Student ID #:

Question 1 (100 points):

Apply Biot-Savart law and Calculate the differential magnetic field intensity at point A (2, 3, -2) due to a differential length of conductor, 2π (-2ax + 2ay - az) m, carrying a current of IµA, if the differential length is placed at point B (1, 3, 2). Al wegnetic will intensity

Islamic University
Faculty of Engineering
Department of
Electrical Engineering

الجامعة الإسلامية كلية الهندسة قسم الهندسة الكهرباتية

EE 282 - ELECTROMAGNETIC FIELD THEORY

Fall Semester 2017 - 2018

Quiz # 04

Quiz Date: December 17th, 2017; Quiz Duration: 25 minutes

Student's Full Name:		
Student ID #:_	Section #:1052	Signature

Instructions:

- · Write your student ID number on the top of each page.
- · Write the solution in the space provided under each question.
- · Show all the steps of your calculations.
- Bring your own Calculators, use of mobile phone as calculators and sharing of calculators are strictly NOT allowed.

Question No.	Points Assigned	Points Awarded
1. [CO_6, PI_5_25, SO_5]	100	95
Total	100	(95)
	1	(100)

Instructor's Full Name	Dr. Khawaja Bilal Mahmood
Signature	A
	(3)

The total flux:

-314.159 #24458 -102.04 KN 10204

Mistehus

Student ID #:

Question 1(30 + 30 + 30 + 10) = 100 points:

The flux density within the cylindrical volume bounded by r = 5m, z = 0 and z = 2m is given by: $\vec{D} = 30e^{-r}a_r - 2z a_z C/m^2$. What is the total outward flux crossing the surface of the cylinder?

The total outward flux Bue crossing the TOD:

ds= rdrdo az

D. ds = -22 r dxdd az

(-2=xdrdp=

2(2) [2]5 [0]2# = -314.159

* The total outward * flux cossing the Bottom:

ds = vdrdp-ax

D. ds = - 22 rdrd (-a)=

60.ds = \$ f /2 zvdrdp = 314450

Islamic University
Faculty of Engineering
Department of
Electrical Engineering

الجامعة الإسلامية كلية الهندسة قسم الهندسة الكهربانية

EE 282 – ELECTROMAGNETIC FIELD THEORY

Fall Semester 2017 - 2018

Quiz # 03

Quiz Date: November 23rd, 2017; Quiz Duration: 25 minutes

- · Write your student ID number on the top of each page.
- · Write the solution in the space provided under each question.
- · Show all the steps of your calculations..
- Bring your own Calculators, use of mobile phone as calculators and sharing of calculators are strictly NOT allowed.

Question No.	Points Assigned	Points Awarded
1. [CO_3, PI_5_23, SO_5]	100	76+5
Tr. d. I	100	
Total	100	/ ts+s) 2/ 60
		100 100

Instructor's Full Name	Dr. Khawaja Bilal Mahmood
Signature	9204
	130

Islamic University in Madinah, Faculty of Engineering, Electrical Engineering Department EE 282 - Quiz #02 - Fall Semester 2017 - 2018

Student ID #: Question 1 (50 + 50) = 100 points:

- a) A uniform line charge, infinite in extent with ρ_L = 20nC/m lies along the z-axis. Find the \vec{E} at (6, 8, 3)?
- b) A charge of 1C is at (2, 0, 0). What charge must be placed at (-2, 0, 0) which will make y component of the total \vec{E} zero at point (1, 2, 2)?

$$\frac{2}{27} + \frac{2Q_1}{70.001} = 0 \qquad \frac{2Q_2}{70.001} = \frac{2}{27} \qquad Q_2 = \frac{2}{27} \times \frac{70.00}{2}$$

الجامعة الإسلامية كلية الهندسة قسم الهندسة الكهريانية

EE 282 - ELECTROMAGNETIC FIELD THEORY

Fall Semester 2017 - 2018

Ouiz # 02

Quiz Date: October 26th, 2017; Quiz Duration: 25 minutes

Instructions:

- · Write your student ID number on the top of each page.
- Write the solution in the space provided under each question.
- Show all the steps of your calculations.
- Bring your own Calculators, use of mobile phone as calculators and sharing of calculators are strictly NOT allowed.

Question No.	Points Assigned	Points Awarded
. [CO_2, PI_1_46, SO_1]	50 + 50 = 100	loo
Total	100	(100)

Instructor's Full Name	Dr. Khawaja Bilal Mahmood
Signature	STEND
	113

30

b) Consider a <u>Spherical co-ordinate system</u> and <u>Calculate</u> the <u>volume of a sphere</u> of radius R using integration.

dr= rardedq = [[]] R mistales in order of limits | in fruits (R3 (-cos e)] 27 dp = R3 [[-cos211-(-coso)] dp $= \frac{R^3}{3!} \int_0^{\pi} (1+1) d\phi = \frac{2R^3}{2!} \phi \Big]_0^{\pi}$ be 47R3 hot 2

Student ID #: __ Question 1(50 + 50) = 100 points:

 a) Consider a Cartesian co-ordinate system, where three points A(3, -2, 1), B(-3, -3, 5) and C(2, 6, -4) are given.

Find:

a-1) Unit vector from B to A.

a-2) The distance from B to C.

a-3) The vector from A to the midpoint of the straight line joining B to C.

= 6.82 ax 10.14 ay -0.58 az

Islamic University Faculty of Engineering Department of Electrical Engineering

EE 282 - ELECTROMAGNETIC FIELD THEORY

Fall Semester 2017 - 2018

Quiz#01

Quiz Date: October 05th, 2017; Quiz Duration: 25 minutes

Student's Full Name: Student ID #: Section #:1052 Signature:

Instructions:

- Write your student ID number on the top of each page.
- Write the solution in the space provided under each question.
- Show all the steps of your calculations.
- Bring your own Calculators, use of mobile phone as calculators and sharing of calculators are strictly NOT allowed.

Question No.	Points Assigned	Points Awarded
. [CO_1, PI_1_62, SO_1]	50 + 50 = 100	40+30 00
Total	100	6

Instructor's Full Name	Dr. Khawaja Bilal Mahmood
Signature	RAN
	(25)