Assessment
Chemistry: Lesson 08

Question 1

Which of these is an "empirical formula"?
A.C2H6
B. H 2 O 2
C.NO2
D.N2O4

The empirical formula for C 6 H 24 is \qquad .
A.C2H12
B. CH 18
C.C3H12
D.CH4

Molecular shapes are shown with \qquad formulas.
A.structural
B.molecular
C.empirical
D.chemical

All of the following elements are diatomic except \qquad .

A.Hydrogen

B.Nitrogen

C.Sulfur
D.Chlorine

Four of the diatomic elements are in the family known as the \qquad .
A.Alkali metals
B.Alkaline earth metals
C.Chalcogens
D.Halogens

In ionic bonds, electrons are
A.transferred to the metal
B.transferred to the nonmetal
C.shared between two nonmetals
D.shared between two metals

A single covalent bond equals \qquad shared electrons.
A. 1
B. 2
C. 3
D. 4

Sodium (Na) forms covalent bonds.

A.True
B.False

Elements and compounds are classified as:
A.mixtures
B.ionic substances
C.pure substances
D.molecular substances

Which pair of elements should form an ionic compound?
A. Mg and Ca
B.K and S
C.N and O
D.P and Cl

Assessment
Chemistry: Lesson 09

Question 1

Calcium and oxygen in a compound should have the formula:
A.Ca2O
B. CaO
C. CaO 2
D. Ca 2 O 2

Question 2

Carbon tetrafluoride should have the formula \qquad .

A.CF4

B.CF
C.C4F

D.CF2

Question 3

Aluminum with nitrogen is a compound with the formula \qquad .

A.Al3N3

B.Al3N
C.AlN3
D.AlN

Which pair of elements should form an ionic compound?
$\mathrm{A} . \mathrm{Mg}$ and Ca
B.K and S
C.N and O
D.P and Cl

Question 5

Na 2 O is the formula for which compound?
A.sodium oxide
B.sodiu (I) oxide
C.sodium(II) oxide
D.sodium oxate

Question 6

The correct name for the acid HI is \qquad acid.
A.hydrogen iodate
B.Hydroiodic
C.hydrogen iodite
D.hydrogen iodide

Question 7

The compound H2S is named "sulfuric acid".
A.True
B.False (Hydrosulfuric Acid)

Question 8

SO42- is a polyatomic ion.
A.True
B.False

Which pair of elements should form a molecular compound?
A.Na and Br
B. Fe and Cl
C.S and O
D.K and Ca

Question 10

Which of the following is a polyatomic ion?
A.S2-
B.O2
C.OH-
D.Al3+

Assessment

Chemistry: Lesson 10

Question 1

One mole of gold $(M M=197)$ has the same mass as one mole of carbon $(M M=12)$.
A.True
B.False

Question 2

Potassium's atomic number is 19 and its atomic weight is 39.1 , so its molar mass is \qquad .
A. 19
B. 20.1
C. 39.1
D. 78.2

Element X as a molar mass of 30 , and element Y has a molar mass of 50. Which has the greater number of moles?
A. 30 g of X
B. 50 g of X
C. 30 g of Y
D. 50 g of Y

Question 4

160 g or an element with a molar mass of $40=$ \qquad moles?
A. 0.25
B. 4
C. 120
D. 200

Question 5

If 50 g of one element $=2.5$ moles, then 50 g of every element $=2.5$ moles.
A. True
B. False

Sodium has a molar mass of $23.0 \mathrm{~g} / \mathrm{mol}$, and lead has a molar mass of $207.2 \mathrm{~g} / \mathrm{mol}$, so 3.5 moles of sodium has the same number of atoms as 3.5 moles of lead.
A.True
B.False

Which of the following would have the higher number of atoms in a 100 g sample?
A.copper with a molar mass of $63.5 \mathrm{~g} / \mathrm{mol}$
B.calcium with a molar mass of $40.1 \mathrm{~g} / \mathrm{mol}$
C.aluminum with a molar mass of $27.0 \mathrm{~g} / \mathrm{mol}$
D.sodium with a molar mass of $23.0 \mathrm{~g} / \mathrm{mol}$

Question 8

An actual mass of 120 g of an element whose molar mass is $40 \mathrm{~g} / \mathrm{mol}$ would be \qquad atoms?
A.2.007 x 1023
B.1.8066 x 1023
C.2.007 x 1024
D.1.8066 x 1024

The equation for finding the number of moles is \qquad .
A. $n=m / M M$
B. $m=n / M M$
C. $n=m \quad{ }^{\times} M M$
D. $M M=n / m$

Question 10

How many atoms of hydrogen are in a molecule of (NH4)2CO3?
A. 2
B. 4
C. 6
D. 8

Question 11

Avogadro's number is \qquad .
A.2.066 $\times 1023$
B.6.022 $\times 1023$
C. 6.025×1024
D.6.023 \times_{1022}

Question 12

In 4.5 moles of K 2 S , there are \qquad moles of K ions.
A.9.0
B.4.5
C.13.5
D.18.0

Assessment

Chemistry: Lesson 11

Question 1

The formula $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ has a molar mass of $\mathrm{g} / \mathrm{mol}$.
A.70.1
B.102.1
C.116.1
D.164.1

Question 2

The formula $3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ has a total of \qquad hydrogens.
A. 8
B. 24
C. 16
D. 22

Question 3

For $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$, with a molar mass of $88.0 \mathrm{~g} / \mathrm{mol}$, carbon's percentage composition is \qquad
A. 40.9%
B.54.5\%
C.62.5\%
D.95.5\%

Question 4

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ has a molar mass of $96.0 \mathrm{~g} / \mathrm{mol}$. Nitrogen's composition is 29.2%, hydrogen's is 8.3%, and carbon's is 12.5%. What is the percentage composition for oxygen?
A.36\%
B.37.5\%
C.48\%
D.50\%

Question 5

Which compound has the highest percentage composition of carbon?
A. CH_{4}
B. $\mathrm{C}_{3} \mathrm{H}_{8}$
C. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$
D. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$

Question 6

A compound has an empirical formula of NO_{2} and a molar mass of 138 , so its molecular formula is \qquad .
A. NO_{2}
B. $\mathrm{N}_{2} \mathrm{O}_{4}$
C. NO_{3}
D. $\mathrm{N}_{3} \mathrm{O}_{6}$

Question 7

$\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{6}$ have the same empirical formula.

A.True
B.False

Question 8

The empirical formula for $\mathrm{C}_{4} \mathrm{H}_{10}$ is CH_{5}.
A.True
B.False

If a compound has an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$ and a molar mass of $150 \mathrm{~g} / \mathrm{mol}$, its molecular formula is $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$.
A.True
B.False

Question 10

The letters "s", "I", "g", and "aq" are used to indicate the states of substances in the chemical equations.

A.True

B.False

Question 11

After balancing the equation: $\mathrm{K}+\mathrm{O}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{O}$ the coefficient for K will be \qquad .
A. 1
B. 2
C. 3
D. 4

Assessment

Chemistry:
Lesson13
$\mathrm{C} 3 \mathrm{H} 8+5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$
the molar masses: $\mathrm{C} 3 \mathrm{H} 8=44.0, \mathrm{O} 2=32.0, \mathrm{CO} 2=44.0, \mathrm{H} 2 \mathrm{O}=18.0$ 10 mol O 2 with an excess of C 3 H 8 should produce ___ mol CO2.
A. 3
B. 4
C. 5
D. 6
$\mathrm{C} 3 \mathrm{H} 8+5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$
the molar masses: $\mathrm{C} 3 \mathrm{H} 8=44.0, \mathrm{O} 2=32.0, \mathrm{CO} 2=44.0, \mathrm{H} 2 \mathrm{O}=18.0$
10 mol O 2 with an excess of C 3 H 8 should produce \qquad mol CO2.

- $\mathrm{C} 3 \mathrm{H} 8+\underset{\substack{ \\10 \text { mole }} \underset{\text { ? Mole }}{5 \mathrm{O} 2 \rightarrow}}{\substack{3 \mathrm{CO} 2} 4 \mathrm{H} 2 \mathrm{O}}$
- Soln:
- Step 1: no need "the numbers are in moles"
- Step 2: 5O2 $\rightarrow \quad 3 \mathrm{CO} 2$ (from equation)
$10 \mathrm{O} 2 \rightarrow \quad \mathrm{XCO} 2$
$\mathrm{X}=6$ moles CO 2
Step 3: No need (the answer is in moles)
$\mathrm{C} 3 \mathrm{H} 8+5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$
the molar masses: $\mathrm{C} 3 \mathrm{H} 8=44.0, \mathrm{O} 2=32.0, \mathrm{CO} 2=44.0, \mathrm{H} 2 \mathrm{O}=$ 18.0
44.0 g C 3 H 8 with an excess of O 2 yields \qquad g CO2.
A.44.0
B. 88.0
C. 132
D. 176
$\mathrm{C} 3 \mathrm{H} 8+5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$
the molar masses: $\mathrm{C} 3 \mathrm{H} 8=44.0, \mathrm{O} 2=32.0, \mathrm{CO} 2=44.0, \mathrm{H} 2 \mathrm{O}=18.0$
44.0 g C 3 H 8 with an excess of O 2 yields \qquad g CO2.
- $\mathrm{C} 3 \mathrm{H} 8+5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$ 44 g
? G
- Soln:
- Step 1: Convert grams to moles
- $44 \mathrm{~g} \mathrm{C} 3 \mathrm{H} 8 / 44 \mathrm{~g} / \mathrm{mole}=====1$ mole C3H8
- Step 2: $1 \mathrm{C} 3 \mathrm{H} 8 \rightarrow 3 \mathrm{CO} 2$ (from equation)
$1 \mathrm{C} 3 \mathrm{H} 8 \quad \rightarrow \quad \mathrm{XCO} 2$

$\mathrm{X}=3$ moles CO 2

Step 3: convert moles to grams CO2
3 moles CO2 $* 44 \mathrm{~g} \mathrm{CO} 2 /$ mole $======132 \mathrm{~g}$
$\mathrm{C} 3 \mathrm{H} 8+5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$
the molar masses: $\mathrm{C} 3 \mathrm{H} 8=44.0, \mathrm{O} 2=32.0, \mathrm{CO} 2=44.0, \mathrm{H} 2 \mathrm{O}=$ 18.0

A yield of 66 g CO 2 should also yield \qquad g H2O.
A. 18
B. 36
C. 54
D. 72
$\mathrm{C} 3 \mathrm{H} 8+5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$
the molar masses: $\mathrm{C} 3 \mathrm{H} 8=44.0, \mathrm{O} 2=32.0, \mathrm{CO} 2=44.0, \mathrm{H} 2 \mathrm{O}=18.0$
A yield of 66 g CO 2 should also yield \qquad g H2O.

- $\mathrm{C} 3 \mathrm{H} 8+5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$

$$
66 \mathrm{~g} \quad ? \mathrm{~g}
$$

- Soln:
- Step 1: Convert grams to moles
- $66 \mathrm{~g} \mathrm{CO} 2 / 44 \mathrm{~g} / \mathrm{mole}=====1.5 \mathrm{~mole} \mathrm{CO} 2$
- Step 2: $3 \mathrm{CO} 2 \rightarrow 4 \mathrm{H} 2 \mathrm{O}$ (from equation)
$1.5 \mathrm{CO} 2 \rightarrow \mathrm{XH} 2 \mathrm{O}$
$\mathrm{X}=2$ moles H 2 O
Step 3: convert moles to grams H 2 O
2 moles H2O * $18 \mathrm{~g} \mathrm{H} 2 \mathrm{O} / \mathrm{mole}======36 \mathrm{~g}$

Question 4

$4 \mathrm{Al}+3 \mathrm{O} 2 \rightarrow 2 \mathrm{Al} 2 \mathrm{O} 3$
the molar masses: $\mathrm{Al}=27.0, \mathrm{O} 2=32.0, \mathrm{Al} 2 \mathrm{O} 3=102.0$
108 g Al needs ___ g 2 without either one being a limiting reactant.
A.96.0
B. 102.0
C. 108.0
D.114.0
$4 \mathrm{Al}+3 \mathrm{O} 2 \rightarrow 2 \mathrm{Al} 2 \mathrm{O} 3$
the molar masses: $\mathrm{Al}=27.0, \mathrm{O} 2=32.0, \mathrm{Al2O} 3=102.0$

- ${ }^{108} \mathrm{Al}$ Al needs $3 \mathrm{O}_{2}^{\mathrm{g}} \xrightarrow{\mathrm{O} 2}$ withoyteither one being a limiting reactant.

108 g ?g

- Soln:
- Step 1: Convert grams to moles
- $108 \mathrm{~g} \mathrm{Al} / 27 \mathrm{~g} / \mathrm{mole}=====4 \mathrm{~mole} \mathrm{Al}$
- Step 2: $4 \mathrm{Al} \rightarrow 3 \mathrm{O} 2$ (from equation)
$4 \mathrm{Al} \rightarrow \mathrm{XO} 2$
$\mathrm{X}=3$ moles O 2
Step 3: convert moles to grams O2
$3 \mathrm{moles} \mathrm{O} 2 * 32 \mathrm{~g} \mathrm{O} 2 / \mathrm{mole}======96 \mathrm{~g} \mathrm{O} 2$

$4 \mathrm{Al}+3 \mathrm{O} 2 \rightarrow 2 \mathrm{Al} 2 \mathrm{O} 3$

the molar masses: $\mathrm{Al}=27.0, \mathrm{O} 2=32.0, \mathrm{Al} 2 \mathrm{O} 3=102.0$ 54.0 g Al with an excess of O 2 yields \qquad g Al2O3.
A. 102.0
B. 204.0
C. 76.5
D.51.0
$4 \mathrm{Al}+3 \mathrm{O} 2 \rightarrow 2 \mathrm{Al} 2 \mathrm{O} 3$
the molar masses: $\mathrm{Al}=27.0, \mathrm{O} 2=32.0, \mathrm{Al} 2 \mathrm{O} 3=102.0$

- $54 . \mathrm{Al}^{\mathrm{Al}}$ with an exgess of O 2 yjeld $2 \mathrm{Al}_{3} \xrightarrow{\mathrm{~g} \mathrm{Al2O} 3 . .}$

54 g
?g

- Soln:
- Step 1: Convert grams to moles
- $54 \mathrm{~g} \mathrm{Al} / 27 \mathrm{~g} / \mathrm{mole}=====2 \mathrm{~mole} \mathrm{Al}$
- Step 2: $4 \mathrm{Al} \rightarrow 2 \mathrm{Al} 2 \mathrm{O} 3$ (from equation)
$2 \mathrm{Al} \rightarrow \mathrm{XAl2O} 3$
$\mathrm{X}=1$ moles Al2O3
Step 3: convert moles to grams Al2O3
$1 \mathrm{moles} \mathrm{Al} 2 \mathrm{O} 3 * 102 \mathrm{~g} \mathrm{Al2O} 3 / \mathrm{mole}======102 \mathrm{~g} \mathrm{Al} 2 \mathrm{O} 3$
$4 \mathrm{Al}+3 \mathrm{O} 2 \rightarrow 2 \mathrm{Al} 2 \mathrm{O} 3$
the molar masses: $\mathrm{Al}=27.0, \mathrm{O} 2=32.0, \mathrm{Al} 2 \mathrm{O} 3=102.0$
To make $51.0 \mathrm{~g} \mathrm{Al2O} 3$, we need \qquad g Al.
A. 108.0
B.51.0
C. 27.0
D. 20.0
$4 \mathrm{Al}+3 \mathrm{O} 2 \rightarrow 2 \mathrm{Al} 2 \mathrm{O} 3$
the molar masses: $\mathrm{Al}=27.0, \mathrm{O} 2=32.0, \mathrm{Al2O} 3=102.0$ To make $51.0 \mathrm{~g} \mathrm{Al2O3}$, we need \qquad g Al .
- $4 \mathrm{Al}+3 \mathrm{O} 2 \rightarrow 2 \mathrm{Al} 2 \mathrm{O} 3$
?g
51g
- Soln:
- Step 1: Convert grams to moles
- $51 \mathrm{~g} \mathrm{Al2O} 3 / 102 \mathrm{~g} / \mathrm{mole}=====0.5 \mathrm{~mole} \mathrm{Al2O} 3$
- Step 2: 4Al \rightarrow 2Al2O3 (from equation) $\mathrm{XAl} \longrightarrow 0.5 \mathrm{Al} 2 \mathrm{O} 3$

$$
\mathrm{X}=1 \text { moles } \mathrm{Al}
$$

Step 3: convert moles to grams Al 1 moles Al $* 27 \mathrm{~g} \mathrm{Al} / \mathrm{mole}======27 \mathrm{~g} \mathrm{Al}$

Stoichiometry is a comparison of quantities in reactions.
A.True
B.False

Question 8

$\mathrm{C} 3 \mathrm{H} 8+5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$
If we started with 2 mol C 3 H 8 and $8 \mathrm{~mol} \mathrm{O} 2, \mathrm{C} 3 \mathrm{H} 8$ is the limiting reactant.

Soln
Step 1: No need The numbers are in moles
Step 2: convert moles reactants to mole products
$\quad \mathrm{C} 3 \mathrm{H} 8<3 \mathrm{CO} 2$
$2 \mathrm{C} 3 \mathrm{H} 8 \quad \mathrm{XCO} 2$

$\mathrm{X}=6$ moles CO 2 \quad| $5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2$ | |
| ---: | :--- |
| 8 O 2 | $\rightarrow \mathrm{XCO} 2$ |
| $\mathrm{~L} . \mathrm{R}$ | |

A.True

Question 9

Percent yield $=($ theoretical yield $/$ actual yield $) \times 100$.
A.True
B.False

Mass of a reactant : mass of a product cannot be compared without changing the masses to moles.
A.True
B.False

Assessment
Chemistry: Lesson
12

How many bonding pairs of electrons are in one molecule of ammonia (NH 3)?
A) 2
B) 3
C) 1
D) 5
E) 0

[^0]How many bonding pairs of electrons are in one molecule of water (H2O)?
A) 0
B) 1
C) 2
D) 4
E) 6

[^1]How many lone pairs are around the central atom in the ammonium ion?
A) 1
B) 4
C) 0
D) 16
E) 12

[^2]How many lone pairs of electrons are in sulfur atom in SO2?
A) 2
B) 3
C) 1
D) 6
E) 0

[^3]The patterns for electronegativity in the periodic table are the same as the patterns for ionization energy.
A. True
B.False

The most electronegative element is fluorine.
A.True
B.False

Which is the strongest bond?
A. $\mathrm{C}-\mathrm{H}$
B.C - C
C.C $=\mathrm{C}$
D. $\mathrm{C} \equiv \mathrm{C}$

Long bonds are usually \qquad .

A.Strong

B.Weak
C.Triple
D.Stable

Which should be the shortest bond?
A. C - C
B. $\mathrm{C} \equiv \mathrm{C}$
$\mathrm{C} . \mathrm{O}=\mathrm{O}$
D. $C=C$

Triple bonds tend to be \qquad .
A.short and weak
B.long and weak
C.long and strong
D.short and strong

[^0]: **Element 117 is currently under review by IUPAC.

[^1]: **Element 117 is currently under review by IUPAC.

[^2]: **Element 117 is currently under review by IUPAC.

[^3]: ${ }^{* *}$ Element 117 is currently under review by IUPAC.

