}} \frac{7-x}{(x-3)(x-2)}=-\infty
\end{aligned}
$$ and

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{+}} \frac{7-x}{(x-3)(x-2)}=-\infty \\
& \lim _{x \rightarrow 2^{-}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{-}} \frac{7-x}{(x-3)(x-2)}=\infty
\end{aligned}
$$

then, $x=3$ and $x=2$ are vertical asymptotes.
28) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}+3 x}$ is

Solution:

$$
f(x)=\frac{x-7}{x^{2}+3 x}=\frac{x-7}{x(x+3)}
$$

We see that the function $f(x)$ is not defined when $x=0$ or $x+3=0 \Rightarrow x=0$ or $x=-3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{+}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow-3^{+}} \frac{x-7}{x(x+3)}=\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow-3^{-}} \frac{x-7}{x(x+3)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow 0^{+}} \frac{x-7}{x(x+3)}=-\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow 0^{-}} \frac{x-7}{x(x+3)}=\infty
\end{aligned}
$$

then, $x=-3$ and $x=0$ are vertical asymptotes.
30) The vertical asymptotes of $f(x)=\frac{2 x^{2}+1}{x^{2}-9}$ are Solution:

$$
f(x)=\frac{2 x^{2}+1}{x^{2}-9}=\frac{2 x^{2}+1}{(x+3)(x-3)}
$$

We see that the function $f(x)$ is not defined when $x^{2}-9=0 \Rightarrow x= \pm 3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{(x+3)(x-3)}=\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{-}} \frac{2 x^{2}+1}{(x+3)(x-3)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{(x+3)(x-3)}=-\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow-3^{-}} \frac{2 x^{2}+1}{(x+3)(x-3)}=\infty
\end{aligned}
$$

then, $x= \pm 3$ are vertical asymptotes.
31) The function $f(x)=\frac{x+1}{x^{2}-9}$ is continuous at $a=2$ because
$1-f(2)=\frac{(2)+1}{(2)^{2}-9}=\frac{3}{-5}=-\frac{3}{5}$
$2-\lim _{x \rightarrow 3^{-}} \frac{x+1}{x^{2}-9}=\lim _{x \rightarrow 2} \frac{(2)+1}{(2)^{2}-9}=\frac{3}{-5}=-\frac{3}{5}$
$3-\quad \lim _{x \rightarrow 2} \frac{x+1}{x^{2}-9}=f(2)$
OR
We know that $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$, so $\{2\} \in D_{f}$.
Note: Any function is continuous on its domain.
34) The function $f(x)=\frac{x+1}{x^{2}-9}$ is continuous on its domain which is $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$.
36) The function $f(x)=\left\{\begin{array}{c}\frac{\sin 3 x}{x}, \\ 5, x=0 \\ 5,\end{array}\right.$ is discontinuous at $a=0$ because
1- $f(0)=5$
2- $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=3(1)=3$
3- $\lim _{x \rightarrow 0} f(x) \neq f(0)$
38) The function $f(x)=\left\{\begin{array}{cc}\frac{2 x^{2}-3 x+1}{x-1}, & x \neq 1 \\ 1, & x=1\end{array}\right.$ is continuous at $a=1$ because
1- $f(1)=1$
2- $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}=\lim _{x \rightarrow 1} \frac{(2 x-1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(2 x-1)=1$
3- $\lim _{x \rightarrow 1} f(x)=f(1)$
40) The function $f(x)=\left\{\begin{array}{ll}2 x+3, & x>2 \\ 3 x+1, & x \leq 2\end{array}\right.$ is continuous at $a=2$ because
1- $f(2)=3(2)+1=7$
2- $\lim _{x \rightarrow 2^{+}}(2 x+3)=2(2)+3=7$
$\lim _{x \rightarrow 2^{-}}(3 x+1)=3(2)+1=7$
$\therefore \lim _{x \rightarrow 2} f(x)=7$
3- $\lim _{x \rightarrow 2} f(x)=f(2)$
42) The function $f(x)=\sqrt{x^{2}-4}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& x^{2}-4 \geq 0 \Rightarrow x^{2} \geq 4 \Rightarrow \sqrt{x^{2}} \geq \sqrt{4} \\
& \Rightarrow|x| \geq 2 \quad \Leftrightarrow \quad x \geq 2 \text { or } x \leq-2
\end{aligned}
$$

Hence,
$D_{f}=(-\infty,-2] \cup[2, \infty)$.
44) The function $f(x)=\frac{x+3}{\sqrt{4-x^{2}}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
4-x^{2}>0 \Rightarrow-x^{2}>-4 \Rightarrow x^{2}<4
$$

$\Rightarrow \sqrt{x^{2}}<\sqrt{4} \Rightarrow|x|<2 \Leftrightarrow-2<x<2$
Hence,

$$
D_{f}=(-2,2) .
$$

32) The function $f(x)=\frac{x+1}{x^{2}-9}$ is discontinuous at $a= \pm 3$ because we know that $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$, so $\{ \pm 3\} \notin D_{f}$.
33) The function $f(x)=\frac{x+1}{x^{2}-9}$ is discontinuous at ± 3 because $\{ \pm 3\} \notin D_{f}$.
34) The function $f(x)=\left\{\begin{array}{c}\frac{\sin 3 x}{x}, x \neq 0 \\ 3,\end{array}\right.$ is continuous at $a=0$ because
1- $f(0)=3$
2- $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=3(1)=3$
3- $\lim _{x \rightarrow 0} f(x)=f(0)$
35) The function $f(x)=\left\{\begin{array}{cc}\frac{2 x^{2}-3 x+1}{x-1}, & x \neq 1 \\ 7 & , x=1\end{array}\right.$ is discontinuous at $a=1$ because
1- $f(1)=7$
2- $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}=\lim _{x \rightarrow 1} \frac{(2 x-1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(2 x-1)=1$
3- $\lim _{x \rightarrow 1} f(x) \neq f(1)$
36) The function $f(x)=\frac{x^{2}-x-2}{x-2}$ is discontinuous at $a=2$ because $\{2\} \notin D_{f}$.
37) The function $f(x)=\frac{x+3}{\sqrt{x^{2}-4}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& x^{2}-4>0 \Rightarrow x^{2}>4 \Rightarrow \sqrt{x^{2}}>\sqrt{4} \\
& \quad \Rightarrow|x|>2
\end{aligned} \Leftrightarrow \quad x>2 \text { or } x<-2
$$

Hence,
$D_{f}=(-\infty,-2) \cup(2, \infty)$.
43) The function $f(x)=\sqrt{4-x^{2}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& 4-x^{2} \geq 0 \Rightarrow-x^{2} \geq-4 \Rightarrow x^{2} \leq 4 \\
& \Rightarrow \sqrt{x^{2}} \leq \sqrt{4} \Rightarrow|x| \leq 2 \quad \Leftrightarrow \quad-2 \leq x \leq 2
\end{aligned}
$$

Hence,

$$
D_{f}=[-2,2] .
$$

45) The function $f(x)=\frac{x+1}{x^{2}-4}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
x^{2}-4 \neq 0 \Rightarrow x^{2} \neq 4 \Rightarrow x \neq \pm 2
$$

Hence,
$D_{f}=\mathbb{R} \backslash\{ \pm 2\}$
$=(-\infty,-2) \cup(-2,2) \cup(2, \infty)=\{x \in \mathbb{R}: x \neq \pm 2\}$.
46) The function $f(x)=\log _{2}(x+2)$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
x+2>0 \Rightarrow x>-2
$$

Hence,

$$
D_{f}=(-2, \infty) .
$$

48) The function $f(x)=5^{x}$ is continuous on its domain.
Hence,

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

50) The function $f(x)=\sin ^{-1}(3 x-5)$ is continuous on its domain where $f(x)$ is defined, we mean that
$-1 \leq 3 x-5 \leq 1 \Leftrightarrow 4 \leq 3 x \leq 6 \Leftrightarrow \frac{4}{3} \leq x \leq 2$. Hence,

$$
D_{f}=\left[\frac{4}{3}, 2\right] .
$$

52) The number c that makes $f(x)=\left\{\begin{array}{cc}c+x, & x>2 \\ 2 x-c, & x \leq 2\end{array}\right.$ is continuous at $x=2$ is
Solution:
$\lim _{x \rightarrow 2} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow+^{+}} f(x) & =\lim _{x \rightarrow 2^{-}} f(x) \\
\lim _{x \rightarrow 2^{+}}(c+x) & =\lim _{x \rightarrow 2^{-}}(2 x-c) \\
c+2 & =4-c \\
c+c & =4-2 \\
2 c & =2 \\
c & =1
\end{aligned}
$$

54) The number c that makes
$f(x)=\left\{\begin{array}{cc}\frac{\sin c x}{x}+2 x-1, & x<0 \\ 3 x+4 & , x \geq 0\end{array}\right.$ is continuous at 0 is
Solution:
$\lim _{x \rightarrow 0} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{-}} f(x) \\
\lim _{x \rightarrow 0^{+}}(3 x+4) & =\lim _{x \rightarrow 0^{-}}\left(\frac{\sin c x}{x}+2 x-1\right) \\
3(0)+4 & =c(1)+2(0)-1 \\
4 & =c-1 \\
c & =4+1 \\
c & =5
\end{aligned}
$$

56) The number c that makes $f(x)=\left\{\begin{array}{cl}c^{2} x^{2}-1, & x \leq 3 \\ x+5, & x>3\end{array}\right.$ is continuous at 3 is
Solution:
$\lim _{x \rightarrow 3} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} f(x) & =\lim _{x \rightarrow \mathbf{x}^{-}} f(x) \\
\lim _{x \rightarrow 3^{+}}(x+5) & =\lim _{x \rightarrow 3^{-}}\left(c^{2} x^{2}-1\right) \\
(3)+5 & =c^{2}(3)^{2}-1 \\
8 & =9 c^{2}-1 \\
9 c^{2} & =8+1 \\
c^{2} & =1 \\
c & = \pm 1
\end{aligned}
$$

47) The function $f(x)=\sqrt{x-1}+\sqrt{x+4}$ is continuous on its domain where $f(x)$ is defined, we mean that $x-1 \geq 0$ and $x+4 \geq 0 \Rightarrow x \geq 1 \cap x \geq-4$
Hence,
$D_{f}=[1, \infty)$.
48) The function $f(x)=e^{x}$ is continuous on its domain.
Hence,
$D_{f}=\mathbb{R}=(-\infty, \infty)$.
49) The function $f(x)=\cos ^{-1}(3 x+5)$ is continuous on its domain where $f(x)$ is defined, we mean that $-1 \leq 3 x+5 \leq 1 \Leftrightarrow-6 \leq 3 x \leq-4 \Leftrightarrow-2 \leq x \leq-\frac{4}{3}$. Hence,

$$
D_{f}=\left[-2,-\frac{4}{3}\right] .
$$

53) The number c that makes
$f(x)=\left\{\begin{array}{cc}c x^{2}-2 x+1, & x \leq-1 \\ 3 x+2, & x>-1\end{array}\right.$ is continuous at -1 is

Solution:

$\lim _{x \rightarrow-1} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow-\mathbf{l}^{-}} f(x) \\
\lim _{x \rightarrow-1^{+}}(3 x+2) & =\lim _{x \rightarrow-1^{-}}\left(c x^{2}-2 x+1\right) \\
3(-1)+2 & =c(-1)^{2}-2(-1)+1 \\
-1 & =c+3 \\
c & =-1-3 \\
c & =-4
\end{aligned}
$$

55) The value c that makes $f(x)=\left\{\begin{array}{l}c x^{2}+2 x, x \leq 2 \\ x^{3}-c x,\end{array}, x>2\right.$ is continuous at 2 is

Solution:

$\lim _{x \rightarrow 2} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{-}} f(x) \\
\lim _{x \rightarrow 2^{+}}\left(x^{3}-c x\right) & =\lim _{x \rightarrow 2^{-}}\left(c x^{2}+2 x\right) \\
(2)^{3}-c(2) & =c(2)^{2}+2(2) \\
8-2 c & =4 c+4 \\
-2 c-4 c & =4-8 \\
-6 c & =-4 \\
c & =\frac{-4}{-6} \\
c & =\frac{2}{3}
\end{aligned}
$$

57) The number c that makes $f(x)= \begin{cases}x-2, & x>5 \\ c x-3, & x \leq 5\end{cases}$ is continuous at 5 is

Solution:

$\lim _{x \rightarrow 5} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 5^{+}} f(x) & =\lim _{x \rightarrow 5^{-}} f(x) \\
\lim _{x \rightarrow 5^{+}}(x-2) & =\lim _{x \rightarrow)^{-}}(c x-3) \\
(5)-2 & =c(5)-3 \\
3 & =5 c-3 \\
5 c & =3+3 \\
5 c & =6 \\
c & =\frac{6}{5}
\end{aligned}
$$

58) The number c that makes $f(x)= \begin{cases}x+3, & x>-1 \\ 2 x-c, & x \leq-1\end{cases}$ is continuous at -1 is Solution:
$\lim _{x \rightarrow-1} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow 1^{-}} f(x) \\
\lim _{x \rightarrow-1^{+}}(x+3) & =\lim _{x \rightarrow 1^{-}}(2 x-c) \\
(-1)+3 & =2(-1)-c \\
2 & =-2-c \\
c & =-2-2 \\
c & =-4
\end{aligned}
$$

1) If $f(x)=\left\{\begin{array}{ll}2 x+3 ; & x \geq-2 \\ 2 x+5 ; & x<-2\end{array}\right.$ then

$$
\lim _{x \rightarrow(-2)^{-}} f(x)=
$$

Solution:
$\lim _{x \rightarrow(-2)^{-}} f(x)=\lim _{x \rightarrow(-2)^{-}}(2 x+5)=2(-2)+5=-4+5$ $=1$
3) If $f(x)=\left\{\begin{array}{ll}2 x+3 ; & x \geq-2 \\ 2 x+5 ; & x<-2\end{array}\right.$ then

$$
\lim _{x \rightarrow-2} f(x)=
$$

Solution:

$\lim _{x \rightarrow-2} f(x)$ does not exist because

$$
\lim _{x \rightarrow(-2)^{-}} f(x) \neq \lim _{x \rightarrow(-2)^{+}} f(x)
$$

5) If $f(x)=\left\{\begin{array}{cr}x^{2}-7 x ; & x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then

Solution:
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}-7 x\right)=(1)^{2}-7(1)=1-7=-6$
7) If $f(x)=\left\{\begin{array}{cc}x^{2}-7 x ; & x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then

$$
\lim _{x \rightarrow 3^{-}} f(x)=
$$

Solution:
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(5)=5$
9) If $f(x)=\left\{\begin{array}{l}\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; x^{2}-4<0\end{array}\right.$ then

$$
\lim _{x \rightarrow 2^{+}} f(x)=
$$

Solution:

$f(x)= \begin{cases}\frac{x^{2}+x-6}{x^{2}-4} ; & x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; & x^{2}-4<0\end{cases}$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}>4 \\
\frac{x^{2}+x-6}{-\left(x^{2}-4\right)} ; x^{2}<4
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{(x+3)(x-2)}{(x-2)(x+2)} ;|x|>4 \\
\frac{(x+3)(x-2)}{-(x-2)(x+2)} ;|x|<4
\end{array}\right. \\
& = \begin{cases}\frac{x+3}{x+2} ; & x>2 \text { or } x<-2 \\
-\frac{x+3}{x+2} ; & -2<x<2\end{cases}
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(\frac{x+3}{x+2}\right)=\frac{(2)+3}{(2)+2}=\frac{5}{4}$
2) If $f(x)=\left\{\begin{array}{ll}2 x+3 ; & x \geq-2 \\ 2 x+5 ; & x<-2\end{array}\right.$ then

$$
\lim _{x \rightarrow(-2)^{+}} f(x)=
$$

Solution:
$\lim _{x \rightarrow(-2)^{+}} f(x)=\lim _{x \rightarrow(-2)^{+}}(2 x+3)=2(-2)+3=-4+3$ $=-1$
4) If $f(x)=\left\{\begin{aligned} x^{2}-2 x+3 ; & x \geq 3 \\ x^{3}-3 x-12 ; & x<3\end{aligned}\right.$ then

$$
\lim _{x \rightarrow 3} f(x)=
$$

Solution:
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(x^{3}-3 x-12\right)=(3)^{3}-3(3)-12$

$$
=27-9-12=6
$$

$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(x^{2}-2 x+3\right)=(3)^{2}-2(3)+3$
$=9-6+3=6$
$\therefore \lim _{x \rightarrow 3} f(x)=6$
6) If $f(x)=\left\{\begin{array}{cr}x^{2}-7 x ; & x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then

$$
\lim _{x \rightarrow 1^{+}} f(x)=
$$

Solution:
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow+^{+}}(5)=5$
8) If $f(x)=\left\{\begin{array}{cc}x^{2}-7 x ; \quad x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then
$\lim _{x \rightarrow 3^{+}} f(x)=$

Solution:

$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(3 x+1)=3(3)+1=9+1=10$
10) If $f(x)=\left\{\begin{array}{l}\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; x^{2}-4<0 \\ \lim _{x \rightarrow 2^{-}} f(x)=\end{array}\right.$ then

Solution:

$f(x)= \begin{cases}\frac{x^{2}+x-6}{x^{2}-4} ; & x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; & x^{2}-4<0\end{cases}$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}>4 \\
\frac{x^{2}+x-6}{-\left(x^{2}-4\right)} ; x^{2}<4
\end{array}\right. \\
& = \begin{cases}\frac{(x+3)(x-2)}{(x-2)(x+2)} ;|x|>4 \\
\frac{(x+3)(x-2)}{-(x-2)(x+2)} ;|x|<4\end{cases} \\
& = \begin{cases}\frac{x+3}{x+2} ; & x>2 \text { or } x<-2 \\
-\frac{x+3}{x+2} ; & -2<x<2\end{cases}
\end{aligned}
$$

$$
\therefore \quad \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(-\frac{x+3}{x+2}\right)=-\frac{(2)+3}{(2)+2}=-\frac{5}{4}
$$

11)

$$
\lim _{x \rightarrow a^{-}} \frac{|x-a|}{x-a}=
$$

Solution:
$f(x)=\frac{|x-a|}{x-a}=\left\{\begin{array}{ll}\frac{x-a}{x-a} & ; x-a>0 \\ \frac{-(x-a)}{x-a} ; & x-a<0\end{array}=\left\{\begin{aligned} 1 ; & x>a \\ -1 ; & x<a\end{aligned}\right.\right.$

$$
\therefore \quad \lim _{x \rightarrow a^{-}} \frac{|x-a|}{x-a}=\lim _{x \rightarrow a^{-}} \frac{-(x-a)}{x-a}=\lim _{x \rightarrow a^{-}}(-1)=-1
$$

13)

$$
\lim _{x \rightarrow a} \frac{|x-a|}{x-a}=
$$

Solution:

$\lim _{x \rightarrow a} \frac{|x-a|}{x-a}$ does not exist because

$$
\lim _{x \rightarrow a^{-}} \frac{|x-a|}{x-a} \neq \lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}
$$

It is clearly obvious from questions (11) and (12) above.
15)

$$
\lim _{x \rightarrow a^{-}} \frac{|a-x|}{x-a}=
$$

Solution:
$f(x)=\frac{|a-x|}{x-a}= \begin{cases}\frac{a-x}{x-a} ; & a-x>0 \\ \frac{-(a-x)}{x-a} ; & a-x<0\end{cases}$

$$
\begin{aligned}
& \quad=\left\{\begin{array}{ll}
\frac{-(x-a)}{x-a} ; a>x \\
\frac{(x-a)}{x-a} ; & ; a<x
\end{array}=\left\{\begin{array}{r}
-1 ; x<a \\
1 ; \\
x>a
\end{array}\right.\right. \\
& \therefore \\
& \lim _{x \rightarrow a^{-}} \frac{|a-x|}{x-a}=\lim _{x \rightarrow a^{-}}(-1)=-1
\end{aligned}
$$

17)

$$
\lim _{x \rightarrow(-a)^{-}} \frac{|x+a|}{x+a}=
$$

Solution:

$$
\begin{gathered}
f(x)=\frac{|x+a|}{x+a}=\left\{\begin{array}{ll}
\frac{x+a}{x+a} ; & x+a>0 \\
\frac{-(x+a)}{x+a} ; & x+a<0
\end{array}=\left\{\begin{aligned}
1 ; & x>-a \\
-1 ; & x<-a
\end{aligned}\right.\right. \\
\therefore \quad \lim _{x \rightarrow(-a)^{-}} \frac{|x+a|}{x+a}=\lim _{x \rightarrow(-a)^{-}}(-1)=-1
\end{gathered}
$$

12)

$$
\lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}=
$$

Solution:

$$
\begin{aligned}
f(x) & =\frac{|x-a|}{x-a}=\left\{\begin{array}{ll}
\frac{x-a}{x-a} ; & x-a>0 \\
\frac{-(x-a)}{x-a} ; & x-a<0
\end{array}=\left\{\begin{aligned}
1 ; & x>a \\
-1 ; & x<a
\end{aligned}\right.\right. \\
\therefore & \lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}=\lim _{x \rightarrow a^{+}} \frac{(x-a)}{x-a}=\lim _{x \rightarrow a^{+}}(1)=1
\end{aligned}
$$

14)

$$
\lim _{x \rightarrow a^{+}} \frac{|a-x|}{x-a}=
$$

Solution:
$f(x)=\frac{|a-x|}{x-a}= \begin{cases}\frac{a-x}{x-a} & ; a-x>0 \\ \frac{-(a-x)}{x-a} ; & a-x<0\end{cases}$

$$
\begin{aligned}
& \quad=\left\{\begin{array}{l}
\frac{-(x-a)}{x-a} ; a>x \\
\frac{(x-a)}{x-a} ; a<x
\end{array}=\left\{\begin{aligned}
-1 ; & x<a \\
1 ; & x>a
\end{aligned}\right.\right. \\
& \therefore \\
& \quad \lim _{x \rightarrow a^{+}} \frac{|a-x|}{x-a}=\lim _{x \rightarrow a^{+}}(1)=1
\end{aligned}
$$

16)

$$
\lim _{x \rightarrow a} \frac{|a-x|}{x-a}=
$$

Solution:
$\lim _{x \rightarrow a} \frac{|a-x|}{x-a}$ does not exist because

$$
\lim _{x \rightarrow a^{-}} \frac{|a-x|}{x-a} \neq \lim _{x \rightarrow a^{+}} \frac{|a-x|}{x-a}
$$

It is clearly obvious from questions (14) and (15) above.
18)

$$
\lim _{x \rightarrow(-a)^{+}} \frac{|x+a|}{x+a}=
$$

Solution:
$f(x)=\frac{|x+a|}{x+a}=\left\{\begin{array}{ll}\frac{x+a}{x+a} & ; x+a>0 \\ \frac{-(x+a)}{x+a} ; & x+a<0\end{array}=\left\{\begin{aligned} 1 ; & x>-a \\ -1 ; & x<-a\end{aligned}\right.\right.$
$\therefore \quad \lim _{x \rightarrow(-a)^{+}} \frac{|x+a|}{x+a}=\lim _{x \rightarrow(-a)^{+}}(1)=1$
19)

$$
\lim _{x \rightarrow-a} \frac{|x+a|}{x+a}=
$$

Solution:
$\lim _{x \rightarrow-a} \frac{|x+a|}{x+a}$ does not exist because

$$
\lim _{x \rightarrow(-a)^{-}} \frac{|x+a|}{x+a} \neq \lim _{x \rightarrow(-a)^{+}} \frac{|x+a|}{x+a}
$$

It is clearly obvious from questions (17) and (18) above.

$$
\lim _{x \rightarrow 0^{+}} \frac{2 x-|x|}{x^{2}+|x|}=
$$

Solution:

$f(x)=\frac{2 x-|x|}{x^{2}+|x|}= \begin{cases}\frac{2 x-(x)}{x^{2}+(x)} ; & x>0 \\ \frac{2 x-(-x)}{x^{2}+(-x)} ; & x<0\end{cases}$

$$
\begin{aligned}
& =\left\{\begin{array}{ll}
\frac{2 x-x}{x^{2}+x} ; x>0 \\
\frac{2 x+x}{x^{2}-x} ; & x<0
\end{array}= \begin{cases}\frac{x}{x^{2}+x} ; & x>0 \\
\frac{3 x}{x^{2}-x} ; & x<0\end{cases} \right. \\
& = \begin{cases}\frac{x}{x(x+1)} ; x>0 \\
\frac{3 x}{x(x-1)} ; x<0\end{cases} \\
& = \begin{cases}\frac{1}{x+1} ; x>0 \\
\frac{3}{x-1} ; x<0\end{cases}
\end{aligned}
$$

$$
\therefore \quad \lim _{x \rightarrow 0^{+}} \frac{2 x-|x|}{x^{2}+|x|}=\lim _{x \rightarrow 0^{+}} \frac{1}{x+1}=\frac{1}{0+1}=1
$$

22)

$$
\lim _{x \rightarrow 0} \frac{2 x-|x|}{x^{2}+|x|}=
$$

Solution:
$\lim _{x \rightarrow 0} \frac{2 x-|x|}{x^{2}+|x|}$ does not exist because

$$
\lim _{x \rightarrow 0^{-}} \frac{2 x-|x|}{x^{2}+|x|} \neq \lim _{x \rightarrow 0^{+}} \frac{2 x-|x|}{x^{2}+|x|}
$$

It is clearly obvious from questions (20) and (21) above.
24)

$$
\lim _{x \rightarrow 0} \frac{\cos ^{2} x+2 \cos x-3}{2 \cos ^{2} x-\cos x-1}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos ^{2} x+2 \cos x-3}{2 \cos ^{2} x-\cos x-1}=\lim _{x \rightarrow 0} \frac{(\cos x+3)(\cos x-1)}{(2 \cos x+1)(\cos x-1)} \\
& \quad=\lim _{x \rightarrow 0} \frac{\cos x+3}{2 \cos x+1}=\frac{\cos (0)+3}{2 \cos (0)+1} \\
& \quad=\frac{1+3}{2(1)+1}=\frac{4}{3}
\end{aligned}
$$

26) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{m x}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{m x}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{\sin (n x)}{n x}=\frac{n}{m}(1)=\frac{n}{m}
$$

28) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{n x}{\sin (m x)}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{n x}{\sin (m x)}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{m x}{\sin (m x)}=\frac{n}{m}(1)=\frac{n}{m}
$$

21)

$$
\lim _{x \rightarrow 0^{-}} \frac{2 x-|x|}{x^{2}+|x|}=
$$

Solution:

$$
\begin{aligned}
f(x)=\frac{2 x-|x|}{x^{2}+|x|} & = \begin{cases}\frac{2 x-(x)}{x^{2}+(x)} ; & x>0 \\
\frac{2 x-(-x)}{x^{2}+(-x)} ; x<0\end{cases} \\
& =\left\{\begin{array}{ll}
\frac{2 x-x}{x^{2}+x} ; & x>0 \\
\frac{2 x+x}{x^{2}-x} ; x<0
\end{array}= \begin{cases}\frac{x}{x^{2}+x} ; & x>0 \\
\frac{3 x}{x^{2}-x} ; & x<0\end{cases} \right. \\
& = \begin{cases}\frac{x}{x(x+1)} ; x>0 \\
\frac{3 x}{x(x-1)} ; x<0\end{cases} \\
& = \begin{cases}\frac{1}{x+1} ; x>0 \\
\frac{3}{x-1} ; & x<0\end{cases}
\end{aligned}
$$

$$
\therefore \quad \lim _{x \rightarrow 0^{-}} \frac{2 x-|x|}{x^{2}+|x|}=\lim _{x \rightarrow 0^{-}} \frac{3}{x-1}=\frac{3}{0-1}=-3
$$

23)

$$
\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{\cos ^{2} x-\sin ^{2} x}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{\cos ^{2} x-\sin ^{2} x}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{(\cos x-\sin x)(\cos x+\sin x)} \\
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{1}{\cos x+\sin x}=\frac{1}{\cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right)} \\
&=\frac{1}{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}}=\frac{1}{\frac{2}{\sqrt{2}}}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

25)

$$
\lim _{x \rightarrow 0}\left(\sin ^{2} x+3 \tan x-4\right)=
$$

Solution:
$\lim _{x \rightarrow 0}\left(\sin ^{2} x+3 \tan x-4\right)=\sin ^{2}(0)+3 \tan (0)-4$

$$
=0+3(0)-4=-4
$$

27) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{m x}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{m x}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{\tan (n x)}{n x}=\frac{n}{m}(1)=\frac{n}{m}
$$

29) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{n x}{\tan (m x)}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{n x}{\tan (m x)}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{m x}{\tan (m x)}=\frac{n}{m}(1)=\frac{n}{m}
$$

30) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\sin (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\sin (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\sin (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\sin (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

32) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\tan (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\tan (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\tan (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\tan (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

34)

$$
\lim _{x \rightarrow 0} \frac{\sin (1-\cos x)}{1-\cos x}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (1-\cos x)}{1-\cos x}=1
$$

36)

$$
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{x^{2}}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{x^{2}} & =\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x}{x^{2}}=2 \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \\
& =2\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)^{2}=2(1)^{2}=2
\end{aligned}
$$

38)

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2 / 5}}+2\right)=
$$

Solution:

$$
\lim _{x \rightarrow-\infty}\left(\frac{1}{x^{2} / 5}+2\right)=0+2=2
$$

40)

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{2}}-\frac{8 x}{x^{2}}+\frac{15}{x^{2}}}{\frac{4 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{13}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{3-\frac{8}{x}+\frac{15}{x^{2}}}{9+\frac{4}{x}-\frac{13}{x^{2}}}=\frac{3-0+0}{9+0+0}=\frac{1}{3}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\tan (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\tan (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\sin (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\tan (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

33) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\sin (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\sin (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\tan (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\sin (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

35)

$$
\lim _{x \rightarrow 0} \frac{\sin (\sin (2 x))}{\sin (2 x)}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (\sin (2 x))}{\sin (2 x)}=1
$$

37)

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{1}{x^{2}}-\frac{3}{x}+4}=
$$

Solution:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \sqrt{\frac{1}{x^{2}}-\frac{3}{x}+4}
\end{gathered}=\sqrt{\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}}-\frac{3}{x}+4\right)}=\sqrt{0-0+4}
$$

39)

$$
\lim _{x \rightarrow \infty} \frac{3 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow \infty} \frac{\frac{3 x}{x^{2}}+\frac{15}{x^{2}}}{\frac{9 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{13}{x^{2}}} \\
& \quad=\lim _{x \rightarrow \infty} \frac{\frac{3}{x}+\frac{15}{x^{2}}}{9+\frac{4}{x}-\frac{13}{x^{2}}}=\frac{0+0}{9+0+0}=0
\end{aligned}
$$

41)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{array}{r}
\lim _{x \rightarrow-\infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow-\infty} \frac{\frac{3 x^{2}}{-x^{2}}-\frac{8 x}{-x^{2}}+\frac{15}{-x^{2}}}{\frac{9 x^{2}}{-x^{2}}+\frac{4 x}{-x^{2}}-\frac{13}{-x^{2}}} \\
=\lim _{x \rightarrow-\infty} \frac{-3+\frac{8}{x}-\frac{15}{x^{2}}}{-9-\frac{4}{x}+\frac{13}{x^{2}}}=\frac{-3+0-0}{-9-0+0}=\frac{1}{3}
\end{array}
$$

42)

$$
\lim _{x \rightarrow \infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$\lim _{x \rightarrow \infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{5}}{x^{2}}-\frac{8 x}{x^{2}}+\frac{15}{x^{2}}}{\frac{9 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{13}{x^{2}}}$

$$
=\lim _{x \rightarrow \infty} \frac{3 x^{3}-\frac{8}{x}+\frac{15}{x^{2}}}{9+\frac{4}{x}-\frac{13}{x^{2}}}=\frac{3(\infty)-0+0}{9+0+0}=\infty
$$

44)

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-3 x+7}-x\right)=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-3 x+7}-x\right) \\
& =\lim _{x \rightarrow \infty}\left[\left(\sqrt{x^{2}-3 x+7}-x\right) \times \frac{\left(\sqrt{x^{2}-3 x+7}+x\right)}{\left(\sqrt{x^{2}-3 x+7}+x\right)}\right] \\
& =\lim _{x \rightarrow \infty}\left(\frac{\left(x^{2}-3 x+7\right)-x^{2}}{\sqrt{x^{2}-3 x+7}+x}\right)=\lim _{x \rightarrow \infty}\left(\frac{-3 x+7}{\sqrt{x^{2}-3 x+7}+x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{-3 x}{x}+\frac{7}{x}}{\frac{\sqrt{x^{2}-3 x+7}}{x}+\frac{x}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{-3+\frac{7}{x}}{\sqrt{\frac{x^{2}}{x^{2}}-\frac{3 x}{x^{2}}+\frac{7}{x^{2}}}+1} \\
& =\lim _{x \rightarrow \infty} \frac{-3+\frac{7}{x}}{\sqrt{1-\frac{3}{x}+\frac{7}{x^{2}}}+1} \\
& \quad=\frac{-3+0}{\sqrt{1-0+0}+1}=\frac{-3}{1+1}=-\frac{3}{2}
\end{aligned}
$$

46)

$$
\lim _{x \rightarrow \infty}\left(x^{2}-5 x+4\right)=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x^{2}-5 x+4\right)=\lim _{x \rightarrow \infty} x^{2}\left(\frac{x^{2}}{x^{2}}-\frac{5 x}{x^{2}}+\frac{4}{x^{2}}\right) \\
& \quad=\lim _{x \rightarrow \infty} x^{2}\left(1-\frac{5}{x}+\frac{4}{x^{2}}\right)=(\infty)^{2}(1-0+0)=\infty
\end{aligned}
$$

OR

$$
\lim _{x \rightarrow \infty}\left(x^{2}-5 x+4\right)=\lim _{x \rightarrow \infty}\left(x^{2}\right)=\infty
$$

43)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow-\infty} \frac{\frac{3 x^{5}}{-x^{2}}-\frac{8 x}{-x^{2}}+\frac{15}{-x^{2}}}{\frac{9 x^{2}}{-x^{2}}+\frac{4 x}{-x^{2}}-\frac{13}{-x^{2}}} \\
& \quad=\lim _{x \rightarrow-\infty} \frac{-3 x^{3}+\frac{8}{x}-\frac{15}{x^{2}}}{-9-\frac{4}{x}+\frac{13}{x^{2}}}=\frac{-3(-\infty)+0-0}{-9-0+0}=-\infty
\end{aligned}
$$

45)

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)=
$$

Solution:

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)
$$

$$
=\lim _{x \rightarrow \infty}\left[\left(\sqrt{x^{2}+x}-x\right) \times \frac{\sqrt{x^{2}+x}+x}{\sqrt{x^{2}+x}+x}\right]
$$

$$
=\lim _{x \rightarrow \infty}\left(\frac{\left(x^{2}+x\right)-x^{2}}{\sqrt{x^{2}+x}+x}\right)
$$

$$
=\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{2}+x}+x}\right)
$$

$$
=\lim _{x \rightarrow \infty} \frac{\frac{x}{x}}{\frac{\sqrt{x^{2}+x}}{x}+\frac{x}{x}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{\frac{x^{2}}{x^{2}}+\frac{x}{x^{2}}}+1}
$$

$$
=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x}}+1}=\frac{1}{\sqrt{1+0}+1}=\frac{1}{1+1}
$$

$$
=\frac{1}{2}
$$

47)

$$
\lim _{x \rightarrow-\infty}\left(x^{4}-2 x^{3}+9\right)=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left(x^{4}-2 x^{3}+9\right)=\lim _{x \rightarrow-\infty} x^{4}\left(\frac{x^{4}}{x^{4}}-\frac{2 x^{3}}{x^{4}}+\frac{9}{x^{4}}\right) \\
& \quad=\lim _{x \rightarrow-\infty} x^{4}\left(1-\frac{2}{x}+\frac{9}{x^{4}}\right)=(-\infty)^{4}(1-0+0)=\infty
\end{aligned}
$$

OR

$$
\lim _{x \rightarrow-\infty}\left(x^{4}-2 x^{3}+9\right)=\lim _{x \rightarrow-\infty}\left(x^{4}\right)=\infty
$$

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=
$$

Solution:
$\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{3 x^{2}-8}}{-x}+\frac{2}{-x}}{\frac{x}{-x}+\frac{5}{-x}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{3 x^{2}-8}{x^{2}}}-\frac{2}{x}}{-1-\frac{5}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{3 x^{2}}{x^{2}}-\frac{8}{x^{2}}}-\frac{2}{x}}{-1-\frac{5}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{3-\frac{8}{x^{2}}}-\frac{2}{x}}{-1-\frac{5}{x}}=\frac{\sqrt{3-0}-0}{-1-0}=-\sqrt{3}
\end{aligned}
$$

50) The horizontal asymptotes of

$$
f(x)=\frac{\sqrt{3 x^{2}-8}+2}{x+5}
$$

Solution:
First, we have to find

$$
\lim _{x \rightarrow \pm \infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}
$$

It is clear from the previous questions (48) and (49) that

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=\sqrt{3}
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=-\sqrt{3}
$$

Thus, the horizontal asymptotes are

$$
y= \pm \sqrt{3}
$$

52) The horizontal asymptote of

$$
f(x)=\frac{7 x^{2}+5}{3 x^{2}+2}
$$

Solution:
First, we have to find

$$
\begin{gathered}
\lim _{x \rightarrow \pm \infty} \frac{7 x^{2}+5}{3 x^{2}+2} \\
\lim _{x \rightarrow \infty} \frac{7 x^{2}+5}{3 x^{2}+2}=\lim _{x \rightarrow \infty} \frac{\frac{7 x^{2}}{x^{2}}+\frac{5}{x^{2}}}{\frac{3 x^{2}}{x^{2}}+\frac{2}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{7+\frac{5}{x^{2}}}{3+\frac{2}{x^{2}}}=\frac{7+0}{3+0}=\frac{7}{3}
\end{gathered}
$$

$\lim _{x \rightarrow-\infty} \frac{7 x^{2}+5}{3 x^{2}+2}=\lim _{x \rightarrow-\infty} \frac{\frac{7 x^{2}}{-x^{2}}+\frac{5}{-x^{2}}}{\frac{3 x^{2}}{-x^{2}}+\frac{2}{-x^{2}}}$

$$
=\lim _{x \rightarrow-\infty} \frac{-7-\frac{5}{x^{2}}}{-3-\frac{2}{x^{2}}}=\frac{-7-0}{-3-0}=\frac{7}{3}
$$

Thus, the horizontal asymptote is

$$
y=\frac{7}{3}
$$

53) The horizontal asymptote of

$$
f(x)=\frac{\sqrt{x^{2}+2 x-3}}{2 x+7}
$$

Solution:
First, we have to find

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} \frac{\sqrt{x^{2}+2 x-3}}{2 x+7} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+2 x-3}}{2 x+7}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{x^{2}+2 x-3}}{x}}{\frac{2 x}{x}+\frac{7}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{x^{2}+2 x-3}{x^{2}}}}{2+\frac{7}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{x^{2}}{x^{2}}+\frac{2 x}{x^{2}}-\frac{3}{x^{2}}}}{2+\frac{7}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{2}{x}-\frac{3}{x^{2}}}}{2+\frac{7}{x}}=\frac{\sqrt{1+0-0}}{2+0}=\frac{1}{2} \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+2 x-3}}{2 x+7}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{x^{2}+2 x-3}}{-x}}{\frac{2 x}{-x}+\frac{7}{-x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{x^{2}+2 x-3}{x^{2}}}}{-2-\frac{7}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{x^{2}}{x^{2}}+\frac{2 x}{x^{2}}-\frac{3}{x^{2}}}}{-2-\frac{7}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{1+\frac{2}{x}-\frac{3}{x^{2}}}}{-2-\frac{7}{x}}=\frac{\sqrt{1+0-0}}{-2-0}=-\frac{1}{2}
\end{aligned}
$$

Thus, the horizontal asymptotes are

$$
\text { 55) } \lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-8}+3}{x+1}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} & \frac{\sqrt{4 x^{2}-8}+3}{x+1}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{4 x^{2}-8}}{-x}+\frac{3}{-x}}{\frac{x}{-x}+\frac{1}{-x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4 x^{2}-8}{x^{2}}}-\frac{3}{x}}{-1-\frac{1}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4 x^{2}}{x^{2}}-\frac{8}{x^{2}}}-\frac{3}{x}}{-1-\frac{1}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{4-\frac{8}{x^{2}}}-\frac{3}{x}}{-1-\frac{1}{x}}=\frac{\sqrt{4-0}-0}{-1-0}=-2
\end{aligned}
$$

54) The horizontal asymptote of

$$
f(x)=\frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1}
$$

Solution:

First, we have to find

$$
\begin{gathered}
\lim _{x \rightarrow \pm \infty} \frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1} \\
\lim _{x \rightarrow \infty} \frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x-3}}{x^{2}}}{\frac{2 x^{2}}{x^{2}}+\frac{7 x}{x^{2}}-\frac{1}{x^{2}}} \\
=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2 x-3}{x^{4}}}}{2+\frac{7}{x}-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2 x}{x^{4}}-\frac{3}{x^{4}}}}{2+\frac{7}{x}-\frac{1}{x^{2}}} \\
=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2}{x^{3}}-\frac{3}{x^{4}}}}{2+\frac{7}{x}-\frac{1}{x^{2}}}=\frac{\sqrt{0-0}}{2+0-0}=\frac{0}{2}=0 \\
\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1}=\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x-3}}{\frac{-x^{2}}{2 x^{2}}+\frac{7 x}{-x^{2}}-\frac{1}{-x^{2}}} \\
=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{2 x-3}{x^{4}}}}{-2-\frac{7}{x}+\frac{1}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{2 x}{x^{4}}-\frac{3}{x^{4}}}}{2-\frac{7}{x}+\frac{1}{x^{2}}} \\
=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{2}{x^{3}}-\frac{3}{x^{4}}}}{-2-\frac{7}{x}+\frac{1}{x^{2}}}=\frac{\sqrt{0-0}}{-2-0+0}=\frac{0}{-2}=0
\end{gathered}
$$

Thus, the horizontal asymptote is

$$
y=0
$$

56)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-8}+3}{x+1}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-8}+3}{x+1}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{4 x^{2}-8}}{x}+\frac{3}{x}}{\frac{x}{x}+\frac{1}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4 x^{2}-8}{x^{2}}}+\frac{3}{x}}{1+\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{4 x^{2}}{x^{2}}-\frac{8}{x^{2}}}+\frac{3}{x}}{1+\frac{1}{x}} \\
& \quad=\lim _{x \rightarrow \infty} \frac{\sqrt{4-\frac{8}{x^{2}}}+\frac{3}{x}}{1+\frac{1}{x}}=\frac{\sqrt{4-0}+0}{1+0}=2
\end{aligned}
$$

1) If $f(x)$ is a differentiable function, then $f^{\prime}(x)=$ Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

3) If $f(x)=x^{2}-3$, then $f^{\prime}(x)=$

Solution:

$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-3\right]-\left[x^{2}-3\right]}{h}
$$

5) If f is a differentiable function at a, then f is a continuous function at a.
6) If $y=x^{4}+5 x^{2}+3$, then $y^{\prime}=$ Solution:

$$
y^{\prime}=4 x^{3}+10 x
$$

9) If $y=x^{-5 / 2}$, then $y^{\prime}=$

Solution:

$$
y^{\prime}=-\frac{5}{2} x^{-\frac{5}{2}-1}=-\frac{5}{2} x^{-7 / 2}
$$

11) If $y=(x-3)(x-2)$, then $y^{\prime}=$

Solution:

$$
\begin{gathered}
y=(x-3)(x-2)=x^{2}-5 x+6 \\
y^{\prime}=2 x-5
\end{gathered}
$$

13) If $y=\sqrt{x}(2 x+1)$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
y & =\sqrt{x}(2 x+1)=2 x \sqrt{x}+\sqrt{x}=2 x^{\frac{3}{2}}+x^{\frac{1}{2}} \\
y^{\prime} & =\left(\frac{3}{2}\right)(2) x^{\frac{3}{2}-1}+\left(\frac{1}{2}\right) x^{\frac{1}{2}-1}=3 x^{\frac{1}{2}}+\frac{1}{2} x^{-\frac{1}{2}} \\
& =3 \sqrt{x}+\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

OR

Use the rule $\quad(f . g)^{\prime}=f^{\prime} g+f g^{\prime}$

$$
y^{\prime}=(2)(\sqrt{x})+\left(\frac{1}{2 \sqrt{x}}\right)(2 x+1)=2 \sqrt{x}+\frac{2 x+1}{2 \sqrt{x}}
$$

15) If $y=\frac{x+3}{x-2}$, then $\left.y^{\prime}\right|_{x=4}=$

Solution:

$$
\begin{gathered}
y^{\prime}=\frac{(1)(x-2)-(x+3)(1)}{(x-2)^{2}}=\frac{x-2-x-3}{(x-2)^{2}} \\
=\frac{-5}{(x-2)^{2}}=-\frac{5}{(x-2)^{2}} \\
\left.y^{\prime}\right|_{x=4}=-\frac{5}{(4-2)^{2}}=-\frac{5}{4}
\end{gathered}
$$

2) If $f(x)=4 x^{2}$, then $f^{\prime}(x)=$

Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{4(x+h)^{2}-4 x^{2}}{h}
$$

4) If $f(x)=\sqrt{x}, x \geq 0$, then $f^{\prime}(x)=$ Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

6) If f is a continuous function at a, then f is a differentiable function at a.
Solution:

False

8) If $y=x^{4}-5 x^{2}+3$, then $y^{\prime}=$

Solution:

$$
y^{\prime}=4 x^{3}-10 x
$$

10) If $y=\frac{1}{3 x^{3}}+2 \sqrt{x}=\frac{1}{3} x^{-3}+2 x^{1 / 2}$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
y^{\prime} & =(-3)\left(\frac{1}{3}\right) x^{-3-1}+\left(\frac{1}{2}\right)(2) x^{\frac{1}{2}-1} \\
& =-x^{-4}+x^{-1 / 2}=-\frac{1}{x^{4}}+\frac{1}{x^{1 / 2}}=-\frac{1}{x^{4}}+\frac{1}{\sqrt{x}}
\end{aligned}
$$

12) If $y=\left(x^{3}+3\right)\left(x^{2}-1\right)$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
y & =\left(x^{3}+3\right)\left(x^{2}-1\right)=x^{5}-x^{3}+3 x^{2}-3 \\
y^{\prime} & =5 x^{4}-3 x^{2}+6 x
\end{aligned}
$$

14) If $y=\frac{x+3}{x-2}$, then $y^{\prime}=$

Solution:
Use the rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

$$
\begin{aligned}
y^{\prime} & =\frac{(1)(x-2)-(x+3)(1)}{(x-2)^{2}}=\frac{x-2-x-3}{(x-2)^{2}}=\frac{-5}{(x-2)^{2}} \\
& =-\frac{5}{(x-2)^{2}}
\end{aligned}
$$

16) If $y=\frac{x-1}{x+2}$, then $y^{\prime}=$

Solution:
Use the rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

$$
y^{\prime}=\frac{(1)(x+2)-(x-1)(1)}{(x+2)^{2}}=\frac{x+2-x+1}{(x+2)^{2}}=\frac{3}{(x+2)^{2}}
$$

17) If $y=\sqrt{3 x^{2}+6 x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}$

$$
y^{\prime}=\frac{6 x+6}{2 \sqrt{3 x^{2}+6 x}}=\frac{6(x+1)}{2 \sqrt{3 x^{2}+6 x}}=\frac{3(x+1)}{\sqrt{3 x^{2}+6 x}}
$$

19) The tangent line equation to the curve $y=x^{2}+2$ at the point $(1,3)$ is
Solution:
First, we have to find the slope of the curve which is

$$
y^{\prime}=2 x
$$

Thus, the slope at $x=1$ is

$$
\left.y^{\prime}\right|_{x=1}=2(1)=2
$$

Hence, the tangent line equation passing through the point $(1,3)$ with slope $m=2$ is

$$
\begin{aligned}
y-3 & =2(x-1) \\
y-3 & =2 x-2 \\
y & =2 x-2+3 \\
y & =2 x+1
\end{aligned}
$$

21) The tangent line equation to the curve $y=3 x^{2}-13$ at the point $(2,-1)$ is

Solution:

First, we have to find the slope of the curve which is

$$
y^{\prime}=6 x
$$

Thus, the slope at $x=2$ is

$$
\left.y^{\prime}\right|_{x=2}=6(2)=12
$$

Hence, the tangent line equation passing through the point $(2,-1)$ with slope $m=12$ is

$$
\begin{aligned}
y-(-1) & =12(x-2) \\
y+1 & =12 x-24 \\
y & =12 x-24-1 \\
y & =12 x-25
\end{aligned}
$$

23) If $y=x e^{x}$, then $y^{\prime}=$

Solution:

Use the rules $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=(1)\left(e^{x}\right)+(x)\left(e^{x}\right)=e^{x}+x e^{x}=e^{x}(1+x)
$$

25) If $x^{2}-y^{2}=4$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x-2 y y^{\prime} & =0 \\
-2 y y^{\prime} & =-2 x \\
y^{\prime} & =\frac{-2 x}{-2 y} \\
y^{\prime} & =\frac{x}{y}
\end{aligned}
$$

27) If $y=\frac{x+1}{x+2}$, then $y^{\prime}=$

Solution:

Use the rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

$$
\begin{aligned}
y^{\prime} & =\frac{(1)(x+2)-(x+1)(1)}{(x+2)^{2}}=\frac{x+2-x-1}{(x+2)^{2}} \\
& =\frac{1}{(x+2)^{2}}
\end{aligned}
$$

18) If $y=\sqrt{3 x^{2}+6 x}$, then $\left.y^{\prime}\right|_{x=1}=$

Solution:

$$
\begin{gathered}
y^{\prime}=\frac{6 x+6}{2 \sqrt{3 x^{2}+6 x}}=\frac{6(x+1)}{2 \sqrt{3 x^{2}+6 x}}=\frac{3(x+1)}{\sqrt{3 x^{2}+6 x}} \\
\left.y^{\prime}\right|_{x=1}=\frac{3((1)+1)}{\sqrt{3(1)^{2}+6(1)}}=\frac{6}{\sqrt{9}}=\frac{6}{3}=2
\end{gathered}
$$

20) The tangent line equation to the curve $y=\frac{2 x}{x+1}$ at the point $(0,0)$ is

Solution:

First, we have to find the slope of the curve which is

$$
y^{\prime}=\frac{(2)(x+1)-(2 x)(1)}{(x+1)^{2}}=\frac{2 x+2-2 x}{(x+1)^{2}}=\frac{2}{(x+1)^{2}}
$$

Thus, the slope at $x=0$ is

$$
\left.y^{\prime}\right|_{x=0}=\frac{2}{(0+1)^{2}}=2
$$

Hence, the tangent line equation passing through the point $(0,0)$ with slope $m=2$ is

$$
y-0=(2)(x-0)
$$

$$
y=2 x
$$

22) The tangent line equation to the curve

$$
y=3 x^{2}+2 x+5 \text { at the point }(0,5) \text { is }
$$

Solution:
First, we have to find the slope of the curve which is

$$
y^{\prime}=6 x+2
$$

Thus, the slope at $x=2$ is

$$
\left.y^{\prime}\right|_{x=0}=6(0)+2=2
$$

Hence, the tangent line equation passing through the point $(0,5)$ with slope $m=2$ is

$$
\begin{aligned}
y-5 & =2(x-0) \\
y-5 & =2 x \\
y & =2 x+5
\end{aligned}
$$

24) If $y=x-e^{x}$, then $y^{\prime \prime}=$

Solution:
Use the rules $\quad(f-g)^{\prime}=f^{\prime}-g^{\prime}$ and $\quad\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =1-e^{x} \\
y^{\prime \prime} & =-e^{x}
\end{aligned}
$$

26) If $x^{2}+y^{2}=4$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x+2 y y^{\prime} & =0 \\
2 y y^{\prime} & =-2 x \\
y^{\prime} & =\frac{-2 x}{2 y} \\
y^{\prime} & =-\frac{x}{y}
\end{aligned}
$$

28) If $y=\frac{1}{\sqrt[2]{x^{5}}}+\sec x$, then $y^{\prime}=$

Solution:

Use the rules

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime} \quad \text { and } \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}
$$

$y=\frac{1}{\sqrt[2]{x^{5}}}+\sec x=x^{-\frac{5}{2}}+\sec x$
$y^{\prime}=\left(-\frac{5}{2}\right) x^{-\frac{5}{2}-1}+\sec x \tan x=-\frac{5}{2} x^{-7 / 2}+\sec x \tan x$
29) If $y=\tan ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad\left(\tan ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{1+u^{2}}$

$$
y^{\prime}=\frac{1}{1+\left(x^{3}\right)^{2}} \cdot\left(3 x^{2}\right)=\frac{3 x^{2}}{1+x^{6}}
$$

31) If $y=\sec ^{2} x-1$, then $y^{\prime}=$

Solution:
Use the rules $(f-g)^{\prime}=f^{\prime}-g^{\prime}, \quad(u)^{n}=n(u)^{n-1} . u^{\prime}$ and $(\sec u)^{\prime}=\sec u \tan u . u^{\prime}$

$$
y^{\prime}=2 \sec x . \sec x \tan x=2 \sec ^{2} x \tan x
$$

33) If $y=x^{\cos x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\cos u)^{\prime}=-\sin u . u^{\prime}$

$$
\begin{gathered}
y=x^{\cos x} \\
\ln y=\ln x^{\cos x} \\
\ln y=\cos x \cdot \ln x \\
\frac{y^{\prime}}{y}=-\sin x \cdot \ln x+\cos x \cdot \frac{1}{x}=-\sin x \cdot \ln x+\frac{\cos x}{x} \\
y^{\prime}=y\left(-\sin x \cdot \ln x+\frac{\cos x}{x}\right) \\
=x^{\cos x}\left(\frac{\cos x}{x}-\sin x \cdot \ln x\right)
\end{gathered}
$$

35) If $y=\frac{5^{x}}{\cot x}$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime} & =\frac{f^{\prime} g-f g^{\prime}}{g^{2}}, \quad\left(a^{u}\right)^{\prime}=a^{u} \cdot \ln a \cdot u^{\prime} \\
& \text { and }(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime} \\
y^{\prime} & =\frac{\left(5^{x} \ln 5\right)(\cot x)-\left(5^{x}\right)\left(-\csc ^{2} x\right)}{(\cot x)^{2}} \\
& =\frac{5^{x}\left(\ln 5 \cot x+\csc ^{2} x\right)}{\cot ^{2} x}
\end{aligned}
$$

37) If $y=x^{-2} e^{\sin x}$, then $y^{\prime}=$

Solution:

Use the rules $\quad(f . g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad\left(e^{u}\right)=e^{u} \cdot u^{\prime}$ and $(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime}=\left(-2 x^{-3}\right) & \left(e^{\sin x}\right)+\left(x^{-2}\right)\left(e^{\sin x} \cdot \cos x\right) \\
& =-2 x^{-3} e^{\sin x}+x^{-2} \cos x e^{\sin x} \\
& =x^{-3} e^{\sin x}(-2+x \cos x) \\
& =x^{-3} e^{\sin x}(x \cos x-2)
\end{aligned}
$$

39) If $x^{2}+y^{2}=3 x y+7$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x+2 y y^{\prime} & =3 y+3 x y^{\prime} \\
2 y y^{\prime}-3 x y^{\prime} & =3 y-2 x \\
y^{\prime}(2 y-3 x) & =3 y-2 x \\
y^{\prime} & =\frac{3 y-2 x}{2 y-3 x}
\end{aligned}
$$

30) If $y=\tan x-x$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{gathered}
(f-g)^{\prime}=f^{\prime}-g^{\prime} \text { and }(\tan u)^{\prime}=\sec ^{2} u \cdot u^{\prime} \\
y^{\prime}=\sec ^{2} x-1
\end{gathered}
$$

32) If $y=x^{\sin x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{gathered}
y=x^{\sin x} \\
\ln y=\ln x^{\sin x} \\
\ln y=\sin x \cdot \ln x \\
\frac{y^{\prime}}{y}=\cos x \cdot \ln x+\sin x \cdot \frac{1}{x}=\cos x \cdot \ln x+\frac{\sin x}{x} \\
y^{\prime}=y\left(\cos x \cdot \ln x+\frac{\sin x}{x}\right)=x^{\sin x}\left(\cos x \cdot \ln x+\frac{\sin x}{x}\right)
\end{gathered}
$$

34) If $y=\left(2 x^{2}+\csc x\right)^{9}$, then $y^{\prime}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime}$

$$
y^{\prime}=9\left(2 x^{2}+\csc x\right)^{8} \cdot(4 x-\csc x \cot x)
$$

36) If $y=e^{2 x}$, then $y^{(6)}=$

Solution:

Use the rule $\quad\left(e^{u}\right)^{\prime}=e^{u} \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =2 e^{2 x} \\
y^{\prime \prime} & =4 e^{2 x} \\
y^{\prime \prime \prime} & =8 e^{2 x} \\
y^{(4)} & =16 e^{2 x} \\
y^{(5)} & =32 e^{2 x} \\
y^{(6)} & =64 e^{2 x}
\end{aligned}
$$

38) If $y=5^{\tan x}$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{gathered}
\left(a^{u}\right)^{\prime}=a^{u} \cdot \ln a \cdot u^{\prime} \text { and }(\tan u)^{\prime}=\sec ^{2} u \cdot u^{\prime} \\
y^{\prime}=5^{\tan x} \cdot \ln 5 \cdot \sec ^{2} x
\end{gathered}
$$

40) If $y=\sin ^{3}(4 x)$, then $y^{(6)}=_{y^{\prime}}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime}$ and $(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =3 \sin ^{2}(4 x) \cdot \cos (4 x) \cdot(4) \\
& =12 \sin ^{2}(4 x) \cdot \cos (4 x)
\end{aligned}
$$

41) If $y=3^{x} \cot x$, then $y^{\prime}=$

Solution:

Use the rules $(f . g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad\left(a^{u}\right)^{\prime}=a^{u} \cdot \ln a . u^{\prime}$ and $(\cot u)^{\prime}=-\csc ^{2} u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime}=\left(3^{x} \cdot \ln 3\right) & (\cot x)+\left(3^{x}\right)\left(-\csc ^{2} x\right) \\
& =3^{x} \ln 3 \cot x-3^{x} \csc ^{2} x \\
& =3^{x}\left(\ln 3 \cot x-\csc ^{2} x\right)
\end{aligned}
$$

43) If $f(x)=\cos x$, then $f^{(45)}(x)=$

Solution:

$$
\begin{aligned}
f^{\prime \prime}(x) & =-\sin x \\
f^{\prime \prime}(x) & =-\cos x \\
f^{\prime \prime \prime}(x) & =\sin x \\
f^{(4)}(x) & =\cos x
\end{aligned}
$$

Note: $f^{(n)}(x)=\cos x$ whenever n is a multiple of 4 . Hence,

$$
\begin{gathered}
f^{(44)}(x)=\cos x \\
f^{(45)}(x)=-\sin x
\end{gathered}
$$

45) If $y=x^{x}$, then $y^{\prime}=$

Solution:
Use the rule $(\ln u)^{\prime}=\frac{u^{\prime}}{u}$

$$
\begin{aligned}
y & =x^{x} \\
\ln y & =\ln x^{x} \\
\ln y & =x \ln x \\
\frac{y^{\prime}}{y} & =(1)(\ln x)+(x)\left(\frac{1}{x}\right) \\
\frac{y^{\prime}}{y} & =\ln x+1 \\
y^{\prime}=y(1+\ln x) & =x^{x}(1+\ln x)
\end{aligned}
$$

47) If $y=\cot ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\cot ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{1+u^{2}} \quad$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=-\frac{1}{1+\left(e^{x}\right)^{2}} \cdot e^{x}=-\frac{e^{x}}{1+e^{2 x}}
$$

49) If $y=\sin ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\sin ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot e^{x}=\frac{e^{x}}{\sqrt{1-e^{2 x}}}
$$

51) If $y=\cos \left(2 x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
y^{\prime}=-\sin \left(2 x^{3}\right) \cdot\left(6 x^{2}\right)=-6 x^{2} \sin \left(2 x^{3}\right)
$$

42) If $y=\left(2 x^{2}+\sec x\right)^{7}$, then $y^{\prime}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}$

$$
y^{\prime}=7\left(2 x^{2}+\sec x\right)^{6} \cdot(4 x+\sec x \tan x)
$$

44) If $D^{47}(\sin x)=$

Solution:

$$
\begin{aligned}
D(\sin x) & =\cos x \\
D^{2}(\sin x) & =-\sin x \\
D^{3}(\sin x) & =-\cos x \\
D^{4}(\sin x) & =\sin x
\end{aligned}
$$

Note: $D^{n}(\sin x)=\sin x$ whenever n is a multiple of 4 .
Hence,

$$
\begin{aligned}
& D^{44}(\sin x)=\sin x \\
& D^{45}(\sin x)=\cos x \\
& D^{46}(\sin x)=-\sin x \\
& D^{47}(\sin x)=-\cos x
\end{aligned}
$$

46) If $f(x)=\frac{\ln x}{x^{2}}$, then $f^{\prime}(1)=$

Solution:
Use the rules $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad$ and $\quad(\ln u)^{\prime}=\frac{u^{\prime}}{u}$

$$
\begin{array}{r}
f^{\prime}(x)=\frac{\left(\frac{1}{x}\right)\left(x^{2}\right)-(\ln x)(2 x)}{\left(x^{2}\right)^{2}}=\frac{x-2 x \ln x}{x^{4}} \\
=\frac{x(1-2 \ln x)}{x^{4}}=\frac{1-2 \ln x}{x^{3}}
\end{array}
$$

$$
\therefore \quad f^{\prime}(1)=\frac{1-2 \ln (1)}{(1)^{3}}=\frac{1-2(0)}{1}=1
$$

48) If $y=\tan ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\tan ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{1+u^{2}} \quad$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{1+\left(e^{x}\right)^{2}} \cdot e^{x}=\frac{e^{x}}{1+e^{2 x}}
$$

50) If $y=\cos ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\cos ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{\sqrt{1-u^{2}}}$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=-\frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot e^{x}=-\frac{e^{x}}{\sqrt{1-e^{2 x}}}
$$

52) If $y=\csc x \cot x$, then $y^{\prime}=$

Solution:
Use the rules $(f . g)^{\prime}=f^{\prime} g+f g^{\prime}$,
$(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime}$ and $(\cot u)^{\prime}=-\csc ^{2} u \cdot u^{\prime}$
$y^{\prime}=(-\csc x \cot x)(\cot x)+(\csc x)\left(-\csc ^{2} x\right)$ $=-\csc x \cot ^{2} x-\csc ^{3} x=-\csc x\left(\cot ^{2} x+\csc ^{2} x\right)$
53) If $y=\sqrt{x^{2}-2 \sec x}$, then $y^{\prime}=$ Solution:
Use the rules

$$
\begin{aligned}
(\sqrt{u})^{\prime} & =\frac{u^{\prime}}{2 \sqrt{u}} \quad \text { and } \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime} \\
y^{\prime} & =\frac{2 x-2 \sec x \tan x}{2 \sqrt{x^{2}-2 \sec x}}=\frac{2(x-\sec x \tan x)}{2 \sqrt{x^{2}-2 \sec x}} \\
& =\frac{x-\sec x \tan x}{\sqrt{x^{2}-2 \sec x}}
\end{aligned}
$$

55) If $x y+\tan x=2 x^{3}+\sin y$, then $y^{\prime}=$

Solution:

$$
\begin{gathered}
{\left[(1)(y)+(x)\left(y^{\prime}\right)\right]+\sec ^{2} x=6 x^{2}+\cos y \cdot y^{\prime}} \\
y+x y^{\prime}+\sec ^{2} x=6 x^{2}+y^{\prime} \cos y \\
x y^{\prime}-y^{\prime} \cos y=6 x^{2}-y-\sec ^{2} x \\
y^{\prime}(x-\cos y)=6 x^{2}-y-\sec ^{2} x \\
y^{\prime}=\frac{6 x^{2}-y-\sec ^{2} x}{x-\cos y}
\end{gathered}
$$

57) If $y=\sin ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:

Use the rule $\left(\sin ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
y^{\prime}=\frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}} \cdot 3 x^{2}=\frac{3 x^{2}}{\sqrt{1-x^{6}}}
$$

59) If $y=\sec ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad\left(\sec ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$

$$
y^{\prime}=\frac{1}{x^{3} \sqrt{\left(x^{3}\right)^{2}-1}} \cdot 3 x^{2}=\frac{3 x^{2}}{x^{3} \sqrt{x^{6}-1}}=\frac{3}{x \sqrt{x^{6}-1}}
$$

61) If $y=\ln \left(x^{3}-2 \sec x\right)$, then $y^{\prime}=$

Solution:

Use the rules

$$
(\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad \text { and } \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}
$$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{x^{3}-2 \sec x} \cdot\left(3 x^{2}-2 \sec x \tan x\right) \\
& =\frac{3 x^{2}-2 \sec x \tan x}{x^{3}-2 \sec x}
\end{aligned}
$$

63) If $y=\ln (\sin x)$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{aligned}
& (\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad \text { and } \quad(\sin u)^{\prime}=\cos u \cdot u^{\prime} \\
& y^{\prime}=\frac{1}{\sin x} \cdot(\cos x)=\frac{\cos x}{\sin x}=\cot x
\end{aligned}
$$

54) If $y=\left(3 x^{2}+1\right)^{6}$, then $y^{\prime}=$

Solution:
Use the rule $\quad(u)^{n}=n(u)^{n-1} \cdot u^{\prime}$

$$
y^{\prime}=6\left(3 x^{2}+1\right)^{5} \cdot(6 x)=36 x\left(3 x^{2}+1\right)^{5}
$$

56) If $y=x^{-1} \sec x$, then $y^{\prime}=$

Solution:

Use the rules

$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$ and $(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime}= & \left(-x^{-2}\right)(\sec x)+\left(x^{-1}\right)(\sec x \tan x) \\
& =x^{-1} \sec x \tan x-x^{-2} \sec x \\
& =x^{-2} \sec x(x \tan x-1)
\end{aligned}
$$

58) If $y=\cos ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\cos ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
y^{\prime}=-\frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}} \cdot 3 x^{2}=-\frac{3 x^{2}}{\sqrt{1-x^{6}}}
$$

60) If $y=\csc ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad\left(\csc ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$
$y^{\prime}=-\frac{1}{x^{3} \sqrt{\left(x^{3}\right)^{2}-1}} \cdot 3 x^{2}=-\frac{3 x^{2}}{x^{3} \sqrt{x^{6}-1}}=-\frac{3}{x \sqrt{x^{6}-1}}$
62) If $y=\ln (\cos x)$, then $y^{\prime}=$

Solution:

Use the rules

$(\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad$ and $(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{\cos x} \cdot(-\sin x)=-\frac{\sin x}{\cos x}=-\tan x
$$

64) If $y=\ln \sqrt{3 x^{2}+5 x}$, then $y^{\prime}=$ Solution:
Use the rules $(\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad$ and $(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}$

$$
y^{\prime}=\frac{1}{\sqrt{3 x^{2}+5 x}} \cdot\left(\frac{6 x+5}{2 \sqrt{3 x^{2}+5 x}}\right)=\frac{6 x+5}{2\left(3 x^{2}+5 x\right)}
$$

65) If $y=\log _{5}\left(x^{3}-2 \csc x\right)$, then $y^{\prime}=$

Solution:
Use the rules
$\left(\log _{a} u\right)^{\prime}=\frac{u^{\prime}}{u \ln a}$ and $(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{\left(x^{3}-2 \csc x\right)(\ln 5)} \cdot\left[3 x^{2}-2(-\csc x \cot x)\right]
$$

$$
=\frac{3 x^{2}+2 \csc x \cot x}{\left(x^{3}-2 \csc x\right)(\ln 5)}
$$

67) If $y=2 x^{3}-\sin x$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
y^{\prime}=6 x^{2}-\cos x
$$

68) If $y=x^{3} \cos x$, then $y^{\prime}=$

Solution:

Use the rules
$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$ and $(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =\left(3 x^{2}\right)(\cos x)+\left(x^{3}\right)(-\sin x) \\
& =3 x^{2} \cos x-x^{3} \sin x
\end{aligned}
$$

69) If $y=x^{\sqrt{x}}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}$

$$
\begin{gathered}
y=x^{\sqrt{x}} \\
\ln y=\ln x \sqrt{x} \\
\ln y=\sqrt{x} \ln x \\
\frac{y^{\prime}}{y}=\left(\frac{1}{2 \sqrt{x}}\right)(\ln x)+(\sqrt{x})\left(\frac{1}{x}\right) \\
\frac{y^{\prime}}{y}=\frac{\ln x}{2 \sqrt{x}}+\frac{\sqrt{x}}{x}=\frac{x \ln x+2 x}{2 x \sqrt{x}}=\frac{x(\ln x+2)}{2 x \sqrt{x}} \\
=\frac{\ln x+2}{2 \sqrt{x}} \\
y^{\prime}=y\left(\frac{\ln x+2}{2 \sqrt{x}}\right)=x^{\sqrt{x}}\left(\frac{\ln x+2}{2 \sqrt{x}}\right)
\end{gathered}
$$

71) If $y=\log _{7}\left(x^{3}-2\right)$, then $y^{\prime}=$

Solution:

Use the rule $\quad\left(\log _{a} u\right)^{\prime}=\frac{u^{\prime}}{u \ln a}$

$$
y^{\prime}=\frac{1}{\left(x^{3}-2\right)(\ln 7)} \cdot\left(3 x^{2}\right)=\frac{3 x^{2}}{\left(x^{3}-2\right)(\ln 7)}
$$

66) If $y=\ln \frac{x-1}{\sqrt{x+2}}$, then $y^{\prime}=$

Solution:

Use the rules

$$
(\ln u)^{\prime}=\frac{u^{\prime}}{u},\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \text { and }(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}
$$

$$
y^{\prime}=\frac{1}{\frac{x-1}{\sqrt{x+2}}} \cdot\left(\frac{(1)(\sqrt{x+2})-(x-1)\left(\frac{1}{2 \sqrt{x+2}}\right)}{(\sqrt{x+2})^{2}}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1} \cdot\left(\frac{\sqrt{x+2}-\frac{x-1}{2 \sqrt{x+2}}}{x+2}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1} \cdot\left(\frac{\frac{2(x+2)-(x-1)}{2 \sqrt{x+2}}}{x+2}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1} \cdot\left(\frac{\frac{x+5}{2 \sqrt{x+2}}}{x+2}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1}\left(\frac{x+5}{2(x+2) \sqrt{x+2}}\right)
$$

$$
=\frac{x+5}{2(x-1)(x+2)}
$$

70) If $y=(\sin x)^{x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{gathered}
y=(\sin x)^{x} \\
\ln y=\ln (\sin x)^{x} \\
\ln y=x \ln (\sin x) \\
\frac{y^{\prime}}{y}=(1)(\ln (\sin x))+(x)\left(\frac{\cos x}{\sin x}\right) \\
\frac{y^{\prime}}{y}=\ln (\sin x)+\frac{x \cos x}{\sin x}=\ln (\sin x)+x \cot x \\
y^{\prime}=y(\ln (\sin x)+x \cot x) \\
=(\sin x)^{x}(\ln (\sin x)+x \cot x)
\end{gathered}
$$

72) If $y=\cos \left(x^{5}\right)$, then $y^{\prime}=$

Solution:
Use the rule $(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
y^{\prime}=-\sin \left(x^{5}\right) \cdot\left(5 x^{4}\right)=-5 x^{4} \sin \left(x^{5}\right)
$$

73) If $y=\sec x \tan x$, then $y^{\prime}=$

Solution:
$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime} \quad$ and $(\tan u)^{\prime}=\sec ^{2} u \cdot u^{\prime}$
$y^{\prime}=(\sec x \tan x)(\tan x)+(\sec x)\left(\sec ^{2} x\right)$
$=\sec x \tan ^{2} x+\sec ^{3} x=\sec x\left(\tan ^{2} x+\sec ^{2} x\right)$
75) If $y=(x+\sec x)^{3}$, then $y^{\prime}=$

Solution:

Use the rules
$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}$

$$
y^{\prime}=3(x+\sec x)^{2} \cdot(1+\sec x \tan x)
$$

77) If $x^{2}-5 y^{2}+\sin y=0$, then $y^{\prime}=$

Solution:

$$
\begin{gathered}
2 x-10 y y^{\prime}+\cos y \cdot y^{\prime}=0 \\
y^{\prime}(-10 y+\cos y)=-2 x \\
y^{\prime}=\frac{-2 x}{-10 y+\cos y}=\frac{2 x}{10 y-\cos y}
\end{gathered}
$$

79) If $f(x)=\sin ^{2}\left(x^{3}+1\right)$, then $f^{\prime}(x)=$

Solution:

Use the rules
$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$
$f^{\prime}(x)=2 \sin \left(x^{3}+1\right) \cdot\left(\cos \left(x^{3}+1\right)\right) \cdot\left(3 x^{2}\right)$ $=6 x^{2} \sin \left(x^{3}+1\right) \cos \left(x^{3}+1\right)$
81) If $y=\tan ^{-1}\left(\frac{x}{2}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\tan ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{1+u^{2}}$
$y^{\prime}=\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2}=\frac{1}{2\left(1+\frac{x^{2}}{4}\right)}=\frac{1}{2\left(\frac{4+x^{2}}{4}\right)}=\frac{2}{4+x^{2}}$
83) If $y=\sin ^{-1}\left(\frac{x}{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\sin ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{\sqrt{1-\left(\frac{x}{3}\right)^{2}}} \cdot \frac{1}{3}=\frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}}=\frac{1}{3 \sqrt{\frac{9-x^{2}}{9}}} \\
& =\frac{1}{\sqrt{9-x^{2}}}
\end{aligned}
$$

74) If $D^{99}(\cos x)=$

Solution:

$$
\begin{aligned}
D(\cos x) & =-\sin x \\
D^{2}(\cos x) & =-\cos x \\
D^{3}(\cos x) & =\sin x \\
D^{4}(\cos x) & =\cos x
\end{aligned}
$$

Note: $D^{n}(\cos x)=\cos x$ whenever n is a multiple of 4 . Hence,

$$
\begin{aligned}
& D^{96}(\cos x)=\cos x \\
& D^{97}(\cos x)=-\sin x \\
& D^{99}(\cos x)=-\cos x \\
& D^{99}(\cos x)=\sin x
\end{aligned}
$$

76) If $x^{2}=5 y^{2}+\sin y$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x & =10 y y^{\prime}+\cos y \cdot y^{\prime} \\
y^{\prime}(10 y+\cos y) & =2 x \\
y^{\prime} & =\frac{2 x}{10 y+\cos y}
\end{aligned}
$$

78) If $y=\sin x \sec x$, then $y^{\prime}=$

Solution:

$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad(\sin u)^{\prime}=\cos u . u^{\prime}$ and

$$
(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}
$$

$y^{\prime}=(\cos x)(\sec x)+(\sin x)(\sec x \tan x)$
$=1+\sin x \cdot \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}=1+\frac{\sin ^{2} x}{\cos ^{2} x}=1+\tan ^{2} x$
$=\sec ^{2} x$
80) If $y=(x+\cot x)^{3}$, then $y^{\prime}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\cot u)^{\prime}=-\csc ^{2} u \cdot u^{\prime}$

$$
y^{\prime}=3(x+\cot x)^{2} \cdot\left(1-\csc ^{2} x\right)
$$

82) If $y=\cot ^{-1}\left(\frac{x}{2}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\cot ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{1+u^{2}}$

$$
\begin{gathered}
y^{\prime}=-\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2}=-\frac{1}{2\left(1+\frac{x^{2}}{4}\right)}=-\frac{1}{2\left(\frac{4+x^{2}}{4}\right)} \\
=-\frac{2}{4+x^{2}}
\end{gathered}
$$

84) If $y=\cos ^{-1}\left(\frac{x}{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\cos ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
\begin{aligned}
y^{\prime} & =-\frac{1}{\sqrt{1-\left(\frac{x}{3}\right)^{2}}} \cdot \frac{1}{3}=-\frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}}=-\frac{1}{3 \sqrt{\frac{9-x^{2}}{9}}} \\
& =-\frac{1}{\sqrt{9-x^{2}}}
\end{aligned}
$$

85) If $D^{99}(\sin x)=$

Solution:

$$
\begin{gathered}
D(\sin x)=\cos x \\
D^{2}(\sin x)=-\sin x \\
D^{3}(\sin x)=-\cos x \\
D^{4}(\sin x)=\sin x
\end{gathered}
$$

Note: $D^{n}(\sin x)=\sin x$ whenever n is a multiple of 4 .
Hence,

$$
\begin{aligned}
& D^{96}(\sin x)=\sin x \\
& D^{97}(\sin x)=\cos x \\
& D^{98}(\sin x)=-\sin x \\
& D^{99}(\sin x)=-\cos x
\end{aligned}
$$

1) $\begin{aligned} \lim _{x \rightarrow-2}\left(x^{3}-2 x+1\right) & =(-2)^{3}-2(-2)+1 \\ & =-8+4+1=-3 \end{aligned}$	$\text { 2) } \begin{aligned} \lim _{x \rightarrow 2}\left(3 x^{2}+x-4\right) & =3(2)^{2}+(2)-4 \\ & =12+2-4=10 \end{aligned}$
3) $\begin{aligned} \lim _{x \rightarrow 1}\left(x^{2}+3 x-5\right)^{3} & =\left((1)^{2}+3(1)-5\right)^{3} \\ & =(1+3-5)^{3}=(-1)^{3}=-1 \end{aligned}$	4) $\begin{aligned} \lim _{x \rightarrow-2}\left(2 x^{3}+3 x^{2}+5\right) & =2(-2)^{3}+3(-2)^{2}+5 \\ & =2(-8)+3(4)+5 \\ & =-16+12+5=1 \end{aligned}$
5) $\lim _{x \rightarrow-2} \frac{x^{2}-2}{x-2}=\frac{(-2)^{2}-2}{(-2)-2}=\frac{4-2}{-2-2}=\frac{2}{-4}=-\frac{1}{2}$	6) $\lim _{x \rightarrow 2} \frac{x^{3}+5}{x^{2}+1}=\frac{(2)^{3}+5}{(2)^{2}+1}=\frac{8+5}{4+1}=\frac{13}{5}$
$\text { 7) } \begin{gathered} \lim _{x \rightarrow 0} \frac{x^{2}+3 x+5}{x^{2}-3}=\frac{(0)^{2}+3(0)+5}{(0)^{2}-3}=\frac{0+0+5}{0-3} \\ =\frac{5}{-3}=-\frac{5}{3} \end{gathered}$	8) $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}+x-5}=\frac{(1)-1}{(1)^{2}+(1)-5}=\frac{1-1}{1+1-5}=\frac{0}{-3}=0$
$\text { 9) } \begin{gathered} \lim _{x \rightarrow-1} \sqrt{x^{3}-10 x+7}=\sqrt{(-1)^{3}-10(-1)+7} \\ =\sqrt{-1+10+7}=\sqrt{16}=4 \end{gathered}$	10) $\begin{aligned} & \lim _{x \rightarrow-1} \frac{1-(x+4)^{-2}}{x-2}=\frac{1-((-1)+4)^{-2}}{(-1)-2} \\ &=\frac{1-(-1+4)^{-2}}{-1-2}=\frac{1-(3)^{-2}}{-3}=\frac{1-\frac{1}{3^{2}}}{-3} \\ &=\frac{1-\frac{1}{9}}{-3}=\frac{\frac{8}{9}}{-3}=\frac{8}{9} \times \frac{1}{-3}=\frac{8}{-27}=-\frac{8}{27} \end{aligned}$
$\text { 11) } \begin{aligned} \lim _{x \rightarrow-1} \frac{x^{3}+2 x}{8-2 x} & =\frac{(-1)^{3}+2(-1)}{8-2(-1)}=\frac{-1-2}{8+2}=\frac{-3}{10} \\ & =-\frac{3}{10} \end{aligned}$	12) $\lim _{x \rightarrow 4} \frac{x^{2}-3 x}{5+x}=\frac{(4)^{2}-3(4)}{5+(4)}=\frac{16-12}{5+4}=\frac{4}{9}$
13) $\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{5+x}=\frac{(4)^{2}-4(4)}{5+(4)}=\frac{16-16}{5+4}=\frac{0}{9}=0$	$\text { 15) } \begin{aligned} \lim _{x \rightarrow 0} \frac{x^{3}-5 x^{2}}{x^{2}} & =\lim _{x \rightarrow 0} \frac{x^{2}(x-5)}{x^{2}} \\ & =\lim _{x \rightarrow 0}(x-5)=(0)-5=-5 \end{aligned}$
14) $\lim _{x \rightarrow 4} \frac{3^{-1}-(2 x-5)^{-1}}{4-x}=\lim _{x \rightarrow 4} \frac{\frac{1}{3}-\frac{1}{2 x-5}}{4-x}$	$\text { 16) } \begin{aligned} \lim _{x \rightarrow 6} \frac{x-6}{x^{2}-36} & =\lim _{x \rightarrow 6} \frac{x-6}{(x-6)(x+6)}=\lim _{x \rightarrow 6} \frac{1}{x+6} \\ & =\frac{1}{(6)+6}=\frac{1}{12} \end{aligned}$
$=\lim _{x \rightarrow 4} \frac{2 x-8}{3(2 x-5)(4-x)}$	17) $\begin{gathered} \lim _{x \rightarrow 6} \frac{x^{2}-36}{x-6}=\lim _{x \rightarrow 6} \frac{(x-6)(x+6)}{x-6}=\lim _{x \rightarrow 6}(x+6) \\ =(6)+6=12 \end{gathered}$
$\begin{aligned} & =\lim _{x \rightarrow 4} \frac{-2(4-x)}{3(2 x-5)(4-x)}=\lim _{x \rightarrow 4} \frac{-2}{3(2 x-5)} \\ & =\frac{-2}{3(2(4)-5)}=\frac{-2}{3(8-5)}=\frac{-2}{9}=-\frac{2}{9} \end{aligned}$	$\text { 18) } \begin{gathered} \lim _{x \rightarrow-6} \frac{x+6}{x^{2}-36}=\lim _{x \rightarrow-6} \frac{x+6}{(x-6)(x+6)}=\lim _{x \rightarrow-6} \frac{1}{x-6} \\ =\frac{1}{(-6)-6}=\frac{1}{-12}=-\frac{1}{12} \end{gathered}$
$\text { 19) } \begin{aligned} \lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3} & =\lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{x-3} \\ & =\lim _{x \rightarrow 3}\left(x^{2}+3 x+9\right)=(3)^{2}+3(3)+9 \\ & =9+9+9=27 \end{aligned}$	$\text { 20) } \begin{aligned} \lim _{x \rightarrow 3} \frac{x-3}{x^{3}-27} & =\lim _{x \rightarrow 3} \frac{x-3}{(x-3)\left(x^{2}+3 x+9\right)} \\ & =\lim _{x \rightarrow 3} \frac{1}{x^{2}+3 x+9}=\frac{1}{(3)^{2}+3(3)+9} \\ & =\frac{1}{9+9+9}=\frac{1}{27} \end{aligned}$

$\text { 21) } \begin{aligned} \lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8} & =\lim _{x \rightarrow-2} \frac{x+2}{(x+2)\left(x^{2}-2 x+4\right)} \\ & =\lim _{x \rightarrow-2} \frac{1}{x^{2}-2 x+4} \\ & =\frac{1}{(-2)^{2}-2(-2)+4}=\frac{1}{4+4+4}=\frac{1}{12} \end{aligned}$	$\text { 22) } \begin{aligned} \lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2} & =\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{x+2} \\ & =\lim _{x \rightarrow-2}\left(x^{2}-2 x+4\right)=(-2)^{2}-2(-2)+4 \\ & =4+4+4=12 \end{aligned}$
$\text { 23) } \begin{gathered} \lim _{x \rightarrow 4} \frac{x^{2}-3 x-4}{x-4}=\lim _{x \rightarrow 4} \frac{(x-4)(x+1)}{x-4}=\lim _{x \rightarrow 4}(x+1) \\ =(4)+1=5 \end{gathered}$	$\text { 24) } \begin{gathered} \lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x^{2}-8 x+15}=\lim _{x \rightarrow 3} \frac{(x+7)(x-3)}{(x-5)(x-3)}=\lim _{x \rightarrow 3} \frac{x+7}{x-5} \\ =\frac{(3)+7}{(3)-5}=\frac{10}{-2}=-5 \end{gathered}$
$\text { 25) } \begin{aligned} & \lim _{x \rightarrow 0} \frac{x}{1-(1-x)^{2}}=\lim _{x \rightarrow 0} \frac{x}{1-\left(1-2 x+x^{2}\right)} \\ &=\lim _{x \rightarrow 0} \frac{x}{1-1+2 x-x^{2}} \\ &=\lim _{x \rightarrow 0} \frac{x}{2 x-x^{2}}=\lim _{x \rightarrow 0} \frac{x}{x(2-x)} \\ &=\lim _{x \rightarrow 0} \frac{1}{2-x}=\frac{1}{2-(0)}=\frac{1}{2} \end{aligned}$	$\begin{aligned} & \text { 26) } \lim _{x \rightarrow 2} \frac{\sqrt[3]{x+6}-2}{x-2}=\lim _{x \rightarrow 2} \frac{\sqrt[3]{x+6}-2}{(x+6)-8}=\lim _{x \rightarrow 2} \frac{\sqrt[3]{x+6}-2}{(\sqrt[3]{x+6})^{3}-8} \\ & =\lim _{x \rightarrow 2} \frac{\sqrt[3]{x+6}-2}{(\sqrt[3]{x+6}-2)\left((\sqrt[3]{x+6})^{2}+2 \sqrt[3]{x+6}+4\right)} \\ & =\lim _{x \rightarrow 2} \frac{1}{(\sqrt[3]{x+6})^{2}+2 \sqrt[3]{x+6}+4} \\ & =\frac{1}{(\sqrt[3]{(2)+6})^{2}+2 \sqrt[3]{(2)+6}+4}=\frac{1}{4+4+4}=\frac{1}{12} \text { deleted } \end{aligned}$
27) $\begin{aligned} & \lim _{x \rightarrow 0} \frac{\sqrt{x+25}-5}{x} \\ &=\lim _{x \rightarrow 0}\left[\frac{\sqrt{x+25}-5}{x} \times \frac{\sqrt{x+25}+5}{\sqrt{x+25}+5}\right] \\ &=\lim _{x \rightarrow 0} \frac{(x+25)-25}{x(\sqrt{x+25}+5)} \\ &=\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+25}+5)} \\ &=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+25}+5}=\frac{1}{\sqrt{(0)+25}+5} \\ &=\frac{1}{5+5}=\frac{1}{10} \end{aligned}$	28) $\begin{aligned} & \lim _{x \rightarrow 0} \frac{x}{\sqrt{x+25}-5}=\lim _{x \rightarrow 0}\left[\frac{x}{\sqrt{x+25}-5} \times \frac{\sqrt{x+25}+5}{\sqrt{x+25}+5}\right] \\ &=\lim _{x \rightarrow 0} \frac{x(\sqrt{x+25}+5)}{(x+25)-25} \\ &=\lim _{x \rightarrow 0} \frac{x(\sqrt{x+25}+5)}{x} \\ &=\lim _{x \rightarrow 0}(\sqrt{x+25}+5)=\sqrt{(0)+25}+5 \\ &=5+5=10 \end{aligned}$
29) $\begin{aligned} & \lim _{x \rightarrow 2} \frac{x-2}{2-\sqrt{6-x}}=\lim _{x \rightarrow 2}\left[\frac{x-2}{2-\sqrt{6-x}} \times \frac{2+\sqrt{6-x}}{2+\sqrt{6-x}}\right] \\ &=\lim _{x \rightarrow 2} \frac{(x-2)(2+\sqrt{6-x})}{4-(6-x)} \\ &=\lim _{x \rightarrow 2} \frac{(x-2)(2+\sqrt{6-x})}{4-6+x} \\ &=\lim _{x \rightarrow 2} \frac{(x-2)(2+\sqrt{6-x})}{x-2} \\ &=\lim _{x \rightarrow 2}(2+\sqrt{6-x})=2+\sqrt{6-(2)} \\ &=2+2=4 \end{aligned}$	30) $\lim _{x \rightarrow 2} \frac{2-\sqrt{6-x}}{x+2}=\frac{2-\sqrt{6-(2)}}{(2)+2}=\frac{2-2}{4}=0$ 31) $\begin{aligned} & \lim _{x \rightarrow 3} \frac{1-\sqrt{x-2}}{2-\sqrt{x+1}} \\ &=\lim _{x \rightarrow 3}\left[\frac{1-\sqrt{x-2}}{2-\sqrt{x+1}} \times \frac{1+\sqrt{x-2}}{1+\sqrt{x-2}}\right. \\ &\left.\times \frac{2+\sqrt{x+1}}{2+\sqrt{x+1}}\right] \\ &=\lim _{x \rightarrow 3}\left[\frac{1-(x-2)}{4-(x+1)} \times \frac{2+\sqrt{x+1}}{1+\sqrt{x-2}}\right] \\ &=\lim _{x \rightarrow 3}\left[\frac{3-x}{3-x} \times \frac{2+\sqrt{x+1}}{1+\sqrt{x-2}}\right] \\ &=\lim _{x \rightarrow 3} \frac{2+\sqrt{x+1}}{1+\sqrt{x-2}}=\frac{2+\sqrt{(3)+1}}{1+\sqrt{(3)-2}}=\frac{2+2}{1+1} \\ &=\frac{4}{2}=2 \end{aligned}$

32) If $2 x \leq f(x) \leq 3 x^{2}-8$, then

$$
\lim _{x \rightarrow 2} f(x)=
$$

Solution:

$$
\lim _{x \rightarrow 2} 2 x=2(2)=4
$$

and

$$
\lim _{x \rightarrow 2}\left(3 x^{2}-8\right)=3(2)^{2}-8=12-8=4
$$

It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 2} f(x)=4
$$

34) $\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x}\right)\right]=$

We know that the sine of any angle is between
-1 and 1. So,

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1
$$

Now, multiply throughout by x, we get

$$
-x \leq x \sin \left(\frac{1}{x}\right) \leq x
$$

But $\lim _{x \rightarrow 0} x=0$ and $\lim _{x \rightarrow 0}(-x)=0$.
It follows from the Sandwich Theorem that
$\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x}\right)\right]=0$
36) If $4(x-1) \leq f(x) \leq x^{3}+x-2$, then

$$
\lim _{x \rightarrow 1} f(x)=
$$

Solution:

$$
\lim _{x \rightarrow 1}(4(x-1))=4((1)-1)=4 \times 0=0
$$

and

$$
\lim _{x \rightarrow 1}\left(x^{3}+x-2\right)=(1)^{3}+(1)-2=1+1-2=0
$$

It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 1} f(x)=0
$$

33) $\lim _{x \rightarrow 0}\left[x \cos \left(x+\frac{1}{x}\right)\right]=$

We know that the cosine of any angle is between -1 and 1. So,

$$
-1 \leq \cos \left(x+\frac{1}{x}\right) \leq 1
$$

Now, multiply throughout by x, we get

$$
-x \leq x \cos \left(x+\frac{1}{x}\right) \leq x
$$

But $\lim _{x \rightarrow 0} x=0$ and $\lim _{x \rightarrow 0}(-x)=0$.
It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 0}\left[x \cos \left(x+\frac{1}{x}\right)\right]=0
$$

35) If $\frac{x^{2}+1}{x-1} \leq f(x) \leq x-1$, then

$$
\lim _{x \rightarrow 0} f(x)=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{x^{2}+1}{x-1}=\frac{(0)^{2}+1}{(0)-1}=\frac{1}{-1}=-1
$$

and

$$
\lim _{x \rightarrow 0}(x-1)=(0)-1=-1
$$

It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 0} f(x)=-1
$$

37) If

$$
\lim _{x \rightarrow 3} \frac{f(x)+4}{x-1}=3
$$

then

$$
\lim _{x \rightarrow 3} f(x)=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{f(x)+4}{x-1}= & \frac{\lim _{x \rightarrow 3}(f(x)+4)}{\lim _{x \rightarrow 3}(x-1)}=\frac{\lim _{x \rightarrow 3} f(x)+\lim _{x \rightarrow 3}(4)}{\lim _{x \rightarrow 3}(x)-\lim _{x \rightarrow 3}(1)} \\
& =\frac{\lim _{x \rightarrow 3} f(x)+4}{3-1}=\frac{\lim _{x \rightarrow 3} f(x)+4}{2}
\end{aligned}
$$

Now

$$
\frac{\lim _{x \rightarrow 3} f(x)+4}{2}=3
$$

$$
\lim _{x \rightarrow 3} f(x)+4=6 \Leftrightarrow \lim _{x \rightarrow 3} f(x)=2
$$

$$
\text { 38) } \begin{aligned}
\lim _{x \rightarrow 2} \frac{2^{-1}-(3 x-4)^{-1}}{2} & =x \\
& =\lim _{x \rightarrow 2} \frac{\frac{1}{2}-\frac{1}{3 x-4}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{\frac{3 x-4-2}{2(3 x-4)}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{\frac{3 x-6}{2(3 x-4)}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{\frac{3(x-2)}{2(3 x-4)}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{3(x-2)}{2(3 x-4)(2-x)} \\
& =\lim _{x \rightarrow 2} \frac{-3(2-x)}{2(3 x-4)(2-x)}=\lim _{x \rightarrow 2} \frac{-3}{2(3 x-4)} \\
& =\frac{-3}{2(3(2)-4)}=\frac{-3}{2 \times 2}=-\frac{3}{4}
\end{aligned}
$$

40) If

$$
\lim _{x \rightarrow 1} \frac{f(x)+3 x}{x^{2}-5 f(x)}=1
$$

then

$$
\lim _{x \rightarrow 1} f(x)=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{f(x)+3 x}{x^{2}-5 f(x)} & =\frac{\lim _{x \rightarrow 1}(f(x)+3 x)}{\lim _{x \rightarrow 1}\left(x^{2}-5 f(x)\right)} \\
& =\frac{\lim _{x \rightarrow 1} f(x)+\lim _{x \rightarrow 1}(3 x)}{\lim _{x \rightarrow 1}\left(x^{2}\right)-\lim _{x \rightarrow 1}(5 f(x))} \\
& =\frac{\lim _{x \rightarrow 1} f(x)+3(1)}{(1)^{2}-5 \lim _{x \rightarrow 1} f(x)}=\frac{\lim _{x \rightarrow 1} f(x)+3}{1-5 \lim _{x \rightarrow 1} f(x)}
\end{aligned}
$$

Now

$$
\frac{\lim _{x \rightarrow 1} f(x)+3}{1-5 \lim _{x \rightarrow 1} f(x)}=1
$$

$\lim _{x \rightarrow 1} f(x)+3=(1)\left(1-5 \lim _{x \rightarrow 1} f(x)\right)$

$$
\begin{aligned}
& \Leftrightarrow \lim _{x \rightarrow 1} f(x)+3=1-5 \lim _{x \rightarrow 1} f(x) \\
& \Leftrightarrow \lim _{x \rightarrow 1} f(x)+5 \lim _{x \rightarrow 1} f(x) \stackrel{1-3}{=} \\
& \Leftrightarrow 6 \lim _{x \rightarrow 1} f(x)=-2 \\
& \Leftrightarrow \lim _{x \rightarrow 1} f(x)=\frac{-2}{6}=-\frac{1}{3}
\end{aligned}
$$

39) $\lim _{x \rightarrow 0} \frac{(x+1)^{3}-1}{x}=\lim _{x \rightarrow 0} \frac{\left(x^{3}+3 x^{2}+3 x+1\right)-1}{x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x^{3}+3 x^{2}+3 x}{x} \\
& =\lim _{x \rightarrow 0} \frac{x\left(x^{2}+3 x+3\right)}{x}=\lim _{x \rightarrow 0}\left(x^{2}+3 x+3\right) \\
& =(0)^{2}+3(0)+3=3
\end{aligned}
$$

41) $\lim _{x \rightarrow 4} \frac{x^{2}-6 x+8}{x^{2}+x-20}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 4} \frac{(x-2)(x-4)}{(x-4)(x+5)} \\
& =\lim _{x \rightarrow 4} \frac{x-2}{x+5}=\frac{(4)-2}{(4)+5}=\frac{2}{9}
\end{aligned}
$$

42) $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-x-6}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{(x-3)(x+2)} \\
& =\lim _{x \rightarrow-2} \frac{x^{2}-2 x+4}{x-3}=\frac{(-2)^{2}-2(-2)+4}{(-2)-3} \\
& =\frac{4+4+4}{-5}=\frac{12}{-5}=-\frac{12}{5}
\end{aligned}
$$

43) $\lim _{x \rightarrow 1}\left[\frac{x^{2}-2}{x+4}+x^{2}-2 x\right]=\frac{(1)^{2}-2}{(1)+4}+(1)^{2}-2(1)$

$$
=\frac{1-2}{1+4}+1-2=\frac{-1}{5}-1=\frac{-1-5}{5}=-\frac{6}{5}
$$

44) $\begin{aligned} & \lim _{x \rightarrow-2} \frac{4 x^{2}+}{}+6 x-4 \\ & 2 x^{2}-8 \\ &=\lim _{x \rightarrow-2} \frac{2\left(2 x^{2}+3 x-2\right)}{2\left(x^{2}-4\right)} \\ &=\lim _{x \rightarrow-2} \frac{2 x^{2}+3 x-2}{x^{2}-4} \\ &=\lim _{x \rightarrow-2} \frac{(2 x-1)(x+2)}{(x-2)(x+2)} \\ &=\lim _{x \rightarrow-2} \frac{2 x-1}{x-2}=\frac{2(-2)-1}{(-2)-2}=\frac{-4-1}{-2-2} \\ &=\frac{-5}{-4}=\frac{5}{4} \end{aligned}$	45) $\begin{aligned} & \lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x^{5}-}-x^{3} \\ &=\lim _{x \rightarrow-1} \frac{(x-3)(x+1)}{x^{3}\left(x^{2}-1\right)} \\ &= \lim _{x \rightarrow-1} \frac{(x-3)(x+1)}{x^{3}(x-1)(x+1)} \\ &=\lim _{x \rightarrow-1} \frac{x-3}{x^{3}(x-1)}=\frac{(-1)-3}{(-1)^{3}((-1)-1)} \\ &= \frac{-1-3}{(-1)(-2)}=\frac{-4}{2}=-2 \end{aligned}$
$\text { 46) } \begin{aligned} & \lim _{x \rightarrow 3} \frac{\sqrt{2 x+1}\left(x^{2}-9\right)}{(2 x+3)(x-3)} \\ & =\lim _{x \rightarrow 3} \frac{\sqrt{2 x+1}(x-3)(x+3)}{(2 x+3)(x-3)} \\ & =\lim _{x \rightarrow 3} \frac{\sqrt{2 x+1}(x+3)}{2 x+3}=\frac{\sqrt{2(3)+1}((3)+3)}{2(3)+3} \\ & =\frac{6 \sqrt{7}}{9}=\frac{2 \sqrt{7}}{3} \end{aligned}$	47) $\begin{aligned} & \lim _{x \rightarrow 1} \frac{\sqrt{3-2 x}-1}{x-1}=\lim _{x \rightarrow 1}\left[\frac{\sqrt{3-2 x}-1}{x-1} \times \frac{\sqrt{3-2 x}+1}{\sqrt{3-2 x}+1}\right] \\ & =\lim _{x \rightarrow 1} \frac{(3-2 x)-1}{(x-1)(\sqrt{3-2 x}+1)} \\ & =\lim _{x \rightarrow 1} \frac{2-2 x}{(x-1)(\sqrt{3-2 x}+1)} \\ & =\lim _{x \rightarrow 1} \frac{2(1-x)}{(x-1)(\sqrt{3-2 x}+1)}= \\ & \quad=\lim _{x \rightarrow 1} \frac{-2(x-1)}{(x-1)(\sqrt{3-2 x}+1)}= \\ & \quad=\lim _{x \rightarrow 1} \frac{-2}{\sqrt{3-2 x}+1}=\frac{-2}{\sqrt{3-2(1)}+1} \\ & \quad=\frac{-2}{\sqrt{3-2}+1}=\frac{-2}{2}=-1 \end{aligned}$
$\text { 48) } \begin{aligned} & \lim _{x \rightarrow 0} \frac{(x+1)^{2}-1}{x}=\lim _{x \rightarrow 0} \frac{\left(x^{2}+2 x+1\right)-1}{x} \\ &=\lim _{x \rightarrow 0} \frac{x^{2}+2 x}{x}=\lim _{x \rightarrow 0} \frac{x(x+2)}{x} \\ &=\lim _{x \rightarrow 0}(x+2)=(0)+2=2 \end{aligned}$	$\text { 49) } \begin{aligned} & \lim _{x \rightarrow 1} \frac{\sqrt{2 x+2}-2}{\sqrt{3 x-2}-1} \\ = & \lim _{x \rightarrow 1}\left[\frac{\sqrt{2 x+2}-2}{\sqrt{3 x-2}-1} \times \frac{\sqrt{2 x+2}+2}{\sqrt{2 x+2}+2} \times \frac{\sqrt{3 x-2}+1}{\sqrt{3 x-2}+1}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{(2 x+2)-4}{(3 x-2)-1} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{2 x-2}{3 x-3} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{2(x-1)}{3(x-1)} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{2}{3} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right]=\frac{2}{3} \times \frac{\sqrt{3(1)-2}+1}{\sqrt{2(1)+2}+2} \\ & =\frac{2}{3} \times \frac{\sqrt{1}+1}{\sqrt{4}+2}=\frac{2}{3} \times \frac{2}{4}=\frac{1}{3} \end{aligned}$

50) $\lim _{x \rightarrow 2} \frac{3-\sqrt{2 x+5}}{x-2}$ $\begin{aligned} & =\lim _{x \rightarrow 2}\left[\frac{3-\sqrt{2 x+5}}{x-2} \times \frac{3+\sqrt{2 x+5}}{3+\sqrt{2 x+5}}\right] \\ & =\lim _{x \rightarrow 2} \frac{9-(2 x+5)}{(x-2)(3+\sqrt{2 x+5})} \\ & =\lim _{x \rightarrow 2} \frac{4-2 x}{(x-2)(3+\sqrt{2 x+5})} \\ & =\lim _{x \rightarrow 2} \frac{2(2-x)}{(x-2)(3+\sqrt{2 x+5})} \\ & =\lim _{x \rightarrow 2} \frac{-2(x-2)}{(x-2)(3+\sqrt{2 x+5})} \\ & =\lim _{x \rightarrow 2} \frac{-2}{3+\sqrt{2 x+5}}=\frac{-2}{3+\sqrt{2(2)+5}} \\ & =\frac{-2}{3+\sqrt{9}}=\frac{-2}{6}=-\frac{1}{3} \\ & \hline \end{aligned}$	51) $\begin{gathered} \lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{x^{2}+1}=\frac{(-1)^{2}+3(-1)+2}{(-1)^{2}+1}=\frac{1-3+2}{1+1} \\ =\frac{0}{2}=0 \end{gathered}$ 52) If $\lim _{x \rightarrow k} f(x)=-\frac{1}{2}$ and $\lim _{x \rightarrow k} g(x)=\frac{2}{3}$ Then $\lim _{x \rightarrow k} \frac{f(x)}{g(x)}=\frac{-\frac{1}{2}}{\frac{2}{3}}=-\frac{1}{2} \times \frac{3}{2}=-\frac{3}{4}$
53) $\begin{aligned} \lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x} & =\lim _{x \rightarrow 0}\left[\frac{\sqrt{x+4}-2}{x} \times \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2}\right] \\ & =\lim _{x \rightarrow 0} \frac{(x+4)-4}{x(\sqrt{x+4}+2)} \\ & =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+4}+2)} \\ & =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+4}+2}=\frac{1}{\sqrt{(0)+4}+2} \\ & =\frac{1}{\sqrt{4}+2}=\frac{1}{4} \end{aligned}$	54) $\begin{gathered} \lim _{x \rightarrow-1} \frac{x^{2}-5 x-6}{x+1}=\lim _{x \rightarrow-1} \frac{(x-6)(x+1)}{x+1}=\lim _{x \rightarrow-1}(x-6) \\ =(-1)-6=-7 \end{gathered}$ $\text { 55) } \begin{aligned} \lim _{x \rightarrow 0} \frac{(x+3)^{-1}-3^{-1}}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{x+3}-\frac{1}{3}}{x}=\lim _{x \rightarrow 0} \frac{\frac{3-(x+3)}{3(x+3)}}{x} \\ =\lim _{x \rightarrow 0} \frac{-x}{3 x(x+3)}=\lim _{x \rightarrow 0} \frac{-1}{3(x+3)} \\ =\frac{-1}{3((0)+3)}=\frac{-1}{9}=-\frac{1}{9} \end{aligned}$
56) If $\lim _{x \rightarrow 1} f(x)=3$ $\lim _{x \rightarrow 1} g(x)=-4$ and $\lim _{x \rightarrow 1} h(x)=-1$ then $\lim \left[\frac{5 f(x)}{}+h(x)\right]=\underline{\lim _{x \rightarrow 1} 5 f(x)}$	57) If $\lim _{x \rightarrow 1} g(x)=-4$ and $\lim _{x \rightarrow 1} h(x)=-1$ then $\begin{aligned} \lim _{x \rightarrow 1} \sqrt{g(x) h(x)} & =\sqrt{\left[\lim _{x \rightarrow 1} g(x)\right]\left[\lim _{x \rightarrow 1} h(x)\right]}=\sqrt{(-4)(-1)} \\ & =\sqrt{4}=2 \end{aligned}$
$\begin{aligned} & \begin{aligned} & \lim _{x \rightarrow 1} f(x) \\ & 2 \lim _{x \rightarrow 1} g(x) \end{aligned}+\lim _{x \rightarrow 1} h(x) \\ = & \frac{5(3)}{2(-4)}+(-1)=\frac{15}{-8}-1=-\frac{15}{8}-1 \\ = & \frac{-15-8}{8}=-\frac{23}{8} \end{aligned}$	58) If $\begin{gathered} \lim _{x \rightarrow 1} f(x)=3 \\ \lim _{x \rightarrow 1} g(x)=-4 \end{gathered}$ and $\lim _{x \rightarrow 1} h(x)=-1$ then $\begin{gathered} \lim _{x \rightarrow 1}[2 f(x) g(x) h(x)]=2\left[\lim _{x \rightarrow 1} f(x)\right]\left[\lim _{x \rightarrow 1} g(x)\right]\left[\lim _{x \rightarrow 1} h(x)\right] \\ =2(3)(-4)(-1)=24 \end{gathered}$

Part from Section 3.3

$$
\begin{aligned}
& \text { (1) } \operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \\
& \operatorname{Lim}_{\theta \rightarrow 0} \frac{\theta}{\operatorname{Sin} \theta}=1 \\
& \text { (2) } \operatorname{Lim}_{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1 \\
& \operatorname{Lim}_{\theta \rightarrow 0} \frac{\theta}{\tan \theta}=1
\end{aligned}
$$

(3) $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0$

Example (17)

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 0} x \cot x & =\operatorname{Lim}_{x \rightarrow 0} \frac{x}{\tan x}=1 \\
\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 7 x}{4 x} & =\frac{0}{0} \\
\lim _{x \rightarrow 0} \frac{\sin 7 x}{4 x} & =\frac{1}{4} \lim _{7 x \rightarrow 0} \frac{7^{\sin 7 x}}{7 x}=\frac{7}{4} \lim _{7 x \rightarrow 0} \frac{\sin 7 x}{7 x} \\
& =\frac{7}{4}(1) \\
& =\frac{7}{4}
\end{aligned}
$$

Note

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0} \frac{\sin m x}{n x}=\frac{m}{n} \quad \lim _{x \rightarrow 0} \frac{\sin 6 x}{2 x}=\frac{6}{2}=3 \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{m x}{\sin n x}=\frac{m}{n} \quad \operatorname{Lim}_{x \rightarrow 0} \frac{8 x}{\sin 6 x}=\frac{8 \div^{2}}{6 \div 2}=\frac{4}{3} \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{\tan m x}{n x}=\frac{m}{n} \quad \operatorname{Lim}_{x \rightarrow 0} \frac{\tan 7 x}{10 x}=\frac{7}{10} \\
& \lim _{x \rightarrow 0} \frac{m x}{\tan n x}=\frac{m}{n} \quad \lim _{x \rightarrow 0} \frac{\frac{3}{2} x}{\tan \left(\frac{5}{12} x\right.}=\frac{\left(\frac{3}{2}\right)}{\left(\frac{15}{12}\right)}=\frac{3}{2} \times \frac{126}{5}=\frac{18}{5} \\
& \lim _{x \rightarrow 0} \frac{\sin (m x)}{\sin (n x)}=\frac{m}{n} \quad \operatorname{Lim}_{x \rightarrow 0} \frac{\sin (4 x)}{\sin (20 x)}=\frac{4 \div 4}{20}=\frac{1}{5} \\
& \lim _{x \rightarrow 0} \\
& \lim _{x \rightarrow 0} \frac{\tan (m x)}{\tan (n x)}=\frac{m}{n} \quad \lim _{x \rightarrow 0} \frac{\tan (3 x)}{\tan (5 x)}=\frac{3}{5} \\
& \lim _{x \rightarrow 0} \\
& \lim _{x \rightarrow 0} \frac{\sin (m x)}{\tan (n x)}=\frac{m}{n} \quad \operatorname{Lim}_{x \rightarrow 0} \frac{\sin (14 x)}{\tan (7 x)}=\frac{14}{7}=2 \\
& \lim _{x \rightarrow 0} \frac{\tan m x}{\sin n x}=\frac{m}{n} \quad \lim _{x \rightarrow 0} \frac{\tan (10 x)}{\sin (2 x)}=\frac{10}{2}=5
\end{aligned}
$$

Example (18)
a)

$$
\begin{aligned}
& \operatorname{Lim}_{\theta \rightarrow 0} \frac{\cos \theta-1}{\sin \theta}=\frac{0}{0} \\
& \lim _{\theta \rightarrow 0} \frac{\frac{\cos \theta-1}{\theta}}{\frac{\sin \theta}{\theta}}=\frac{\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}}{\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}}=\frac{0}{1}=0
\end{aligned}
$$

b)

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 3 x}{5 x^{3}-4 x} & =\frac{0}{0} \\
\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 3 x}{x\left(5 x^{2}-4\right)} & =\lim _{x \rightarrow 0} \frac{\sin 3 x}{x} \cdot \frac{1}{5 x^{2}-4} \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin 3 x}{x}\right) \cdot \lim _{x \rightarrow 0}\left(\frac{1}{5 x^{2}-4}\right) \\
& =\left(\frac{3}{1}\right)\left(\frac{1}{5(0)^{2}-4}\right)=3\left(\frac{1}{0-4}\right) \\
& =3\left(\frac{-1}{4}\right)=-\frac{3}{4}
\end{aligned}
$$

C)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 3 x \sin 5 x}{4 x^{2}} & =\frac{1}{4} \lim \frac{\sin 3 x \cdot \sin 5 x}{x \cdot x} \\
& =\frac{1}{4}\left[\lim _{x \rightarrow 0} \frac{\sin 3 x}{x} \cdot \lim _{x \rightarrow 0} \frac{\sin 5 x}{x}\right] \\
& =\frac{1}{4}\left[\frac{3(5)}{1}\right]=\frac{15}{4}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{150+\tan (30)}{\sin (100)}=\frac{0}{0} \\
& \lim _{0 \rightarrow 0}\left[\frac{150}{\sin (100)}+\frac{\tan (30)}{\sin (106)}\right] \\
& \lim _{0 \rightarrow 0} \frac{150}{\sin (100)}+\lim _{0 \rightarrow 0} \frac{\tan (30)}{\sin (100)} \\
& \frac{15}{10}+\frac{3}{10}=\frac{18 \div^{2}}{10 \div 2}=\frac{9}{5}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta+\tan \varphi}=\frac{0}{0} \\
& \lim _{\theta \rightarrow 0}\left[\frac{\frac{\sin \theta}{\theta}}{\frac{\theta}{\theta}+\frac{\tan \varphi}{\theta}}\right]=\frac{\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}}{\lim _{\theta \rightarrow 0} 1+\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}} \\
&=\frac{1}{1+1}=\frac{1}{2}
\end{aligned}
$$

f)

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\tan x}{\sin x-\cos x}=\frac{1-1}{\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}}=\frac{0}{0} \\
& \lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\tan x}{\sin x-\cos x}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\frac{\sin x}{\cos x}}{\sin x-\cos x} \\
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\frac{\cos x-\sin x}{\cos x}}{\frac{\sin x-\cos x}{1}} \\
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{\cos x} \div \frac{\sin x-\cos x}{1} \\
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{\cos x} \cdot \frac{1}{\sin x-\cos x} \\
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{-(\sin x-\cos x)}{\cos x} \cdot \frac{1}{(\sin x-\cos x)} \\
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{-1}{\cos x}=\frac{-1}{\cos \left(\frac{\pi}{4}\right)} \\
&=\frac{-1}{\frac{1}{\sqrt{2}}}=-1=\frac{1}{\sqrt{2}} \\
&=-1 \cdot \frac{\sqrt{2}}{1} \\
&=-\sqrt{2}
\end{aligned}
$$

g)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x}=\frac{0}{0} \\
& \begin{aligned}
\operatorname{Lim}_{x \rightarrow 0} \frac{x \cdot \operatorname{Sin}\left(x^{2}\right)}{x \cdot x} & =\lim _{x \rightarrow 0} \frac{x \sin \left(x^{2}\right)}{x^{2}} \\
& =\lim _{x \rightarrow 0} x \cdot \lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} \frac{\sin \left(x^{2}\right)}{x^{2}} \\
& =0.1 \\
& =D
\end{aligned}
\end{aligned}
$$

h)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 3} \frac{\sin (x-3)}{(x-3)}=\frac{0}{0} \\
& \operatorname{Lim}_{x \rightarrow 3 \rightarrow 0} \frac{\sin (x-3)}{(x-3)}=1
\end{aligned}
$$

g)

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (\cos x)}{\cos (x)}=\frac{0}{0} \\
& \operatorname{Lim}_{x \rightarrow \frac{\pi}{2}} \frac{\sin (\cos x)}{\cos x}=1 \\
& \cos x \rightarrow \cos (\pi / 2) \\
& \cos x \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& * \lim _{x \rightarrow 0} \cos \sin (\sin x) \\
& \lim _{x \rightarrow 0} \frac{\sin (\sin x)}{(\sin x)}=\frac{0}{0} \\
& \lim _{\sin x \rightarrow \sin (0)} \frac{\sin (\sin x)}{(\sin x)} \\
& \lim _{\sin x \rightarrow 0} \frac{\sin (\sin x)}{(\sin x)}=1
\end{aligned}
$$

$$
\text { * } \begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right)-1}{x^{2}}=\frac{0}{0} \\
& \lim _{x^{2} \rightarrow 0^{2}} \frac{\cos \left(x^{2}\right)-1}{x^{2}} \\
& \lim _{x^{2} \rightarrow 0} \frac{\cos \left(x^{2}\right)-1}{x^{2}}=0
\end{aligned}
$$

Scanned by CamScanner
h)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}+x-2}=\frac{0}{0} \\
& \lim _{x \rightarrow 1} \frac{\sin (x-1)}{(x-1)(x+2)} \\
& \lim _{x \rightarrow 1} \frac{\sin (x-1)}{(x-1)} \cdot \frac{1}{x+2} \\
& \lim _{x \rightarrow 1} \frac{\sin (x-1)}{(x-1)} \cdot \lim _{x \rightarrow 1} \frac{1}{x+2} \\
& \\
& 1 \cdot\left(\frac{1}{1+2}\right)=1 \cdot \frac{1}{3}=\frac{1}{3}
\end{aligned}
$$

Note

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{\tan (x-a)}{(x-a)}=1 \\
& \lim _{x \rightarrow a} \frac{(x-a)}{\tan (x-a)}=1 \\
& \lim _{x \rightarrow a} \frac{(x-a)}{\sin (x-a)}=1 \\
& \lim _{x \rightarrow a} \frac{\sin (x-a)}{(x-a)}=1 \\
& \lim _{x \rightarrow a} \frac{\cos (x-a)-1}{(x-a)}=0
\end{aligned}
$$

Exampl (19)

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{\tan \left(x^{2}-4\right)}{3 x^{2}-12}=0 \\
& \lim _{x \rightarrow 2} \frac{\tan \left(x^{2}-4\right)}{3\left(x^{2}-4\right)}=\frac{1}{3} \lim _{\substack{x \rightarrow 2 \\
x^{2} \rightarrow 2^{2} \\
x^{2} \rightarrow 4 \\
\left(x^{2}-4\right) \rightarrow 0}} \frac{\tan \left(x^{2}-4\right)}{\left(x^{2}-4\right)}=\frac{1}{3}(1)=\frac{1}{3} \\
& \lim _{t \rightarrow 2} \frac{5 t^{2}-10 t}{\tan (t-2)}=\frac{0}{0} \\
& \lim _{t \rightarrow 2} \frac{5 t(t-2)}{\tan (t-2)}=\lim _{t \rightarrow 2} \frac{(5 t)(t-2)}{(1) \tan (t-2)} \\
& =\lim _{t \rightarrow 2}\left(\frac{5 t}{1}\right) \cdot \lim _{t \rightarrow 2} \frac{(t-2)}{\tan (t-2)} \\
& =5(2) \cdot \lim _{(t-2) \rightarrow 0} \frac{(t-2)}{\tan (t-2)}=10(1)=10 \\
& \lim _{\theta \rightarrow-\frac{5}{2}} \frac{\sin (2 \theta+5)}{12 \theta+30}=\frac{0}{0} \\
& \lim _{\theta \rightarrow-\frac{5}{2}} \frac{\sin (2 \theta+5)}{\sigma(2 \theta+5)} \\
& \frac{1}{6} \lim _{\theta \rightarrow-\frac{5}{2}} \frac{\sin (2 \theta+5)}{(2 \theta+5)} \\
& \frac{1}{6} \lim _{\substack{2 \theta \rightarrow-5 \\
(2 \theta+5) \rightarrow 0}} \frac{\sin (2 \theta+5)}{(2 \theta+5)}=\frac{1}{6}(1)=\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{1-\cos ^{2} \theta}{\sin \left(\sin ^{2} \theta\right)}=\frac{0}{0} \\
& \operatorname{Lim}_{\theta \rightarrow 0} \frac{\left(\sin ^{2} \theta\right)}{\sin \left(\sin ^{2} \theta\right)}=1 \\
& \sin \theta \rightarrow \sin (0)=0 \\
& \sin ^{2} \varphi \rightarrow 0 \\
& \operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin (1-\cos \theta)}{1-\cos ^{2} \theta}=\frac{0}{0} \\
& \lim _{\theta \rightarrow 0} \frac{\sin (1-\cos \theta)}{(1-\cos 6)(1+\cos \theta)} \\
& \lim _{\theta \rightarrow 0} \frac{\sin (1-\cos \theta)}{(1-\cos \theta)} \cdot \frac{1}{1+\cos \theta} \\
& \lim _{0 \rightarrow 0} \frac{\sin (1-\cos \theta)}{(1-\cos \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{1}{1+\cos \theta} \\
& \operatorname{cic}_{\substack{(1) \rightarrow \cos (\theta)=1 \\
\cos \theta \rightarrow 1 \\
\cos \theta \rightarrow 1}} 1 \cdot\left(\frac{1}{1+\cos \theta}\right)=1\left(\frac{1}{1+1}\right)=1\left(\frac{1}{2}\right) \\
& \begin{aligned}
& \cos \theta \rightarrow 1 \\
&= 1 \cdot\left(\frac{1}{1+\cos \theta}\right)=1\left(\frac{1}{1+1}\right)=1\left(\frac{1}{2}\right)
\end{aligned} \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\cos (\theta)-1}{2 \theta^{2}}=\frac{\cos (0)-1}{2(0)^{2}}=\frac{1-1}{0}=\frac{0}{0} \\
& \lim _{\theta \rightarrow 0} \frac{\cos (\theta)-1}{2 \theta^{2}} \cdot \frac{\cos (\theta)+1}{\cos (\theta)+1} \\
& \lim _{\theta \rightarrow 0} \frac{(\cos (\theta)-1)(\cos (\theta)+1)}{2 \theta^{2}(\cos (\theta)+1)} \\
& \lim _{\theta \rightarrow 0} \frac{\cos ^{2}(6)-1^{2}}{2 \sigma^{2}(\cos (6)+1)} \\
& \lim _{\theta \rightarrow 0} \frac{\cos ^{2}(6)-1}{2 \theta^{2}(\cos (6)+1)}=\lim _{\theta \rightarrow 0} \frac{-\sin ^{2}(\sigma)}{2 \theta^{2}(\cos \theta+1)} \\
& \frac{1}{2} \lim _{\theta \rightarrow 0} \frac{-\sin ^{2}(\theta)}{\theta^{2}} \cdot \frac{1}{\cos \theta+1} \\
& \frac{1}{2} \lim _{\theta \rightarrow 0} \frac{-\sin ^{2}(\theta)}{\theta^{2}} \cdot \lim _{\theta \rightarrow 0} \frac{1}{\cos \theta+1} \\
& \begin{aligned}
\frac{-1}{2} \lim _{\theta \rightarrow 0}\left[\frac{\sin ^{2}(6)}{\theta}\right]^{2} \cdot \lim _{\theta \rightarrow 0} \frac{1}{\cos \theta+1} & =\frac{-1}{2}(1) \cdot \frac{1}{\cos (0)+1} \\
& =\frac{-1}{2} \cdot \frac{1}{2}=\frac{-1}{4}
\end{aligned}
\end{aligned}
$$

