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Preface

There is an element of truth in the old saying that the Euler textbook
Introductio in Analysin Infinitorum (Lausannae, 1748) was the first great
calculus textbook, and that all elementary calculus textbooks published
since that time have been copied from Euler or have been copied from
books that were copied from Euler. Euler, the greatest mathematician
of his day and in many respects the greatest mathematician of all time,
held sway when, except where the geometry of Euclid was involved, it
was not the fashion to try to base mathematical work upon accurately
formulated basic concepts. Problems were the important things, and
meaningful formulations of axioms, postulates, definitions, hypotheses,
conclusions, and theorems either were not written or played minor roles.

Through most of the first half of the twentieth century, elementary
textbooks in our subject taught unexplained but “well motivated” intui-
tive ideas along with their problems. Enthusiasm for this approach to
calculus waned when it was realized that students were not nourished by
stews in which problems, motivations, fuzzy definitions, and fuzzy theo-
rems all boiled together while something approached something else with-
out ever quite getting there. About the middle of the twentieth century,
precise formulations of basic concepts began to occupy minor but increas-
ingly important roles.

So far as calculus is concerned, this book attaches primary importance
to basic concepts. These concepts comprise the solid foundation upon
which advanced as well as elementary applications of calculus are based.
Applications, including those that have great historical interest, occupy
secondary roles. With this shift in our emphasis, we can remove the
mystery from old mathematics and learn modern mathematics when we
sometimes spend a day or two studying basic concepts and attaining
mastery of ideas, language, and notation that are used. The mathe-
matical counterparts of hydrogen and electrons are important, and we
study them before trying to construct the mathematical counterparts of
carbohydrates and television receivers.

This book contains just 76 sections, of which only a half dozen can be
omitted without destroying the continuity of the course. In a three-
term course meeting thrice weekly for fifteen weeks each term, times for
reviews, tests, and occasional excursions remain when two sections are
covered each week.

With few or no exceptions, each section presents each student an oppor-
tunity to make a thoroughly sound investment of time that will pay divi-
dends in personal satisfaction, intellectual enlightenment, and scientific
power. The material of the section is guaranteed to be worthy of study,
it being stoutly maintained that nobody should study inept material.
Each student is expected to read the text and problems of each section
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vi Preface

as carefully as an alert physicist reads an account of a newly developed
nuclear reaction, and to learn as much as he can. In most cases a reason-
able investment of time can produce satisfactory understanding of the
text as well as solutions of several of the problems at the end of the sec-
tion. Thus average students can make satisfactory progress. In some
cases it is an almost superhuman task to digest all of the problems and
remarks at the end of a section before additional mathematics has been
studied. Thus superior students have ample opportunities to acquire
large amounts of additional information and skill.

To a considerable extent, this book is a book about mathematics as
well as a mathematics textbook that teaches formulas and procedures.
The historical and philosophical aspects of our subject are not neglected.
The text, problems, and remarks frequently give students quite unusual
opportunities and incentives to think and to become genuine authorities
on developments of ideas, terminologies, notations, and theories. The
book strives to produce thoughtful articulate and perhaps even some-
what sophisticated students who will find that their course in calculus
gives them admirable preparation for intellectual pursuits. It is fre-
quently said that calculus textbooks contain so little of the spirit and con-
tent of modern mathematics that they do not enable students to decide
whether they have the interests and the aptitudes required for life-long
careers in pure mathematics or in another science in which mathematics
plays a major role. Hopefully, this book does.

The first third of the book contains all or nearly all of the information
about analytic geometry, vectors, and calculus that students normally
need in their introductory full-year college and university courses in
physics. One distinguishing feature of the book is the early introduc-
tion and continued use of vectors in three-dimensional space. These vec-
tors simplify, clarify, and modernize our mathematics and, at the same
time, make our course more interesting to teachers and vastly more inter-
esting and immediately useful to students. Modern meaningful defi-
nitions and terminologies of the calculus are used, but we retain and
explain the standard notations so students can be prepared to live in the
parts of the world outside their own calculus classrooms.

The logical structure of the book should be explained. We make no
effort to tell what points, lines, and planes are; we suppose that they
exist, and use the axioms of the geometry of Euclid. Similarly we make
no effort to tell what real numbers are; we suppose that the things exist
and use the axioms that govern operations involving them. The book
is based upon these axioms. If a theorem fails to have enough hypotheses
to imply the conclusion, it is a blunder. If an assertion or definition is
meaningless, it is a blunder. If an argument purported to be a proof or
a derivation has a flaw, it is a blunder. If we pretend to prove a formula
for something that has not been defined, this is a blunder. Being
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“rigorous’” means, in mathematics, being free from blunders. “Giving
all the rigor that a student can appreciate” means avoiding all the blun-
ders that the student can detect. The author will not say that this book
is rigorous because minor errors are inevitable and major blunders are
possible, but he will say that he has tried to be rigorous. Thus students
can be and should be invited to be critical. Detection of a blunder should
be a major accomplishment.

The author will be delighted if students discover everything that is
bad in the book and everything that is good in mathematics. Teachers
need not and perhaps should not give as much attention to the theoretical
aspects of the subject as the text does. Because the text contains many
of those comments and explanations that teachers are normally called
upon to supply as answers to questions, teachers are enabled to devote
more of their attention to problems. Problems and applications are
important and, particularly when tests and examinations consist almost
exclusively of problems, major emphasis must be placed upon the prob-
lems. We will be unfair to our students if we behave like the president
of a construction company who trains an employee to be an architect
and then discharges him because he fails to lay bricks properly.

Ralph Palmer Agnew
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1 Analytic geometry

i two dimensions

1.1 Real numbers Without undertaking an exhaustive exposition of
the subject, this preliminary section presents fundamental ideas about
arithmetic, geometry, and algebra that are used throughout the book.
While much of the material will be familiar, students are expected to read
everything (including the problems) to assimilate information and points
of view required for comprehension of later sections of the book. The
rules of our game must be unmistakably clear at all times. We read
everything, and we work some of the problems.

The numbers with which we are most familiar are the positive real
numbers. These are the numbers, such as 4, 1, v/2, 2, , 416, etcetera,
that represent weights of material objects, distances between towns,
etcetera. The negative real numbers are the negatives of these, examples
being —%, —1, and — 4/2. These positive and negative real numbers,
together with 0, which is neither positive nor negative, constitute the set

1



2 Analytic geometry in two dimensions

of real numbers or the real-number system. Except where explicit state-
ments to the contrary are made, the word number in this book always
means real number. It is assumed that we are all familiar with the idea
that numbers can be represented or approximated in decimal form. The
equality 3 = 0.5 and the approximation

(1.11) x = 3.14159 26535 89793

must not frighten us. Searching questions about the possibility of
“representing” 7 and other numbers by “infinite decimals” can be post-
poned. Our decimal system was devised by Hindus and was carried to
Europe by Arabs in the twelfth century and earlier, but it took a few
centuries to convince Europeans that they should and could teach the
system to all of their children.

. ¥ ¥z v

-4 -3 -2 -1 0 1 2 3 4 x
Figure 1.12

With each number x we associate a point on a line as in Figure 1.12.
The line is called the real line or the x axis, and the point associated with
0 (zero) is called the origin O (oh). If x is positive, say 2, the point
associated with x lies x, say 2, units to the right of the origin. If x is
negative, say —3, the point lies —x, say 3, units to the left of the origin.
This correspondence between numbers and points is one to one; that is,
to each number there corresponds exactly one point and to each point
there corresponds exactly one number. The number is called the coordi-
nate of the point. While points and numbers are entities of different
kinds, we sometimes find convenience in abbreviating our language by
using “the point #” to mean “the point having coordinate x.”> The part
of the x axis upon which positive numbers are plotted, or located, is called
the positive x axis.

The statement a = b is read “z equals 4” or “z is equal to 5.” Simi-
larly, the statement “a > 5" is read “a is not equal to 5" or “a is different
from 5> Thus the statements 2 = 2 and 2 # 3 are true. The state-
ments 2 3 2 and 2 = 3 are false.

When two numbers a and b are so related that the point corresponding
to a lies to the left of the point corresponding to &
as in Figure 1.13, we say that a is less than 5 and
write @ < b. In this case we say also that & is
greater than 4 and write 4 > a. For example,
2<6, -3 <1,and ~4 < —2. This terminology
agrees with common usage when temperatures are being compared; we
say that a temperature —3° is less, or lower, than a temperature 1°. The
inequality —2 < 0 means that —2 is less than 0 and that —2 is nega-
tive. The inequality 4 > 0 means that 4 is greater than 0 and that 4 is
positive. The statement that the weight w, measured in pounds, of a

a b x
Figure 1.13



1.1 Real numbers 3

horse is greater than 1990 and less than 2010 becomes
1990 < w < 2010.

This can be read “1990 is less than = is less than 2010.” In this book,
Figure 1.12 precedes Figure 1.13 because 1.12 < 1.13; and both precede
Section 1.2 because 1.13 < 1.2; the decimal system governs the number-
ing of all items except those appearing in the lists of problems at the ends
of the sections. The basic idea that the number 1.131 or 1.135 can be
assigned to an item which appears between items numbered 1.13 and 1.14
is often used to bring order out of chaos and has hordes of valuable
applications. While facts of life are being considered and he still has his
full complement of readers, the author can extend his best wishes to the
canonical 20 per cent who will not complete this course. Those who
abandon their studies to work in the design department of a sport shirt
factory will be rewarded for commencement of their studies if they have
learned that items in their stocks can be identified by numbers in one
sequence and that numbers such as 416.35 and 416.351 can be assigned to
items that should be listed between 416.3 and 416.4. Numbers assigned
to items in books and factories are akin to numbers assigned to buildings
beside streets and to doors inside skyscrapers. In the best of circum-
stances, these numbers are assigned in an informative way, and they are
noticed and used when occasions arise. Persons who study Section 5.4
will be well aware that they are just getting started when they reach 5.41,
that they are about halfway through the text of the section when they
reach 5.45, and that they have reached the problems at the end of the
section when they reach 5.49.

The inequality a < b is read “a is less than or equal to 4.” The
inequalities 4 < 5 and 5 < 5 are both true, but the inequality 6 < 5 is
false.

The absolute value of a number x is denoted by |x|. It is equal to x
itself if x > 0; it is equal to 0 if x = 0; and it is equal to —x if x < O.
Thus |7| =7, |0 =0, and |—4| = 4. For each x we have |x| = 0.
Moreover, |x| = 0 if and only if x = 0. For each x we have either
|#| = x or |x| = —=x, and since x? and (—x)? are equal it follows that
|x|2 = 2

With the aid of Figure 1.12, we acquire the idea that the distance
between the point with coordinate 1 and the point with coordinate 4 is 3.
The distance between the points with coordinates —3 and 2 is seen to be
5, that is, 2 — (—3). By considering the different typical cases, we
reach the conclusion that the distancet between the two points with coordi-

t Itis far from easy to formulate and use enough axioms involving the geometry of Euclid
and the set of real numbers to prove that the number |6 — 4| is the distance between the
points having coordinates @ and . To place our ideas upon a rigorous base, we can do
what is usually done in more advanced mathematics: construct the foundations of ordinary

geometry and analysis in such a way that the number |6 — al is defined to be the distance
between the two points having coordinates a and b.



4 Analytic geometry in two dimensions

nates a and b is |b — a, thatis,b — awhenb Z aand a — b when b < a.
The fundamental fact that the distance from a to b is less than or equal to
the distance from a to 0 plus the distance from 0 to 5 is expressed by the
inequality

(1.14) la — 8| = |a| + |5].
Replacing b by —b5 in this inequality gives the inequality
(1.15) la + 8| = |a| + |3].

Problem 41 at the end of this section shows how this can be proved.

We learn in the arithmetic and algebra of real numbers that x2 = 0
when x = 0 and that 2 > 0 when x # 0. If N is a positive number,
then there,are two values of x for which x* = N; the positive one of these
numbers ididenoted by /N, and the negative one is denoted by — +/N.
Thus 42 =16, (—4)2 =16, /16 =4, and — 4/16 = —4. Since
(—4)? = 16 and /16 = 4, we see that

(1.16) V=Dt = /16 = 4 = |—4]|.

This is a special case of the formula 4/#? = ||, which holds for each real
number x. In particular, 4/0 = 0.

There are times when special properties of the number zero must be
taken into account. The facts that 0 + a = a and 0a = 0 for each
number & seem to be thoroughly understood by all arithmeticians, but
the role of zero in division may require comment here. It is a funda-
mental fact that we write x = b/a to represent the number x that satisfies
the equation ax = b, provided there is one and only one number x that
satisfies the equation. If a £ 0 and 4 = O, then O is the one and only
number x that satisfies the equation and therefore

0

- a

=0 (a#O).

Thus 0/a = Oprovided a % 0. Ifa = b = 0, then each number satisfies
the equation and therefore

0. .
s meaningless.
If a = 0 and & # 0, then no number x satisfies the equation and therefore
b. .
ols meaningless

when b £ 0. Thus we see that 5/a is meaningless when 2 = 0, whether
b is 0 or not; division by zero is taboo. To look at the mattér another
way, we observe that if a # 0, then the equation ax = ay implies that



1.1 Real numbers §

x = y; but the equation 0-2 = 0-3 does noz imply that 2 = 3. We must
always be suspicious of results obtained by division unless we know that
the divisor is not 0.

In order to pass literacy tests and to converse with our fellow men, it is
necessary to know that the numbers

(1.17) ceo, —4 =3, -2 -1,0,1,2,3,4, - - -

are called integers. The numbers 1,2, 3, - - - are the positive integers.
If m and = are integers and # 7 0, the solution of the equation nx = m is
written in the form m/n and is called a rational (ratio-nal) number. Each
integer m is a rational number because it is the solution of the equation
1x = mandis m/1. Thereis no greatest integer, because to each integer
n there corresponds the greater integer #» 4+ 1. Likewise, there is no
least integer, but 1 is the least positive integer. If ¢ (epsilon) and a are
positive numbers, then there is a positive integer n for which ne > a; this
is the Archimedes property of numbers. Another basic fact which is
easier to comprehend than to prove is that if x is a number, then there is
an integer n for which n = x < n + 1.

As we near the end of this introductory section, we call attention to
some additional terminology which is more important than beautiful
and to which we shall slowly become accustomed as we proceed. When
a < b, the set of points having coordinates x for which ¢ £ x < b is called
the closed interval of points (or numbers) from a to b. The points a and 5
are end points of the closed interval, and they belong to (or are points of)
the closed interval. The set of points (or numbers) for whicha < x < b
is called the open interval from a to b. The points a and b are still called
end points of the interval, but they do not belong to the open interval.
In each case, the number b — ais called the length of the interval. Thus
the length of an interval is the distance between its end points. When
a < b, the relations

b_a+b_b—a a+b b—a
2 2 2

imply that ¢ < (@ + 5)/2 < b and that the point having the coordinate
(a + b)/2 lies between and is equidistant from the points having coordi-
nates a and 5. This point is called the mid-point of the interval (open or
closed) having its end points at a and . If b < g, the above inequalities
are reversed, but (a + 5)/2 is still midway between a and .

The following problems promote understanding of statements made by
use of inequality and absolute-value signs. (For example, the inequality
148 < x < 152 says that the number x (which might be the weight of a
man) is greater than 148 and less than 152. This means that x differs
from 150 by a number with absolute value less than 2 and hence that
|# — 150] < 2. It is just as easy to see that if |x — 150| < 2, then

>0

>0,




6 Analytic geometry in two dimensions

148 < x < 152. This is a special instance illustrating the fact that if
a and & (delta) are numbers for which & > 0, then the set of numbers
for which ¢ — § < x < a + & is the same (see Figure 1.18) as the set of

4 b+
a-d a x a+d x

Figure 1.18

numbers x for which |x — a| < 8. It is often convenient to allow §, the
Greek d, to make us think of a distance. When § > 0, the set of points
(or numbers) x for whicha — § < x < a + dor |x — a| < & is the set of
points (or numbers) x having distance from a which is less than the dis-
tance 8. Thissetisaninterval. A complete understanding of the nature
of the assertion |x — a| < 8 happens to be particularly important. There
will be times when we shall use € as well as 8. For example, Problem 42
of Problems 1.19 will invite attention to matters relating to the simple
but important fact that if x and € are numbers for which

(1.181) e — 2]+ |x — 3| <e

then e cannot be 0.01.

Problems 1.19

Each of the following 40 statements is followed by a question mark, which
indicates that the statement may be true or may be false. By drawing appro-
priate figures or otherwise, determine which of the sdatements are true and which
are false. The answers (0 for false and 1 for true) aré\ given at the end of the list
of statements.

1 2<5? 2 —2> =32 3 7<7?0
4 7=72 5 757 6 2< —5?
7 —25 =12 8 |—4] =421 9 |-3<2?
10 —5=5? 11 |=2|>0? 12 |ab| = |a||3]?

13 If p is the number of pages in this book, then 75 < p < 85?

I4 If C is the circumference of a circle of radius r, then 6r < C < 6.37?
(Remember that C = 27r, where 7 = 3.14159+.)

15 Ifx = 5.4, then 29 < x% < 30?

16 If x = 420, then 20 < /= < 21?

17 Ifx =4,then2 <x <9?

18 If5=<x=<7,then4<x=<9?

19 If5=5x=<7,then5<x<7?

20 If5<x<7,then5Z<xx<T7?

21 If55x<7 then5<x<7?

22 If a < b, then |q] < |3]?

23 If —2<x<2,then0 < x2 < 4?

24 If x? < 4, then |x| < 2?
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25 If|lx —5<2,then3 <x<7?

26 If |x — 2| < 0.01, then |x* — 4| < 0.0401?

27 If|x — 3] <1, then |x2 — 9| < 5?

28 Ifl<x<2andl <y <2 then|r —9y| <1?
29 |(3.05)(3.06) — 9| < §?

30 There is no real number x such that x2 = —1?
31 If0<x<1,then -1 < —x<0?

32 Ifa<x<b then —b < —x < —a?

33 If0<x<land0<y <1 then0O<x+4+y<1?
34 If{0<x<1l,then0<2x<1?

35 If|x —a| <6, then |x — a] < 8?0

36 If|x — a| < 5, then |x — a] < 82t

37 1fé6=%and0 <x =1, then |»? — 3| < 8?7
38 1f6=4%and0<x <1, then |¢* — 3| < 87
39 Ifd=%and0 <x < 1,then |22 — 3| < &?
40 If 6 =3%and0 < x < 1, then |x2 — 3| < &7
Answers, 0 for false and 1 for true:

5 10 15 20 25 30 35 40
11011 01100 11011 11101 00011 10111 11000 10111

41 We learned while studying arithmetic and algebra that the product of
either two positive numbers or two negative numbers is positive, while the product
of a positive number and a negative number is negative. Supposing that x and y
are nonnegative, use the identity

1) (@ — 2 +x) =y —a?

to show that x £ y if 2 £ 92 Hence show that the inequality
) la + 5| < |a| + (3]

will be true if |a 4 5|2 = (|a| + |5])? or

(3) (@ + b)? < a® + 2|d||B] + b2

Finally, show that (3) is true and hence that (2) is true.
42 Sketch several figures which lead to the conclusion that if x and € are num-
bers for which a

1) e —2]+ |« — 3| <e

then ¢ > 1. Remark: Without using figures, we can prove the result by observing
that if (1) holds, then

1=3=-2l=|x~2)—(@x=3)|=lx-2|+|xr—3<e

and hence ¢ > 1.
43 Using the ideas of the preceding problem, prove that if 4, b, #, and € are
numbers for which
l# = a| +|x — 8 < ¢
then ¢ > |b — 4.
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44 Let h be positive and let A (lambda) be greater than 1. Observe that
Figure 1.191 shows the correct positions of six points having the coordinates

A 0 Py B Py Py
—h 0 a-1 h A +1 AL L
resi -1l el
Figure 1.191

shown there when A = 2. Make a new figure which shows where Py, Py, and P,
should be when A = 10. Make another new figure which shows where Py, Py,
and P, should be when X = 4.

45 Referring to Figure 1.191 and supposing that 2 > 0 and A > 1 as before,
show that Py is the mid-point of the line segment with end points at P; and P,.

46 When an appropriate time comes, we shall prove that there is a positive
number, denoted by the symbol /2, whose square is 2. Everyone should know
that 4/Z is not rational, and students possessing requisite time and acumen
should become familiar with a proof. We prove the fact by obtaining a con-
tradiction of the assumption that +/2 is rational and hence that /2 is repre-
sentable in the form /2 = m/n, where m and n are positive integers. We use
the fact that 28 = 227 and the more general fact that each positive integer n
is representable in the form n = 2%, where ¢ is a nonnegative integer and s is

one of the odd integers 1, 3, 5, 7, - - - . If we suppose that /2 = m/n, then
_[m\? _ [2pr\% _ 2%y
() - () - B

where p and ¢ are nonnegative integers and r and s are odd integers. In case
g Z 2, (1) gives ‘

(2) 21+2-2952 = 42

and this is false because the left side is divisible by 2, while the right side, being
the square of an odd integer, is odd and is not divisible by 2. In case p > g,
(1) gives

(3) 52 = 22212

and this is false because the right side is divisible by 2 while the left side is not.
This proves that /2 is not rational; the assumption that 4/2 is rational leads
to false conclusions. Remark: It is possible to give different proofs of this result
and of the more general fact that if # is a positive integer which is not one of the
perfect squares 1, 4,9, 16, 25, 36,49, - - - , then \/nisirrational. The standard
proofs depend, in one way or another, upon fundamental facts about factoring
positive integers.

47 Persons who make desk calculators do their menial arithmetical chores
can get very good approximations to square roots by use of an excellent method
which involves some very interesting arithmetical ideas. When we want to
approximate the square root of a positive number 4 given in decimal form, we
put 4 in the form 4 = 10%a, where # is an integer and 1 S 4 < 100, and use
the fact that /4 = 10" /2. To obtain good approximations to 4/, we start
with a given first approximation #; for which 1 < %1 S 10 and calculate some
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more elements of a sequence x1, x2, xs, * * * of successively better approxima-
tions. If we suppose that x, (where » = 1 when we start) is one of these num-
bers which is different from +/a, we can absorb and prove the idea that 1/z
should lie between x, and a/x,. Do it. We then examine the tentative but
sensible suggestion that the average of x, and a/x, may be a better approxima-
tion to /2. With this motivation, let

1
a) s = (xn + f,,)
and prove that
) xn+1—\/_——~ tn—2Va+ )
1&
and hence that

3) fnas — V4 = % (0 — V)"

If we have not already picked up the idea that squares of small numbers are much
smaller, we can start by observing that (0.2)? = 0.04, (0.04)2 = 0.0016, (0.0016)2
= 0.00000 256, and (0.00000 3)2 = 0.00000 00000 09. This leads us to the idea
that if x, is a good approximation to \/a, then #n.1 is much better. In fact,
if one approximation %, is correct to £ decimal places, we expect the next approxi-
mation Xp41 to be correct to about 2% decimal places. Jumps from 3 to 6 to 12
to 24 are quite amazing. Calculations based upon (1) can be made very rapidly.
When x, and a/x, agree to 10 decimal places and +/z lies between them, we have
very solid information. The method has another feature that even professional
computers like. Mistakes made before the final calculation do not produce an
incorrect answer, because using an erroneously calculated approximation is
equivalent to starting off with a different first approximation. There is even a
possibility that mistakes may be helpful.
48 Supposing that 0 < a < b, prove that

a + b_ 5 _(b—a)?
Hint: Obtain and use the equality

a+b a+b
2 Vb 2 +‘/E= (b — a)?
2(a+ b) + 4 /ab

Use the fact that if a quotient has a positive numerator and a positive denomi-
nator, we obtain a greater quotient when we replace the denominator by a smaller
positive number.

Remark: Persons who study science and philosophy can learn that noble but
basically ineffective efforts have been made to prove that points, lines, planes,
and numbers really exist in our physical universe, and to tell precisely what these
things are. It is the opinion of the author that discussions of such matters have
no place in a calculus textbook. As the preface says, we assume that these
mathematical things exist (at least as “mathematical models”) and we make the
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usual assumptions about them. We can hear many different and even contradic-
tory tales about the world, but we can always be cheered by the fact that our
assumptions are universally considered to be interesting enough and useful enough
to be worthy of study. Absorbing these ideas may not keep us young and fair, but
we need the ideas to be debonair.

1.2 Slopes and equations of lines When we study trigonometry, we
learn about the plane rectangular coordinate system shown in Figures

y P P y
r r
y y 6
0 4
o| x x x |0 x
Figure 1.21 Figure 1.22

1.21 and 1.22 and we become familiar with the formulas

sin § = =, tan § = =, sec § =

(1.23)

cos § = — cotf = - csc =

RNIKR N
LIR Ri
LI RIx

which define the six basic trigonometric functions.t In each figure, the
horizontal axis is the x axis, the vertical axis is the y axis, and the inter-
section O of the two axes is the origin of the coordinate system. Since the
matter will be of great importance to

y .
us, we review the standard procedure
1 '2 59 J(2’3)J, for plotting (or locating) points whose
Al 4G coordinates are given. To plot the
502 Jﬁ point 4(3,2), the point 4 whose coor-
& LR G40 dinates are the positive numbers 3
(-3,0) |m1v | % and 2, we start at the origin and go 3
JUl | GB-D] | units to the right (in the direction of
B(-4-2)[ [DO~2) He,—2) the positive x axis) and then go 2
I T 1T T units up (in the direction of the posi-
Figure 1.24 tive y axis) to reach the point 4 of

Figure 1.24. To plot the point B
whose coordinates are the negative numbers —4 and —2, we start at the
origin and go 4 units to the left (in the direction of the negative x axis)
and then go 2 units down (in the direction of the negative y axis) to reach
B. Everyone should examine Figure 1.24 to see that the other points are
correctly plotted. The signs of the coordinates tell us which ways we go,

T Our rigorous presentation of angles and trigonometric functions will come in Chapter 8.

Meanwhile we shall very often review and use facts about angles and trigonometric func-
tions that are learned in trigonometry.



1.2 Slopes and equations of lines 11

and the absolute values of the coordinates tell us how far we go. The
quadrant (or subset) of the plane consisting of points having nonnegative
coordinates is called the closed first quadrant. The quadrant (or subset)
of the plane consisting of points having positive coordinates is called the
open first quadrant. The Roman numerals of Figure 1.24 show us how the
quadrants are numbered.

Figure 1.25 shows a line L which slopes upward to the right. The line
L does not necessarily pass through the origin, but we suppose that it

y y
P(x,y) D)
L
Y=Y
Py(x1,51) ~ '
x—2y X=Xy Pl(xhyl)
0o x o] x
Figure 1.25 Figure 1.251

passes through a given point (x1,y;). The angle 8 (theta) lies between 0
and m/2 (that is, between 0° and 90°), and tan 8 is called the slope of the
line and is denoted by the letter m, so that

[
(1.252) m = slope = tan § = 221 m=10
X — X1 m=
h . . ] m=2—1"
when (x1,y1) and (x,y) are two different points on L.
Figure 1.251 shows a line L which slopes downward
to the right. This time tan 6 is negative, but it is / e 1
still called the slope of the line. We must always }
remember that lines which slope upward to the right m= P
have positive slopes and lines which slope downward | =0t
[
1

to the right have negative slopes. For horizontal - f
lines, we have § = 0, so tan § = 0 and m = 0; thus, m=—}-
horizontal lines have slope zero. For vertical lines,
we have 6 = 7/2 (or § =90°), so tan 6 does not
exist; thus, vertical lines do not have slopes. To {
locate a second point on a line which passes through A\ \\m="2
a given point and has slope m, we start at the given m=-3l 1
point, go 1 unit to the right and then go m units in e I"l(ll’
the direction of the positive y axis. Whenm < 0, a T
journey of m units in the direction of the positive y Figure 1.253
axis is always interpreted to be a journey of |m)|
units in the direction of the negative y axis. Everyone should look at
Figure 1.253 and think about this.

Theorem 1.26 A point P(x,y) lies on the line which contains the
point Py(x1,y1) and has slope m if and only if its coordinates satisfy the point-
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slope equation (or formula)
(1.27) y — y1 = m(x — x1).

Proof of this theorem is very simple. When x = x1, the point P(x,y)
lies on the line if and only if y = y; and hence if and only if (1.27) holds.
When x 5 x1, the point P(x,y) lies on the line if and only if (1.252) holds
and henceif and only if (1.27) holds. This proves the theorem. Formula
(1.27) is known as the point-slope formula, and it must be permanently
remembered.

In accordance with general terminology which we shall introduce in
Section 1.5, (1.27) is an equation of the line which passes through the point
(%1,y1) and has slope m. Moreover, the line is the graph of the equation.
When we are required to obtain an equation of the line which passes

through the point (},—%) and has slope 3, we put x; = %, y1 = —1%,
m = 3, and write immediately
y+1=3x—3%.

Sometimes, but not always, it is desirable to put this equation in one of
the forms

y=3x—7% 126 — 4y — 7 =0,

and we tolerate the custom which allows any one of the three equations
to be called “the” equation of the line. Conversely, when we are required
to draw or sketch the graph of the equation

y + i’ = 3(x - %),
we observe that the equation has the point-slope form with x; = %,
y1 = —%, m = 3 and then immediately draw the line through the point
(4,—%) having slope 3. Problems at the end of this section provide
opportunities for practice in the art of using these ideas quickly, neatly,
and correctly.
When, as sometimes happens, we want to find an equation of the line

which passes through two given points Pi(x1,y1) and Pa(xs,ys) for which
%2 # x1, we determine the slope m of the line from the formula

(1.28) m = y2 - yl or yl - yz

X — X1 X1 — X2

and then use the point-slope formula. For example, the slope of the line
passing through the points (3,—4) and (—2,1) is —5/5 or —1, and the
equation of the line through these points is y + 4 = —1(x — 3).

Problems 1.29
1 With Figure 1.24 out of sight, plot the points 4(3,2), B(—4,—2), C(4,0),

D(0,—2), and F(—2,3). If correct results are not obtained, read the explanations
of the text and try again.
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2 Plot the points 4(—7,—1), B(—5,0), C(—3,1), D(—1,2), and E(5,5).
(These points all lie on a line, and the figure should not contradict this fact.)

3 Plot the points (6,2), (2,6), (—6,2), (—6,—2), (—2,—6), (2,—6), and
(6,—2). (These points all lie on the circle with center at the origin and radius
/40, and the figure should not contradict this fact.)

4 Three vertices of a rectangle are (4,—1), (—6,—1), and (4,5). Sketch the
rectangle and find the coordinates of the fourth vertex.

§ For each of several values of #, plot the point P(x, 2 — x). What can be
said about the resulting set of points?

6 Plot the points Pi(x1,y1), Pa(x2,92), Qx1 + %2, v1 + 2), R(xl-;xz,

32_-;_3’_2) and make an observation about the figure obtained by drawing the

line segments from these points to each other and to the origin when

(d) x1=6’yl=0ax2=0’y2=4‘ (b) x1=2,y1=5,x2=6,3’2=3
(f) xl=—2’yl=_4’x2=7’y2=1 (d) X1 = —1,y1=1,x2=1,3’2=0

Ans.: The figure is a parallelogram together with its diagonals. Remark: Invest-
ing time in a good problem can produce dividends. Observe and remember that
the mid-point of the line segment joining (x1,91) and (x2,y2) is (x_1 ;_ X2 Y11 Y2 -;' yz)‘
More information about such matters will appear in the next chapter.

7 Draw the triangle having vertices at the points P1(—3,1), Po(7,—1), Ps(1,5).
For each & = 1, 2, 3, let m; be the slope of the
side opposite the vertex Pr. Work out the P,

slopes shown in Figure 1.291 and observe that

N
.

the answers look right. m=-1
8 Show that the equation of the line P\P; P,
. . _ . ——
of the prece.dlng problem isy==x + 4.‘ Find ——%7, >
the x coordinate of the point on this line for me=—3%

which y = 0. Ans.: The answer is —4, and
inspection of Figure 1.291 shows that this answer
looks right.

9 When numerical values are assigned to the coordinates (x1,y1) of a point P,
and to m, it is possible to plot the point P, to sketch the line L through P; having
slope m, and (provided m 5= 0) to estimate the x coordinate xo of the point
(#0,0) on L for which y = 0. It is then possible to find the equation of L and
determine xo algebraically. Do all this and make the results agree when

Figure 1.291

(@) (x1y1) = (1,2), m =1 ®) (x1y1) = (1,2), m = —1
(C) (xlsyl) = (—2,1), m=1 (d) (xl’yl) = (_2’1)’ m=—1
(&) (xy1) = (=2,-3), m =% (f) (enyr) = (4,-2), m =2
(g) (xbyl) = (—1’4), m = % (h) (xl’yl) = (1’1)’ m=1

10 When numerical values are assigned to the coordinates (x1,y1) and (¥2,y2)
of two points P; and Py, it is possible to plot these points, to sketch the line L
through them, and (except when L is parallel to the » axis) to estimate the x
coordinate of the noint (x0,0) on L for whichy = 0. It is then possible to find the
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slope m of L, to find the equation of L, and to determine x algebraically. Do all
this and make the results agree when

(a) (xbyl) = (1’1)’ (x2,y2) = (3’2)

(b) (xbyl) = (17—1)’ (xz,yz) = (3)1)

(©) (x1,3) = (—4,~2), (@2,y2) = (=1,—-1)
(d) (xlayl) = (0:4)’ (xz:’yz) = (1,2)

(‘) (xl,yl) = (1:2)’ (x2’y2) = (2,1)

(f) (xl’yl) = (-1’1)’ (xz,yz) = (4a—1)

11 Plot at least five points P(x,y) whose coordinates satisfy the equation
y = 2x — 4. 'The coordinates can be found by giving values such as —1, 0, %
1 to # and calculating y. Observe that these points appear to lie on a line L.
Show that the given equation can be written in the form y — 0 = 2(x — 2) and
hence that the points must lie on the line L through the point (2,0) which has
slope 2. Make everything check.

12 Supposing that a and b are nonzero constants, find the point-slope form
of the equation of the line L through the two points (4,0) and (0,5), and show that
this equation can be put in the forms

bx + ay — ab =0, §+%=1.

The second form is the intercept form of the equation of L. Note that it is very
easy to puty = 0 and see that L intersects (or intercepts) the x axis at the point for
which x = a. It is equally easy to put x= 0 and see that L intersects (or inter-
cepts) the y axis at the point for which y = &.

13 A line intersects the x axis at the point (2,0) and cuts from the first quad-
rant a triangular region having area 4. Find the equation of the line. Ans.:

24x + a*y = 2a4.
14 For each of the cases

(a) P = (1’1)’ P, = (7a1), Py = (7,7)

() Py = (2,2), P = (8,2), Ps = (8,8)

(€) Py = (=3,=1), Py = (2,=7), Ps = (1)
(@) Py = (—4,-2), P, = (1,—-8), Py = (3,0)
(8) Pl = (—2’_4), P, = (1:—5): P3 = (2’-3)

sketch the triangle having vertices Py, Py, Ps and the line L containing P, and the
mid-point of the side opposite P,. Use the figure to obtain an estimate of the
x coordinate of the point where L intersects the x axis. Then find the equation
of L and determine the coordinate algebraically. Produce results that have
reasonable agreement. Remark: There is one respect in which many problems
in pure and applied mathematics are like this one. Graphs or something else
give more or less good approximations to answers, but we need equations to get
correct answers. When equations give answers that seem to be wrong, the whole
situation must be given close scrutiny. Mistakes in sign are particularly damag-
ing, and we all make mistakes when we work too rapidly or too thoughtlessly.
15 A triangle with vertices 4, B, C is placed upon a coordinate system in
such a way that A is at the origin and the mid-point D of the opposite side is
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the point (%,0) on the positive x axis as in Fig- y
ure 1.292. Supposing that the coordinates of C Ch+a, k)
are (& + a, k), show that the coordinates of B
must be (b — a, —k). Find equations of the

lines containing the sides of the triangles. Write I D(h,0)
the equations in the form y= mx -+ & and check A0 x
the answers by determining whether the coordi-
nates of the vertices satisfy the equations. B(h—a, —F)
16 The vertices P1(x1,91), Pa(%2,92), Pa(x33) Figure 1.292

of a triangle are unknown, but it is known that
the mid-points of the sides P1Ps, PyP;, and P3P, are respectively (7,—1), (4,3),and
(1,1). Find the unknowns and check the results by drawing an appropriate
figure.

17 Formulate and solve a more general problem of which Problem 16 is a
special case.

1.3 Lines and linear equations; parallelism and perpendicularity
When 4, B, and C are constantst for which 4 and B are not both 0, the

equation
(1.31) Ax+By+C=0

is a linear equation and we must both prove and remember that its graph
isaline. In case B # 0, we can put the equation in the point-slope form

y=(-5)--76-0

and see that the graph is the line L which passes through the point
(0, —C/B) and has slope —4/B. 1In case B = 0, we must have 4 # 0,
and we can put the equation in the form

C

X = =— -

The graph of this equation is the vertical line consisting of all those points
(%,y) for which x = —C/4. This proves the

y
result. e 10
)Y P(x,
The equation o & )
(1.32) y = mx+b y=mz+b
i — ) = _ ] x
can be put in the form y — » = m(x — 0), and Figure 1.33

hence it is the equation of the line L which passes
through the point (0,5) and has slope m. The equation (1.32) is called

t The hypothesis that 4, B, and C are constants means merely that they are numbers that
are “given” or “selected” or “fixed” in some way. There is no implication that other num-
bers are unstable in the sense that they are moving around. We shall hear more about this
matter later.
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the slope-intercept formula. The easiest way to find the slope m of the
line having the equation 2x — 3y — 4 = 0 is to solve the equation for y
to obtain

y=%—4%
and see that m = %

Let L, and L, be two lines which are neither horizontal nor vertical and
let their slopes be m; and m,. Figure 1.34 reminds us of the elementary
fact in plane geometry that L, and L, are parallel if and only if 6, and 6,
are equal and hence if and only if tan 6, = tan 6; and m; = my. Thus
L, and L, are parallel if and only if their slopes are equal.

L, L L, L
6,+ %
A 6y 0
7 V4 x N 7 x
Figure 1.34 Figure 1.35

For perpendicular lines, the story is more complicated. The lines L,
and Ly are perpendicular if and only if their slopes my and mq are negative
reciprocals, that is, my = —1/m; or my = —1/ms or mym, = —1. To
prove this, we observe that L, and L, are perpendicular if and only if
62 = 61 + /2 as in Figure 1.35 or 6, = 62 + 7/2 when the roles of L,
and L are reversed. In the first case we have

(1.351) my = tan 01+%) = —cotf, = — taTl—Ol = ——El;
and the result follows. To get the result in the second case, we merely
reverse the roles of Ly and L.

As in Figure 1.36, let L; and L, be two
nonvertical lines and let ¢ (phi) be the
angle through which a line must be rotated
to bring it from coincidence with L, to coin-
cidence (or parallelism) with L,. When we
can find the slopes m; and m, of Ly and L,

Figure 1.36 we can determine ¢ from the fact tha‘f
¢ = /2 when mymy = —1 and
(1.37) tan ¢ = M

1 + miMmsg

when mims # —1. The latter formula is proved by the formula

_ _ _ tanf; —tan by _ my—m
(1.371) tan ¢ = tan (6 ~ 61) = 5 T tan 6 tan 0, 1 F mams
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which employs the standard trigonometric for-
mula for the tangent of the difference of two
angles. When we are asked to find ¢, we pre-
sent tan ¢ as the answer} to our problem.

As an application of some of the above ideas,
we find the equation of the line L of Figure Figure 1.38
1.38. The positive number p is the distance
from the origin to the point P, and L is perpendicular to the line
OP, at P;. The coordinates of Py are p cos « (alpha) and p sin «. The
slope of OP; is tan e, or sin a/cos a, and the slope of L is the negative
reciprocal — cos a/sin a. Use of the point-slope formula gives the equa-
tion of L in the form

(1.381) y —psina = —c.osa(x-—pcosa).

sin a

Multiplying by sin @ and using the identity sin? @ + cos? @ = 1 puts the
equation in the more attractive form

(1.382) (cos @)x + (sin &)y = p.

The line OP,, being a line perpendicular to L, is called a normal to L, and
the equation (1.382) is called the normal form of the equation of L because
it gives information about this normal. It is sometimes thought to be
worthwhile to know a speedy way to put the equation 4x +~ By +C =0
into normal form. We suppose that 4 and B are not both 0 and that
C # 0. The trick is to transpose C to obtain 4x + By = —C and then
divide by one of + 4/4? 4 B? to obtain

A x+ B =__C—_,
PRV e TRV sy MV L

(1.383)

where the sign is so chosen that the right side is positive. This equation
has the normal form. The right side is the distance p from the origin to
the line, and the coefficients of x and y are respectively the numbers cos a
and sin a which determine the angle « of Figure 1.38.

Problems 1.39

1 Each of the following equations is the equation of a line L. In each case,
find the slope m by finding the coordinates of the points in which the line inter-
sects the coordinate axes and then finding the slope of the line through those

t Traditionally, students are required by tests and examinations to find tan ¢. Accord-
ingly, students who hope to pass examinations by learning a few formulas—and those who
aspire to a substantial understanding of their subject—are well advised to learn the neces-
sary ritual.
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two points. Then find m by putting the equation in the form y =mx + b
Make the results agree.

(@ x+y=2 @) x+y=3
() 22+9y =2 @ x+2y=2
() 2x+3y—4=0 () 2x+3y+4=0
(g 2x—3y—4=0 () 22 =3y +4=0
@)i+3=1 (Ni-3=1

2 Draw the triangle having vertices at the points P(—3,1), Py(7,-1),
P4(1,5), and observe that P3P, seems to be nearly perpendicular to PP;. Find
the equation of the line through P perpendicular to P1P; and show that this line
does contain the point Py. (The figure appears among the problems at the end
of Section 1.2.)

3 For the points Py, Py, Ps of the preceding problem, find the equation of
the line through P parallel to the line P1P;. Find the coordinates of the point
in which this new line intersects the y axis. Put this new line into the figure,
and make everything check.

4 For each of the following equations find numerical coordinates of three
points Py, Py, P3 whose coordinates satisfy the equation. If you cannot think
of a better procedure, let #; = 0, x; = 1, x5 = 2 and calculate ), y5, ys. Plot
the three points P, Py, P3 and notice that they seem to lie on a line. Calculate
the slopes of PP, and P\Ps and observe that they are equal. Observe that there
is ample opportunity to check all answers.

@ y=x+1 @ y=2x+3
© x+y=5 @ x+y+2=0
() 2x—3y+4=0 () 2x+3y+4=0

5 Plot the lines having the equations y = 2x and y = 3x and observe that
the acute angle ¢ between them seems to be rather small. Find ¢ by finding
tan ¢, and then construct and examine an appropriate figure to see that your
answer seems to be correct.

6 Supposing that £ is a nonnegative number, find the acute angle between
the lines having the equations y = kx and y = (k¢ + 1)x. Check the answer in
at least one special case. Tell why the angle should be small when £ is large.

7 Sketch the line L; which intersects the coordinate axes at the points (0,—4)
and (5,0), and the line L;, which intersects the coordinate axes at the points
(0,—5) and (6,0). Find the acute angle between the lines. Ans.: tan § = %%.

8 While assembly lines and mass production reduce costs of manufactured
items, there is an element of sanity in the idea that the total cost y of publishing
x copies of a book is ax + 5. Sketch a graph of the equation y = ax + b and
discover the significance of the numbers z and &.

9 Find the equation of the perpendicular bisector of the line segment joining

the points Py(x1,91) and Pa(xs,y2), putting the answer in the form 4x 4+ By = C.
Ans.:

2 _ 2 2 _ .2
(xz—xl)x+(3’z—y1)y=x22x1+y2 2y1'
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10 Any given rectangle can be placed upon the x, y coordinate system in such
a way that its vertices are (0,0), (0,2), (5,0), and (3,a). Prove that if the diag-
onals are perpendicular, then the rectangle is a square.

11 Sketch a figure showing the triangle having vertices at the points Py(x1,91),
Py(x5,y2), and Ps(xs,ys). For each & = 1, 2, 3, mark the mid-point Q; of the side
opposite P, and find the coordinates of Qr. Supposing that the line 020, is not
vertical, calculate its slope and show that it is parallel to the line P,P,.

12 Prove analytically (by calculating slopes) that the mid-points of the sides
of a convex quadrilateral are vertices of a parallelogram. Remark: Taking ver-
tices at (x1,91), (%2,%2), (¥3,93),(x4,y4) produces “symmetric”’ formulas.

13 Show that the lines having the equations

ax + by = ¢
axx + byy = ¢

are parallel if and only if 41y — a2by = 0. If the lines are not parallel, they
must intersect at a point P(x,y) whose coordinates satisfy both equations.
Assuming that the lines are not parallel, solve the equations to obtain the formulas

bac1 — bice aily — a1
= __J’ T e———
arby — ash Y= Gy — ashy

for the coordinates of the point of intersection. Remark: Those who have for-
gotten how to solve systems of linear equations can recover by noticing that we
can multiply the first equation by b, and the second by —b&, and then add the
results to eliminate ¥ and obtain an equation that can be solved for x. This
process is known as the process of successive elimination.

14 Copy Figure 1.292 and then find the equations of the three medians of the
triangle and show that these medians intersect at the point (24/3, 0). Remark:
Since the median placed upon the x axis could have been any median of the tri-
angle, this provides a proof that the three medians of a triangle intersect at the
point which trisects each of them.

15 Show that the lines obtained by giving constant values to £ in the equation

2c+3y+ k=0

are all parallel. Show that the line L having the equation
2(x — %) +3(y —y) =0

belongs to this family and contains the point (x1,31).
16 Show that if the lines 4P and BP joining the points 4(1,2) and B(5,—4)
to P(x,y) are perpendicular, then

E—DEx-=5+0+Hbr-2)=0.

Remark: Persons well acquainted with elementary geometry should know that
P must lie on the circle having the line segment 4B for a diameter.

17 Paut the following equations into normal form and check the results by
drawing graphs showing the lines having the given equations and the line seg-
ments through the origin perpendicular to these lines.
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(a) 2x + 3y = 12 () 2% — 3y = 12
© 2% — 3y = —12 @) 2+ 3y = —12
() y=12x+3 f)y=0

18 Let B> 0. For each of several values of w, draw the perpendicular
bisector of the line segment joining the points (0, 1/4k) and (w, —1/4k). Then
determine the condition which x and y must satisfy if the point P(x,y) lies

(@) on exactly one of these bisectors,
(b) on more than one of these bisectors,
(¢) on none of these bisectors.

Ans.: (a) y = kx?%, (B) v < kx?, (c) y > kx2
19 For what pairs of values of b and ¢ do the two equations

3x+by+c=0
cx—2y+12=0

have the same graph? Partial ans.: There are two pairs which are easily checked
after they have been found.

20 The points P1(x1,y1), Pa(%2,y2), Ps(%s,ys) are vertices of a triangle. Tind
the coordinates (x,y) of the point Q; where the line through P, perpendicular to
the line PoP; intersects the line PoPs. Partial ans.:

(s — x) 4 (ys — y1) (93 — ya)x2 + (¥2 — 91)(y2 —9s) %s
= (%3 — x2)? + (ys — y2)*

Remark: It is possible to write the answer in different forms. This form enables
us to check quickly that interchanging the subscripts 2 and 3 does not change
the value of x. Such checks are often used to guard against clerical errors in
deriving or copying formulas.

21 Let the vertices of a triangle be P1(x1,y1), Pa(x2,y2), Ps(xsys). For each
k, let L, be the line containing Py which is perpendicular to the line containing
the other two vertices. Recognizing that altitudes are numbers (not line seg-
ments or lines), we call the lines L;, Lj, Ls the altitudinal lines of the triangle.
Prove that these altitudinal lines are concurrent. Remark: The conclusion means
that there is a point Pq, called the orthocenter of the triangle, at which the three
altitudinal lines intersect. When asked to prove the conclusion by synthetic
methods, we use our ingenuity (or that of some other people) in searches for
appropriate figures and ideas upon which the proof can be based. When asked
to prove the conclusion by analytic methods, we can proceed at once to apply a
powerful method that cannot fail to produce results if we do the chores correctly
We can find the equations of the three altitudinal lines and use two of the equa-
tions to find the coordinates of the point of intersection of two of the lines. If
this point lies on the third line, the conclusion is true. If (for some triangle)
the point fails to lie on the third line, the conclusion is false. The chores can be
done in the following way. Considering separately the case in which the line
P,Py is neither horizontal nor vertical (so that this line and L, have slopes) and
the cases in which PyP; is horizontal or vertical, we can find that the equation
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of L, is the first of the equations

1) (%3 — x2)x + (3 — y2)y = (x3 — x2)x1 + (y3 — y2)!
(2) (%1 — xz)x + (y1 — y3)y = (x1 — x3)x2 + (91 — Ya)y2
(3) (xe — x)x + (y2 — y1)y = (%2 — x1)xs + (y2 — y1)ys.

It is possible to repeat the process to show that the equations of Lz and Ls are
(2) and (3). Itis, however, more fun to observe that we can convert the deriva-
tion of the equation of L, into a derivation of the equation of L, by making a
“cyclic advance” of the subscripts so that 1 goes to (or is replaced by) 2, 2 goes
to 3, and 3 goes to 1. The first cyclic advance converts (1) into (2), and another
cyclic advance converts (2) into (3). The routine way to finish the proof is to
solve (1) and (2) for x and y and show that these numbers (x,y) satisfy (3)
However, if we do not want to obtain and preserve the formulas for x and y, we
can finish the problem by observing that adding the members of (1), (2), and (3)
gives 0 = 0 and shows that the third equation is satisfied whenever the first two
are satisfied. For the record, we note that solving (1) and (2) for x and y gives
the formulas

y1(xs — x2)x1 + y2(x1 — x3)x2 + ys(xz — x1)xs
@) x= = (2 — y1) (s — 92)(y1 — 33)
yi(xs — x2) + ya(x1 — x3) + yalxe — x1)
x1(ys — y2)y1 + %2(y1 — y3)y2 + x3(y2 — ¥1)ys
— (%2 — xl)(xa — x2)(xl — x3)
x1(ys — y2) + 2201 — v3) + xa(y2 — 1)

¢) v=
for the coordinates of the orthocenter. With the aid of the identity

6) (2 — y)(ys — y2) (31 — ¥3) = n1(¥5 — ¥2) + ¥2:7 — ¥3) + (v — »D),
we can put these formulas in the forms

yilxi(xs — x2) + 3 — 3] + yalwa(xs — x3) + y3 — ¥3]
+ yalxs(ws — x1) + 91 — 93]

7 =
@ = y1(xs — x2) + yolxer — x3) + ys(x2 — x1)
xilyi(ys — v2) + x5 — 23] + xofye(y1 — y3) + x5 — =i
®) y= + x3lys(y2 — y1) + xf - x%]

x1(ys — v2) + x2(y1 — y3) + x3(yz — 1)

and in many other forms which look quite different. Interchanging the x’s and
9’s in one of these formulas gives the other. Except for sign, the denominators
are equal to each other and (as we shall see later) to twice the area of the triangle.
As is to be expected, a cyclic advance of the subscripts does not alter the triangle
and does not alter the formulas for the coordinates of the orthocenter.

22 Again let the vertices of a triangle be Py(x1,91), P2(x2,y2), Ps(%s,93). Find
the coordinates of the point (x,y) of intersection of the three perpendicular bisec-
tors of the sides of the triangle, and write also the result of making a cyclic advance
(see the preceding problem) of the subscripts appearing in the answer. Remark:
Elementary plane geometry shows that the point (x,y) is equidistant from the
three vertices and hence is the center of the circle containing the vertices. The
circle is called the circumcircle (or circumscribed circle) of the triangle, and its
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center is called the circumcenter of the triangle. The answer can be put in the
forms
yi(rs — x2)(xs + 22) + ya(@r — %) (21 + %5) + ya(xz — %) (%2 + x1)
+ (y2 — 91)(y3 — ¥2) (91 — 33)
Z[yx(xa - xz) + yz(xx - xs) + ya(xz - xl)]
x1(ys — y2)(ys + ¥2) + x2(y1 — ¥8) (91 + y3) + xa(y2 — y1) (¥2 + 1)
4 (22 — x1) (x5 — %2) (%1 — x3)
@ v= Meslys — 99 F %201 — 99) + #3092 — 91)]

1 =

I

and
yae + y3 — 23 — y3) + yalxt + 91 — 23 — 98) + yalxd + 95 — x1 — 5))
@) x= 2yi(xs — #2) + yalar — x3) + ya(xz — x1)]
@ y= 21(xd 4 92 — b — 33) 4 ot + 9 — 23 — 95) + %s(xZ + v — 21 — 91)
2xs(ys — y2) + x2(y1 — y3) + xa(y2 — y1)]

and in still other forms which look quite different.

P, (Orthocenter)

C (Circumcenter)

Figure 1.391

23 The triangle in Figure 1.391 has vertices at Pi(x1,71), Pa(x2,y2), and
Py(x3,ys). The mid-points My, Ma, M; of the sides of this triangle are the ver-
tices of the mid-triangle of the given triangle. With or without making use of
the ideas and results of the preceding problem, find the coordinates of the cir-
cumcenter of this mid-triangle. Remark: The answer can be put in the form

y1(xs — %2) (221 + %2 + x3) + ya(x1 — x3) (2x2 + %3 + x1)
1 x= + ya(xz — %1)(2xs + %1 4 x2) — (y2 — y1)(ys — y2) (1 — ¥3)
4fy1(xs — x2) + y2(xr — x3) + a2 — x1)]
#1(ys — y2)2y1 + y2 + y3) + x2(y1 — y3)2y2 + y3 + 31)
2 y= + x3(y2 — y0)(2ys + 91 + y2) — (%2 — x1)(xs — x2) (%1 — #3)
4x1(ys — v2) + %2(y1 — y3) + xa(y2 — y1)]
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and in other forms which look quite different. As we shall see in the next prob-
lem, the circumcircle of the mid-triangle of the given triangle P1P2P3 is the famous
nine-point circle of the given triangle. The coordinates in (1) and (2) are there-
fore the coordinates of the center of this nine-point circle. The answers to this
and the two preceding problems are written in such a way that it is very easy to
see that the center of the nine-point circle is the mid-point of the line segment
joining the orthocenter and the circumcenter of the given triangle.

24 To see that there are opportunities to use ideas of the preceding problems
and the rest of this chapter in geometry, we look briefly at a triangle and its
nine-point circle. Figure 1.391 shows a triangle P1P2Ps, the points Q1, Qs, Qs in
which the altitudinal lines intersect the lines containing the sides of the triangle,
and the orthocenter Po. The points My, Ma, M; are the mid-points of the sides
of the triangle, and the perpendiculars to the sides at these points intersect at a
point C, the circumcenter of the given triangle. The points R;, Rs, Rs are the
mid-points of the line segments P1Po, PoPo, PsPo. The famous nine-point-circle
theorem says that the nine points My, My, Ms, Q1, Q2 Qs, Ri, Ry, Rs all lie on a
circle. This circle, the nine-point circle, has its center at the mid-point S of the
line segment joining the orthocenter Py and the circumcenter C. The radius
of the nine-point circle is half the radius of the circumcircle. When the triangle
is equilateral, the orthocenter, the circumcenter, the center of the nine-point
circle, and the centroid (intersection of the medians) all coincide. When the
triangle is not equilateral, the four points are distinct but are collinear, and the
line upon which they lie is called the Euler line of the triangle.

25 In this problem we use results of Problems 21 and 23 to obtain a new
formula and a proof of the nine-point-circle theorem. We know from Problem
23 that the mid-points My, M., M; of the sides of the triangle are on the circle;
in fact, these three noncollinear points determine the nine-point circle. The
remaining points Ry, Ry, Rs, Q1, Q2, Qs, which we must prove to be on the nine-
point circle, are not necessarily distinct from each other and from M,, M,, Ms,
but our proof will not be a “partial proof”’ which covers only “general cases.”
Our proof will be a proof. Use a result of Problem 21 to show that the x coordi-
nate of the point R; midway between the vertex P; and the orthocenter Py is

yi(xs — x2) (%1 + %1) + y2(¥1 — x5) (%1 + x2) + ya(x2 — x1) (%1 + x3)
+ (2 — y1)(¥s — y2)(y1 — s)
2[yi(xs — x2) + ya(x1 — x3) + ys(ea — x1)]

Use this result to show that the x coordinate of the point midway between R;
and the mid-point M; of the line segment PyPs is the x coordinate of the center
of the nine-point circle given in Problem 23. Remark: This fact and the associ-
ated fact involving y coordinates imply that the points R; and M, are at opposite
ends of a diameter (line segment, not number) of the nine-point circle. Similar
proofs (which are attained by cyclic advances of subscripts) show that R; and M,
are at opposite ends of a diameter and that Rs and Mj; are at opposite ends of a
diameter. This proves that Rj, R, Rs, lie on the circle. We recall that Q, is
the point at which the altitudinal line through P, intersects the line containing
the vertices P; and P;, that R; is on the altitudinal line, and that M, is on the
line containing P; and Ps. In case Q) coincides with M; or R;, we conclude that
01 is on the circle. In the contrary case, the angle RyQ:1M,; is a right angle.

X =
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Since the line segment R M is a diameter of the circle, this implies that Q; must
be on the circle. Cyclic advances of subscripts prove that Q» and Qs lie on the
circle. This completes the proof of the nine-point-circle theorem.

26 This problem involves the intersection of the medians of the triangle hav-
ing vertices P1(x1,y1), Pa(x2,72), Ps(xs,ys). For each & =1, 2, 3, let M, be the
mid-point of the side opposite Px. Show that the equation of the line containing
the median Py M, can be put in the form

1) (2 + 33 — Zy1)(x — x1) — (2 + 23 — 2x1)(y — 1) = 0.
Show that if we define # and § by the formulas

@ ’?___x1+7;2+x3’ y=y1+3;z+ya,
then
%2+ x3 — 2x1 = x1 + x2 + x3 — 3%, = 3(% — x1)
Yot ys— 2y =91 +y:+ ys— 31 = 3G — )

and (1) can be put in the form
©) F =y —x) — (& = x1)(y — y1) = 0.

Show that (3) implies that the point (%,7) lies on the median P;M;. Finally,
show how this work can be modified to prove that the point (%,7) lies on the other
two medians and hence is the point of intersection of the medians. Remark:
One reason for interest in this matter can be understood when we know enough
about centroids. The point (%,7), the intersection of the medians, is the centroid
of the triangular region bounded by the triangle. It is also the centroid of the
set consisting of the three vertices of the triangle. Moreover, it is the centroid
of the triangle itself, that is, the set consisting of the sides of the triangle. The
coordinates of the intersection of the medians were obtained in a tricky way.

It is possible to put the equation (1) of the median P, M, and the equation of the
median P,M, in the forms

(4) 2+ ys — 291)x — (%2 + x5 — 2x1)y

= (92 + 35 — 2y1)21 — (%2 + %3 — 2%:1)3
(5) s+ 31— 2y2)x — (x5 + %1 — 2x2)y

= (ys + y1 — 2y2)ws — (x3 + 21 — 2x2)y2
and obtain the coordinates of the intersection of the medians by solving these
equations for x and y without using trickery. There is, however, no guarantee
that time invested in a study of (4) and (5) will produce attractive dividends.
It is easy to obtain ponderous formulas for x and v, but it is not so easy to reduce
the formulas to the right members of the formulas 2).

1.4 Distances, circles, and parabolas As we shall see, the distance
formula

(1.41) d=/(xz = 51): + (32 — y1)°

gives the distance d between two points Py(x1,91) and Py(x3,y5) in the
plane. To prove (1.41), we notice first that if y2 = 1, then the points P,




1.4 Distances, circles, and parabolas 25

and P, lie on the same horizontal line and the formula reduces to the
correct formulad = |x2 — x1|. If x; = x;, then P; and P lie on the same
vertical line and the formula reduces to the correct formula d = |y, — y,|.
When Pi(x1,y1) and Pa(xs,y:) are two given points for which x; # x; and
y2 # y1, we can, as in Figures 1.42 and 1.421, let Q(x2,v1) be the point on

Py(x3, 30) Py(x,52)
d
1¥2=x1] 1¥2=2 3
Q(x2, 1) Qx251)
Py(x,31)  |%2—x) ' o lxe—x|  Pi(x,51)
Figure 1.42 Figure 1.421

the horizontal line through P, and on the vertical line through P,. The
length of the horizontal line segment P,Q is xy — x1 if x2 — 21 2 0, is
%1 — x2 if 1 — %2 2 0, and is |x2 — x| in each case. The length of the
vertical line segment QP, is y, — y1 if y2 — 91 =0, is y; — y, if
y1 — y2 = 0, and is [yz — y1| in each case. With the understanding that
the distance d between P; and P, is the length of the line segment PP,
we can therefore apply the Pythagoras theorem to theright triangle P,QP,

to obtain

Yy cC
@ = |xs — | + |y2 — yaf? P(x,5)
and hence /
@ = (x2 = ) + (2 — ). kel
o x
Since 4 = 0, taking square roots gives the I v
required formula (1.41). Figure 1.43

We are all familiar with the fact, illustrated
in Figure 1.43, that the circle C with center at Py(%,k) and radius a is the
set of points in the plane whose distances from Pgare equal to the radiusa.
From the distance formula, we see that the point P(x,y) lies on this circle
if and only if

(1.44) = B2+ (& — B =at

This is therefore the equation of the circle with center at (k,£) and radius
a. We must always remember this and the fact that

(1.45) x* 4+ y? = a2

is the equation of the circle with center at the origin and radius a.
The equation of the circle with center at (—2,3) and radius 5 is

(1.451) (x+2)2+ (y — 3)2 =25



26 Analytic geometry in two dimensions

When the parentheses are removed and the constant terms are collected,
this equation takes the less informative form

(1.452) 22+ 92+ 4x — 6y — 12 =0.
This has the form
(1.453) x+y2+Dx+Ey+F =0,

where D, E, and F are constants. It turns out that for some sets of
values of D, E, and F, (1.453) is the equation of a circle. To try to write
(1.453) in the standard form (1.44), we begin by writing it in the form

(1.454) @+Dx+ )+ G*+E+ )=-F

The next step is to add a constant to the term x%* + Dx so that the sum
will be the square of a quantity of the form (x + Q). What shall we add?
A good look at the formula

(e + Q) = a2 + 20x + O

provides the answer: divide the coefficient of x by 2 and square the result.
Thus we add D?/4 and E?/4 to both sides of (1.454) to obtain

2 2 2 2 _
(x2+Dx+DT)+(y2+Ey+%) —_—D_y

or

2 2 2 2
wi (4 D)4 (pr B - REE=E

We can now see how the graph depends upon the constants D, E, and F.
In case D? 4 E? — 4F > 0, then (1.46) is the equation of the circle with

center at (—4D, —3%E) and radius % /D?+ E? — 4F. In case
D? + E* — 4F = 0, the equation becomes

(1461) («+3D)* + (v + 3E)* = 0.

This equation is satisfied when and only when x = —4D and y = —3%E
so the graph is the single point (—%D, —%E). Incase D? + E? — 4F <0,
there are no pairs of values of x and y for which the equation is satisfied.
One is tempted to say that the poor equation has no graph, but the graph
is actually the empty set, that is, the set having no points in it. Thus,
determination of the graph of the equation

x*+yr4+6x—T7y+8=0

is made by completing squares. The process is important and must be
remembered.

. Before starting the next paragraph, we look at some algebra and ways
in which it is printed. The quotient a/bc is called a shilling quotient and
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. . a .
is often printed instead of the built-up quotient e Learning to read

printed mathematics involving shilling quotients is an art that must be
cultivated, and this is a good opportunity. Since “multiplication takes
precedence over division” the quotient a/bc means a/(bc) and does not

mean (a/b)c. Thus, for example, 1/2% means 1/(2k) or _21—/e and does not

mean (1/2)k or k. When the next paragraph is read, the quotients
should be handwritten in built-up forms so the calculations can be made
more easily. If troubles appear, the difficulty may be the canonical one
that arises when a printer converts an author’s 1/2% into 4. Every-
thing should be checked.

We can get experience with the distance formula by starting to learn
about parabolas. A parabola is, as we shall show in Section 6.2, the set
of points (in a plane) equidistant from a fixed point F which is called the
focus and a fixed line L which is called the directrix and which does not
pass through the focus.f In order to obtain the equation of a parabola in
an attractive form, we let 1/2% denote the distance from F to L so that
1/2k = p and k = 1/2p, where p is the distance (length of the “per-
pendicular”) from F to L. Then we put the y axis through F perpen-
dicular to L and put the x axis midway between F and L as in Figure 1.47.

y

P(x,5)

D x

Figure 1.47

The parabola is the set of points P(x,y) for which FP = DP. Using the
distance formula and the fact that y 4+ 1/4% > O when FP = DP gives

. 1\’ _ 1
(1.471) #+lv—5) =rv+o

T The assumption that F is a “fixed” point and L is a “fixed’’ line means merely that F
and Lare “given” or “selected” in some way. There is noimplication that other points and
lines are ‘“‘unfixed” in the sense that they are moving. At one time the parabola was
defined as the path (or locus) of a point P which moves in such a way that it is always equi-
distant from F and L. ‘There are reasons why it is better to say that a parabola is a point
set. Everybody knows that pencil points and numerous other things move, but even if we
swallow the dubious idea that “mathematical points” can move we still find that the old-
fashioned definition does not tell how a point P should move to trace the whole parabola and
not merely a part of the parabola.
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This holds if and only if
1\2 1\2

Simplifying this gives the very simple and attractive equation
(1.472) y = kx%

This is the equation of the parabola shown in Figure 1.47.

The point 7 on a parabola which lies midway between the focus and
directrix of the parabola is called the vertex of the parabola. For example,
when £ 5 0, the point (xo,y0) is the vertex of the parabola for which the
point F(xo, yo + 1/4F) is the focus and the line L having the equation
y = yo — 1/4k is the directrix. As Problem 26 invites us to discover, the
equation of this parabola is

(1.473) y — yo = k(x — x0)%
When % 7 0, the equation
(1.474) y=Fkx*+ax+0b

can be put in the form (1.473) by completing a square and transposing.
Thus, when % # 0, the graph of (1.474) is a parabola, and we must always
4k
When the positive y axis lies above the origin as it usually does, the focus
is above the vertex when 2 > 0 and is below the vertex when 2 < 0.

It is possible to proceed in various ways to calculate the distance
d from a given point P(x,y0) to the line L having the given equation
Ax + By + C = 0. Problem 34 at the end of this section requires that
the answer be worked out in a specified straightforward way. Itis some-
times convenient to omit the calculations and use the result, which is set
forth in the following theorem.

Theorem 1.48 The distance d from the point P(x0,y0) to the line L having
the equation Ax + By + C = 0 is given by the formula

d= |4x0 + Byo + CI‘
/A% 4+ B?

In some applications of this theorem, we use the version obtained by
deleting the subscripts.

.

remember the fact. The distance from the focus to the vertex is

(1.481)

Problems 1.49

1 Draw the triangle having vertices at the points 4(2,2), B(—5,—2), and
C(—2,—4). Calculate the lengths a, b, and ¢ of the three sides BC, C4, and 4B
and show that ¢? = 4? + 5% This implies that the triangle is a right triangle
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having a right angle at C, and hence that the lines SP(x,)
BC and CA must be perpendicular. Calculate ’
the slopes of these lines and verify the perpen-
dicularity. Make everything check.

2 Figure 1.491 illustrates the familiar fact
that, when P;(x1,y1) and Pa(x2,y2) are two distinct
points in a plane, the set of points P(x,y) equi- S Py (%5, 72)
distant from P; and P, is the perpendicular bi-
sector L of the line segment Ple.p Equate expres- Figure 1.491
sions for the distance PPy and PP, and simplify the result to obtain the equation
of L in the form

Py(x1,:)
O

Then show that this line passes through the mid-point
P (xl + %2 y1+ yz)
2 2

of the segment PP, and is perpendicular to the segment.

3 Sketch a figure showing the triangle having vertices at the three given
points and then calculate distances to determine whether the triangle is isosceles
(that is, has two sides of equal length):

(@) (1,0), (82), (3,—7) (%) (1,4), (6,—1), (7,6)
(5) (O’a), (4,0), (b)b) (d) (a,a)a (—a,—-a), (b)—b)

4 TFind the length of the part of the x axis which lies inside the triangle
having vertices at the points (—3,—1), (5,1), and (1,5). Use a figure to deter-
mine whether the answer is reasonable.

5§ Find the point on the x axis equidistant from the two points Py(—2,—1)
and Py(4,3) in two different ways. First, find the equation of the perpendicu-
lar bisector of the line segment P1P; and find the point where this bisector inter-
sects the x axis. Then, with the aid of the distance formula, determine x so
that the distance from (x,0) to P, is equal to the distance from (#,0) to Ps.

6 Find the center and radius of the circle having the equation

t—DE-5+G+HH —2) =0.

Show that the center is the mid-point of the line segment joining the points
A4(1,2) and B(5,—4).
7 Find the center and radius of the circle having the equation

( —x)(x — 22) + (v — 91)(y — 92) =0.
8 Show that the equation of the circle C with center at Po(%o,y0) and radius

a can be put in the form
'

(& — x0)(x — x0) + (y — y0)(y — y0) = a®
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and that the equation of the tangent to C at a point P1(x1,y1) on C can be put in
the form

(%1 — x0)(x — %0) + (y1 — y0)(y — y0) = a*

Hint: Draw a figure and notice that when x; % xo, we can calculate the slope of
the line PoP; and use the fact (from plane geometry) that the tangent to C at
P, is perpendicular to PoP:.

9 Show that the circle passing through the three points 4(0,2), B(2,0), and
C(4,0) has its center at the point (3,3) and has radius +/10. Hint: The per-
pendicular bisectors of the segments 4B and BC are easily found, and their
intersection is the required center.

10 A circle passes through the points (0,7) and (0,9) and is tangent to the
x axis at a point on the negative x axis. Find the radius, center, and equation
of the circle.

11 Let 0 < a < b and find the radius r and center (k,£) of the circle which
passes through the points (0,4) and (0,) and which is tangent to the x axis at a
point to the left of the origin. Ans.:

r=a-;b: b= —/ab, k=a-;b'

12 A circle has a diameter (line segment, not number) on the x axis. The
circle contains the two points (4,0) and (b,¢) for which ¢ ¢ 0. Show that b # a
and find the center of the circle. Ans.:

b2+ ¢ — a® 0)-
206 —a)

13 The points 4(—4,0) and B(4,0) are the ends of a diameter (line segment,
not number) of a circle of radius & having its center at the origin. Write and
simplify the equation which » and y must satisfy if 4, B, and P(x,y) are vertices
of a right triangle the side 4B of which is the hypotenuse.

14 An equilateral triangle has its center at the origin and has one vertex
at the point (4,0). Find the coordinates of the other vertices and check the
results by use of the distance formula.

15 Sketch a figure which shows whether there are values of y for which the
point (0,y) is equidistant from the points (—4,1) and (7,—2). Then attack the
problem analytically. Make everything check.

16 An equilateral triangle in the closed first quadrant has vertices at the
origin and at (,0). Find the coordinates of the third vertex and the slopes of
the sides.

17 An isosceles triangle is placed upon a coordinate system in such a way
that its vertices are (—4,0) ,(a,0), and (0,5). Prove analytically that two of the
medians have equal lengths.

18 A triangle has vertices at 4(—a,0), B(5,0), C(0,c). Prove that if the
medians drawn from 4 and B have equal lengths, then the triangle is isosceles.

19 Find the values of the constant 4 for which the line having the equation
y = 2x + b intersects the circle having the equation x? + y* = 25. Ans.:

18] = +/125.
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20 A triangle has vertices Pi(xy,y1), Pa(xs,y2), oF
Ps(x3,y5). Prove analytically that 4 times the sum of ‘
the squares of the lengths of the medians is equal to
3 times the sum of the squares of the lengths of the
sides.

21 Discover for yourself that a part of a parabola
can be drawn with the aid of the right triangle (or
rectangle), string, and pin mechanism shown in Figure
1.492. A string of length ED has one end fastened
to the triangle at E and has the other end fastened to
a pin at the focus F. A pencil point at P keeps the Figure 1.492
string taut, so FP = DP, and traces a part of the
parabola as the base of the triangle is moved along the directrix. Such con-
structions are taboo in the classical ruler-and-compass geometry of Euclid, but
in analytic geometry we can recognize the existence of all kinds of machinery.

22 Supposing that » > 0, find and simplify the equation of the parabola
whose focus is at the origin and whose directrix is the line having the equation

y=—p. Ans. y = 71; (x2 — p?2). Remark: If we set k = 1/2p, then. the

equation takes the form y = k(x? — 1/4k%). The parabolas obtained by taking
different values of p or % constitute a family of confocal parabolas; concentric
circles have the same center and confocal parabolas have the same focus.

23 Supposing that p < 0, find and simplify the equation of the parabola
whose focus is at the origin and whose directrix is the line having the equation
y=—2.

24 Supposing that p > 0, find and simplify the equation of the parabola
whose focus is at the ongm and whose directrix is the line having the equation

x = —p. Ans.: x=—(y — 2.

25 Find the equation of the parabola whose focus is the point (12,0) and whose
directrix is the line having the equation x = —12. A4ns.c x = y2/48.

26 Supposing that k £ 0, use the distance formula to obtain the equation
satisfied by the coordinates (x,y) of points P equidistant from the point F(xo,
yo + 1/4k) and the line L having the equation y = yo — 1/4k.  Outline of solu-
tion: A point P(x,y) lies on the parabola if and only if FP = DP, where D is the
point (x, yo — 1/4k). Writing FP and DP in terms of coordinates gives an
equation which reduces to (1.473).

27 Supposing that 2 > 0 and A > 1, find and simplify the equation satisfied
by the coordinates of the points P(x,y) whose distances from the point 4(—#,0)
are A times their distances from the point B(%,0). Ans.:

( )‘2+1h) + 2_()\22)\ h)

28 Still supposing that 2 > 0 and A > 1, show that the graph of the answer
to Problem 27 is a circle having its center at a point Pg on the x axis. Find the
x coordinates of the points Py and P, where the circle intersects the x axis. A4ns.:
See Figure 1.191, which displays the x coordinates of the points and shows their
correct positions relative to 4, 0, B and to each other.
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29 From the first two of the equations

(1) 24+ taxtby+tea=0
@) 22+ y 4 am+ byt =
(3) (@2 —a)x + (b2 — b))y + (c2—¢c1) =0

we can obtain the third by equating the left members of (1) and (2) and simpli-
fying the result. Supposing that the graphs of (1) and (2) are nonconcentric
circles, show that the graph of (3) is a line perpendicular to the line containing
the centers of the circles. Show also that if these circles intersect in one or two
points, then the line contains the point or points of intersection. Remark: The
line is called the radical axis of the circles, it being named because some people
want to talk about it.

30 The points Py(x1,y1), P2(x2,y2), and Ps(xsys) are, in positive or counter-
clockwise order, the vertices of an equilateral triangle. Find formulas which
express x3 and y; in terms of the coordinates of Py and P,.  Solution: While the
problem can be attacked in other ways, we eliminate difficulties involving order
relations by observing that if the half-line extending from P; through P, makes
the angle 6 with the positive x axis, then the half-line extending from P, through
P;3; makes the angle 8 + n/3 with the positive x axis. Let a be the lengths of
the sides of the equilateral triangle. The definitions of the trigonometric func-
tions then give

(¢)] xy — x1 = a cos 6, Yy2 — y1 = asin §

2) x—x1~acos(0+3) acoso—%}-asme
ey — 23 1 .

3 Y3 — y1 = asm(0+3)—-—2——acos0+§asm0.

In obtaining the latter formulas, we use the “‘addition formulas®

4) cos (0 + @) = cos 6 cos ¢ — sin 0 sin ¢
5) sin (0 + ¢) = sin 6 cos ¢ + cos 8 sin ¢

and the values of the sine and cosine of /3 which can be determined with the
aid of Figures 1.493. From (2), (3), and (1), we obtain the

\ answers
; NGO memtgeom- Yoo
21 V3 \\ ) y3 =31+ -—\;—3 (%2 — x1) +% (y2 — ).
31 A Remark: The points in the xy plane for which both coordi-
Figure 1.493 nates are integers are called lattice points. Our results

enable us to show very easily that triangles having vertices
at lattice points cannot be equilateral. To prove this, let an
equilateral triangle have two of its vertices, say P; and P,, at lattice points.
Then 1, %2, y1, y2 are integers and, since 4/3 is irrational, (6) shows that x5 can-
not be an integer unless y, = y;. If y2 = y;, we must have x, 5 %1, and then
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(7) shows that y; cannot be an integer. This shows that if two vertices of an
equilateral triangle are lattice points, then the third vertex cannot be a lattice
point.

31 Let n be a positive integer. Let my, ms, * + + , my, %1, &2, * * * , &n,
y1, ¥2 * * * 5 ¥a be numbers for which

1) m+my+ - +m,=M>0.
Let

o omixy+ maxe ¢ ¢ 0 4 Maxa - omyr+ maye + ¢ 0 0 4 maya
(2) x = M 4 y= M .
Foreach =1, 2, + - -, n, let r, be the distance from (x,y) to (i) and let

dy be the distance from (%,5) to (xi,yx). A timid person may be comforted by
the special case in which #n = 4, m; = m, = ms = m, = 1, and the points (xz,yz)
are the vertices (1,1), (—=1,1), (—1,—1),(1,—1) of asquare. Confining attention
to the special case if this be deemed desirable, prove that

(3) mur+ mas+ - o+ mark = Ml(x — 22+ (y — §)7
+ md? 4 modi + - - -+ madl

With the aid of this result, let I be a constant and describe the set of points (x,y)
for which

“) mirs 4+ mars + - - - + mard = L

32 Let Py, Py, P3 have coordinates (x1,y1), (x2y2), (¥3,y3), respectively. The
triangle inequality

(1) Vixs— 22+ (93 — y1)? £ V(%2 — %1)? + (y2 — 31)?
+ \/(xa - x2)2 + (ys - y2)2

says that the distance from P; to P3is less than or equal to the sum of the distance
from P; to P; and the distance from P; to P;. In more advanced mathematics,
analytic proofs of (1) and more or less similar inequalities are very important.
Show that setting

2) a1 =% — 1, a=y2— v, b1=x3— x, b = y3 — 2

puts (1) in the more agreeable form

3) V(e + b))% + (a2 + b2)? < Va? + ok + VbE + B2

By squaring and simplifying, show that (3) holds if

)] |a1by + asbo| = \/af + a3 '\/bf + b3
By squaring and simplifying again, show that (4) holds if
(5) 0 = (dxbz - asz)zo
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Finally, tell why (5) must hold. Remark: In order to appreciate the significance
of this work, we must do a little thinking about ‘“elementary”’ mathematics.
Itis sometimes said that a straight line is the shortest distance between two points.
If this silly collection of words means anything it means that the length (a num-
ber) of the line segment (a point set) joining two points P; and P; is less than the
length (a number) of each other path (a point set) joining Py and P.. We must
study more mathematics before we can learn what we mean by a path joining
P, and P; and what we mean by the length of such a path. In some parts of
“advanced” mathematics, the multifarious axioms of Euclid and the theorem
of Pythagoras are bypassed and the number 4 in the formula

d = V(%2 — x1)2 + (y2 — )2

is defined to be the distance (in Euclid space of two dimensions) between the
two points Py(x1,91) and Pa(xz,y2). It is useful as well as possible to define 4 by
other formulas to obtain spaces that are not Euclid spaces. In such situations
it is necessary to use analytical methods instead of geometrical methods to
determine whether triangle inequalities hold.

33 Four numbers ayy, a15, @21, and a,2 determine the equations

a) { x: = ayx + anzy

Yy = anx + axy

into which we can substitute the coordinates of a given point (x,y) to obtain the
coordinates of a ¢ransform, or transformed point, (x’,y’). Supposing that (x,y1)
and (xs,y2) are two given points and that D is the distance between their trans-
forms (x7, y1) and (x3, y3), find D2 Ans.:

2) D= (a§1 + agl)(’@ - x1)? + (afz + agz)(yz — y1)?
+ 2(ana12 + anaz)(®: — x1)(y2 — y1).

Remark: The transformer is called isometric if the distance d between two points
is always the same as the distance D between their transforms. If the trans-
former is isometric, we can put #; — x; = 1 and y, — y; = 0 to obtain

©) afy + a5 =1,

we can put x2 — x; = 0 and y2 — 91 = 1 to obtain

4 ﬂfz + agz =1,

and we can put s — 1 = 1 and y2 — y1 = 1 and use (3) and (4) to obtain
©) anais + anas = 0.

On the other hand, if (3), (4), and (5) hold, then (2) shows that the transformer

is isometric.
34 Supposing that the first of the two equations

(¢)) Ax + By = —(, Bx — Ay = Bxo — Aye

is the equation of a given line L and that Py(xo,30) is a given point, find the
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equation of the line through Py perpendicular to L and show that it is equivalent
to the second of the two equations. Solve these equations to find that the
coordinates x1, y1 of the foot P, of the perpendicular from P to L are

B2xq — ABy, — AC A%y — ABxy — BC
(2) x1 = : A7 + gz yy = 220 Ve +ff302
Show that
3) x1—x0 Az T Bz (4x0 + By, + C),

Y1 — Yo = —=———= (Ax0 + Byo + C).

AZ+BZ

Finally, use the fact that the distance 4 from Pg to L is the distance from Pq to
P, to obtain the formula
(4) IAxo + Byo + C[

V4 + B

1.5 Equations, statements, and graphs The equation y = x + 2
can be regarded as a statement that is true for some pairs of values of
and v, for example, x = 3, y = 5, and is false for some other pairs of
values of x and v, for example, x = 7,y = 7. A similar remark applies
to each of the equations %% + y2 = 4, Ox + 0y = 1, and Ox + 0y = 0,
and to each of the inequalities 0 <x <1, y < x, and 2?2 + 92 < 1.
Each is a statement that is true for some (or none or all) pairs of values
of x and y and is false for the remaining ones. The graph of such a state-
ment is the set or collection of points P(x,y) whose coordinates are pairs
of values of x and y for which the statement is true. For example, the
graph of the statement (or equation) y = x is a line L. We can always
know that there is a substantial difference between an equation (or state-
ment) and its graph (a point set). Hence, we may be carrying abbrevi-
ation of language a bit too far when we sometimes follow the old and mis-
leading custom of referring to “the line y = #” instead of to “the line
having the equation y = x.”> In any case, we should think about this
matter enough to know that we are introducing analytic geometry and
hopefully trying to make sense out of nonsense if we receive a mysterious
order to “find the part of y = x in #? 4+ y? = 1” and proceed to find the
length of the part of the line having the equation y = x which lies inside
the circle having the equation x? + y? = 1.§

Most of the graphs that appear in our work are graphs of equations.
However, graphs of inequalities can be important, and we look at some
simple examples. The graph of the inequality xy > 0 consists of those
points P(x,y) in the first quadrant (where x and y are both positive)

1 Persons who start picking up clear ideas about these things may even enjoy studying
statements and sets in mathematical logic and elsewhere.
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together with those in the third quadrant (where x and y are both nega-
tive); see Figure 1.51. The graph of the inequality y < x consists of
those points P(x,y) which lie on and below the line y = x of Figure 1.52.

y
x<0,y>0]| x>0, y>0

|z
| Iv x
x<0, y<0 | x>0, y<0

Figure 1.51

y

-©—

Figure 1.53 Figure 1.54

The graph of the inequality ¥* 4+ y2 < 1 consists of the points inside the
circle with center at the origin and unit radius. This set of points is
often called the unit disk; see Figure 1.53. The graph of the inequality

1 1 (69—
\ -3 —2| -1 1 T~

3 - - 1 2 3 x

(—x,y)‘g 4&3’) (~= \K
\ 2 Z 'y 4
R— ., \ —
-3 -2 -1 1 2 3 x -3

Figure 1.55 Figure 1.56

1 < x® 4 y? < 4 is the set of points in the annulus or ring between two
circles; see Figure 1.54.

The equation y = &? is, as we saw in Section 1.4, the equation of a
parabola. After plotting the points whose coordinates appear in the table
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we are easily led to the correct conclusion that the graph of y = #2?is the
curve shown in Figure 1.55. It should be noted that the graph contains
no point (#,y) for which y < 0; if y < 0, there is no » for which y = x2.
The y axis is an axis of symmetry of the graph, because if (x,y) is a point
on the graph, then the point (—x,y) is also on the graph.

The graph of the equivalent equations

(1.561) xy = 1, y = :'_c

is more complex. As we shall see later, the graph is a rectangular
hyperbola. It is easy to add more items to the table

xlﬁ-lé—lllleO

and to sketch the part of the graph to the right of the y axis in Figure 1.56.
A similar table in which x and y are both negative enables us to sketch
the part lying to the left of the y axis. The graph contains no point (x,y)
for which x = O or y = 0. The x and y axes are not axes of symmetry,
but the origin is a center of symmetry, because if (x,y) is a point on the
graph, then the point (—x,—~7y) is also on the graph.

The symbol [x] represents, when we are properly warned, the greatest
integer in x, that is, the greatest integer n for which » < x. Thus
[1.99] = 1, [3.14] = 3, [0.25] = 0, [—0.25] = —1, [—3.01] = —4, and
[2] = 2. Itis not difficult to show that the graphs of y = [«] and of the
saw-tooth function y = x — [x] — 4 have the forms shown in Figures
1.57 and 1.571.

Trigonometric functions will appear very often in our work, and there
will be very many times when we must know the natures of the graphs of

Figure 1.57 Figure 1.571
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| y
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1
—3| ~g| -1 Y z
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1 y=sinx y=cos x
SR Y ___;7( _________ 4é;, =
4 N T 3r 7 N 5
- N2 ~ DA 2
=t 0 1 N2 3 4 5 6 7 '8 x
N s
il 7 \\_\.‘.’_:.._

Figure 1.58

y = sinx and y = cos . The graphs are shown in Figure 1.58. We
must always know that, except at the points of tangency, the graphs lie
between the lines having the equations y = —1 and y = 1. Moreover,
« is a little bit greater than 3, and this must be fully recognized when the
graphs are sketched. When we want to sketch the graphs, the first step
is to draw guide lines one unit above and one unit below the x axis. The
next step is to hop three units and a bit more to the right of the origin to
mark 7, and make another such hop to mark 2r. We must be able to do
this and sketch reasonably accurate graphs of y = sin x and y = cos x
in a few seconds, and we must be able to look at the graphs and see
answers to trigonometric questions just as we look at dogs and see answers
to questions about canine structure. We cannot tolerate doubts about
the assertions sin 0 = 0, cos 0 = 1, sin #/2 = 1, cos /2 = 0, and dogs
have two ears. The table on the back cover of this book can be used to
produce very accurate graphs, but this is seldom necessary.

Finally, we are never too young to be informed that substantial parts
of scientific lives are devoted to learning about and using equations akin
toy = e*and y = logx. Graphs of these equations are shown in Figures
1.581 and 1.582. The exponentials and logarithms have base ¢, and ¢ is a
number that we shall encounter very often. Here again the tables on the
back cover of this book can beused. While we should have basic informa-
tion about graphs before we start our study of functions, limits, and the

Figure 1.581 Figure 1.582
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calculus, most of our work with equations and graphs will be done with
the aid of the calculus.

Problems 1.59
Sketch graphs of the following equations and inequalities:
4 y=(x—1)2 S y=@x+1): 6 y=u
7 y=1+4+=x« 8 y=1+4 42 9 xy = -1

1 1 1
10 Y=1F= 1 y=(1+x)z 12 y=1+xz

1

13 y=1—Tx;-2 14 y=x+- 15 y=x—a-lc
16 y = || 17y = |z — 2| 18y = 5(x + |«l)
19 0<x<1 20 0<y<1 21 0<x+9y<1
22 lxl <1 2 x—2<% d $<x<$
25 y<a? 26 |y| < |#| 27 |y < x?
28 x| + Iyl =1 29 Jxl+ 1yl <1 30 x| + Iyl >1

31 With Figure 1.58 out of sight, sketch graphs of y = sin x and y = cos .
If unsuccessful, glance at Figure 1.58 and try again.

32 Figure 1.591, which features half of an equilateral triangle each side of
which has length 2, shows that

.r 1 ™ /3 .t /3 r 1 ‘ \\
sing = % Cos g = 3 siny = —5- cosz =3 \ \\
\
Cultivate the ability to sketch this figure quickly. Use the V3 \\
information obtained from it to locate points on the graphs /\ \
of y =sinx and y = cos x. Sketch a right triangle in 1
which each leg has unit length and obtain more points on Figure 1.591

the graphs. Finally, sketch graphs of y = sinx and
y = cos x again. Remark: We need familiarity with our graphs, and we need
confidence in them.

33 Sketch graphs of

(@) y=3sinx () y = sin 2x () y = sin (x + g)

Remark: Graphs of equations of the form y = E sin (wx + @) are called sinusoids,
and we hear very often that E is the amplitude, » is the angular frequency, and
a is the phase angle of the sinusoid.

34 Where are the points (x,y) for which 0 < x < 2r and sinx < y < cos #?

35 Supposing that & £ 0, find the slope m of the secant line (or chord)
containing the two points of the graph of the equation y = #2 having x coordi-
nates x; and x; + k. Ans.: 2x1 + k.

36 It is sometimes quite important to have correct information about the
graphsof y = x%and y = x¥6. Sketch the graphs over the interval —2 £ x < 2.
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37 With the aid of the quadratic formula, show that the point (x,y) lies on
the graph of the equation x2 + xy + y> = 3 ifand only if =2 2 x =<2 and y
is one of the two numbers

y
—~ —x — V34 —x?) —x + V3% — x%)
4 ) ’ )
1
\ which are equal only when x = —2 and when x = 2.
0] 1t \ *  Formulate and prove an analogous statement in which
y, the roles of x and y are interchanged. Find the coordi-
—— . . . . .
nates of the eight points in which the graph intersects the
Figure 1.592 lines having the equations x = —2, x = 2, y = —2,

y=2,9y=x and y = —x. Remark: The graph is an
oval which is shown in Figure 1.592 and which is, as Chapter 6 will show us, an
ellipse.

38 Sketch a graph of y = sin x over the interval 0 £ x < 27 and then, with
the aid of simple arithmetic facts like 02 = 0, (0.4)2 = 0.16, (0.8)2 = 0.64, use
the result to obtain a graph of y = sin? x.

39 Sketch graphs of y = cos 2x and y = (1 — cos 2x)/2. Remark: Because
of the trigonometric identity

1 — cos 2x

sin? x = —
the answers to this and the preceding problem are the same.
40 DPerhaps the classic guns-and-butter interpretation of the formula

x+y=M

should not be overlooked. It is supposed that a chief has control of M man-
hours of human energy. The chief may preempt x man-hours to provide pressure
and power to keep his subjects in line and to preserve or extend his authority.
Then, even when x = M and y = 0, there remain y man-hours part of which
may be used for production of food, shelter, education, and sundries. Sketch
a graph which shows how x and y are related. Hint: Do not ignore the basic
idea that x =2 0 and y = 0.

41 Sketch graphs of the three equations vy = Vx, y=x, y2 = x% and
make some relevant comments.

42 Leta > 0. Show that the equation

¢)) Vi+Vy=+a
holds if and only if 0 £ x £ ¢ and
@ y=0a—-V7z)?=a+x—2Vax.

Without making onerous calculations, sketch rough graphs of (1), (2),

(€) y=a+x+2\Va,
and
4 (y — a — x)? = 4ax.

Remark: Chapter 6 will reveal the fact that the graph of (4) is a parabola. The
graphs of (1), (2), and (3) are parts (subsets) of the parabola.
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43 Let us suppose that a man who marries should select for his wife a woman
whose age is 10 years more than half his age. Construct a graph for use of
bachelors who are accustomed to picking information from graphs in the Wall
Street Journal and everywhere else but are unaccustomed to making abstruse
mathematical calculations.

44 Let time ¢ be measured in seconds so that, as we can see by replacing x
by ¢ in Figure 1.58, sin ¢ increases from 0 to 1 and decreases back to Oin 7 (about
3) seconds. If you can acquire the ability to move your pencil point in the xy
plane in such a way that its coordinates (x,y) at time ¢ are x = sin ¢ and y =
|sin ¢|, you will get a V for victory.

1.6 Introduction to velocity and acceleration Teachers of mathe-
matics and physics are accustomed to difficulties involved in correlating
studies of graphs, vectors, velocities, and accelerations in mathematics to
studies of diagrams, forces, velocities, and accelerations in physics.
There is a reason why it is not easy to achieve complete correlation. In
order to be able to solve just one of his easiest problems involving motion
of a body or particle, a physics student requires a little information about
several basic concepts. This section is introduced at the end of our first
chapter because it may be a desirable or even necessary part of some
educational programs. Students can be advised to read it to obtain
preliminary ideas about their external world but, so far as this course is
concerned, can be advised to postpone the learning of the mathematics in
it. Some and perhaps most teachers will proceed directly to the next
chapter and will devote a classroom hour to this section only if and when
their students face the prospect of studying falling bodies in their physics
courses before they encounter derivatives and integrals in their mathe-
matics courses. The next chapter, Chapter 2, treats vectors in space of
three as well as fewer dimensions. While physicists can regret that this
delays our full treatment of velocities and accelerations, they can also
rejoice in the fact that the delay permits production of a much more use-
ful treatment of the matter.}

As the preface states, the first third of this book contains all or nearly
all of the analytic geometry and calculus that students normally encounter
in their introductory full-year college and university courses in physics.
In a few weeks, formulas like

(1.611) ;= %gtz + vet + 5o
(1.612) v = % S
dv dis

t This is a very conservative statement. Vectors, like numbers, are important things
and there are many reasons why they should be encountered early and frequently when
geometry and calculus are studied.
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will be completely familiar and meaningful to us. Meanwhile, we make a
preliminary study of ways in which they are related to experiments
involving falling bodies. Chapters 3 and 4 will give much less informa-
tion about the physics experiments but much more information about
the mathematics.
37 Suppose we have, as in Figure 1.62, a vertical s axis with
21 the positive 5 axis below the origin. For laboratory experi-
'::_ ments, we can place one meter stick above another and
place minus signs in front of the numbers on the upper

2; stick. We can suppose that a body is, at time ¢t =0,
3} falling or just being dropped so that it travels past the
s markings on our meter sticks with increasing rapidity as

Figure 1.62 time passes. On the other hand, we can suppose that the
body is rising at time ¢ = 0 so that it rises for a while
before it begins its descent. We may suppose that distances are meas-
ured in centimeters, so that s = 20 when the body is 20 centimeters
below the origin, and that ¢ is measured in seconds, so that ¢ = 0.5 whena
timing device shows a half-second after our time origin or zero-hour.

Anyone who tosses a body upward and observes the ensuing motion
must realize that it is not an easy matter to use an ordinary clock to
obtain accurate data giving the coordinate s of the body at various times
t.  While solid information about such matters must be obtained from
physicists, we can all recognize the possibility of getting useful data with
the aid of apparatus so arranged that at each of the times ¢ = 0, ¢ = 0.01,
t =002, ¢t = 0.03, - - - an electric spark jumps from a pointer on the
falling body to burn a tiny hole in a long strip of
paper attached to the meter sticks. Whenenough
reasonably accurate information has been obtained
in one way or another, we can use it to plot points
(t,5) in a ts plane and obtain a graph more or less
like that shown in Figure 1.63. For each ¢ within
the domain for which measurements are made,
the s coordinate of the point P(z,s) on our graph is
Figure 1.63 a more or less good approximation to the coordi-

nate or displacement of the body at time t.

Some information should be in hand when we undertake to use our data
and graph to obtain information about our falling body. Without pre-
tending to have precise ideas yet, we can start with the rough idea that
forces and velocities and accelerations exist and that these things are
vectors or are represented by vectors. The reason our falling body
plummets toward the center of the earth, with speed increasing when it is
headed downward, is that the earth exerts a gravitational force upon it.
The magnitude of this force is the weight of the body. Since we find no
perceptible change in the weight of a body when we raise or lower it a few

(4]
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meters, we conclude that, so far as our problem is concerned, the mag-
nitude of the gravitational force may be considered to be a constant, that
is, the same at all places on our meter sticks. We can know that air
resistance retards the motion of moving bodies but, when heavy bodies
fall only a few meters, this produces consequences so small that our
measurements are unaffected. Thus, so far as our measurements can
tell, we are investigating the motion of a body which moves on a line
through the center of the earth with only a constant gravitational force
acting upon it.

In what follows, vectors are denoted by boldface letters as they usually
are in printed scientific works.t Study of physics books or the next
chapter reveals the meaning of the statement that the gravitational force
F which the earth exerts upon our falling body is mgu, where m is a
positive number (the mass of the body), g is a positive number (the scalar
acceleration of gravity), and u is a unit vector which lies on the line along
which our body falls and is directed toward the center of the earth. The
velocity v and the acceleration a of our falling body are vectors, but they
are representable in the form v = vu and a = qu, where v and a are real
numbers that are not vectors and are sometimes called scalars to empha-
size the fact that they are not vectors. Thus v is not a velocity, but it s
the scalar component of a velocity. We call v a scalar velocity. Similarly,
a is a scalar acceleration.

Fortified by at least a hazy understanding of the significance of our
problem, we use experimental data of a table or of Figure 1.63 to learn
about the scalar velocity » and the scalar acceleration a of our body. Let
t1and #; be two different times and let s, and s, be the displacements of our
body at these times. As the formula

(1.64) . I:;';l = average scalar velocity
2 — 4

indicates, the quotient on the left is called the average scalar velocity of our
body over the time interval from the lesser to the greater of ¢; and #,.
Incaset; < #;and 51 < 59, the quotient in (1.64) has a very familiar form.
Except that the units may be different, the quotient is a positive number
of miles divided by a positive number of hours and hence is a number of
miles per hour that we normally call an average speed instead of an

t We pause to observe that boldface letters cannot be conveniently made with pencils‘,
pens, crayons, and typewriters, and that a vector F (boldface) is often denoted by F.
Readers are advised to look at F (boldface) and imagine that there is an arrow on top of it
so they will, in effect, see the T which they write when they want to cmphasizi the fag
that the symbol is (or represents) a vector. Thus the formula F = ma becomes ¥ = ma
when it is transferred from printed material to handwritten hieroglyphics. Sometimes the
arrows are printed to remove the necessity for use of imaginations, but we can, in effect,
be paid for using our imaginations because printing the arrows increases costs of books.
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average scalar velocity. After appropriate preliminary topics have been
studied, Chapter 3 will tell precisely how the velocity v and the scalar
velocity o at time ¢ are defined. It turns out that the scalar velocity »

ds .. .
and a number P called the derivative of s with respect to ¢, are equal to

each other and, moreover, that the quotient in (1.64) is nearly equal to

ds . .
9 and 7 whenever #; = t and t, is nearly equal to ¢t but 2, # ¢t. To obtain

an estimate of the scalar velocity v at a particular time ¢ from experimental
data, which may be presented in a graph, it therefore suffices to calculate
and use the average scalar velocity over a short time interval beginning
or ending at t. Use of experimental data for this purpose is rendered
difficult by the fact that, when #; and ¢, are nearly equal, small relative
errors in measurements can produce huge errors in estimates of the value
of the quotient (53 — s51)/(t2 — t1). It is a truly
remarkable fact that when reasonably accurate
data are collected and intelligently used, it is pos-
sible to estimate v for various values of ¢ and to
find that the points (z,9) in a to plane come so close
to lying on a line that all of the deviations can be
: attributed to errors in measurement and calcula-
tion. Thus our experimental work leads to the con-
clusion that, as in Figure 1.65, the graph of » versus:
Figure 1.65 is either a part of a line or a very close approxima-
tion to a part of a line.

The scalar acceleration a of our falling body is defined in terms of the
scalar velocity o in the same way that the scalar velocity v is defined in
terms of the scalar displacement s. Thus, in addition to the basic
formula (1.64), we have the basic formula

92 — 0 .
(1.66) : tl = average scalar acceleration
2 — 1

in which #; and v, are the scalar velocities at times ¢, and ;. The scalar

. . . do
acceleration a at time ¢ and the derivative 7 are equal to each other and,

L. . dv
moreover, the quotient in (1.66) is nearly equal to a and to % whenever

t1 = t and ¢; is nearly equal toz but z, # ¢. On the basis of the assump-
tion that the graph of v versus ¢ is a part of a line as in Figure 1.65, the
average scalar acceleration is the slope m; of the part of the line. The
hypothesis that each average scalar acceleration is the constant m, leads
to the conclusion that, at each time ¢, the scalar acceleration is m,; that
is, 4 = m;. Calculations from reasonably accurate data show that m,;
is about 980 when centimeters and seconds are used and about 32 when
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feet and seconds are used. 'This number m; is the gravitational constant
g to which we have referred.

The simplest reasonable conclusion that can be drawn from data
involving falling bodies is the following. To each place on the surface of
the earth there corresponds a positive constant g, the scalar acceleration
of gravity at that place, such that when a body moves on a vertical line
near the surface of the earth with no appreciable external force other than
the gravitational force exerted upon it, reasonable answers to problems
can be based upon the assumption that the body is accelerated toward the
center of the earth and that the scalar acceleration is g. Another similar
but more lengthy conclusion involves the idea that the graph of v versus ¢
is a line and that reasonable results are obtainable from the formula
v = gt + o, where 9o is a particular constant that depends upon choice of
the time-origin used when studying a particular flight. Finally, it is
possible to use the data and quite primitive mathematics to reach the
more abstruse conclusion that there exist constants g, »,, and 5o, thelatter
two of which depend upon the time-origin and the space-origin used in the
study of a particular flight,such thatreasonableresults are obtainable from
(1.611). A campaign to reach this conclusion can start with the observa-
tion that the graph in Figure 1.63 does look like a part of a parabola.

Mathematicians do not, except when they are behaving like physicists,
actually perform physical experiments. Mathematicians cannot, unless
they have physical laws or other information upon which proofs can be
based, prove the formulas that are useful in mechanical dynamics and
thermodynamics and hydrodynamics and aerodynamics and electro-
dynamics and economics and psychology and genetics and chemistry and
cosmology. But mathematicians can, when they are given a few weeks,
learn enough about derivatives and other things to enable them to start
with given information and produce more information with astonishing
ease. One who knows the content of Chapter 3 can start with the first
of the three formulas

(1.671) 5 = %gt2 + vot + 50
(L672) =% gt

dv _ d%s
(1673) a=—="7:=8

and produce the other two as fast as he can write. All he needs to dois
apply standard rules for writing derivatives. The problems at the end of
this section provide preliminary ideas about this matter. It is much
more significant that one who knows the content of Chapter 4 can start
with the last of the formulas and produce the other two as fast as he can
write. All he needs to do is apply standard rules for writing integrals.
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The physical significance of the constants in (1.671), (1.672), and
(1.673) is worthy of notice. As we see by putting ¢ = 0 in (1.671), 5o1is
the value of 5 (the displacement) when ¢ = 0, so s¢ is called the initial
displacement. As we see by putting ¢ = 0 in (1.672), 9o is the scalar
velocity when ¢t = 0, so 9o is called the initral scalar velocity. It is easily
seen from (1.672) that v = 0 when ¢t = —oo/g. The values (if any) of ¢
for which s = 0 can be obtained by putting s = 0 in (1.671) and solving
the resulting quadratic equation for z. In many applications, the space
and time coordinates are so chosen that the initial displacement s¢ and
initial velocity v are both 0. In this case (1.671) reduces to the simpler
formula

(1.674) 5 = Lot

The related formulas
(1.675) t = \/%} v = gt = V/2gs,

which give the time required for the body to fall a distance s and the speed
attained when the body has fallen a distance s, are often useful.

We conclude with a remark about uniform circular motion. Suppose a
particle starts at time ¢ = 0 on the positive x axis and moves, with angular
speed w (omega) radians per second, in the positive (counterclockwise)
direction around the circle of radius R having its center at the origin.
Letting T denote the vector running from the origin to the particle P
at time ¢ gives the first of the formulas

(1.681) r = R( cos wil + sin wtj)
(1.682) V= wR(—sin wti 4+ cos wtj)
(1.683) a = —w?R( cos wti + sin wtj)

where, as in Figure 1.684, 1 and j are unit vectors having the directions of

Figure 1.684

the positive x and y axes. Application of rules of Chapter 3 then gives
(1.682) and (1.683) as rapidly as we can write them. Looking at (1.681)
and (1.683) shows thata = —w’r and hence that P is always accelerated
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toward the center. The length of the vector r is always R, and the length
of the vector a is always w?R. This shows that the magnitude of the
acceleration is always w?R. These results are important in physics and
engineering. Physics books that do not make effective use of good
mathematics do not derive their results so efficiently.

Problems 1.69
1 Supposing that g, 9o, and 5o are constants and that
M 5= %g2 + oot + 50

at each time ¢, use notation like that in (1.64), so that s = s; when ¢ = ¢; and
s = s, when ¢ = ¢,, to obtain the formula

) 52— 51 = (53 — 1) + volta — #1)
and hence
3) 2T L4 1) + 0

2 — 1

when £, £ t;. Remark: Even though we have not yet encountered procedures by
which such statements are made precise, we can temporarily accept without
question the statement that the right side of (3) must be near gt + vy whenever
t; and ¢, are both near ¢ and hence that

(4) v = gt + 9.
2 Supposing that g and v are constants such that
1) 9= gt+ 9

at each time ¢, use notation like that in (1.66), so that o = v; when ¢ = #; and
9 = v, when ¢ = I, to obtain the formula

@) 92— 01 = gtz — 1)
and hence

Uy — U1 _
3) heh =

when #; 5 t;. Remark: A remark similar to that of the preceding problem is
applicable here; the scalar acceleration a at time ¢ is g.

3 We should now be well aware of the fact that Problems 9.29 will appear at
the end of Chapter 9, Section 2. While the trick is not used in this book, we can
use the numbers 9.2908 and 9.2922 to identify problems 8 and 22 of Problems 9.29.
Now comes the problem. Write a single number to identify formula 15 of Prob-
lem 4 at the end of Section 6 of Chapter 12.  Ans.: 12.690415. Persons who feel
that this trick is complicated should think about the matter to capture some of the
spirit of members of a research staff of a data processing department of IBM
(International Business Machine Corporation) who find that such tricks keep
them in business.



2 Vectors and geometry

n three dimensions

2.1 Vectors in E; To facilitate discussions and solutions of problems
in geometry and calculus, and for many other purposes in pure and
applied mathematics, it is necessary to know about things called vectors.
All points and vectors with which we are concerned are supposed to lie in
ordinary Euclid space E; of three dimensions in which such things as
points, lines, planes, cubes, spheres, and automobiles can exist. The
definitions of this section do not depend upon a coordinate system and are
therefore said to be intrinsic definitions. We shall hear more about this
matter later. ‘

Before introducing vectors, we observe the familiar fact that two
distinct (that is, different) points P; and P; determine the line P1P, which
passes through P; and P, and extends beyond P; and P, in two directions
as in Figure 2.11. Vectors are more like line segments than like lines.
An ordered pair Py, P of distinct points, in which Py and P; are respectively
the first point and the second point in the pair, determines the vector PP

143 € g . .
or “arrow” or ‘directed line segment” which runs (or extends) from the
43
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first point to the second point as in Figure 2.111. The purpose of the
arrowhead is to show that the vector runs from P, to P,. The vector
shown in Figure 2.112 is not PPy, butis P,P,. The length (or magnitude)
|P1P3] of a vector PP, is the length of the line segment upon which it lies,
that is, the distance between the points P, and P,. If P; and P, coincide,
that is, Py = Py, the points do not determine a line but they do determine
the vector PP, which has length 0 and which is called the zero vector.

P,
B P =P 2
et BT W 2 /’ ‘
v
@ P
P, P, P, ''p,
Figure 2.11 Figure 2.111 Figure 2.112 Figure 2.113

As indicated in Figure 2.113, vectors are often denoted by boldface
letters which keep us informed that the symbols represent vectors rather
than numbers or chemical elements. Thus we can set u = PP, and
v = P;P,. Two nonzero vectors U and Vv are said to be equal, and we
write U = V when, as in Figure 2.113, they (i) lie on parallel lines, (ii) have
equal lengths, and (iii) have the same (not opposite) directions. Two
zero vectors Uo and Vo do not have directions, but we say that us = v,
anyway. If uis a nonzero vector and v is a zero vector, then u  v.
We use the ordinary 0 (zero) to denote the zero vector; it turns out that
we will not need an arrow or distinctive type face to tell us whether O is the
number zero or a vector having length zero. The advice given in a the
footnote on page 41 merits repetition here. Whenever we see F(boldface)
or any other letter that is boldface, we recognize that it is a vector and
imagine that there is an arrow above it so that we, in effect, see the sym-
bols F', u, etcetera, that are made by pencils, pens, and chalk. Thus our
imaginations convert what we see into what we write, and the disadvan-
tage of boldface print has disappeared.

It is both interesting and important to know what is meant by the
product kv of a number (real number or scalar) k and a vector v and by the
sum U + v of two vectors. The definitions will imply validity of the
formula 2u = u 4 u as well as other useful formulas. In case # = 0 or
v = 0 or both, the product 4v is the zero vector, that is, kv = 0. In case
k ## 0and v 0, the vector 4V is a vector such that (i) v and kv lie on the
same or parallel lines, (ii) the length of &v is |£| |v|, and
(iii) v and kv have the same direction if # > 0 and oppo-

site directions if # < 0. Figure 2.12 shows examples. av
This definition implies that if v is a nonzero vector, v//—v
then the unit vector (vector one unit long) in the direc- —3v

tion of v is (1/|v|)v or v/|v|.

Figure 2.12
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The sum r of two vectors U and V is,as-nFigure2-13, the vector which
runs from the tail of U to the head of v when the tail of v is placed at the
head of u. The figure shows that
r v+ u=u+v. Because the sum
of two vectors is, as in Figure 2.13,
the diagonal of a parallelogram, the
ug rule (or law) for addition of vectors
. is called the parallelogram law. Fig-
u, ure 2.131 shows the sum r of four
Figure 2.13 Figure 2.131 vectors Uy, Uy, Us Us In applied
mathematics the sum of two or more

vectors is sometimes called their resultant.

The difference u — v is defined to be the sum of u and —V, so that

a—v u —v=1u-+ (—v). The most obvious way to find
u — vis to find —v and add it to u. In substantially
v d all cases, it is quicker, easier, and more useful to observe

that u — v is the vector which we must add to v to

obtain the sum u. When the tails of u and Vv coincide,

the vector W — V runs from the head of V to the head of .
Figure 2.M It is worthwhile to look at the italicized statement and

Figure 2.14 until both are thoroughly understood and
remembered. The figure clearly says that

(2.141) u=v+@u-—v.

Since angles between vectors can be sources of confusion and mis-
understanding, we give a little careful attention to the subject. In case
one or the other of two vectors has length 0, there is no reasonable way to
determine an angle that should be called the angle between them, and we
say that the angle is undetermined or undefined. Two sharpened pencils

of positive length represent vectors in the directions

v of their sharpened tips. In case these vectors do not
X u___intersect, we can choose any point O in E; and replace
’ the vectors by equal vectors having their tails at O

, as in Figure 2.15. Suppose first that these vectors u
o and v have neither the same nor opposite directions.
Figure 2.15 These vectors then determine the plane in which they

lie. 'The angle 8 is determined by the method used in
trigonometry to introduce radian measure. The first step is to draw, in
the plane of the vectors, a circle of radius @ with center atO and to find the

length s of the shorter of the two arcs into which the vectors cut the circle.
The number § defined by

length of arc

radius

2.151) 6=

Qv

or angle =
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is called the angle between W and v or the angle which W makes with v or the
angle which v makes withu. Thus angles are numbers.t If u and v have
the same (or opposite) directions, slight modifications of the above con-
struction give s = 0 (or s = xa) and the same formula (2.151) is used to
define 6. In each case we have 0 £ 5 < xa, and hence 0 < 0 < .
When working with angles between vectors, we never have to bother with
“negative angles” and ‘“‘angles greater than straight angles.” For
perpendicular vectors, we have 6§ = /2. We, like electronic computers
and some trigonometric tables, use radian measure and seldom bother
with degrees, minutes, and seconds.

The remainder of the text (not problems) of this section gives basic
information about products of vectors. The importance of the material
will be revealed later in this book and by textbooks in other subjects in
pure and applied mathematics. It is not necessary to presume that the
material is difficult. In fact, students who do not have the good fortune
to study this material calmly in mathematics sometimes find that their
teachers in physics and engineering undertake to teach all of it in a few
seconds.

There are two different kinds of elementary products of vectors u and v
that turn out to be interesting and useful. These are the scalar product
(or dot product) defined by the formula

(2.16) -uv = |u] |v| cos 8
and the vector product (or cross product) defined by the formula
2.17) u xv=|ul|v]sin on.

These formulas will now be discussed. If u = 0 or v = 0 or both, the
angle § appearing in the formulas is not determined by u and v, but the
products u-v and u X v are defined
to be 0 anyway. Henceforth, we
consider cases in which [u| > 0 and
[v| > 0, these being the lengths of u
and v. Then, as in Figures 2.18 and
2.181, the two vectors determine an
angle 8 for which0 <6 < x. Incase Figure 2.18 Figure 2.181
0 < 0 < =/2, the number |v| cos 6§

is the length of the projection of the vector v on the vector u and the
scalar product is therefore the product of the length of u and the length

t Dictionaries convey assorted ideas akin to the ideas that an angle is the “enclosed space”

or “corner” or “opening” near the point where two intersecting lines meet. While we need
not expect to be injured by conflicting meanings of the word angle, we can use the term
““geometric angle 8” to signify the “opening’” between the two vectors of Figure 2.15. The
number 8 is then a measure of the size of the geometric angle 8, and we have satisfactory
but somewhat awkward terminology.
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of the projectionof vonu. Incaser/2 < 6 < w,thescalar product is the
negative of this number. The definition of u-v implies that u-v = 0 if
and only if cos § = 0. Thus u-v = 0if and only if u and v are orthogonal
(that is, perpendicular to each other). Those who are or want to be con-
versant with principles of physics can note thatif a particle P moves from
the tail to the head of the vector u with the constant force v acting upon P
during the motion, then u-vis the work done by the forceduring the motion.

Referring to Figure 2.181, we can see that if u and v are collinear
vectors (vectors which lie on the same line), then 6 is 0 or 7, so sin § = 0.
In this case the vector n of the formula (2.17) is not determined, but
u X Vv is defined to be 0 anyway. Henceforth, we suppose that 0 <
6 < 7. In this case, the vector n is the unit normal to the plane of u and
v which is determined by the right-hand rule. A right hand is so placed
that the thumb is perpendicular to the plane of u and v and the fingers are
parallel to this plane and point in the direction thatalinerotatesin passing
over the geometric angle 6 from u to v (not v to u). The unit normaln
is then the vector which has the direction of the thumb and which is one
unit long. From Figure 2.181 we see that |v| sin 6 is the altitude of the
triangle of which the vectors u and v form two sides. It follows from
(2.17) that u X v = 24n, where 4 is the area of this triangle. It must
always be remembered that the vector product u X Vv is a vector which,
when it is not 0, has the direction of the thumb when the right-hand rule
is applied. Moreover, it is necessary to observe and remember that,
except when u X v = 0, the vector v X u is not the same as the vector
u X v. After having found u X v by the right-hand rule, we must flip
the hand over so that the thumb points in the opposite direction to find
v X u, and it follows that

(2.182) vVXu=-—-uxyVv.

Anyone can attain complete understanding of these matters by making a
few experiments in which two pencils (representing vectors) are held in
the left hand while the right hand is used to determine the direction of
their vector product. While vector products appear infrequently in this
book, they have many important applications.

Finally, we call attention to some simple formulas that are easy to use

but are not so easy to prove. The basic formula, which is proved in
Problem 17 below, is

(2.183)  (u; + us)+(vy + V)

u(vy + Vo) + us(vy 4 v2)
= UV + UyrvVe + vy 4+ UeVa.

Analogous formulas hold when the parentheses in the left member contain
sums of more than two vectors. Moreover, correct formulas are obtained

by replacing the dots by crosses. Proofs of this fact are given in text-
books on vector analysis.
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Problems 2.19

1 Asin Figure 2.191, let 4, B, C, - - - , H be equally spaced points on the
line P\P; with C = Py and G = P,. Apply appropriate definitions of the text
to show that

PD=1PP, PE=iPP,  PF=14PP,  PC=Pph

P.H =4$PP, PB=—i{PP, Pd=-%PP, DE=1{PP,

Observe that the vector P;P lies on the line }71_?: if and only if there is a scalar
(or number or constant) X (lambda) such that

PP = \P.P,.

Observe that the points Py and P, separate the line into three parts and tell what
values of N correspond to points in the different parts.

2 Construct a figure similar to Figure 2.191 which
shows points P; and P; and also points 4, B, C, D for
which

PT‘4=—‘!1!'P1P2» T’T§=%P1Pz,
Plc=§PlP2’ P1D=%P1P2-
3 Let O (an origin), Py, and P; be three points in E; Figure 2.191

with Py 5% P, as in Figure 2.192. Verify that if P is a
point on the line PP, then there is a scalar A for which

PP = \PP, = \OP; ~ OP))
OP =0P1+P1P =0P1+)\(0P2—0P1)

sO

OP = \OP, + (1 — \)OP,.
Figure 2.192
Show that if M is the mid-point of the line segment PP,

then N N
OM = 3(OP, + OP»).

4 Let i, j, and k be mutually perpendicular vectors
which run along bottom and back edges of a cube as in
Figure 2.193. Let P,, P, P, P4 be the mid-points of the
top edges upon which they lie. Show that

OP,=%+k OP,=i+3+k,

and write similar formulas for O_P;, 5}_’:, and aP:
5 Supposing that the vectors i, j, k of the preceding problem are unit vectors,
apply the definitions of products of vectors to prove that

Figure 2.193

=1 4j=0 ixi=0 ixXj=k

Hint: In each case, write the definition of the product and use the angle correctly.
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6 We are going to prove a theorem in geome-
try. As in Figure 2.194, let Py, P», P3 be vertices
of a triangle and, for each k =1, 2, 3, let M, be
the mid-point of the side opposite Px. For each
k, let Gy be the point of trisection of the segment
P.M;, for which |P,C,| = $|P.M,|. We will prove
that the points Cj, Cy, Cs coincide and we may
Figure 2.194 put C = C; = C; = C;. The line segments Py,

are, in geometry, called medians of the triangle
Thus, our result shows that the three medians intersect at a point C which trisects
each of them. For reasons which we shall not now discuss, the point C is the cen-
troid of the triangular region T bounded by the sides of the triangle. To prove
our result, let O be any point and show that

52’:=5F;+§P1M1=W;+§(0_ﬂfx—5ﬁ) N
2 (OPz + 0P, —“1?') _OP, + OP, + 0P
3 2 )=

The way in which Py, P,, and P; appear in the result can make us feel sure that
we must have

O_‘Ck =0P1+0§'2+0P3

for each k. However, calculate 0_‘02 and Z)E; and show that it is so.

7 The line segment P;C; joining a vertex
Py of a tetrahedron to the centroid Cy of the
opposite face, as in Figure 2.195, is called a
median of the tetrahedron. For each &, let O
be the point of quadrisection of the median
PiCy for which |PpQi| = £[PiCi|- Let O be any
point. When £ = 1, prove the formula

—~ OP, + OP, + OP, + OP,
Figure 2.195 00y = I

and then prove or guess that the formula is valid when # = 1, 2, 3, 4. The point
Q for which

OP; + OP, + 0P, + OP,

o0 - ¢

is the centroid of the tetrahedron. Thus the four medians of a tetrahedron
intersect at the centroid, and this centroid quadrisects each median.

8 Prove that the line segment joining the mid-points of two opposite edges
of a tetrahedron contains and is bisected by the centroid of the tetrahedron.

9 Determine whether, in all cases, the two line segments joining mid-points
of opposite edges of a quadrilateral must intersect and bisect each other. Be

sure to recognize that a quadrilateral in E3 need not have all of its vertices in the
same plane.
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10 Prove that if Py, Py, P3, P4 are the vertices of a square having its center at
C, then

55=513§+‘0‘1%7:5R+52_

Hint: For each k we can w write OP,, = OC + CPk and notice that something ¢an
be said about CP,c and CP, when P, and P, are opposite vertices of the square.
11 Prove that if Py, Py, - + -, Pg are the vertices of a cube having its center
at C, then
56=OP1+0P2"}’8' A +0Ps

12 Figure 2 196 shows eight vectors i, j, —i, —j, i’, etcetera which are unit
vectors (vectors one unit long) having their tails at the origin of an xy plane and
having their tips on the unit circle with center at the origin. s

Discover reasons why the first pair of equations Jk
J-'
. . 1 i
s = ’ S e (3 ¥
i+j=+72i i \/i @ -i) - ] ;
_j
Sii= Vi (=@ &
i i \/2 i +1i) )
is valid, and then solve the first pair to obtain the second F-i_gjure 2,196

pair.

13 The vectors u, v, W run in positive (counterclockwise) directions along
three consecutive sides of a regular hexagon. Express w in terms of u and v
Hint: Sketch the hexagon and the line segments from the center that separate it
into six equilateral triangles. Perhaps the simplest observation that can be
made isu + v+ w = 2v.

14 From the vertices of a triangle, vectors are drawn to the mid-points of the

opposite sides. Prove that the sum of the three vectors is zero.

15 What can be said about the location of Q if PQ P4 +PB +PC + PD.
where 4, B, C, D are the vertices of a square and P is on a side of the square?

16 Abilities to sketch figures and construct formulas involving vectors must
be cultivated. As in Figure 2.197, let u be a unit vector
(vector of unit length) having its tail at O. Show that vy
uu = 1. Let v be another vector having its tail at the same ‘5/
point O. Show that the vector U defined by U = (v-u)u is - u
the vector running from O to the projection of the tip of v
on the line bearing the vector u. Observe that the vector V Figure 2.197
defined by V= v — U or by V = v — (v-u)u runs from the
tip of U to the tip of v. Verify that V is perpendicular to U by showing that

UV = (v-u)u-lv — (v-u)u] = 0.

Remark: More opportunities to become familiar with these things will appear
later. Meanwhile, we can note that we have seen the (or a) standard procedure
for resolving a given vector V into vector components parallel and perpendicular
to a given unit vector u.
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17 Sketch a figure showing four points O, P, Py, and Q in E;3 and suppose
that [0Q] = 1. Let Q) and Q, be the projections of P, and P2 on the line 0Q.
Show that

() [0P10QI0Q = 00s, _ [PPrOQI0Q = 0ia,
@) [(©P; + P:P,)-000Q = 00:

and hence that

3) [(OP, + F:P»)-00i0Q = (OP,0Q + PP+00)00
and therefore

(4) (OP, + PiP,)-0Q = OP,0Q + P:P+00.

Remark: 1f we set u; = -0—}_’;, u; = PPy, and v = 5@, this shows that the formula
(S) (ul + U2)'V = U;*v + us,v

is valid when u; and u. are vectors and v is a unit vector. It follows from this
that (5) is valid whenever u,, U,, and v are vectors. With the aid of (5) and
simpler properties of scalar products, we find that

(6) (uy + u2)-(vi + v2) = (v1 + vo)-(u1 + uz)
= vr(u; + up) + ve(ur + uy)
= (u; + u.)vy + (u; + Ug)'Va
and hence
) (u1 4 uy)*(vy 4 v2) = urvy + Urve + UV + ugve.

This is the basic formula (2.183).

18 This problem and the next involve some very simple but very important
y ideas. Let r be the vector running from the
| xi P(x,y)  origin to P(x,y), the point P having coordi-
nates x and y, as in Figure 2.198. Letibea
unit vector having the direction of the posi-
tive x axis. Considering separately the cases
in whichx > 0, x = 0, and x < 0, show that
x  xi is the vector running from the origin to the
Fignre 2.198 projection of P upon the x axis. Then letj
be a unit vector having the direction of the
positive y axis and prove that yj is the vector running from the origin to the
projection of P upon the y axis. Hint: All that is required is appropriate use of
the definition of the product of a scalar and a

Figure 2.199 vector.

19 Asin Figure 2.199, let i and j be unit vectors
having the directions of the x and y axes of a plane
coordinate system. Let v be a nonzero vector
running from the origin to P(x,y). Show that

O v = xi + 9j.

Show that if 6, not necessarily confined to the
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interval 0 £ 6 < 7, is (as in trigonometry) an angle which the line from O to P
makes with the positive x axis, then
) v = |v| cos 8i + |v| sin 6j.

Let w be the vector obtained by rotating the vector v through a right angle in
the positive (counterclockwise) direction, so that (as in trigonometry) 6 + m/2
is one of the angles which the vector w makes with the positive x axis. Show that

3) w = |v| cos(0 +1-2r)i+[v| sin(0+1—;)j
and hence that

4) w = |v| (—sin 8)i + |v| (cos 6)j

and

(%) w = —yi + j.

Remark: While our present interest lies in vectors, our result is equivalent to
the fact that, whatever x and y may be, if we start at P(x,y), the point P having
coordinates x and y, and run in the positive direction along a quadrant of a circle
having its center at the origin, we will stop at the point Q(—y,x). This fact
implies and is implied by the formulas

(6) cos (0 +1§r) = —sin 6, sin (0 + 1—;) = cos 0

which were used to obtain (4) from (3).
20 Sketch some figures and discover the circumstances under which two
nonzero vectors U and v are such that |[u + v| = |u — v|. Then prove that

) lu+v2=(u+ v)@u+v)=uu+2uv+vy
and
2) lu +v|2 — |[u — v|2 = 4u-v.

21 The span of the set of n vectors vy, Vs, * * * , Vn is the set of vectors v
representable in the form

V=cVi+cVa+ * ¢ ¢ + cnVa,

where ¢y, €a, * * * , ¢y are scalars. Show that the span of the set of three given
vectors Vy, Vs, Vs is the same as the span of the set of three vectors uy, sy, U3
defined by the system of equations

u=v+v
U = Vo + Vs
Us =V + vs.

Hint: The proof consists of two parts. Suppose first that w belongs to the span
of uy, Uy, u; and seek an easy way to show that W must belong to the span of
V1, Vs, Vs. It remains to suppose that w belongs to the span of vy, V2, V3 and then
show that W must belong to the span of Uy, s, Ws. As a start, solve the given
system of equations for vy, Vo, Vs. One of the results is

1
vi = fu; — 3u. + 3,
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22 Using the definition of Problem 21, prove that if
1) €1v1 + ¢oVs + c3v3 = 0,

where ¢1, ¢a, ¢3 are scalars that are not all zero, then some one of the vectors
V1, V2, V3 belongs to the span of the other two. Remark: In this case the set of
three vectors 91, 95, 73 is said to be a dependent (or linearly dependent) set. In
case (1) holds only when ¢; = ¢; = ¢3 = 0, the three vectors are said to be inde-
pendent. These concepts are very important in several branches of mathematics.

23 Perhaps we need a little experience drawing and adding vectors that all
lie in the same plane. Start with a clean sheet of paper and draw unit vectors
u and v headed, respectively, toward the right side and top of the page. Let
P, be the point at the center of the page. More points in the sequence P,
Py, Py, P3, - - - are to be obtained in the following random way. Start with
k = 1. Get two coins of different size and toss them so that each lands H (head)
or T (tail).

If big coin is H and small coin is H, let P;_;P; = u.

If big coin is H and small coin is T, let Py_1P, = V.
If big coin is T and small coin is H, let P,_;P, = —u.
If big coin is T and small coin is T, let P,_;P, = —V.

'Then draw ITJS; With £ = 2, repeat the coin tossing to locate P, and continue
until Pyo has been reached. It is not improper to become interested in the proba-
bility that all of the points Po, Py, - * - , Py lie inside the circle with center at
the origin and radius 5. This is a random-walk problem and such problems are
of interest in the theory of diffusion. To prepare for investigation of these
things, we must study analytic geometry, calculus, probability, and statistics.

24 Using one die (singular of dice, a cube with six numbered faces) instead
of two coins, describe a procedure for obtaining paths for use in random-walk
problems in Ej.

25 The problem here is to grasp the meanings of the following statements
when 7 is 2 and 3 and perhaps even when # is a greater integer. When Py, Ps,

* 5 Pnyy are # 4+ 1 points that lie in the same E, but do not lie in an E,_;,

these points are the vertices of an n-dimensional simplex. A line segment which
joins two of these points is an edge of the simplex, so the simplex has n(n + 1)/2
edges. To each vertex Pi there corresponds the opposite simplex of # — 1
dimensions having vertices at the remaining points. A median of a simplex is
the line segment joining a vertex P; to the centroid 4, of the opposite simplex.
The 7 4 1 medians of the simplex all intersect at a point B, and for each &,

n

n+1

This point B is the centroid of the #-dimensional simplex and, when an origin O
has been selected, the centroid B is determined by the formula

B =

P4,

= OP14+0P;+0P;+ - - - + 0P,
OB = .
n+1

Remark: As the assertions may have suggested, simplexes of one, two, and three
dimensions are, respectively, line segments, triangles, and tetrahedrons. When
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n exceeds 3, the simplex does not have a plebeian name; it is an n-dimensional
simplex.

2.2 Coordinate systems and vectors in E; 'To locate a point in a
plane (Euclid space E; of two dimensions), it suffices to have a two-
dimensional rectangular coordinate system involving the two mutually
perpendicular x and y axes with which we are familiar. To locate a point
in E; (Euclid space of three dimensions), it suffices to have a three-
dimensional rectangular coordinate system involving the three mutually
perpendicular x, y, and z axes of Figure 2.21. 'To partially overcome the
difficulties involved in picturing three-dimensional objects on a flat piece
of paper, we consider the y and z axes to be in the plane of the paper which,
like a blackboard in a classroom, is vertical and consider the x axis to be
perpendicular to the y and z axes and sticking out toward us. We can
also consider the x and y axes to be wires on horizontal fences separating
rectangular fields and consider the z axis to be a vertical post at their
intersection.

z2 z2
/ Q:(0,0,3) P.(0,3,3)
B Tre39)

O 4 . A Qy(0»3»0) 2 y

00l 7 /

P,(330) AN

x

Figure 2.21 Figure 2.22

To locate the point P(x,y,z) having nonnegative coordinates x, y, and z,
we start at the origin, go x units forward (in the direction of the positive x
axis), then go y units to the right (in the direction of the positive y axis) in
the xy plane, and then go z units upward (in the direction of the positive z
axis) to reach P(x,y,z). If x < 0, we start by going |x| units in the direc-
tion of the negative x axis. Similar rules apply when other coordinates
are negative. Figure 2.21 shows the point P(3,3,3) and, in addition, the
projections P, Py, P,, Q., Oy, and Q, of this point on the three coordinate
planes and coordinate axes. The figure is worth a little study. The
eight encircled points lie at the vertices of a cube. Each of the edges is 3
units long, but in the flat figure the distance between two points 1 unit
apart on the x axis is only a half or a third or a quarter of the distance
between two such points on the y and z axes. Further information about
the natures of figures involving rectangular coordinate systems in E; can
be obtained by looking at Figure 2.22. This shows a sphere with center
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at the origin. The intersection (or section) of the sphere and the yz plane
is a circle through the north and south poles which could be drawn with a
compass. The intersection of the sphere and the xy plane is the equa-
torial circle which appears in the flat figure to be a flattened circle. The
intersection of the sphere and the xz plane is a circle composed of two
meridians passing through the poles. The three coordinate planes, the
xy plane, the yz plane, and xz plane, cut E; into eight parts called octants.
The octant containing points having only nonnegative coordinates is
called the first octant, and most people neither know nor care whether the
others are numbered.

We can learn about coordinate systems and, at
the same time, prepare ourselves to solve problems
of many types in mathematics and other sciences
by introducing vectors. As in Figure 2.23, let |, j,
and k denote unit vectors (vectors of length 1) in
the directions of the positive x, y, and z axes.
Since these vectors are orthogonal (which means
Figure 2.23 that two different ones are orthogonal or perpen-

dicular), normalized (which means that each one
has unit length), and lie in E; (Euclid space of three dimensions), we say
that they constitute an orthonormal set of vectors in E;. The definition
of scalar products given in (2.16) implies that

(2.231) =1 jj=1 kk=1

and that u-v = 0 when u and v are two different ones of the vectors i, j,
and k. Similarly, the definition (2.17) of vector products implies that

(2.232) ixi=0, ixji=0, kxk=0

and that

(2.233) ixj=k, jxk =i kxi=j
jxi= —Kk, kxj= —i, ixk = —j.

To help remember these formulas, we can notice that if we write the
ordered set

(2.234) i,j, k1ij,k

of vectors, then the vector product of two consecutive ones in this order is
the next but that changing the order of the factors changes the sign of the
product. A rectangular coordinate system is said to be right-handed
when the x, y, and z axes are so oriented (or arranged) that their ortho-
normal set i, j, k of vectors is such that the formulas (2.233) are correct;
otherwise, the system is left-handed. We shall use only right-handed
systems so that we can always use the formulas (2.233).
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As in Figure 2.242, let OP be the vector running from the origin O to the
point P(x,y,2). The rules for multiplying vectors by scalars and for add-
ing vectors imply that

(2.24) OP = o + 3] + 1k.

The three vectors i, yj, and zk are the vector components of the vector OP,
and the three scalars x, y, and z are the scalar components.t We can start
getting acquainted with scalar products by observing that the angle
between a vector and itself is 0, so

|OP|* = |OP| [OP| cos O

OP-OP

(oA + yj + 2K)-(«d + yj + 2K)
xz + yz + zz

and hence that
(2.241) [OP| = v/x* + 32 + 2.

This important formula holds whether x, y, and z are positive or not.
In case x, y, and 2 are all positive, we can give another proof of the
formula by applying the Pythagoras theorem twice to the rectangular

z <
ob P(x,5,2) P
zk
o4 i
46 |7 AV
, R ~
5 y Q
x x
Figure 2.242 Figure 2.243

parallelepiped (or brick) of Figure 2.243. Because the angles OQP and
ORQ are right angles, the Pythagoras theorem gives

0P| = [0Q* + QP2
|OR|* + |RQ|* + |QPI

x4 y2 4 22
and (2.241) follows. The same methods give the distance formula
(2.25) PPy = VvV (x2 — x1) + (32 — 1) + (22 — 21)°

t When physicists talk about the components of a vector, they often mean vector com-
ponents. When mathematicians talk about components, they usually mean scalar com-
ponents. Hence the unqualified term “components” is ambiguous. We will have quite a
bonfire if we burn all the books that tell confusing tales about components and projections
and directed distances.
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for the length of the vector }TJ_’;, that is, for the distance between Py and
P,. This formula will be derived more carefully in the next section. A
sphere is defined to be the set of points P in E; which lie at a fixed distance
7 (called the radius) from a fixed point P (called the center). It follows
from this definition and the distance formula that the equation

(2.26) @ —x)+ (v —y)* + (z — 2)? = #*

is the equation of the sphere with center at Po(x0,y0,28) and radius r.

A paraboloid should be something resembling a parabola, because the
Greek suffix “o0id” means “like” or ‘“resembling.” A paraboloid (or
circular paraboloid) is defined to be the set of points P(x,y,z) in E;
equidistant from a fixed point F which is called the focus and a fixed plane
x which is called the directrix and which does not contain the focus. In

order to obtain the equation of a paraboloid

z in an attractive form, we let 1/2k denote the
/’_J distance from F to 7 so that 1/2k = p and
R - k = 1/2p, where p is the length of the per-

4 P _/ pendicular from F to w. Then we put thez

axis through F perpendicular to = and put

the origin midway between F and = as in

——,  Figure 2.27. The paraboloid is then the set

s of points P(x,y,s) for which |FP| = |DP|,
“ 4 here D is the projection of P on the pl

o where D is the projection of P on the planer

x and has coordinates (x, y, —1/4k). The

Figure 2.27 present situation is very similar to that in

Section 1.4, where the equation of a parabola

was worked out. A point P(x,y,z) lies on the paraboloid if and only if

|FP|? = | DP|™and hence, as use of the distance formula shows, if and only if

%+ y? + LY. +12°
Y Tn) T\UTnw

Simplifying this gives the more attractive equation
(2.28) z = k(x? + y?).

This is the equation of the paraboloid shown in Figure 2.27.

Problems 2.29

1 Plot the points 4(1,1,0), B(1,0,1), and C(0,1,1).

2 In a new figure, repeat the construction of Problem 1 and insert the
horizontal and vertical line segments running from 4, B, and C to the coordinate
axes.

3 In a new figure, repeat all of the construction of Problem 2. Then insert
the point D(1,1,1) and the line segments joining D to 4, to B, and to C. Remark:
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The final figure should look much like Figure 2.21. It seems that we do not
inherit abilities to do things like this neatly and correctly. A little practice is
needed, and it often happens that the first figures we draw are very clumsy.

4 In the xy and xz planes, sketch circles of radius 3 having their centers at
the origin. Then complete the sketch of the sphere of which these circles are
great circles, that is, intersections of the sphere and planes through the center of
the sphere.

5§ A spherical ball of radius 3 has its center at the origin. Sketch the part
of it that lies in the first octant.

6 Sketch a rectangular x, v, 3 coordinate system and observe that, in each
case, the graph of the equation or system of equations on the left is the entity
(point set) on the right:

x=0 vz plane
y=20 x3 plane
2 =0 xy plane
x=9y=0 2 axis
x=2z2=0 y axis
y=3=0 x axis
x=9y=3 line through (0,0,0), (1,1,1)

Remark: We make no effort to remember these facts, but whenever we see an
%, 9, % coordinate system, we should be able to observe and use these facts as they
are needed.

7 There are many points P(x,y,z) whose coordinates satisfy the equation
y = 3. Some examples are (0,3,0), (0,3,1), (1,3,0), (1,3,1), and (—40,3,416).
Sketch a figure and become convinced that the graph of the equation y = 3 is
the plane r which passes through the point (0,3,0) and is both perpendicular to
the y axis and parallel to the xz plane. Then, without so much attention to
details, describe the graph of the equation 2 = 2.

8 Plot the points (0,1,0) and (0,0,1) and then draw the line L through these
points. Show that if P(x,y,z) lies on L, then x = 0 and y + z = 1. Show also
that if x = 0 and y + z = 1, then P(x,y,z) lies on L. Remark: It is possible to
write a single equation equivalent to the system x =0,y + 2z = 1. For exam-
ple, each of the equations

¢l +ly+2—1=0
2+ @+2—-12=0

does the trick. It is fashionable to keep the two equations, and one who wishes
to do so may learn something by thinking about the matter.

9 Put the equation x% + 9%+ 22 — 2x — 4y + 8z = 0 into the standard
form (2.26) of the equation of a sphere and find the center and radius of the sphere.
Hint: Complete squares. Check your result by observing that the coordinates
of the origin satisfy the given equation and hence that the distance from the
origin to the center of the sphere must be the radius of the sphere

10 A set S consists of those points P in Es for which |4B|2 + |BP|2 = 16,
where A4 is the origin and B is the point (0,2,0). Show that S is the sphere of
radius 4/7 having its center at the point (0,1,0). Sketch the coordinate system
and S.
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11 Make a sketch showing an x, y, z coordinate system, the sphere S having
the equation #? + y2 + 22 = 9 and the line L having the equations x = 2, y = 2,
Find the length of the part of L that lies inside S. Hint: Do not depend upon
your figure to obtain precise quantitative information. Find and use the coordi-
nates of the points on the sphere for which x = 2 andy = 2. dns.: 2.

12 By use of the distance formula, show that the equation of the set of points
P(x,y,%) equidistant from two given points Pi(x1,91,31) and Pa(x2,y2,%2) can be
put in the form

1) (2 — =) (x - ﬂ:—;ﬁ) + (y2 — 1) (:‘) - Ny ;— yz)
+ (zz—zl)(z-—ﬂ;’_z?) =0.

Remark: Our official introduction to planes in E; will come in Section 2.4. Mean-
while, we can observe that if P, and P, are distinct points, so that xs 3 x; or
ya 7 y; OT %3 # 15, then the set mentioned above is a plane and the equation
which we have found is its equation. The equation has the form

@) A(x — %0) + By — yo) + C(z — 20) =0,

where 4, B, C are constants not all 0 and (xo,y0,%0) is a point in (or on) the plane.
13 Supposing that 4, B, C, xo, 90, %0 are constants for which 4, B, C are not
all 0, show that the equation

¢)) A(x — %) + By — y0) + Cz — %) =0

is the equation of a plane. Hins: Taking cognizance of Problem 12, solve the
equations

) x2 — x1 = 4, y2 — y1 = B, 22 -2 =C
3) x1 -;—xz = o, yx-;'yz _— 211'22 = 2

to obtain two distinct points P; and P, such that the graph of (1) is the set of
points equidistant from P, and Ps.

14 The base of a regular tetrahedron has its center at the origin and has
vertices at the points (22,0,0), (—2,4/3 4,0), (—a,— v/3 4,0). The other vertex
is on the positive z axis. Find the coordinates of this other vertex. Check the
result by using the distance formula to determine whether the edges have equal
lengths. Finally, sketch the tetrahedron.

15 Determine whether it is possible to multiply all of the coordinates of the
points (24,0,0), (—a, V3 a,0), (—a,— /3 4,0), (0,0, /8 @) by the same con-
stant \ to obtain new points that are vertices of a regular tetrahedron each edge
of which has length a.

16 A set C of points in Ej is called a cone with vertex 7 if whenever it contains
a point P, different from 7 it also contains the whole line through 7 and Po.
Each of these lines is called a generator of the cone, the ancient idea being that
if it moves in an appropriate way, it will “generate” the cone. A cone is called
the circular cone whose vertex is 7, whose axis is the line L, and whose central
angle is ar if 7 is on L and the cone consists of the points on those lines through 7
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which make the angle a with L. Supposing that 0 < @ < 7/2, sketch the cir-
cular cone whose vertex is the origin, whose axis is the z axis, and whose central
angle is @. Then show that the equation of this cone is 22 = £%(x? + 9?), where
k = cot a.

17 Sketch a figure, similar to Figure 2.27, in which the paraboloid opens to
the right along the y axis instead of upward along the z axis. Note that inter-
changing y and zin (2.28) gives the equationy = k(x? + 2?) of the new paraboloid.

18 Sketch a figure, similar to Figure 2.27, in which the paraboloid opens for-
ward along the x axis instead of upward along the z axis. Note that interchang-
ing x and z in (2.28) gives the equation x = E(y? + 3?) of the new paraboloid.

19 Plot the eight points (+2, +2, +2) obtained by taking all possible choices
of the plus and minus signs. Then connect these points by line segments to
obtain the edges of the cube of which the eight points are vertices. Remark:
One who finds this problem to be unexpectedly difficult need not be disturbed.
The problem is unexpectedly difficult.

20 We embark on a little excursion to learn more about our abilities to sketch
graphs. The graphin E;of the equation xy = 1 does not intersect the coordinate
axes, and it consists of two parts (or branches) that are easily sketched. The
graph in Ej; of the equation xyz = 1 consists of those points in E3 having coordi-
nates (x,y,2) for which xyz = 1. The graph does not intersect the coordinate
planes, and it consists of four parts, namely, the one containing some points for
which x > 0, ¥ > 0, 2 > 0, the one containing some points for which x > 0,
y <0, z <0, the one containing some points for which x <0, y > 0, 2 <0,
and the one containing some points for which x <0,y <0, 2> 0. Everyone
should discover for himself that it is surprisingly difficult (or hopelessly impossible)
to draw x, y, z axes on a flat sheet of paper and sketch a figure which shows
what these four parts look like and how they are situated relative to each other
and to the coordinate system.

2] Draw the rectangular coordinate system obtained from that in Figure
2.23 by interchanging the x and y axes and the i and j vectors. Work out the
formulas for the vector products of these vectors and show that the system is
left-handed. As a safety measure, make a note on your figure that it is left-
handed and be sure that your formulas for vector products are not remembered.

22 It is not necessarily true that our study of mathematical machinery is
made more difficult when we pause briefly
to look at a rather complicated appli-
cation of it. Figure 2.291 shows a circle
C in the yz plane which has its center at
the point (0,5,0) and has radius a. We
suppose that 0 < ¢ < b. The surface
T obtained by rotating this circle C about
the z axis is called a torus. Thus a torus
is the surface of a ring or hoop that is
more or less closely approximated by an .
automobile tire. As the figure indicates, Figure 2.291
each point P on the torus T lies on the
circle which (i) contains a point P’ on C, (ii) lies in a plane parallel to the xy
plane, and (iii) has its center at a point Q on the z axis. When the angles 8 and
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¢ are determined by P’ and P as in the figure, we see that

) 0P| = IQP'| = b+ acos §

and that

2) @75 = I—Q-ﬁl (cos ¢i + sin ¢j)

so

3 6]3 = (b 4+ a cos 6) cos ¢i + (b + a cos ) sin ¢j.

Letting T be the vector running from the origin to the point P on T, we see that
) r=0P+00 =QP + a sin 0k

and hence that
5 r = (b+ acos 8) cos ¢pi + (b + a cos ) sin ¢j + a sin fk.

Thus a vector T having its tail at the origin has its tip on the torus T if and only if
there exist angles ¢ and 0 for which (5) holds. Thus (5) is a vector equation of the
torus. This implies that P(x,y,z) lies on the torus T if and only if there exist
angles ¢ and 8 such that

6) x= (b+ acosf) cos ¢, y = (b+ acos 0) sin ¢, %z = a sin 6.

These are parametric equations of the torus, the parameters being ¢ and 6.
The torus is the graph of the parametric equatcions.

23 Show that the x, y, z equation of the torus of the preceding problem can
be put in one or the other of the two equivalent forms

¢)) (a% + b2 — x% — 9 — 22)% = 4b%(a® — 2?)
) (B2 — a* + 22 + 92 4 29)% = 4b2(x% + y?).

Hint: One way to start is to square and add the first two of the equations (6)
of the preceding problem. Remark: In case 0 £ b < g, the equations of this
and the preceding problem are not equations of a torus but they are equations
of a surface.

24 Sketch the visible edges of the solid that remains when a cube having
edges of length a/2 is removed from the upper right front corner of a cube having
edges of length a. Remark: This figure can easily become a favorite doodle,
and perfectly normal people can become very much interested in it.

25 Mr. T., a topologist, claims that a given right-handed rectangular coordi-
nate system in E; can, when considered to consist of three stiff wires rigidly
welded together at their origin, be moved around in Ej in such a way that it will
coincide with any other such system but cannot be similarly moved into coinci-
dence with a left-handed system. It is not always easy to understand such
assertions and‘to give proofs of them. It is sometimes easy to wave some arms
around and give some more or less convincing arguments that could not be called
proofs. The difficulty here is that those who wave arms and produce more or

less convincing arguments sometimes reach erroneous conclusions. Anyone who
wishes to do so may think about this matter.
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2.3 Scalar products, direction cosines, and linesin E; Letu andv
be vectors in E; having scalar components u,, us, u;3 and oy, 95, 93 so that

{u=u|l+uzj+u3k
v =oi + 0] + o:k.

It may be helpful to look at Figure 2.311, which shows vectors u and v
and the projections of their tips on the xy plane.

(2.31)

Pt
/ y

Figure 2.311

Since the scalar product u-v is defined by the formula
(2.312) u-v = |u| |v| cos 6,

it could be supposed that we should find cos 6 in order to find u-v. It
turns out, however, that there is a very simple and useful formula for u-v,
and we can use this formula to find cos § whenever we want it because we
know that

2313) |l=vadFTaTta M=vVITAFa
We find that

(ud + usj + uk)«(o:d + 05§ + 0v:k)
uids (o1l + 09] + v3K) + usj-(v:d + 05§ + 03K) + wsk: (01d+ vof + 03K).

With the aid of (2.231), we see that this reduces to the very important
formula

u-v

(2.32) UV = u10; + us0e + u3v;.

In order to help remember this formula, we can remember that the scalar
product of two vectors is the sum of the products of their scalar components.
Use of (2.32) and (2.312) gives, when |u] |v| 5 0, the formula

101 + u202 + u30;
[al |v]

(2.321) cos § =

which gives the angle § between two vectors in terms of the scalar com-
ponents of the vectors. This formula may be remembered. Itis, in the
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long run, more sensible to concentrate upon the two formulas

u-v = |u| |v| cos 8
uv = un + U302 + U303

(2.33)

and to realize that the formula for cos 8 can be obtained very quickly by
equating the two formulas for u-v.
When, as above,

vV =oi+ 05§ + r;k

and |v| > 0, the vector in the parentheses in the right member of the
formula
01 02 U3
(2.34) v=v(—i+— +—k)
Mm
is the unit vector in the direction of v. It is possible, and sometimes
thought to be useful, to recognize that the scalar components of the unit

vector are the cosines of the angles a, 8, ¥ which the vector v makes with
the unit vectors i, j, k. This is true because the formulas

vi = |v| cos a, v-j = |v| cos B, vk = [v| cos v
vei = 121 V'j = 0g vk = 03

imply that
" U2 03
2.341 — = COS & — = cos — = cOoS 7.
@A)y S B I
The angles a, B8, v, shown in Figure 2.342, are called the direction angles
of the vector v. The cosines of these angles are called the directzon cosines

of the vector. Even those who do not like to prove formulas by use of
special figures in E; should look at Figure 2.342 and see that the formulas

Figure 2.342

(2.341) can be proved by use of the formula that defines cosines in terms
of coordinates and distances. Squaring and adding the members of the
equations in (2.341) gives the formula

(2.343) costa + cos? B+ costy =1
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which provides an interesting way of making the more prosaic statement
that the sum of the squares of the numerical components of a unit vector
is 1. It is possible to put the formula (2.321) in the form

(2.344) cos § = cos a; cos az + cosB; cos B2 + cos ¥y cos v,

where 6 is the angle between two vectors making angles a;, 8,, ¥: and
azs, B2, v2 with the unit vectors i, j, k. The formulas (2.343) and (2.344)
are impressive formulas, but persons who know about vectors may hold
the view that the formulas are antiquated and may concentrate their
attention upon the formulas (2.33).

The following numerical example shows an application of the ideas of
this paragraph. The vector in the left member of the formula

+
2 -3 9 =
ik = B ( h- Tl k)

is the vector running from the origin O to the point P(2,—3,4). The
length of the vector is the square root of the sum of the squares of its
numerical components and hence is 4/29. The vector in parentheses in
the right member is a unit vector in the direction of OP. The fact that
its scalar components are cosines of direction angles is very often of no
importance

It is easy to adapt these ideas to obtain information about the vector
PP, running from Py(x1,1,21) to Pa(x2,y2,32) as in Figure 2.36. Starting
with the formulas

(235)  OP; = afd + yij + uk,  OP; = xid + yoj + 2k,

it is easy to see that the rules for addition and subtraction of vectors give
the formulas

b—_ﬁ; + D_E = (xg + x)i + (y2 + y1)j + (22 + 2k
OP, — OP, = (xz - xl)i + (}’z - }’l)j + (22 - zl)k-

But -O_}—’; - (W; = m, and hence

(2.351) PPy = (xa — x)i + (y2 — y)i + (22 — 2)k.
Therefore,

(2.352)  |PiPi| = V{wa — ) + (y2 — )T F (22 — 2"

If to simplify writing we let d denote this distance between P, and Py, then
we can put (2.351) in the form

X2 — X1 Y2 — V1. %22 — 21
7 i+ 7 it p k).

(2.353) PPy = d(
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The vector in parentheses is then the unit vector in the direction of P,Ps,
and its scalar components are the direction cosines of P,P,.
Before introducing coordinate sys-

Py(x1,31,21) tems, we called attention to the fact
»p@,’,’ﬂ that a point P lies on the line P\P, if
Pylss, and only if there is a scalar X such

0 \mf" %% i hat PP = A\P;P, and

Figure 2.36 OP = OP, + \(OP, — OP)).

When the points have coordinates as in Figure 2.36, this equation can be
put in the forms

(2.361) (x—x)i+ (y —y)i + (2 — )k
= Maxz — 201 + A2 — y)j + AMz2 — 2)k

and
(2.362) x — x1 = N(x2 — x1), y — 1 = Xyz — ),

2 — 2, = A3z2 — 7).
In case x;  x1, y2 ¥ y1, and 22 # 2;, these equations hold for some X if
and only if

(2.37) e
X = X1 Y2 — nNn Z2 — 2

In case x; = x;, the condition on x is to be replaced by the condition
x = %1, and similar remarks apply to y: and z,. With this understanding
the equations (2.37) are equations of the line P\P,, that is, equations that are
satisfied by «x, y, z when and only when P(x,y,2) lies on the line. The
numbers x; — x1, y2 — y1, 22 — 21 are the numerical components of a
vector lying on the line P,P;, and we know how to find the direction
cosines of this vector.
It can be claimed that the equations

X=X _y—N_1—u
(2.38) =T =

do not look like the equations (2.37) of a line, but we can put these equa-
tions in the form

x — X Yy — N 22— n

(x1+a)—x1=(y1+b)—y1=(21+¢')-1l

which does have the form (2.37). Thus the equations (2.38) are in fact
equations of the line L which passes through the points Py(x1,y1,21) and
Py(x1 + a, y1 + b, 21 + ¢). The numbers a, b, ¢ are the scalar com-
ponents of the vector IT{IT; on L, and they determine the direction cosines
of P,P; in the usual way. The equations (2.37) and (2.38) are called
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point-direction equations of lines because they reveal coordinates of
points and scalar components of vectors lying on the lines.

Problems 2.39

1 Write the intrinsic (not depending upon coordinate system) formula for
the scalar product of two vectors u and v and be prepared to rewrite it at any
time.

2 Write the coordinate-dependent formula for the scalar product of the
two vectors

u=a;i+b,j+c,k, V=azl+sz+tzk

and be prepared to rewrite it at any time.

3 Use the results of the first two problems to obtain a formula for the cosine
of the angle between the two vectors in Problem 2 and be prepared to repeat the
process at any time.

4 Find the scalar product of the two given vectors and use it to find cos 6,
the cosine of the angle between the vectors:

(@) u=2-3+4k v=2+3j+ 4k Ans.: cos 0 =}
) u=20—3—4k v=21+3 + 4k An:.:coso=_2—;l
() u=20+3j 44k, v=21+3j+ 4k Ans.: cos 6 = 1
du=214+3j+4k,v=—-21 — 3j — 4k Ans.:cos § = —1
(e) u =2+ 3j v=3i+4 Am‘.:coso=l—8_=\/&t

’ /328 325

5§ Determine ¢ so that the two given vectors will be orthogonal (or per-
pendicular).

(@u=2-3+4k, v=2+3+ck Ans.:c =%
@G)u=i+j+k v=i+j+ck Ans.:e = =2

6 For each vector v, find the unit vector v, in the direction of v.

2 3 4
(@) v=2-3+ 4k AM"VI‘7-2_91—W91+\/_2_-9k
Gy v=" Ans.. vy =1
1 1
@v=1i+] Aw..v,-—\/—ii-i-ﬂj

7 Supposing that v and W are orthonormal vectors and that u = av + bw,
where a and b are not both zero, find the angle between u and w. Hint: Use the
basic formulas

uw = |u| |w| cos 6, u-w = (av + bw)-w.

Ans.: cos 0 = b/~\/a% + b2
8 With the text of this section out of sight, sketch a figure showing points
(0,0,0), Py(x1,91,%1), and Py(x3,y1,%2). Starting with the assumption that P(x,y,z)
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lies on the line PyP; and hence that there is a number X for which P\.P = AP,P,,
show how vectors are used to obtain the coordinate equation

X=X Y=y _ %% _
X2 — X1 Yo — Y1 Z2 — 21

Refer to Figure 2.36 and the text only if assistance is needed.
9 Show that the equations

(D) x—x=Nxz2—x), »—y1=Ay2—91), 2z—2u=»~z—2)

from which the text of this section obtained the equations

X — X1 Yy — Y %z — %1
@ = =

2
X2 — X1 Y2 — M Zg — Z1

can be put in the form

B) x=@—x)A\+x, y=@G:—=y)A+y, z=0(2—2)\+zu

Then show that the equations

“4) x=a\ + by, ¥ = a\ + ba, %z = as\ + bs
can be put in the form

x—bl_y—bz_z—bs_
©) T e = e =M

Remark: The equations in (1), (3), and (4) are called parametric equations of

lines; different values of the parameter A yield different points on the lines. Itis

fashionable to use the letter A for a parameter because people who work with

Lagrange (French mathematician) parameters (or multipliers) get the habit;

the letter ¢ is used when time is involved and sometimes when time is not involved.
10 Look at the equations

X — X1 __'y""yl “2—21

X2 — X1 Y2 — M Z2 — 21

of the line L which passes through the points Py(x1,y1,%1) and Pa(xs,y2,22) and tell
why these equations are satisfied when x = %), y = y1, 2 = 2; and when x = x2,
Y = y2, 2 = 2. With this is mind tell how we can quickly find the coordinates
of two points on the line having equations

*x—2 y+3 z+1
1-2 243 3+1

11 Find equations of the line L which passes through the points Py(2,—3,—1)
and Py(1,2,3) and then, after putting z = 0, find the coordinates of the point
(%,9,0) in which L intersects the xy plane. Ans.:x =%,y = —%,z=0.

12 This problem involves a little introductory information that everyone
should have. The right-handed coordinate system shown in Figure 2.391 is the
one we ordinarily use. When we are wholly or primarily interested in vectors
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lying in the same plane, it is sometimes convenient to think of this plane as being
the plane of the paper upon which we print or write and to use the right-handed
coordinate system shown in Figure 2.392. Vectors of the form v = xi + yj + zk
for which z = O then lie in the plane of the paper and figures showing them are

[
K’

Figure 2.391 Figure 2.392 Figure 2.393

undistorted. When we are interested only in vectors lying in one plane, we may
leave the z axis out of the figure and use Figure 2.393. The introduction is
finished, and we come to our problem. Use the method, involving slopes, of
Section 1.3 to show that tan § = v when 0 is the angle between the vectors

u = 2i 4 3j, v=23+4j

running from the origin to the points (2,3) and (3,4). Use the method of this
section to show (or to show again) that

cos 0 = 18 _ 324

V325 325

Then construct and use a modest but appropriate figure to show that the two
results agree. To conclude with another story, we can remark that the method
involving slopes may sometimes be preferred because it often gives answers
without radicals when easy problems in E; are solved. However, the scalar-
product method is the more powerful method which works in E; and in Ej; and,
as some people learn, in E, when n > 3.

13 A vector v makes equal acute angles & with the three positive coordinate
axes. Find 8 (to find cos & is enough) (i) by use of an identity involving direction
cosines and (ii) by using the edges and the diagonals of a cube having opposite
vertices at (0,0,0) and (1,1,1). Make everything check.

14 Referring to Figure 2.21, find the angle 6 between the two vectors running
from the origin to the mid-points of the top edges of the cube that pass through
P(3,3,3). Ans.ccos 6 = §.

15 Let v be a nonzero vector and W a unit vector having their tails at the
same point 0. Show with the aid of a figure that the vector (v-W)W is the vector
component of v in the direction of w, and that the vector v — (VW)W is the
vector component of v orthogonal (or perpendicular) to w. Remark: This prob-
lem appeared among Problems 2.19 with different notation and additional
information.

16 When u 5 0, each vector v is representable as the sum of a vector com-
ponent cu and a vector component q orthogonal to u. Find q and find a way



74 Vectors and geometry in three dimensions

of checking the answer when

(@) u=21—3+4k, v=2i+3j 4+ 4k
@) u=1i+44j, v=i
@u=i+j+k v=i

17 Show that the two vectors

I

u cos 0i + sin 6j
u; = —sin 6i + cos 0j

constitute an orthonormal set, that is,
Iu1| = 1, [UQI = 1, and Urug = 0.
18 Show that the three vectors

u; = cos ¢ sin 6i + sin ¢ sin 6j + cos 6k
Uz = cos ¢ cos 0i + sin ¢ cos j — sin 6k
ug = —sin ¢i ~+cos ¢j

constitute an orthonormal set, that is,
u,u, is 1 when » = ¢ and is 0 when  # 4.

19 This problem requires that we learn the procedure by which we obtain
a useful formula for the gravitational force F which is exerted upon a particle
P¥ having mass m,; and situated at the point Pi(x1,91,%1) by another particle P}
having mass m» and situated at the point Pa(x2,y5,2:). The very modest Figure
2.394 can help us understand what we do. We start with the Newton law of
universal gravitation, which is an “intrinsic law’’ that does not depend upon coordi-
nate systems. This law says that there is a ‘‘universal constant” G, which
depends only upon the units used to measure force, distance, and mass, such that
a particle Pf of mass m, at P, is attracted toward a second particle P¥ of mass

mz at P, by a force F having magnitude

% mims
P, (1) |F| =G 2z’
F
my where d is the distance between the points. Qur next
P, step is to put (1) in the form
Figure 2.394 ) |F| = ¢ =222,
=S

According to the Newton law, the direction of F is the direction of the vector
Png (not PzPl) We have learned (and can relearn if the fact has been forgotten)
that each nonzero vector F is the product of |F|, the length or magnitude of F,
and the unit vector F/|F| in the direction of F. When F has the direction of
PP, this unit vector is P.P,/|P.P,. Therefore,

3) F=grum PPy _ o DB
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Thus when we know about vectors, we can put the Newton law in the followmg
much more useful form. There is a constant G such that a particle Pl of mass
my at Py is attracted toward a particle Py of mass ms at P, by the force F defined
by (3). The problem which we originally proposed involved rectangular coordi-
nates, and it should now be completely obvious that the answer to our problem
is
_ (22 — 21)i + (y2 — y1)j + (22 — 2)k
*) B = G s = %) F (02 = 90" & (s — )%

Remarks: Persons who work with these things normally recognize the fact that
we do not, in our physical world, have “particles” concentrated at points. It is
sometimes possible, however, to obtain useful results from calculations based on
the assumption that particles are concentrated at points. When this assumption
has been made, we can comphcate ideas and simplify language by replacing the
concept of “a particle PY at the point P; having mass m,” by the concept of
“a point P; having mass m;.”” It can be insisted that this linguistic antic should
be explained; otherwise, a serious student of mathematics is entitled to ask where
the postulates of Euclid provide for the possibility that some points can be
heavier than others. Finally, it can be insisted that the formulas (3) and (4)
should 7ot be remembered; it is better to know (2) and to understand the very
simple process by which we use it to obtain the more useful formulas (3) and (4)
whenever we want them.

20 Let Py(x1,y1,2) and Pa(xs,y2,%:) be two distinct points in E3 and recall
(or prove again) that to each point P(x,y,z) on the line L containing P; and P,
there corresponds a number A for which

1) = =ax1 + Mxz — x1), ¥y = 92 + Nyz — y1), z = 22 + Mz — 21).

While we may not yet know why such matters are important, we can observe
that the equations

' = aux + a2y + a1z + by
2 Y = anx + 222y + a2z + b

7 = agx + asy + asez + bs,
in which the &’s and &’s are constants, provide mathematical machinery into
which we can substitute the coordinates (x,y,z) of a point in E; and thereby obtain
the coordinates (x’,y’,3') of a point (usually another point) in E;. It is very
helpful to think of the equations (2) as being a transformer which transforms a
given point P(x,y,z) into a transform (or transformed point) P’(x’,y’,2’). Thus
the transformer goes to work on P(x,y,z), which engineers and others call an
input, and produces P’(x',9’,2"), which they call an outpusz. This problem con-
cerns transforms of points that lie on the given line L. Find, for each A, the
transform P’'(x’,y’,z") of the point P(x,y,z) on L whose coordinates are given by
(1). Ans.: The result can be put in the form

# =g+ N =), Y =2+ No2 — ), & =2+ Ne — 2,
where

anxe + a1yr + araze + b
asixr + azyr + asszr + b2
asxx + aseyr + asst + bs

7
Xk
7
Yk
4
Zg
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when £ =1 and when % = 2. Remark: In case xp = x1, y2 = yl, z = 7,
the transforms of the pomts on L all coincide with the point (x1,y1, 21). In case
x5 7 %y or yy # yy or %y 7 7y, the transforms of the pomts on L constitute the
line L' containing the distinct points Py (%1,y1,71) and Py(xa,y9,29) and, moreover,
the transforms of points on L between P; and P; lie on L’ between P} and P;.

21 Without use of a figure, suppose that 6 is a given number for which
0 < § < /2 and find and simplify the condition that numbers x, v, z (not all
zero) must satisfy if the vector

r=uxi+4yj+2k

makes one of the angles § and # — 6 with the positive z axis. Ans.:
= +|r| |k| cos 8

and 22 = ¢%(x? 4 y?), where ¢ = cot 6.

22 Two distinct (different) points Py and P;, together with a number 6 for
which 0 < 6 < /2, determine a right circular cone consisting of Py (the vertex)
and those points P for which the vector PP, makes the angle 6 or v — 0 with
the vector PoP;. Show that the intrinsic equation of the cone is

(PoP1-PoP)? = [PoP;[2|PoP)? cos? 6.

Supposing that Pg, Py, and P have coordinates (xo,y0,%0), (%1,91,%1), (%,%,2), and
that

(%1 — )i + (y1 — y0)j + (21 — 20)k = Ai + Bj + Ck,

find the coordinate equation of the cone. Ans.:

[4(x — x0) + B(y — yo) + C(z — z)]?
= (42 + B2+ C)[(x — x0)> + (y —y0)® + (2 — 20)?] cos? §.

23 The vertex of a right circular cone is at the point (0,0,%), the axis of the
cone is parallel to the vector i 4 j, and the lines on the cone make the angle /4
with the axis of the cone. Find and simplify the equation of the cone. Aus.:
2xy = (z — k)% Remark: Putting z = 0 shows that the graph in the xy plane

having the equation xy = k2/2 is a conic section, that is, the intersection of a
right circular cone and a plane.

24 Prove that the graphs of the equations

Ax? + By? 4+ C32 + Dxy + Exz + Fyz =0

and

x4+ xyz+ 92 =0

are cones with vertices at the origin. (See Problem 16 of Problems 2.29 for
information about cones.)
Figure 2.395 25 Let Pp(xr,yr,2), £ =1, 2, 3, 4, be four given points
determining two skew (noncoplanar) lines P1P; and P3Py as
in Figure 2.395. Many persons, including some who are not
easily excited, become quite interested in the problem of
determining a point P/(x',',2") on PP, and a point
P"(x",3",3'") on P3P, such that the line P’P" is perpendicu-
lar to both PP, and PyP, Figure 2.395 may seem to be
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quite mysterious until it is realized that the lines P1P, and P;P, might be hori-
zontal, while P’P"" might be a vertical line perpendicular to both of them. We
shall solve this problem with the aid of vectors. The first step is to observe
that the coordinates of P’ and P can be written down n easily if we find constants

A (lambda) and p (mu) such that PP = AP,P, and PP = uP3P,. Therefore,
our real problem is to find X\ and pu. Starting with the formula

1) PP" = PP, + PPy + B.P"
we find that
) P'P" = —\P,P; + uP3P, + PP,

The requirement that P'P’ " be perpendlcular to Ple and to PaP, is equivalent to
the requirement that PP Png =0 and PP P3P4 = 0. This is equivalent to
the requirement that X and pu satisfy the equations

(3) AP,P,-P 1Pz #P3P4 1P2—P1P3P1Pz
)\P1P2P3P4“'F-P3P4P3P4 1P3P3P4~

The question whether these equations have solutions for A\ and u is now critical.
Such questions are so often critical that Theorem 2.57 will soon appear. For
the record, and perhaps for future reference, it can be noted that the determinant
of the coeficients of A and pu is

) — |P.P;)? |P3Py* sin? 6,

where 0 is the angle between the lines P\P; and P3P,. If these lines are not paral-
lel, then the determinant is different from 0 and the equations uniquely deter-
mine X and p. Our skew lines are not parallel. Therefore, A and u and hence
P’ and P” are uniquely determined.

26 This problem requires that we pick up the idea that vectors and scalar
products are not unrelated to problems in statistics. Let n be a positive integer
and suppose at first that # = 3. Suppose #n students took examinations in
English and Mathematics and got grades ey, e2, * * * , &x and my, my, = - -,
m,. Let the mean (or average) of the English grades be E and let the mean of

the Mathematics grades be M. Foreachk =1,2, - - -, nlet
(l) uk=ek—E, vk=mk—M.
The numbers ), %2, * * *, un and 91, 95, * = -, 9, can be regarded as scalar

components of vectors U and v in Euclid space E, of #» dimensions. Show that,
except in the trivial case in which |u| = 0 or |v| = 0, the cosine of the angle
between these vectors is determined by the formula

u-v w1 + uwe + 0 0+ Unta .
IV Vii+ i+ -+ Veitd+ -t

(2) cos 6 =

Remark: It is not difficult to develop enough geometry of E, to show that (2)
is valid when # > 3 as well as when n = 3. In statistics, the last member of
(2) is called the correlation coeficient of the English and Mathematics grades.
Show that if this coefficient is 1, then the vectors u and v must have the same
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direction and hence that there must be a positive constant X such that o, = Au,
for each k. If possible, draw at least one substantial conclusion from this.
Tell what we would conclude if the correlation coefficient turned out to be —1.

27 Show how something in the preceding problem can be used to prove that

s 4 w04 - - - Funtal S Vil +ud+ - + 2 Vol + i+ - - - + 0o

This is the Schwarz inequality. It is both interesting and useful.

2.4 Planes and lines in E; Planes are important things, and we must
think about them and the natures of their equations. To start the pro-
ceedings, we can think of the top surface of a flat horizontal sheet of
paper as being a part of a plane . Let P, be a point in x. A vertical
pencil then represents a vector V which is a normal to the plane. With-
out bothering to decide how the fact is related to this or that set of
postulates and definitions in Euclid geometry, we shall use the fact that
a point P different from P, lies in x if and only if the vector ]_’;ﬁ is hori-
zontal, that is, perpendicular toV. OQur next step is to apply this idea to
a plane 7, shown schematically in Figure 2.43, which is not necessarily
horizontal. Let V be a vector of positive length which is perpendicular
toxr and which runs from the origin to a point (4,B,C) not necessarily in «.
Let Py(x1,y1,21) be a point in . A point P then lies in » if and only if

(2.401) V-P,P = 0.

This means that either P = P, or P,P is a vector of positive length which
is perpendicular to /. Thus a point P(x,y,z) lies in » if and only if

(2.402) [A41+ Bj + CKJ[(x — x)i + (y — y)i + (2 — 2)k] = O

or

(2.41) Ax — x1) + By —y1) +C(z — 2)=0
or
(2.42) Ax+ By + Cz+ D =0,

where D is the constant defined by D = —A4x, — By, — Cz,. Itis easy

to remember that the equation of a plane
Figure 2.43 can always be put in the form (2.42), where
A, B,C, D are constants of which 4, B,C are
not all zero. Itis not so easy to remember

- /VV(A'B‘C) that (2.41) is the equation of a plane which

z

passes through the point (x1,y1,21) and is
0% Omup, .
P, ; normal to the vector having scalar com-
\/ 5 ponents A4, B, C, but this should be done.
/ To complete this little story, we must prove
% that if 4, B, C, D are constants for which
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4, B, C are not all 0, then the equation
Ax+By+Cz+D =0

is the equation of a plane. In case 4 5% 0, we can accomplish the result
by putting the equation in the form

A(x——:A—D>+B(y—O)+C(z—O)=O

and noticing that it is the equation of the plane which passes through the
point (—D/4,0, 0) and is normal to the vector having scalar components
A4,B,C. IncaseB s 0orC # 0, the proof is similar.

The information which we have obtained can be useful in various ways.
Suppose, for example, we are required to find the equation of the plane =
which contains three given noncollinear (not on a line) points P1(x1,y1,21),
Pa(x2,92,%2), P3(%3,93,25). The obvious way to solve this problem is to use
the fact that the equation of 7 must have the form of the first equation in
the system

Ax+By+Cz+ D =0

(244) Ax1+By1-|-Cz1+D=0
: Ax2+By2+022+D=0
Ax3+By3+Cz3+D=O,

where 4, B, C, D are constants for which 4, B, C are not all 0. Since =
contains Pj, P2, P, the remaining three equations must be satisfied. In
case 4 # 0, the equation of 7 can be obtained by solving the last three
equations for B, C, D in terms of 4 and substituting the results in the
first equation. In case 4 = 0, we must have either B  Q or C # 0, and
a similar procedure will work. Except for cases in which some of the
coordinates of the given points are zero, solving the problem in this way
can be tedious. The next section will show how answers to this and
other problems can be expressed in terms of determinants.

We now look at an interesting procedure which often provides a good
way to find the equation of a plane m; which contains two given points
Py(x1,y1,21) and Pa(xs,y2.22) and satisfies another condition. We simplify
matters by supposing that x; # x1, y2 # y1, and 22 # z;. We know that
P and P, determine a line L and that the family F of planes = that contain
P, and P, is identical with the family of planes = that contain L. We
capitalize this fact. If a point P(x,y,z) lies on L, then

x—xl__y——yl_z—zl
X — X1 Y2 — M Z2 — Z1

and hence

2.45 XxX—x %% YN _E2-AmY_ 9
( ) A(xz—xl Zo — %1 T Y2 — M1 Z2 — Z1
or

(2.451) ~ A (x — 2) + —— (y — y1) — )\+:1(z —2) =0,

2 — %1 Y2 — N Z2 —
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where A (lambda) and u (mu) are constants. Conversely, if A and u are
not both 0, then (2.45) and (2.451) are equations of a plane containing L.
To see this, we notice that they have the form 4x + By + Cz + D = 0,
where 4 and B are not both 0, and that they are satisfied when x = x,,
y =19, 2 =12 and when x = x5, y = y;, z = 2. Now we can solve
problems. Suppose we want to find the equation of the plane x; which
contains P, and P» and also a third point P;(x;,y3,2;) not on the line P\P,.
Our answer will be (2.45) or (2.451), and X\ and u are determined such
that they are not both zero and the formulas hold when x = x;, y = y;,

= z;. If the coeflicient of A\ in (2.45) is zero, we can take A = 1 and
p = 0; otherwise, we can set 4 = 1 and solve for A\. Suppose next that
we want to find the equation of the plane » which contains P, and P, and
is perpendicular to a given plane #’. Qur answer will be (2.451) when )\
and u are determined such that they are not both 0 and a normal to »
is perpendicular to a normal to »’. Supposing that the equation of #’ is

Ax+ By +Cz+ D =0,
we find that the normals are perpendicular when

N\ BB 0+ wC _,

X2 — X3 Y=\ Z2 — )

(2.46)

It is possible to find values of A and u which satisfy this equation.
Let d be the distance from a given point Py(x1,y1,21) to a given plane »
having the equation

(2.47) Ax+ By+Cz:+ D =0.

One way to find 4 is to find the point P, where the line through P, per-
pendicular to x intersects » and then find
the distance from Py to P;. Whether this
method is tedious or not can be a matter of
opinion, but it is quite lengthy even when
A, B, C, D, x\, y,, 21 are given to be nice little
integers. With the aid of vectors, we can very
" Py(x131.21) easily find d in terms of 4, B, C, D, x1, 1, 1.
Figure 2.471 Let P(x,y,2) be any point in x, and let n be

a unit normal to x. Then, as we can see with
the aid of the schematic Figure 2.471 in which P and P are on » and
PPy is a normal to r,

(2.472) d = | {PPy| cos 8, = 'n-PPy|.
But
n= AT B i+ -+ - 2k

VAT B+ C
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Therefore,
(2473)  d= l Al = 2) + B, — y) +CG — 2)
VA + B F C?
This looks quite simple but, since P is in x, the equation of = shows that
—~Ax — By —Cz =D
and we obtain the more useful formula

Ax + B)’l + Cu+ D i
N

One who must teach his little sister to start with (2.47) and get (2.48) can
cook up a new five-step rule: (i) rub out the “=0"; (ii) put subscripts on
x, y, z; (iii) divide by v/ 42 + B? 4 C%; (iv) stick on absolute-value signs;
and (v) equate the result to d. Itis, as a matter of fact, useful to know
when and how it is possible to prepare instructions so explicit that routine
chores can be performed mechanically and can even be performed by
persons and machines unfamiliar with processes by which formulas are
derived and combined to accomplish their purposes.

(2.48) d =

Problems 2.49

1 Give geometric interpretations of the numbers xo, o, 20, 4, B, C appearing
in the equation A(x — x0) + B(y — yo) + C(z — 20) = 0 of a plane = and be
prepared to repeat the process at any time. Ans.: See text.

2 Write an intrinsic (not depending upon coordinates) equation of the planc
# which contains a given point P and is normal to a given vector V. Hint: If
Pisinx, then PoP must be perpendicular (or normal or orthogonal) to V. Ans.:
V-PP = 0.

3 How can we derive the coordinate equation of Problem 1 from the intrinsic
equation of Problem 2? Ans.: Set V = Ai 4+ Bj + Ck and

PP = (x — x)i + (y — yo)i + (z — )k
so that

VPP = A(x — x0) + B(y — yo) + C(z — 1o).

4 Write an intrinsic (not depending upon coordinates) formula for the dis-
tance d from a point P; to a plane x which contains a point P and is normal to
a unit vector n. Hint: Construct an appropriate schematic figure and refer to
Figure 2.471 and formula (2.472) only if assistance is needed.

5 In each case, find the (or an) equation of the plane x which contains the
given point and is perpendicular to a vector having. the given scalar components
(or, in other words, perpendicular to a line having the given direction numbers).

(a) (0,0,0);1,1,1 Ans:x+y+2=0
%) (1,1,1);1,1,1 Ans:x+y+2=3
() (1,2,3); 4, 5,6 Ans:4(x — 1)+ 5(y —2) +6(z—3) =0

(d) (x1,y1.21); 4,B,C Ans.: Ax — x)) + By —»)+Cz—2) =0
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6 Because several of the coordinates are zero, it is relatively easy to deter-
mine 4, B, C, D such that the equation 4x + By + Cz + D = 0 is satisfied by
the coordinates of the three points (3,0,0), (0,4,0), (3,4,5). Do it and thereby
find the equation of the plane containing the three points. Ans.: 20x 4+ 15y —
12z — 60 = 0.

7 A sphere of radius 3 has its center at the origin. Observe that it is not
easy to sketch a figure showing the plane 7 tangent to the sphere at the point
(2,2,1) and the point T where 7 intersects the z axis. Find the coordinates of 7.
Hint: The plane 7 is normal to the line from the center of the sphere to the point
of tangency. Ans.: (0,0,9).

8 1If 4, b, and ¢ are nonzero constants, show that the equation

A R N |
a b ¢

is the equation of the plane which intersects the coordinate axes at the points

(4,0,0), (0,5,0), and (0,0,c). Find the scalar components of a normal to the plane.
9 Find the distance from the origin to the plane of the preceding problem.

Your answer is wrong if it does not reduce to 1/4/3 whena =54 =¢ = 1.

10 A plane m, intersects the positive #, y, and z axes 1, 2, and 3 units, respec-
tively, from the origin. A second plane 7, intersects each positive axis one unit
farther from the origin. Would you suppose that ; and 7, are parallel? Find
the acute angle § between normals to the planes. Ans.: cos § = /2916/2989.

11 Find the equation of the plane which contains the point (1,2,3) and is
parallel to the plane having the equation 3x + 2y + 2 — 1 = 0. Check the
answer.

12 Find the equation of the plane 7; which contains the point (1,3,1) and is
perpendicular to the line L having the equations

1 x =1t y =, 2=t 2.

Hint: If you do not know what else to do, let ¢ = 0 to get a point P, on L and let

t =1 to get another point P, on L. Then 7 must be perpendicular to PP,

Your answer can be worked out neatly by solving the individual equations in
(1) for ¢ to obtain

x—0=y—0=z—2=t

1 1 1 )

This shows that a normal to # has scalar components 1,1, 1 and hence that the
equation of r is

FE-D+0-3)+GE—-1)=0
orx+vy+3z=35.

13 Find the equation of the plane 7 containing the point Py(1,1,1) which is
perpendicular to the line L containing the points (0,1,0) and (0,0,1). Find the
coordinates of the point P, where L intersects m. Then find Iﬁ’-;l Observe
that the last number (which should be \/%) is the distance from a vertex of a unit

cube to a diagonal of a face not containing this vertex. Look at a figure and
discover very simple reasons why 1 < |P,P,| < 2.
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14 Determine the value of the parameter A for which the two planes which
have the equations

2+ 3y+424+5=0
2x— 3y —A—=5=0

are orthogonal. Hint: Modest experiments with two sheets of paper enable us
to capture or recapture the idea that two planes are orthogonal (or normal or
perpendicular to each other) if and only if their normals are orthogonal. Ans.:
A= —%

15 1f B, C, D are constants for which B and C are not both 0, then the equation
By + Cz + D = 0 is the equation of a plane 7. Show that the vector V; with
scalar components 0, B, C is normal to 7. Show that the vector V; with scalar
components 1,0,0, is normal to the yz plane. Show that V; and V, are per-
pendicular and hence that 7 is perpendicular to the yz plane.

16 Consider again the equation By + Cz + D = 0 or any other equation
involving y and z but not x. Let us agree (this is an important definition) that a
set Sy in Ej is a cylinder parallel to a line L if, whenever it contains a point Py, it
also contains all of the points on the line Lo through P, parallel to L. Use this to
show that the graph of the given equation is a cylinder parallel to the x axis.
Solution: Let Po(x0,90,%0) be any point on the graph of the given equation. Then
the numbers xq, ¥0, %o satisfy the equation. Since x does not appear in the equa-
tion, it follows that the numbers x, yo, 20 satisfy the equation for each x. This
means that all of the points (x,y0,20) on the line Ly through (xo,y0,%0) parallel to
the x axis lie on the graph. Therefore, the graph is a cylinder parallel to the x
axis.

17 Supposing that B, C, and D are constants for which B and C are not both
0 and D £ 0, show that there is no number x for which the numbers x, 0, 0
satisfy the equation By + Cz + D = 0. What is the geometric significance of
this result?

I8 Look at the equations

X —X1 _ YN _ 2
X2 — X1 Y2 — M Z2 — 21

of the line containing two points P1(x1,y1,%1) and Pa(x2,y2,52). Describe completely
the graph of the equation obtained by deleting one of the members of this equality.
Sketch the three graphs obtained in this way.
19 Problem 12 of Problems 2.29 is of interest here. Solve the problem again
and think about it. .
<20 Take a good look at the equatich

A
A mw)+ —E gy —2EE

X2 — X1 Y2 — M Z2 — %1

1) (z —21) =0.

Supposing that Py(x1,y1,%1) and Pa(%s,y2,22) are two points for which xz 7 %1,
y2 7 91, 22 7 7; and that A and p are numbers not both zero, tell why (1) is the
equation of a plane containing P; and P;. Then study the text again and attain
a better understanding of matters relating to (1). :
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21 Supposing that 4, B, C are not all zero and that D, # Dy, let 71 and 7, be
the planes having the equations

¢3) Ax+ By +Cs+ D, =0
2) Ax + By + Cz + D, = 0.

Show that the planes have parallel normals and hence that the planes are parallel,
Show again that the planes must be parallel by showing that they have no point
of intersection; if the coordinates of a point P(x,y,z) satisfy (1), they certainly

cannot satisfy (2). Supposing that A and p are constants not both zero, show
that the equation

3) Nd4x + By + Cz+ D) + p(dx + By + Cz+ Do) =0

is the equation of a plane parallel to 7, and w2 unless A + u = 0. Supposing
that Po(x0,y0,20) is a given point, show that X and u can be so determined that the
graph of (3) contains Po. Solution of last part: The graph of (3) will be a plane
containing Py if and only if X 4 p 5% 0 and

4) A(Axo + Byo + Czo + D1) + u(A4x0 + Byo + Cz + D3) = 0.

Since Dy # Da, the coefficients of X and u are different numbers that we can call
E and F. We can then put (4) in the form

() AE+uF=0

and obtain a solution of our problem by setting A\ = F and . = —E because, in
this case, A\ + ¢ =F — E 7 0 and (4) holds.
22 Supposing that the graphs of the equations

(1) Alx-I-Bly +C1Z+D1 =0
@ Ay + By + Cz + D2 =0

are distinct (that is, different) planes; and 7, that intersect in a line L and that\
and p are constants not both zero, show that the equation

(3) >\(x41x+31y+clz+D1) +#(Aax+Bzy +C7Z+D2) =0

is the equation of a plane 7 containing the line L. Solution: It is clear that if
P(x,y,7) lies on L, then the coordinates of P satisfy both (1) and (2) and hence (3)
To prove that (3) is the equation of a plane, we must prove that the three
equations

Ay + pde =0, ABy + uB: =0, A1+ pC =0

cannot be simultaneously satisfied when A and u are not both zero. This matter

is more delicate. If we suppose that the three equations are satisfied and X 5 0,
we find that

Ar= (—p/NA4s  Bi= (—p/N)By,  Ci= (—p/NC:

and obtain a contradiction of the hypothesis that 7, and ; are not parallel.
The case u % 0 is similar.

23 Using the hypotheses and equations of the preceding problem, show how to
determine N and p such that (3) will be the equation of a plane 7 containing L
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and a given point Po(¥0,90,%0). Hint: Consider separately the case in which P,
is on L and the case in which Py is not on L.
24 Letm; and 7, be the planes having the equations

1 2x+3y+4z—-5=0
M x—29y+32—4=0

Verify that w1 and 72 do not have parallel normals. This implies that 7; and 7,
must intersect in a line L.  Observe that a point P(x,y,2) lies on L if and only if it
lies on both 1 and 72 and hence if and only if its coordinates satisfy both of the
equations (1). We should be able to find point-direction equations of L by
finding the coordinates of two points Py and P; on L and using them. Do this by
finding x and y such that the point (x,y,0) lies on L and then finding x and y such
that the point (x,y,1) lieson L. We now develop a simpler and more interesting
method for finding equations of L. Show that if P(x,y,z) lies on L, then

2) 7x + 172 — 22 = 0.

Observe that (2), the result of eliminating y from the equations (1), is obtained
by multiplying the equations (1) by 2 and 3, respectively, and adding the results.
Observe that (2) is the equation of the plane which passes through L and is
perpendicular to the xz plane. Show also that if P(x,y,2) lies on L, then

3) 7y —224+3=0.

Discuss this matter. By solving the equations (2) and (3) for z, show that

Tk =122 Ty+3
@ = =g =

and that these are equations of L. Observe that dividing these equations by 7
puts them in the point-direction form

) x—3% _y+%_1-0
=17 2 7

25 Find the equation of the plane w which contains the point (1,3,1) and the
line L having the equations

1) x=t y=t z=t+2
Furst solution: The equation of 7 has the form

() Ax—1)+Bly—3)+Ciz~—1)=0.
Since 7 contains the given line, we must have

(3) At —1)+B¢—-3)+C¢t+1)=0
for each z. Putting ¢ = 3 and then ¢ = 1 shows that

4) 24+4C=0, —2B+2C=0.

Solving these equations for 4 and B and putting the results in (2) gives
(%) ~20(x—-1)+Cly—3)+Cz—1)=0.
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Dividing by C and multiplying by —1 gives

(6) -1 —-(—-3N-G-1D=0
or
(7 2~y —2+2=0.

Second solution: Eliminating ¢ from the first two and then from the first and last
of the equations (1) shows that L is the intersection of the planes having the
equations

(8) x—9y =0, x—2z2+2=0.
Each plane containing L has an equation of the form
&) Mx—9) +px—2+2) =0,

where X and u are constants. The plane having the equation (9) contains the
point (1,3,1) if and only if —2A + 2p = 0. Putting p = N gives the required
equation

(10) 2 —y—z+2=0.

26 There are nontrivial applications of the idea that a point which lies in
each of two nonparallel planes must lie on their line of intersection. Show that
the equation

xZ yz zz
atp—a=l

will be satisfied if, for some constant A, the two equations

i () A(G-) -

both hold. Try to determine a geometrical interpretation of this result. Try
to obtain another very similar result.
27 LetL and L' be the lines of intersection of the planes having the equations

X% _ Y X% _ _9
L a+c—)‘(1+b) , a+c—”(1 b)
)\(’_‘_f)=1_2, (f_§)=1+2.
a ¢ b b\z~"¢ b
Work out the point-direction forms
Ma (1=
L: TN YTTTEN 1-0
: —(1 —\)a 2\b T (14N
_ 2pa (1 — u2)b
. Firwe Ytage a0
’ =1 - u?a —2ub 1+ p?)e

of equations of L and L'.
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28 What can be said about the tip of the vector OP if
0P = ¢,0P; + 0Py + ¢s0Ps,

where ¢1, ¢3, ¢3 are scalars for which ¢y + ¢2 4¢3 = 17 Ans.: It lies in the plane
(or each plane) which contains Py, Py, and P;.

2.5 Determinants and applications Rectangular arrays of elements

such as
ain a2 a4 a
(du dm) a 4 4 1
) 21 22 23 as
a1 4z ?
a3l dze  A4sg asy,

are called matrices. For the present we may think of the elements a,; as
being numbers. The middle matrix has three rows, the elements of the
second row being as1, @ss, a23, and three columns (columns are things that
stand in vertical positions), the elements of the third column being
a3, 423, @s3. A matrix is square if it contains as many columns as rows,
and in this case the number of rows is called the order of the matrix.

With each square matrix we associate a number which is called the
determinant of the matrix or simply a determinant. The symbols Ay, As,
and A, appearing in

an a2 a3

aix, afe
2.51) A, = P Ay = |an a2 assl,
dg1 a2
“~ ! a3 4zs  4ss
, a1 412 a4iz 4

A1 Qoo A3 QA4
Ay =
a3 a3z a4z 4aszs

Q41 Q42 Q43 G4y

are numbers, not matrices. It will, however, be a convenience to say

that as; is the element in the third row and second column of the deter-

minant A; instead of saying that it is the element in the third row and

second column of the matrix of which Az is the determinant. A little time

spent learning about determinants can pay very handsome dividends.
The number A, is defined by the formula

(2.52) Ay = anase — aias.
This shows how to evaluate determinants of order 2. For example,

I10=1’ a b 12

01 2 p|=H—a=0 |—34

l=4—(—6)=10.

The definitions of A; and A, are more complicated, and we introduce
helpful words and notations. To each element aj; of a determinant
there corresponds the minor 4j which remains after the row and column
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containing aj have been covered or removed. Thus for the determinant
A3, we have

A2 Q423 ag1 QA23 a1 axs
(2.53) 4un = ’ = ’ Ay =
asz ass as1 ass as1 ass
and for the determinant A; we have
Q22 A3 Q24 az1 a3 Q24 ai11 aiz2 4y
Ay, = |az az asm , Ay =|an a as ’ Az = | a3 as aszq |
Q42 Q43 Q44 Q41 A43 A44 asq1 Q42 Ay

While it is possible to give more gruesome definitions, the number A;
can be defined by the formula

(2.54) As = andy — awdis + a13dss
or
Qg2 a423 az1 - 423 az1 Q4sg
Az = an — a ’
aszz asg as1 asg asz asz

which makes sense because we know how to evaluate determinants of
order 2. The above formulas give the expansion of A; in terms of the
elements of the first row. It can be proved that the same number A;is
furnished by expansions in terms of another row or any column. Thus

Az = —anda + aseds — axdss
. Az =  apnds — asedss + assdss
Az =  andn — anda + ands
Az = —ayodis + asedss — azdse
Az = aydys — assdas + assdss.

In these expansions, the sign of the term involving aj is plus whenever
the sum (or difference) of the subscripts is an even number like 0, %2,
+4, * + - and is minus when the sum (or difference) is odd like +1,
+3, £5, -+ - . To put this in other words, we can say that we get
a plus sign whenever aj lies on the main diagonal (running from the upper
left corner to the lower right corner), and that we get a change in sign
whenever we move one step right, left, down, or up.

Progress to determinants of order 4 and more is now easy. The
expansion of A4 in terms of the elements of the first row is

(2.55) Ay = andn — a1pdie + a13di3 — a1udu

and A4 has seven more expansions, in terms of the other rows and the
columns, all of which yield the same number A,. The usefulness of
the possibility of expanding a determinant of order 4 in terms of elements
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of the third row is demonstrated by the expansion

2 3 -1 6

3 -1 6
;ggg=337—z+o
1 5 4

1 -1 5 4

which reduces the problem of evaluating a determinant of order 4 to
the problem of evaluating a single determinant of order 3.

It should be known and remembered that a determinant is O if two
of its rows (or two of its columns) are identical. For determinants of
order 2, this is obvious because

Z :'=ab-—ab=0, Z Z=ab—-ab=0.
That
a b ¢ a d a
a b ¢|=0, b ¢ b|=0
d e f c f ¢

can be seen by expanding the first determinant in terms of elements of
the bottom row and by expanding the second in terms of elements of the
middle column. When the result has been established for determinants
of order 3, the same trick enables us to establish the result for determi-
nants of order 4, and so on. A simple modification of the above pro-
cedure shows that if two adjacent rows (or columns) of a determinant
are interchanged, then the value of the determinant is multiplied by —1,
that is, the sign of the determinant is changed. It is sometimes useful
to know the formulas

a as as ay ap ag
(256) kb1 kbz kba = k bl bz bs
C1 Ca C3 €1 C2 C3
a1 as as ay ap ag ay az as
(2561) b1+c1 bz-l-c‘z ba+€3 = bl bz ba + 1 C2 C3
dl dz da dl d2 d3 dl d2 da

and others like them. They can be proved by expanding the determi-
nants in terms of elements of the middle row. The results are particu-
larly useful when, for some constant k, we have ¢; = kdy, ca = kds, and
¢s = kd;. In this case the last determinant in the above formula is zero
and we obtain the formula

a as as ay az as
(2.562) by + kdy by + kdy b3+ kdy| = |b1 b2 b3
d, ds d; di dy ds
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What this and similar formulas say is that we do not change the value
of a determinant when we add a constant multiple of the elements of one
row (or column) to the elements of another row (or column). For
example, we obtain the first equality in

2 =3 1 21 1 21 =5
1 -2 31=11 0 3]=11 0 0
3 3 =5 39 =5 39 —14

by adding 2 times the elements of the first column to the elements of the
second column, and then we obtain the second equality by adding —3
times the elements of the first column to the elements of the last column.
As we have seen, this reduces the problem of evaluating a determinant
of order 3 to the problem of evaluating a determinant of order 2.

The following two theorems, and their obvious modifications involving
systems containing two or more than three equations, are very important.

Theorem 2.57 The system of equations

anxi + awxs + aix; = Y1
anx1 + a2xs + asnxs = Yo
anx1 + azxs + anx; = y3

has a unique solution (is satisfied by one and only one set of numbers
X1, %2, x3) if and only if

an a2 a4

@s1 @z s | # 0,

as 4asz 4ass

that is, the determinant of the coefficients is different from 0.
Theorem 2.58 The system of equations

anx1 + awxe + a13x; = 0
anx1 + assxs + asx; = 0
asx1 + aaxs + azx; =0

has a nontrivial solution (a solution for which x1, x2, x3 are not all 0) #f
and only if

ai a1z 4

as as axn| =0,

a3 A3z ass

that is, the determinant of the coefficients is 0.

Proofs of these theorems belong in books and courses in algebra, but
everybody can observe that the first system of equations

2%, 4+ 4x, = 8 2% + 4x, = 8 2%, + 4x, =0
% — 2%, = 1, %1+ 2%, = 0, 1+ 2%, =0
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has a unique solution, the second system has no solutions, and the third
system has many solutions including the nontrivial one x;, = 2, x; = —1.
Partly because of these two theorems, determinants are important.
Determinants were originally devised to speed the process of solving
systems of equations whose coefficients are given in decimal form. It is
sometimes said that young algebra students should not be taught to
solve systems of equations by use of determinants because the method
is inefficient and yields too many errors; the method of successive elimi-
nations is much better. This argument is vulnerable, because students
who solve systems of equations by use of determinants acquire facility
in use of determinants. In this course, it is recommended that deter-
minants be used only for puiposes for which they are useful.

Problems 2.59
1 Show that
4 B C
1 2 —1|=144-8B~2C.
3 4 5

2 Supposing that Py(x1,y1) and Py(xs,y2) are fixed points in E,, show that
the equation

x y 1

(1) X1 11=0
X2 Y2 1

has the form

) Ax+ By +C=0

and that the graph contains P; and P,, Comment upon the result. Solution:
Expanding (1) in terms of the elements of the first row gives (2). The equation
(1) is satisfied when x = x;, y = 9, and when x = x2, y = y2 because in each
case the determinant has two identical rows. The equation (2) is the equation
of a line unless 4 = B = 0, that is, unless Py and P, coincide. If P, and P, do
coincide, the equation (2) becomes O0x + Oy + 0 = 0 and the graph is the whole
plane.
3 Letting A be the first determinant in the formula

x vy z 1 x—x y—y z—z 0
#oyom 1) _ x1 N % 1 R
x2 y2 %2 1 Xo—x1 Y2~y 22—z 0
x3 vy z3 1 xs—x ys—y z—1z 0

show how the formula can be obtained and show that

X—%X1 y—yN 22—
A=|x2—x1 y2— Y1 22— %]
X3 — X1 Y3 — Y1 23— 21
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Now write formulas for the coefficients 4, B, C in the expansion
A= A(x — x1) + Bly — y1) + Cz — z1)-

Show that the graph of the equation A = 0 contains the three points Pi(x1,91,%1),
Pa(%2,92,32), Ps(3,y3,%3s). Comment upon the result.

4 Let |T| denote the area of the triangle 7" having vertices at the points
P,, Py, P of Figure 2.591. With an eye on the figure, discover a way in which the
formula

M M=)+ - - 2V )

can be obtained. After expanding the products, show that some of the terms
cancel out and that the formula can be
put in the form

x v 1
o)) IT| = £3|x1 9 1
x2 y2 1

with the plus sign. It can be shown that
(2) is correct with the plus sign when the
Figure 2.591 vertices P, P;, P, occur in positive (coun-
terclockwise) order, and that (2) is cor-
rect with the minus sign when the vertices P, Py, P, occur in negative (clockwise)
order. The members of (2) are 0 when the points are collinear. Many people
remember this.
§ 'This and the next two problems, together with Problem 11 at the end of
the next section, show that if 7 is the volume of the tetrahedron (or simplex)
in E3 haVing vertices (x’y:z)’ (xbybzl)’ (xz)y2’22)’ (xz,y3,23), then

x vy z 1
p=y|m noa 1
X2 Y2 22 1

X3 Y3 Z3 1

where the sign is chosen such that 7 > 0 (or 7 2 0 if we allow degenerate tetra-

hedrons to be called tetrahedrons). Verify that this formula is correct with the

negative sign for the special case in which g, b, ¢ are positive constants and the

four vertices are, in order, (0,0,0), (4,0,0), (0,5,0), and (0,0,c). Hint: Remember

or learn that the volume of a simplex (tetrahedron) in E; is one-third of the

groduct of the altitude (number, not line segment) and the area of the triangular
ase.

6 Letting D be the determinant of the preceding problem, show that

x y z 1 x y z 1
D=—|" =y -z =1|_ _|x—x y—9 z2—2 0
—xy —ys —zp —1 X—x2 y—92 z—3 0

—xs —y;3 —z3 —1 x—x3 y—1y; z—32 0
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and hence that the formula for the volume of the tetrahedron can be put in the
form
X —X1 y—Y1 Z—22
V==zx¥|x—%x y—952 2— 2|
X —X3 Yy — Y3 223

7 Three vectors u and v and w with scalar components uy, us, u3 and 0y, 95, 73
and w,, ws, w3 have their tails at the same point P and are edges of a tetrahedron
having volume 7. Show that the formulas for 7 in the two preceding problems
can be put in the form

1
V==xg|v. 02 o3l
w, W2 W3

8 Supposing that Pi(x1,y1), Pa(x2,y2), and Ps(xs,ys) are three noncollinear
(not on a line) points in Es, show that the equation

x24+92 x vy 1
xz + yz oy 1) _ 0
% +y: % ye 1
x5 +33 x5 ys 1
has the form

A@x2+9) +Bx+Cy+D =0

and that the graph contains the three points. Comment upon this result.
9 Show that if Py(x1,y1), - * * » Ps(xsys) are five different points in Es,
then the equation
# xy 9t ox oy
#oxy1 oy M R
X xy2 ¥z *2 Y
X3 xys ¥3 % ¥3
X§ K4 Vi ¥4 Y4
X xYs Ve %5 Vs

3
[ Y

has the form

Ax?+ Bxy +Cy?+ Dx + Ey+ F =0

and that its graph contains the five points.

10 Use the ideas of the above examples to obtain the equation of a sphere in
E; which contains (or passes through) an appropriate collection of given points.

11 Let Py(x1,y1,%1)s * * - , Ps(xsys25) be five given points (the coordinates
are supposed to be known numbers) such that no four of them lie in the same
plane. Tell how to decide whether the line L containing Py, P2 is parallel to the
plane 7 containing P;, Py, Ps and tell how to find the point of intersection when
L intersects 7. Solution: There are many ways to attack this problem. The
following method gives answers in terms of the known coordinates with relatively
little calculation. A point P(x,y,) lies on the line L if and only if, for some con-
stant A,

() g=m+Nra—2), y=m+Nya—9) 5=25+\z—12)
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This point P lies on 7 if and only if D = 0, where

x + )\(xz - xl) 2! + >\(y2 - ‘yx) % + )\(zz - 21) 140

_ X3 y3 Z3 l
(2) b= X4 ¥4 Z4 1
X5 s %5 1
But
3 D = D; + AD,,
where
X1 M1 4 1 X2 — X1 Y2 — Y1 22— 21 0
_* oys oz 1 _ X3 V3 23 1|
(4) Dy = X4 Y4 24 1y D, = x4 ¥4 24 1
x5 ys %5 1 x5 Vs z5 1

Now D; # 0 because P,, P;, P,, Py do not lie in the same plane. In case
D, = 0, there will be no A for which D = 0 and hence no point P on L which lies
in m, so L and # must be parallel. In case D; # 0, there will be exactly one X for
which D = 0, thatis, A = —D;/D, Putting this in (1) then gives the coordi-
nates of the point of intersection of L and =.

12 Find out whether the plane containing two vertices of a tetrahedron and
the mid-point of the opposite edge must contain the centroid of the tetrahedron.

13 'This story can be read by anyone. It interests nearly everyone, but stu-
dents who do not have a lot of time at their disposal can postpone the pleasures
and benefits enjoyed by those who fully understand it. Matrices are often
denoted by single letters. For examples, we can set

2 1 3 3 1 =2 7 4 -
1) P= (——3 2 —l)» 0= <l -1 l>» R= (—7 -6 9>
1 -1 1 0 1 -1 2 3 -
1 7 6 1 -1 -3
S = < 6 —2 5)» T = <2>: U= < 2)» V= ( 8)°
-4 3 =2 3 -1 —4

We shall, among other things, develop enough algebra of matrices to enable us
to understand and verify the fact that these matrices satisfy the conditions

Pg=R QP=S§ PQ#QP,
@) T=U, PU=V, PQET)=V7, @EPQT=V
det (PQ) = det (QP) = (det P)(det Q).

If 4 is a square matrix, we can denote its determinant by det 4. Two matrices
A and B are said to be equal, and we write 4 = B, if they (i) have the same num-
ber of rows, (ii) have the same number of columns, and (iii) have equal elements
in corresponding positions. We can multiply matrices by scalars (numbers),
and we can add two matrices which have the same number of rows and the same
number of cobumns. For example, when P ind Q are the matrices displayed
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above and % is a scalar, we have

% k3 521
3) RP=(—-3k 2t —k) P+Q=<_2 1 o).
Eo—k R 100

When we multiply a matrix by a scalar &, we multiply each element by 2. When
we add two matrices, we add them elementwise. These rules are very different
from those applicable to determinants. The really crucial step in the develop-
ment of a useful algebra of matrices is the determination, in terms of two suitable
matrices 4 and B, of a third matrix C which we shall call the product 4B of 4
and B. Let A have n rows and p columns and let B have ¢ rows and # columns,
so that the number of rows of 4 is the same as the number of columns of B.
The product 4B is then a matrix C having p rows and ¢ columns, the element
¢, in the jth row and kth column of C being determined by the formula

(4) Cik = a:lblk + a,zbzk 4+ -+ ambnk,

where a;1, a,2, * * * , a;n are the elements of the jth row of 4 and by, by, * * * , b
are the elements of the kth column of B. To demonstrate that applications of
this ritual are not fearsome, we let 4, B, C be the matrices P, Q, R defined above
and see how the result

2 1 3\/3 1 =2 7 4 -
() -3 2 —1){1 -1 1>= -7 —6 9)
1 -1 /o 1 -1 2 3 -

is obtained. To obtain the element 7 in the first row and the first column of the
last matrix, we run one finger across the first row of the first matrix, and at the
same time, run another finger down the first column of the second matrix and
(with regret that we do not have three hands) write the sum

©) 234+ 11430=

of the products of the elements that our fingers encounter. To obtain the ele-
ment 4 in the first row and second column of the last matrix, we apply the fingers
to the first row of the first matrix and the second column of the second matrix and
obtain

%) 214 1-(=1) + 31 =4

To obtain the element 3 in the third row and second column of the third matrix,
we follow the third row of the first matrix and the second column of the second
matrix to obtain

(8) 111 4 (=1)(-1) + 11 = 3.

Nine such excursions suffice to work out the product of two matrices of order 3.
Only three such excursions suffice to give the general formula

a2 an anx1 + ayxe + aisxs
(9) Q21 4az2 4z anxy + azxs + anxs
as1  das2  dss, as1x1 + assxe + asx
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or the special case

3 1 =2\ /1 -1
(10) (1 -1 1> <2) = < 2)-
0 1 -1/ \3 -1

If we let

an a2 ap X1 Y1
1) A =\an ax ay)p X=\|x) Y=\3)
d31 4as2 4ss. 3 Y3

then (9) shows that the whole system of equations

anx1 + aex: + apxs = N
(12) anx1 + asoxs + assrs = y2
azx1 + azoxe + asyxs = y3

is equivalent to the single matrix equation 4X =Y. It is standard practice
to think of X and Y as being vectors having scalar components xi, x2, xs and yy,
v2, ¥3 and to think of the matrix 4 as being an operator (or transformer) which
transforms (or carries or converts) the vector X into the vector Y. In this and
other contexts, matrices have very many important applications. One who
wishes an easy exercise can prove that the formula

ay a2 a3 ayl as asz; 1 00
(1 3) Qs G0z Q433 a2 axy axp)=(0 1 0
231  dzz  ass d13 Q423 4ass 0 01

is valid whenever the rows of the first matrix are the scalar components of three
orthonormal vectors. The last matrix in (13) is called the identity matrix [
(of order 3) because 4] = /4 = A whenever A4 is a square matrix (of order 3).
If 4 is a square matrix of order n and det A4 5 0, then there is a unique (that is,
one and only one) matrix B such that 4B = I, where I is the identity matrix
of order n. This matrix B is such that 4B = BA = I. Itis called the inverse
of 4 and is denoted by 471. If 4X = Y and det 4 5 0, then X = 41¥. If
det 4 = 0, the matrix A4 cannot have an inverse because

(14) det (4B) = (det 4)(det B)

when A4 and B are square matrices of the same order and, moreover, det J = 1.
One who is really ambitious may attack the famous eigenvalue problem for
matrices. The problem is to start with a given square matrix 4 and learn about
the scalars A (the eigenvalues) and the nonzero vectors X (the eigenvectors) for
which 4X = AX.

I4 This problem involves square matrices of order 2; analogous results hold
for square matrices of greater order. Suppose

21 = any1 + aisys Y1 = buxi + byaxs
T2 = auy1 + Gays, Y2 = baix1 + basxo.

=[{* 1 z1 a  axz bu b2
x = 4 = > = y A = y B = y
("2) Y (3’2) * (’52) (azl azz) (bn bzz)
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so that z = 4y, y = Bx, and 2 = 4(Bx). Show that z = Cx, where the matrix
C is the product of 4 and B, that is, C = 4B. Remark: The result shows that
products of square matrices are defined in such a way that 4(Bx) = (4B)x.

15 A two-by-two matrix of numbers a,; determines the system of equations

r_
x' = ayx + ayzy

Y = aux + azy

which transforms a given point (x,y) into its transform (x’,v’). Let three points

(@131), (2,92), (#0,99) have transforms (¢h,3%), (s3> (hys)  As an exercise in
multiplying matrices (or determinants), prove that

4 !’
%1 N 1 anx1 + apy1 aax) + a2y 1
Xy y,z 1| =|anx: + a1y aaixe + assys 1
4
%3 y3 1 anxs + a1ys  anxz + awy; 1

#1 31 1lljan aa 0
= 2 2 a2 ase i
x 1! 0

%3 y3 1]|0 01‘

Remark: With the aid of the results of this problem, we can prove some theorems
in geometry. Let D = ayass — ajaaz, so that D is the determinant of the matrix
of the transformer. The area |T”| of the triangular region having vertices at the
transforms is equal to | D| times the area |T| of the triangular region having ver-
tices at the original points. The orientation (clockwise or counterclockwise) is
preserved if D > 0 and is reversed if D < 0. If D =0, the transforms are
collinear. The transformer conserves areas if and only if |D| = 1, that is,
D =1or D= —1. If the transformer is isometric (conserves distances), then
it also conserves areas, and hence |D| = 1. These results can be extended to
give information about transforms of oriented simplexes having four ordered
vertices (xi,yx,%x), £ = 1, 2, 3, 4, in E;. When

X1 M 21 1
% 2 1 an aix aun
2 2 Z2
D, = ) ) D=\|an awn aua|
x3 ys 23 1
asy as: 4ass
X4 Y4 24 1

the simplex is (by definition) positively oriented when D; > 0 and negatively
oriented when D; < 0. The transformer conserves volumes if and only if D = 1
or D = =1, and it preserves orientation if and only if D > 0.

2.6 Vector products and changes of coordinates in E; Letuandv
be vectors in E; having scalar components uy, %2, %3 and 9y, 92, 95 With
respect to a right-handed #, y, z coordinate system endowed with the
usual unit vectors i, j, k. Then

(2.61) u = ui + wj + uk, v = oii + 05 + v:k.
The vector (or cross) product has been defined by the formula

(2.611) u x v = |u||v| sin 6n
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involving the angle 6 and the unit normal (thumb vector) n of Figure
2.612. We now work out a convenient formula which gives u X v in

Figure 2.612

terms of the scalar components of u and v. Remembering that the
vector product of two vectors depends upon the order of the factors, we
shall be very careful. We have

uXv = (ui+ uj + uk) X (oid + vsj + v3k)

= ui X (0 + 9§ + 0:K)

+ usj X (0i + 92§ + £:K)

+ uk X (01l + 05§ + 03K)

so

UXV =i X1+ uwid X J+ wrd xk
+ ueonj X1+ uawsj X j 4 uvij XK
+ usok X i+ uswk X j + ugwk X k.

With the aid of the helpful fact about the vector product of two con-
secutive vectors in the parade ijkijk, given in (2.234), we obtain the
unlovely formula

(2.613) u XV = i(usws — ugvs) — j(u10s — usn1) + K(u102 — ugvy).

This looks better when we put it in the form

|

U2 U3
D2 03

Uy U2
71 D2

uxv=i

+k

Uy Usg
01 03

Our next step is to allow ourselves the liberty of putting vectors into the
first row of a determinant so we may put this in the form

i j k
(2.62) UXV=|u Uz us
N T2 03

which is very easily remembered. It is the fashion to remember (2.62)
and to expand the determinant in terms of elements of the first row when-
ever this is desirable. When we must find the vector product of two
vectors U and v defined by

=i-2+3k v=2-—j—Kk,

all persons except typists and printers are happy to solve the problem
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neatly by writing

R
uxv={1 -2 3|=5i+7+3k
12 -1 -1

We should all know enough to be able to guard against computational
errors by observing that our answer is perpendicular to u because
5 — 14 4 9 = 0 and is perpendicular to v because 10 — 7 — 3 = Q.

To exhibit an application of vector products to a problem in geometry,
we suppose that we are given two orthonormal vectors i’ and j’ in E;
(this means that i’ and j’ are unit vectors and are orthogonal or per-
pendicular) and are required to find a third vector k’ such that the three
vectors i, j’, k' constitute a right-handed orthonormal system. The
answer is given by the formula k’ = i’ X j’. This is so because

2.621) i x i = || |i’| sin én = n,

where n is the unit thumb vector, and this is exactly what k’ must be.
This problem can be put in a different form. Suppose we are given
a right-handed rectangular #, y, z coordinate system endowed with the
usual orthonormal vectors 1, j, k. Suppose further we know the scalar
components a1, 412, @13 and aa1, ass, as3 of two orthonormal vectors i’
and j’ so that the coeflicients in the first two of the equations

"= ani + alzj + azk
"= ani + asj + axk

i
(2.63) j
k' = aai + aszj + a3k

are known. The problem is to determine the numbers a3, @32, @3; SO
that the three vectors i, j’, k’ will form a right-handed orthonormal
system. These numbers are determined from the formula

i j k
asii 4 asef + ask =K' =1 Xj =|an an anl
ag1 adz2 a4z

and the problem is soived or almost solved. To write more formulas is
somewhat anticlimactic, but we can do it. Equating coefficients of
i, j, and k gives

a3 = 412d23 — 413822
(2°631) a3z = ai13de1 — 4ndss

as3 = aids2 — 412d2

and then the problem is surely solved.
Everyone should read the remainder of this section, but teachers who
want to confine attention to other topics may inform their charges that
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hasty reading and preliminary ideas will be satisfactory preparation for
future encounters with the material.

Here we begin to explore some of the reasons why the system (2.63)
of equations is important. Suppose we have, as in Figure 2.64, two

Figure 2.64

right-handed rectangular coordinate systems in Es. The x, y, z coordi-
nate system having origin at O and bearing an orthonormal set i, j, k
of vectors is shown on the left. The %/, ¥/, ' coordinate system having
origin at 0’ and bearing an orthonormal set i’, §’, k’ of vectors is shown on
the right. Our first task is to study the important systems of equations

i = ani + a1 + a1k, i=api’ + aaj’ + ank’
(2.65) i’ = ani + aj + a2k, j = and’ + axj’ + ank’
k' = a;ui + asﬂ' + asgk, k = dlsi, + azsj, + aask'

that relate the vectors in the two orthonormal sets. We observe a fact
that can be considered to be remarkable even when we know the reason
for it: the coefficients in the system of equations obtained by solving
the first system for i, j, k are easily written down by interchanging the
rows and columns in the first system. The reason is simple. The
orthonormality of the vectors implies that, in each system, ay; is i,
a1z is 1, a1z is i"*K, ao1 is j’+i, and so on until, finally, a3 is k’k. The
numerical coefficients in each row (and hence also in each column) in
the right member of each system are the scalar components of a unit
vector. The nine coefficients are cosines of direction angles, but we
carefully avoid attempts to work out formulas by means of figures
showing the nine angles.

As soon as we look at the point P of Figure 2.64, we realize that P has
two sets of coordinates, there being a set x, y, 3 for the unprimed or o/d
coordinate system and another set &', y', 3’ for the primed or new coordi-
nate system. If we know enough about the relative positions of the
two coordinate systems, we should be able to find one set of coordinates
when we know the other set. We shall solve this problem with the aid
of vectors. To specify the relation between the two coordinate systems,
we suppose that, with reference to the unprimed coordinate system, the
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coordinates of O are xq, yo, %0, SO that

(2.66) 00 = xd + yij + 20K,

and that the unit vectors i, j, k and ¥/, j/, K’ of the two coordinate systems
are related by the fundamental formulas (2.65). It is now surprisingly
easy to solve our problem. Let P be a point in E; having unprimed
coordinates x, v, z and primed coordinates %', 9/, 7/, so that

(2.661) OP =axi+yj +2k, OP =i’ + 7§ + K.

— —

Putting the formula OP = 00’ + O'P in the form OP — 00’ = O'P

then gives
(2.662) (x — x)i+ (y — yo)] + (z — 20k = i’ + ¢'j’ + 7'K'.

An expression giving the right side in terms of i, j, k is obtained by
multiplying the members of the first three equations in (2.65) by «’, ¥, 2,
respectively, and adding the results. The coefficients of i, j, and k turn
out to be, respectively, the right members of the equations

! ’ ’

x — x0 = anx’ + any + anz
! ’

Yy — Yo aypx’ + 022}" + a3z
! ’
2 — 20 = 3%’ + axy’ + assz'.

These equations therefore result from equating the coefficients of i, j,
and k in (2.662). Transposing gives the formulas

x = x0+ anx' + 421}” + aslzl
(2.67) Y = yo + awx’ + any + a3z’
2 = 20+ a13%’ + asy’ + as:7’

I

which express the unprimed coordinates of a point in terms of the primed

coordinates of the point. A very similar procedure gives the formulas
* = xy + anx + any + a1
(2671) y' yﬁ + anx + a2y + as3z

’

7 = 2o+ anx + any + a2

which express the primed coordinates of a point in terms of the unprimed
coordinates of the point. The formulas (2.67) and (2.671) are known
as the formulas for changes of coordinates. The formulas (2.67) are
often used to convert an equation involving coordinates x, y, z into a
new equation involving new coordinates ', ', 2. As can be expected,
it is sometimes far from easy to so determine the numbers xo, Yo, %o
and 4, in (2.67) that the new equation will have the simplest possible
form. For the present we do not need to know much about these

matters. but we should know that there are situations in which one
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particular coordinate system is better than others and that there exist
formulas relating the coordinates in two different coordinate systems.

It is sometimes said that fundamental problems in analytic geometry
are not adequately covered in textbooks that combine the study of
analytic geometry and calculus. Much more analytic geometry will
appear later in this textbook. Meanwhile, we consider a fundamental
problem in analytic geometry that is sometimes ignored in elementary
geometry books. Suppose we say, with reference to some rectangular
%, y, 2 coordinate system, that a set S in E3 is a quadric surface if it is
the set whose points P(x,y,s) satisfy an equation of the form

(2.68) Ax®+ By*+ Cz*+ Dxy + Exzs + Fyz+Gx+ Hy+ Iz + | = 0,

where the coefficients 4, B, C, D, E, F are not all zero. Our big question
is the following. Can it happen that Miss White chooses a particular
%, y, z coordinate system and finds that a particular set S* is a quadric
surface because there do exist coefficients 4, B, - + + | F not all 0 such
that S* is the set of points P(x,y,2) for which 4x% 4 By* 4 - - - =0,
while, at the same time, Mr. Black chooses another x, y, z coordinate
system and finds that the same set S* is noz a quadric surface because
for his system the required coefficients do not exist? If the answer is
affirmative, then the above definition of quadric surface and the above
set S* should be placed in the museum of the SPC (Society for the Pro-
motion of Confusion). It can be shown that the answer is negative
and hence that the definition of quadric surface does make sense. To do
this, we let x’, y’, 2 denote the coordinates of Mr. Black and substitute
the values of x, y, z from (2.67) into (2.68) to find what the equation of
S* will be in the coordinates of Mr. Black. The critical equation turns
out to be

(2.681) A'x'*+ B'y'? 4 C'4'? + D'x'y’ + E'x's + F'y'd
+ G/x/ + H/yl + Ilzl + ]’ . 0’

where

A4’ = 4a}, + Bad, + Ca}; + Danare + Eanars + Fapas,

and formulas for the other coefficients can be written out. Proof that
the coefficients 4’, B’, C’, D/, E', F' are not all zero can be based upon
the fact that substituting the expression for #’, ¥, ' from (2.671) into
(2.681) must yield the original equation (2.68). If 4’, B’,C’, D', E', F’
were all zero, this substitution would show that 4, B, C, D, E, F are all
zero, and this is not so. The principle involved is the following: As we
see from (2.671), a change from coordinates x, y, z to #/, ¥/, 2’ cannot
increase the degree of a polynomial in x, y, . Moreover, the change
cannot decrease the degree because, as we see from (2.67), the change

from &, 3, 2’ back to x, y, z cannot bring a polynomial of lower degree
back to the original polynomial.
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So far as we know, some quadric surfaces may be rather complicated
things, and it is of interest to know what the intersection S; of a quadric
surface and a plane » may be. Such a set S is a quadric section. A little
thought can save us a lot of trouble. We can introduce a coordinate
system in such a way that the plane = is the plane having the equation
z = 0. The equation of the quadric surface must have the form (2.68).
Putting z = 0 in (2.68) shows that the quadric section must be the set
of points P(x,y) in the xy plane whose coordinates satisfy the equation

(2.682) Ax* + By* 4+ Dxy +Gx + Hy + J = 0.

Quadric surfaces and quadric sections will be studied later. Meanwhile,
we make some remarks that may be at least partially understood. The
family of quadric surfaces includes spheres, circular cylinders, circular
cones, ellipsoids, various kinds of paraboloids and hyperboloids, and,
in addition, assorted degenerate things such as empty sets, lines, planes,
and pairs of planes. The equations 22+ 1 =0, x2+ y2=0, 22 =0,
and z2 — 1 = 0 do have the form (2.68). The family of quadric sections
includes circles, parabolas, ellipses, hyperbolas, and, in addition, such
degenerate things as the empty set, points, lines, pairs of lines, and the
whole plane.

Problems 2.69

1 Supposing that u and v are vectors in E3 having scalar components #;,
ug, u3 and 91 v, 93, tell how W X v can be expressed as a determinant. Ans.:
(2.62).

2 Calculate w = u X v and check your answer by showing that w-u =0
and w-v = 0 when

(a) u=2—-3+ 4k, v=2i+3+4k
®) u=21—3+—4k v=2i+3+4k
© u=1i+j, v= i+ i+ k
@ u=i Ve it

3 Two unit vectors u; and u; have their tails at the same point P on a
sphere which we consider to be the surface of an idealized earth. Suppose that
P is neither the north pole nor the south pole of the earth, that u, points east,
and that u, points north. Find the direction of u; X us.  A4zs.: Up.

4 Show that the vectors i’ and j’ defined by

i’ = 30— 2 +2k)
i=3%2- j—2%)
K= a4i+5bj+ck

constitute a two-dimensional orthonormal system and then so determine &, 2,
¢ that the three vectors constitute a right-handed three-dimensional orthonormal
system. Ans.c kK = §(i + 2§ + k).
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5 Show that the vectors

=cos ¢ sin i+ sinpsinfj+cosfk
U, =cos ¢ cos i+ sinpcosfj—sinfk
= —sin ¢ i + cos dj
in the order u;, u,, u; constitute a right-handed orthonormal system.
6 If
OP, = 2i + 3j + 2k
OP,=3i+2+ k
OP; =2+ j+ Kk,

find a vector ortﬁo_gpnal__t&the plane containing Py, Py, Ps. Hint: The vector v
defined by v = PP, X P,P;3is an answer, and v = —i + j — 2k.

7 Check the answer to the preceding problem in the following way. Write
the equation of the plane through P, orthogonal to v and then show that P; and
P, lie in this plane.

8 Show that the lines having the equations

x—1 y4+6 2+10 x—6 y+1 245
1 2 - 37 2 -1 -4

intersect. Then find equations of the line perpendicular to both at their point
of intersection. Solution: The vectors OP and OQ running from the origin to
points P and Q on the two lines are

OP = (1+0i+ (—=6+20j+ (—10 + 39k

00 = (6+2ui+ (-1 —u)j+ (-5 — 4u)k,
where ¢ and « are scalars that depend upon P and Q. Equating these vectors

shows that they coincide when z = 3, « = —1 and hence that the given lines
intersect at the point R for which

OR=4i -k
Thus R is the point (4,0,—1). This result is easily checked. The vector

i § k
1 2 3|=—5i+10j—5k
2 -1 —4

is orthogonal to vectors on the given lines and hence the equations

x—4 y—-0_ 341
1 =2 "1

are equations of the required perpendicular line.
9 Prove that each vector V satisfies the equation

iX(vXi)+ixX@xj)+k xX(vxXk)=2v.
10 Show that (i X3) Xj =1 X (j Xj)-
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11 Prove that if u and v and w are vectors having scalar components #u;,
us, s and 91, 95, 93 and wy, ws, ws, then
i j k
¢)) U (v X W) = (ui + ugj + ugk)| 01 92 95
W W2 Wsg
and hence
Uy U2 U
(2) u-(v X W) =|9 02 03|
w1 W W3

Remark: The number u-(v X W) is called the scalar triple product of the three
vectors, and we shall see how it is related to volumes of tetrahedrons and paral-

lelepipeds. Let v and w be nonzero nonparallel vectors having their tails at a
point A as in Figure 2.691. Then

3) v X W = |v| |[W| sin 6n = 2|Tyn,

where 8 is the angle between v and W, n is the unit normal determined by the
right-hand rule, and |T4| is the area of the two dimensional triangle T of which

B

Figure 2.691

vand w form twosides. Let u be a third vector which has its tail at 4 and makes
the angle ¢ with n. In case 0 £ ¢ < m/2, the number u-n is the distance from
the tip of u to the plane of the vectors v and w. The volume 7 of the tetrahe-
dron having base T, and opposite vertex B is therefore given by the formula

4) 7 = }(un)|Ty.
Hence
) 7 = $u-2T:n) = fu-(v X w).

The volume of the tetrahedron is half the volume of the pyramid whose vertex
is B and whose base is the parallelogram of which v and w are two adjacent sides.
The volume of this pyramid is one-third the volume 7 » of the parallelepiped of
which u, v, w are adjacent edges. Therefore,

(6) Ve = u-(v X W).

Thus, when 0 < ¢ < /2, the scalar triple product u-(v X w) is the volume of
the parallelepiped of which u, v, w are three adjacent edges. When ¢ = /2,
the vector u lies in the plane of v and W and the scalar triple product is zero.
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When /2 < ¢ < , the scalar triple product is the negative of the volume of the
parallelepiped.

12 Prove that if i, j, k and i/, j°, k” are two right-handed orthonormal sets
of vectors, then the determinant of the coefficients in the system

ani + aij + aik
ani + asnj + axk
aui + asj + ank

must be +1. Outline of solution: The hypotheses imply that j’ X k/ = i’ and
hence that i’-(j’ X k') = 1. But

i

By ey
It

i j k

az Q422 Q423

i’ X K') = (aui + a19§ + a1k)- =A,

| @31 432 Q433

where A is the determinant of the coefficients, and the result follows.

I3 It is clear from geometrical considerations that if i, j, k and 1/, j/, k’ are
two right-handed orthonormal sets of vectors in E; for which k/ = k, then there
must be an angle ¢ such that the “new” vectors i’ and j’ are related to the “old”
vectors i and j as in Figure 2.692. The new vectors and new X’ axis and new ys

Figure 2.692

axis are dashed in the figure, and the vectors k and k’ are not shown. Itiseasy
to see, with the aid of the figure, that

0 i = (cos ¢)i + (sin ¢)j
i' = —(sin ¢)i + (cos ¢)j.

Check up on this story by using (1) and vector methods to prove that, whatever
¢ may be, it is actually true that |i'l = 1, |j'| =1, ¥§’ =0, and i’ X j’ = k.
Solve the equations (1) for i and j to obtain the formulas
(2) i = (cos ¢)i’ — (sin ¢)j’

j = (sin )i’ + (cos ¢)j’
which give the new vectors in terms of the old. Observe that changing the sign

of ¢ converts one system of equations into the other. Finally, show that if P
lies in the plane of Figure 2.692 and if

(3) OP = «i + yj = 21’ + ¢'§,
then
#) 0P = #f(cos ¢)i + (sin ¢)j] + v/[—(sin B)i + (cos )]

= [%" cos ¢ — y’ sin @Ji + [’ sin ¢ + y’ cos Blj
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and therefore

©)

%' cos ¢ — 9y’ sin ¢

%' sin ¢ + 4’ cos ¢.

]

y

Remark: The formulas (5) are, perhaps unwisely, called “formulas for rotation
of axes” in E,. Actually, they are used to convert equations involving ‘“old”
coordinates x, y into new (and sometimes simpler) equations involving new
coordinates ¥/, y’.
14 Supposing that u and v are nonzero noncollinear vectors, show that the

vector

(uXv)Xu

[(w X v) X ul

is a unit vector which lies in the plane of u and v and is orthogonal (or perpen-
dicular) to u.

15 Cultivate some useful skills by following instructions and paying particu-
lar | attention to steps that seem to be worthy of notice. Draw vectors PP, and
PPa and then draw the angle 6 and the unit normal n that appear in the definition
of PPo X PPa Show that the area 4 of the parallelogram having adjacent sides
on PPg and PPa is

= PP, |PP;| sin 6.

Draw another vector PP, and show that the distance 4 from P; to the plane of
PP, and PP; is
d = +PPyn,

where the sign is so taken that 4 = 0. Then, depending upon circumstances,
remember or learn that V 4d, where 7 is the volume of the parallelepiped
havmg ad]acent edges on PPl, PPz, PPa ifd % 0 and 7 = 0if P, lies in the plane
of PPz and PPa Use this to show that

V = +PPy(PP; X PPy).

Supposing that P has coordinates #, y, z and that the points P; have coordinates
Xk, Vk» %k, Show that
i j k
V==xlx—2i+ =i+ @—2kl{az—x y2—y 20— 2
X3 — X Y3— 9y 23— 32
and hence that
X1 —X y1—Yy %1 — 2
V==|x2—% 92—y 22—23z|
X3 — X Y3 —9y 23— 2
Use this to show that

x v 4 1 x vy z 1
y—F|f—% Ny m—z 0| _ —|x vy oz 1|
% —x y2—9y 22—3z 0 %2 y2 % 1

x3—x% y3—9y 23—32 0 % ys z3 1
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16 Prove that a line which is not completely contained in a quadric surface
can intersect the quadric surface at most twice. Solution: Suppose the coordi-
nate system is so chosen that the given line has the equations y = z = 0, and
let the equation of the quadric surface be (2.68). A point (x,0,0) then lies on
the surface if and only if 4x2 4 Gx 4+ J = 0. If there is an x for which this
equation is not satisfied, then at least one of 4, G, J must be different from 0 and
there are at most two values of x for which the equation is satisfied.

17 The purpose of this long problem is to develop ideas about the transversals
of three given skew (no two lying in the same plane) lines P\Ps, P3Py, PsPs. A
line L is called a transversal of the given lines if it intersects the lines PPy, P3P,
PsPgat points Q, 01, Q2 as in Figure 2.693. Foreachk =1,2, - - -, 6 the coordi-

P,
Figure 2.693

nates (xi,Yi,z:) of Px are given numbers and we want information about the
coordinates of @, O, Q> The latter coordinates are determined with the aid of
numbers A, Ay, Az for which

1) P =MAPP.,  Pi01 = MPiQs  Pi0s = MiPsPs

Our first step is to select a number A (or to think of X as being “fixed”) and ask
whether a transversal through Q exists. If A is so chosen that the plane 7 con-
taining Q, Ps, P, does not intersect the line PsPg, or intersects the line PsPs at a
point @, for which the line QQ, is parallel to the line P;P,, then no transversal
through Q exists. Henceforth, we suppose that A is not so unhappily chosen.
A transversal through @ is then obtained by drawing the line L through Q and
the point @, where mr; intersects the line QsQs. The value of A, can be calculated
in terms of A from the equation

%5+ Aa(xe — x5) 5+ Na(ve — v5) 25 + Ao(zs —25) 1
(2) X3 Y3 Z3
X4

Y4 Z4
21t Axe—x1) i+ ANGr— 1) 2+ Az — z)

which says that @, is the point on the line PsPs which lies in the plane 7, contain-

ing Py, Py, Q. Similarly, the value of A; can be calculated in terms of A from the
equation

b
11=0
1

23+ Mlxd — x3) ya+ M(ye— vs) z+ ANz —23) 1

(3) X5 ¥s Zs 1
Xs Ve Zg 1

1+ AMxz—x1) 31+ Ay:—y1) zmm+ANzz—z) 1

=0
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which says that Q, is the point on the line P3P, which lies in the plane w; con-
taining Ps, Ps, Q- Thus the required coordinates of Q, Qy, 0, are determined in
terms of N. Remark: Study of the set § of points P(x,y,z) that lie upon trans-
versals can be very interesting. If P lies upon the transversal through @, then,
for some scalar p,

4) OP = (1 — )00 + 10:.

But

) 00 = (1 — \OP, + \OP.,

and, since (3) shows that there are constants 4 and B for which A\, = 4\ + B,
©) 001 = (1 ~ [4\ + B))OP; + (4\ + B)OP,.

Therefore,

(7) OP = (1 = w1 —NOP, + (1 — WAOP, + u0P; __ .
— u(4X\ + B)OP; + p(4AN + B)OP,.

Hence there are vectors vy, Vs, V3, V4 such that

(8) OP = V1 4+ AVe + uvs + Auv,.

It follows that there are scalars, ay, - - - , d3 such that

x=a 4+ b\ + ap+ dilp
€)) y = a2 + bA + con + dohu

2 = as + b\ + cau + da\p.

It can be shown that the equations (9) are parametric equations of a quadric
surface. In fact, eliminating A and p from the equations (9) shows that x, y, z
must satisfy an equation of the form (2.68). Thus § is a quadric surface, and
we have a quite straightforward procedure for determining its equation in terms
of the eighteen given coordinates of the six given points Py, Py, - * - , Ps. Stu-
dents who attain full comprehension of this matter will have passed far beyond
the minimum requirements of this course, and they can find the experience to
be both enjoyable and beneficial.

18 Those who wish to extend acquaintance with matrix theory should copy
the systems of equations in (2.65) and look at them while reading this. Let U
and UT denote the matrices of the coefficients (or scalar components or direction
cosines) of the systems so that

a1 a1z a3 a1 a2y 4z
U=\|an ar as) UT =|a12 as as)
a31 4s2 4ass a13 Q423 4ss,

The matrix U7 is called the transpose (or transposed matrix) of the matrix U,
and this invites us to realize that U7 can be obtained from U by transposing
(interchanging) the rows and columns of U or by transposing the elements of U
across its main diagonal. The rows of U are scalar components of orthonormal
vectors, and the matrix is square. Such matrices are called unitary (or ortho-
normal) matrices. Therefore, U is unitary. When U is unitary, an application
of the rule for multiplying matrices shows that UUT = I, where I is the unit
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matrix. Therefore U™t = UT, This is important; the inverse of a unitary
matrix U is U7.

19 This problem requires us to agree with Miss Garnett that methods of
analytic geometry can be used to solve a challenging problem that may baffle
those who seek more elementary solutions. It is supposed that a, b, ¢ are positive
numbers and that the points 4(0,0), B(c,0), C(a,b), D(a + ¢, b) are vertices of a
parallelogram. Let a point E(%,0) on the bottom side of the parallelogram be
joined to the top vertices C and D and let a point F(,5) on the top side of the
parallelogram be joined to the bottom vertices 4 and B. The lines EC and F4
intersect at Py, and the lines ED and FB intersect at P,. The line P1P; meets
the side 4C at Q; and meets the side BD at Q.. The question then arises whether
the distance from Q; to A is equal to the distance from Q; to D. Elementary
geometrical considerations show that the answer will be affirmative if the line
PP, contains the center P; of the parallelogram, this center P3 being the inter-
section of the diagonals of the parallelogram. Show that, for each £ =1, 2, 3,
the elements of the kth row of the determinant

tu bu 1
t+u—a t+u—a
ac + ¢ — tu b(c — u)
a+2c—t—u at+2c—t—u
a+tc b
2 2 1

are xz, Y, 1, where x; and ; are the coordinates of P;. Then prove that the
determinant is O and hence that the line PiP; actually does contain Ps.

20 Let Pi(x1,y1), P2(x2,y2), Ps(xs,y3s) be vertices of a triangle such that no two
of the vertices lie 6n a line through the origin. Let Ay, A2, Az be three different
numbers, and for each 2 = 1, 2, 3, let O be the point (Awxx, Miyx). The two tri-
angles P,PyP; and Q10:0; are then perspective, the center of perspectivity being the
origin. The lines P1P» and 0:10Q- intersect at a point Rj, the lines PyPs and Q=05
intersect at a point Ry, and the lines P3P; and Q10 intersect at a point R2. The
famous Desargues theorem says that the three points R, Ry, Rslie on a line L. It
is easy to sketch figures illustrating the theorem, but proofs are not easily origi-
nated. Possessors of sufficient time, paper, and technique may cultivate addi-
tional technique by finding the x coordinate of R;, and then interchange x and y
and advance subscripts to discover that the coordinates of R; and Rj; are the first
two elements of the bottom rows of the determinant in the equation

x v 1
Qs — DAy — 01— DAsxs s — DAyyy — 1 — DAays 1
A — N Az — Ny =0.
A = DAz — Q= DAy A1 — DAgys — 2 — DAy 1
)q - kg XI - >\z

This is, therefore, the equation of the line L through R, and R;. Considerable
courage is required to show that the coordinates of R; satisfy this equation and
thus obtain an analytic proof of the Desargues theorem.
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3 limits,

dertvatioes

3.1 Functional notation As we progress in a study of a science, it is
necessary to become familiar with terminology and notation used for con-
veying information. One of the most important

mathematical words is the word function. We 2

may look at Figure 3.11, in which «, y, and z are A‘
the lengths of the sides of a triangle and 6 is the v P

angle at the vertex 7 opposite the side of length gz, Figure 3.11
and say that z is a function of #, y, and 6 which we

shall denote by f(,y,§). By this we mean that when #, y, and 6 are
given numbers for which x > 0, y > 0, and 0 < 6 < m, the number z
is completely determined and has a value which we denote by the symbol
in the right member of the formula

(3.12) z = f(%,9,6).

11
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This equation is read “z equals f of x and y and 6. It happens that the
law of cosines, which involves one of the more important formulas which
should be learned in trigonometry, gives the formula

(3.13) f9,8) = /7 T 37 — 2y cos 0

from which we can compute f(x,y,8) when x, y, 6 are given numbers. In
spite of the fact that numbers do not move, it is sometimes a convenience
to think of x, y, 6, z as being ‘““variables” and to think of z as being the
“dependent variable” which is a function of the three “independent
variables” x, vy, 6.

Many examples are more complicated than this, and we can broaden
our intellectual horizons by thinking briefly about one of them. Itis
standard practice to write

(3.14) v = f(x,y,2,0)
= fl(xayazat)i + fz(x,}’,Z,t)j + f3(xay:z;t)k7

where v, a vector, is the velocity of a fluid (which might be air) at the place
having rectangular coordinates x, y, z and at time . We say that v and
its scalar components are functions of the four variables %, y, 2, 2. We
mean that when x, y, z are coordinates of a point in the region being con-
sidered and when ¢ is a time (measured in specified units from a specified
zero hour) in the time interval being considered, the velocity v and its
scalar components at that place and time are completely determined and
that f(x,y,z,t) denotes the velocity and fi(x,y,%,t), fa(%,,2,8), fa(%,9,2,8)
denote the scalar components.

There are two useful and more or less modern ways of attaching mean-
ings to the symbols f and f; appearing in the above example. One is the
dynamic approach and the other is the static approach. In the dynamic
approach, f and f; are regarded as operators or transformers (like machines)
to which we can feed appropriate ordered sets x, y, 7, ¢ of numbers. Then
(after mechanical squeaking or electronic flashing or what not) f and f;
produce the required vector f(x,y,,t) and the required number f1(x,y,2,t).
In the static approach, f is regarded as being the set of ordered quintuples
(%, ¥, 2, t, £(x,y,2,£)) of four numbers and a vector in which the allowable
independent variables come first in the appropriate order and the vector
f(x,y,5,t) comes last. In this static approach, f; is a set of quintuples of
numbers. It is a common but not universal practice to consider these
ideas to be more tangible and useful than the idea that f is a law or rule by
means of which f(x,y,%,) can be calculated when x, v, z, t are given. A
simpler example may partially clarify these matters. As soon as we know
that the area y of a circular disk is determined by its radius x (x being
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positive because radii of disks are positive numbers), we can say thatyisa
function of x and writey = g(x). Then g(2) is the area of a disk of radius
2 and g(2.03) is the area of a disk of radius 2.03. In each case g(x) = =%
We can think of g as being the operator which converts x into 7x? when
% > 0 or as being the set of ordered pairs (x,7x%) for which x > 0.

It is important to know about a particular special way in which a scalar
function of one scalar variable can be determined. Suppose we have a
given set S of ordered pairs (x,y) of numbers such that the set does not
contain two pairs (x1,y1) and (xs,ys) for which x2 = x; and y» # y;. To
each number xo that appears as the first number in one of the pairs (x,3),
there is then one and only one number y, such that the pair (xq,v0)
appears in the set. We may let f(xo) denote

this number yo, and we have yo = f(x0). Thus g 1

the given set S of ordered pairs (x,y) becomes  °| ]

the set of ordered pairs (x, f(x)). When the P
pairs of numbers in the set are associated with

points and are plotted in the usual way, an 5 . —

example being shown in Figure 3.15, the con-
dition on the ordered pairs means that no two
points fall on the same vertical line. In the example of the figure, we
see that f(x) = 2 when x =0, that f(x) =1 when 1 = x <2, that
f(x) = 2 when x = 2, and that f(x) = x — 2 when 2 <x = 3. When
x has a value different from 0 and not in the interval 1 = x = 3, no
meaning has been attached to f(x) and we say that f(x) is undefined.
In this and other cases, the set of values of x for which f(x) is defined is
called the domain of the function, and the set of values attained by f(x)
is called the range of the function. All this is perfectly explicit and pre-
cise, and it should be thoroughly understood by everyone. One who
wishes to regard f as an operator must realize that each set S of the type
described above completely determines the number f(x) that f must
produce when it operates upon a given number x in the domain of f.
Likewise, one who wishes to regard f as a set S must realize that the opera-
tor f determines his set S of pairs (r, f(x)). Everyone must realize that a
set S* of points in a plane endowed with an x, y coordinate system deter-
mines both the operator f and the set S, provided no two points of S*
lie on the same vertical line. As sometimes happens in mathematics and
elsewhere, we have a situation in which different individuals can hold
different personal preferences. For example, a person who wishes to
regard f as an operator can take a dim view of the idea that an appropriate
set S of ordered pairs of numbers “is” a function because it determines a
function. He can feel that this is too much like saying that a social
security number “is” a worker because it determines a worker, and he can
object to the idea that social security numbers eat mashed potatoes.

Figure 3.15



114 Functions, limits, derivatives

The contraption in the central part of Figure 3.151 is guaranteed to
make nearly everybody imagine a more or less complicated process by
which f might operate upon a given input x (an element of the domain of
f) to produce the corresponding output y (an element of the range of f).
The last problem of this section provides ideas about functions, operators,
and transformers that are needed in advanced mathematics and are help-
ful in elementary mathematics.

o)
Heep o
v

Figure 3.151

If we know that y is always positive and that x and y are always related
by the formula x? 4+ y2 = 9, we can discover that y = /9 — x% when
—3 < x < 3. Thus yis determined as a function of x which is defined
over the interval —3 < x < 3, and the graph is as shown in Figure 3.16.
Similarly, if we know that y is negative and 2 4+ y? = 9, we can conclude

that y = —+/9 — &% and we have a function whose graph appears in
y y "‘y
e
1 1 L
] x
L
(&) x

Figure 3.16 Figure 3.161 Figure 3.162

Figure 3.161. If we know that x2 4+ y* = 9 but do not know whether y
is positive o, negative, we cannot determine y in terms of x. The best
we can do is say that, for each « in the interval —3 < x < 3, y is one or
the other of v/9 — #* and — v/9 — #%. Figure 3.162 shows the graph
of a function f for which &* + [f(x)]* = 1, it being true that f(x) > 0 for
some values of x and f(x) < O for other values of x. Observe that the
equation x* + y* = 1 does not, by itself, determine y as a function of ,
but that there do exist functions f for which x? + [f(x)]* = 1.

One purpose of all this discussion is to emphasize the fact that our ideas
about functions must be both broad and precise. We must remain calm
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when someone says that the temperature u at the north pole of our earth
is a function of the time ¢ and, without bothering to introduce a new
letter whose significance must be remembered, uses the symbol u(z) to
denote the temperature at time ¢ Many

problems in pure and applied mathematics

involve functions about which we have some

information and seek more. Moreover, we §

must allow ourselves freedom to use standard b

terminology that everyone else uses to convey a x'l xg b x
ideas and information. We say that a func-
tion f is tncreasing over anintervala £ x < b
if, as Figure 3.163 indicates, f(x1) < f(x;) whenever a < x; < %2 < b.
Similarly, f is decreasing over the interval if

(3164’) f(xl) > f(xz) (a § X1 < x9 é b).

In this displayed statement, the “whenever” is omitted. The line can be
read “f(x1) > f(x2) whenever a < x; < 2 £ 5.7 If, as Figure 3.163
indicates, f is increasing over the interval ¢ < x < b and if f(a) = 4 and
f(6) = B, we say that f(x) increases from A4 to B as x increases from & to b.
While we use this convenient terminology, we need not be gullible people
who are easily persuaded that numbers x and f(x) can actually increase.
To see 6 increase and say hello to 7 as it proceeds toward 8 could be quite
amusing, but we make no pretense that such things actually happen. To
avoid misunderstandings, the author wishes to publicly proclaim that
he is not recommending rejection of the good old terminology; he is
merely insisting that we know what we mean when we say that y or f(x)
increases as x increases from a to b.

Problem 15 at the end of this section deals with a famous number-
theoretic function. From some points of view, a perfect definition of this
function can be phrased as follows. Let = be the function whose domain
is the set of real numbers and which is such that, for each x in the domain,
7(x) is the number of primes less than or equal tox. This makes the “law”
or “rule” concept sound very good. We can easily make the pretense
that a sufficiently dynamic operator could produce the numbers =(x) that
we need to form the set S of pairs (x, #(x)) needed for the static concept.
It will be observed that, in Problem 15, the function is defined in fewer
words.

Trigonometric functions and polynomials are simpler examples of func-
tions that are important in advanced as well as in elementary science.
A polynomial (or polynomial in x) is a function P having values defined by

(3.17) P(x) = ax + ax* ' + + * * + Garx + @a
or by

(3.171) P(x)

Figure 3.163

bo + bix + bex® + -+ = + baxm,
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where # and ag, a1, * * * , an and by, b1, * * * , bs are constants, z being
a nonnegative integer. A rational (ratio-nal) funmction is a quotient of
polynomials, an example being the function Q for which

(3.172) Q(x) = s

for each x for which the denominator is different from zero. When we
define a function by a formula more or less like (3.172), we ordinarily
understand that the domain of the function is the whole set of numbers x
for which the formula actually determines a number. We must, how-
ever, recognize the fact that the function g for which g(x) = /% when
1 < x < 4 is different from the function 4 for which 4(x) = A/* when
x = 0; the domains of the functions are different, and the functions are
therefore different. To clarify this point, we can recognize that a
machine which is capable of cracking only medium-sized nuts is different
from a machine that is capable of cracking nuts of all sizes.

If we have a load of coal of weight @ and we toss a lump of coal on or
off the load, then the new weight will be a2 new number which we can call
w 4+ Aw. Thus Aw, which may be either positive or negative, is the
difference of two weights (the new minus the old). The number Aw, read
“delta w,” is a single number (not the product of two numbers A and w).
This simple notational device turns out to be unexpectedly convenient.
In physical chemistry Ap is the difference of two pressures, Av is the dif-
ference of two volumes, and At is the difference of two times. In physics,
Av is the difference of two (vector) velocities, and A¥ is the difference of
two potentials. In economics AP is the difference of two prices, and in

y+Ay
y z z+Az
[} 6+Af
Vo<
x v x+Ax
Figure 3.181 Figure 3.182

biology AP may be the difference of two populations. If, as in the
discussion involving Figure 3.181, the left member of the formula

(3.183) z = f(x,y,6)

represents the length of the side opposite the vertex ¥, then the left
member of the formula

(3.184) z+ Az = f(x + Ax, y + Ay, 6 + Af)

represents the length of the side opposite the vertex 7 in the triangle of
Figure 3.182. Of course we can and sometimes shall use shorter symbols
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such as &, k, p, g for Ax, Ay, Af, Az, but very often the extra labor involved
in writing the more elaborate delta symbols is a small price to pay for the
elimination of the superfluous symbols whose meanings may be forgotten
and confused.

At the conclusion of the text of this section, the author makes some
remarks that he would have made at the beginning if he had thought that
they could have been understood. The old word “function” has been
and is and will be used in many different ways. Students who get around
will have serious difficulties unless they are so well informed and tolerant
that they can accumulate and dispense information by reading and hear-
ing and talking quite different languages. It is like being able to play
football with those who play football and to play basketball with those
who play basketball; one who knows only ping-pong is sometimes handi-
capped. This, of course, does not imply that a particular teacher is
required to stand by while many different games are played simultane-
ously in his classroom. Each individual teacher may, with the full back-
ing of the author, go as far as he likes in prescribing the rules of the game
to be played in his own classroom.

Problems 3.19
1 1f

f(x) =X g(x) = xz$ h(x) = 2z’ ¢(x) 1 + xz’
verify the following assertions and replace the question marks by appropriate
answers.

(@) f0) =0, f(—=3) = =3,(Q2) =

(%) g0) =0, g(—2) = 4,g(5) =

© H(=1) = 3, h0) = 1, h(2) = 4, h@) = 1.4142

(@) h(S) = 2, h(—=2) = 2, h(—%) = ?

(&) ¢3) =% 6(2) =}, ¢(—2) = 2, ¢(1%) = ?

(N f8) — f5) = 3, f(2.1) — f(2) =

(&) g(3) —g(2) =5,g(2.1) —g(2) =

(B) R(3) — R(2) = 4, k(1) — k(0) =

() ¢(1.1) — ¢(1) = —.0475, ¢(0.2) — ¢(0) =
f4.5) — f(4) _ f(2 8 —f27n _,

@) =03 o1 =

®) 8(41)—8(4) — 81, 8_(2_8)__3(27) ;

o 2 1)0 —40) _ 5, 0. 2) 20) _

=2?
(m) 8&F 2% —8®) _ 542, g(x + 002 —8() _,

Ay EO9) = 80) _

g1 + Ax) — g(1)
() Ax Ax

=24
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©) flx + A;)‘ —f@) _, 8 +AAx’)‘ 8 _ o1 Ax
bz + Ax) — o) _ —2x— Ax
®) Ax ST+ 0 F & + 407

2 The signum function having values sgn x (read signum x, almost like sine x)
is defined by the formula

¥y

sgnx = 1 (x>0)
1 sgnx= 0 x=0
sgn x = —1 (x <0).
f % Show that Figure 3.191 displays the graph of sgn x and
-1 then draw the graph of sgn (x — 2). Show that [x| = «
sgn x. Hint: Consider separately the cases in which
Figure 3.191 x>0,x=0,and x <O0.
3 The Heaviside (1850-1925) unit function having
5 values defined by
i Hix) = 1 (x> 0)
Hx) =3 (x =0)
® Hx) =0 (x <0)
is named for the mighty electrical engineer who popu-
% larized its use. Show that Figure 3.192 displays the
Figure 3.192 graph of H(x) and then draw the graph of H(x — 2).
Show that
y H@) = Lt_.zsgﬂ sgnx = 2H(x) — L.
1
4 We need more evidence that not all functions
have simple graphs that are easily drawn. Let D be
the dizzy dancer function, defined over the interval
0 1 o 0 £ x £ 1, for which
Figure 3.193 D(x) =0 (x irrational)

D(x) =1 (x rational).

Think about this matter and acquire the ability to make a figure more or less
like Figure 3.193 to “represent” the graph of D.
§ A function g is defined by the formulas

g(x) = x? O0O==x=1)
gx) =« (otherwise).
Plot its graph.

6 A function f is said to be an even function if f(—x) = f(x) whenever x
belongs to the domain of f and is said to be an odd function if f(—x) = —f(x)
whenever x belongs to the domain of f. Prove that the polynomial having values
2 — 3x* 4+ S5x* (with only even exponents appearing) is even. Prove that the
polynomial having values x — 7x% 4 2x7 (with only odd exponents appearing)

is odd. Prove that the polynomial having values 1 — 2x + 3x? is neither even
nor odd.



3.1 Functional notation 119

7 If h(x) = x + 1/x when x 5 0, show that h(1/:) = k(¢) when ¢ # 0 and
that [2(%)]? = h(x?) + 2. Work out a formula for A(4(x)) and check the formula
by setting x = 2.

§ If flx) =2+ 3z + 1, show that {(—3) = 1, f(—1) = —1, £(0) = 1,
&) =, f(2) = 11, and

flx +Ax) = x2 4+ 3x + 1 + (2x + 3) Ax + Ax?

when Ax? means (Ax)2 It is quite appropriate to use this formula as a basis

for a feeling that, when x has a particular fixed value such as 0 or —2 or 7, the

value of f(x + Ax) is nearly the same as the value of f(x) whenever Ax is nearly 0.
9 If f(x) = mx + b, show that

fle) = f) _ .

X2 — X1

whenever x» # x1. Sketch a figure and comment upon the result.
10 If f(x) = x?, show that

fe B = f) _
h

when, as always when we make calculations of this kind, £ # 0. Sketch a
graph of the function and use the above formula to find the slope of the line L
passing through the two points on the graph for which x = 1 and x = 1.001.
The answer is 2.001, and it is quite appropriate to have a feeling that this is
nearly the slope of the line tangent to the graph at the point (1,1).

11 If f(x) = x? simplify

[l + Ax) + flx — Ax) — 2f(x),
sz

12 If f(x) = 1/x, and if x and x + Ax are both different from 0, show that

fle+Ax) = f(x) _ =1 | -
Ax x(x + Ax)

13 Make appropriate use of the trigonometric formulas

sin (@ + B) = sin @ cos 8 + cos @ sin B8
cos (a + B) = cos a cos B — sin « sin B

to obtain the formulas

sin (x + &) —sinx _ sinhcosx__l— COShsinx
h h A
cos (x+:) —cosx _ —su]:hsinx— 1 —l::os}lcosx.

I4 Show that y will be a function of x for which

2+ xy(x) + @) = 3
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if —2 < x < 2 and, for each such x, y(x) is one or the other of the two numbers

—x — V34 — x?) —x 4+ V34 — x?)
2 2

which are equal only when x = —2 and when x = 2. Hint: Use the quadratic
formula.

15 An integer n greater than 1 is said to be composite if, like 39, it is repre-
sentable as the product of two integers each greater than 1 and is said to be a
prime if, like 29, it is not so representable. The primes are 2, 3, 5, 7, 11, 13, 17,
19, 23, 29, - - -, there being an infinite set of them. One of the famous funec-
tions of number theory is w(x), the number of primes less than or equal to x.
It is easy to see that 7(8.27) = 4. It has been proved that 7(10%) = 168,
x(108) = 78,498, and w(10%) = 50,847,478. To graph w(x) over the whole inter-
val 0 < x < 10° would be quite a chore. However, draw the graph over a
shorter interval, say 0 < x < 40, and try to pick up some ideas.

16 Another famous number-theoretic function has, for each positive integer
n, the value d(n), where d(n) is the number of positive integer divisors (including
1 and 7) of #n. For example, the divisors of 6 are 1, 2, 3, and 6. Verify the
entries in the little table

1121

II Il
e
N »n

n 891011 12 13
d(n) 43 4 2 6 2
and calculate d(233252).

17 We take a brief preliminary look at some functions that play fundamental
roles in physics, mechanics, and statistics. Let n be a positive integer. For each
k=1,2,3, -+, mn, let a particle Py of mass m; be concentrated at the point
Pi(xx,yk). In what follows we use £ (xi, the Greek x) to denote a number which
can easily be considered to be the x coordinate of a point, and we use M with a
superscript to make us think of 2 moment. For each number £, the number

ML, defined by
(1) Mg.)e = my(*; — E) + ma(xe — &) + - - 4 maln — 3}

is called the first moment of the mass system about the line having the equation
x = £ Supposing that the total mass

0)) M=m-+m+ - +m
of the system is positive, we can put (1) in the form
® M= (Tt )

Similarly, for each number % (eta) the number M,‘,L’,, defined by
C)) ME =mbi—n) +myr— 1) + - - - + malyn — 1)

is called the first moment of the mass system about the line having the equation
y =1, and

) MP, =y (Tntmoad d e ),
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The particular point (&7) for which M®, = 0 and ME =0 is called the cen-
troidt (thing like a center) of the mass system. The coordinates of the centroid
are denoted by # and 5. Thus, M2; = 0 and MY, = 0, and it follows from 3)
and (5) that

- _mx1+ maxa+ - - 0 4 max, M1+ Mmeye + - ¢ 0+ mays
© = M A 7
In case m; = 1 for each &, (2) shows that M = » and the formulas (6) reduce to
1) §=x1+x2+n"'+xu 3.,=y1+yz+n"'+yn

In this case the centroid (%37) is called the centroid of the set of points P;, Pa,
-+ ,P,. To prepare us for Section 4.7 and other sections where less simple
mass systems are considered, we should take brief cognizance of a more general
definition. Let p be a nonnegative integer. The number MR, is defined by

8 M@y = mi(xer — )P + ma(xz — £)P + - - - + ma(xa — £)?

and is called the pth moment of the mass system about the line having the equa-
tion x = & Similarly, the number M,‘,ﬂ),, defined by

)] MP, = my — 0 + malyz — 1)2 + « + © + ma(yn — p)?

is called the pth moment of the mass system about the line having the equation
y = 7. In physics and mechanics (but not so often in statistics) the second
moment is called moment of inertia. Since we are studying functions, we can
observe that, if our mass system contains 40 particles, there is a sense in which
the moments in (8) and (9) are functions of 82 variables of which two are p and £.
While this textbook does not require calculations of these moments, we can recog-
nize that there are many situations in which calculations must be made, and this
is one of the reasons why the world contains so many calculating machines and
computers of assorted mechanical and electronic varieties.

18 If f(x) =14 x + x? + x® + x4, show that /(1) = 5 and

x8 =1 1 —x°
f(x)_x—-l T 11—z
when x = 1.
19 Remark: This remark invites more complete comprehension of ideas and
terminology involving functions. The left-hand part of Figure 3.194 represents

i _ze}—] Py

Figure 3.194

a set D of numbers or of vectors or of entities of some other kind that is called a
domain. The central part of the figure represents a mechanism that is sometimes

t We are being rather unrealistic if we suppose that everybody always chooses the same
coordinate system when studying a given system of particles. The coordinates of the cen-
troid depend upon the coordinate system used, but (we omit the proof) the location of the
centroid relative to the system of particles is the same for all coordinate systems. For
example, if three particles of equal mass lie at the vertices of a triangle, then the centroid
lies at the intersection of the medians of the triangle.
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called a black box and is sometimes called a transformer T. When an element x
of the domain is selected and fed into the black box or transformer, the x is called
an input and the black box or transformer is supposed to produce an output
which is an element y of a set R which is called a range. Thus to each x in D
there corresponds exactly one y in R which is called the transform of x and is
denoted by T(x) so thaty = T(x). Thus we have a transformer T which trans-
forms each x in D into a transform T(x) in R. So far we have used the words
“transformer’’ and “transform,” but we have not used the word ““transformation.”
Our domain and transformer and range determine and are determined by the
set S of ordered pairs (x,y) for which x is an element of D and y is the element of
R for which y = T(x), and we call this set S a transformation Ts. The domain
(set of inputs) and range (set of outputs) of the transformer T are also the domain
and range of the transformation Ts. We now have adequate terminology and
notation. The transformer T is the active “operator” that converts each ele-
ment x of D (or each first element of one of the pairs in Ts) into the transform
T(x) in R (which is the appropriate second element of a pair in the set § which
constitutes Ts). The transformer T and the transformation Ts are inherently
different things, and there can be no doubt that our science is inadequately
developed when we apply the same name and the same symbol to the two things.
The worst of it is that, when the word “function” is used, this one word sometimes
means a transform T(x), sometimes means the transformer T, and sometimes
means the transformation T's. Perhaps an assertion involving the word “func-
tion” will help us to see why we must make a rather serious study of terminology
before we can be intelligent readers and listeners. It is the function (see the
nonmathematical meanings given in a dictionary) of a function (transformer)
to carry an element of the domain D of the function (transformer or transforma-
tion) into the function (transform) in the range R of the function (transformer
or transformation). Commenting upon this matter from the point of view of
mathematical logic, Professor Rosser remarked to the author that some of our
terminological difficulties are due to the fact that the already overburdened
old word “function” was used as a name for the set S of ordered pairs. Itis
possible that terminology will slowly improve, but meanwhile we can be com-
forted by the fact that the bad terminology rarely if ever actually injures us.
We can be irked by the fact that a “diameter” of a circle is sometimes a line
segment (a point set) and is sometimes a number (the length of the line segment),
but we are rarely if ever injured and there seems to be no overwhelming demand
for improvement of the terminology.

3.2 Limits When we were infants learning to walk and to talk, and
perhaps even after that, we heard many statements that we could not
comprehend. When an explorer tells us that he found a complete set of
normalized Legendre polynomials in an ancient cave in Peru and that the
carbon test shows that the set is 24,500 years old, it may be difficult for us
to learn what he is talking about and whether he is telling a truth,
Moreover, statements involving erudite technical terminology are not the
only ones that can be troublesome. Sometimes we must do considerable
working and thinking before we can fully understand statements that
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involve only simple words and may seem, at first sight, to be childishly
simple.

It is reasonable to suppose that the harangue of the previous paragraph
is leading up to something, and that the lightning is about to strike. It
is. We are going to undertake to make a sane appraisal of the assertion

13.21) x% is near 9 whenever x is near 3 but x = 3

which we shall call the assertion in the first box. The assertion does not
say anything about the value of x? when x = 3. It does not say that
x%is 9 when x = 3, and hence it does not pretend to tell the whole truth.
There is a fundamental reason why it is not completely easy to tell what
the assertion does mean. The reason is that it simply does not make
precise mathematical sense to say that a number x is near 3. Whether
416 or 4 or 3.01 or 3.00001 or 2.98 is considered to be near 3 or not can be a
matter of opinion and can depend upon circumstances. Likewise, it
does not make precise mathematical sense to say that x% is near 9.
Discouraging as this may be, we must recognize that it may be possible
to attach a precise meaning to the assertion in the first box without attach-
ing meanings to the “assertions” x is near 3 and % is near 9. After all,
the word “attaching’” can mean something even when “atta’ and
“ching” do not. It should be possible to tell precisely what the assertion
does mean, because the assertion uses words in a thoroughly serious
attempt to convey information. A fundamental idea is involved.

Our first attempt to make sense out of (3.21) is to replace it by the
assertion

(3.211) x2 is a good approximation to 9 whenever x is
’ a good approximation to 3 but x % 3

in the second box. This change in the wording can be psychologically
satisfying, and we started with (3.21) only because it is shorter than
(3.211). We have not, however, conquered our fundamental difficulty,
because the statement that one number is a good approximation to
another is neither more nor less illuminating than the statement that one
is near the other.

It is a remarkable-fact that much of the mathematical progress of the
past century is based upon the development and use of a particular special
method of attaching meaning to the statements in the first two boxes.
The method is called the epsilon-delta method because it traditionally
employs the two Greek letters ¢ (epsilon) and § (delta). The meaning of
the assertions in the first two boxes is, by this method, defined to be the
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same as that of the assertion

To each positive number ¢ there corresponds
3.22) a positive number & such that
|#2 — 9] < € whenever 0 < |x — 3] < &

which we shall call the epsilon-delta assertion.f When we first see the
epsilon-delta assertion, we are entitled to feel that it lacks the intuitional
appeal of the preceding assertions, but it turns out to be the fully mean-
ingful assertion which can be proved if it is true and can be disproved if it
is false.

Before further discussion of the assertions in the boxes, we can note
that they are so long that it is tedious to write them very often and that
they are universally abbreviated by the efficient and effective shorthand

s,

(3.23) lim x2 = 9

z—3

in our fourth and final box. Thus the assertions in the four boxzes are
equivalent; if one is true, then all four are true; and if one is false, then all
four are false. They all mean the same thing.

The only possible discordant phrase in the symphony is the noise we
make when we read the assertion in the last box. We say that the limit
as x approaches 3 of #2is 9. Thus we have another technical statement
couched in terms of the dubious concept of moving numbers. Stephen
Leacock (1869-1944) was wise enough to realize that if a number x really
could approach 3 from more than one direction, then it should be able to
reverse the process and go away from 3 in more than one direction. In
any case, Leacock enabled Lord Ronald (a character in “Nonsense Novels,
Gertrude the Governess: or, Simple Seventeen”) to fling himself upon his
horse and ride madly off in all directions. We make no attempt to explain
our basic concept in terms of moving numbers. Such attempts are much
too mystic and vague for advanced technical books, and we can hold the
view that they are at least a little bit.too mystic and vague for elementary
books. In our book, the collection of words “the limit as x approaches
3 of #2is 9”” does not suggest that numbers jump around; it suggests that
“x% is near 9 whenever x is near 3 but x is different from 3,” and this
basic concept is made precise by the epsilon-delta assertion.

1 In this and similar assertions, we avoid difficulties by using the word “each” in prefer-
ence to “any” because the troublesome word “any” often means ““at least one.” Residents
of Los Angeles can be expected to give lusty afirmative answers when asked whether any
major city of the United States lies west of the Mississippi River. Ife < ezand |x2 — 9| <
€, then |x* — 9| < &. For this reason the epsilon-delta assertion will be true if to eack e for
which 0 < e <0.001 there corresponds a positive number & such that |x? — 9| <e
whenever 0 < |x — 3] < 5.
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It is both easy and customary to adopt the absurd view that everybody
has spent huge amounts of time squaring all sorts of numbers near 3 and
has somehow picked up positive knowledge that the assertions in the
boxes are true. Instead of trying to discover how uncertain we should be,
we eliminate uncertainties by proving the epsilon-delta assertion.
Lete > 0. If0 <6< 1andsd < ¢/7, then

(3.24) |22 =9 = |(x + 3)(x — 3)|
=lx+3|x=3<7x—-3<75<e

whenever 0 < |x — 3| < 5. To obtain the inequality |x + 3] <7
which was used in (3.24), we can use an appropriate figure or, alterna-
tively, use the fact that if [x — 3| < 6§ and & < 1, then

l*+3|=|x—3+6/<|x—3+6<s+6<7.

Thus an appropriate § can be found and the assertion is true. It is not
inappropriate to think about this matter for a few minutes or perhaps
longer. T

We are familiar with the nature of the graph y
of the equation y = x2, and it is comforting to  9+¢
see that the epsilon-delta assertion has a simple
geometric interpretation. It says thatif e > 0
and if horizontal lines are drawn through the
points with ¥ coordinates 9 — ¢ and 9 4 € asin
Figure 3.241, then there exist vertical lines
(dotted in the figure) such that, with the possible
exception of a single point for which x = 3, the
part of the graph between the vertical lines is also
between the horizontal lines. The little sister we i
mention occasionally might be irked by the pos- 1 yév x
sible exceptional point, but she certainly would 3-% 343
be clever enough to put in the dotted lines after Figure 3.241
we had shown her a figure containing the hori-
zontal lines; the process is thoroughly elementary and we need not
require that efforts be made to seek the greatest & that serves the pur-
pose. Even though it does not make precise mathematical sense to say

t The famous flea assertion “each flea has a smaller flea to bite him” is, in some respects,
similar to the epsilon-delta assertion. We recognize that the “each flea” at the front of the
assertion invites us to think about fleas one at a time, not every flea or all fleas at once. To
prove the flea assertion, we would be required to start with a given flea, say Mr. F. (who
could be any flea but would not be every flea or the collection of all fleas), and show that
there is a smaller flea which is so related to Mr. F. (and which may be said to correspond
to Mr. F.) that it bites him. To prove the epsilon-delta assertion, it suffices to start with a
given positive number ¢ (which could be 416 or % or 0.00001 or any other positive number
but naturally cannot be all of these things at once) and then show that there is a positive
number 3 so related to € that |x? — 9] < ¢ whenever x > 3 and |x — 3| < 5.
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that e is small, we need not deny ourselves the satisfaction of the feeling
that, when the given e is small, the dotted lines must be close together
and the & must be small.

For the case in which f(x) = x? and @ = 3, we have been discussing
questions involving values of f(x) when x is near a. Our serious interest
often lies in such questions when f(x) has a more complicated expression,
say one of

i’ V2 -I-: - \/71 sin x (1 + x)v,

X

We should therefore know that the assertions in the four boxes

(3.25) f(x) is near L whenever x is near a but x # a.
(3.251) f(x) is a good approximation to L whenever
) x is a good approximation to a but x # a.

3.26 To each ¢ > 0 there corresponds a § > 0 such that
(:20) |f(x) — L| < ¢ whenever 0 < |x — 4| < &.

(3.27) lim f(x) = L.

have identical meanings. When we have plenty of time, we can always
replace the epsilon-delta assertion by the following more ponderous but
psychologically satisfying one. To each positive number e there corre-
sponds a positive number § such that f(x) approximates L so closely that
[f(x) — L| < € whenever x is different from a but approximates a so
closely that |x — a| < 3. The assertion (3.27) is read “the limit as x
approaches a of f(x) is L.”

If f and a are such that there is no L for which the four assertions are
true, then we say that

lim f(x)

does not exist. Complete comprehension of this matter is essential;
otherwise, we must be eternally confused by a statement that a thing at
which we are looking does not exist.

Some assertions involving limits are not completely simple. There

will come a day when we must know there is a number ¢, having the
approximate value in

(3.2m) e = 2.71828 18284 59045,
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such that

(3.272) lim (1 4 x)= = e.
z—0

Anybody can collect a little evidence in support of this assertion by mak-
ing calculations when x has such values as +4, +4, +4 and +1, but
it is not so easy to prove the assertion. In fact we must have very sub-
stantial information about limits before we can, in Chapter 9, define
functions having values ¢* and, when x > 0, log x. Meanwhile, many of
the problems that confront us will be solved very quickly and easily with
the aid of the following fundamental theorems. We call them limit
theorems, but they are nothing but basic theorems in the theory of
approximation.
Theorem 3.281 If

lim f(x) = L, lim f(x) = Lo,

then Ly = L.
Theorem 3.282 If b is a constant, then
lim b = 5.
Theorem 3.283
lim x = a.

Theorem 3.284 If c is a constant, then

lim ¢f(x) = ¢ lim f(x)

r—a

provided the limit on the right exists.
Theorem 3.285 The formulas

lim [£(x) + g(a)] = lim (=) + lim g(x)
lim [f()g(a)] = lim fGlllim ¢()
11m f(x)
f&)
i@ 1;3; o)

are valid provided the limits on the right exist and, in the case of the last
formula, lim g(x) # 0.
r—a

Theorem 3.286 If
lim f(x) =
then ’
lim |[f(x) — L] =0
—a

and conversely.
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Theorem 3.287 (sandwich theorem or flyswatter theorem) If for
some positive number p

g(x) £ f(x) = k()
whena — p < x < aand when a < x < a + p, and if
lim g(x) =L, lim A(x) =L,
—a —=a

then
lim f(x) = L.
r—a

Theorem 3.288 If p is a constant positive exponent, thent the first of
the formulas

lim x? = a?, lim x? = a?
z—a z—a+

holds when a > 0 and the second holds when a = 0.

These theorems are easily understood and will turn out to be very use-
ful. Unless his teacher rules otherwise, each individual student has three
options. He can claim that the theorems are so obvious that they do not
need proof and, even though this is surely a precarious way to start a
successful mathematical career, he may even be right. He can claim that
they are not obviously true but he will accept them because they are
printed and the teacher says there are no misprints. Finally, he may
want to see proof because he is suspicious or inquisitive or wants to
develop abilities to prove things. In the latter case he may attack
Appendix 1 at the end of this book. Whatever we do, we should always
believe that if f(x) lies between g(x) and k(x) and if g(x) and ~(x) are both
near L whenever x is near a but x # g, then f(x) must be near L whenever
% is near a but x 3 a. This is what the sandwich theorem says, and the
meanings of the other theorems are also simple.

The first two of the following problems are designed to promote under-
standing of the epsilon-delta assertion (3.26). We must always remember
that if the epsilon-delta assertion is true, then to each (not all or every)
epsilon that is positive there corresponds a delta that is positive such that
|f(x) — L| < ewhenever zis different from 2 but so near a that |x — a| < &.
It is not asserted that there is a delta which corresponds to every epsilon.

It is asserted that to each epsilon there corresponds a delta. The epsilon
comes first, and the delta follows.

t The meaning of the second of these statements is explained in Section 3.3. The

theorem is, as Appendix 1 says, proved in Chapter 9 after the theory of exponentials and
logarithms has been developed. See Theorem 9.271.
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Problems 3.29

1 It is not enough to be able to read the four assertions which involve f(x)
when x is near a but x # a. We must be able to write them. Try to write
them with the text out of sight and, if unsuccessful, read the text some more and
try again.

2 In terms of epsilons and deltas, write a complete statement giving the
exact meaning of each of the following true statements:

(a) x®is near 27 whenever x is near 3 but x » 3.
(%) sin x is near 0 whenever x is near 0 and x 5 0.

sin x . .
(¢) is near 1 whenever x is near 0 and x # 0.
x

1 —cosx. .
) — — ismear 0 whenever x is near 0 and x # 0.

(¢) x is near 1 whenever x is near 1 and » # 1.

(f)ﬁmmnx:l @) liml—cos:c=0
z—0 X z—0

) lim LS = 5 () lim o = o

() lim (1 + 2)V= = ¢ &) lim E=1 =1
z—0 z—0 X

@) lim 32 (x +Ax) —sinx _ cos %
Az—0 Ax

(m) lim cos (x + Ax) — cos x _ —sin %
Az—0 Ax

Lot — (a4 Dar+ 1 n(n41)
R

Answer to last part: To each € > 0 corresponds a § > O such that

netl — (n4+Da"+1 _ a(n+1) <e
(x — 1) 2

whenever 0 < |x — 1| < 8.

3 The first formula of Theorem 3.285 assures us that if f(x) is near 3 and
g(x) is near 5 when x is near a but x # g, then f(x) + g(») is near 8 whenever x
is near a but x 5 a. Give similar applications of the other two formulas in the
theorem.

4 Tell whether you would like to learn and use new notation by which one
or the other of the “formulas”

@ approx f(x) =L,  approx f(x) =L
€,0<|z—a|<s z~a

is used to abbreviate the epsilon-delta assertion: to each positive number e

there corresponds a positive number & such that f(x) approximates L so closely

that |f(x) — L| < e whenever 0 < |x — 4| < 8. If you have no opinion, think

about the matter and get one. Remark: A person who thinks that this is a

silly question may be thoroughly mistaken. It is not unreasonable to suppose
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that scientists of the future will adopt notation like that in (1) and that their
historians will wonder why on earth people ever concocted tales about moving
numbers and converted a few basic theorems in the theory of approximation
into a mystic “theory of limits” that kept the world agog for several centuries.
In our book, the theory of limits sometimes sounds like a theory of moving
numbers but it is in fact a part of the theory of approximation. Let us get on
with it.

5 Verify the following assertions and replace the question marks by appro-
priate answers. The basic limit theorems may be used.

(2) lim 3x = 15 (6) lim 3x = ?
z—5 2
(¢) lim (3 —2x) =3 (d) lim 4x — 5) =
z—0
(2) lim (y+ D@y +2)=20 62 hm (x+2)2=
41 _21 -2_,
© “mmﬂ =3  lim s =

6 Pay very close attention to the problem of evaluating

g V2T E=V2

im ~Y————* 5,

A0 2
because the process involves some troublesome points. Tell why the last part
of Theorem 3.285 cannot be used here. Look at the problem and observe that
it is difficult or impossible to guess what the answer (if any) is. Observe that
we must put the quotient in a more manageable form before we can find its limit.
The next step is to remember from experiences in algebra or to learn right now
that the numerator and denominator of the quotient should be multiplied by the
“conjugate’ of the numerator. Thus

i V2Xh=V2 _ . VI+h=VIVITh+ V2
0 h ) h VIth+ \/'
- lim 24+hr—2 - lim _ 1
TR0 (VIF E 4 VD) h—»o\/2+h+\/§ 2V7
Tell which of the theorems of this section are used in making the last step. To

be sure that this process is thoroughly understood, make the small notational
adjustments necessary to obtain the formula

o Vetbz—Vx_ 1
220 Ax 2%

Put in at least as many steps as appear in the special case.
7 Supposing that a > 0, show that

(x> 0).

. x
lim —F————— = 2a.
20 Vx+a®—a

8 Show that
m V1 tx—1

=0 x

=0.
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9 Supposing that y = x2and y + Ay = (x + Ax)?, show that

dy _
AI:TO Ax 2%
10 Prove that
lim (x + Ax)? — &8 = 32
Az—0 Ax

11 Prove that, when x > 0,

lim YETA) = V&3
Az—0 Ax 2
12 We have shown that
sin (x + 4) —sinx _ in—!tcosx _ 1 ~cos hsinx
3 h )
and we shall learn that
Hmsin}z___1 liml—coslz=0
=0 k ’ h—0 ’
Use these facts to find that
,}in(‘) sin (x + z) —sinx _ cos x.

13 Supposing that y # 0, prove that

2 .2
. X -
im¥f —¥ -

z—0 %2 + 2}’2 -
14 Supposing that y = 0, prove that

2 . a2
lim 2% = 1.
ov0 22 F y?

15 Prove that if lim f(x) = L, then to each positive number e there corre-
—a

sponds a positive number 8 such that

[flx2) — flx1)] < e

131

whenever 0 < |x; — 4] < 6 and 0 < |x; — 4| < 8. Remark: Proof of this result
depends upon the idea that it two things are near the same place, then the things

must be near each other. The details require careful attention, however.

To

prove the result, let € be a positive number. Then €/2 is a positive number.
Hence there is a positive number & such that |f(¥) — L| < ¢/2 whenever 0 <

| — a] < 8. Therefore,
[fes) = fGel = I[fG) = L] = [fCer) — L}
S Ife) =Ll + 1fte) ~ Ll <5+ 5=

whenever 0 < |x; — 4] < 6 and 0 < [x2 — 4| < 8.
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16 Recall that the signum function having values sgn x (read signum x) is
defined by the formula

sgnx =1 x>0
sgnx =0 (x=0)
sgnx = —1 (x <0).
Show that
lim sgn x
z—0

does not exist. Solution: To prove this without the aid of the result of Problem
15, we let f(x) = sgn x and prove that there is no number L for which the epsilon-
delta assertion is true. To do this we assume (intending to show that the assump-
tion must be false) that there is a number L for which the assertion is true. Let
€ be a number for which 0 < e < 1, and let & be a corresponding positive number
such that |f(x) — L| < € whenever 0 < [x] < 8. If 0 < x < §, then f(x) =1
andhence |l — Lf < e If ~8 <x <O0,thenf(x) = —1andhence|—1 ~ | <
e. Therefore,

2=l+1=1—L4+1+L sl ~Ll+1+I| <2

and hence € > 1. This contradicts the inequality € < 1 and establishes our
result.
17 Show that if f(x) = ||, then
limf(o + h) "‘f(O)
h—0 k
does not exist. Solution: Let g(k) denote the above quotient. When £ > 0,
we find that g(k) = 2/k = 1, and when % < 0, we find that g(k) = —k/k = —1.
The result then follows from the preceding problem.
18 Prove that the first of the assertions

lim x? = 4, lim %2 = 5 (?)
2 z—2

is true and that the second is false.
19 If D is the dizzy dancer function for which

D) =0 (x irrational)
D(x) =1 (x rational),

prove that there is no « for which lim D(x) exists.
r—a

20 Suppose that, in some vast universe, it really is true that each flea has a
smaller flea to bite him. Suppose also that the universe contains at least one
flea. Do these hypotheses imply that there exist fleas having mass less than
1 milligram? Ans.: No. The hypotheses would be satisfied if to each positive
integer n there corresponds a flea whose mass in milligrams is 1 + 1/#, and the

flea of mass 1 4+ 1/ is bitten by the flea of mass 1 + n;-i-l
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3.3 Unilateral limits and asymptotes When we are talking about

the function f for which f(x) = sgn (x — a) and see the graph shown in
Figure 3.31, and in some other cases as well,

we can cheerfully assert that Az (lambda sub P
R) is a number such that f(x) is near Az when-

ever x is near a and x > a. We can feel sure e ®
that we know the meaning of the assertion, but —_—N

we must nevertheless know that the epsilon- Figure 3.31
delta version of the assertion is the following.

To each e > 0 there corresponds a 6 > 0 such that [f(x) — Ag| < €
whenever 2 < x < a + 6. This time the condition x # & does not enter
the assertion to bother our little sister and everything is very simple.
The abbreviated version of the assertion is

(3.32) lim f(x) = Ag.
z—a+t

The new thing in this symbol is the plus sign that follows the a. Perhaps
the best way to read this is “the right-hand limit as x approaches a of
f(x) is Ag,” but it is always awkward to write one thing and say another,
so the reading usually boils down to “the limit as x approaches a plus of
f(x) is Ag.”  In case there is no number for which the assertion is valid,
we say that the right-hand limit does not exist. A similar succession of
ideas leads to the symbol
(3.321) lim f(x) = Az,

r—a—
which says that the left-hand limit as x approaches a of f(x) is Az.

If a function f and a number x¢ are such that the unilateral limits Az
and Az in

(3.33) lim f(x) = Ag, lim f(x) = AL

=20+ T z0—
exist and are different, then the function f is said to have a jump (or an
ordinary discontinuity) at the point xo. The magnitude of the jump is
[\ — Az]- If Az > Az, then f has an upward jump, and if Az < AL, then
f has a downward jump.

Another assertion that turns out to be both interesting and important
is the assertion that a function f and a number L may be such that f(x)
is near L whenever x is large. When making this assertion precise, we do
not use the letters e and § but, instead, use € and some other letter, say
N, that we can easily regard as a “large” number. The assertion means
that to each e > 0 there corresponds a number N such that

(3.34) lf(x) — L] < {(x > N).

By tossing in some surplus verbiage, we can put this in terms that may be
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psychologically satisfying. Whenever a positive number e is selected,
we can find a positive number N so large that f(x) approximates L so

closely that |f(x) — L| < ¢ whenever x is so large that ¥ > N. The
abbreviated version of this assertion is

(3.341) lim f(x) = L.

This is read “the limit as x approaches infinity of eff of ex is ell,” or “the
limit as x becomes infinite of eff of ex is ell.”” This does not mean that
“infinity’’ is a place toward which numbers can gallop. All tales about
infinityt and galloping numbers are completely irrelevant, and there is no
sense in which x really “becomes infinite.” The assertion (3.341) means
that f(x) is near L whenever x is large. We examine an example. Every-
one who has an appreciation of the magnitudes of the numbers 1/2,
1/416,1/7,528,432, and 1/10%° must believe that 1/x is near O whenever
is large, that is,

(3.342) lim 1 0.
x
To prove this, let ¢ > 0. Let N = 1/e. Then the inequality
I—]: — OI <e
x

is valid whenever 1 < ex and hence whenever x > 1/e and hence when-
ever x > N. Thus when a positive number e is given, we are able to find
a number N for which the ¢, N assertion is true. Therefore, (3.342) is a
true assertion. It is equally easy to attach a meaning to the assertion
that f(x) is near L whenever x is negative and has a large absolute value.
The abbreviated version of this assertion is

(3.343) lim f(x) = L.

We say that the limit as x approaches minus infinity of f(x) is L.
There are some important modifications of these ideas that should now
be easily understood. In case f(x) = 1/(x — a) and also in some other

cases, we can cheerfully assert that f(x) is large whenever x is near 2 and
x > a. This assertion is abbreviated to

(3.35) lim f(x) = .

—a+
It means that to each number M there corresponds a § > 0 such that

(3.351) fix) > M (@a<x<a+td),

t For those who are really interested in infinity, a remark appears at the end ot the
problems of this section.
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that is, f(x) exceeds M whenever 2 < x < a + &. The assertion that
f(x) is large whenever x is large is abbreviated to
(3.352) lim f(x) = o.

Z— o

It means that to each number M there corresponds a number N such that
(3.353) fx) > M (x> N).

It is quite appropriate to recognize that ideas akin to those of this sec-
tion sometimes appear in elementary geometry books when information
about lengths of circles is being sought. Let C be a circle having radius %
and diameter 1. We can imagine that, for each integer n = 3, we have
inscribed a regular polygon P, with # sides and have found its length L.
We can assume (or perhaps prove) that there is a number, which we can
call m, such that L, is near = whenever n is large. By this we mean that
to each € > 0 there corresponds an integer N such that |L, — x| < e
whenever n > N. The abbreviated form of the assertion is

(3.354) lim L, = 7.
n—rw

Itis not necessary to try to explain how a polygon (which is something but
cannot do anything) can sprout more sides and approach the circle as the
number of “its’ sides becomes infinite. The number 7 appearing in this
way is the length of circle of diameter 1. We are all familiar with the fact
that the length of a circle having radius  and diameter d is 277, or #d.

The ideas of this section have swarms of applications. In particular.
we can use them to introduce some ideas and terminology of analytic
geometry. We begin by considering the graph of the equation y = f(x),
where f is a given function. If
(3.36) lim f(x) =L or lim f(x) =L,

> = — o

then the line having the equation y = L is called a horizontal asymptote
of the graph. If

(3.361) lim f(x) = o or lim f(x) = —
z—a+ z—a+
or lim f(x) = or lim f(x) = —o,

then the line having the equation ¥ = a is called a vertical asymptote of
the graph. Employing a modification of these ideas, we consider a case
in which 4 and B are numbers such that

(3.37) lim [f(x) — (dx+ B)] =0 or
lim [f(x) — (4dx + B)] = 0.

= -0
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In this case, the line having the equation y = 4x + B is called ap
asymptote of the graph. This asymptote is horizontal if 4 = 0. We
want to be able to apply similar jargon to graphs of equations, such as

o

[

(3.38) =1,

K
~
s

which are not graphs of functions. When we start with an equation of the
form (3.38) and transpose all of the terms to the left side, we obtain an
equation of the form

(3.381) F(xy) = 0.

If f is a function such that (3.381) is true when y = f(x), then each
asymptote of the graph of y = f(x) is also an asymptote of the graph of
(3.381). Problem 7 at the end of this section involves the famous
eqiation (3.38).

Problems 3.39

1 Using epsilons appropriately, give a full statement of the meaning of
each of the following truthful assertions. In case an assertion is so subtle that
we are not yet prepared to prove it and appreciate its consequences, we need not
be disturbed. Scientists can, for example, understand the assertion ‘“there is
helium in the sun’ before they are able to prove the fact and understand the role
of helium in the production of energy radiated by the sun.

@ lim =0 @ lim l=0
z—wo X z— = X

© lim 1= o @ lim 1= —w
z—0+ X z—=0— X

(&) lim {x — VT —1} =0 ¢ lim Vx =
=0 z—0+

(¢) lim tanx = () lim logx = —
/2~ z—0+

sin x

(@) lim logx = « () lim —==0
z— o F ) x

x4 1 . 1\ _
@ i 2 - ® m (1+1) -
(m) lim 1+1)’=e (n) lim 1°8% _
> —o x 0 X

(0) lim xlogx =0
z—0+

(@ lim 2* = »

R—>®
() lim = =0
o

e =tm[1+s+5+5+ -

n—>o

. 1\ _
(») lﬂxlog(l +;‘) =1
() lim = = w

o

@) lim Jd =0, (jal < 1)
R—

+Z

]
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= i —-£ Ef_is e e . —1)\» xin
() cosx = lim [ =5+ 5 —F - + (=D (Zn)!]

N S S R
(@ sinx = lim [« =545 -5+ + (-1 el

smne =t (1) (1-D)(1-5) - (-2)]

lyz
3 xl = i nln 1 —2 3 ..
o PRy )| g ) ey g S e
z) lim x!= =
( ) :—»l—l+
2 Does the statement
approx-l- =
en>N N

abbreviate the statement that to each positive number ¢ there corresponds an
integer N such that |1/n| < € whenever n > N> Ans.: It can, but it does only
if we agree that it does. Remark: Whether the above abbreviation is better than
the abbreviation

is purely a matter of opinion. If a person has the habit of using one notation,
the other must seem to be quite absurd, awkward, and unteachable.

3 Draw a graph of the equation y = x2. Then, supposing that .}/ is a given
number, show how the figure can be used to support the assertion that

lim %2 = .
>

4 One of the assertions

iml=w (), lmd=w(
z—0 X 20X
is true and the other is false. Give a full discussion of this matter. Remark:
Here and elsewhere, displayed assertions followed by question marks may be
false assertions.
5 With the aid of the idea that the numerator and denominator of the first
quotient can be divided by x, show that

2x? =1 ¥ -1

.ox—1 _ . _ . -
@inizi=t o mESior © m Eoos
w3 _1 a2 43
@ lim e —r+3 "2 ) lim 53~ 0
lim —% __ =1 lim —% — = «
6] lim S (& Jim A

6 Show that both coordinate axes are asymptotes of the graph of the equa-
tiony = 1/x.
7 ‘There will come a day when we must learn that the graph of the equation

%y _
2 B
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in which a and b are positive constants, is a hyperbola. Show that if the point
(%, y(x)) lies on the hyperbola and y(x) > 0, then

y(x) = é Va? — at
Show that

2 0] =0

and hence that the line having the equation y = (4/a)x is an asymptote of the
hyperbola. Hini: The formula

. — ,——-xz_ﬁ_x—-\/m:c-{-\/xz—a’
1 x4+ Vat— a?

turns out to be a useful source of information.
8 Find the equations of the asymptotes of the graphs of the equations

x4 2 T =

(a)y=x__1 Ans:x =1,y =1
1\2

® vy = (2 dnsix=12y=1
(c)y=x-|—:-t Ans:x =0,y = x
@ y= (:c:%-’;-lc)2 Ans:x =0
@ xy=x2+9y Ans:x =1,y =1
N a+yr=x+y Ans.: None
@y=Vx+1l-+x Ans.:y =0

9 According to part f of Problem 1, the first of the statements
lim Vx=0(), lim+vz=0(?
0+ z—0

is true. Is the second statement also true?
J 10 Prove that

n—ro0

. 1 2 n\ _ 1
lim (st +5) =3

Remark: This remark is dedicated to unfortunate individuals who never knew
or have forgotten that if

S2a=14+ 2 + 3 + 4 F---4+M@m-1)+n
then

Se=at+@-D+G-D+@—-N+- -+ 2 +1

and addition gives 2S, = n(n + 1), so S, = n(n + 1)/2.
11 Starting with the definition

)] nl=123 -9,
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which is applicable when 7z is a positive integer, show that 1! =1, 2! = 2,
3! =6,4! = 24,5! =120, 6! = 720, and 7! = 5040. Then give a full statement
of the reason or reasons why it is true that, when z is a positive integer,

) 2! = lim 123 - - - 3
1123 - - -2+ 1DG@+2) - (3+n)

=1
& T GFDETD) - GFw

| = nln? n+lan+2 n4z
*) = 1}-l—>n:o E+DE+2)---G@G+n) = n n
5) z! = lim n‘n‘

noe @+ DE+2) - G+na)

Remark: To show that the above manipulations serve a useful purpose, we take
a little mental excursion. A complex number 3 is a number of the form x + 1y,
where x and y are real numbers and 1 is the imaginary unit for which i2 = —1.
While this book neither develops nor uses the algebra and calculus of complex
numbers, we remark that x + 7y is the real number x if ¥y = 0 and that x + ¥
is a real integer if y = 0 and x is a real integer. We are now ready to look at
(5). We have seen that (5) is correct if z is a positive integer and the definition
(1) is applicable. While proof of the fact lies far beyond our present capabilities,
it can be proved that the limit in the right member of (5) exists and is a complex
number whenever z is a complex number which is not a negative integer. More-
over, when 2z is a complex number which is not a negative integer, z! is defined
to be this limit. It follows from the definition that z!is a real number whenever
z is a real number which is not a negative integer. Carl Friedrich Gauss (1777-
1855), who had the habit of knowing how things should be done, made very
effective use of (5). Theindex can always show us where this and other informa-
tion about factorials is concealed.

12 If the preceding problem and remark have been digested, prove that
0! = 1. Remark: Proof of the more esoteric facts that (—3)! = v/rand (3)! =
+/7/2 will not be too difficult when more mathematics of the right kind has been
learned.

13 Observe that 8! = 8(7!). Then, assuming that the limits exist, prove that

lim nlpttl
e @+ 14+1)E4+142)-- @4+14+n)

. n'in?
=“+”£ﬂu+nu+n‘~@+ﬂ'

Finally, use the remark of Problem 11 to prove that
@+ Dl=(+ 1)

when z is not a negative integer.
14 For what pairs of numbers z and % does it make sense to define the binomial
coefficient function by the formula

(k) Iz’(n - Ie)'

Hint: If necessary, read Problem 11. Ans.: When #, k, and # — k are numbers
(real or complex) that are not negative integers.
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15 Try to make friends of the contents of the preceding problems by proving
that

® (B)+(2)-(1)

when n, 2 — 1, and n —  are not negative integers. Remark: As some people
learn while studying algebra, the ordinary binomial coefficients (in which » and
k are integers for which 0 £ ® = n) are the coefficients appearing in the formulas

) (a+5b)° =1

3) (a+b)t=a+b

4) (a + b)? = a? + 2ab + b?

©) (a + b)% = a® + 3a%h + 3ab? 4 b®

and, in general, in the binomial formula

6) (a+ )" = (8) amh® + (3‘) a1 + (’2’) a4 - - -+ (:) 2%,

With the aid of (1), it is easy to fill in the rows of the Pascal triangle

1 4 6 4 1
i 5 10 10 5 1

which displays binomial coefficients. The sum of two consecutive elements of
one row gives the element that lies below the space between them, and more
rows of the Pascal triangle are easily written.

16 We can feel sure that if x > 1, then x® must be large whenever # is large,
but it is nevertheless worthwhile to be able to prove the precise version of the
statement. When x > 1, there is a positive number % such that

1) x =14k
in fact, B = x — 1. Observe that
() =142+ hr2>1+4 2k

3 x=14+3r4+3r2+r>14 3k
and that the binomial formula shows that
(€] »>1+nk

when n = 2. It follows that if M is a given number and we choose a number N
such that N = 2 and N > M/h, then we will have

(5) >14nbk>nh>M

whenever n > N. Therefore,

(6) lim x* = o (x> 1).

n—w
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17 We can feel sure that if |x| < 1, then x" is near 0 whenever = is large.
How can we prove it? Solution: Let € > 0. Suppose first that x = 0. Then
|x"| < € when z > 1. Suppose finally that 0 < |x] < 1. Lety = 1/|x] so that
y > 1. Then the preceding problem shows that

lim y* = o.
n—rw

1f we choose an index N such that y* > 1/e when n > N, then

[«»] = % <e
when n > N. Therefore,
lim x» =0 (] < 1).
n—r o
18 Prove that
. 1,1 1 .. 17 _
lim [F4qtgt ] =1
lim [L4xtat+ - o] = (I« < 1).
n—> o 1—x
Hint: Long division (or factoring) shows that
1 2 1-— xn-l-l
txtatt - dar=g

and we may use the fact that lim x* = 0 when |#] < 1.

n—r o
19 Once again, let the “bracket symbol” [x] denote the “‘greatest integer
in #,” that is, the greatest integer less than or equal to #, so that [8] = 8 and
[15.359] = 15. Show that, for each integer n,

lim [#] = =, lim ] =2 -1
z—n+ z—n—

20 Prove thatif g is a function and £ and B are numbers such that [g(x)| = 4
whenever x = B, then

lim %) = o
o X

and that, if L is a number, then

in (14 52) =1

21 Prove that

Hint: Let 6(x), read “theta of x,” denote the “fractional part” of x so that
0(x) = x — [#] and [x] = x — 6(x).

22 Sketch a graph of the function & for which h(x) = [x]/x when x = 1,
and observe that k(x) really is near 1 whenever x is large.
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23 Sometime we will learn that

M lim 2~ = 0.

Hence there must be an integer N such that

nd 1

@) 7» < 100

when n > N. Some numerical calculations can make us quite sure that (2) is
valid when n > 20. Even though the author considers the problem to be tog
difficult for assignment at this time, it may be worthwhile to seek a way to deter-
mine whether (2) is valid when n» > 20.

24 Prove that if x is a rational number, say /¢, where » and ¢ are integers,
then sin nlrx = O for each sufficiently great integer #n. Prove that if x is an
irrational number, then sin n!mx £ 0 for each integer #. Using these results,
show that

1 — lim sgn sin? nlrx = D(x)
n—
where D is the dizzy dancer function for which D(x) = 1 when x is rational and
D(x) = 0 when x is irrational.
25 Some old analytic geometry books pretend to prove that if # is a positive

integer and Py, Py, - -, P, are polynomials in %, then the line having the
equation x = x; will be an asymptote of the graph of the equation
® Po(x)y® + Pi(x)y" + « -+ + Paoi(®)y + Pa(x) =0

provided Py(x;) = 0. These old books present unclear and unreliable treatments
of matters involving limits and asymptotes, however, and the stated result is
false. Prove that the line having the equation x = 0 is not an asymptote of the
graph of the equation

(2) x? +x%y +1 =0.

Remark: An example which establishes falsity of an assertion is called a counter-
example. Persons who speak German (and many others also) call it a Gegen-
beispiel. The simpler equation x%y? + 1 = 0 serves the present purpose; the
graph of this equation is the empty set.

_ 26 Prove that if fy, fs, fs are continuous at a, if

6] lim y(x) =

z—a+

and if, for some positive number §,

@ L@@ + fs()y(x) + fs(x) =0 (a<x < a+3),

then fi(a) = 0. Hint: Choose a positive number 8; such that 8; < 8 and y(x) >
1 when 2 <x < a+ 8. Then, supposing that @ < x < a + &, divide the
members of (2) by [y(x)]? to obtain

filx) | falx)

) T R~

fl( ) +—= y(x

= 0.
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27 For hundreds of years, people have been interested in the magnitude of
7 (x), the number of primes less than or equal to x, when x is large. About the
year 1900, mathematicians succeeded in proving a remarkable fact that had been
surmised since the time of Euler (1707-1783). It was proved that

™ lim T&) _ g,

F el X

log x

We may know very little about logarithms and may not yet have learned that,
in mathematics above the level of elementary trigonometry, log;o x denotes the
logarithm of x with base 10 and log x denotes the logarithin of x with base .
We may not yet know how to calculate log x when « is a given positive number.
Nevertheless we should be able to tell the meaning of the star formula. Do it.
Remark: Anyone who wishes to make a very modest calculation may use the fact
that log 20 is approximately 3 and may determine 7(20). When working on chalk
boards and scratch pads, many people make effective use of stars and daggers and
other things (instead of numbers) to designate significant formulas. The valuable
idea is illustrated only occasionally in this book.

28 Itis sometimes said that mathematics is a language. Perhaps it would be
more sensible to say that mathematics is a collection of ideas and that mathe-
matics books use language in more or less successful attempts to reveal the ideas.
In any case, language is important and definitions constitute a basic part of this
language. To help us realize this fact, we consider an example involving regular
polygons. A regular polygon is a set in E, consisting of the points on the line
segments PoP1, P1Ps, * * + , Pn_1Pp, PoPo, where the points Po, Py, * - + , Py, Poare
equally spaced on a circle, » being an integer for which » = 3. Under this
definition, a circle is not a regular polygon. We do not have pencils sharp enough
to draw regular polygons having a million sides, but we can nevertheless tolerate
the idea that if we could draw one on an ordinary sheet of paper, then the result
would look like a circle. We cannot, however, tolerate the ancient collection of
words “a circle is a regular polygon having an infinite number of infinitesimally
small sides” as a part of our doctrine of limits. To take a sensible view of this
matter, we can know that there was a time when the best of our scientific ancestors
used fuzzy language and whale-oil lamps but we can also know that they worked
mightily to produce better products.

29 As was stated in Section 1.1, a number x appearing in this book is a real
number unless an explicit statement to the contrary is made. This circum-
stance does not prohibit recognition of the fact that numbers other than real
numbers can appear in mathematics. It is possible, and is sometimes worth-
while, to define and employ a set $* of numbers which contains each real number
x in the set S of real numbers and, in addition, two numbers — ® and «.When
the set S* is employed, each real number x is said to be finite and the numbers
— and o are said to be infinite (not finite). Order relations are introduced
in such a way that —o < « and —» < x < « whenever x is a real number.
While these order relations are simple and attractive, it turns out to be impossible
to formulate a useful collection and algebraic laws (or postulates) in such a way
that @ — o and 0-® are numbers in S*. Persons starting with enthusiasm
for — o and « usually lose most of their fascination when they learn that the
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relations 00 = 1, § = 0, and § = — o are as absurd in the “algebra” of §*
as the symbol § is in the algebra of S. We can be momentarily delighted by the
‘““algebraic law” which says that «© -4 x = « whenever x is a real number, but
general usefulness of the unorthodox “algebra” is greatly impaired by the fact
that the relation y 4+ x = y does not imply that x = 0 because y might be «
and x might be 416. For present purposes, we do not need substantial informa-
tion about these matters, but a little basic information can be very helpful.
There are circumstances in which — e« and « are considered to be numbers, but
there are no circumstances in which — © and e are real numbers to which we
can apply the algebraic rules (or laws or axioms or postulates) that apply to
real numbers. Whether or not we consider —® and « to be numbers, it is
worthwhile to recognize that some of the most convenient terminologies and
notations of modern mathematics are relics of times when the ‘“‘doctrine of limits”
was based upon visions of a number x galloping toward infinity and becoming
so infinitely great (but still not ) that its reciprocal becomes infinitesimally
small (but still not 0). These infinitesimals of mathematics, like the aether and
phlogiston of physics and chemistry, can now be regarded as mystic absurdities,
but they were hardy concepts having tremendous impacts upon present as well
as past science and philosophy. We can conclude these remarks with another
bit of history. In the good old days when mathematical terminology was incredi.
bly erratic, sane physicists got the habit of saying that a number is “finite” when
they wished to emphasize their idea that it is neither zero nor infinite nor infi-
nitely small nor infinitely large. It will be interesting to see how long physicists
continue to make modern mathematicians shudder by using the word ““finite”
to mean “good honest nonzero noninfinite number, with no nonsense.” The
physicists have good intentions, but mathematicians consider zero to be a finite
number, with no nonsense. )

3.4 Continuity This section contains information about functions
and limits that we will need. Our first task is to obtain a full under-
standing of the following definition.

Definition 3.41 A function f is continuous at xo (or at the point with
coordinate xo, or at the point xo) if

Lim f(x) = f(xo).

The assertion that f is continuous at x, is nothing more nor less than the

assertion that f(x) is near f(x,) whenever x is near xo. It means that to
each € > 0 there corresponds a § > 0 such that

(3.42) [f(x) — flxo)] <€ (lx — x| < 9).

The definition implies that f cannot be continuous at x, unless f(xo)
exists, that is, unless %o belongs to the domain of f. In case f(xo) exists,
the first inequality in (3.42) automatically holds when x = xo and we do
not need to bother with the restriction x ¢ ¥ that appears in the defini-
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tion of limit. With a small change in notation, we can see that f is
continuous at x if and only if

(3.421) lim f(x + Ax) = f(x)
Az—0

or

(3.422) lim [f(x + Ax) = f(z)] = 0.

Figure 3.43 shows, for the case in which f(x) = x? and Ax > 0, the
geometric interpretations that can be given to the numbers appearing in

these formulas.
’ /
. —.T——_-’——_—'r

By=f(x+A4%) - ()

———

f(x+Ax)
)

(0] x x+bx x
Figure 3.43

Definition 3.44 A function f is said to have right-hand continuity at a
if the first of the assertions

(3.441) Jim f@) = fla),  lim f(x) = f(®)

is valid and to have left-hand continuity at b if the second is valid.
Supposing that a < b, we can let f; be the function having the graph in
Figure 3.442 so that fi(x) = 0 when x < 4, fi(x) = 1 whena S x £ b,
and fi(x) = 0 when x > b. This function is continuous at each x for
which x 3 a and x  b. The function has right-hand continuity at a

a b x a b F
Figure 3.442 Figure 3.443

and has left-hand continuity at . It does not have left-hand con-
tinuity at 4, and it does not have right-hand continuity at 5. Let f,
be the function having the graph in Figure 3.443 so that fa(x) = 0 when
x < a, fo(x) =1 when a <x <b, and fo(x) =0 when x 2 b. This
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function, like fi, is continuous except when x = a and x = 4. However,
fs has left-hand continuity at @ and right-hand continuity{ at 4.

Definition 3.45 A function f is continuous over an interval a < x <}
if it is comtinuous at each xo for which a < %o < b and, in addztwn, has
right-hand continuity at a and left-hand continuity at b.

The definitions of this section are designed to be useful in discussions of
examples of functions, and we begin by looking at examples of functions.
Let g be the function, defined for x 5% 0, for which

(3.451) glx) = % ( 7 0).

This function is continuous at each xo # 0 because, when xo #% 0, our
theorems on limits imply that

1 1 1
(3.452) zl\l_'xgg(x) = hm n o Tz == g(x0)-
=T

However, g cannot be continuous at 0, because g(0) is undefined and there
is no possibility of having lim g(x) = g(0). We say that g is discon-
z—0

tinuous at 0. Now let 2 be the function defined over —® < x < ©
(this means merely that the domain of % is the entire set of numbers) by

k(0) = 0 and

(3.453) h(x) =

X

(x 5 0).

This function, like g, is continuous at each xo 3 0, but this time £(0)
exists and there is no possibility of having lim k(x) = k(0), because
z—0

lim h(x) does not exist. Let w (omega) be the peculiar function for
0

which w(0) =1 and w(x) =0 when x # 0. For this function both
(0) and lim «(x) exist, but the function is discontinuous at 0 because
z—0

(3.454) lim w(x) = 0 5 1 = w(0).

z—0

t It is to be expected that some readers, particularly those more interested in applied
mathematics than in pure mathematics, may feel that matters now being considered are
much too theoretical to have practical interest. Some people know, and others can learn,
that when a battery has its terminals connected to appropriate electrical hardware, it almost
instantly produces an electromotive force (the kind of a force that pushes or pulls electrons
around) which we may, for present purposes, suppose to have the constant value 1. When
the battery is not connected, the electromotive force produced by it is 0. Thus, batteries
which are connected over some time intervals, and disconnected over other time intervals,
produce electromotive forces that are, as functions of time, very closely approximated
by step functions such as those we have been considering. The discontinuous functions
are introduced to simplify problems, not to complicate them. This is one of the reasons
why persons interested in applications of science must recognize existence of discontinuous
functions.
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The graphs of the signum and Heaviside functions shown in Figures 3.191
and 3.192 should indicate that these functions are continuous every-
where except at x = 0. One who has seen numerous examples of func-
tions and their graphs should realize that he can enter the construction
business to produce more examples. He can start with a clean coordinate
system and, as in Figures 3.46 and 3.47, mark points £x;, £, 3, * *

y

y=aq(x)

~ h

Figure 3.46

on the x axis and then sketch a part of a graph which oscillates through
these points in any way he likes. Provided only that the graph contains
no two different points having the same x coordinate, the graph will be
the graph of a function. In Figure 3.46 the graph is drawn tangent over
and over again to the lines having equations y =1 and y = —1. In
Figure 3.47 the graph is drawn tangent over and over again to the

y

¥=qs(%)

//

Figure 3.47

parabolas having the equations y = x? and y = —x% It can be shown
that the graphs of the functions defined by ¢1(x) = sin(1/x) when x # 0
and ¢gz(x) = x?sin(1/x) when x % 0 and ¢»(0) = 0look very much like the
graphs in Figures 3.46 and 3.47, but we need not worry about this matter
now. It should be clear from Figure 3.46 that ¢; cannot be continuous
at x = 0 because lin}) q1(x) does not exist. For the function g; the story

is different. Since

(3.471) —22 £ gox) £ &%,
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it follows from the sandwich (or flyswatter) theorem that
(3.472) lim g2(x) = 0 = ¢:(0),
z—0

so ¢» must be continuoust at x = 0.

It is easy to prove fundamental facts about functions formed by com-
bining continuous functions in various ways. With the aid of Theorem
3.285 on limits, we see that if A(x) = f(x) 4 g(x) over an interval con-
taining xo, and if f and g are continuous at X, then

lim A(x) = lim f(x) + lim g(x) = f(xo) + g(xo) = A(xo).

—rZo z—Zo z—>Zo
This shows that the sum of two continuous functions is continuous where-
ever the terms being added are both continuous. Very similar argu-
ments show that the product of two continuous functions is continuous
wherever the factors are continuous and that the quotient of two continuous
functions is continuous whenever the numerator and denominator are

continuous and the denominator is not zero.

y We should now see that the function f, which

S is defined over the interval —1 < x < 1 and

o \ which has the graph shown in Figure 3.48, is
continuous over the interval 0 £ x < 1; it is

1 0 1 % continuous at each x for which 0 < x < 1,it
Figure 3.48 has right-hand continuity at 0, and it has left-

hand continuity at 1. As a bonus for knowing
about limits, unilateral limits, and continuity, we find that we can easily
understand and remember some fundamental facts that are frequently
used in applied as well as in pure mathematics. A function f has a
limit as x approaches a if and only if the two unilateral (right and left)
limits exist and are equal. The function is continuous at & if and only
if the two unilateral limits exist and are equal to f(a).

Problems 3.49

1 'The statement that
S5x% 4+ 2x2 — 4x 4+ 16

is continuous is an abbreviation of the statement that the polynomial function
P having values P(x) defined by the formula

P(x) = 5x3 4 2x* — 4x + 16

t It has sometimes been thought to be meaningful, and perhaps even true or helpful or
both, to say that a function f is continuous if and only if “it is possible to draw the graph of
f without lifting the pencil from the paper.” Enthusiasm for this statement must be chilled
when we realize that a continuous function may have an infinite set of oscillations in 2

finite interval and that feeble mortals never succeed in drawing more than a finite set of
them,
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is continuous. Prove the statement by filling in the intermediate steps in the

formula
lim P(x) = - - - = P(a)
—a

and tell which theorems on limits are used in the process. Remark: The same
procedure shows that each polynomial is continuous.
2 Letting
=D -3)
00 = = —o

show that Q is continuous at each x except 2 and 4.

3 Prove that the quotient of two functions is continuous wherever both
functions are continuous and the denominator is not zero. Remark: We recall
that the quotient of two polynomials is sometimes called a rational function.
Our results show that a rational function is continuous wherever the denominator
is not zero.

4 Determine the points of discontinuity of the functions fi, etcetera, for
which

(@ i) = T ®) fo2) = T2
O 56 = 7= @ 1) = e
1
() fs*) = 7375, =3 () folx) = ;H-;_—acﬂ

5 Does the assertion
approx  f(x) = f(a)
&lz—al<s
abbreviate the assertion that to each positive number ¢ there corresponds a posi-
tive number 8 such that [f(x) — f(a)| < ¢ whenever |x —a] < §2 dns.: It
can, but it does only if we agree that it does.
6 Taxi fare is 50 cents plus 10 cents for each quarter mile or fraction
thereof. Letting f(x) denote the fare for a ride of x miles, sketch a graph of f
and tell where f is discontinuous.

7 Assume (as is not quite true) that it takes 0.5 calorie of m7
heat to raise the temperature of 1 gram of ice 1 degree centigrade, 100
that it takes 80 calories to melt the ice at 0°C, and that it takes o0—
1.0 calorie to raise the temperature of 1 gram of water one degree 60—
centigrade. Supposing that —40 < x < 20, let Q(x) be the :-

number of calories of heat required to raise one gram of Hz0
from temperature —40°C to x°C. Sketch a graph of Q. Ans.. —Z 2%
Figure 3.491.

8 The magnitude of the gravitational force which the earth
exerts upon a particle is called its weight /. Suppose (as would
be true in the mechanics of Newton if the earth were a homogeneous spherical
ball) that there exist constants &; and k; such that

Figure 3.491

W = b 0 <x<R
ke (x = R),
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where x is the distance from the center of the earth to the particle and R is the
radius of the earth. Supposing that # is a continuous function of x and that
W = 100 when x = R, calculate %; and k. and sketch a graph of # versus x.

9 Prove that if f is continuous at xo, then so also is the function g having
values defined by g(x) = |f(x)|-

10 It is never too soon to start becoming acquainted with the idea that if,
during some time interval ¢; < ¢ < ¢, a bumblebee or molecule or rocket buzzes
around, then at each time ¢ in the interval it is surely someplace and that if we
let fi(2), fa(t), fs(¢) denote its x, y, z coordinates at time ¢, then fi, fs, f3 are con-
tinuous functions of t. Since wholesome comprehension of mathematics is salu-
brious, we recognize that we do not quite know how to prove that bumblebees
never fly out of our E; for a minute or two. Moreover, we do not know how to
devise a mathematical proof that a bumblebee cannot gather honey all morning
in Pennsylvania, be in Chicago at noon, and hunt clover in Los Angeles all after-
noon. The best we can do is make the physical assumption that fi, fs, f; are
continuous and know what the assumption means. What does the assumption
mean? Ans.:Ift; <t <t then

lim fi(t + Af) = fu(2)
At—0

when £ = 1, when £ = 2, and when 2 = 3.

11 Abandoning some of the notation of the preceding problem, we suppose
that x, y, z are given functions that are continuous
over some interval in which ¢ is supposed to lie.
Let P(z) denote the point in E3 having coordinates
%, ¥, % for which x = x(2), y = y(¢), and z = 2(s).
While the fact will be considered later with more
details, we can pause to learn that the ordered set
of points P(t), ordered so that P(¢#') precedes P(¢'")
Figure 3.492 when ¢/ < ¢”, is called a curpe C. The point P(f)

is then said to move along or traverse the curve C as
increases.  Figure 3.492 may be helpful. For each ¢, let r(z) be the vector run-
ning from the origin O to P(f). This determines a vector function t for which

M) (1) = x()i + y(1)j + z(1)k.

Conversely, if r is a given vector function, then it (and the given coordinate
system) determines its scalar components. From (1) and

@) r(t + A1) = x(t + A5)i + y(t + AD)j + z(t + Ak

we obtain

() @+ A1) —r() = [x(¢ + A1) — 2@l + [yt + A) — ()]
+ [2(2 + Ar) — 2()]k

and

B @+ A) — 1@ = [=¢ + A) — 2()]* + [yt + &) — ()]
+ [3(t + Af) — 2())[?]%.
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As is easy to guess, the vector function r is said to be continuous at ¢ if

5 lim [r(z + At) — =0,
3) A;gol (t 4+ A1) — r ()]
and we write
(6) limr(t) =w
t—to

if w is a vector for which

Q) tlurlx |r@) — w] = 0.

It is a consequence of (4) that a vector function is continuous if and only if its
scalar components are continuous.
12 Using ideas from the preceding problem, let

rt) = x)i+ y()j + 2k
w=oai+ bj+ ck

and prove that lim r(¢) = w if and only if
t—to

lim x(¢) = q, lim y(z) = b, lim z(¢) = c.
t—to t—to t—o
Hint: Write and use a formula for |r(f) — w|.

I3 Once again, let the symbol [g] denote the greatest integer which is less
than or equal to g. Let f be the function for which

9 =[]

when x > 0. Draw the graph of f and tell where f is discontinuous.
14 Using the “bracket notation” of the preceding problem, determine whether

iz <[]
im x| -

z—0+4 x
exists.

I5 Letting D be our old friend, the dizzy dancer function, for which

D(x) =0 (x irrational)
D(x) =1 (x rational),

show that there is no @ for which

lim D(x) = D(a)

and hence that this function is everywhere discontinuous.

16 A potential new friend g is defined over the closed interval 0 £ x < 1 in
an interesting way. If x is irrational, then g(x) = 0. If xis O, then g(x) = 1,
and if ¥ = 1, then g(x) = 1. If xis a rational number for which 0 < » < 1 and
if x = m/n, where m and n are positive integers having no common positive
integer factor exceeding 1, then g(x) = 1/n2. Thus @ =53 =% ¢ =3,
€D =%:dD =% sd =1 g® = %, etcetera.  Sketch a figure indicating the



152 Functions, limits, derivatives

nature of the graph of g. Show that g is discontinuous at each x for which x is
rational and that g is continuous at each x for which x is irrational. Hinz: If ¢is
a given positive number, then the set of numbers x for which g(x) > ¢ contains
only a finite number of elements. This fact is useful. Remark: While interest
in the matter should be postponed, this is an example of a bounded function
having a countably infinite set of discontinuities. \loreover, each subinterval
of the interval 0 < x < 1 contains an infinite set of these discontinuities, but the
set of discontinuities has Lebesgue measure zero. The function g is the famous
corn-popper function.

17 Some people know very much about the function F for which F(7) is the
number of lattice points (points having integer coordinates) lying inside and on
the circle of radius r having its center at the origin. Give at least a little precise
information about F.

18 Give an example of a function f such that 0 £ f(x) = 1 when0 = x <1
and such that f is continuous at each point of the interval 0 = x < 1 except at
L3 Le -

19 Give an example of a function which (i) is defined over the closed interval
0 = x = 1, (i) is continuous over the open interval 0 < x < 1, and (iii) is not
continuous over the closed interval 0 £ x = 1.

20 Show that if xy, 3, x; and 4, B, C, D, E are constants for which x; < x4 <
x3and C %0, D0, E 0, and if

f(x) = Ax + B + Clx — x| + Djx — x| + E|x — x4,

then f is continuous and the graph of f is a broken line consisting of line segments
joined at vertices whose x coordinates are x;, X2, x3.

21 Let
1 fx) = —x (x =0)
fx) == O=x=1
fx) =2 —x 1=x=52)
fx) =0 (x 2 2),

so that the graph of fis a broken line having corners at the points (0,0), (1,1), and
(2,0). Determine five constants 4, B, C, D, E such that

@) f(x) = Ax + B + Cla| + Dlx — 1| + Ejx — 2|.

Hint: For each of the four intervals x 0,0 S ¥ <1, 1 Sx <2, and x = 2,
replace the left member of (2) by the appropriate expression and replace the right
member of (2) by the appropriate expression not involving absolute-value signs.

Ans.:
flx) = —3% + || — |x — 1} + &|x — 2|

3.5 Difference quotients and derivatives Let f be defined over an
interval @ £ x £ b and let x be a number for which ¢ < x < 5. Let

Ax be a number, which may be positive or negative but not 0, for which
a = x+ Ax £b. We may then set

(3.51) y=f@&), v+ 4y =flx+ o),
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subtract to obtain
Ay = f(x + Ax) — f(x),
and then divide by Ax to obtain

(3.52) % _fa+ AAxi — f®),

This quotient, which is clearly a quotient of differences that are calculated
in a special way, is called a difference quotient. Difference quotients have
already appeared in our problems, and we shall see later that they have
important interpretations. Leaving the hosts of applications to be par-
tially revealed later in this textbook, and to be continually revealed to
those who pursue further studies in the sciences (including mathematics),
we now come to one of the two most important ideas in the calculus. If
the difference quotient in (3.52) has a limit as Ax approaches zero, then
f is said to be differentiable at x and the limit is called the derizative of f
at x. In case the limit fails to exist, the function is said to be nondiffer-
entiable at x and we say that the derivative of f at x does not exist.
There are two very different and very useful notations for derivatives.
The first, appearing in the formula

(3.53) Fx) = lim 2 = fjp [T A%) — f(x)
ar—0 Ax

Az—0 Ax

is usually read “eff prime of ex,” but it can be read ‘“‘eff prime at 2" or
“‘the derivative of f at x.”” This “prime notation” is called the Newton
(1642-1727) notation.t The second notation, appearing in the formula

(3:54) B i Y i S+ AY) — )

dx  z-0A%  azm0 Ax

is read “dee y dee x” or “the derivative of y with respect to ¥’ and was
originated by Leibniz} (1646-1716). There will be times in the future
when we will consider dy/dx to be the quotient of the two numbers dy
and dx. Meanwhile, the whole symbol dy/dx is to be regarded as a
single symbol, just as the symbol H represents a single letter of the alpha-
bet and not 11 divided by 11. A longer and perhaps dismal discussion of
this terminology and notation appears in a remark at the end of the prob-
lems of this section; congratulations can be bestowed upon readers wise
enough to know that the discussion is semisuperfluous.

According to an old and honorable tradition, the definition of dy/dx and

t The original Newton notation was the “dot notation” or the “flyspeck notation”
which employed f instead of f/, but replacing the dot by the prime is a clerical modification
that preserves the original idea of Newton.

I Leibniz, like Newton, published his scientific works in Latin. The Latin spelling
“Leibnitz” is sometimes seen and sometimes helps people to pronounce the name correctly.
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the manner in which it is applied can be (or should be) remembered with
the aid of the famous “four-step rule.” We may not always get 4 when
we count the steps, but the rule is the four-step rule anyway.

Four-step rule 3.55

Definition Application
y = fx) y =«
y + Ay = f(x + Ax) y+ Ay = (x + Ax)? = 22 + 2x Ax + Ax?

Ay = f(x + Ax) — f(x) Ay = 2x Ax + Ax?
Ay _ flx + Ax) — f(x) Ay _
Ax Ax Ax 2% + Ax
dy .. Ay dy _
d_x - _;l:inozz' dx = 2%

The steps are as follows: select (or ““fix””) an x in the domain of £, write
y = f(x), introduce Ax, write y + Ay = f(x + Ax), subtract to get Ay,
divide by Ax to get Ay/Ax, and, finally, find the limit as Ax — 0 to obtain
dy/dx. Whether we consciously use the four-step rule or not, we all
need experience in the art of calculating derivatives by finding limits of
difference quotients, and problems at the end of this section provide
some of it. Meanwhile, we gain experience by proving the following
formulas which can be and must be remembered.

Theorem 3.56 If u and v are differentiable functions of x and if ¢
and n are constants, then

(3.561) Lwrn =2y s

(3.562) Lou=clt

(3.563) £ r =

(3.564) L un = i B2

(3.565) L= u® g2
o

(3.566) fu_ & &

provided that v % 0 in (3.566) and that in (3.563) and (3.564) we have
x # 0 and u # 0 when n is a negative integer and (except in some special
cases) x > 0 and u > 0 when n is not an integer.

The first three of these formulas enable us to obtain results like

%(x‘—3x’+5x’—7x+6)=4x‘—-9x’+10x——7
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as rapidly as we can write. Thus scientists differentiate polynomials with
gusto. Using (3.563) with 2 = —% gives

41 _d 1

when x# > 0, and using it with n = § gives

dix xVx = dix % = %x”
when x > 0.

The last formula (3.566) can be remembered for years with the aid of a
little trick. We remember that the derivative of a quotient is a bigger
and better one and begin by drawing a long line to separate the numerator
from the denominator. We continue by putting »? in the denominator
and then, while the o is in mind, begin the numerator by writing ». This
starts things right, and the rest can be remembered.

In our proof of the theorem, we fix (or select) an x in the domain of the
functions and put z = u(x), v = o(x), u 4+ Au = u(x + Ax),

v + Ao = o(x + Ax)

so that
du _ . Bu_ u(x + Ax) — u(x)
dx_lﬂoﬂgmo Ax
dy _ .. Ao _ .. o(x + Ax) — v(x)
&= A ay = lim, Ax ]

We prove (3.561) and (3.562) together by starting with
y = cu + apo,

where ¢ and ¢, are constants; we can put ¢ = ¢; = 1 to get (3.561) and we
can take ¢; = 0 to get (3.562). Then

y 4+ Ay = c(u + Au) + c1(v + Av)

and subtraction gives
Ay = ¢ Au 4+ ¢1 Ao,
Hence
Ay Au Ao
Ax " ta Ax

The hypothesis of Theorem 3.56 implies

lim 2% _ 8 g A0 L
A;.r_!.lo Ax  dx Ars0 Ax  dx
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Therefore, an application of a theorem on limits gives

dy  du dv
Fraai M

As has been remarked, putting ¢ = ¢; = 1 gives (3.561) and putting
c1 = 0 gives (3.562).
Postponing (3.563) and (3.564), we start proving the product formula
(3.565) by setting y = uo. Then
y + Ay = (u + Au)(2 + Av)
= uv + u Av + 9 Au + Au Ay,

5o Ay = u Av + 9 Au + Au Av. Dividing by Ax and inserting an extra
factor Ax in the numerator and denominator of the last term give

by _ A0 Au dudo
(3.57) E—qu+vAx+AxAx .

Taking limits as Ax approaches zero gives

dy _dv du | du do
== 't ataa®

The last term is zero, and this proves (3.565). Proof of the guotient
formula (3.566) is very similar, but the formula is important and we shall
prove it. Lety = u/v. Then

u + Au
y+ Ay = " T Av
Ay=u+Au__1f=vAu—uAv
9+ Ao /) 22 + 9 Ao
pAu_ ho
(3.571) dy _ _Ax  Ax
Ax v’+v-A—-Ax

‘Taking limits as Ax approaches zero gives

du do
&y "dx “x
o
and this proves (3.566).
The power formulas (3.563) and (3.564) remain to be proved, and we
deal with (3.563) first. Lety = x* In casen =0, we havey = 1 and
must prove that dy/dx = 0. This is true because if y = 1 for each x,

then Ay = 0, so Ay/Ax = 0 and hence dy/dx = 0. In case n = 1, we
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have y = x and must prove that

dx
Zl_i:l'

This is true because if y = x,then Ay = Ax,s0 Ay/Ax = 1and dy/dx = 1.
The case m = 2 is covered in the application under the four-step rule
headline. There are several somewhat different ways to obtain (3.563)
for greater integer values of n. Perhaps the most informative method
consists of using the product formula (3.565) to obtain

d urusus _ d(urus)us _ d uyu, n d ug
dx dx T Ty T W
duy dug

du,
dx ¥ 10 s T ke
and then putting %3 = w2 = u; = x to obtain

(3.572) Z = nant

whenn = 3. Another application of the same idea, in which the product
uiueusus is written as the product (uiuousz)us of two factors, gives

du1u2u3u4 dul d‘uz du3 du;
———— = —— Uol3U4s + Ul —— UzUs + UsUs —— u UUUZ ——)
dx ax " B a4 T w0 s T

and putting u; = %y = u3 = uy = x gives the formula (3.572) for the
case in which # = 4. The same procedure gives the result for greater
integers. Perhaps the simplest proof can be based upon the fact that if
(3.572) holds for a given n, then use of the product rule gives

n+1
dx = 4 xx® = xnxv! 4 x1 = (n 4 D™

dx dx
Since the formula is valid when » = 0, mathematical induction shows that
itis valid when #n is a nonnegative integer. In case nis a negative integer
(so that —= is a positive integer) and x 7 0, the result is proved by the
calculation

n

dx

&

1 x 0 — 1-(—n)x—n!
P x‘(z" ) =

LS

which involves the formula for the derivative of a quotient. In case z is
a constant which is not an integer, (3.563) is still valid at least when
x> 0. Proof of this appears in Theorem 9.27, and proof of (3.564) then
follows from the chain rule of Theorem 3.65.
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Very much more about derivatives remains to be learned, and we give
a modest but important contribution to theory by proving the following
theorem.

Theorem 3.58 If f'(x) exists, then f must be continuous at x.

Our hypothesis and a theorem on limits enable us to write

Jim [f(x + A%) - f()] = lim [f<x FCESCIM

=[lim f(x+Ax) _f(x)

Az—0 Ax

] Llim &4 = f(:10 =0,
Therefore,
lim S+ 42) = 1),

and it follows from this that f is continuous at x.

The attainment of a technique for differentiating accurately and
efficiently is of prime importance in the calculus. When we are called
upon to evaluate the left member of the equation

d x _(14+a2)(1)—xQ2x) 1-—x°
dx 1+ 22 1 F «7)? T aFH?

we should say to ourselves “the derivative with respect to x of « (mean-
ing x) over v (meaning 1 + x2) is equal to the quotient with denominator
o2 [write (1 + x?)?] and numerator o [write (1 + x?)] times du/dx [write 1]
minus u [write x] times dv/dx [write 2x].”” We must learn to talk to our-
selves in such a way that we can quickly produce such results as

il+xz=x(2x)—(l+x2)=x2—1

dx x x? x?

d x _ (1—a)() —x(=2%) 1+«
dax1 =~ A = x%)? T =)
d 1 0-—102%) _ 2%

a1+ (AF2)° ~ dF2)°

With the formula for the derivative of a product in mind, we obtain

L et D+ 2+ 1) = (2 — 2+ D2x+2)
+ (x24+2x+1)2x — 1)

by saying “the derivative with respect to # of » (meaning 2 — x + 1)
times v (meaning x? + 2x + 1) is equal to « (write 2 — x + 1) times

dv/dx (write 2x + 2) plus o (write x? 4 2% + 1) times du/dx (write
2x ~ 1)
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Problems 3.59

1 Give the definition of the derivative of f at x. Ans.: (3.53) or (3.54).
2 Find dy/dx from the definition of derivatives and then check the answers
by use of formulas for differentiation when

(@) y= V= (b)y=\—}_;

@y =35 @y =12
@y = )y =12
© =13 )y = 1=

3 Sometimes we are given a formula for f(x) and are required to find the
derivative of f at a, where 2 is a number given in decimal form. In some cases
it is easiest to find f’(a) directly from the formula

f(@) = lim Ha+ 4x) = f(a) #(@) = lim flat b) = f(a) "})L —fa),

or
Ax

In some cases it is easiest to work out a formula for f'(x) and put x = a in the
result. Work the problem both ways when

(@) flx) = x* — 3x + 1, a = 416
() fx) = x* —3x+1,a=0

© f=) =
@ f&) = 72w a =0

,a=2

‘/4 Formulas for derivatives are often wonderful, but there are times when it
is best to use the definition of derivatives to obtain f’(a). Letting g(x) = ||,
find g’(0) or show that g’(0) does not exist. Ans.:

10) = lim £ —8©) _ i KA —0_
R

§ Supposing that

y=14x+x+ 2%+ x4
= 5 4 4x — 3x% + 5% + x4,

tell what facts or formulas or both enable us to write

-Z—y=1+2x+3x2+4x3

dz__ s
T = 4 — 6x + 15x2 + 4x3.
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6 Calculate
£t 4 30 = 2)

by use of the product formula. Then multiply the given factors and differentiate
the result. Make the answers agree. Hint: Look at (x% + 3)(# — 2) and read
u (meaning x? 4 3) times o (meaning x? — 2). Then apply the formula for the
derivative of uo.

7 This is another lesson on use of formulas. It is expected that persons
studying calculus are familiar with the “quadratic formula.” When we want to
find the values of x for which

22+ 3x—4=0,

we say “ax? + bx + ¢ = 0” and, without writing anything, realize that we put

a=2and b =3 and ¢ = —4 in the memorized formula
—b + Vb2 —4ac
x =
2a

Then we write only

—3+V9F32
— &

X =

When we use differentiation formulas, we should be equally efficient. When we
must differentiate

1) y = (32* + 1)5,

we should realize that we must differentiate something of the form »™ (not x"),
where « is a function of . The formula

d _, du
2) Zp Ut = IE

should come into our minds but should not be written. We should look at (1)
and read “‘y equals » to the nth power” and realize without writing anything
that « = 32241 and n = 5. We should then say ‘“dy/dx equals n (write 5)
u (write 3x% + 1) to the power n — 1 (write 4) times du/dx (write 6x).”” Thus
we look at (1) and, after a little chat with ourselves, write

@) D o 53t + 16

= 30x(3x% 4+ 1)4.

Minor modifications of this technique can be tolerated, but speed and accuracy
must be developed. Write the formula (1) and practice differentiating it as a
golfer practices putting; perfection is required.

8 Look at the calculations

y = (1 — a9k, z

d: 1 d;
L= U—en-, F

]

1+ a9
—(1 4 x?)™2(2x)

until you see where they come from and understand them thoroughly. Nothing
is to be written.
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9 Calculate
d 1l —x d
dx 1+ %% dx (1 =1 + &)

by the quotient formula and by the product formula. Make the results agree.
10 It can be observed that the sum of the first two of the expressions
x? 1
] y l 2
Varl Verr VT
is the third. Find the derivatives of these things and check the results by show-

ing that the sum of the first two is the third.
11 The formulas

=-sin x = cos x. = cos x = — sin
dx ’ dx x

will be proved in Section 8.1. Copy them on a nice clean piece of paper, and
take a casual look at the calculations

d d sinx cos?x + sin?x 1
——tan x = - = 3 =—5— = sec?x
dx dx cos x cos? x cos? x
. d cos x — sin? x — cos? x -1 .
—cotx = 5= = = - = — = — csc?x
dx dx sin x sin? x sin? x
d d 1 sin
=2 -1 — —2 . = =
- Sec x = cos x = -—(cos x — sin x) = —— = sec x tan x
dx dx ( ) ( )7 ) COoS X COS X
d —1 cosx
=2 (s -1 — —2 -
—CcsC x = sin x)~! = —(sin x)"2(cos ¥) = —— —— = — CsC x cot x.
dx dx ( ) (sin 2)7( ) sin x sin x

Then, with the calculations out of sight, try to reproduce them.
12 Show that
dax+b _ ad— b
decx +d  (cx + d)?

13 Supposing that # is a positive integer and x 7 1, show how the identity

xntl — 1

¢Y) ltaxtattad+ - +am=—"7

can be used to obtain the less elementary identity

ng™tl — (n 4+ x4+ 1
(x — 1)

Multiply by x and differentiate again to obtain another identity.

14 Calculate the coordinates of the points on the graph of y = f(x) at which
f'(x) = 0 when

@) 14+ 2x+3x2+ - - +nar! =

(@) fx) = #® — 3x Ans.: (—1,2) and (1,—2)
(®) flx) = %% — 3x + 2 Ans.: (—1,4) and (1,0)
() fx) = 2« + 3 Ans.: None
@ f&) = 77 + poct Ans.z (0,0)
(&) flx) = ns.: (—1,—%) and (1,3)

1 + 2
N f(x) = ax>+ bx + ¢ Ans.: (—b/2a. — (b2 — 4ac) /42
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15 A long time ago it was discovered that if P is a polynomial, then between
each pair of values of x for which P(x) = O there must be at least one value of x
for which P’(x) = 0. For the special case in which

Px) = (x — I)(x — 2)(x — 3),

find the values of x for which P(x) = 0 and the values of x for which P'(x) = 0,
and verify the statement about the zeros of P and P’. Remark: This matter will
become quite unmysterious when we learn about the Rolle theorem.

16 In connection with the definition of the derivative of a function f at a
point x, we recognized the possibility that this derivative may fail to exist.
To clarify this matter, we should know about the simplest example of a con-
tinuous function f which is not everywhere differentiable. To investigate such
matters, we should know about the right-hand derivative f+(x) and the left-hand
derivative f__(x) that are defined by the formulas

) = tim L EAD =6

F = i LG 8D =)
20+ Ax Az

0— Ax

when these limits exist. It is easy to guess and almost as easy to prove that f is
differentiable at x if and only if

fi(x) = fL(x) = f'(x).

For the simplest example in which f(x) = |x|, show that f4 (0) = 1 and fL0)= -1
and hence that f(0) does not exist. It is not so easy to construct a continuous
function which is everywhere nondifferentiable, but Weierstrass (1815-1897)
started this construction business a long time ago.

17 Construct and look at a graph similar to those in Figures 3.46 and 3.47
but having the loops tangent to the lines having equations y = x and y = —x.
Letting this be the graph of f and, letting f(0) = 0, discuss continuity of f at 0
and discuss £4.(0), f-(0), and 7'(0).

18 For reasons that may be partially explained by the remark at the end of
this set of problems, we give, in terms of the notation of Newton, a complete
statement and proof of the part of Theorem 3.56 that involves the product
formula (3.565).

(1) Theorem If g and k are functions differentiable at x and if f is the func-
tion for which

@ fx) = g(x)h(x)
when x belongs to the domains of g and h, then f is differentiable at x and
(©) fx) = gk (x) + k(x)g'(%).
Proof: Since g and % are differentiable at x, there must be an interval I with

center at x over which g and % are defined. When x + Ax lies in this interval,
we have

(C)) flx + %) = g(x + Ax)h(x + Ax)



3.5 Difference quotients and derivatives 163

and hence
) flx + Ax) — f(x) = g(x + Ax)h(x + Ax) — g(x)h(x).

Tomake the right side more tractable, we subtract and add the term g(x + Ax)A(x)
and then divide by Ax to obtain

flx + Ax) — f(x) h(x + Ax) — h(x)
Ax Ax

©) = glx + Ax)

glx + Ax) — g(x).

+ A) Ax

But the hypotheses of our theorem, the definition of derivative, and Theorem
3.58 imply that

@ Aliilo glx + Ax) = g(x), Al.':i:ibno fzﬁ—{-_Asz_—-M

= K(x),
lim. glx + AAxi —gx) _ ().

It follows that the limit, as Ax approaches zero, of the right member of (6) is the
right member of the formula

[+ Ax) — f(x)
L

(©) = g®)H (x) + h(x)g'(x).

The limit of the left member must be the same. Therefore, (8) holds, and (3)
then follows from the definition of the derivative of f at x. This proves the
theorem. This proof is essentially the same as the proof involving (3.57). If
weset u = g(x), 9 = h(x), y = f(x), u + Au = g(x + Ax), v + Ao = A(x + Ax),
and y + Ay = f(x + Ax), then (6) becomes

A A A
9 A—i—:=(u+Au)A—;+vA—:

which is, except for a minor shuffling of terms, the same as (3.57). The version
involving (3.57) is usually preferred in elementary courses because the formulas
involving Au, Ao, and Ay flow more smoothly and quickly than those given above.

19 Remark: As was said in passing in the text, discussions of names and sym-
bols can be long and perhaps dismal. We call a rose “a rose’ because everyonc
else does, and we do not need another reason. We call the number

. flx + Ax) — fx)
(1) Al;l:,lo —T—,

when it exists, “the derivative of f at x” because everyone else does, and we do
not need another reason. We can denote this number by f’(x) because everyone
else does, and we do not need another reason. If we want to know what f'(x)
means, we do not look at f/(x); we look at the definition of f’(x) and see that

flx + Ax) — f(x),

@ fie) = fim FEEE
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We can observe that the Newton notation in the formula (2) uses functional
notation in a thoroughly standard way; if f is a function and x is a number,
then the right side of (2), when it exists, determines the value of the function
f' at x. If, for example, f’(x) = 2x for each real x, then f'(0) = 0, f'(6) = 12,
f'(x%) = 2x% and f'(sin ) = 2sin x. It could be presumed that one good symbol
for the number in (1) should be enough, but it is not enough. Even if there were
no other reason, we would still be required to know another symbol in order to
be able to read scientific literature and to converse with scientists. We must
know that we can set y = f(x), so that in a particular case we have y = 2, and

d:
we can denote the derivative of f at x by the symbol 2% If we want to know

d d .. d
what 7}; means, we do not look at 3% ; we look at the definition of 2—3,; and find that,
in the particular case,

3) j—i = 2.

According to the definition, %—c is the derivative of f at x, and the meaning of

dy. o . .
d-—:: is not changed when we read ““dee y dee x”° or “the derivative of y with respect

to x” or even ‘“‘the derivative of y with respect to x at x.”> The assertion (3)
always means that the derivative of f at x is 2x, and weird ways of reading the
assertion do not change the meaning of the assertion. The meaning of the
assertion is not changed when we realize that a silly result is obtained by sup-
posing that the d’s and the x and the y in (3) are numbers and canceling the d’s
to get y/x = 2x. The meaning of the assertion is still unchanged when we
realize that we never put x = 6 in the two members of (3) to obtain

dy
4 % =12

We do, however, allow ourselves the liberty of writing

2
5) % = 2x or Ex’ = 2x

to abbreviate the statement that if y = f(x), where f is the function for which
f(x) = %%, then the derivative of fat xis 2x. From a logical point of view, every-
thing we have done can be summarized very simply. If we want to know the
meaning of the word “quibble,” we do not look at the word “quibble’’; we look

- R . a
at a definition. Let us then quit quibbling about the meaning of _a% We can

conclude with a cheerful remark. Whenever we are likely to encounter diffi-
culties with the Leibniz notation, we can discard it and use the Newton notation.

3.6 The chain rule and differentiation of elementary functions
To be able to illustrate methods by which fundamental formulas for
derivatives are used, we suppose that we know the five fundamental
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formulas
d .
(3.61) 5= nxm1, 7 Sin ¥ = cos x, dix cos x = — sin x
d . _ . d 1
(362) at’ = ¢7, T log x = p

only the first of which has been partially proved.t In the last two of
these formulas, the base is ¢, the base of natural exponentials and loga-
rithms, which appears in (3.272) and which will appear later. One of our
tasks is to learn a procedure by which we can obtain a correct formula
for dy/dx when y = sin « and % is a differentiable function of x which is
not necessarily x itself. The answer is

(3.621) Z—Z = cos Z—:

To see why this is so, and to see how many similar formulas can be
obtained, we consider the general situation in which y is a function of
and « is a function of x, say y = f(x) and u = g(x). Then y is linked to x
through the links of a short chain; x determines « and u determines y, so y
is a function of x. While the operation may seem somewhat ponderous
when

(3.622) y = ¢(x) = f(g(x)) = sin g(x) = sin u = sin 2x,

we can let ¢(x) = f(g(x)) and sketch the schematic Figure 3.63 which
catches the functions g, f, and ¢, re-
spectively, in the act of transforming
(or mapping or carrying) x into u, u
into y, and x into y. The function ¢
for which ¢(x) = f(g(x)) is sometimes
called a composite function. Figure 3.63
The following theorem is the chain
rule, which sets forth conditions under which y has a derivative with
respect to x that can be calculated from the chain formula
dy _dydu

(3.64) Pl e

The result is given in terms of the “d” notation of Leibniz and the
“prime” notation of Newton, so that we can, in applications, choose the
one that seems to be most convenient or informative.

t These formulas will be proved in Chapters 8 and 9. A contention that we can and
should learn and use these formulas before they are proved is pedagogically sound. Itis as
practical as the contention that embryonic electrical engineers should learn that copper
wires conduct electric current, and use this information in various ways, before they study
solid-state physics and learn mechanisms by which electrons travel along conductors and
semiconductors.
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Theorem 3.65 (chain rule) If f and g are functions such that g is
differentiable at x and f is differentiable at g(x) and if we set vy = f(u) and
u = g(x) so that y = f(g(x)), then the chain formula

(3.66) L =-2E = e = )R

is valid at x.
To prove this theorem, we use the notation of the theorem to obtain

(3.661)  Au = g(x + Ax) — g(x), Ay = f(u + bu) — f(x)

and observe that « and y are determined by x alone, while Az and Ay are
determined by x and Ax. Consider first the usual case in which thereisa
number 8, such that §; > 0 and Ax > 0 whenever 0 < |Ax| < §;. Then,
when 0 < |Ax| < 8;, we can write

G662 Y _Ayhu_ flu+ du) — fu) glx + Ax) — g(x)

Ax  Aulx Au Ax
and, after observing that
. . Au, o du,
(3.663) Ali—r?o Au = Al;_rilo EAx = 0 =0,

take limits as Ax approaches zero to obtain the required result. Because
division by zero is taboo, exceptional cases are more troublesome. We
can avoid this difficulty and handle all cases at once by setting

(3.664) plaw) = et 2 = f() (Au  0)
d
(3.665) o(Au) = 23:- = f'(«) (Au = 0).
Then, whether Au is zero or not, we can write
Ay Au g(x + Ax) — g(x)
(3.666) = o (Au) iz = ¢(Aw) e

and take limits as Ax approaches zero to obtain the required result.

The basic elementary functions can be separated into three classes.
The first class contains powers and roots of x, that is, functions of the
form x2, where a is a constant. The second class contains the six trigo-
nometric functions and the six inverse trigonometric functions. The
third class contains exponential functions of the form 4* and logarithmic
functions of the form log, x, the base 4 being a constant. Thus there are
just 15 types of basic elementary functions. The class of elementary
functions includes the frightful function ¢ having values

(3.667) ¢(x) = PEA+ ) + [ + (o4 — 7a? + sint Sa7)4]H

sin 2= 4 #n32 L x 5in? 4x — cos x®




3.6 The chain rule and differentiation of elementary functions 167

and all others obtainable by making “finite combinations’ of basic
elementary functions together with addition, subtraction, multiplication,
and division. This class contains very many important functions. It is
therefore important to know that we can work out a formula for the
derivative of any given elementary function when we know (i) Theorem
3.56, (ii) 15 basic formulas for derivatives of basic elementary functions,
(iii) the chain rule, and, in addition, we possess (iv) a technique which
enables us to apply these things.

Of the 15 basic formulas, the most important 5 were listed at the
beginning of this section and are relisted in the first column of the follow-
ing little table.

(3.671) £ o = L = 2
(3.672) ;’—c sin x = cos x ;id; sin = cos u gix‘
G673)  Hcosx=—sinx Lcosu=—sinult
(3.674) Lome Lot
(67  logx=1 £ log u = 11

If we know the first formula on the left, we can set y = «™ and use the
chain formula (3.66) to obtain the chain formula

written opposite it. If we know the second formula on the left, we can
set y = sin » and use (3.66) again to obtain the chain formula
dixsinu =% =j—i% = (cosu)%‘

written opposite it. The same procedure shows that each basic formula
has a chain extension. Of the ten basic formulas not listed above, four
(which appear in Problem 11 of Section 3.5 and have probably been for-
gotten) give derivatives of the last four trigonometric functions, and the
remaining six give derivatives of the inverse trigonometric functions.
Proofs of all of the formulas will appear later. Except for three formulas
that are rarely used, the formulas are listed on the page opposite the
back cover of this book.

Our fund of information about logarithms is quite meager, but we can
slowly add to it. We begin with the idea that log x exists (as a real
number) only when x > 0. In case x < 0, log x does not exist but
|%| > 0and log |x| does exist. When x < 0, we can use the chain formula
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to obtain

d d _ 1 d(==» _1
Tlogld =g log (=0 = == =7
Thus we can extend the two formulas in (3.675) to obtain the more
general formulas

d 1 d
(3.676) = log |«] = poy T log |u| = o
in which it is required that x ¢ 0 and «» 3£ 0 but it is not required that x
and u be positive.

Up to the present time, our work with difference quotients and deriva-
tives has involved only fundamental definitions and formulas. Figures
and geometric ideas, which might be helpful but which might also be mis-

leading, have been completely ab-

0 / sent. Section 5.1 will present our

A thorough introduction to matters

P / Ay relating to slopes of graphs and
y ax T fet+do tangents to graphs. Meanwhile, we

y ) may be helped and may be unmisled

| . ! . 7 by looking at Figure 3.68, which

shows the graph C of a differentiable
function f. The points P and Q hav-
ing coordinates (x,y) or (¥, f(x)) and
(x 4+ Ax, y + Ay) or (x + Ax, f(x + Ax)) are shown, but the line PQ
joining P and @ is not drawn. The first of the two formulas

Figure 3.68

Ay _ flx + Ax) — f(x) _ .
(3.681) v A = slope of line PQ
(3.682) %}: = f'(x) = slope of tangent to C at P
= slope of C at P

is correct because it is obtained by applying the definition of the slope of a
line. The second formula is correct by definition; the line through P
whose slope is the limit as Ax approaches zero of the slopes in (3.681) is,
by definition, the line tangent to C at P, and, moreover, the slope of C at
P is, by definition, the slope of the line tangent to C at P. The definition
gives precision to the venerable idea that the slope of the line PQ is close
to the slope of the tangent at P whenever Q is close to P. The definition
(3.682) turns out to be very important. Indeed, there are many situ-
ations in which magnitudes play minor roles and it is important to know
that the graph C of y = f(x) has a horizontal tangent (tangent of zero
slope) at each point (x,9) on C for which f/(x) = 0, has a tangent of
positive slope at each point (x,y) on C for which f/(x) > 0, and has a
tangent of negative slope at each point (¥,y) on C for which f'(x) < 0.
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Problems 3.69

1 Calculate f'(xo) and write the equation of the line tangent to the graph of
y = f(x) at the point (xo,y0) when

(a) fx) =% xo=1 Ansiy -1 =2(x ~ 1)
) flx) = (1 — x), % =0 Ans: y ==«
(© f(x) = ¢, % =0 Ans:y =x +1
(@) fx) = 1 -:xz, %=1 Ans.:y = %

2 Become thoroughly familiar with the following technique, because it

enables us to do many chores quickly and correctly. Suppose we are required
to find dy/dx when

) y = sin 2x.

We must realize that we are not required to differentiate sin x but are required
to differentiate sin %, where « is a function of x. We look at (1) and read “y
equals sine %” and realize without making a lot of noise and without writing
anything that u = 2x. We then write dy/dx and say this is equal to cos
(write cos 2x) times du/dx (write 2). When we follow orders, we get

(2) % = (cos 2x)2,

but it is always better to put the answer in the neater form
d:

3) Ti = 2 cos 2x

which does not require parentheses.
3 Read the equations

@ y=@E+1)r ) y = cos e*
(¢) v = sin (ax + b) @)y =e=
(¢) vy = cos ax (f) y=log(x*+ 1)

the way we read them when we want to find dy/dx. In the first case, we can
tolerate “y equals « to the nth’ as a contraction of ‘y equals « with the exponent
n” or “y equals « to the nth power.”” In another case, we can tolerate *y equals
e to the %,” which looks bad in print but is universally understood. Now, sup-
posing that n, @, and b are constants, concentrate upon the task of learning five
basic formulas and applying them to obtain the answers

@ 2 = 2naa + 1y ) 2= —esin s
(o) % = a cos (ax + b) (@) % = ae®

d X d 2
(e)—d—z=——asmax U)Ey'—"ﬁ‘:_—l

Practice the technique until the answers can be obtained quickly and effortlessly.
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4 Each of the formulas
y = x2 sin x, Yy = xe*
can be read “y equals % times 9.”” Do this and obtain the derivatives
dy . dy
L = 42 —_ = z z
e =% cos x + 2x sin x, e = % + ¢

5 Each of the formulas

can be read “y equals » over ».” Do this and obtain the formulas

6 Derivatives of derivatives are called derivatives of higher order; the deriva-
tive of f at x is f/(x), the derivative of f' at x is f"/(x), the derivative of f” at x is
f""(x) or f®(x), and so on. Supposing that z is a number and

1

f@) = —— = G+ 27,

show that
f@) = =@+ ['(x) =21+ [fO) = -3z + 2
fO@) =4+ 275 fO@) = =5z +2)7%  fO®) = 6!z + x)7,
where 2! =12, 31 =1-2-3, 4!/ = 1-2-3-4, etcetera. Supposing as usual that
0! =1 and 1! = 1, observe that
[0 (&) = (=1)rnl(z + x)™? (n=0,1,2--")
when we agree that the result of differentiating f zero times is f itself.
7 Letting f(x) = (1 — 2x)~, show that
f®(x) = 27al(1 — 2x)1 (n=0,1,2, -+ ).
8 Letting f(x) = log (1 4 x?), show that

2 — 2x%
O NORY =

and calculate one more derivative.
9 The formulas

(@) sin (a + b)x = sin ax cos bx + cos ax sin bx
(5) cos (a + b)x = cos ax cos bx — sin ax sin bx
(C) elatd)z — £9% gbz

(d) log ax = log a + log x

are permanently remembered by all good scientists. For each formula, calculate

the derivatives with respect to x of the two sides and show that the results are
equal.
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10 Supposing that 2 and w (omega, to keep physicists and engineers happy)
are constants and
Q = ¢* sin o,
show how the formula

d
B—t-Q = ¢#(w cos wt) + (sin wt)ae
= ¢%(w cos wt + a sin wt)
is obtained. Then let I = dQ/dt and show that

dI
= e*[2aw cos wt + (a? — w?) sin wi].

Remark: It is not necessary for us to know that, if 2 < 0, Q might be the charge
on the capacitor of an LRC oscillator, in which case the electric current would be
I and the voltage drop across the inductor would be the product of dI/d: and the
inductance L of the inductor. Itis, however, a good idea to know that the things
we are learning are important in applied mathematics.

11 Prove that

4 e —eF ( 2 )2.
dxe? + e \e*+ 7
12 1If, for a positive integer z,

sinx |, sin 2x , sin 3x sin nx

yn(x)= 1 + 2 + 3 +"'+ 4

show that
yu(%) = cos x 4+ cos 2x + cos 3x + - - - + cos nx.

13 Calculate f/(x) from the first and then from the second of the formulas

fx) = log

1 —
”1—+ﬂ f(x) = log |1 — 2| — log |1 + ]

Make the results agree. Hint: Do not forget the second formula in (3.676);
the derivative with respect to x of log || is (1/«) du/dx and the absolute-value
signs quietly disappear.

14 Observe that if y is a differentiable function of x, so also is the function
F having values

F(x) = 2 + xy(x) + [y&)]™
Tell precisely what formulas are used to obtain the formula

Fl(x) = 2x + xy'(x) + y(x) + 2y(x)y' (%)
or
aF _ ay @,
5_2x+xdx+y+2ydx
Ans.: The power formula, the formula for the derivative of a product, the chain
formula, and the formula for the derivative of a sum.
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15 Supposing that y is a differentiable function of x for which
x? + xy(x) + [y(*)]* = 3,
apply our fundamental formulas for calculating derivatives to obtain the formula

vy 2x + y(x)
A )

Hint: Equate the derivatives with respect to x of the two members of the given
equation. Remark: This process, by which we start with an equation involving
y(x) and [without obtaining an explicit formula for y(x)] obtain an explicit formula
for y'(x), is called “implicit differentiation.” To gain understanding of this
terminology, we can note that the formula y = x + 1 says explicitly that y is
x + 1 while the equation y — x — 1 = 0 only implies, and hence says implicitly,
thatyisx + 1. Itis sometimes said that the equation #2 4 y2 = 1 determines y
implicitly, but the fact is that the equation does not determine y. Saying that“y
is either 4/T — #% or —+/1 — 2 does not determine y any more than saying
“a blonde did it” determines the culprit in a whodonit.
16 Write the first displayed formula of the preceding problem in the form

x4+ xy +92=3
and use the Leibniz notation for derivatives to obtain the formula

ﬂ__2x+y'
dx x4+ 2y

Observe, however, that the calculation is illusory unless  is a differentiable func-
tion for which the given equation holds.

17 Clarify matters relating to the two preceding problems by showing that
y is a differentiable function satisfying the given equation if

() = =2 '23(4 — ) (=2 <x<?2)
and also if
y(x) = Tzt 23(4 =) (-2<x<2).

18 A graph of the equation
224+ xy+9y2=23

appears in Figure 1.592. Find the equations of the tangents to this graph at the

two points for which # = 0. Be sure to obtain results that agree with Figure
1.592.

19 It is not a simple matter to “solve” the equation

1) y+y=x

fory. If yisa differentiable function of x for which the equation holds, however,
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we can differentiate with respect to x with the aid of the chain rule to obtain

dy  dy
) et =1 o 3@ () 4y =1
and hence

o _ 1 , 1
3) il | or (%) = W

From (3) and the assumption that y is a differentiable function of x, we see that
the derivative itself is a differentiable function of x. The derivative of the

derivative is called the second derivative and is denoted by the symbols in the
left members of the formulas

ﬂ = ——63, ” —6y
@) P s VA Al e

By differentiating the members of (3), show that the formulas (4) are correct.
20 Supposing that y is a differentiable function of x for which the given rela
tion holds, differentiate with respect to x to find dy/dx when

(@) xy =7 Am.:% = —%
o Jdy 1 1
() siny =« AM“a’x_cosyor t A=
(c) e =« Ans.: 52 = ;l;or;lc
. _ 4y 1—ycosxy
@) sinxy =x+ 19y An;"dx———l—xcosxy
21 Find f(x) when
= . 1
(@) f(x) = log (x + Va® + #?) Ans.: Vet
(5) f(x) = log (V& + x* — ) Ans: \/T-;-i:
(©) f(x) = (log sin 22)? Ans.: 4 cos 2:'c log sin 2x
sin 2x
. 4 cos 2x
= 2 .
(d) f(x) = log (sin 24) I =
. 8x cos 4x?
= 2 . 8% cos 2x°
() f(x) = log sin (2x) Ans.: sin 4x?
_ % \* cnfl + (1 — 2x)e22]xn?
(N flx) = (“—‘—l F 32,) Ans. 1 F e=)ntt

22 The Hermite polynomials, depending upon a parameter @ that is usually
taken to be 1 or 2 in applications, are defined by the formulas Hy(x) = 1 and

¢)) Ha(x) = (-1)'»»2*/2;;}, £osti2 (nz 1)
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Show that if (1) holds, then

(2) H”(x)e-—azﬁz = (_l)n —d_n_ g—az2
3) [—aeHa(s) + Ha(elemoet® = (—1)r 2 pmasi
’ L A
4) axHa(x) = Hil) = (=1)ieesits — gmee
and
(5) Hoa(x) = axHu(x) — Ho(x).
Use (5) and the fact that Ho(x) = 1 to obtain the formulas
Ho(x) = 1
Hy(x) =

Hy(x) = a%x? — a

Hj(x) = a3x® — 3a%

Hy(x) = a*x* — 6a3x? + 3a®

Hy(x) = a’x® — 10a%3 + 152%

Hg(x) = a®%® — 15a°%* + 45242 — 1543
Hi(x) = a"™x" — 21a%5 4 105453 — 105a%.

23 The Laguerre polynomials are defined by the formulas Lo(x) = 1 and

L) = & 2 (ae) (=123 - - 9.
Show that
Lix) =1
Li(x) = —x+1
Lo(x) = x2 — 4x + 2
Li(x) = —x3 4+ 9x2 — 18x 4 6
Li(x) = x* — 16x3 + 72x2 — 96x + 24.

24 Supposing thaty = eator k() = ¢ use the chain rule and the formula
for derivatives of products to obtain the first three derivatives with respect to
t of these things. Ans.:

1) j” K () = esint cos t
2 z;%, = h'(t) = —eintsint + ebint cos? ¢
3 Zt"y B'"(t) = —etint cos t — 3etint cos ¢ sin ¢ + %nt cos? 1.

25 Assuming existence of all of the derivatives we want to use, show that if
k() = f(g(®)), then
0 K@) = f(e(®)e ()
@ K@) = fe®)g” @) + 1" (@)’ M)

and write a formula for 2””/(t). Then show that these formulas reduce to those
of Problem 24 when f(x) = ¢= and g(¢) = sin 2.
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26 The preceding problem involved three functions and the Newton notation
for derivatives. This problem requires use of the Leibniz notation. Supposing
that “y is a function of # and « is a function of ¢ so y is a function of z,” and that
each function has three or more derivatives, write formulas for the first three
derivatives of y with respect to z. Finally, check your answers against those of
the preceding two problems. Partial ans.:

dy _dydx
@ a T dxdt

dy _ dyds |ty (dx:
©) = e T dt)

ddy _ dydix d¥y d*xdx  d (dx
©) a8 T dxdp + 3dx’ dt? dz dx“(dz)

27 Suppose we momentarily agree that the first of the formulas

dy _ dydx ) ’
& Taxdr dz2 =5 @

is true ‘“‘because” we get a correct result by canceling dx’s from the right side.
Show that we should not apply the same “reasoning” to the second formula.

28 Read Theorem 3.65 and observe that the hypotheses are satisfied if
f&) =14+ x+ 2% g(x) =0, and » = g(x) = 0 for each x, while y = f(u) for
each u so that y = f(g(x)) = 1 for each . Hence the conclusion of the theorem
implies that

for each x. Observe that dy/dx =0 and du/dx = 0 for each x. Our major
question now appears. Is there a reason for uneasiness about the meaning of
dy/du when u = 0 for each x? Remark and ans.: This question was raised by an
extremely sane person who happened at the moment to be thinking too much
about the manner in which we read dy/du and too little about the meaning of
dy/du. According to our basic definition, dy/du is f'(«), the derivative of f at
u. Since f(x) = 1 + x + x? for each x, we find that f'(x) = 1 4 2x for each «x,
so f'(u) =1+ 2u for each u. Thus, dy/du = 1+ 2u. If it happens that
u = 0 for each x, then dy/du = 1 for each x. We have no reason to be uneasy
unless we manufacture trouble by recreating old tales about varying variables
that we sometimes call galloping numbers. The notation of Leibniz is often
more convenient than that of Newton, but it is also more likely to engender
mental aberrations. Nobody expects u to be galloping around while we calculate
f'w).

29 Is the function f for which f(x) = |x| an elementary function? Remark
and ans.: This is a tricky question. An intelligent perso d make an incor-
rect guess until he discovers or is reminded that |¥| = A/x% . The function f is
elementary, but #/(0) does not exist.

30 Let p and g be positive integers. Let y(0) = 0 and let

y(x) = «? sin;tl—q (x # 0).



176 Functions, limits, derivatives

-

Show that, when x = 0,

. 1 L. 1
v/ (x) = —qxP~! cos pr + px?~1 sin s

Tell why this formula cannot be valid when ¥ = 0. Then show with the aid of

the sandwich theorem 3.287 that if p = 2, then y'(0) = 0. Show that if p >

¢ + 1then lim y’(x) = 0. Show thatif p £ ¢ + 1, then lin}) 9’(x) does not exist.
z—0 z—

31 Before starting this problem, we make the profound observation that 0
times a number is 0 but that nobody ever tries to define the product of 0 and
something that does not exist. With this in mind, show that the first of the
formulas

d

d d|
) P P k-

dx

is valid for each x and that the second is valid if, and only if, x # 0. Hinz: For
the first part, observe that |x|2 = x2. For the second part, consider separately
the cases for which x > 0, x < 0, and x = 0. Remark: Putting f(x) = x? and
g(x) = || shows that g’(x) can fail to exist even when it is known that df(g(x))/
dx exists. The calculations in

@ B6) = 1), ¥E) = FEENEE, 2=

may therefore be incorrect even when ¢ and f are both differentiable. In any
case, we are not doing rigorous mathematics when we start with the first of the
formulas

3) siny = x, cosy%= 1

and obtain the second without giving a thought to the question whether y is a
differentiable function of x. Congratulations can therefore be showered upon

students who, at this time, have a healthy lack of enthusiasm for problems like
Problem 20.

3.7 Rates, velocities Let f be defined over some interval a £ x £ b

and let y = f(x). When x and x 4+ Ax both lie between @ and b and
Ax 5 0, the difference quotient in

(3.71) %.Z _fe+ A;)c — f(x)

is the average rate of change of y with respect to x over the interval from the
lesser to the greater of x and » + Ax. If this average rate (which is the
difference quotient) has a limit as Ax approaches zero, then this limit
[which is the derivative dy/dx or f'(x)] is the rate of change of y with respect
to x at the given x. These are definitions which can, perhaps without
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disastrous loss of meaning, be abbreviated to the forms

flx + Ax) — f(»
Ax

(3.72) Average rate = difference quotient = —i—% =

(3.73) Rate = derivative = % = f'(x).

Of course, we are never required to prove definitions, but these are
important and we must have or acquire an understanding of them and a
feeling that they do (or do not) use words of the English language in a
reasonably appropriate way. Shifting the letters from y and x to x and ¢,
we see that the definition involving (3.72) shows that if x is a number of
miles and ¢ is a number of hours, then the average rate of change of x
with respect to ¢ is a number Ax of miles divided by a number At of hours
and hence is a number of miles per hour. Some applications of this are
very simple and agree with all primitive ideas about rates. When we are
thinking about a particular automobile journey in which the automobile
moves steadily in one direction along a straight road, we can let x and
f(?) denote the distance (number of miles) traveled during the first ¢ hours
of the trip. We are all accustomed to calculating the average rate over a
given time interval and to calling this average rate an average speed.
Suppose now that an untutored (but not necessarily stupid) individual is
asked how he might, without looking at a perfect speedometer, determine
a number @ which could reasonably be called the speed at a particular
time t. His reply might be lengthy and partially intelligible. He
should, sooner or later, arrive at the idea that the average speed over a
long trip is likely to be a very bad approzimation to @, but that the aver-
age speed over the time interval from ¢ to ¢t + At (or from ¢ + At to ¢ in
case At < 0) should be near Q whenever Az is near 0 but At 0. We
have learned how to make this idea precise. Itis done in the definitions
we are discussing. Similar stories involving other rates (degrees centi-
grade per centimeter, coulombs per second, and dollars per year, for
examples) show that the definitions are sensible and should have swarms
of important applications.

Our simple discussion of the journey of an automobile moving steadily
in one direction along a straight road involved the word “speed” but
carefully avoided the words “velocity” and “‘acceleration.” To appre-
ciate what is coming, we should know some history. The words “speed,”
“velocity,” and ““acceleration” are very old. A long time ago, say before
the year 1900, they were all numbers (scalars); velocity and acceleration
could be negative but speed never could be. Nowadays, in all enlight-
ened communities, velocities and accelerations are always vectors and
we must learn about them. To get started, we consider the path traced
by a bumblebee (or molecule or rocket or satellite or what not) as it
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buzzes through space E;. While other tactics are both possible and use-
ful, we suppose that we have a rectangular x, y, z coordinate system
bearing unit vectors i, j, K as in Section 2.2. At each time ¢, the coordi-
nates of the bumblebee can be denoted by x(¢), ¥(2), z(z). Letting r(z)
denote the vector running from the origin to the bumblebee, we obtain
the vector equation

(3.74) r(t) = =01 + y(i + z(Ok.

This vector r(t) is called the displacement (or displacement vector) of the
bumblebee at time . Supposing that At 5 0, we can write

(3.75) r(t + Af) = x(t + At)i + (¢t + ADj + z(t + Atk

and form the difference quotient

T+ A) ~ @) _xet4) —x@); v+ AY) — y(t)j
At B At At

z(t + At) — 1)
+ A k

which can be written in the abbreviated form

Ar  Ax Ay, | Az
(3.751) _Ezfti -KEJ-*-Ek'
In accordance with general terminology, this difference quotient is called
the average rate of change of the vector r(¢) with respect to ¢ over the
interval from the lesser to the greater of ¢ and ¢z 4+ At. It is also called
the average velocity of the bumblebee over this same interval. In case
the above difference quotients have limits as At— 0, the limit of the

average velocity is called the velocity at time ¢ and is denoted by v(¥).
Thus

(3.76) v =r'@) =« 0i + 'O + 2Ok
or
_dr dx,  dy,  du

provided the derivatives exist. Figures 3.762, 3.763, and 3.764 show how
the vectors Ar, Ar/At, and v(f) might appear in a particular example.

Figure 3.762 Figure 3.763 - Figure 3.764

x(¢+ Af) (i + Af) Ar
A

xON\ A ar 20 *®)
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The scalar components of the velocity v or v(z) are sometimes denoted
by the symbols v, 9, 2, so that

, dx a , d:
B765) o=@ =75 wH=y®=7H w=70=%

and
(3.766) vV =o9d + 9 + ok

The acceleration a(t) is a vector which is defined in terms of velocities
in the same way that velocities are defined in terms of displacements.
Thus, provided the derivatives exist,

(3.77) a@®) =v (@) =1"0) =2"Oi + y" )i + 'Ok

or
2. 2
(3.771) a(t)=§tz=t_i_£=dx. dy.  da

FwowEitmEitak

where the “double prime” in (3.77) and the number 2 appearing in “dee
squared x dee ¢ squared” in (3.771) denote second derivatives, that is,
derivatives of derivatives. We still have to learn what is meant by the
speed (a scalar) of the bumblebee. It is defined by

(3.78) Speed = length of velocity vector,

so that, in our notation,

(3.781) Speed = [v()| = \/ (%‘)2 + (%)2 n (%)2.

Perhaps it should be explained that the ¢ appearing in the above equa-
tions is called a parameter, that (3.74) is a parametric equation of the path,
and that the path is the graph of the parametric equation. According to
this definition, a parameter is 2a number. It is an element of the domain
of the functions in (3.74), and we need not complicate our lives by harbor-
ing impressions that parameters are complicated things. Section 7.1
gives a careful explanation of circumstances in which the graph is called
a curve.

In Section 5.1 we shall give a rather detailed discussion of tangents to
graphs. Meanwhile, it can be remarked that if the vectors in (3.751)
and (3.761) are not 0, then the line through P(x,y,z) and P(x + Ax,
y + Ay, z 4+ Az) is called a ckord of the curve being considered, and the
line through P(x,y,z) having the direction of V() is called the tangent to
the curve at P(x,y,z). Therefore, we can find the direction of the tangent
to a sufficiently decent curve by finding the velocity of a particle which
moves along the curve with nonzero velocity. The tangent line and the
velocity vector have, by definition, the same direction. To bridge the
gap between our work and plebeian terminology used in the prosaic
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workaday world, we need still another definition. When we say that a
moving body is, at time ¢, “going in the direction of a vector w”’ we mean
that its velocity v has the direction of W, that is, v = W, where % is 3
positive scalar. In case W is a unit vector, the scalar % is the speed of the
body. It is not so easy to tell what the body is “doing” when v = 0 or
v does not exist. The ancient Greek philosophers tried to make people
think about motion, and we never quite know how much they smiled
when they insisted that an arrow cannot move where it is and cannot
move where it isn’t and, hence, cannot move at all. Thoughts about such
matters can bring the conviction that definitions are not superfluous.

A few simple observations should be made. In case the bumblebee
buzzes around in a plane which we take to be the xy plane, the above
story is unchanged but calculations are simplified by the fact that z(f) = 0
for each . In case the bumblebee buzzes around in (or on) a line which
we take to be the x axis, we have y(t) = z(t) = O for each t. In modern
terminology, scalars cannot be velocities but can be scalar components
of velocities. In case a particle moves on a coordinate axis or on a line
parallel to a coordinate axis, its velocity and acceleration are still vectors
but their scalar components in the direction of the axis are scalars which
we shall call the scalar velocity and scalar acceleration of the particle.
For example, if a particle is moving on an x axis in such a way that its x
coordinate at time ¢ is the scalar (or number)

x = A3+ B2 + Ct + D + E sin wt,
then the scalar (or number) » (not v) defined by

v=-§—§=3At2+2Bt+C+Ewcosw

is its scalar velocity at time ¢ and the scalar (or number) a (not a) defined
by
_dx

e

a = 64t + 2B — Ew? sin wt

is its scalar acceleration at time ¢. The speed is |dx/dt|. When the posi-
tive x lies to the right of the origin, the particle is “moving to the right”
at those times for which dx/dt > 0 and is “moving to the left” when

dx/dt < 0. It is not so easy to tell what the particle is **doing” when
dx/dt = 0 or dx/dt does not exist.

Problems 3.79

I A stone is thrown downward 10 feet per second from the deck of a bridge.
The distance s it will have fallen ¢ seconds later is assumed to be

s = 10t + 16z,
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Supposing that 0 <z < ¢ + Af, work out a formula for the average speed of the
stone over the time interval from ¢ to 1 + Az. Then work out a formula for the
speed at time & Ans.: 10 + 32¢ 4 16 At and 10 + 32t.

2 A vertical y axis has its positive part above the origin. A particle moves
upon this axis in such a way that its coordinate at each time ¢ is

y=—4d*+ Bt + C,
where A4 is a positive number. Show that the scalar velocity o is
v = —24t + B,

that the particle is going up when ¢z < B/24, and that the particle is going down
when ¢ > B/2A4. Show that the scalar acceleration is always —24. Show that
the greatest height attained by the particle is B2/44 + C.

3 In the context of the preceding problem, so determine 4, B, and C that
the scalar acceleration is always —32 and the particle is 3 units below the origin
and going upward with speed 8 when ¢ = 0.

4 A particle moves along the x axis in such a way that its x coordinate at
time ¢ is

% =245 — 54 — 22 — 2t + 1.
Find its scalar velocity and scalar acceleration at time .  A#ns.:
1024 — 20:3 — 41 — 2, 403 — 60:2 — 4.

5 A body moves on a line in such a way that its coordinate x at time z is
18
x=-§—4t2+15t+6.

Find the time interval over which the scalar velocity is negative, and find the
distance the body moves during the interval. Ans.: %
6 A particle moves along an x axis in such a way that, when ¢ = 0, its

coordinate is
x =V k2 + 2

where & and ¢ are positive constants. Show that its speed is always less than
k and approaches £ as ¢ becomes infinite.

7 If an oak tree in Ohio was 20 feet tall when it was 15 years old and was
36 feet tall when it was 25 years old, the average rate of change of height (meas-
ured in feet) with respect to time (measured in years) over the 10-year interval
is 1.6 feet per year. Tell why it is not reasonable to suppose that the tree grew
steadily at the rate of 1.6 feet per year for 10 years. If the tree grew from height
30 feet to height 32 feet in a calendar year from January 1 to December 31, sketch
a reasonably realistic graph which shows how the height of the tree might depend
upon ¢ during the year. .

8 The charge Q (measured in coulombs) on an electrical capacitor at time
tis Qo sin wt, where Qp and w (omega) are constants. The rate of change of @
with respect to ¢ (measured in coulombs per second, that is, in amperes) is the
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current I in the circuit containing the capacitor. Find a formula which gives 1
in terms of z.

9 This problem involves uniform circular motion. Let a particle P start

at the point (2,0) of the plane Figure 3.791 and move around the circle with

center at the origin and radius a in such a way that

y the vector 57’ rotates at the constant positive rate

w (omega) radians per second. Letting r = (P,

3 show that
r
@t \(a,0) @ r= a(cos wii =+ sin wtj)
0 x  (2) v = aw(—sin wii + cos wij)
3) a = —aw?(cos wti  + sin wej)

and hence that

Figure 3.791 (4) a = _wzu,
where, at each time ¢, u is a unit vector running from the origin toward P.
Show that r-v = 0 and interpret this result. Show that |v| = aw and interpret
this result. Remark: The result (4) is important in physics. It says that, in
uniform circular motion, the particle is always accelerated toward the center and
that the magnitude of the acceleration is aw?. Some additional terminology
should be encountered frequently and slowly absorbed. When a particle moves
upon a line in such a way that its coordinate at time ¢ is 4 -+ B sin (wt + ¢),
the motion is said to be sinusoidal or (particularly in old books) karmonic or
simple harmonic. The numbers ¢, w/2w, and B are the phase, the frequency
(cycles per unit time), and the amplitude of the motion. Glances at the compo-
nents of r and a in the above formulas show that the projection of P upon a
diameter (line, not number) of the circle executes sinusoidal motion. More-
over, the projection is always accelerated toward the center, and the magnitude
of the acceleration is proportional to the distance from the center. See also
Problem 16.

10 Asin the text of this section, let a particle move in E; in such a way that
its displacement, velocity, and acceleration are

1) @) = «(i+ (@i +z()k
@ v = £@Oi+y (0§ + 20k
(€) a() = «"(O1 + y" (A + 2" Ok

and the square of its speed is

) vOI* = O + ' 012 + [ O]~

Using this information, prove that if the particle moves with constant speed ¢,
then the acceleration is always orthogonal to the velocity. Hints: Do not get
scared. Equate the right member of (4) to ¢2. Equate the derivatives of the
members of your equation. Look at your result. Remark: One who thinks that
this result is mysterious should remember or discover which way he tends to

topple when he sits in an automobile which rounds an unbanked curve at con-
stant speed.
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11 This problem involves the uniform circular helical
motion of a particle Q in E3 which runs up the helix (spiral
staircase) of Figure 3.792 in such a way that its projection
P upon the xy plane executes the uniform circular motion
of Problem 9 whiles its z coordinate increases at the posi-
tive rate b units per second. Supposing that @ occupies
the position (4,0,0) when ¢ = 0 and lettingr = 5@, show
that

r=  a(coswi + sin wij) + bik P ¥
v = aw(—sin wi + cos wtj) + bk %
a = —aw?(cos wti + sin wij). Figure 3.792

Find the speed of Q. Remark: One who gets interested in this helix may try
to find the length of one turn by two different methods. First, use the speed of Q
in an appropriate way. Second, find out what happens when the cylinder upon
which the helix lies is cut along a vertical generator and rolled out flat.

12 A projectile P moves in such a way that its displacement vector at time
tis -
(1) r = (90 cos a)ti + [(90 sin a)z — Fg4j,

where @, 9o, g are constants for which 0 < & < 7/2, 55> 0, g > 0. Show that
its velocity at time ¢ is

) v = [(vo cos @)i 4 (9o sin @)j] — gtj.
Show that a = —gj. Show that the coordinates x, y of P at time ¢ are
3 x = (9 cos @), y = (v sin @)z — %z

Eliminate ¢ to obtain the equation

o . 2
(4) - ' y = (tan a)x — 2_gx__
(‘,'i co L 295 cos? a
and note that the path of the projectile is a part of a parabola. Show that
y = 0 when ¢ = 0 and that the projectile is then at the origin. Show thaty =0
when ¢ = (290 sin @)/g and that the projectile is then at the point (R,0), where

293 sin « cos a 0(2, sin 2«

%) R =
g 4

This number R is called the range of the projectile, and this range is clearly a
maximum when sin 2a = 1 and hence when 2 = 7/2 and @ = w/4. Show that
the initial velocity (velocity at time¢ = 0) is

(6) (v cos )i + (oo sin a)j

and that this makes the angle o with the positive x axis. Show that the initial
speed is 9. Tell, in terms of vectors, how the velocity at later times is related
to the initial velocity. Find the velocity (not merely speed) of the projectile
when it hits the point (R,0).
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13 While the matter must remain mysterious until some mathematical
secrets have been revealed, the tip P of a cog of a particular hypocyclic gear
moves in such a way that its displacement vector at time ¢ is

r = a(cos? wti + sin3 wtj),

where 2 and w are positive constants. Find and simplify formulas for its velocity,
speed, and acceleration. Ans.:

V= -3%‘-0 sin 2wt(—cos wti + sin wtj)

Speed = 2;—0’ [sin 20|
3aw? . N R . .
=3 sin 2wt(sin wti + cos wtf) + 3aw? cos 2wt(—cos wti + sin wtf).

14 A particle P moves in such a way that its displacement vector at time ¢ is

2t 12 —1,
repriitegal

Show that |r| = 1 at all times and hence that the path of P must lie on the unit
circle with center at the origin. If a particle moves on a circle in such a way that
it has a nonzero velocity vector v, then v must be tangent to the circle and hence
orthogonal (or perpendicular) tor. Check this story by calculating v and show-
ing that v-r = 0. Find the times at which the particle crosses the coordinate
axes, and then obtain more information about the motion of P.

15 Prove that if a particle P moves in E3 in such a way that it has displace-
ment vectors and velocity vectors r(f) and v(z) at time ¢, then

d r(2)-v(?)
7 It@)| = o

when the particle is not at the origin. Tell why this implies that if the path of P
lies on a sphere with center at the origin, then v must be normal (or orthogonal
or perpendicular) to r and hence v must be tangent to the sphere. Remark:
It can be presumed that we do not known much about curves and surfaces in
Es, but we can presume that if a particle P makes a decent trip along a decent
curve lying on a decent surface, then at each time the velocity vector having
its tail at P must be tangent to the surface as well as to the curve.
16 1If a particle moves along the x axis in such a way that, at time ¢,

x = asin (0t + ¢)
where a, @, ¢ are constants for which 2 > 0 and w > 0, the particle is said to
describe (or execute) sinusoidal (or harmonic) motion. Calculate the first and
second derivatives of x with respect to ¢t and show that

d*x .
77 = — o'

Remark: This shows that the scalar acceleration of the particle is proportional to
the scalar displacement of the particle from the origin (or equilibrium position)
about which it oscillates.
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17 A particle P moves in E3in such a way that the vector r running from the
origin to P is

r = r[sin 6 cos ¢i + sin 0 sin ¢j + cos K],

where 7, 0, and ¢ are all differentiable functions of . Find the velocity and
speed of the particle at time t.  Ans.:

r'(t) = 7'@)u + ()6 ()v + 7()¢’(¢) sin Ow

where u = sin 8 cos @i + sin 6 sin ¢j + cos 6k
v = cos 0 cos @i + cos 6 sin ¢j — sin Gk
w — sin ¢i + cos ¢j

and

'Ol = {Ir®F + [rOFOF + [r(@)¢'(¢) sin ]2}

Remark: Problem 5 of Problems 2.69 shows that the vectors u, v, and W are
orthonormal. The numbers r, ¢, and 6 are spherical coordinates which appear
in Figure 10.12 and are studied in Chapter 10. When a is a positive number and
r = a for each ¢, P is always on a sphere and the above formulas become the
standard formulas used for study of curves that lie on spheres. Chapter 7 gives
solid information about curves.

18 A spherical earth has its center at the origin and has radius 2. A particle
P moves on the surface S of the earth in such a way that the vector r running
from the origin to P is

) r = a[sin 6 cos @i + sin 0 sin ¢j + cos 6k]

where 6 and ¢ are differentiable functions of . Show that the velocity of P
at time ¢ is

) r'(t) = ab'()v + a¢’(t) sin 6w
where

3) = cos 0 cos ¢i + cos 0 sin @j — sin 6k
“) w = —sin ¢i + cos @j.

Remark: We invest a moment to look at some facts involving compass directions.
When 0 < § <  so that P is neither at the north pole nor at the south pole, the
vector v points south from P and the vector W points east from P. When 6§ and
¢ are so related that, for some constant ¢,

® ¢'(2) sin 6 = ¢6'(s),

the vector r'(¢) and the path of P always make the same constant angle with w
and hence always have the same compass direction. The path of P is then said
to be a rhumb curve, or loxodrome. Such curves are followed by ships that keep
sailing northeast. When we have learned more calculus, we will be able to show
that (5) holds if and only if there is a constant ¢ for which

1 —cos ¥
sin 6

6) ¢ =gqlog +¢ or ¢=glog(csch — coth)+c

or ¢=qlogtang+¢‘.



186 Functions, limits, derivatives

19 The vector formula
= (b + a cos B)cos ¢i + (b + a cos B)sin ¢j + a sin 6k

of Problem 22 at the end of Section 2.2 provides the possibility of studying curves
on a torus. Supposing that § and ¢ are differentiable functions of ¢, find r'(z).
Ans.:

r'(t) = ab'({)[— sin 0 cos ¢i — sin @ sin ¢j + cos 6K]
+ (b + a cos 8)¢’(t)[— sin ¢i + cos ¢j].

20 The rod OP of the linkage of Figure 3.793 has length 2 and has one end
fixed at the origin 0. The rod QP has length 4.
Its lower end moves to and fro on the x axis in
such a way that its x coordinate is ¢ + sin wt at
time 2. Its upper end is fastened to the first rod
o crsmat @ at P, and the motion of Q causes the first rod to
Figure 3.793 rotate. Write the' formula (the law of‘ E:osmes)
which expresses 5% in terms of other quantities, and
differentiate to obtain a formula for d6/d¢. Then use the formula

t = 0P = a (cos 6i + sin 6j)

to obtain a formula for the velocity v of P.  Ans.:

[a cos 6 — (¢ + sin wt)] cos wt
a(¢ + sin wt) sin 6

V= aw (—sin 6i 4+ cos 6j).
21 A cam can furnish us something to differentiate. A circular disk of radius
a is mounted on a cam shaft at O.
Supposing that C is the center of the
disk and that 0 < b < g, let [OC| = b.
The eccentric disk rotates about O with
constant angular speed, the angle POC
being wt. The mechanism to the right
of the disk in Figure 3.794 keeps the
R oint P(x,0) of a rod pressed against
Figure 3.794 She rotating disk so thft P(x,0) moves
to and fro on the x axis as the disk rotates. The formulas

) OB = bcosw, BC=bhsinwj, |BP| =/a®— |BC]?
show that
2) r = [b cos wt + /a? — b? sin? wili,

where r = OP = OB + BP. Find the velocity v and the acceleration a of P,

and do not spend all day trying to discover the significance of the fact that (2)
reduces to

3) r = afcos wt + [cos willi

when b = a.
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22 Let a particle of mass m move in a vertical plane in such a way that its
coordinates x, y are differentiable functions of ¢ (time) and the vector r(¢) running
from the origin to the particle at time ¢ is

@) = x(i + y(@)j.
The kinetic energy E; of the particle can then be calculated from the formula
E = %m[v(t)P.

Assuming that a constant gravitational force —mgj is exerted upon the body,
we can calculate its gravitational potential energy E; from the formula

E, = mgy(t).
In appropriate circumstances, the number E defined by
E=E +E;

is the total energy of the particle. For present purposes we do not need basic
information about these things, but we should know enough calculus to be able
to calculate the total energy at time ¢ of a projectile of mass m for which

r(t) = coti + (et — %219)j.

Doit. Ans.: E = $m(ct + ¢}). Remark: The fact that E has the same value
at all times is no surprise to persons who know about “conservation of energy.”
23 Supposing that

1) r(t) = p(cos pi + sin ¢j),

where p and ¢ are functions of ¢ having two derivatives, differentiate to obtain
r'(t) and then differentiate again to obtain 7//(£). Ans.:

@ () = [ 2 ( ] (cos 61 + sin ¢j)

dp d a2 )
+ [ df df +e dff] (—sin ¢i + cos ¢j).

24 Give a full statement of reasons why it is true that if p and ¢ are functions
of t such that p has one derivative and ¢ has two derivatives, then the product

,4
p? df has one derivative and

d ,4d¢

dp d¢ d2¢
%P

=Yua T

25 We can pick up assorted ideas by thinking about income tax rates. Let
I(x) denote the income tax which 7T, a taxpayer in a particular class, must pay
when his net taxable income is . Of course x and I(x) are to be measured in
appropriate units such as dollars or marks or kilobucks. A government may
decree that if x; £ x < x,, then I(x) is y; plus k; per cent of the excess of x over
x1. We can simplify this by letting m; = £1/100 and writing

I(x) = y1+ mi(x — x1) === %3).
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L4 Our knowledge of the natures of graphs of
lines now shows that the graph of y = I(x)
over the interval x; £ x < x5 is a line seg-
ment having slope m,. Figure 3.795 shows
- the graph of y = I(x) that can be constructed
o from information given in a possible tax
N y=Ix) table. Everybody says that tax rates are
different in different tax brackets, being for
example m; (or 100m; per cent) when
Figure 3.795 %1 < x < %2. Our fundamental problem is

the following. Show that if x;, < x < x,
then our definition of a rate as a derivative is in agreement with the things that
have been said about tax rates. Show that when x is x;, the tax rate does not
exist but that the “right-hand rate” and “left-hand rate’” do exist.

L gTL—.

mo|

Ol xp x1 %2 x3 %4 x

3.8 Related rates Useful information about derivatives and their
applications can be gained by solving problems more or less like the fol-
lowing one. Figure 3.81 represents a ladder which is 10 units (feet or
meters) long. The top of the ladder rests against a vertical wall and is
8 units above the horizontal floor upon which

the bottom of the ladder rests 6 units from

) the wall. It is supposed that the bottom of

7 the ladder is moving away from the wall at
the rate of 2 units per second, and we are
required to find the rate at which the
invisible man at the top of the ladder is
Figure 3.81  Figure 3.82  plunging earthward. To solve this problem,
we begin by constructing the more propitious

Figure 3.82 in which the ladder still has length 10 but x and y are varia-
bles which (unlike 8 and 6) can have different values at different times ¢

when the ladder is skidding. The variables x and y are related by the
formula

(3.83) #? + 92 = 100.

In order to obtain a relation involving dx/dt (the rate at which the bottom
of the ladder is moving away from the wall) and dy/dt (the rate at which
our man is moving upward), we need the fundamental idea that we should
consider x# and y to be functions of ¢ and differentiate with respect to t.
Equating the derivatives of the members of (3.83) and dividing by 2
gives the formula

dx dy _

which relates the related rates dx/dt and dy/dt. Putting x = 6,y = 8,
and dx/dt = 2 shows that dy/dt = —§. This shows that our poor
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man is rising —3% units per second and is therefore falling £ units per
second, and our problem is solved. It can be insisted that our solution
of the problem would have been more easily understood if we had used
the more elaborate symbols x(2) or f1(z) and y(#) or fa(z) instead of x and
y to denote distances. Thus we could have written

@17 + [y(A]* = 100,  x()*'() + y(1)y'() =0
AP + [LOF =100, fid)fi() + f()fs#) = 0

instead of (3.83) and (3.84). One who wishes to do so may insist that
(3.83) and (3.84) abbreviate more meaningful formulas just as the sym-
bols AA and AAA abbreviate Alcoholics Anonymous and American
Automobile Association. It is, however, required that we learn the
abbreviations to expedite our work and to enable us to understand others
who use the abbreviations.

When we are interested in problems involving rates of change of the
volume 7 and the radius 7 of a sphere, we start with the formula

(3.85) V=4 or V@) =@

Supposing that 7 and r are differentiable functions of time z, we can
differentiate to obtain

(3.851)

or

When numerical values are assigned to two of the three quantities 7,
dr/dt, dV/dt, we can solve (3.851) for the remaining quantity.

We need very little information about the external world to appreciate
the idea that if an appropriate piston is pushed into a closed cylinder con-
taining a gas, then the volume 7 of the confined gas will decrease and
the pressure p exerted by the confined gas will increase. In appropriate
circumstances, calculations can be based upon the formula

(3.86) oV =,

where p and 7 are differentiable functions of ¢ and ¢ is a constant. Dif-
ferentiation with respect to ¢ gives the formula

(3.861) p% + V‘%’ —0,

which involves four numbers. When three of these numbers are known,
we can calculate the remaining one.

If a particle is moving along the graph of the equation y = 2 in such
a way that its coordinates x, y are differentiable functions of ¢, then

(3.87) &

4 @x
dt t

=2xd
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When two of the three numbers in this formula are known, we can calcu-
late the remaining one. Some more or less instructive problems involy-
ing such motions require use of the formula

(3.871) v = \/(g-jf)z + (%’-)2

for the speed of the particle. When motions in Ej are to be investigated,
it may be advantageous to use the vector formulas

(3.88) r=xi+9yj+:k
_dx,  dy.  dz
(3.881) v—-a?1+2?3+zk

in which x, y, z represent the coordinates of the particle at time t. Of
course, this motion reduces to motion in the xy plane when z = 0 for
each t.

Problems 3.89

1 Asin Figure 3.89], a rope 13 feet long extends from a boat to a point on
a dock 5 feet higher. A man on the dock is pulling rope in at the rate of 72 feet
per minute. How fast is the boat moving?
Ans.: 78 feet per minute.
2 A light atop a pole is H feet above a level
13 street. A man £ feet tall walks steadily, F feet per
second, along a line leading away from the base of
T=== == == the pole. At what rate is the tip of his shadow

moving when he is x feet from the pole?
Figure 3.891

Ans.: _Hi—-F—k feet per second.

8 We may be short on information about formation of raindrops in clouds,
but we can study the growth of a spherical drop during the part of its develop-
ment when, for some constant %, the rate, in cubic centimeters per second,
at which it collects water is the product of t and the area of its surface. At
what rate does the radius increase? A4#us.: k centimeters per second.

4 It is observed that the radii of volatile mothballs decrease at the rate of
0.5 centimeter per year. Find the rate at which mothballstuff is evaporating
from a collection of 100 mothballs of radius 0.6 centimeter. Ans.: About 226
cubic centimeters per year or about 0.62 cubic centimeter per day.

5 Sand is falling at the rate of 2 cubic feet per minute upon the tip of a
conical sandpile which maintains the form of a right circular cone the height of
which is always equal to the radius of the base. Sketch a figure and calculate the
rate at which the height is increasing when the height is 6 feet. Ans.: 1/187 feet
per minute.

¢ Thread is being unwound at the rate of 4 centimeters per second from
an ordinary circular cylindrical spool of radius R centimeters. The unwound
part of the thread has length s and is stretched into a line segment TE tangent
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to the spool at the point T. Find the rate of increase of the distance from the
axis of the spool to the end E of the thread. Hint: It is not necessary to make an
extensive study of the path traversed by the end E; it is sufficient to construct
and use an appropriate right triangle 4ns.: A4s/\/R% + ;2 centimeters per
second.

7 A particle is moving with constant speed % along the graph of y = sin x
in such a way that its x coordinate is always increasing. Derive the formulas

ﬂ—cosxd—x d_x__k— dy _ k cos x
& & & Tty & Viteows

involving the scalar components of the velocity. Show also that

d* _ k?sin x cos %
d2 (1 4 cos? x)?

8 A particle of mass m starts from rest (that is, starts with speed 0) at the
point (xo,y0) of Figure 3.892 and, with the earth’s gravitational field pulling it
downward, slides without friction on the graph of the equation y = x2 We
grasp an opportunity to see how basic scientific concepts can be employed to
obtain information about the motion of the particle.

When O £ y < 90 and the particle is at the point (x,y), y
the loss in potential energy is mg(yo — 9) and the gain G030
in kinetic energy is $m|v|? so
[v[* = 2¢(y0 — ). %)
With the aid of this information, derive the formulas \l
x
dx\* . Yo— (dy) _ x”(yo =) ;
(F) -z G T+ Figure 3.892

which determine (except for algebraic sign) the horizontal and vertical scalar
components of the velocity of the particle when it is at the point (x,y).
Remark: There is a reason why the formulas refuse to tell the signs of dx/dt and
dy/ds. As time passes, the particle oscillates to and fro over an arc of the
parabola in such a way that the scalar components of the velocity are sometimes
positive and sometimes negative.

9 Figure 3.893 shows a connecting rod of length b which earns its name by
connecting a piston (which is free to
move to and fro in a cylinder) to a
point P on a crankshaft which is free
to rotate in a circle of radius 2 having
its center at 0. We should not be too
busy to observe that b exceeds 2a in
ordinary engines and pumps. Obtain
a formula relating dx/dt, the scalar velocity of the piston, to df/dt, the angular
speed of the crankshaft. Hint: Use the law of cosines in the form

b2 = a? 4+ x2 — 2ax cos 6.
dx axsin § dé

Am'gt———x—acosozt”

Figure 3.893
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10 Let ¢ be the angle between the lines of Figure 3.893 that have lengths 3
and x. Show that
d¢a acos §df
“bcos ¢ a

Hint: At each time the numbers 2 sin 6 and 5 sin ¢ are equal to each other
because they are both equal to the distance (or the negative of the distance)
from P to the line having length x. Thus we use a slight extension of the trigo.
nometric law of sines.

11 A circle of radius R has its center at the point (O,R) of an xy plane. A
motorcycle is racing at night along the circle in the first quadrant toward the
origin. When the motorcycle is at distance s (measured along the circle) from
the origin, its headlight illuminates a spot at the point (x,0) on the x axis. Show
how the rate at which the spot is moving depends upon R, s, and the rate at
which the motorcycle is moving. Outline of solution: Study of an appropriate
figure can lead us to the first and then the second of the formulas

1) % = tan ¢, x = R tan fﬁ,

where ¢ is the angle between the vectors running from the center of the circle
to the origin and the point (x,0), and

) length ofarc /2 s
&) radius = R ~ 2R
Since
d _dsing¢  cos’ ¢ + sin? ¢ d¢ d¢
©) 7B = Zcos e cos? ¢ = sec’ é ar’

differentiating with respect to ¢ gives the answer

(4) ax _ % sec? —— ds,

Remark: In the context of the motorcycle problem, ds/dt and dx/dt are both
negative. The answer will give very interesting information to those who study
it. Those who do not use the metric system for measuring distances and speeds
may observe that if s and R are numbers of feet and ds/d: is a number of miles
per hour (or furlongs per fortnight), then dx/d: will be a number of miles per hour
(or furlongs per fortnight).

12 A man or a boy or a particle is, for reasons that are sometimes explained,
at the point Pi(x1,y1,21) and is moving with speed ¢, in the direction of the unit
vector aii + b1j + ¢;k. A second animate or inanimate object is at the point
Py(x2,92,%2) and is moving or being moved with speed ¢, in the direction of the
unit vector asd + bsj + ck. We are required to find the rate at which the dis-
tance between the two objects is changing. Do it. Solution: Let the bodies
be at the points P(x,y,2) and Q(u,7,w) at time . The distance between the bodies
at time ¢ is then the positive number s for which

M st=w =2+ (0 — 9?2+ (w —2)*
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Even though we have written (1) in such a way that ¢ does not appear, we rise
to the occasion and differentiate with respect to ¢ to obtain

du dw dz
@ ’dt (w=2\2 ~ )+(v y)( t)+(w_z) 72—2?)'
To obtain the answer, we determine s from (1) and then ds/d¢ from (2) when
(3) U = X2 V=Y W = Zg, X = X1 ¥y =9y, z = 21
du do dw d: d:
“4) e g2a2 P gaba, T 9% 'dz': = 4y, 7% = g1,
dz
a2 = e

Remark: The formula (2) is trying to tell us something. The vector Fa in the
formula

) PO=@w—x)i+(0—9)j+ (w—2k

is the displacement of @ relative to P. The velocity v of Q relative to P is
obtained by differentiating this with respect to . Thus

_ (dw _ dx\ . dv _dy
© v_<a’t—dt) dat T dt +( )
Hence (2) tells us that

Q & - P,

that is, the left side is the scalar product of the displacement vector and the
velocity of @ relative to P.  Since ]PQI = s, the vector PQ/: is a unit vector in
the direction of PQ The relations (2) and (7) therefore bear a simple message.
They tell us that the rate of change of the distance between two bodies is the scalar
component of the relative velocity of the bodies in the direction of the line joining the
bodies. 'This agrees with and is perhaps even a consequence of the fact that if
one body moves in a circle having its center at the other body, then the distance
between the bodies is always the radius of the circle.

13 Kitty was riding a horse on a merry-go-round of radius R. When she was
south of the center pole and going east with speed s, she exuberantly threw a ball
toward the pole. Kitty expected to hit the pole, but unfortunately Chester was
riding gallantly ahead of her and the ball hit him on the chin when he was east of
the center. Sketch a figure showing the east and north vector components of the
velocity (relative to terra firma) of the ball and mark the place where Chester was
sitting when Kitty threw the ball.

3.9 Increments and differentials As we become educated, we pick
up assorted ideas akin to the idea that we never try to find the weight
(1 avoirdupois grain or 0.0648 gram) of a kernel of medieval wheat by
finding the weight of a truckload of the stuff and subtracting the weight of
the decreased load resulting from removal of the kernel. The difficulty
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lies in the fact that small relative errors in the large weights can produce
huge relative errors in the small difference. The obvious way to find
the order of magnitude of the number Ay defined by

(3.91) Ay = f(x + Ax) — f(x)

is to calculate the terms on the right side and subtract. However, when
the numbers Ax and Ay are very small in comparison to x and f(x) and
f(x + Ax), this calculation can be thoroughly tedious and impractical.
The following alternative way of estimating Ay is very often used. If
f and x are such that f/(x) exists, we can define ¢(x,Ax) by the formula

(392) by fled 8 Z 1) - i 4 (e n)

and conclude that

(3.921) lim é(x,Ax) = 0.

Az—0

Multiplying (3.92) by Ax gives the formula
(3.922) Ay = f'(x) Ax + ¢(x,Ax) Ax,

which separates Ay into the sum of two “parts.” In case f'(x) 5% 0 and
Ax is near 0, the “part” ¢(x,Ax) Ax is small in comparison to the “part”
f/(x) Ax and the number f'(x) Ax is the “principal part” of Ay. Therefore,
when f'(x) # 0, we can write the formula

(3.93) Ay ~ f'(x) Ax

to mean that the numbers Ay and f'(x) Ax have the same order of mag-
nitude when Ax is near 0, that is,

lim AY _ —

a0 f'(%) Ax

In any case, it is a common practice to use the number f/(x) Ax as an
approximation to Ay when f, x, and Ax are given and |Ax| is judged to
be small enough to make the approximation useful. In some cases it is
equally useful to use the number Ay/f'{x) as an approximation to Ax
when f, x, and Ay are given.

We have seen that, in appropriate circumstances, the numbers Ay
(an increment of y) and Ax (an increment of x) are such that Ay and f/(x) Ax
are nearly equal in the sense that their ratio is nearly 1. While it may be
difficult to see why we should become excited about the matter, it is
worthwhile to think about and even use pairs of numbers dy and dx for
which dy is exactly (not merely approximately) equal to f’(x) dx so that

(3.94) ay = f'(x) dx.
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Such numbers dy and dx are called differentials, and some useful observa-
tions can be made. When f and x are such that f'(x) exists, we can let
dx be any number that pleases us and calculate dy, and, provided f'(x) #
0, we can also let dy be any number we please and calculate dx. Qur
interest in differentials can start to develop when we see that, as Figure
3.95 indicates, the point (x 4+ dx, y + dy) must lie on the line tangent
to the graph of f at the point (x,y). This is true because f'(x) is the
slope of the tangent and (3.94) implies that dy/dx is this slope when
dx # 0. Since increments Ay and Ax are numbers such that the point
(x + Ax, y + Ay) lies on the graph of f and differentials dx and dy are
numbers such that the point (x + dx, y + dy) lies on the tangent to
the graph at the point (x,y), it is clear that both of the two equalities
dx = Ax and dy = Ay can be true only when the two points (x + Ax,
y + Ap) and (x + dx, y + dy) coincide at a point of intersection of the
graph and the tangent.

(x+Ax, y+AY)

(x + Axi y +Ay)
(x+dx, y+dy)
(x+dx, y+dy)
(=) |
. de 1
> (xy) Ax dx Ax
Figure 3.95 Figure 3.951

It is particularly easy to produce the differential formula (3.94) when
we use the Leibniz notation for derivatives. The calculation in the left-
hand column

7=1@ =
Y _ oy =
= =f@ 2 =12

dy = f'(x) dx dy = 2x dx

produces the formula whenever f and x are such that f/(x) exists, and the
calculation in the second column shows how things go when f(x) = x2
This circumstance emphasizes the fact that, when f and x are such that

f'(x) exists and % is as usual the derivative f'(x), the differentials dy
and dx are defined in such a way that the quotient % (dy divided by dx)

is the same as the derivative % when dx % 0. To find the differential

formula relating dy and dx when f and x are given, it is therefore sufficient
to set y = f(x), differentiate to obtain the formula

(3.952) % = f'(%),
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and then multiply by dx. A little experience with these things makes us
realize that if y = sin x, we can write the formula dy = cos x dx without
bothering to write the intermediate step dy/dx = cos «.

In most situations where increments Ay, Ax and differentials dy, dx
simultaneously appear, it is convenient to suppose that dx = Ax. In
such cases, glances at figures more or less like Figure 3.951 can fortify
the idea that Ay can easily be twice dy when Ax and dx are equal but
not small, but that Ay and dy must have the same order of magnitude
when f'(x) £ 0 and the equal numbers Ax and dx are near 0. Thus a
useful cookbook modus operandi runs as follows.

When f, x, and Ax are given such that f'(x) #% O and we want an approxi-
mation to the number Ay defined by

(3.96) Ay = f(x + Ax) — f(x),
we put Ax = dx, calculate the number (or differential) dy defined by
(3.961) dy = f'(x) dx,

and use dy as an approximation to Ay.

It is instructive to consider a thoroughly simple example in which all
of the details are easily understood. Letting ¥ and Ax be numbers which
could be 38.27 and 0.05, we can determine the increment Ay in the area
of a square when the lengths of its sides are increased from x to x + Ax.
Letting y = % and y + Ay = (x + Ax)? we find that

3.97) Ay = (x + Ax)? — x? = 2x Ax + Ax2

When Ax > 0, the number 2x Ax is the sum of the areas of the two
rectangles of Figure 3.971 which have dimensions ¥ and Ax. The number

As

Ax
Figure 3.971

Ax? is the area of the smaller square in the upper right-hand corner of
the figure. The differential dy is, when dx = Ax,

(3.972) dy = 2x dx = 2x Ax,

and it is easily seen that this is a good approximation to Ay when Ax is
small in comparison to x.

It is sometimes convenient to solve problems more or less like the fol-
lowing one in order to determine the accuracy of measurements required
to produce required accuracy of results computed from the measurements.
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If we measure the edges of a cube and decide that, subject to errors in
measurement, each side has length x, we conclude that, subject to con-
sequences of errors in measurement, the volume 7 of the cube is 3.
If the edges have exact lengths x 4 Ax, then the exact volume is (x - Ax)3,
or 7 4+ AV, and the number A/ is the error in ¥ produced by the error
Ax in x. In quantitative treatments of this matter, we let 7 = %% and
use the differential d7 defined by

(3.98) av = 3x dx

as an approximation to A”. In some practical situations, it is reasonable
to assume that (for some positive constant p that might be 4 or 2 or 10),
the error dx in x has a magnitude not exceeding p per cent of x. This
means that

(3.981) |dx| < 100 |#].

With this assumption, we find from (3.981) that

p . _3p ,_3p
(3.982) |dV| £ 3x2 £ 100% = 106 = 1057

This leads us to the idea that if we measure the length of the edge of a
cube with an error not exceeding p per cent, the resulting error in the
computed volume will not exceed 3p per cent.

Problems 3.99

1 Find the increment A4 and the differential d4 of area produced when a
circular disk of radius 7 is expanded or contracted to a circular disk of radius
r4+h  Ans.: A4 = w(2hr 4+ k%) and dA4 = 2wrh. Remark: We have another
opportunity to try to understand a formula. Sketch a figure in which |A] is
small in comparison to 7 and observe that the difference of the two disks is a
circular ring of thickness |A|. Since the inner (or outer) boundary of this ring
has length 27, it is not surprising that the area of the ring is approximately
2arr| k).

2 The area 4 of a sphere of radius 7 in Ejs is 4r7?; this should seem to be
reasonable because the area of a hemisphere should be about twice the area of an
equatorial disk. The volume 7 of the spherical ball bounded by this sphere is
#77%.  Find the increment A¥ and the differential 47 of volume produced when
the radius changes from r to » + 2. Show that the formula for 47 can be put
in the form d7 = Ah and try to see a geometrical reason why A4k should be a
good approximation to A” when |4] is small.

3 Use differentials to obtain an approximation to the number of cubic
centimeters of chromium plate that must be applied to the lateral surface of a
circular cylindrical rod 30 centimeters long to increase its radius from 2.34
centimeters to 2.35 centimeters. Ans.: About 4.4 cubic centimeters.
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4 Suppose that x and y are differentiable functions of ¢ such that

(¢))] x4+ y? =1
Show that differentiating with respect to ¢ and multiplying by 4t gives the formula
(2) xdx +ydy =0.

Remark: In caset = x, we can divide (2) by dx and recover the first of the formulas
dy ax
(3) x+ydx"‘0, xdy+y—0’

which is valid when 9 is a differentiable function of x for which (1) holds. In
case ¢t = y, we can divide (2) by dy and recover the second formula in (3), which
is valid when # is a differentiable function of y for which (1) holds.

5 Supposing that 7 is a constant and x is positive, observe that the first
of the formulas

¢)) Yy = x", logy = nlog x
is equivalent to the second. Use these formulas to obtain
) dy = nx""ldx
and
1 1
3) v dy =n p dx.

Use (2) to show that if |dx| £ (»/100)x, then |dy| = (In|p/100)y. Then use (3)
to obtain the same result.
6 Gradual changes in tensions or compressions or temperatures can produce
gradual changes in the lengths of iron rods that form a triangle such as that
shown in Figure 3.991. Therefore, because the law of cosines
) . w  must hold at each time #, it makes sense to suppose that we
e

have four positive differentiable functions of ¢ such that
u

1 w? = 42 4 92 — 2uv cos 6.
Figure 3.991
Equate the derivatives with respect to ¢ of the members of (1)

and multiply by df to obtain the differential formula
) wdw = (u ~ vcos 8) du + (v — u cos ) dv + uv sin 0 46.

Remark: It is sometimes both possible and unwise to underestimate potentialities
of formulas. The formulas (1) and (2) contain eight numbers %, v, w, 8, du, dv,
dw, and df. There are many situations in which some information about some
of these numbers is known and the two formulas can be used to eke out more
information. Some problems are much more recondite than the one solved by
finding w from (1) and then finding dw from (2) when the values of the other six
numbers are known.

7 Supposing that 7, L, and g are positive, observe that the first of the
formulas

1 T=21r\/z? T2=41r'*‘§, logT=log21r+%logL—%logg
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is equivalent to the other two. Use these formulas to obtain

— o (EYHed —Ldg
® ar=x(3) 5
3) 2TdT.—=4,,.25_‘lL%L_dg
1 11 11
€) Tl =374 —35%

Making a suitable application of the fact that |4| < |B| + |C| whenever 4, B,
and C are numbers (not necessarily positive) for which 4 = B + Cor 4 = B — C,
use (2) to show that if |dL| = (p/100)L and |dg| < (¢/100)g, then |dT| <
[3(p + ¢)/100]T. Repeat the process by use of (3) and (4). Remark: The
first of the formulas (1) is a standard formula for the period T (a number of
seconds) of a pendulum of length L which oscillates in a world where the scalar
acceleration of gravity is g. Our result shows that if errors in measurement of L
and g do not exceed p and g per cent, respectively, then the error in T will not
exceed ¥(p + ¢) per cent.

8 A pendulum clock gains 3 minutes in 24 hours. By what per cent should
the pendulum be lengthened? Ans.: 0.42 per cent.

9 Under appropriate conditions the pressure p and the volume 7 of confined
gas satisfy the relation

* P77 =C,

where v (gamma) and C are constants that depend upon the gas and the condi-
tions. Obtain the formula

dp , vdvV _
(** > T 7 =0

in two different ways. First, differentiate the members of (*) as they stand.
Then operate upon the equation obtained by taking logarithms of the members
of (*). Remark: It is so often desirable to take logarithms before differentiating
that the process is named logarithmic differentiation. The derivative of the
logarithm of a function is called the logarithmic derivative of the function.

10 Apply the procedure of the preceding problem to the relation

pV = nRT,

in which # is the number of gram-moles of a gas, R is a universal proportionality
constant known as “the gas constant,” and T is the absolute, or Kelvin, tempera-
ture. It is now supposed that p, 7, and T are all functions of ¢ and the relation

dp , dV dT
Pt T =T
is to be obtained.
11 For dense projectiles fired short distances over a horizontal plane, the

range R is calculated from the formula

2
% .

R = 2sin 2e,
g
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where g is the (scalar) acceleration of gravity, v, is the initial speed, and « is the
angle of elevation of the gun so 0 < @ < w/2. Find a formula in which we cap
put estimates of errors in g, 9, and « to obtain an estimate of the resulting error
in R. Hint: Use logarithms. A4#ns.:

dR
R

d %0
Y0

=2

dg 20 cos 2a| | de |
aHRE

sin 2a

Remark: When a is not too close to 7/2, the factor multiplying |da/c| has the
order of magnitude of |cos 2¢]. When « is near 7/2, the factor is very large.
We are now able to enlighten rabbit hunters when they ask us why they are
unlikely to hit their targets when they shoot almost straight up.

12 Find the maximum possible percentage of error in the computed estimate
of the volume of a cone that can be caused by errors not exceeding p per cent and
¢ per cent in measurements of the height and the base radius of the cone. Ans.:
b + 2.

13 When three resistors having resistances 7, s, 73 are connected in paralle],
the resulting resistance R is determined by the formula

1 1,1, 1

With the aid of the fact that resistances are always positive, prove that if no
error in a resistor exceeds p per cent, then the error in R produced by these errors
cannot exceed p per cent. Remark: This conclusion really means something to
those who design the mazes hidden in our television sets. Problems involving
silver bands and gold bands and tolerances (percentages of error) cannot be
ignored. Engineers do not like to behave like rabbit hunters who shoot almost
straight up.

14 Show that the conclusion of the preceding problem is violently false if the
numbers 7y, 75, 73 are not resistances of resistors but are numbers of which some
can be positive and some can be negative.

I5 Letr be a differentiable function of . For example, we may have

0 () = 2(Ai + y()i + 2()k,

where all of the functions are differentiable and the vectors i, j, k are the unit
orthonormal vectors of Section 2.2. By a definition analogous to the one involv-
ing scalar differentials, a vector dr and a scalar d: constitute a pair of differentials
if

(2) : dr = r'(2) dt.

With or without using the rectangular representation (1) and the fact that

[r@)2 = O + ®)]? + O,
prove that

dlr()|? = 2r(2)-dr(z).

16 The specific heat of a substance is sometimes said to be the number of
calories of heat required to raise the temperature of 1 gram of the stuff 1 degree
centigrade, This definition is sometimes useful but, because substances have
different specific heats at different temperatures, the following definition is much
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better. The specific heat o (sigma) of a substance at temperature x is Q'(x),
where Q(x) is the number of calories of heat required to raise (or lower) the temperature
of 1 gram of the siuff from 0°C 10 x°C. For study of this matter, let o* be the
specific heat calculated from the first definition so that

[6)) ¥ = M, o= Q'(x) = lim Q@ + k) — Q(x)
1 =0 h

We can see one of the reasons why knowledge of calculus is needed for study of
physical chemistry when we see that ¢* is a difference quotient and o is a deriva-
tive. Since the graph of Q is never (or not ordinarily) a line, ¢* and o are usually
different. The schematic Figure 3.992 illustrates one situation. As is easily

A/ —awen
o o*
——Q

x x+1
Figure 3.992

imagined, there are situations in which the graph of Q is “almost straight” over
the interval from x to x + 1 and ¢* is a “good approximation” to ¢. On the
other hand, o* can be dust and ashes when the interval from x to x + 1 straddles
a temperature at which a substance changes from a solid state to a liquid or from
a liquid to a gas.

17 There are reasons why we should conclude with a historical remark. In
the good old days when the ‘““doctrine of limits” was based upon visions of gal-
loping numbers and the “infinitely small infinitesimals” were considered to be
almost the most wonderful products of human thought, differentials were con-
sidered to be the most wonderful. Differentials were the important things, and
the things that we now call derivatives were merely the “differential coefficients”
appearing in formulas like dy = f'(¥) dx or dy = 2x dx. Thus differentials have
their origin in old mathematics; it was the fashion to consider them to be “infi-
nitely small” but not quite zero. When at long last the concept of the “infi-
nitely small” was becoming obsolete, attempts were made to salvage differentials
by promoting the idea that they really are not ordinary numbers at all but are
numbers that are in the process of approaching zero.t So far as this course is
concerned, the details of this remark are unimportant. We should, however,
know that differentials have a long and checkered history and that we may
expect to encounter some quite strange concepts as we get around in the world.

t For those who have not peered into old books and consider this to be too incredible to be
true, we quote three passages from W. E. Byerly, “Elements of the Differential Calculus,”
Ginn and Heath, Boston, 1879. Page 149 tells us that “A4n infinitesimal or infinitely small
quantity is a variable which is supposed to decrease indefinitely; in other words, it is a variable
which approaches the limit zero.”” Page 185 tells us that “It is to be noted that a differential
i5 an infinitesimal, and that it differs from an infinitesimal increment by an infinitesimal of a
kigher order.” Page 186 tells us that “there is a practical advantage . . . in regarding the
differential as the main thing, and looking at the derivative as the quotient of two differentials.”
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4.1 Indefinite integrals There are about as many different types of
integrals in mathematics as there are elements in chemistry, but only a
few of them occur in first courses in calculus. This chapter introduces
basic ideas about two kinds of integrals. These ideas may not be coming
too soon to meet the needs of students taking other courses in which
mathematics appears. In this section, and in some other places where
the deviation from complete linguistic rectitude does not create deceptive
statements, we sometimes refer to ‘““the function f(x)” or to “the function
having values f(x)” instead of to the function f which, for each x in some
interval, has the value f(x).

It is very often true that we have a given function f(x) and we are
interested in those functions F(x) or y or y(x) (if any) for which

@11) PO =) o 2=t

when x lies in some interval. Before discussing this situation, we intro-

duce notation that is universally used. In case F(x) or y is a function for
202
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which (4.11) holds, we represent it by the ingenious symbol in the formula
(4.111) Fx) = [f(x)dx  or y = [f(x)dx.

The second equation is read ‘“‘y equals an integral of eff of x dee x.”
We should all know that it can be read “y equals an indefinite integral
of eff of x dee x,” or “y equals a function whose derivative with respect
to x is f7 or ‘“y equals an antiderivative with respect to x of f,”” but
simplicity always prevails and we read what we see and say what is to
be written. The integral sign [ is an elongated S, the f(x) is called the
integrand, and the dx tells us that derivatives with respect to x are
involved.t This matter turns out to be so important that we must con-
tinually remember the following definition.
Definition 4.12 The indefinite integral in the formula

(4.121) y = [f(x) dx = ¢(x)

15 (if 1t exists) a function of x whose derivative is the integrand f(x); in other
words, the formula

(®122) D~ 1) = #/()

and the formula (4.121) are both true or both false.
For an example, let us see what we know and can learn about the
functions y for which the equivalent formulas

(4.123) —= = 2x, y = [Zx dx

are valid. We may remember that we differentiated x? and got 2x.
Hence a function y for which the formulas are valid might be x? but it
does not have to be because y might be 2 + 1 or #2 — 5 or x% + 416.
It can be proved that a given function y will satisfy the equivalent
formulas (4.123) if and only if there is a constant ¢ such thaty = x% + ¢.
Thus

(4.124) [2xdx = x>+ ¢c.

To be precise about this matter, we state the following theorem which
will be proved later in a remark following the proof of Theorem 5.57.

1 Perhaps 1t should be emphasized at once that the dx in the symbol is not a number. If
We resist temptations to jump to the conclusion that the dx and the crossbar on the f and
the integral sign are numbers, we overcome a difficulty that makes some people feel that the
good old symbol should be abandoned in favor of another which provides fewer temptations.
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Theorem 4.13  If two functions y and F have the same derivative over 4y
interval, then there is a constant ¢ such that

y(x) = F(x) + ¢

for each x in the interval.
Considerable information is packed into the little formula
’

(4.14) y = Jf(x) dx = F(x) + ¢

in which F(x) is any one particular function whose derivative with
respect to x is, over some interval, the integrand f(x) of the integral
It tells us that, whatever the value of the constant ¢ may be, F(x) + ¢
is a function y whose derivative with respect to x is the integrand f(x).
Moreover, it tells us that if y is a function whose derivative is the inte-
grand, then there must be a constant ¢ for which y = F(x) + ¢. The
full meaning of the assertion (4.14) has been stated, and this is what is
important. Simply because we must converse with our fellow men and
must read scientific writings, we must join our fellow men in learning
some terminology. The constant ¢ in (4.14) is a “constant of integration”
and the poor fellow is sometimes said to be “arbitrary.” The integral
is called an “indefinite integral” to distinguish it from other types of
integrals that are sometimes called ‘“definite integrals.” This rather
strange terminology will not injure us if we do not allow it to interfere
with our understanding of the meaning of (4.14). The assertion “each
indefinite integral of f is the sum of a particular indefinite integral and
a constant of integration” sounds weird but is true. The “meaning”
of the word “indefinite” can be understood if we realize that when ¢ is a
constant, say 416, F(x) 4+ ¢ is an “indefinite integral” of f(x) just as
the mayor of Chicago is an “indefinite citizen” of Chicago.

In case F'(x) = f(x), G'(x) = g(x), and a, b are constants, differentia-
tion formulas show that

(4.15) Jlaf(x) + bg(x)] dx = aF(x) + 5G(x) + ¢
and
(4.16) Jlaf(x) + bg(x)} dx = aff(x) dx + bfg(x) dx.

These formulas tell us that “integrals of sums are sums of integrals” and
that “constants can be moved across integral signs.”” The formulas do
not provide justification for moving functions across integral signs; other-
wise, we could replace s by = in the formula

(4.161) Jf(x) dx 5 f(x) [dxe = f(x)(x + )

and eliminate all of our troubles.
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The following little table gives two versions of each of the five simplest
and most useful integration formulas.

n xntl nQu , !
(4.171)[xdx— +1+c /uadx—m+c
(4.172)fsinxdx=—cosx+c /sinu%dx=—cosu+c
(4.173) /cosxdx=sinx+c /cosu%dx=sinu+c

du
(4.174) /z’dx=e"+c fe"z—dx=z"+c
(4.175) /i-dx = log |x| + ¢ /lj—udx = log |u| + ¢

In the formulas of the second column, % is supposed to be a differentiable
function of x. Subject to the requirement that n ¥ —1 in (4.171), and
that x and » are confined to intervals over which the integrands in (4.171)
and (4.175) exist, these formulas are proved by observing that they have
the form (4.14) where F/(x) = f(x). We need not learn all of the formulas
we see, but the formulas in the above table are used so often that they
must be learned.

When the formulas in the column on the right are being used, presence
of the factor du/dx must be carefully observed. It is not correct to
think of u as being sin x and to claim that use of (4.171) shows that the
members of the formula

ind
(4.181) / sin? x dx # s1n3 T +e
are equal. We can, however, think of % as being sin x and read the.left

member of the formula
{

in3
(4.182) / sin? x cos x dx = su; i

in the form “integral of « to the nth power dee » dee x dee »” and then
apply (4.171) to obtain the right member.
It is not correct to claim that the members of the formula

(4.183) f G+ 72 dw 2 OF b2t 1) N4

are equal. We can, however, let I denote the left member, observe that
the integrand has the form »», where du/dx = 5, and write

(4.184) 1-14 f Gz + 7)2(5) dx = é("'—"—;iﬁ +
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Thorough understanding of this particular example is of utmost impor-
tance because it involves an idea that is very often used to overcome a
difficulty. In (4.183) we have an integral of the form fu" dx which does
not have the form [u” (du/dx) dx. However, du/dx is 5, a constant,
so we can insert the factor 5 in the integrand and compensate for the deed
by inserting the factor % before the integral.

To obtain the formula

(4.185) / : j_ 2w dr = log (1 4+ ) + ¢,

1

we read the left side “integral of one over » dee « dee x dee x”” and apply
(4 175). If the factor 2 had been missing from the integrand in (4.185),
it would have been necessary to insert the factor and compensate for the
deed. Thus

(4.186) /T—_*—’f?d 1/1+ 2xdx=—1-log(l+x2)+c

Our very modest table of integrals beginning with (4.171) does not
reveal the answer to the question whether there are any functions F(x)
for which the formulas

(4.187) F(x) = ﬁ, /1 T sdx = F(x) + ¢

are valid. Many useful purposes are served by this table and the more
extensive one appearing opposite the back cover of this book, but one
who has solved several of the problems at the end of this section is ready
to recognize the fact that there exist much more elaborate tables of
integrals. The books of Buringtont and Dwight] are exceptionally use-
ful examples of books that give hundreds of integration formulas, tables
of valuesof functions, and other mathematical information. It is possi-
ble to proceed through our course without using tables other than those
on the back cover and facing page of this textbook. However, students
who contemplate following educational programs in which mathematics
appears are well advised to purchase one of these books (or perhaps
another more or less similar one recommended by teachers) and to spend
occasional moments (and sometimes hours) inspecting its organization
and studying its contents. Ability to understand and use the tables is
not inherited but can develop rapidly as more calculus is learned.
Experience shows that persons who have completed courses in calculus

t R. S. Burington, “Handbook of Mathematical Tables and Formulas,” 3d ed., McGraw-
Hill Book Company, Inc., New York, 1948, 296 pages.

1 Herbert Bristol Dwight, “Tables of Integrals and Other Mathematical Data,” 4th ed.,
The Macmillan Company, New York, 1961, 336 pages.
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refer to tables in books of tables in preference to tables in calculus text-
books. Teachers can be particularly helpful when they require that
their students purchase identical books of tables and make frequent
comments about use of the tables. Sometimes use of a book of tables is
permitted in tests and examinations v:vhere use of a calculus textbook is

forbidden.

Problems 4.19

1 Tell the meaning of [f(x) dx. Be prepared to give full information at
any time.
2 Show that, when x is properly restricted,
4x3

@ f(2-|’-3x+4x’)dx=2x+37‘xz+—3—+c

— %2 x? -
(b)fl_xa’x=x+7+c o

O [(Vitm)ds=36+avite

x3

@ /x(l—x)dx="7z—3+c

3 Is the formula
Jx¥dx = x[x?dx (?)
true or false?
4 Brevity is sometimes but not always a virtue. It can be claimed that the
second formula in (4.171) would be much more easily understood and used if it
were written in the form

[ b as = EEE

Think about this, and then write the other four formulas in terms of the Newton
notation for derivatives. Note that the last formula takes the form

!
[ 1;83 dx = log lu(x)| + ¢.
Remark: We can abbreviate (4.171) to the form fu™ du = »**/(n + 1) + ¢, but
for present purposes we can hold the view that further abbreviation of (4.171) is
a step in the wrong direction. We need not be in a hurry to join the ranks of
gullible people who think that the du appearing in the symbol fu du is a number
because a correct result is obtained by pretending that du is “the” differential
%'(x) dx and writing

Judu = [u(x)e'(x) dx = Fu@)]* + c

When we do not use the abbreviation, we do not need to worry about it.
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5 Look at the integral
S+ 5x)% dx
and tell what must be done to enable us to evaluate the integral by use of the

formula involving u™.
6 Evaluate the integrals

(a) f (1 — x)%dx ) / sin 2x dx @) f cos 3x dx
@ f (1 — 24)?dx © f £ dx o [ ﬁ dx
Ans.:

(@) -1 —x)¥4+¢ () —%cos2x+¢

(¢) ¥sin3x+¢ @ —%1 —2x)3 +¢

() 3=+ ¢ (f) 3log |2+ 3| + ¢

7 Sometimes we can make small alterations in the way integrands are written
to put the integrands into forms where basic formulas are easily applied. Pay
careful attention to the examples

sin x 1 .
ftanxdx=/cosxdx= —/cosx(-—smx)dx—- — log |cos x| + ¢

/xlogx /logx_dx_IOgIIngl-'-c
[xe" dx = -g[ e5*(2x) dx = Fe®* + .

Then evaluate
(log x)*
(@) [« vVTF s o [EEy

8 While the terminology plays a minor role in elementary calculus, we can
start learning that the equation

dy
¢)) T = 2x

is an example of an equation that should be called a derivative equation but is
called a differential equation. Functions y for which (1) holds are called solutions
of (1), and we know that (1) has many solutions. The particular solution of
(1) satisfying the boundary condition

(2) y =16 whenx =3
is found in a straightforward way. If (1) holds, then
3) y = f2xdx = x* + ¢,

where ¢ is a constant that can be 5 or —3 or 416 but cannot be all of these things
at once. The function in (3) will satisfy (2) if 16 = 9 + ¢ and hence if ¢ = 7.
Thus the answer is y = x2 + 7. With clues to methods being provided by this
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example, find the solutions of the following differential equations satisfying the
given boundary conditions.

(a)j—i=0,y=1“’henx=0 Ans.:cy =1
(b)d—i=l,y=2whenx=3 Ans.:y =% — 1
© % =cos 2x,y = O whenx =0 Ans.:y = % sin 2%
(‘d)j—z=e",y=lwhenx=0 Ans.:y = ket + %

9 A body moves to and fro on a line in such a way that its scalar velocity
p at time ¢ is given by the formula

v =12 — 8+ 15.

During what interval of time is the scalar velocity negative, and how far does the
body move during that time? Hint: If 5 is the coordinate of the body at time ¢,

then ds/dt = o and hence
3

o~

S =

— 424+ 15t 4 ¢,

|

where ¢ is a constant that is 0 if we choose the origin such that s = 0 when ¢ = 0.
Ans.: % units.
10 1If y is a function of x satisfying the differential equation

@ T =R

and if we know that y > 0, then we can divide by y to obtain the first and then
the rest of the formulas

(2) ;% =k logy=rIkx+ec, y=e=t, g =,k

where ¢ is a constant that depends upon the particular function y with which
we started. But ¢¢ is a constant that we can call 4, so

€)) y = Aek=.

If we know that y satisfies the boundary condition ¥ = yo when x = 0, then we
can put x = 0 in (3) to find that 4 = y, and hence

4 y = yoek=.

Remark: Without assuming that y > 0, we can solve (1) with the aid of a trick.
Transposing a term in (1) and multiplying by ¢ give the first and hence the
second of the formulas

d
P (% - ky) =0, Tr ety = 0.



210 Integrals

This gives the first and hence the second of the formulas
ey = 4, y = A=

More complete treatments of these matters are given in textbooks on differential
equations.

11 After having digested the preceding problem (which required that some
ideas and methods be absorbed), find the solutions of the following differential
equations that satisfy the given boundary conditions

(a)%=y,y=lwhenx=0 Ans.:y = g2
) Z—Z =2y, 9 = 3 when x = 4 Ans.:y = 3269
(c)%=y,y=0whenx=0 An.f.:y=0

12 Fill in the right members of the three formulas

d% dx
22 “r
di? » dt 2 %

=

when

d*x 1,52
(@) - =g Ans.: g, gt + ¢, 52 + et + 2
B) x =32+t + ¢ Ans.: Same as (a)
(©) %‘ = sin ¢ Ans.: cos t, sin t, —cost +¢
(d) j_:‘ = cos 2 Ans.: =2 sin 2¢, cos 2¢, ¥ sin 2t 4 ¢
(e) :_tx = g2 Ans.: 262, o2 Fe 4 ¢

13 A particle P moves in the xy plane in such a way that its acceleration a
(a vector) is always —gj. Thus
a = 0i — gj.
Show that its velocity and displacement vectors must be

vV=oci—+ (—gt + k])j
r=(ct+ )i+ (—%gt’ + kit + Ro)j,

where the ¢’s and %’s are constant. Find the equation of the path in rectangular
coordinates when ¢; # 0 and again when ¢; = 0. Hint: To solve the last part,
put r = xi + yj so that

x = ¢t + ¢o y = —%—gt’ + kit + ko
and eliminate 2.

14 This problem requires us to think about indefinite integrals and gives our
first glimpse of the famous and important formula for integration by parts.
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Let x be confined to an interval I over which two given functions % and o are
differentiable. The standard formula

® £ L99(w) = u) (2) + o' ()
then (why?) gives the formula
@ Tu(x)?’ (%) + v(x)u’(x)] dx = u(x)o(x) + c.

In case the separate integrals are cooperative enough to exist, we can (why?)
put (2) in the form

®) Ju(x)v' (x) dx + [o(x)u'(x) dx = u(x)o(x) + ¢
and transpose to obtain the formula
e Ju(x)o'(x) dx = u(x)o(x) — [o(x)u'(x) dx,

which is known as the formula for integration by parts. For the particular case
in which #(x) = x and o(x) = %, show that (4) reduces to

O] [xe® dx = xe — ¢* + c.

Finally, check (5) by showing that the derivative of the right side actually is the
integrand.

15 Read and work the preceding problem again.

16 With Problem 14 out of sight, start with the formula for the derivative
of a product and construct the formula for integration by parts and give an
application of it.

17 Start with the function fo for which fo(x) = 1 when —1 < x < 1 and
determine the natures of the functions fi, fs, f3, - - * for which the formulas

fa®) = far(x),  fal®) = [faa(®) dx, (n =123, - ")
are valid. 4ns.: There exist constants ¢y, ¢g, ¢3, * - * such that

fl(x) =X + (3]

fz(x) = %xz + c1x + C2

fa(x) = 3% + Fewx® + cox + s

faw) = gt + Fow® + o + cox + 4

etcetera. Remark: These things will appear later.
18 Prove that the first of the formulas

[sgnxdx = |x| + ¢, [sgnxdx = |x] + c2

is correct when # > 0 and the second is correct when x < 0. Prove that there
is no constant ¢ such that the formula

fsgnade = |x| +¢
is correct when x = 0.
19 This problem contains hundreds of parts, and there is much to be said for
spending several hours or days solving a considerable number of them. To
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solve one part, pick an integral formula from a (preferably your) book of tables
that has the form

f(x) dx = F(x) + ¢

(except that most tables omit the constants) and show that F'(x) = f(x). Thjs
promotes an understanding of integral formulas and provides practice in differ.
entiation. It is never too early to start acquaintance with formulas involving
X where X is one or another of a + bx, a? + x2%, a®> — x2%, ax?® + bx + ¢, etcetera.
In these situations, modesty and timidity are not virtues. We profit most when
we attack the problems that seem most impenetrable and discover that they
really are very simple.

4.2 Riemann sums and integrals This section introduces the sums
and integrals that are named after Riemann (1826-1866) in spite of the
fact that Archimedes (287-212 B.c.) knew how special ones could be
used in a few special cases. Let f be a function which is defined over an
interval a £ x < b and has values f(x) such that

(4.21) m=flx) =M (a=x=0)

where m and M are constants. This amounts to saying that f is bounded
over the interval; M is an upper bound and m is a lower bound. Our next
few steps are so simple that it may be difficult to see why they are impor-
tant. As in Figure 4.212, let x be a fixed (or selected) number for which
a < x =b. Thus x can be 5, but it is not necessarily so. Let n be a
positive integer. We make a partition P of the interval from a to x
into n subintervals by inserting points to, ¢, 22, * * * , ta_1, tn, Where

(4.211) a=1 <<t < " <t 1<ty =2x.

These points are the circled points of the figure and are the end points
of the subintervals.

A SN SN tHa # 2 4
t ' ot taez  tny t, ' ¢
Figure 4.212
Let At denote the length of the first subinterval so that A#; = #; — #,
let Az, denote the length of the second subinterval so that Az, = 2, — 4,
and so on so that
(4213) Aty =t — tr_1 (1 =< k =< n).

It is not required that the points o, #1, - - - , 2, be equally spaced. The
greatest of the numbers Az, At,, - + + , At,is called the norm of the parti-
tion P and is denoted by the symbol |P|. Thus |P| is the length of the
longest of the subintervals in P. Our next act introduces the star char-
acters. Let #f (read tee one star) be a number (or point) in the first
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subinterval so that 2y < tf < #,, let £ be in the second subinterval so
that t; < tFf < t2, and so on so that

(4.214) 1 StF S 1<k

fIA

Our machinery, which is still very much simpler than that in an elec-
trically operated dishwasher, enables us to produce numbers that are
called Riemann sums. We multiply f(z¥), the value of f at #f, by Ay,
the length of the interval containing #f, and add the results. Thus, denot-
ing the Riemann sum by the symbol RS, we have

(422) RS = f(&}) Aty + f(8F) Ao + f(&F) At + -« + + + f(tF) Ata.

Because it takes too long to write this, we abbreviate it to the form

4221) RS = 3 fat) An.

k=1

The right side is read “sigma % running from 1 to z eff of tee kay star
delta tee kay” and it denotes the sum of the terms obtained by giving &
the values 1, 2, 3, - - -, n. The 2 (sigma) is called the summation
symbol, and it is very convenient.

Everybody should see that, when the function f and the numbers a
and x are given, it is easy to select the partition P in very many different
ways and to select the points ¢ in very many different ways. When an
electronic computer is kind enough to do the arithmetical chores, it is
even easy to produce very many Riemann sums.

Experience shows that we should avoid future difficulties by allowing
the partitions and Riemann sums to slumber peacefully while we invest
a moment to think about the names which we have attached to the parti-
tion points and the intermediate star points that determine them. The
points in Figure 4.212 were called ty, t1, * * * , t, and &, &, - < =, 1.
We could, without changing the value of the Riemann sum, have called
these same points No, Ay, * * * , An and A¥, A}, - -+, A}, Thus there
is a sense in which the names of these points are “dummy names”; we
could have called the points #’s or «’s or o’s or X’s or p’s or ¢’s. When
this matter is understood, we must ask and answer two questions. First,
why did we avoid the “natural” names xq, %1, * * * , ¥ and ¥, ¥, + - -,
%¥? The answer is that we already have the interval from & to x on an
x axis appearing in our work, and we will have too many #’s around the
house if we allow any more to enter. Secondly, why did we use the names
to t1, * ¢ -, ty and tf, tF, - - -, t¥? The only answer we can give is
that they are as good as any and better than most alternatives. In
situations where we can conveniently use the “natural” names xo, 1,
-+« ,xnand x¥, 2F, - + -, x* we usually doso. Finally, we do not use
the letter ¢ to denote “dummy integers” in (4.214) because the habit
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of using 7 leads to awkwardness when we finish study of calculus and ente;
realms where 4 is always the imaginary unit whose square is —1. We
use & because it is as good as any and better than most.

We now come to the most fundamental remark that appears in the
theory of Riemann integration; analogous remarks appear in theories
of other integrals. Depending upon the function f and the numbers
a and x that have been selected, it may be true (or it may be false) that
there is a number I such that to each positive number e there corresponds
a positive number § such that

(4.23) i i fe b = I <e
k=1

whenever |P| < §. This is, of course, just a precise way of saying that
there may be a number I such that each Riemann sum with a small norm
is near I. If this I exists, then f is said to be Riemann integrable over the
interval from a4 to x and 7 is said to be the Riemann integral of f over the
interval. This integral is denoted by the symbol in the formula

(4.24) I= f: 7() dt

and the symbol is read “the integral from a to x of eff of tee dee tee.”
The numbers ¢ and x are called the Jower limit and the upper limit of
integration, and we always read the lower one first. The symbol ¢ is
called a dummy variable of integration, the derogatory terminology being
applied because the value of the integral would be the same if ¢ were
replaced by s or % or @ or 6 or any other symbol that cannot be confused
with g, x, f, and d. It is a convenience (and sometimes also a source of
misunderstanding, confusion, and controversy) to drag in the notation
of limits and write '

n

(4.25) lim 21 6 8t = [ .

|P|—0 k=

A much more substantial convenience results from boiling this down to

(4.251) limz & a1 = [750) a,

the idea being that we can restore the omitted embellishments whenever
there is a reason for doing so.

In case no such number I exists, we say that f is not Riemann integrable
over the interval from a to x and that f: f(®) dt does not exist (that is,
does not exist as a Riemann integral). To emphasize the fact that a
bounded function f and an interval 2 £ x < b can be such that f: f@) at
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does not exist, we look briefly at an example Let f be the dizzy dancer
function D, defined over the interval 0 < x < 1, for which

D(x) =0 (x irrational)
(4.252) [ D(x) = 1 (x rational).

It is clear that, whatever the partition P of the interval 0 < x < 1 may
be, the Riemann sum

(4.253) kzl D(#F) An,
has the value O if the numbers #f, t¥, - - - | ¢* are all irrational and has
the value 1 if the numbers ¢f, ¥, - - - | t* are all rational. It follows

from this that there is no number I such that to each positive number e
there corresponds a positive number § such that (4.23) holds whenever

|P| < 8. This shows that the symbol /;l D(t) dt has no meaning or that
fol D(2) dt does not exist.

If we suppose, as above, that f is a function which is bounded over an
interval, then the following theorem shows that the answer to the ques-
tion whether f is integrable over the interval depends only upon the set
of discontinuities of f.

Theorem 4.26 A4 function f is Riemann integrable over an interval if
and only if it is bounded and the set of discontinuities of f which lie in the
interval has Lebesgue measure zero.

This theorem is proved in modern textbooks that fully earn the right
to be called textbooks on advanced calculus. The proof is, from our
present point of view, both long and difficult, and we do not need to
know anything about it. Moreover, we do not need to understand the
theorem, but we should not be injured by taking a hasty look at Figure
4.261 and making a modest attempt to understand one of the definitions

(3. Il 14 [3 IS Iz Ie b

Figure 4.261

which has fundamental importance in more advanced mathematics.
A set D of points on a line is said to have Lebesgue measure 0 if to each
¢ > 0 there corresponds a collection [y, Iy, I3, + - - of intervals such that
each point of D lies in at least one of these intervals and, for each n = 1,
2,3, - - -, the sum of the lengths of the first # intervals is less than e.
Sometimes it is very easy to show that a given set D has Lebesgue measure
0 by showing that if ¢ > O, then there exist intervals Iy, Io, I3 - - - such
that each point of D is in at least one of these intervals and, moreover,
the length of 7, is less than ¢/2, the length of I, is less than €/22, the length
of Iy is less than ¢/23, etcetera. The collection of intervals may be a
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finite collection, that is, it may contain only 1 or 2 or 3 or 416 or 31,690
or some other positive integer number of intervals. The collection of
intervals may be a “countably infinite collection,” that is, it may contaip
a first, a second, a third, etcetera, so that to each positive integer %
there corresponds an interval ;. In each of these two cases, the collec-
tion of intervals is said to be a “countable collection.” Only a most
rudimentary understanding of these matters enables us to reach the con-
clusion that if D contains only 0 or 1 or 2 or 3 or 416 or any other finite
number of points, then D must have Lebesgue measure 0. In any case,
we should have at least a hazy understanding of the fact that Lebesgue
(1875-1941) was a great French mathematician and that Theorem 4.26
implies the much simpler following theorem which we are required to
know in this course.

Theorem 4.27 If f is bounded over the interval a < x < b and if f is
continuous over the interval (or is discontinuous but has only a finite set of
discontinuities in the interval), then the Riemann integral in

(4.271) [ 7@ dt = tim Y 16t) s

exists when a < x = b.
As we near the end of the text of our introductory section on Riemann
sums and integrals, we pause to think about our present state and future

development. We have a new symbol, namely, /: f@&)dt. If a<b,

ifa < x < b,and if fis defined over the interval ¢ £ x < 5, then (depend-
ing upon a, x, and f) the symbol may be meaningless or it may be a
number. Answers to questions depend upon partitions and Riemann
sums. Partitions are so simple that our little sister can understand them
completely and be puzzled only by our great interest in them. Riemann
sums Zf(¢}) At are less simple, but we can construct them in great pro-
fusion. Matters grow substantially more complex when we ask whether

- z . .
there is a number j; f(#) dt such that to each positive number ¢ there
corresponds a positive number § such that

(4.28) S fe) At — [lrma| <e

k=1

whenever P is a partition of the interval ¢ £ ¢ £ x for which |P| < é.
We should all recognize this and admit that full comprehensions of
machinery and its applications is not quickly attained. In fact a sub-
stantial part of this textbook is devoted to promotion of understanding

of Riemann sums and their applications. We shall have plenty of oppor-
tunities to learn.
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So far, the integral in (4.271) has been defined only when x > a. We
now complete the definition by setting

(£.281) [lroa=0,  [Tfya =~ [f)a

the second formula being valid when x < 4 and f is integrable over the
interval from x to a.

Problems 4.29

1 Practice the art of telling how the number

INCE

is defined. Be prepared to give the full details, including Riemann sums, at
any time.

2 Tell whether you think it wise to abbreviate the statement “To each
positive number e there corresponds a positive number & such that

Y s an~ [T al<e
A=1

whenever the sum is a Riemann sum formed for a partition P of the interval
a £t £ x having norm less than & to the statement

lim i F(5) A, = L ® 1) du.

IPl=0 k=1

Remark: If you do not have an opinion, think about the matter and get one.
3 For better or for worse, the “formula”

lim 2 FEE) Aty = fa" £ dt

is considered to be an assertion. Tell precisely what it means.
4 Tell whether you would like to learn and use a completely new notation by
which the “formula”

approx Y, f) An = [ 7f0) at

elPl<s §Z1

is used to abbreviate the statement that to each positive number € there corre-
sponds a positive number 8 such that

i f@%) At — /:f(t) dt‘ <e
k=1

whenever P is a partition of the interval a < ¢ < x for which |[P| < . Remark:
If you do not have an opinion, think about the matter and get one.

5 We often hear about the great scientific progress of our modern era,
and we should think about an example. One of the great strides forward is made
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by abandoning the good old idea that the elementary functions (polynomials,
trigonometric functions, etcetera) are always the simplest and most useful func.
tions. There are very many situations in which step functions are the simplest

and most useful functions. Our first problem is to follow instructions to prove
that

M [ 7a =2
Draw a figure showing a partition P of the interval 2 £ x < 5 into subintervals
having lengths Aty, Aty, - + + , At, and observe that
n
2 Ay = 3.
@ 2 tn

Observe that the integral in (1) involves the function f for which f(x) is always 7.
Show that, with the notation of the text,

3) RS = ) ft) At = 2 744
k=1 k=1

n
=7 D Ay =73 =2l
k=1

Since each Riemann sum is 21, it is quite apparent that RS is near 21 whenever
the norm of P is near 0. This proves the formula (1).
6 Supposing that 2 < b and % is a constant, prove that

o) fabkdt=k(b—a).

Remark: We are (or soon will be) authorities on areas of rectangular regions.
We can observe that if £ > 0, then the right side of (1) is the area of a rectangu-
lar region having base length (b — &) and height % and hence is the area of the
region of Figure 4.291 which is bounded by the graphs of the equations x = g,

i N

x=1b9=0,andy =% Incasek <0, we can put (1) in the form
@ ﬁ’kdt = (=B — a),

where —k > 0, and observe that the right side is the negative of the area of the
region in Figure 4.292 bounded by the graphs of the equations x = a, x = b,
9y =0,and y = k. We must always know that areas of rectangles are positive
The idea that rectangles below the x axis have negative areas is as absurd as the
idea that cities south of the equator have negative populations.
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7 This problem requires us to attain a complete understanding of a more
complex situation. Let

fx) =3 2<x<4)

flx) = 4 (4<x<5)
and let f(2), f(4), and f(5) be defined in any way that pleases (or displeases) the
fancy. Then Theorem 4.27 implies existence of the integral I in

I= /25f(t) .

We want to find J, that s, to find the numerical value of I. Draw a figure show-
ing theinterval 2 £ x < 5 and, in addition, the graph of f. Make a partition P of
the interval 2 £ # = 5 in which 4 is one of the partition points. Choose the
points t3 in such a way that they are not at the ends of the intervals in which they
lie. Show that the terms in the Riemann sum RS can be split into two sums
RS; and RS, in such a way that RS, contains those terms for which 2 < #f < 4
and RS, contains those terms for which 4 < #f < 5. Show that RS; = 6 and
RS, = 4 and hence that RS = 10. Our next step is to realize what we are
trying to do. We are not trying to prove that f is integrable and are not required
to prove that [RS — I| is small whenever the norm of P is small. We are trying
to find I, and we can use the known fact that |[RS — I| must be near 0 whenever
the norm of P is near 0. Therefore |RS — I| must be near 0 whenever P is a
partition of the type constructed above and the norm of P is near 0. But RS =
10 for each partition of the type constructed above, and it follows that I = 10.
Notice that we have, in the course of our work, proved that

/:f(t) dt = /;f(t) dt + [4 % 1) a.

Interpret the numerical results in terms of areas of rectangular regions.

8 Supposing that x; < x2 < x5 and that £, and k. are constants, draw a
figure showing the interval x; £ # < x5 and a graph of the function f for which
f(x1) = f(x2) = f(xs) = 0 and

f(x) = k], (x1 <x< xz)

fx) = ke (%2 < x < x3).
Show that

[Proa=[Troa+ [Zfoa
1 1 Ze

= kl(xz - x1) + kz(xa - xz).
Tell how the result can be interpreted in terms of areas of rectangular regions
when (a) k; and ks are both positive, (5) #1 > 0 and 2, < 0, and (¢) k1 and k2
are both negative. Explain the manner in which these results can be extended

tostep functions that have constant values over 3 or 300 intervals instead of just 2.
9 Tell why each of the following Riemann integrals exists or fails to exist.

1 1 1
@ [0 @+ 3%+ 4% & @ |, i;’;———zdt
11 z]
(e) [_lt-dt @ . 7t

Hint: Use theorems given in the text.
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10 In a campaign to obtain good ideas about Riemann sums and integrals,

we can use the discontinuous function ¢, defined over the interval 0 < » < 1,
for which

¢(x)=OWhenx5£1:%)%$%r%:%’ et

¢y

¢(x) = 1 when x = 1 and m is a positive integer.
m

Sketch a figure which shows the nature of the graph of ¢. Then mark the end
points xq, ¥1, * - * , ¥, and the intermediate points x;, x;", LI x: of a partition
P of the interval 0 < x# £ 1 for which [P| < 0.1; to mark the end points of a
partition for which |P| < 0.0001 would be a tedious operation requiring sharper
pencils and better microscopes than we normally carry around. Try to see
reasons why the Riemann sum

n
@ 2 #(d) Am
must be near 0 whenever |P| is near 0 and hence that
1
©) [, $@) dx = 0.

Then start cultivating the art of understanding and originating thoughts about
Riemann sums more or less like the following. Let € be a given positive number
for which 0 < e < 1. Let 2 = ¢/10 and suppose at first that |P| £ A. The
terms of the Riemann sum (2) are all nonnegative. Those terms for which #}
can be a point of the interval 0 < x = % contribute at most 2% to the sum.
Those terms for which xf > % will be 0 unless =1 /m, where m is an integer
for which 1/m > kor m < 1/h. Thus there are less than 1/4 nonzero terms for
which x§ > £ and ¢(xf) = 0. Since each one of these terms can contribute at
most |P| to the sum of these terms, it follows that the sum of all of these terms
cannot exceed (1/k)|P|. Therefore,

O] 0= ) ¢(b) Ave < 25+ % 1P| < 0.2¢ + 2221,
€

k=1

If we let § = 2¢€2/25, we will have

(5) 0= E qb(x:‘) Axp < €

k=1

whenever |P| < 8. This implies the first and hence the second of the formulas

6) lim Y ¢(F)Am =0, folcb(x) dx = 0.

|PI-0 x=1

11 Supposing that g is the corn-popper function of Problem 16 of Problems
3.49, determine the value (if any) of fo ! g(x) dx.
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12 Our purpose is to discover that some very obvious and superficially useless
remarks about Riemann sums lead to the very useful conclusion that the formula

) I d =[5 1ou + gyp

is correct whenever p and g are constants for which » # 0 and the integral on the

left exists. Let us begin by looking at (1). If we suppose that two variables ¢
and u are related by the formulas

t—g 4 _
P, du-p$

we can put ¢ = pu + ¢ and dt = (dt/du) du in everything after the integral sign
in the left side of (1) to obtain everything after the integral sign in the right side
of (1). We can observe that the lower limit of integration on the right side is
the value attained by u when ¢ is the lower limit of integration on the left side.
Similarly, the upper limit of integration on the right side is the value attained
by « when ¢ is the upper limit of integration on the left side. Of course, we are
entitled to take a dim view of these manipulations until we discover how simple
and useful they are. Meanwhile, we forget about (1) and start working with
some Riemann sums. Let P be, as in Figure 4.293, a partition of the interval
a £t < x having partition points #, %, * * -, ¢ and intermediate points
%, o, 1X. Supposing that t and u are related by the formulas (2) and
that p > 0, we set

@ t=pu+tgqg u=

t 3
k —4¢ * _ e —
© R ek R e AR AR )
? ?
To simplify writing, we set
tao—q a—g th—q x—¢
4 A = = ’ X = — = —
) b4 ? ? ?
The numbers uo, %1, * * * , %n and ur, wy, o, u¥ then form the partition
e ¢ i 2N oz
to l ty it o1 t the1 ta

Figure 4.293

* *
A uy uy uy Un X
© +— —0 +——0 O—t —0
to uy uy Up_y Uy Upy u,

Figure 4.294

points and the intermediate points of partition Q of the interval 4 =« = X
shown in Figure 4.294. Moreover, when

®) At =ty — tp,  Aup = ux — U1,
we find that

O) Aty = (pur + g) — (pur-1+ ¢) = pAux



222 Integrals

and
) 2 1) 8n = 3 foud + 0)p A

The result (1) follows from this. Let I denote the left member of (1). Let
€ > 0. There is then a & > 0 such that

® |1- % s am] <e (Pl <)

Since (6) implies that |P| = p|Q|, we see from (8) and (7) that

©) |7- 3 fout + 0pt| <o (gl < /p).

But the sum in (9) is a Riemann sum formed for the partition Q of the interval
A4 = v £ X and the function F having values

(10) F(u) = f(pu + 9)p

when 4 < u £ X. It therefore follows from the definition of Riemann integrals
that

(11) /AX F(u) du = I.

But (4) and (10) show that the left member of (11) is the right member of (1).
This proves our conclusion (1) for the case in which » > 0. In case p <0,
some details must be modified because Figure 4.294 must be turned end-for-end,
but the result is still correct. The formula (1) which we have proved is called
the formula for linear changes of variables in Riemann integrals.

13 By use of formula (1) of Problem 12 show that

(@) fb (t—o)?dt = fb_cu’ du Hint: Putt — ¢ = .
a a—c¢
/2 T

) [o 2 gn2td = %/0 sin » du

h 1 1 h/a 1 ) B
© 0 a2+x2dx=2_/o 1+tzdi Hint: Put x = at.
@ ' L d Me 1 4

‘/0 Va-=""), vi—a”

(¢) fab sin x dx = /::: sin (x + &) dx

Hint: Before you start, replace one of the variables of integration by a different
variable of integration.

0 [ 16 = [T s+ an

Remark: This last formula shows that we can add a constant to the variable of

integration if we subtract it from the limits of integration. This information
is sometimes very useful.
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14 Assuming that the integrals exist, show that

® [2 6 dx = [} (=) a.

Remark: This innocent formula and a result of the next section enable us to pro-
duce the better formula

@) [ _"hf(x) dx = / _°h F(x) dx + ﬁ) P Hx) dx
= [ U= + s a

This gives the very useful fact that /fhf(x) dx = 0 when f is an odd function,
that is, f(—x) = —f(x), and that

/_hhf(x) dx =12 /Ohf(x) dx

when f is an even function, that is, f(—x) = f(x).

15 Remark: This remark is designed to indicate that mathematics is a lively
subject in which even good ideas can be modified in various ways, and that there
are integrals of many different types. We can be irked by the fact that the Rie-
mann integral

[, 1w ax

does not exist when f is the function for which f(x) = 1 when 0 £ x < 1 and
f(x) =2 when 1 < x £ 2. The difficulty is that f(1) is undefined and that
2f(F) Aty is undefined when #f = 1 for some % If, however, we extend the
definition of f by setting f(1) = 75, then the new extended function is Riemann
integrable over the interval 0 < x < 2. We cannot reasonably undertake to
remove this irksome situation by changing the definition of the Riemann integral,
because changing basic definitions destroys our means for communication of
information. We can, however, introduce new types of integrals. We can, for
example, use the letter F to make us think of a finite set and produce the following
definition. A function f is Riemann-F integrable over 2 £ x < b if there is a
finite set F such that f is defined at all points of the interval ¢ < x < b except
at the points of F and, moreover, there is a number I such that to each ¢ > 0
there corresponds a number 8 > 0 such that |RS — J| < € whenever RS is a
Riemann sum for which |P| < & and the points 7 are all different from points
of F. 'This definition does not require f to be defined everywhere overa < x < %
and it removes the irritation. Still another definition can be constructed by
making similar use of the letter C to make us think of a countable set of points,
this being either a finite set or a set whose elements can be placed in one-to-one
correspondence with the set 1, 2, 3, - + - of positive integers. A more sophisti-
cated definition makes use of the letter N to make us think of a null set, this being
a set having Lebesgue measure 0. As has been remarked, there are many kinds
of integrals. Mathematicians who use integrals without knowing which ones
they are using are comparable to chemists who use chemicals without knowing
which ones they are using.
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4.3 Properties of integrals In what follows, all integrals bearing
limits of integration are Riemann integrals. They are limits of Riemann
sums, and it could be expected that, except for cases in which the inte-
grands are step functions, it must be impossible to obtain their exact
values and it must be difficult to obtain reasonably good approximations
to them. It turns out, however, that there is a calculus, an invention of
Newton and Leibniz, by which exact values of very many of the most
important integrals can be calculated very quickly. Dictionaries tell us
that a calculus is “a method of computation.” The particular calculus
that appears at the end of this section was found to be so overwhelmingly
important that it came to be known as “the calculus.” This calculus
enables us, for example, to evaluate the integral in the formula

3 378 .
(+.31) /2x24x=%]2=%l—%=1%

by writing nothing more than this. Meanings of words have evolved in
such a way that we now consider “calculus” or “the calculus” to be a
name assigned to a part of mathematics involving derivatives and
integrals.{

For making calculations involving integrals, we often need the results
set forth in the following theorems. Proofs of these theorems may be
omitted; these theorems are rather simple consequences of Theorem 4.26
and properties of Riemann sums and their limits.

Theorem 4.32 If f is integrable over an interval containing a, b, and c,
then

ﬁcf(t) dt + fc ’ f@) dt = f: 1) dt.

Theorem 4.33 If f and g are integrable over a £ x < b and 4 and B
are constants, then

[ afe + Bl ar = 4 [T Sy de+ B [T o) e

whenever x1 and xs lie in the interval a < x < b.
Theorem 4.34 If a < b, if f1, fo, f3 are integrable over a < x < b, and if

fil®) = folx) £ fulx) (a

A
A

x Zb)

then
[ rwas [Preas [0

t Historians who claim that Archimedes knew calculus do not always point out that the
knowledge was attained posthumously when the meaning of “calculus” changed. Com-
plete misunderstanding of this matter can serve as a basis for the absurd contention that
Newton and Leibniz merely rediscovered inventions of Archimedes.
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Theorem 4.341 If k is a constant, then
[ kdt = b(er — ).

Theorem 4.342 If a < b, if f is integrable over a < x < b, and if

m=flx) €M (a=x<b)
then
m(b — a) éfabf(t)dth(b—a)
and
méb%a'/;bf(t)dth.

Theorem 4.343 If f is integrable over a < x < b, then so also is the
function having values |f(x)| and

| [ 1) de| < | [ 21500 e |

whenever x, and x, lie between a and b.

The next theorem is not so obvious, and it is so important that we shall
discuss it and prove it. Much of the theory and many of the applications
of the calculus involve relations between derivatives and integrals.
Theorems which give information about derivatives of integrals or inte-
grals of derivatives are called fundamental theorems of the calculus. The
following theorem is one of the best of these. It has very many applica-
tions and shows, among other things, that if f is continuous overa < x £
b, then there exists a function F for which F/(x) = f(x) when a £ x = 5.
In fact, it shows that if f is continuous, then the Riemann integral in
(4.351) is an “indefinite integral® of f.

Theorem 4.35 If f is integrable over a £ x < b, then the function F
defined by

(4.351) F(x) = / ") dr
15 continuous over a £ x < b and
(4.352) F'(x) = f(x)

for eack x for which f is continuous.
To start the proof, we observe that if x and ¥ 4 Ax both lie in the inter-
val, then

(4353) F(x+ %) —FG) = [ 50 & — [7f6) &t = [27% f0) ds.

To prove continuity of F, we use Theorem 4.26 to see that f must be
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bounded and hence that there is a constant positive M for which —M <
f(x) £ M or |f(x)] £ M. Therefore,

[Pz + Ax) — FG)| < | [775 M dt| = M |As].
The sandwich theorem then implies that

(4.354) lim F(x + Ax) = F(x)
220

and hence that F is continuous at x. It can be observed that we have
proved more than was promised; the function F must have bounded
difference quotients. To prove (4.352), let x be a point at which f is
continuous. From the two formulas

F(x + AAaci —Fx) _ Klz / e d, f) = i / T ) di
we obtain
wassy Tet2d =F@ g L [0 - s3] .
Lete > 0. Choose a number § > 0 such that
156) = f)| < o2 (1t = x| <)

Then when |Ax| < 8, we can use Theorems 4.343 and 4.341 to obtain

Pt 2 FO | |5 [ 10 - 1014
1 z+ Az € €
< = /; 3 dz] =x <e
Therefore,
. F(x + Ax) — F(x) _
(4.356) Jim v /@

and (4.352) follows from the definition of F/(x). This completes the proof
of Theorem 4.35.

Supposing now that f is continuous over a £ x < b, we proceed to show
how Theorem 4.35 can be used to obtain the promised method for evalu-
ating Riemann integrals. Putting x = ain (4.351) shows that F(a) = 0.

Putting x = & in (4.351) and then changing the dummy variable of inte-
gration from ¢ to x gives

FG) = [ f) d.

Therefore,

(4.36) f: f(x) dx = F(3) — F(a).
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When problems are being solved, it is always convenient to use the bracket
symbol in the formula

(4.361) F@) | = F) - Fa).

This symbol can be read “eff of x bracket 4, 5. The symbol means
exactly what the formula says it does; to obtain its value, we write the
value of F(x) when «x has the upper value 4 and subtract the value of F(x)
when x has the lower value . For example, x’]: =27 —-8=19. Itis

easy to see that the value of the bracket symbol is unchanged when we
add a constant to the function appearing in it. Thus

F() + ], = [F®) + d ~ [F(@) + c] = F}) — F(a).
Therefore, we can put (4.36) in the form
(4.362) [ 1) dx = F) + <]

where ¢ is 0 or any other constant. Since we have assumed that f is
continuous over ¢ = x < b, it is a consequence of Theorem 4.35 that
F'(x) = f(x) when a < x < 5. Since each function whose derivative
with respect to x is f(x) must have the form F(x) + ¢, the result (4.362)
can be put in the following form.

Theorem 4.37 If f is continuous over a £ x < b and if F'(x) = f(x)
when a S x < b, then

/. f(x) dx = F(x) |, = F(3) — F(a).

In substantially all applications of this theorem, the notation of indefi-
nite integrals is used. In such cases the following version of Theorem
4.37 gives precisely the information we actually use to evaluate integrals.

Theorem 4.38 The formula

(4.381) [ @) dx = F&) |, = F&) - F@)
15 correct if f is continuous over a £ x = b and
(4.382) [f(x) dx = F(x) + ¢

when a < x < b.

When we are able to find a useful expression for the F(x) in (4.382),
the integral in (4.381) can be evaluated with remarkable ease. We sim-
ply ignore the limits of integration on the first integral until (4.382) has
been obtained and then, taking ¢ = O unless it seems desirable to give ¢
some other value, insert the bracket symbol to obtain (4.381). For
example,

R
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Problems 4.39

1 Make a small table of integrals by copying formulas from the second
column of (4.171) to (4.175). Combine the processes of learning these formulag
and using them to show that

(a) [01 (x —x?)dx =% ) /01 (1 —x)dx = %
© [a - de =& @ [0 = dx = 3

x 1 2
) [ 5di=tog 0 [ = blog s
(& [0" sin # dx = 2 (k) /Or cos xdx =0

. 1 . 2 1
B i bh) — si
() % fo cos (a + bi) &t = 228+ bh) sin 2
2 Verify the formula
1 _ plg!
Jy wa = e = B,

for some pairs of small nonnegative integers p and ¢. Remark: Anyone who
wishes to augment his corpus of scientific information should be informed that
this is a famous and important formula. The integral is the beta integral. The
formula is correct whenever p and ¢ are real or complex numbers with nonnega-
tive real parts. When Cauchy extensions of Riemann integrals have been defined
and are used, it can be proved that the formula is correct when p and ¢ are com-
plex numbers with real parts exceeding —1.

3 While we are not now indulging in proofs of such things, the two integrals

| 1 1 1 1
M fo T+ /o T+=%

are nearly equal when sisnear 1. Nevertheless, we must use different integration
formulas to evaluate the integrals. Obey the rules and show that

11 217 — 1

@ /, 0%~ 1= (1)
11

(3 Lmdx=log2.

Remark: While the details need not be fully understood at the present time, we

pause to learn that the right member of (2) really is near log 2 when s is near 1.
This means that

o1
1
& - 1o

= log 2.
To see that (4) is correct, we can let

(5) f(x) = pzlog2
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and, after observing that x log 2 = log 2= and hence f(x) = 2%, put (4) in the
form

© i fL = ) = £(0) _

8—1 -5

log 2.

But it follows from the definition of derivatives that the left member of (6) is
f/(0). From (5) we find that f(0) = log 2. Therefore, (6) and (4) are correct.
The conclusion to be drawn from this story is that the function F defined by

1 1
) F(s) =f0 (1—+x—),dx

is a continuous function and, unless we can find another scapegoat, we must
blame the well-known perversity of inanimate matter for the strange fact that
F(5) is expressed in terms of exponentials when s 5 1 and is expressed as a loga-
rithm when s = 1.

4 This problem, like very many of the fundamental problems of science,
requires much more looking and thinking than calculating. Look at Figure
4.391, which shows the graph of a step function f defined over the interval
a S x £ b, and observe that f(x) = 0. Remember that, in the problems at the
end of Section 4.2, we discovered (or almost discovered) that

O [ 1w ax =18,

-

where |§] is the area of the set S of points (x,y) forwhicha £ ¥ £ band0 =y <
f(x). The next step is the most difficult one. We should realize that, at the
present time, our ideas about areas of nonrectangular point sets are at best some-
what vague and nebulous and are at worst nonexistent or even erroneous. The
rest of our work is much easier. We look at Figure 4.392, which shows the graph
of f over the interval a £ x < b for the special case in which f(x) = %% a = 0,
and b = 1. As above, let S be the set of points (x,y) for which 2 £ x < b and
0=y = f(x). Our next step is to look again at Figure 4.392 and express the

y
T I ————————— (lyl)
flx)=2°~
S
[
a b x 0 1 x
Figure 4.391 Figure 4.392

cheerful opinion that the set S ought to have an area which we can denote by
IS| and that the formula (1), which holds whenever f is a nonnegative step func-
tion, ought to hold whenever f is a nonnegative integrable function. Our final
step is to seek what a physicist could call experimental verification of this cheerful
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opinion. Look at Figure 4.392 and note that S seems to fill up about one-thirg
of the square having opposite vertices at the points (0,0) and (1,1), and hepce

that the area [S]| of S should be about one-third. Now comes the calculation.
Show that

1
x2dx = 3.
/s 3

5 Sketch a graph of the equation y = x + 1 over the interval 1 £ x 53
and use elementary geometrical ideas to find the-area of the part of the plane
bounded by this graph and the graphs of the equationsx = 1,x = 3, and y =0,
Then evaluate the integral

fla (x 4+ 1)dx

and find out whether we obtain more experimental verification of the cheerful
opinion of the preceding problem.

6 Figures 4.393 and 4.394 show graphs of y = sin x and y = cos x over the
interval 0 £ x <. Observe that a particular region of Figure 4.393 seems to

¥ L y=CO0S x
y 1
[y=sin x % -
1 S ‘\ o p
N » N
(0] x T x
z
Figure 4.393 Figure 4.394

fill about two-thirds of the enclosing rectangle and hence that the region ought
to have area about 27/3. Then obtain the first of the formulas

frsinxdx=2, /r/zcosxdx=l, /T cos xdx = —1
0 0 /2

and give an interpretation of the result. Then obtain the second and third
formulas and interpret the results in terms of regions in Figure 4.394.

7 Prove that if « and v have continuous derivatives over the interval
a = x = b, then

/ab u(x)?’ (x) dx = u(x)v(x) ]: — /ab o(x)u’(x) dx.

Hint: Decide how the formula
b b
PP = |,

can be used. Remark: The formula to be proved is one of the most useful
formulas in the calculus; it is the formula for integration by parts.

8 Some of the most important applications of integrals involve inequalities,
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and we look at an example. Let 4 be a positive number and start with the fact
that

) 1S e < o4

when 0 = x = 4. Replace x by ¢in (1) and integrate over the interval 0 < z <
% to obtain, with the aid of Theorem 4.34,

@) xS er— 1< phx O==x=4).
Replace x by ¢ in (2) and integrate over the interval 0 < ¢ £ « to obtain

x? x?
©) 7§e‘—(1+x)§e"§' O=x=4).

Continue the process to obtain

3

II/\

c-(eerg) ey

é —<1+"+21+3|)— Pl

when 0 = x < 4. Remark: Continuation of the process (with the aid of mathe-
matical induction) shows that, for each positive integer =,

O
®)

©) Zse—(l+atf+5+ +5) s
n! n

While we now have so many other things to do that we shall not look at the details,

we can observe that (6) provides a straightforward and foolproof way to obtain

decimal approximations to ¢*, ¢, ¢%, etcetera, correct to 4 or 40 decimal places.

We can discard much of the information in (6) by observing that x*/z! approaches

0 as # — o and hence that

2 3 n

The formula (7) is the spectacular one, but (6) is often much more useful. We
shall learn more about these things later.
9 Applying the idea of the preceding problem to the inequality

—1=<sinx=1,

show that
—x=<1-—cosx = x,
xzs <% %2
—=—=Sx—sinx =%
2 2

when x > 0. Remark: More extensive information will appear in a problem of
Section 8.2.

10 The Bernoulli functions Bo(x), Bi(x), Ba(x), - + - satisfy the conditions
(Y] Bo(x) =1
@ By(x) = Bai(#) (n=123,-"°)
1
3 Jo Buwydz =0 (n =123 )
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over the interval —o < x < o, except that (2) fails to hold when 7 is 1 or 2

and x is an integer. They all have period 1, that is, Ba(x + 1) = Ba(x) for each

n and x. They are all continuous except that

t” Bi(x), the saw-tooth function having the graph

] | L1 shown in Figure 4.395, is discontinuous at the
3% x

AN S integers. In fact, Bi(x) = O when xis an integer
] I and
Figure 4.395 (4) Bi(x) =x—[x] — %

when # i3 not an integer. Show that (1) and (2) imply existence of constants
B, By, B, - + - such that, when 0 < x < 1 and 0! = 1 as usual,

(5 By(x) =

OIOI

(5.1) Bix) = 2% + £

(5.2 Balx) = 3 + T+ 7

(5.3) By(x) = glo;, + f;l; + ﬁff + 3?81

(5.4) Bu(x) = g1 + 25+ 3 + ey 4y

and write two more of these formulas. Because of continuity, cach of these
formulas except (5.1) holds when 0 < x < 1. The numbers Bo, By, By, * *
are the Bernoulli numbers and, when n = 2,

(6) B, = n!B,(0).

Show that the above formulas can be put in the neater forms
7) 0!Bg(x) =

(7.1) 1!By(x) = Bex + B

(7.2) 2!By(x) = Box?* + 2Bix + B,

(7.3) 3!1B3(x) = Box® + 3B1x% + 3Bx + B;

(7.4) 41B4(x) = Box* + 4B;x3 + 6Bxx* + 4Bsx + B,

involving binomial coefficients and write two more of these equations. Use (3)
to show that, when n = 2,

Bu(1) = BuO) = [, Bow) dx = [ Bus(s) dx = 0

and hence

(8) Bn(l) = Bn(o)-

Use (1) and (7) to show that By = 1. Then use (7.2) and (8) to show that
By = —%. Then use (7.3) and (8) to show that B, = . Then calculate one
or two more Bernoulli numbers. Remark: Bernoulli functions and numbers
have important applications and some people know very much about them.

It can be shown that By=1, By = —%, Bo =%, B3 =0, B = —g%, Bs =0,
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Be = 45, Br = 0, Bs = —'5, and that |By,| is very large when 7 is large. Some
books, particularly those that give a few formulas involving Bernoulli numbers
but do not treat Bernoulli functions, use notation which conflicts with the nota-
tion used above.

11 Prove that if f is integrable over the interval 0 £ x < 1, then
.1 o k 1
lim = ) =
M Jim 22 1 (3) = [ 1) an

Solution: To keep all of the bewitching mysticism of mysterious mathematics
out of our solution, let € be a given positive number. Choose a positive number
§ such that

n

2 ey A — [ s ax| < e

k=1

@

whenever the sum is a Riemann sum formed for a partition P of the interval
0 £ x = 1 for which |P| < 8. Let N be an integer for which N > 2 and N >
1/8. Let n be an integer greater than N. Let P, be a partition of the interval
0 £ x =1 into n equal subintervals each having length 1/n. Then x, = k/x
for each 2. Let x} = x; so that %= k/n for each k. Since Axy = x; — x5 =
1/n for each k, we see that |[P,| = 1/2. Since n > N, we have 1/n < 1/N and
hence 1/n < 8. Therefore, |P,,| < 0 and (2) holds when the sum is the Riemann
sum formed for the partition P,. But for the partition P, we have xj = k/n
and Ax; = 1/2, so

2 “ (E\1 1% [k
3 Y Axy = L TR 2\,
®) 3, fsb) o k;f(”)n Mglf(n)
It follows that

® <e

}zkif(f) ~ [ ey e

when #n > N, and this gives the desired conclusion (1).

12 The basic formula (1) of Problem 11 has numerous quite astonishing
applications. Letting s be a nonnegative number and letting f(¥) = «*, use the
formula to prove that

(1) liml:+2:+3a+...+na 1

n—rw0 netl 14+

Write the formulas to which this reduces when s = 0, %, 1, $, 2, and 3. Remark:
Textbooks that specialize in proofs by mathematical induction give the formulas

@ 1 +2 +3+-~.+n=n(_n2+1)
3) 12+22+3z+...+nz=”(‘”+1)6(2"l+1)
4) 1a+23+3a+...+ns=”2("l:'1)2_
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With the aid of these formulas, it is easy to verify (1) for the cases in which ¢
is 1 and 2 and 3. In fact, Archimedes did it. The formulas of this problen
have tremendous importance in the history of science because they stimulated
interest in limits of sums that culminated in the invention of “the calculys”
by Leibniz and Newton.

13 Letting f(x) = (1 + x)?, where s is a constant for which s # —1, derive
the formula

I o O ol e ) e e o 2 ) i

n—w netl s+1

Write the formulas to which this reduces when s has the values —2, —3, 0, },
1, and 2.

14 Letting f(x) = (1 + x)7, derive the formula
1 1 1

il by e By

1y
+ "+m)—10g2.

I5 Letting f(x) = 2x/(1 + x*)?, where s is a constant for which s  —1,
derive the formula

im m2—? 1 2 3 ..
R Frr = o e R e

+ (n? -: n’)‘] = 2(s 1— 1) [1 - %]

Write the formulas to which this reduces when s has the values —2, —1, —%, 0,
1
3, and 1.

16 Letting f(x) = 2x/(1 + x?), derive the formula

. 1 2 3 n 1
2 o . . - -
,}Ln:on[n2+12+n2+22+n2+32+ +n2+n2] 21032.

. 1 . 11 T
17 Letting f(x) = T4 and borrowing the fact that fo mdx =7

derive the implausible {ormula

. 1 1 1 1 o
'}ﬂn(n2+12+”2+22+n2+32+ +m)_z,

I8 Persons are sometimes credited with substantial knowledge of calculus
when they can simplify

d [=* _,
) < [0 g

The problem can and should be solved by noticing that putting f(tf) = ¢~* enables
us to use the fundamental theorem of the calculus (Theorem 4.35) to obtain

@ £ [* 0 dr = .
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When (2) holds and u is a differentiable function of x, we can use the chain rule
o obtain

d u d u du
- d = | — —
3) dx /0 1) at [ o [0 1) dt]
= au
flu) 7
Use these ideas to show that (1) is 2xe™=",
19 Letting

F(x) = fo"’ o di,

use the ideas of the preceding problem to obtain a simple formula for F/(x).
Then find F(x), that is, find a simpler expression for F(x), and differentiate it to
obtain F’(x). Make the results agree.

20 Prove that if fis continuous and « and o are differentiable, then

d [ _ du _ dv‘
% [(10 @ =1 % - 1) 2
Hint: Use the formula

[ s = [0 a— [ 1) a

and the ideas of Problem 18:
21 Supposing that X is a positive constant, x > 0, and

F(x) = / » tl a,

z

show that F’(x) = 0 without use of the formula / tldt =logt+ec.

4.4 Areas and integrals We all know what is meant by a rectangular
region R having base length 4 and height &. When the x axis of a rec-
tangular coordinate system is parallel to the base, R is the set of points
(%,y) for which ¢ < x < %0+ & and

y0<y < yo+ k as in Figure 4.41.

We are all familiar with the idea that y,+&
R has an area and that this area is

bh, the product of the base length Yo
and the height. There is an old- 0
fashioned view that this matter is

quite simple, but modern mathema-

ticians, like modern atomic physicists, find that there is much to be
learned about things that our ancestors thought were simple. It is
quite absurd to presume that it is easy to prove that the area of R is bh;
in fact it is quite absurd to presume that it is possible to prove that there
is a number (5% or not) which is the area of R unless we have some defini-
tions or postulates or something upon which proofs can be based. We

Xp xo'l'b x

Figure 4.41
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escape this awkward situation with the aid of a definition designed for
the purpose.

Definition 4.42 If R is a rectangular region having base length b and
height b, then the product bh is called the area of R. This area is denotedt
by the symbol |R| so that |R| = bh.

This takes care of the matter of areas of rectangular regions, but we
are not yet out of trouble. Let T be the triangular set consisting of those
points within the rectangular region of Figure 441 which lie on and
beneath the diagonal drawn there. When we try to decide whether there
is a number which is the area of T, we find that we still need definitions
or postulates or something before we can do anything. If we try to
take care of triangular regions, circular disks, circular sectors, and sets
of other special types by hordes of special definitions, we will find our-
selves forever wallowing in confusion. While students in elementary
calculus courses are normally not expected to know much if anything
about the matter, we should at least know that our friend Lebesgue con-
structed a theory of area which is usually called the theory of Lebesgue

two-dimensional measure. This eliminates the

s confusion and is now very important in applied

as well as in pure mathematics. We should not

be injured and may possibly be benefited by a brief

look at the Lebesgue theory. Let S be a set of

Figure 4.43 points (x,y) which is contained in but does not

completely fill a rectangle R. Figure 4.43 may be

helpful, but may also be misleading because the set S need not look

at all like the one shown in the figure. Let S’ be the set of points in R
but not in S.

Definition 4.44 The set S is said to have area (or two-dimensional
Lebesgue measure) |S| if |S| is a number such that to each ¢ > O there corre-
spond (1) a countable collection Ry, Ry, Rs, - + - of rectangular regions such
that each point of S lies in at least one of these regions and

(4.45) lRli + ‘R2| + -+ |R'¢| < ISI +e (n=1,2, 3 - )

and (ii) another countable collection Ry, Ry, Ry, - « - of rectangular regions

such that each point of S’ lies in at least one of these regions and

(446) R+ R+ - - - +IRI<IR| =S|+ (n =123, ")

t This notation accords with a general principle with which we are slowly becoming
acquainted. If Qis a number or a partition or a point set or perhaps even an assertion or
crate of oranges, we expect |Q| to be a real nonnegative number which is associated with 0
in some particular way and is, in some sense or other, a measure or a norm or a value of {.
The simplest useful example is that in which Q is a real number and |Q] is its absolute value.
When applications of areas are involved, it is often necessary to recognize that % and & are
numbers representing lengths measured in particular units (say centimeters) and that the
area is a number of appropriate “square units” (say, square centimeters).
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It is possible to describe complicated rules for constructing sets S for
which no such number |S| exists, and we say that such sets do not possess
areat (or are nonmeasurable). However, such sets are much more com-
plicated than those that appear in this book. This discussion of areas
will have served a purpose if it provides a reason for acceptance of the
fact that the theory of area is much more complicated than the theory of
Riemann integrals and that intuitive ideas about areas do not provide a
satisfactory basis for proofs of theorems about Riemann integrals. We
can, however, be reassured by the facts that many of the results of the
theory of area are thoroughly simple and that they are in complete agree-
ment with all of the results we shall obtain by use of Riemann integrals.
e shall not use Riemann integrals to obtain illusory information about
areas of sets that do not possess areas. More information about this
matter will appear in Section 5.7.

In what follows, we suppose that M, a, and & are constants and that
fis a function, Riemann integrable over ¢ < x < b, for which 0 < flx) =
Mwhena = x = b. Let S be the set of points (x,y) for whicha < x < 5
and0 = y = f(x). The set S may look more or less like the sets shown in
Figures 4.471 and 4.472. In each case we can describe S as the set of

CN 3.:\
A N
S

/x

a Aa b x x
Figure 4.471 Figure 4.472

points or part of the plane or region bounded on the left and right by the
graphs of the equations x = @ and ¥ = b and bounded below and above
by the graphs of the equations y = 0 and y = f(x). In case f is con-
tinuous and the graph of y = f(x) looks like that shown in Figure 4.472,
we can comfortably describe S as the region bounded by the graphs of
the four equations.}

t Newspapers and magazines keep us permanently aware of the fact that there are
inadequacies in old-fashioned intuitive physical theories of matter and that these intuitive
theories do not provide an adequate basis for modern physics. Since these newspapers and
magazines keep us quite generally uninformed about theories of areas and volumes, it may
be necessary to consult Appendix 2 at the end of this book to learn that there are bugs in
intuitive theories of areas and volumes.

1 Of course climatologists who talk about areas of abundant rainfall, and philosophers
who talk about areas of scientific thought, could be expected to call S the area bounded by
the graphs. But in mathematics and perhaps even in climatology (we never know about
philosophy) an area is always a number and scientists do not, in their most brilliant
moments, call S an area.
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When an enlightened scientist must calculate the area |S| of S, he writes

(4.48) IS| = lim Zf(x) Ax = /abf(x) dx

and, at least in simple cases, evaluates the integral with the aid of Theorem
4.38. The procedure by which (4.48) is obtained must now be explained.
The first step is to sketch an appropriate figure which will look more or
less like Figure 4.471 or Figure 4.472. The next step is to make a parti-
tion P of the interval ¢ £ x < & into subintervals, but we do not bother
to draw more than one of the subintervals. Without bothering with
subscripts and stars, we let Ax denote the length of the interval and let 4
be a point of the interval. We then draw the rectangle whose width is
Ax and whose height is f(x). The first step in building the formula
(4.48) is to write f(x) Ax, because this is the area of the rectangle (or
rectangular region). We then tell ourselves that this area is a good
approximation to the area of the part of S that lies between the vertical
sides of the rectangle, and, while this is no time to get excited about the
matter, we could tell ourselves that the two areas might be exactly equal
if we choose the x shrewdly enough. The next step is to add the area of
the rectangle we have drawn to the areas of the other rectangles which we
have not drawn to obtain Zf(x) Ax. Even if we did not know in advance
that lim 2f(x) Ax exists, we should have a feeling that Zf(x) Ax should be
near |S| whenever the numbers Ax are all small (that is, whenever the
norm of P is near zero) and hence we should write

(4.481) IS| = lim 2f(x) Ax.

The final step is to recognize that the right side of this equation is the
limit of Riemann sums and hence is the Riemann integral in (4.48).
The ritual involving partitioning (or splitting up), estimating, summing
(or adding), and taking a limit to obtain a Riemann integral equal to a
number in which we are interested is known as “the process for setting up
the integral.” The ability to “set up integrals” efficiently and correctly
is very valuable, and problems in calculus textbooks that require the
finding of areas are designed to promote abilities in this art. Students
cannot know, unless they are told, that they are wasting their time if they
never bother to set up integrals but only use remembered formulas to
calculate areas and volumes and the ubiquitous moments of inertia.

Problems 4.49

1 Figure 4.491 shows graphs of two equations y = fi(x) and y = fa(*)
which intersect at the points (—2,—6), (0,0), and (2,6). The graphs bound
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two regions R and Ra. Use partitions and Riemann sums to obtain the
formulas

R = [, 16 — e ds, IR) = [ 1) - A s,
IR+ (R = [*1fiw) = fue)] .

Remark: The widths and heights of rectangles are always positive, and mistakes
in sign are undesirable. When hasty calculations indicate that an area or a
population of a city is negative, the calculations

¥ should be examined.
6 . 2 The graphs in Figure 4.491 are graphs of
‘2’6)r y=13x and y =% —x Find |R)] + |Ry|, this
5 being the sum of the areas of the two regions
fg(x)»?/ bounded by the graphs. Ans.: 8.
4 3 With Figure 4.492 to provide assistance,
3 make a partition of the interval 0 < x £ 2 to ob-
tain the area |Sy| of the set S; bounded by the
2 graphs of y = 0, x = 2, andy = 4% Try to repair
R,
1
/1]
fil®) Y
-2 off 1 2 x ¢ {
A WA C) tm T
-9 3 /
-3 Ag ‘[:
-4 Sz Sl
1
| ‘*Ifz(x) 5 \y=x?
-6
(~2,-6) o| ax1 x
Figure 4.491 Figure 4.492

the work if the result does not have reasonable agreement with an estimate made
by counting squares and partial squares included by S;. Then interchange the
roles of x and y to find the area |S;| of the set S; bounded by the graphsof x = 0,
y = x% andy = 4. Make a partition of the interval 0 = y = 4 and be sure that
the correct integrand and limits of integration appear in the calculation

ISl = lim ) f) 8y = [**16) a.

In this case also, try to repair the work if the result clashes with the result of
counting squares. Finally, have another look at Figure 4.492 and see what
IS1] + |S2| should be. N

4 Referring again to Figure 4.492, obtain |S,| by starting with a partition
of the interval 0 £ » < 2 and using an estimate of the area of the part of Sy
that stands above the interval of length Ax (or Ax;) containing the point & (or xx).
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5 Use the technique of the text to find the area of the triangular patch
bounded by the lines having the equations y = 2%, y =0, and x = 3. Check
your answer by use of elementary geometry.

6 Let A4 be the area of the region bounded by the x axis and the graph of
the equation y = #(1 — x). Sketch an appropriate graph showing a sample
rectangle and fill in the details involving the formula

4= 1imzx(1 — %) Ax = [o’ (6 — %) de = &

7 TFind the area of the region bounded by the coordinate axes and the graph
of the equation y = %% — 8. Ans.: 12.
8 TFind the area of the part of the plane bounded by the graphs of the equa-
tionsy = 23 — 3x and y = x. Ans.: 8.
9 Find the area of the region bounded by the graphs of the equations y = «,
y=2x and y = 22 Ans.: §.
10 Find the area of the region in the first quadrant bounded by the x axis
and the graphs of the equations y = x and y = 2 — 2% Ans.: (8 /2 — 7)/6.
11 Let A be the area of the part of the plane which lies between the lines
having the equations x = 7 and x = 27 and is bounded by the x axis and the
graph of the equation y = sin ». Sketch an appropriate graph showing a sample
rectangle and, observing that the height of the rectangle is the positive number
— sin x (not the negative number sin x), fill in the details involving the formula

A=lim2(-—sinx)Ax= —fz’sinxdx=2.

12 Someday we will be able to show that the graph of the equation x* + y¥#
= g¥%is, when ais a positive constant, a part of a parabola. Find the area of the
region bounded by the graph and the coordinate axes. Ans.: a%/6.

I3 Is the area of the region bounded by the graphs of the equations

y = x% 4 2, =x3+1
the same as the area of the region bounded by the graphs of the equations
y=2a, y=1?

14 The graph of each of the following equations contains a loop; determine
the nature of the graph and find the area of the region bounded by the loop, it
being assumed that a is a positive constant.

(a) 2 = x(a — x)? Ans.: Tga%
(®) y* = z(x — a)? Ans.: fga

15 The graphs of the equations y = $x% and 9 = x + 4 bound a region R.
With the aid of a reasonably good figure, make an estimate of the area |R| of R.
Then find |R| by making partitions of an appropriate part of the x axis so that
vertical strips appear in the calculation. Then find |R| by a method in which
horizontal strips appear. Make the results agree with each other and use your
estimate to provide assurance that the two answers are reasonable.
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16 Let A be the area of the circular disk of
radius @ shown in Figure 4.493. Explain the
ideas associated with the calculation

A= 1im221rxAx = 2 foaxdx = Tal

Hint: Think of the ring between the two inner
circles as being a ribbon of width Ax and length
2wz, the length being (by definition of 7) the cir- Figure 4.493
cumference of a circle of radius x.

17 Sketch graphs of sin x and cos x over the interval 0 £ x < 7 and then,
with the aid of this information, sketch graphs of sin? x and cos?x. Use these
graphs to obtain a reason why it should be true that

M [OW sin? x dx = /or cos? x dx.
Note also that
) fow (sin? x 4 cos? x) dx = fow ldx =m.

What can we now conclude about the integrals in (1)? Taking a totally different
tack, use the formulas
3) sin? x = 1~ coslx ;os 2x’ cos? x = 1+ cos 2% ;os 2%

to evaluate the integrals in (1). Make all of the results agree.
18 Prove the formula

/ \/_Txédx—lrf

by observing that the integrand is nonnegative and constructing a region of
which the integral is the area. Hint: Let y = 4/a? — x? and, after tinkering
with this equation, draw an appropriate figure.

19 Let a and b be constants for which 0 < » < a. Show that if y 20,
0= x =< a and

PR
M e
then

= % \Vaf = xt,

Let S be the set of points inside the graph of (1); as we shall learn later, the graph
is an ellipse. With the aid of Figure 4.494 show

that Figure 4.494

With the aid of the preceding problem, show that
IS| = wab. This is a result that many people
remember; the area of a circular disk is maa and
the area of an elliptic disk is wab.
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20 This problem is interesting because it shows how a basic formula involving
areas (a well-known formula which we have not yet proved) can be used to obtajy
preliminary derivations of formulas involving trigonometric and inverse trigo.
nometric functions. Rigorous derivations will be given in Chapter 8. Supposing
that 0 < ¢ < g, construct and look at an appropriate figure to derive the formuly

t .t
(¢)) fo Var — xtdx = 3t \/a* — 2 + fatsin7! -
a

in which the first term on the right is the area of a particular triangle and the
last term is the area of a circular sector having radius @ and central angle 4,
where 8 = sin™! (/a) and 0 < 8 < w/2. Anyone who is short on information
about areas of circular sectors is reminded that the area of a sector having central
angle 6 is, as it ought to be, the product of 8/27 and the area mwa?® of the whole
circle. We can suddenly become interested in (1) if we realize that we have
theorems and rules that enable us to write formulas for the derivatives with
respect to t of everything in it except the last term and hence that we can obtain

a formula for the derivative of the last term. To capitalize this idea, put (1) in
the form

6
)] sin"lt—a-=;}2-[2fo\/a”—xzdx—t\/az-tz]
and then differentiate and simplify results to obtain the formula
d . _.t 1
3) Zsint = T
Remark: We invest a moment to look at the formula
4) 4 sin~lz = !

dt A1 — 22

to which (3) reduces when a = 1. At least in the case where 0 < ¢ < 1 and
0 < 6 < /2, trigonometry books emphasize the fact that the angle 8 of Figure
4.495 is “‘the angle whose sine is ¢’ or “the inverse sine of ¢,” so that § = sin™1¢

|
]
|
!
T ‘]
2
Figure 4.495 Figure 4.496

and ¢t = sin §. The graph in Figure 4.496 shows how 6 and ¢ are related. The
relation (4) is equivalent to the relation

1
5 im 80 - =
® AlﬁoAt 1 — 2
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and this is equivalent to the relation

At —_—
16) Alginoza=\/l—t2=\/l~—sin‘~’6=cos0

or to the first of the formulas
d , d
) 76 5in 6 = cos @, 76 08 0 = — sin 4.
The second follows from the first and the calculation
d d . (T
(8) :z,;cose=z;sm(§—0)=—-cos(’—zr—ﬂ)=—sin@.

21 Show how formulas of the preceding problem can be used to obtain the
integration formulas

- . X
/1/a3—x2dx==}x1/a‘—x2+-}azsm’l—-+c
a

1 x
——— dx = sin—1Z
/ N dx = sin S te

Then keep in contact with the external world by finding these formulas in your
book of tables.

22 Sketch a few figures which illustrate applications of the following fact.
If f is integrable (and hence bounded) over @ £ x < b, we can choose a positive
constant B such that f(x) + B > 0 when 2 < x < % and write the formula

fa" Hx) dx = f ? f(x) + Bl dx — f:B dz,

b
which shows that f f(x) dx is the result of subtracting the area of a rectangle
a

from the area of the set of points (x,y) for whicha < x £ band —B = y £ f(x).
Remark: This problem and the next provide ways of reducing questions involving
integrals to questions involving integrals with nonnegative integrands.

23 Sketch a few figures which illustrate applications of the following fact.
If f is integrable (and hence bounded) over 2 < x =< J, so also are the functions
g and £ defined by

Moreover, g(x) 2 0, h(x) Z 0, f(x) = glx) — h(x), |f(x)| = g(x) + A(x), and

fabf(x) dx = fab g(x) dx — /: h(x) dx
[l 15 s = [ g s + [ hie) a.
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24 If f(x) = |x|, then f’(x) = sgn x except when x =0. When 2 <0 < 5,
Theorem 4.37 does not guarantee correctness of the formula

b b
fa sgn x dx = le]a = |5 ~ ||,

but the formula may be correct anyway. What are the facts? Anus.: The
formula is correct.
25 This remark is dedicated to a distinguished professor in a distinguisheq
university in New Jeisey. He claimed that it does not make sense to ask 3
2 . .
student to evaluate the integral ,[0 x%dx. The man was right. The integral

is a number, the limit of Riemann sums, and the number is 4. Thus, the map
was insisting that it does not make sense to ask a student to evaluate 4. What

. 2
the foxy professor really wanted to do was to emphasize the fact that _[o 3 dx

is something more than some black ink on white paper. Itis a number. There
are times when the thing is called a symbol, but it is not a symbol. The fact

that [ foz x3 dac:l2 = 16 would be hard to explain if the thing were considered

to be a symbol because we do not square symbols to get 16; we square numbers to
get 16. We must agree that we should know what we are doing when we are

2
asked to “evaluate” ﬁ) %3 dx and then go to work to find that the “answer” 13

4. A few thoughts about these matters may even pay off sometime.

4.5 Volumes and integrals It could hardly be expected that funda-
mental ideas and definitions involving volumes of sets in Ej3 could be
simpler than the corresponding ideas and definitions involving areas of
sets in E,. In the best treatments of the subject, the volume of a set is
its three-dimensional Lebesgue measure. The theory begins modestly
with the definition which asserts that the volume 7 of a rectangular
parallepiped (or brick or three-dimensional interval) having length 4,
width b, and height ¢ is the product of the dimensions, so that 7 = abc.
In the theory of volumes, bricks play the same role that rectangles play
in the theory of areas of sets in E,. It turns out that each bounded set
in E; that we shall dream of considering has associated with it a number
which is the volume of the set. If two of our sets S; and S, are such that
S, is a subset of Ss, which means that each point of S; is also a point of
S,, we can be sure that the volume |S;| of S; is less than or equal to the
volume |Sy| of S;. If a set S is composed of two parts S; and S, which
have no points in common, we can be sure that |S| = |Si| 4 |Ss|. If one
of our sets S; has a volume |S;| and if S; is another set congruent to ),
then S; has a volume and [Ss| = |S,|. Appendix 2 at the end of this book
shows that the theory of volumes is (like the theory of ‘“solid” physical
matter) not as simple as the naive believe. While a full discussion of
volumes lies far beyond the scope of this book, the theory of Lebesgue
measure in Ej justifies all of the methods we shall use for finding volumes.
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We now illustrate the ‘‘slab method” for finding volumes of three-
dimensional sets that are commonly called “solids.”” With the expecta-
tion that the method will be fully
understood and applied to find vol-
umes of other solids, we find the vol-
ume of the solid cone of Figure 4.51
which consists of the points in Ej
lying between the planes x = 0 and
x = h and inside or on the conical Figure 4.51
surface. When we are not required
to explain the details of the method, we solve this problem in two lines
by writing

(4.52) 7 =lim ) A@) ax = [ A() d
h b \2 b2 %377
= /0 w(zx) dx = —h—2~—3—:|0 = 4wb2h.

Even when we are not required to give explanations to someone else, we
do not write this without talking to ourselves. We make a partition P
of the interval 0 < x < %, but we draw only one subinterval having
length Ax and let x be a point of the subinterval. Planes perpendicular
to the x axis at the ends of the interval have between them a part of the
solid that we can call a slab. Let A4(x) be the area of the section in which
the solid intersects the plane which contains the point we have selected
and is perpendicular to the x axis. In case |P| is small, the number

A(x) Ax is exactly equal to the volume of our slab or is a good approxi-
mation to it. We next write

(4.53) 2A4(x) Ax

and tell ourselves that this is either exactly or approximately the sum of
the volumes of the slabs and hence is exactly or approximately 7. Hence
it should be true that

(4.54) V = lim 24(x) Ax.

But the right side of this formula is the integral in (4.52). Our next step
is to observe that A(x) is the area of a circular disk whose radius y is
such that y/x = b/h and hence y = (b/h)x. Thus

(55) A@) =7 (”7?)2 SR

With this information, we can quickly complete the work in (4.52).
Observe that it would not be easy to find the volume of the solid cone of

Figure 4.51 by employing slabs resulting from a partition of the interval

—b £ y £ b of the y axis. The difficulty resides in the fact that planes
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perpendicular to the y axis intersect the solid in plane sets the areas of
which are not easily found.

Finally, we illustrate the “cylindrical shell method” for finding volumes
of solids by finding the volume of a solid cone in another way. We
consider the solid cone to be the solid obtained by rotating, about the %
axis, the triangular region T in which the solid cone intersects the firgt

quadrant of the xy plane. This re-

y 5 gion appears in Figure 4.56. This
br—; time we make a partition P of the
interval 0 £y <& of the y axis.
~ When yi; < ¥ = 3, the lines in

L_"_ . ) ¥ % the xy plane having the equations

Ay, F==E7FAr

- —

2 ¥ = yk-1 and y = y; cut from T a
—_ strip approximating a rectangular
Figure 4.56 region of length [k — (h/b)y¥] and
width Ay,. When this rectangular
region is rotated about the x axis, it generates a cylindrical shell resem-
bling a tin tomato can from which both top and bottom have been
removed. Different points in this shell have different distances from the
x axis, but when |P|, the norm of P, is small, these distances are all
nearly yi¥. Taking 2ry¥ to be the circumference of the shell, we use the
number

4.57) 2y} (h - y;*)

to approximate the area of the shell. Multiplying this by Ay, the
thickness of the shell, gives an approzimation to the volume of the shell,
This leads us to the formulas

4.571) 7 = lim 2 2y (h - gy;:) Ay
and
b 1
(4.58) V = 2nh f y (1 - Zy) dy = drb%h.
0

For finding volumes of cones, the slab method produces answers much
more easily and quickly than the cylindrical shell method. Most of the
problems at the end of this section should be solved by the slab method,

but the cylindrical shell method sometimes works better than the slab
method.

Problems 4.59

1 Find the volume of the spherical solid (or ball) of radius & which has its
center at the origin. Find out whether it is easier to partition the whole inter-
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val —a = x S aor to take double the result of partitioning the interval 0 < x <
a. Remark: Scientists should always remember that the volume is $ras.

2 Supposing that 0 = & < 27, find the volume 7 of the segment of the
spherical ball with center at the origin and radius » which lies between the planes
having the equations x = r — kand x = r. Ans.:

Vo= [7, 00— 2 dx = Frk2r — ).

3 The region in the first quadrant bounded by the graphs of the equations
y = kx% x = 0, and y = 4 is rotated about the y axis to produce a solid S which
is a part of a solid paraboloid like the nose of a bullet. Show that |S], the volume
of S, is exactly half the volume of a solid circular cylinder having the same base
and altitude.

4 The region bounded by the graphs of the equations y = kx? and y = 4
is rotated about the line having the equation y = 4. Find the volume of the

resulting solid.  Ans.:
16w A2 z
15 k°

5 A region R is bounded by the graphs of the equations xy = 1, y = 0,
x=a, and x = b for which 0 < 2 < 5. Find the volume |S| of the solid S
obtained by rotating R about the x axis. Ans.: w/a — w/b.

6 The region bounded by the graphs of the equationsx = 1, x = 2,9 = 0,
and y = § /9 — x? is rotated about the x axis. Find the volume of the result-
ing solid. Ans.: 80m/27.

7 The region bounded by the line and hyperbola having the equations
x+y =5 and xy = 4 is rotated about the y axis. Find the volume 7 of the
solid thus generated. Ans.: 9.

8 Let a cylindrical shell (which resembles the part of a tomato can remaining
after the top and bottom have been removed) have length L and have inner and
outer radii 743 and 7. Supposing as usual that Az, = 7 — 74, prove that
the volume of the shell is

* |"
Q@mry )L Ay, cls
where 7§ is the number defined by 7§ = §(ri_y + ). |_‘ 5

9 Set up two different integrals for the volume
of the solid torus (or anchor ring) obtained by
rotating the circular disk of Figure 4.591 about
the y axis. First make a partition of the interval
0=y = a of the y axis and estimate volumes of
washers (things normally associated with nuts and Figure 4.591
bolts). Then make a partition of the interval
b—a=x < b+ aand estimate volumes of cylindrical shells (things which, if
they had tops and bottoms, would be tin cans). Evaluate one of the integrals.
Remark: The correct answer agrees with the result of applying a famous old
theorem which says that the volume of the solid of revolution is the product of
the area of the set rotated and the distance the centroid (in this case, the center)
goes. The theorem is the theorem of Pappus.

G
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10 TFind, in two or three different ways, the volume of the solid obtaineq by
replacing the disk of the preceding problem by the square with horizontal apg
vertical sides tangent to the disk. One of the methods is suggested by the remar}
at the end of the preceding problem.

11 Find the volume of the solid obtained by rotating, about the y axis, the
region bounded by the graphs of the equations y = 3x? and y = 12. 4y,
24,

12 Find the volume of the solid generated by rotating, about the x axis,
the region in the first quadrant bounded by the graphs of the equations y = 43
x=0,andy = 8. Ans.: 38x.

13 Let a > 0. Two circular cylinders of radius @ have their axes on the
x and vy axes. With axes so oriented that the z axis is vertical, sketch the part
of the first cylinder which lies in the first octant and between the planes x = ()
and ¥ = 5a. Then sketch the part of the second cylinder which lies in the first

octant and between the planesy = 0 and y = 25,

z For three values of z, sketch the lines in which a

horizontal plane through (0,0,2) intersects the parts

of the cylinders in the figure, and then sketch the

curve in which the parts of the cylinders intersect.

4 5 If the figure is reasonably good, it should be easy

% to find the volume /7 of the solid bounded by the

three coordinate planes and parts of the two cylin-

/x ders. Do it. Ans.: Figure 4.592 and V' = 24%/3.

Figure 4.592 14 TFind a reason why the answer to the preced-
ing problem must be less than a2.

15 A cylindrical hole is drilled through the center of a spherical ball. Itis
observed that the length of the hole is L. Show that the volume of the part of the
ball remaining is the same as the volume of a spherical ball of diameter L.

16 A section of a tree trunk is a section of a right circular cylinder of radius 4.
A wedge is removed by making two cuts to a diameter (line, not number), one
cut being in a horizontal plane and the other being in a plane which makes the
angle § with the horizontal plane. Find the volume of the wedge.

Ans.: %a® tan 6.

17 Tt is of interest to know that our methods are powerful enough to enable
us to derive the standard formula

1) V = §mwabe

for the volume 7 of the solid in E; bounded by the ellipsoid having the equation
x2 oy g
@ atpta=1

in which a, b, ¢ are positive constants. The formula for the volume can be
remembered with the aid of the fact thatif 2 = b = ¢ = r, then (2) is the (or an)
equation of a sphere of radius » and (1) gives the volume of the ball which it
bounds. To start to find the volume of the part of our solid containing points
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(%,y,%) for which y = 0, we make a partition of the interval 0 =y =<b When
0 <y < b, we can put (2) in the form

¥ 22 1
©) 2ta=np0 -

and hence in the form

)

x? 2
G Gy

When y has the constant value yy, (4) has the form

x? 2
(5) 72+%=1,

where

©) 4=§Vb’—yfz, B=£\/b2—y2".

This shows that, as Figure 4.593 indicates, the plane having the equation y = y,’,k
intersects our solid in an elliptic disk

which, according to Problem 19 of z
Section 4.4, has area 4B or

o "—b“f ®* — 1%,

The volume of the slab of our solid *
which lies between the planes having Figure 4.593
the equations y = y;_; and y = y; is

then exactly or approximately the result of multiplying (7) by Ays. Thus

® 7 =21m ) LG - 51 A

the factor 2 being required because we partitioned only the interval 0 < y < .
The limit of Riemann sums being a Riemann integral, we obtain

= dmac [P, e
©) =T e -

and hence (1). In case two of the three numbers a, b, ¢ are equal, say a = ¢,
the graph of (2) is called a spheroid. When finding the volume of the solid
bounded by a spheroid, it is possible to simplify matters by using circular disks
instead of elliptic disks. Some scientists consider it to be more fun to work out
the above formulas than to remember that a spheroid for which a = ¢ < %
is called a prolate spherord (like the surface of a cucumber or a watermelon) and
that a spheroid for which a = ¢ > b is an oblate spheroid (like the surface of a
pancake or an unscarred earth that bulges at its equator and is flattened at its
poles because of its rotation).

18 From time to time, we recognize the fact that some scientific terminologies
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and notations have their historical origins in primitive ideas that are fuzzy o
incorrect. The number in the right member of the formula

a) lim z Fx) Ax = [: Fx) dx

is, when it exists, defined in terms of Riemann sums in a way which we must
now understand. If (1) holds, then to each positive number € there corresponds
a positive number § such that

@ | 3 et an — [ x| <

k=1

whenever P is a partition of the interval a < x < b for which |P| < 8. Fora
long time before this precise idea of Riemann revolutionized (or counter-revolu-
tionized) mathematics, it was generally considered to be meaningful to regard

. e s b
the limit of sums as “the sum of infinitely many infinitesimals.” Thus fa f(x) dx

was considered to be an “infinite sum’ of products of ‘“finite” numbers f(x) and
“infinitesimal” numbers dx. The “reasoning” involved is quite as flimsy and
unrewarding as the “reasoning” which reaches the “conclusion” that “a circle
is a polygon having infinitely many infinitesimal sides because it is a limit of
polygons.” In mathematics, as in other sciences, many of our ancestors were
intrigued by ideas which are now considered to be obsolete. Nowadays we accept
the idea that the sum of the volumes of many thin slabs can be a good approxima-
tion to the volume of a spherical ball, but we reject the fuzzy idea that the
volume of the ball is the sum of the volumes of infinitely many infinitely thin
slabs. It is not easy for historians to decide which of our great ancestors really
had quite correct ideas about approximations and limits and, without swallowing
ideas about sums of infinitesimals, merely used the fuzzy terminology because it
was the fashion to do so. There can be tenuous connections between ideas and
words. If Leonhard Euler wrote in a language in which apples were called
“potatoes that grow in the air,” historians unaware of the fact have an oppor-
tunity to conclude that this intellectual giant did not know the difference between
potatoes and apples. Some people believe that the notation for integrals is bad
because it makes too many people think that the dx is a number. The author
believes that terminologies and notations involving limits are the real sinners
because they make too many people think that numbers and partitions and other

things are mobile. Perhaps replacing “lim” by “approx” in (1) would cure many
of our ills.

4.6 Riemann-Cauchy integrals and work This section introduces
integrals that are, in some cases, not Riemann integrals but are con-
structed from Riemann integrals by use of ideas that were made precise
by the French mathematician Cauchy (1789-1857). It may happen that
the integral in the right member of the formula

(4.61) 7 f) dx = lim [ 7y ax



4.6 Riemann-Cauchy integrals and work 251

exists as 2 Riemann integral whenever 2 = 2 and that this integral, as a
function of &, has a limit as & becomes infinite. In such cases, this limit
is the Riemann-Cauchy integral of f over the semi-infinite interval x = a
and is denoted by the symbol in the left member of (4.61). In each other
case, we say that the integral in the left member of (4.61) does not exist
as a Riemann-Cauchy integral. For example, when » > 0,

o 3 —
4.611) / L e = tim / & dx = lim x_‘]” - lim [l _ 1] _L
r X r ]l r

h—w h—w -1 r h—w | T

We can bravely start to calculate a Riemann-Cauchy integral by
tentatively writing

(4.612) [: cos x dx = lim oh cos x dx = lim [sin x]z = lim sin &

h— o h— o0 h—

with the understanding that we will get an answer if the last limit exists.
The last limit does not exist, however, so the integral does not exist.
Riemann-Cauchy integrals of another type are defined by the formula

(62) [ de = lim [ f() ds

when a > 0 and the integrals and limit exist. Consider the example for
which f(x) = x~* when x > 0, while f(x) is either undefined or is defined
in some other way when x < 0. Then fis not bounded over the interval

1 . . .
0 <x =1 and hence /;) f(x) dx cannot exist as a Riemann integral.
However,

. 1
lim x—% dx

(4.621) ﬁ)‘ ¥ dx

h—0+
- Jim [24], - Jim [2- 23] -2

so the first integral exists as a Riemann-Cauchy integral. Riemann-
Cauchy integrals of still other types are defined by the formulas

(4.622) [ ° f) dx = lim /_—ah £x) dx
f_“” fle) dx = lim * f(a) da

when the integrals and limits exist. Finally, the Riemann-Cauchy
integrals in the left members of the formulas

(4.623) [_“: F(x) dx = [_"Q F(x) dx + [: F(x) dx
(4.624) [ 1) dx = [ fe) dx + | * 1) dx
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are defined by these formulas whenever the integrals on the right exist a5
Riemann-Cauchy integrals. Perhaps attention should be called to the
fact that some elementary books reserve the term ‘‘definite integra]”
for application to an integral of a particular brand (which is sometimes
the Riemann brand and is sometimes not care.
y fully delineated) and apply the term “improper

integral” to each integral of another kind.
It is impossible to have a tranquil scientific
career without thorough understanding of

matters relating to

4.63 Y1y
(, ) /_IF X.

The graph of the integrand is shown in Figure
-2 -1 0 1 2 % 463]. Theintegral cannotexist as a Riemann
Figure 4.631 integral because the integrand x~2 is undefined
when x = 0. Even if we set f(0) =0 and

1
f(x) = x~2 when x 5 0, the integral / 1 f(x) dx will still fail to exist as

a Riemann integral because f is not bounded over the interval
—1 £ x £ 1. According to (4.624), the formula

(4.632) f —dx=/_ = dx +/ = dx

will be valid when the integrals are Riemann-Cauchy integrals provided
the two integrals on the right side exist. The calculation

. —-h
(4.633) f° Ld= tim L = lim [1 — 1] - w
-1

poo+ -1 #* w0+ 2

shows that the first integral on the right does not exist, and the calculation

1
(4.634) f L= lim lzdx= lim [l— 1] -«
h—0+ x w0+ [P

shows that the second does not exist. Hence, the integrals in (4.632) do
not even exist as Riemann-Cauchy integrals. The calculations do, how-
ever, enable us to convey information by writing

(4.635) /ldx / 2dx+/—dx—oo+oo=oo.
1 X

Persons do not lead these tranquil scientific lives when they realize that

(4.636) d-1_1

dx x %
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except when # = 0 and cheerfully make the calculation
1 —1T

(4.637) f L. —1] = —2 (2?2}
-1 X -1

which would be correct if (4.636) were valid over the whole interval
—1 2% =1 Since the wide world contains many definitions of inte-
grals in addition to those of Riemann and Riemann-Cauchy, it is some-
what presumptuous to assert that (4.637) is ridiculous. However, when
we confine our attention to Riemann and Riemann-Cauchy integrals,
we can observe that (4.637) is incorrect.

Integrals of the types in (4.61) and (4.623) are particularly useful.
For example, the formula

1 © _ (x— M)2
464 T / 202 d = 1
(4.64) Ve e % (¢ > 0)
is not easily proved, but it lies at the foundation of very much work in
probability and statistics. Proof of this formula will appear later.

We conclude this section with a discussion of work in which the
formula

(4.65) [ L= ! (2> 0)

— o0

plays a fundamental role. To begin, we study the amount of work done
by a force F which pulls a particle P from the place on an x axis where
x = a to the place where x = b. The force F may have the direction of
the x axis but, as in Figure 4.651, this
is not necessarily so. Let f(x) denote y

the scalar component of the force F in ot °

the direction of the motion, that is, in O bz b *
the direction of the x axis. In case f(x) Figure 4.651
is a constant, measured in pounds (or

dynes), and the distance b — a is measured in feet (or centimeters),
the work # done by the force is measured in foot-pounds (or dyne-
centimeters) and is defined by the formula

(4.652) W = ()b — a).

Since work and distance are scalars and force is a vector, it is quite
incorrect to perpetuate the ancient idea that “work is force times dis-
tance”’; we must use scalar components of forces. In case the scalar
component f(x) is different for different numbers x, the definition (4.652)
is inapplicable and we need integration to calculate #/. The procedure
is almost identical with the procedure used to calculate areas and vol-
umes. We make a partition P of the interval from a to b with a “small”

Qo
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norm |P| and write f(x}) Ax, as an approximation to the amount of work
done in pulling the particle from the left end to the right end of the kth
subinterval. The sum

(4.653) 2f(x¥) Ay

should then be a good approximation to our answer # and hence we
should have

(4.66) | W =lim ) f(et) A = [ 1) dx.

QOur statements about (4.653) and (4.66) were necessarily vague and
optimistic because the quantity /7 that we are trying to calculate has not
yet been defined. We must recognize the fact that we cannot prove
correctness of a formula for 7/ when we have no definition or other
information that tells us what # is. In the absence of another definition
or other information, we must adopt the principle that our work with
partitions and Riemann sums provides the motivation for the definition
whereby 7 is defined by the formula

(4.661) W = f: F(x) dx

whenever f is a function for which the integral exists as a Riemann integral.
The above ideas will now be applied to basic problems. The Newton
(1642-1727) law of universal gravitation says that if two particles of mass
m; and m, are concentrated at distinct points P; and P., then these
particles attract each other with a force whose magnitude is proportional
to the product of the masses and inversely proportional to the square of
the distance between them. Suppose we have a particle of mass m;
concentrated permanently at the
origin, Figure 4.67, and that we
have a “test particle” of unit mass
that we wish to move along the
positive x axis. There is then a
constant k, which depends only upon the units used to measure mass,
force, and distance, such that the force on the test particle has magnitude
km1/x? when the particle is at distance x from the origin. The work W,p
required to move the particle from the point a (that is, the point with
coordinate 4) to the point 4 is then to be calculated from the formula

(4.671) W,y = / Pk g

m my=1

o a x b x
Figure 4.67

P
From this we find the remarkably simple formula

4.672) W, = km _ km
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It follows from these formulas that
4.673) lim #op = / B g k

This formula is responsible for some terminology that scientists often use.
The limit in (4.673) is called “the amount of work required to take the
test particle from a to infinity” and this amount of work is called the
potential (or gravitational potential) at the point a due to the particle of
mass m; at the origin. It is an easy consequence of these definitions and
formulas that the potential, say u, at the point P(x,y,z) due to a particle
of mass m; concentrated at the point Py(xo,y0,20) is

km1 .
Ve =z + ( — y0 + (z — 20)?

The basic importance of the concept of potential « lies in the fact thatif a
particle of mass 7 is moved from a point P; to a point P; with no forces
upon it except gravitational forces and a force F, and if the speeds at
P, and P, are equal, then the work done by the force F is equal to the
product of m and the potential difference, that is, the potential at the
starting point P; minus the potential at the destination P,.

All of the above ideas and formulas apply to electrostatic potentials as
well as to gravitational potentials. In the electrical case, we start with
two charges ¢1 and ¢ and apply the Coulomb (1736-1806) law
|F| = kg1g2/%?, which is the electrical analogue of the Newton law of
gravitation.

(4.68) u =

Problems 4.69

1 Suppose somebody writes

with the hope that he is conveying information to you. What does he mean?
Ans.:

. 11 . h1
lim ~dx = o, lim —dx = .
h—0+ Jr X > J1 X
2 Prove that
“ 1 1 1]

(a) [l ﬁdx=p_——l’ fO ;,;dx=°° @>1
® * L= fl-l—d S <1
) .[1 PR 0@ T 19 ’

s
8
A
T
&
[l
] -t
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y - 4 Remembering that ¢ = 2.71828, apq
1 an | _l remembering or learning that ¢% is about 20, £
ry=e is about 400, and ¢° is about 8000, make some

calculations to indicate that Figure 4.69]

shows the nature of the graph of y = o=,

Figure 4.691 Observe that the area of the shaded region

seems to be about the same as the area of the unit square. What are the facts?
5 'The region bounded by the cissoid having the equation

o 1 2 3 4 X

X3
2a — x

Y=

and its asymptote is rotated about the asymptote. Using the cylindrical shell
method, set up an integral for the volume 7 of the solid thus generated. Clu,
and ans.:

V=21im221r(2a—x)yAx
2a

= %(2a — x)% dx.

4 41rf0 (20 — %)% dx

Remark: With the aid of information about beta integrals, it can be shown very
quickly that 7 = 27243,
6 Show that putting M = 0 and ¢ = 1/4/2 in (4.64) gives the formula

f_: =t dx = \/T.

Sketch a graph of y = ¢7=* which is good enough to show that this result seems
to be correct.

7 Prove that if f(x) =4 when 0 < x <1 and f(x) =5 when 1 < x <2,
then

fozf(x) dx = 9.

Note that f(x) is undefined when x = 0, when x = 1, and when x = 2.
8 Prove that

. h . 13
lim xdx =0, lim xdx = .
Ao J — h—> o

9 Even persons having little contact with the external physical world know
that rods and wires and springs stretch when they are pulled and that the amount
of stretching depends in some way upon the amount of pulling. Engineers have
understanding of elastic limits and of circumstances under which useful results
are obtained by applying the law of Robert Hooke. The Hooke law says that
the magnitude of the force required to stretch a rod of natural length L to length
L4 xis

%,

[l

where kis a constant that depends upon the rod. The number x is the elongation
of the rod, and the magnitude of the force is proportional to the elongation.
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Figure 4.692, which shows the rod before and after stretching, may be helpful.

Supposing that 0 < @ < 4, find the work done in stretching the rod from length
L+ atolength L + 5. Ans.:

A y
3L 6% — a?).
10 A conical container (see Figure 4.693) hasheight >
¢ feet and base radius R feet. It is filled with sub- ! "
stance (water or wheat, for example) which weighs w —
a
b

h x
4 i e / ¥
1 L+x S z
Figure 4.692 Figure 4.693

pounds per cubic foot and which must be elevated (by a pump or shovel or other
elevator) to a level H feet above the vertex. Suppose that H = a. Find the
work W required to accomplish the task. Hint: Start by making a partition of
the interval 0 £ y = a and calculating an approximation to the work required
to lift the material which constitutes a horizontal sheet or slab. All calculations
are based upon the fundamental idea that gravity pulls things downward, and that
the magnitude of the force on a thing is its weight. Ans.:
H a

W =wrRia (3 - 7)

Note that if 7 is the volume of the conical solid, then the answer can be put in
the form W = wV (H — %a).

11 Modify Problem 10 by replacing the conical container by a container
such that, for each y* for which 0 < y* < 4, the plane having the equationy = y*
intersects the contents of the container in a set having area 4(y*). Then set
up an integral for the work #. Ans.:

W=uw jo“ (H — 9)4(y) dy.

12 In many problems involving motion of particles, we need the concept of
kinetic energy, or energy due to motion. This problem requires us to study and
learn a method by which we can use calculus to derive an important formula.
We suppose that, at time ¢ = 0, a particle of mass m starts from rest, with kinetic
energy zero, at the origin of an x axis and is pulled in the direction of the positive
x axis by a force F of constant magnitude for which F = Ci at all times. We
suppose that no force other than F operates on the particle. Letting denote
the coordinate of the particle at time ¢, we use the Newton law F = ma to obtain
the vector equation

d*x
® mﬁi=ma=F=Ci.
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From this we conclude that there must be a constant vector ¢, such that

dx R
()] mEi=Ct1+cl.

But (dx/dt)i is the velocity v at time ¢, and putting ¢t = 0 in (2) shows that
c¢; = 0. Therefore,

3) mv = m%i = Ci.

From this we conclude that there is a constant vector C; such that
%) mal = Cti + C,

But x =0 whent =0, soc; =0. Therefore,

) maxi = $Ci4.

The kinetic energy KE of our particle at time ¢ is defined to be the amount of
work done by the force F in bringing the particle from its state of rest at time
t = 0 to its state of motion at time ¢. Since |F| has the constant magnitude ¢
and has the direction of motion of the particle as the particle moves the distance

%, the amount of work done is Cx. Thus KE = Cx and, with the aid of (5) and
(3), we find that

©) KE = Cx = - (Ct)? = v,
2m

Therefore,

Q) KE = ¥m|v|2

The next problem requires that the same result be worked out by a different
method without the assumption that F is a constant.

13 A particle P of mass m is moved around in E; by a continuous net force F
which operates over a time interval ¢ £ ¢ £ . The Newton law F = ma then
shows that the displacement vector r (which is -5?),
the velocity vector v, and the acceleration vector a
are continuous functions of z. Make a partition of
the interval @ £ ¢t £ b and look at Figure 4.694 which
shows, among other things, the positions of P at times
1 and . Tell why the scalars

(1) F()[r() —r(t-1)] and  F(%)-v(n) An

should, when |P] is small, both be good approzimations
to the work done by F in forcing P from P;_; to Pi. Tell why it should be
reasonable to adopt either one of the formulas

Figure 4.694

n

@) = Jim, 2 Fn)[r (%) — £(te-1)]

®) W = lim 2 F(t)-v(x) At
IPI=0 =y
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as the definition of the work done by F over the time interval ¢ < z < . Show
that (3) is equivalent to the definition

@ W= [*Fav0) a

It remains for us to learn a little trick by means of which information can be
gleaned from this formula. Using the Newton formula F = ma gives

) F(2)-v(2) = ma@t)-v(t) = mv' (¢)-v(t)
1
= 3 m OOl = F oL

Hence

1 d b
(6) W= 7™ /:Z [lv(z)]’] dt = %m [lv(t)]z]a
and
o W =12 nlv®)l — 3 miv@l

In case v(a) = 0, our work gives another derivation of the formula for the kinetic
energy of a particle of mass m having speed [v(b)].
14 The graph of the equation
a*x
Y=y

which usually appears in the disguised form x?y + 5%y — a2 = 0, is called a
serpentine. Find the area (finite or infinite) of the region in the first quadrant
between the serpentine and its asymptote.
15 Accumulation of familiarity with Riemann sums may bring a desire to
b
know why /a f(x) dx cannot exist as a Riemann integral when f is defined but

unbounded over the interval ¢ £ x < 5. If the integral exists and has the value
I, then there must be a partition P of the interval ¢ £ x < b such that

n
m | ¥ fed) - 1] <1
k=1
whenever x;_1 < x3 < xy for each k. Show that if (1) holds, then
n
@ £ = (Ax)™ [1 + I+ Y |f) Axk]
k=2

whenxo < xf < x1. This shows that f must be bounded over the first subinterval
of the partition P. Similar arguments show that f must be bounded over the
other subintervals and hence also over the whole interval ¢ < x < b.

4.7 Mass, linear density, and moments This section involves
some ideas that turn out to be important in many ways. Let F be a
fanction which is defined over some finite interval ¢ < # < b and is
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monotone increasing over the interval. This means that F(x1) < F(x,)
whenever ¢ £ x; £ x, < b. Such functions F arise in many ways. We
can, for example, let P (a number) denote the population of an island,
state, or country, let P(x) denote the number of persons having age less

than or equal to , and let

(4.71) F(x) = —=

We can also suppose that the interval 2 < x < b represents a line segment

or a slim beam, as in Figure 4.72,

Sand upon which sand and perhaps other

o things are piled and from which hams

e | ¢ b and other things are hung, and let

Figure 4.72 F(x) be the total mass which rests

upon or hangs from the part of the

interval from atox. Because of the vividness of the latter interpretation,

F is sometimes called a mass function even when F(x) is 2 number which

is important in social sciences and which has nothing whatever to do with

such things as pounds and tons and grams and slugs. When x and
x <+ Ax both lie in the interval from a to b, the difference quotient

(4.73) F(x + A;)c — F(x)

represents the average mass per unit length or the average linear density
over the interval with end points at x and x + Ax. In case this quotient
has, for a given x, a limit as Ax approaches zero, this limit is called the
density at x. When this density exists, we call it f(x) so that, by our
definition of derivatives, f(x) = F'(x). This idea of density has its
simplest applications in cases where F(x) has a continuous derivative.
In these cases the function f having values f(x) is called the density
function of the mass function F, and f(x) = F’(x) for each x.

We are now ready to start introducing moments. Without assuming
that F is differentiable or even continuous, let £(xi) be a number (or point)
not necessarily in the interval from a to b, and let p be an integer which
is either O or positive. Let P be a partition of the interval a < x < b as
shown in Figure 4.74. The number F(x;) — F(x:—;) is the number

. obtained by starting with the total mass in the interval ¢ £ x < x; and

Figure 4.74

et
i
-
o
-
_{
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subtracting the total mass in the interval 2 < x < x;_;. Thus it is the
total mass in the interval #,; < x £ x. The number

(+.75) (¥ — 97F () — Flxes)]

represents the pth moment about the point £ of a single particle of mass
F(x) — F(x1-1) concentrated at the point x} and, when the norm of P
is small, this should be a good approzimation to the pth moment about £
of the total mass in the interval %, < x < x,. Moreover, the sum

n
(4.76) kZ (¥ — &)P[F(x) — F(o)]

=1
should be a good approximation to the pth moment about £ of the total
mass in the interval @ £ » £ 5. Our statement about (4.76) was neces-
sarily vague and optimistic because the quantity we are trying to calculate
has not yet been defined. It is a fundamental fact, which is proved in
the theory of Riemann-Stieltjes integrals, that there is 2 number M,
such that the sum in (4.76) is near it whenever |P| is small, that is,

n
@.77) MEZ, = lim ¥ (xf — §7[F(x) — Flay)).
IPI=0 52y

This number M, is called the pth moment about the point £ of the mass
in the interval 2 £ x £ 5. In case p = 0, the pth moment is the total
mass in the interval ¢ £ x £ 5. In mechanics, the second moment is
called moment of imertia. In statistics and elsewhere, the particular
number % for which MY, = 0 is called the mean (or mean value) of F over
the interval @ £ x = 5. In mechanics and elsewhere, the point having
coordinate # is called the centroid of the mass. The number M, the
second moment about the centroid or mean, is particularly important in
mechanics and statistics.

The above discussion applies equally well to mass functions F that
possess continuous density functions f and to those that do not. When
F does possess a continuous density function f, we can solve problems with
the aid of only Riemann integrals. In the latter case the number

4.78) F(xE) Axe

is taken to be an approximation to the total mass in the interval
%1 < x S x4, and instead of (4.76) we use the Riemann sum

(4.781) f} (o — E)*f (=) A
k=1

as an approximation to M®,. Taking limits as the norm of the partition
P approaches 0 then gives the formula

(4.782) M2 = [ = — %) d.
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Problems 4.79

1 As suggested by Figure 4.791, let a rod having constant linear density
(mass per unit length) & be supposed to be concentrated on the intervala < x <
of the x axis. Starting by making a partition of the interval ¢ < x <,
calculate MP;, the pth moment about § of
the rod. Ans.:

0t & bo*
Figure 4.791 M®P, = 5‘—_‘:—1 [(6 — &7 — (a — £)7H],

2 Using the result of the preceding problem, prove that MQ‘)E =0 if and

only if £ = ¥(a + b).
3 Supposing that

Lbf(x)dx=M>O,

show that the constant % satisfies the equation

IR O
if and only if

Mz = j;b xf(x) dx.

Remark: Always remember that, in statistics and elsewhere, % is called the mean
(or mean value) of f over the interval @ £ x < b and that, in mechanics and
elsewhere, % is the x coordinate of a centroid. Remember (or learn) that a
centroid is, as it should be, a point “like a center.”

4 Suppasing that

b
/a fx)de =M >0
and that the mean (or x coordinate of the centroid) is %, prove that
M2 = M2: + (2 — §)M.
State the meaning of this formula in words, and use the formula to determine the

value of £ for which M, has the least possible value. Hint: Start by writing

M2 = [ = o d = [ 16 — 2 + 2 — DI @

5§ Let f be the function for which f(x) =0 when x <0 and f(x) = ¢
when x > 0. Determine and graph the mass function F of which f is the density
function.

6 The density function f defined by the first of the formulas

1 (z—M)2 1 z (t— M)?
f(x) = vy~ e, Flx) = e j e dt
T O RO J —

has the mass function (or cumulative function) F defined by the second formula.
With the aid of the formula (4.64) make a preliminary attempt to learn the
natures of the graphs of y = f(x) and y = F(x) when M = 0 and ¢ = 0.01.
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7 When M =7, the graphs of the functions in the preceding problem are
different from the graphs obtained when M = 0. What is the difference?

8 When a particle having mass m rotates in a circular path with angular
speed @ radians per second at a constant distance 7 from an axis of rotation, its
speed is 7w and its kinetic energy is mr?w?2. With the aid of this information,
calculate the kinetic energy of a circular disk of radius @ which has mass & per
unit area and which is rotating with speed w radians per second about an axis
through its center perpendicular to its plane. Hint: Base the solution on esti-
mates of the area of a ring, the mass of the ring, and then the kinetic energy of
thering. Ans.: KE = imda*w? The answer has the form KE = 3/w?, where ,
the polar moment of inertia of the disk about the axis used, is 3rda*.

9 The cone of Figure 4.51 has mass § per unit volume and is rotating w
radians per second about its axis. Find its kinetic energy. Hint: Use the answer
of Problem 8.

10 TFigure 4.792 can make us wonder whether we are becoming wise enough
to determine the attractive force F upon a particle of mass m at P(x,y,2) that is
produced by a bar or rod concentrated upon an

interval ¢ £ ¥ = b of the x axis of an %, y, 2 y P(z,3,2)

coordinate system. We suppose that the bar T ’

has linear density 8(x) at the point (x,0,0) and Y . pe
that 8(x) is integrable but not necessarily / a b
constant over the interval ¢ < x = 5. The Figure 4.792

first task is to set up an integral for F. The

following solution of this problem should be read even by those who can solve
the problem without aid and assistance, because it fortifies our understanding
of the process by which integrals are set up. We make a partition Q of the inter-
val a £ x £ b, but we call the partition points 2o, ¢, * * * , ¢, because the num-
ber x is the x coordinate of P. If the trick helps us, we can consider the x axis
to be simultaneously an x axis and a ¢ axis. For each 2 = 1,2, + » + ,nlet#y
be chosen such that #_; < #f < #. We then use the number

O] 5(e%) Ane

as an approximation to the mass of the part of the rod in the interval - < ¢ <
. Supposing that this mass is concentrated at the point Pi(#,0,0), we use the
number

@ 3(1) A

|PPyf?

as an approximation to the magnitude of the force AFy on the particle at P pro-
duced by the part of the rod in the interval #—1 < ¢ £ % Problem 19 of Prob-
lems 2.39 discusses this matter and shows how we derive the formula

8(t%) A, PP,

® AF; = Gm ——
[PP:|®

by use of the fact that a nonzero vector is the product of its magritude and a
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—
unit vector in its direction. QOur next step is to write PP in terms of the coordj.
nates of P and P, and to write

( —x)i — 9] — 2k
(e — 2 + y* + 2%

) Y AF, = Gm 2 8(5) [ At

Everything is now prepared for the crucial steps. When the norm |Q| of the
partition @ is small, the sums in (4) should be good approximations for the force
F that we are trying to define. In other words, F should be the limit of these
sums. But these sums are Riemann sums and, provided P(#,,z) is not a point
on the interval ¢ £ x = b of the x axis, they have a limit which is the Riemann
integral in the formula

— x)i — yj — zk
5 F=Gnm fab 8@ [((;_ :))21+ ;2j+ :2]% dt.

Our work motivates the definition whereby F is defined by (5). While (5) serves
as a source of information about F in other cases, we confine our attention here
to the case in which the density is a constant, say 8(t) = 8o for each ¢, and, more-
over, y =z =0 and x < a < b. In this case, F has the direction of i, and if
we denote its magnitude by Fi(a,b,x), then

®) Fi(a,b,%) = Gmb, L Y — w2 de

= Gmdo (_1_ 1

a—x b—zx/
It is easy to see that
@) lim Fi(abs) = 220, lim Fiabs) = .
b e a—x z—a—

If these formulas agree with our intuitive notions, then at least some of our
intuitive notions are good. The second result in (7) gives us a lesson in approxi-
mation. Since particles near ends of actual steel rods are not subject to huge
attractive forces, we must conclude that very bad approximations to forces on
these particles are obtained from calculations based on assumptions that the
rods are concentrated on their axes.

11 Modify Figure 4.792 to fit the case in which £ >0, a = —hk, b = b,
8(x) = 8o, x = 0, and z = 0. Show that, in this case, formula (5) of the pre-
ceding problem becomes

_ B — 9y
F = G‘mﬁo _hm di.

After having a good look at the coefficients of i and j, show that

h 1
= —2Gméboyj /0 Wdt.

12 A thin cylindrical shell S of radius R has its axis on the x axis of an x, ¥,
z coordinate system and has its ends in the planes having the equations x = a
and x = b. This shell has constant areal density (mass per unit area) 8. Find
the gravitational force F which it exerts upon a particle m* of mass m which is
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concentrated at the point (¢,0,0).  Hint:
As suggested by Figure 4.793, make a
partition P of the interval a £ x < b.
Consider the part of the shell between
the planes having the equations x = xj_;
and x = % to be a circular ring having
its mass M; concentrated i in the plane Figure 4.793
having the equation x = xk Let AF,

be the force exerted upon m* by thisring.  Because of symmetry, the components
of AFy orthogonal to i are zero. Moreover, the i component of AF, (which is
AF,) is the same as the i component of the force on m* produced by a single
particle of mass My concentrated at the point (x7,R,0) in E;. Therefore,

Mi(x* — o)i
[* = o) + RPF

and we are ready to calculate M and get on with the calculus. Ans.:

@

1) AF, = Gm

1 .
= 2wdGmR (\/(a s Ty - Ve R’) i.

13 We can claim that if the density § and the radius R of the cylindrical shell
of Problem 12 are so related that the total mass is M, then the answer to Problem
12 should be nearly the same as one of the answers to Problem 10 when R is
near zero. Is it so? Ans.: Yes, unless misprints disrupt the harmony.

14 A circular disk of radius H has its center on the x axis of an #, y, 2 coordi-
nate system and lies in the plane having the equation x = xo. This disk has
constant areal density (mass per unit area) §. Set up an integral for the gravita-
tional force F which the disk exerts upon a particle m* of mass m which is con-
centrated at the point (¢,0,0) when ¢ % xp. Hint: Make a partition with the
aid of which the disk is split into a collection of concentric rings so that a repre-
sentative ring has radius ry. The hint of Problem 12 provides a formula that

can be adapted to give the force which the representative ring exerts upon m*.
Ans.:

# T
1)) F = 270Gm(xo — c)i[o 7 F Gro = O dr
1 1
@ F = 2m86m(n — ) | =g — T = c)z] i

When M is the total mass of the disk so that M = 7 H?2§, the answer can be put
in the form

_ L, GmMf 2o —¢
@ F=2 H? [lxo‘-cl \/H2+(xo-—c ]

Remark: We really should look at these formulas. For example, (2) gives very
interesting information when H is large and our disk is a huge part of a homo-
geneous plane. One who wishes additional mental elevation should undertake
to realize that we can replace gravitational laws and constants by electrostatic

ones and obtain information about forces on electrons produced by charges on
plates of capacitors.
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15 A cylindrical solid of radius R has its axis on the x axis of an x, y, z coordj-
nate system and has its ends in the planes having the equations x = zand x = p,
This solid has uniform density (mass per unit volume) 8. Find the gravitationa]
force F which this solid exerts upon a particle m* of mass m located at the point
(¢,0,0) of E3, it being assumed that ¢ < a. Hint: Make a partition of the interva]
a < x £ b. Consider the part of the cylinder between the planes having equa-
tions x = x,_; and x = x;, to be a circular disk in the plane having the equation
x = xy. Let AF; be the force exerted upon the particle m* by this disk. A
formula of Problem 14 can then be applied. Aus.:

F = 2xGmsi f: [1 - T/(Ti”_—T)_:—T-T_z] dx

F =206mélb —a— (/& — )2+ R2— V/(a — ¢)* + RY)]i.

This can be put in the form

GmM VB =)+ R —/(a—c)+ R?
F=22% [1- S 11,

where M = wR2(b — )3, the total mass of the cylindrical solid.

16 Let S be a thin spherical shell which is assumed to be concentrated on a
sphere (surface, not ball) of radius @ having its center at the origin. The shell
has constant areal density (mass per unit area) 8. Let m*be a particle of massm
which is concentrated at a point (—5,0,0) which lies at the origin or at distance
b from the origin on the negative x axis. Thus b = 0, and we suppose that
b £ a so m* does not lie on the sphere. The gravitational force F exerted upon
m* by the shell depends upon the location of m*. If 0 < b < a so that m*is
inside the sphere, then F = 0. If b > a so that m* is outside the sphere, then

M F=c2y

where M is the total mass of the shell. Thus when m* lies outside the shell,
the force on it exerted by the shell is the same as the force exerted on it by a
particle at the center of the shell whose mass is the total mass of the shell. From
our present point of view, proofs of these famous and important results (which are
discussed in more general terms in Section 13.8) can be comprehended more
easily than they can be originated. To start our proof, we slice the spherical
shell into ribbons to which we can apply a basic result given in Problem 12.

The spherical shell is obtained by

A, rotating the semicircle of Figure 4.794
about the x axis. We make a partition
m* P of theinterval 0 < 6§ <x. With the
( > o (et O -(106 0)'0 7 aid of the basic formula
. length of arc
Figure 4.794 = —°
£ @ Angle radius

we see that the lines making angle 6,-; and 6; with the positive x axis have
between them an arc of the circle of length a(6; — 01-1), or aAf;. When this
arc is rotated about the x axis, it produces a part of the spherical shell which can



4.7 Mass, linear density, and moments 267

be described roughly as a circular ribbon having radius a sin 6, width a Ag,
length 2m a sin 0, area 27 a?sin 05 Ay, and mass M;, where
(3) Mk 2mda? sin 0,, AB;,.

Considering this ribbon to be a circular ring of mass M, and radius a sin 6F which
has its center on the x axis and which lies in the plane having the equation x =
2 cos 0y, we use formula (1) of Problem 12 with ¢ = —b to obtain the formula

(5 + a cos 65) sin 6f

AF;, = 2nGméba%
) * Tomoatt [(5 4 a cos 6)2 + (a sin 6;)%]%

Aby

for an approximation to the force upon m* produced by one element of the
spherical shell. The limit of the sum of these things should be the force F that
we are seeking. But the sum is a Riemann sum and its limit is a Riemann
integral. This leads us to the formula

) F = 2nGméail,
where U is the unruly integral defined by

= (b+ acos B)asin 6
o [6% + 2ab cos 6 + a?]%

The hypothesis that 5 = 0 and b # a implies that the denominators in (4) and
(6) are never zero and hence that the integrand in (6) is continuous. Before
making a serious attack on the integral, we can observe that it is certainly positive
when & > a and that it is 0 when b = 0. To simplify the integral, we make the
substitution (or change of variable)

©) U= d6.

(5) acos 0 = x,

so that —a sin # df = dx. Since x = a when § =0 and x = —a when § =,
rules which have not yet been adequately treated imply that

©) U= e b+ x

o[ ¥ 2 + R
To simplify the integral some more when & = 0, we make the substitution
t— b —a*

2%

Since dx = (1/2b) dt, t = (b — a)? whenx = —a, and ¢t = (b + 4)* when x = a.
substitution in (6) gives

b2+ 2bx + a? = ¢, x =

t — b — a?
. 1 roe+arb T 25 J
( ) = Z—b P —_—t% t.
Thus
1 (b+a)?
®) U= 41;2 f Ul 02— e
. é](b+a)’
¥ — (b2 — g?)t
&) U= [t (b* — a%)t e

b2 — a2 B2 —at

10 U=2ib,[|b+al—[b—a|———-l——.
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In case 0 < & < g, this gives

1 b2 — a2 b2 —_— 42

W v=gpleta-e-n-Grr-5=o]=0

and (5) shows that F = 0 as we wish to prove. In case 0 < a < 5, (10) gives
1 b2 — a?  b? — a? 2a

1) U=gleta-0-o-G5s+5o0] =5

Putting this in (5) gives

Gm(4wa?8)i GmM,
F="% R

where M = 4ma?5, the total mass of the spherical shell. This is the desired result
(1) and the fundamental facts about attractions of spherical shells are now
established.

17 Use the method of Problem 16 but modify the details in appropriate
places to obtain the force Fg exerted upon m* by the hemispherical shell that
remains after removal of the part of the spherical shell whose points have nega-
tive x coordinates.

18 A spherical ball (or solid sphere) is said to be radially homogeneous if
there is a function & such that the ball has density (mass per unit volume) §(r)
at each point having distance » from the center of the sphere. Supposing that
0 < a < b, find the gravitational force exerted upon a particle m* of mass m
located at the point (—5,0,0) in E3 by a radially homogeneous spherical ball
(like an idealized earth or golf ball) B which has radius @, which has its center at

the origin, and which has a density function §

which is not necessarily constant but is inte-
r'\ grable. Solution: As suggested by Figure
o 4.795, we make a partition P of the interval

r\
-b -a 0 x}a ¥z 0<x=<a When m < xp < x as usual,
Figure 4.795 the points of B having distance x5 from 0 such
that x—; < x: =< x; form a spherical shell
whose volume is approximately the product of the area 4wz and the thickness
Ary. The mass My of this shell is therefore approximately

) My = 4y ?5(xp) Ay

Considering the shell to be concentrated upon the sphere having center at 0
and having radius xf enables us to use a result of Problem 16 to show that the
force AF: which the shell exerts upon m* is approximately

_ Gmldmf®5d) An] .

@) AF 2

The limit of the sum of these things should be F. But the sum is a Riemann
sum and its limit is the integral in the formula

Gmi [a
3) F = [o 4 ?3(x) dx.
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This answer can be greatly improved if we notice that methods very similar to
those which we have used enable us to show that the integral in (3) is the total
mass M of the ball B. Thus we can put (3) in the form

GmM .
@) F=T i

This proves that the force exerted upon m* by a radially homogeneous ball is
the same as the force exerted upon m* by a single particle, at the center of the
ball, whose mass is the total mass of the ball. Thus, when computing forces
upon particles outside the ball, we may “consider the mass of the ball to be con-
centrated at its center,” the assertion in quotation marks being rather weird
because mass is a number and we do not ordinarily squeeze numbers.

19 Use the method of Problem 18 to show that if S is a radially homogeneous
spherical shell having inner and outer radii 7, and 7; for which 7, < 7z, then
F = 0 when F is the gravitational force which the shell exerts upon a particle
inside the shell.

20 With the aid of arguments involving continuity, the final formulas of
preceding problems for gravitational forces upon particles exerted by solid
spherical balls and solid unconcentrated spherical shells can be proved to be
correct when the particles lie on boundaries of the balls and shells. Using this
fact, show how it is possible to split a given radially homogeneous solid ball into
an inner solid ball and an outer spherical shell to calculate the force which the
given ball exerts upon a particle m* of mass m concentrated at an inner point
of the given ball.

4.8 Moments and centroids in E; and E; Section 4.7 introduced us
to moments, about a point on a line, of material concentrated upon the
line. This section introduces us to two similar ideas. In the first place,
we consider moments, about a line, of material concentrated in a plane
containing that line. In the second place we consider moments, about a
plane, of material in Es.

To begin, let R be a bounded region in the xy plane which lies between
the lines having the equation ¥ = zand x = b. Itissupposed that when
a £ x* £ b, the line having the equation x# = x* intersects R in an
interval (or collection of intervals) having length (or total length) f(x*).
It is not necessary that f be continuous, but we do assume that R has

area |R| and that |R| = fab f(x) dx. 1If the region R is, as in Figure 4.81,

Figure 4.81
y=fx)
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the set of points (x,y) for which ¢ £ # £ b and fi(x) £ y < fa(x), then
everything is quite simple and f(x) = fa(¥) — fi(x). Our next step is 1o
suppose that the points (x,y) of R are points of a material body (much like
a sheet of paper or a sheet of copper) that has been compressed into 5
plane in such a way that, for some positive constant 4, a part of the com-
pressed material body has mass & AR if that part occupies a part of the
region R having area AR. The compressed body is called a lamina, and
it is a homogeneous lamina because the areal density (mass per unit area)
has the same constant value § at all places in the lamina.

Letting p be an integer which is either 0 or positive, we proceed to define
the number M®,, the pth moment of the lamina about the line having
the equation x = &, by a formula from which it can be calculated. Fol-
lowing the method of Section 4.7, we make a partition P of the interval
a £ x £ binto subintervals. For each &, the lines having the equations
x = xr_1 and x = x; have between them a part of the lamina that can be
called a strip parallel to the line having the equation x = £. Supposing
as usual that xx_; < xf < xi, we use the number

(4.82) FxF) Axr

as an approximation to the area of the strip and accordingly use the
number

(4.821) 3f (%) Axs

as an approximation to the mass of the strip. When the norm of P is
small, all points of the strip lie at about the same distance |x}¥ — £| from
the line having the equation x = £, and multiplying the above mass by
(xF — £)? should therefore give a good approximation to the pth moment
of the strip about the line having the equation x = £ The Riemann sum

(4.822) Z(xf — £)?f(xF) Axe

should then be a good approximation to the moment of the whole lamina.
Since the Riemann sums have a limit which is the Riemann integral in
the right member of the formula

(4.83) M2 =8 [ — £)7(x) d,

our work motivates the definition by which the required moment is
defined by this formula.

The number M{®  the pth moment of the lamina about the line
having the equation y = 9, is defined by the analogous formula

4.831) M2, =5 [ - D7) @,

where ¢ and d are numbers such that the lamina lies between the lines
having the equation y = ¢ and y = 4 and g(y*) is the length of the inter-
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val (or the sum of the lengths of the intervals) in which the line having the
equation y = y* intersects the lamina. In case p = 0, the pth moment
is the mass of the lamina. In mechanics and some other places, the sec-
ond moment is called the moment of inertia.

While the facts can be established only by considering the different
rectangular coordinate systems in the plane of the lamina, the lamina
itself determines a point in the plane of the lamina that is called the
centroid of the lamina. With reference to the particular coordinate
system which we have chosen, the x coordinate of this centroid is the

number # for which M, = 0 when ¢ = % Thus

(+84) 5[ — Hfe) d = 0
and it follows that

5 fa” xf(x) dx
"5 [ s &

where M, the denominator in the second formula, is the mass of the
lamina. Similar formulas suffice to determine the y coordinate ¥ of the
centroid. For example,

#842) M5 =5 [ e0) do.

b
(4841 Mz =5 / ) dx, %

The centroid of a lamina has an important physical property. If the
lamina is in a plane perpendicular to the direction of the forces in a
uniform parallel force field, then the lamina will balance upon each line
(or knife-edge) which passes through the centroid and will balance upon a
pin placed at the centroid. It follows that if L is a line of symmetry of a
lamina, then the centroid lies on L. Moreover, if a point P is a center of
symmetry of a lamina, then the centroid is P.

We now turn our attention to the three-dimensional world which con-
tains, in addition to cubes and spherical balls, so many distractions that
relatively few of its inhabitants assimilate substantial information about
nonmeasurable sets in E;. To keep these complicated and paradoxical
sets out of our gardens, we shouldt{ (and therefore do) start with a set
S in E; which is assumed to possess positive volume 7. In order to be
able to use Riemann integrals, we assume that wherever we introduce an
%, 9, % coordinate system in Ej3, there will be numbers 4 and 4 for which our
set S lies between the planes having the equations x = 2 and x = b.
We assume that, for each ¢ for which a < t < b, the plane having the
equation x = ¢ intersects S in a section having area which we denote by
A4(t). In many applications this area function is continuous. To be

T This is another situation in which we can be kept on the path of rectitude by knowledge
of the contents of Appendix 2 at the end of this book.
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fully rigorous about the matter, we assume that the Riemann integral in
b

(4.85) V= [ A(x) dx

exists and is the volume 7 of the set S. Our next step is to suppose that
the points (x,y,z) of the set S are points of a material body B such that,
for some positive constant §, a part of the body has mass § AV if that part
occupies a part of the set S having volume AY. Our body B (which
really is somewhat different from the conglomeration of atomic particles
that constitute a potato) is said to be homogencous because its density
(mass per unit volume) has the same constant value & at all places in the
body. At last we have a body B which might, for example, be what a
child thinks a potato is.
y Supposing that £ is a2 number and

that p is 0 or a positive integer, we
|

S———e?

p should now find it easy to construct
formulas for calculation of the num-
A ={ |« |z [/b x  ber MP,, the pth moment of the bqa’y
z ) B about the plane having the equation
Figure 4.86 x = £ Realizing that schematic
figures can be helpful even when
some wise people consider them to be semisuperfluous, we sketch Figure
4.86. We make a partition P of the interval ¢ £ x < binto subintervals.
Supposing as usual that 1 < xf < x, we use the number

(4.87) A (xf) Axx

as an approximation to the volume of the slab which lies between the
planes having the equations x = x;4_; and x = x;. Multiplying by the
density & gives an approximation to the mass of the slab. When the
norm of P is small, all points of the slab lie at about the same distance
|x¥ — &| from the plane having the equation ¥ = £ and multiplying the
mass by (x¥ — £)? should therefore give a good approximation to the pth
moment of the slab about the plane having the equation x = £ The
Riemann sum

(4.871) 8Z(xF — £)PA(xf) Axr

should then be a good approxzimation to the moment of the whole body.
Since the Riemann sums have a limit which is the Riemann integral in
the right member of the formula

(4.872) M =5 [ (x — £74() dx,

our work motivates the definition by which the required moment is
defined by this formula. Analogous formulas define moments about
planes parallel to the other coordinate planes.
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In case p = 0, the pth moment is the mass of the body. We shall not
comment upon second moments of solid bodies about planes, but brief
comments about first moments may be appropriate. As was the case for
laminas, our body B determines a point in E; which is called the centroid
of the body. With reference to the particular coordinate system which

we have chosen, the x coordinate of the centroid is the number # for which
ML, = 0 when £ = . Thus

(4.88) 5 [" &~ DA@ dx = 0
and it follows that
b
_ 5L xA(x) dx

b
(4.881) Mz = 6/ xA(x) dx, =t

a 5 [ A(x) dx
where M, the denominator in the second formula, is the mass of the body
B. Analogous formulas serve to determine the other coordinates § and %
of the centroid. As was the case for centroids of laminas, the centroid
of a body B in Ej3 has an important physical property. An ordinary
wheel mounted on an axle through its center balances in the gravitational
field of the earth which is (so far as an ordinary wheel near the surface is
concerned) nearly a uniform parallel force field. Similarly, the body B,
when mounted on an axis through its centroid, must balance in a uniform
parallel force field. If a plane 7 is a plane of symmetry of the body B,
then the centroid of B is a pointin«. If a line L is a line of symmetry of
B, then the centroid of B is a point on L. If a point P is a center of sym-
metry of B, then the centroid of B is P.

All through this section, the moments that have appeared have been
“moments of mass,”” that is, moments of lamina or solid bodies that possess
mass. Our methods and formulas are easily modified to produce numbers
that are “moments of area,” that is, moments of sets in Ea that possess
positive area, and ‘“‘moments of volumes,” that is, moments of sets in E3
that possess positive volumes. The moments and the centroid of a set
S in E, which possesses positive area are, by definition, the same as those
of the lamina of unit areal density (unit mass per unit area) which coin-
cides with the set. Similarly, the moments and the centroid of a set S
in E; possessing positive volume are defined to be the moments and the
centroid of a body of unit density (unit mass per unit volume) which
coincides with S. Thus formulas for moment and centroids of “geo-
metrical” sets are obtained by putting 8 = 1 in formulas for “moments
and centroids of mass.”” These concepts are introduced because they
are useful. For example, calculations involving forces which bend a beam
depend upon a number I which is the moment of inertia of a cross section
of the beam about a line through the centroid of the cross section.
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Problems 4.89

1 Find the pth moment about the line having the equation x = £ of the
lamina of constant areal density (mass per unit area) § which occupies the plane
region consisting of points (#,y) for which

3k
asx=h O0=Ly=sh Ans.: FI [(6 — &+ — (a — E)=+1).

2 A semicircular disk of radius @ has its center at the origin and lies in the
right half-plane containing points (x,y) for which x 2 0. Find its centroid.

_ _ 4a _
Am.:x=3—:_:y =0.

3 A homogeneous spherical ball of radius & has its center at the origin.
Find the centroid of the hemispherical part of the ball containing points for
whichx 2 0. Ans..%=%84,5=0,z2=0.

4 Prove that the centroid of a right circular conical solid of height % has dis-
tance /4 from the base of the solid.

5 TFind the pth moment about the y axis of the region bounded by the »
axis, the line having the equation » = 1, and the graph of the equation y = &,
it being supposed that 7 is a nonnegative constant. Ans.: 1/(p + r + 1).

6 Copy Figure 1.292 and let T be the triangular region bounded by the
triangle having vertices at 4, B, C. Set up and evaluate all of the integrals
required for evaluation of |7}, the area of T, M, the first moment of T
about the y axis, and MY, the first moment of T about the x axis. Then
use the formulas [T|# = MY, and [T]§ = M, to find # and 5. Remark:
The point (%,7) is the point (22/3, 0). This shows that the centroid of T lies on
the median 4D. More remarks can be made.

7 This problem involves hydrostatic forces which liquids exert upon surfaces
of bodies immersed in them. Before formulating our problem, we digress to eke
out some information. If an ordinary rectangular or cylindrical tank has hori-
zontal sections having area 4 square feet and if the tank is filled to depth d feet
with a liquid weighing @ pounds per cubic foot, then the total weight of the con-
tents of the tank is wd4. If we divide this total weight wd4 by the area A4 of
the base of the tank, we obtain the number wd, which is the weight per square
foot that the base supports. This number wd, the product of @ and the depth,
is called the pressure at depth d. This pressure wd is a scalar, the magnitude of
the force per unit area which the liquid exerts upon the flat horizontal base of
the tank. OQur next task is to capture the idea that the jumble of words “pressure
in a gas and in a liquid is transmitted (sent across?) equally in all directions™
is often presumed to convey. To be very humble about this matter, we can
believe or perhaps even know that water will spurt from a hole in the bottom of a
tank of water and will spurt almost as vigorously from a hole near the bottom
of the tank but in a vertical side of the tank. Fortified by this idea, we can
cheerfully accept the ponderous physical principle or law which says that if a
plane region having area A is beneath the surface of a liquid, and if d; and 4,
are numbers such that each point of the region has a depth d for which d; < d =
ds, then the force which the liquid exerts upon one side of this region is orthogonal
or normal or perpendicular to the region and there is a number 4* such that
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dy £ d* £ dpand the magnitude of the force is p*4, where p* is wd*, the pressure
at depth d*.  Our little lesson in hydrostatics is ended, and we can now formulate
our problem. We confine our attention to forces upon one side of a plane region R
which lies, as in Figure 4.891, beneath the sur-

face of a liquid and ina vertical plane. Thex __| £T°P surface of liquid
axis is taken to be horizontal and in the top = — = =
surface of the liquid. The y axis is taken to ab e
be vertical with 9 positive measured down- y /Z
. . . Vi1
ward; this means that the point (xy) lies yxFo==== o ra
below the x axis when y > 0. It is supposed N7, ﬁy
that the region R lies between the lines having S E—
the equations ¥ = 4 and y = b and that, when (y
a < y*¥ < b, the line having the equation Figure 4.891

y = y* intersects R in an interval (or collec-
tion of intervals) having length (or total length) f(y*). It is assumed that the
region R and the function f are bounded. It is not necessary that f be con-

tinuous, but we do assume that R has area |R| and that |R| = [bf(x) dx. Our
a

problem is to set up an integral for the magnitude of the force which the liquid
exerts upon one side of the region R. The procedure should now be completely
familiar. We make a partition of the interval 2 < 9 < b into subintervals and
choose ¢ such that y,1 £ y* < yz. The number

1 fox) Ay

is taken as an approximation to the area of the part of R that lies in a strip parallel
to the surface of the liquid. Multiplying this by wyy gives an approximation to
the magnitude of the force of the part of R. Since the forces on the parts of R
all have the same direction, the sum

) wZyif(y) Aye

gives an approximation to the magnitude |F| of the force on the whole region R
and the approximation should be good when the norm of the partition is small-
Thus it should be true that

3) |F| = lim w2y /(%) Avi

Since the right member of (3) exists and is a2 Riemann integral, our work motivates
the definitions where |F| is defined by the formula

) ¥l = w [ 37) ay.

In order to make numerical calculations, we must know or be able to compute
a, b, and f(y). The really interesting thing about our result is that it can be put
in the form

® |F| = wj4,

where 4 is the area of the region R and 7 is the depth of its centroid. Thus the
magnitude of the force on the plane region R is the product of the pressure ai the cen-
troid and the area of the region. Many problems can be solved very quickly by
use of this fact.



276 Integrals

8 Using the fact that the pressure at depth 4 below the surface of water is
wd, but without using more formulas from the preceding problem, find the mag-
nitude of the force exerted upon one face of an isosceles right triangle submerged
in water so that one leg is horizontal and 5 feet below the surface while the other
leg extends 3 feet upward. Ans.: 18w.

9 According to an examination given at Cornell, the cost, in dollars per mile,
of improving the road from Alibab to the Babila oil field 400 miles down the road

is 10,000 plus 500 \/::—c, where x is the distance from Alibab. Find the total cost
of the improvement. Ans.: 6 + % millions.

10 A circle of radius a lies in the xy plane and has its center at the origin.
For each positive integer n, points Py, Py, * - - , P, are equally spaced on the
arc of the circle lying in the first quadrant and, for each % for which 1 £ 2 < n,
a vector 1y is drawn from the origin to a point on the circle between P;_; and P,.
Show that
M lim DTt T ey g

n— o n

where, as usual, i and j are unit vectors on the x and y axes. Hinz: Make use of
the fact that if

o =7,
@ b =5y Ab=g
then
3) LI 2 (cos 831 + sin 87§) A6y,
n o

where 8§ lies between 6, and 6;. The left member of (1) is therefore the limit
of a Riemann sum.

11 One way to review Riemann integrals and make them seem simpler is to
learn about Riemann-Stieltjes integrals. Let f(t) and g(t) be defined over an
interval ¢ < ¢t £ x, and let P be a partition of the interval ¢ £ ¢t £ x with parti-
tion points #; and intermediate points z; as in Section 4.2. If there is a number /
such that to each € > 0 there corresponds a 8 > 0 such that

1) | e - s — 1] <e

whenever |P] < §, then I is called the Rizmann-Stieltjes integral of f with respect
to g over the interval 2 £ ¢t £ x and is denoted by

o) [ 1 dgo.

These integrals are very important in more advanced mathematics, and some
people think that they should at least be mentioned in elementary calculus.
Many people have devoted substantial parts of their lives to study of problems for
which f(¢) = ¢*. Start picking up ideas by evaluating 2) whena = —1,x = 1,
f@) =242t +3,and g(t) = sgnt. Ans.: 6.

4.9 Simpson and other approximations to integrals When fis a
polynomial in x, and in some other cases, we can discover an elementary
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function F for which [f(x) dx = F(x) or f(x) = F'(x) and can then evaluate
/ ® #(x) dx by the calculation

(4.91) [\ 1) dx = F@) || = F&) ~ Fa).

As was pointed out in Section 3.6, derivatives of elementary functions
are always elementary functions that can be calculated by use of appro-
priate rules. It must not be presumed, however, that if f is an elementary
function, then there must exist an elementary function F for which
f(x) = F'(x). While proofs of such things do not grow in ordinary
gardens, it is nevertheless known that if f(x) is one or another of

1 &

——————— - —z?
VE—sintx x’ £
then there is no elementary function F for which f(x) = F'(x).

This section is devoted to methods by which we can obtain useful
decimal approximations to

4.92) /a" f(x) dx

in cases where it is impossible or difficult to obtain a useful formula for a
function F such that (4.91) holds. Some pedestrian methods are worthy
of brief mention. When a reasonably accurate graph of f is drawn on
graph paper as in Figure 4.93, we can ob-
tain an informative approximation by
counting the squares and estimating the
partial squares that lie within the appro-
priate region. Chemists and others who
have access to scissors and appropriate
scales can cut out the region and weigh the
paper. Another method involves use of a Figure 4.93
planimeter, an instrument which will reveal
a useful approximation to the area of a
region after it has been suitably adjusted

sin x

\/1+x‘, > \/1+sin2x,

] b z

and a needle point on a movable arm has S|

traced the boundary of the region. In

some situations, the simplest and most @ b E
direct method is illustrated by Figure 4.931. Figure 4.931

The interval ¢ < x < b is cutinto n equal
subintervals of length %, where 2 = (b — a)/n, and a point xf is selected
in the £th subinterval. Then

(4.932) [ fx)dx = e+ h Z ),
k=1

where € is an error term and the sum is a particular Riemann sum. Of
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course, we should try to minimize errors by choosing the heights of the
rectangles in such a way that, in each strip, the area of the set which lies
in the region but outside the rectangle is nearly equal to the area of the
set which lies inside the rectangle but outside the region.

This paragraph introduces the trapezoidal formula

b
(4.94) /;f(x)dx=e+h[%'+y1+y2+y3+...+yn_1+}’23],

the derivation of which will help us to understand the much better
formula (4.95) which will appear in the next paragraph. We sepa-
rate the interval ¢ £ x < b into n equal subintervals of length &, where
h = (b — a)/n, by points xq, x1, * * + , %, such that xo = a, x, = b, and
%k = xr—1 + h for each £ =1, 2, - - - | . As in Figure 4.943, where

n = 4, we let yr = f(xx) for each £ As an approximation to /; “ Sf(x) dx

we use /; :‘ L(x) dx, where L(x) = Ax + B and the constants are chosen

such that the graph of L(x) = 4x + B is a line passing through the two
points Po(x0,y0) and Py(x1,91). The details of the calculation

@941) [TL@dx = [T |yo+ T2 — wg) |dx = p2T 2
Zo Zo h 2

are easily supplied; in case yo and y; are positive, the details are super-
fluous because the quantities are equal to the area of a trapezoid and ele-
mentary geometry shows that the formula is correct. Using (4.941) and
analogous formulas, we see that

(4.942) * ) dr = e + p YL T
Ty 2

where the “‘error term” ¢ will be “relatively small” if the graph of f over

theinterval x,; £ x S x:

P, PP is““near” the chord joining

P, Pry and P;. Summing

¥ s the members of (4.942)

Py n % gives the trapezoidal for-
% mula (4.94).

| & 10 R R To derive the trape-

a=x x £ 3 x=b % zoidal formula (4.94), we

Figure 4.943 began by approximating

f(x) over the interval

%9 £ ¥ £ x; by the function L(x) whose graph is a line passing through

the two points Py and P;. To derive the more useful Simpson formula

b
(4.95) /;f(x)dx=e+-}§L[yo+4y1+2)’2+4yz+2}'4+ ce
_ +4}’n—1+yn]9
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in which # is always an even positive integer, we begin by approximating
f(x) over the interval xo £ ¥ < x» by the function Q(x) of the form

(£.951) Q@) = 4(x — %1)* + B(x — x1) + C

whose graph passes through the three points Po(xo,y0), P1(#1,y1), and
Pa(x2,y2). Since (4.951) can be put in the form Q(x) = 4x? + Bwx + Cy,
its graph is a parabola if 4 5 Oandisalineif 4 = 0. Asiseasy to guess,
the graph of Q(x) is ordinarily a much better approzimation to the arc
PoP. than the graph consisting of the two straight chords PoP; and PP,
is, and hence the error term in the Simpson formula is ordinarily much
nearer 0 than the error term in the trapezoidal formula. We find that

2
so

(4.952) f " 0() dx = % 241 + 6C).

The three formulas

yo = Q(x0) = Q(x1 — h) = A2 — Bh 4+ C
y1= Q1) =C
yo = Q(x2) = Q(x1+ k) = Ah* + Bh +C

enable us to determine 4, B, C in terms of yo, y1, y2. It serves our
purpose, however, to add the first and last of the formulas to obtain

o+ y2 = 24k2 4+ 2C
and to note that 4y; = 4C so
yo + 4y1 + y2 = 24h* + 6C.
This and (4.952) give the formula

(4953) [ 0685 = ko + 49+ 90
Using (4.953) and analogous formulas, we see that

[ 561 85 = o t-h o 403

ﬁ ’ F(x) dx

" fw) dx

ZTn-2

ez+%[yz+4:vs+y4], T,

h
€n/2 + 3 [Yn—2 + 49n—1 + Ynl.
Adding these gives the Simpson formula

(4.96) /bf(x) dx = e+ %[yo + 4y1 +292 + 4ys + 2+ 0
’ + 43’7;—1 + yn],



280 Integrals

which appears in (4.95) and is so important that it merits reproduction.
We recall that #» must be even and that k = (b — a)/n. Whenever f is
Riemann integrable over the interval ¢ < x < b, the error term e is near
zero when 7 is large. When f is continuous, and perhaps in some other
cases as well, experienced operators of pencils and slide rules and calcula-
tors and electronic computers neglect the ¢ and habitually use the remain-
ing Simpson sum in the right member of (4.96) as an approximation to the
integral. A particular sum is often judged to be as accurate as desired
when this sum agrees to the desired number of decimal places with the
sum obtained by doubling #. In many practical applications, sur-
prisingly small values of  yield the desired accuracy.

Nearly everyone who understands the trapezoidal and Simpson formu-
las generates the following idea. It should be possible to derive still
better formulas by approximating f by polynomials of higher degree
having graphs passing through more of the points P, Py, Py, P, - +
It turns out, however, that these formulas are more complicated than the
Simpson formula, and using them for a given 4 is not as satisfactory as
using the Simpson formula with a smaller 4.

Problems 4.99
1 Tables give
[ L = 1og 2 = 0.69514 71806,
1

Show that the trapezoidal formula with n = 4 gives k=%, yo =1, y; = %,
y: =% 93 =% yi =% and

fl':l?d"=e+%[%+§+%+%+-}] = e+ 0.69702 4
and that use of the Simpson formula with # = 4 gives k = } and
fxgi‘dx=f+ﬁll+%‘-+%+¥+ﬂ =€+ 0.69325 4.

Show that the error terms are respectively —0.003877 and —0.000107. Observe

that it is almost equally easy to use the trapezoidal and Simpson formulas.

Remember that properly educated persons use the Simpson formula whenever

suitable occasions arise, but that they rarely if ever use the trapezoidal formula.
2 Tables give

log 2.5 = 0.91629 07319.

Using the Simpson formula with two subintervals, obtain the approximation

251, 171, 4 , 17_
L;dx—ﬁ[-2-+m+2—5]—0.223148.

Show how this and the last numerical result of Problem 1 give the approximation

log 2.5 = 0.91640 2.
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3 Using the Simpson formula with # = 2, obtain the approximations

271 0171 , 4 _ 17
f2 Zdx = [2—5+§3+§7]_o.o7696106

5 X

and

2718 1 0.009 [ 1 4 1
—dx = — | — r—— — ] =
[2.7 PR [2.7 T T 2.718] 0.00664 454.

Use these formulas and the first formula of Problem 2 to obtain the approximation
log 2.718 = 0.99989 633.

Remark: With a little skill and a desk calculator that makes divisions, it is not
difficult to extend these calculations to obtain good approximations to the number

e = 2.71828 18284 59045

el
for which /1 p dx =1 and loge = 1. Better ways to approximate logarithms

and ¢ will appear later.
4 Someday we will learn the formulas

1 - | R
/ 1____‘__x2' dx =tan7'x + () fO m dx = Z = (.78539 81634.
Use the Simpson formula to find approximations to the last of these integrals,

and find the errors in the approximations, to obtain the numbers in the first two
or three rows of the following table.

n Simpson value Error
2 .78333 332 .00206 484
4 .78539 212 .00000 604
6 78539 782 .00000 034
8 . 78539 802 .00000 014
10 .78539 809 .00000 007
12 .78539 812 .00000 004
14 .78539 812 00000 004
16 78539 809 .00000 007
18 .78539 812 .00000 004
20 .78539 809 .00000 007
40 .78539 789 .00000 027
60 .78539 782 .00000 034
80 .78539 782 .00000 034
100 .78539 769 .00000 047
200 .78539 769 .00000 047
400 .78539 569 .00000 247
600 .78539 465 .00000 351
800 .78539 425 .00000 391
1000 .78539 395 .00000 421
10000 .78535 725 .00004 091
15000 78535 442 .00004 374
20000 78535 265 .00004 551

100000 .78499 059 .00040 757
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Remark: The last cases show results obtained from an electronic computer that
makes 8D calculations. When # is large, rounding errors seriously affect the
last digit or digits kept.

5 A loaded freighter is anchored in still water. At water level, the boat is
200 feet long and, foreach # =0,1,2, - - -, 20, has breadth y; at distance 103
feet from the prow. Assign semireasonable numerical values to the numbers
yx and do not allow anyone to claim that you have not partially designed a boat.
Then use Mr. Simpson’s idea to approximate the area of the water-level section
of your boat. Finally, recall an exploit of Archimedes and make an estimate of
the number of tons of freight that should be removed in order to raise your boat
1 foot.

6 Use the Simpson formula to obtain decimal approximations to the follow-
ing integrals. Keep two and three decimal places in the calculations, use a
slide rule if possible, and use the value of z given in parentheses.

@ [[fwrdn =4 ® [ wdn =9
© fllzl%d"’ (n=2) (@) f; sin x dx, (n = 6)
Q fo‘\/m dz, (n = 6) %)) f N Si’;" dr, (n = 6)
@ [, Q+=dn = 9) ® [} (= 10)
Q) [ in =10 @ [ dn =)

7 Using the fact that x* > 3x when x > 3, show that

© = 1 = 1 11 1
/3 e“’dx<f3 c““‘dx=-—-§e‘3’]3=§e‘9é§ = e

8 Using the notation and ideas employed to derive (4.953), prove that if the
graph of the function f for which

€Y fx) = K(x — x1)* + 4(x — 2:)* + B(x — %) + C

contains the three points Po(xe, o), Pi(x1, y1), Pa(xs, ys), then

@ [ 1w dx = Eiyo+ 490 + 51l

Remark: This result shows that the error term is zero and the Simpson formula
gives the exact value of the integral when fis a polynomial of degree three or less.
Thus we catch the idea that the Simpson formula gives good approximations even
when the integrand cannot be closely approximated over the intervals xx = x <
%42 by quadratic polynomials but can be closely approximated over the intervals
by cubic polynomials. Further investigation shows that if we add to the right
member of (1) an integrable term ¢(x) for which |¢(x)| £ M(x — x1)*, then (2)
will contain an error term e for which |¢] < () M-S
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9 An application of (2) of Problem 8 gives the famous old prismoidal formula
H
3 V=Bl + 4|M| +|Bd]

for volumes of solids. To investigate this matter, putxo = aand x, = ¢ + Hin
(2) to obtain

® [0 a = E [0+ o (a+ B) 4 e+ )]

If a reasonably decent solid has bases in the planes having the equations x = a
and ¥ = a + H, and if for each #’ for which 2 £ ' £ 2 + H the plane having
the equation x = ' intersects the solid in a plane region having area f(x’), then
the left member of (4) is the volume 7 of the solid. The quantity in brackets in
(4) is the sum of the area |Bi| of one base B\, the area |B,| of the other base B,
and four times the area |M| of the section M midway between the two bases.
Thus the formula (3) is correct when the solid has volume 7 equal to the left
member of (4) and f(x) has the form

f(x) = Kiwx® 4+ Kpx® + Kax + K.

Nearly everyone acquires substantial respect for the prismoidal formula when it
is discovered that the formula yields the correct formula for the volume of a
spherical ball of radius 2. In this case H = 24, the bases are points having area 0,
and the midsection M is an equatorial disk having area ma2.

10 While the matter cannot be fully explored in a course in elementary
calculus, we can know that persons who study Lebesgue measure and integration
may learn that E; contains sets much queerer than those considered in this book.
It can happen that each plane section perpendicular to the x axis is a square of
unit area so that (in the context of Problem 9) f(x) = 1 when 0 £ x < 1, but,
nevertheless, the squares are so heterogeneously scattered that the set fails to
possess a volume. For such queer sets the prismoidal formula is invalid because
the left member of (4) of Problem 9 is not the volume of the set. Experts in the
theory of measure can have sympathy for students of solid geometry who are a
bit mystified by the “Cavalieri theorem.” This “theorem’ says that two sets in
E3have equal volumes if they have parallel bases and equal altitudes, and if each
plane parallel to the bases intersects the two sets in two plane regions having
equal areas. The queer sets which we have mentioned show that the “theorem”
is false. Appendix 2 at the end of this book shows how we can reconcile ourselves
to these matters. Some of us will learn more about these things than others, but
we can all know that there is much to be learned.



Functions,

5 graphs,

and numbers

5.1 Graphs, slopes, and tangents It is quite possible that we first
heard about tangents, or tangent lines, when we were very young. We
may have been shown a circle as in Figure 5.11 and have been solemnly
told that some lines in the plane of the circle intersect the circle twice,
some others do not intersect the circle at all, and some others, the tan-
gents to the circle, intersect the circle just once. When graphs more
complicated than circles appear, no such simple story can adequately
describe tangents. For example, the line T of Figure 5.12 intersects the
graph twice and seems to be tangent to the graph at P,, while the line
L intersects the graph only once and does not seem to be tangent to the
graph. To attack this rather delicate matter, we start with a given
function f defined over some interval and draw the graph G of y = f(x) as

in Figure 5.13. We next select an x within the domain of f and call it
284
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y
T T L P(xo+ Az, yo+Ay),
T
P, O(xOr J/o)
Po
[

Xy x
Figure 5.11 Figure 5.12 Figure 5.13

xo to emphasize the fact that it remains fixed throughout our discussion.
Our task is to try to decide what we should mean when we say that
a line T is tangent to G at P(xo,y0). We gain the possibility of making
progress when we choose a number Ax for which Ax # 0, plot the point
P(xo + Ax, yo + Ay) on G, and draw the chord joining our two points on
G. Our first feeble idea can be that T is tangent to G at P(xo,yo) if the
chord is nearly coincident with T whenever Ax is near zero. We can, so
far as nonvertical tangents are concerned, improve this idea to gain the
concept that the line T through P(xo,y0) having slope m is tangent to G
at P(xo,y0) if the slope Ay/Ax of the chord is near m whenever Ax is near
0. We know how to express this concept in terms of limits and deriva-
tives, and we do it in the following definition.

Definition 5.14 If f'(xo) exists, then the line T through the point (x0,y0)
having slope f'(xo) is said to be tangent to the graph of y = f(x) at the point
(x0,y0)-  If f'(x0) fails to exist, then the graph fails to possess a nonvertical
tangent at the point (x0,y0)-

From this definition and the point-slope formula for the equation of a
line, we obtain the following theorem.

Theorem 5.141 If f'(xo) exists, then the equation

y — yo = f'(x0)(x — x0)

is the equation of the tangent to the graph of y = f(x) at the point (xo,y0).

To assist in the development and communication of ideas, it turns out
to be exceptionally useful to agree that if a graph has a nonvertical
tangent at a point (¥o,y0), then the slope of this tangent will be called
the slope of the graph at the point (xq,y0). In accordance with this idea,
we adopt the following definition.

Definition 5.15 If f'(xo) exists, then f'(xo) is said to be the slope of the
graph of y = f(x) at the point P(x0,y0).

In order to obtain a full understanding of tangents to graphs, and for
other purposes, it is helpful to know about “lines of support” of graphs
and other point sets that lie in a plane. We confine attention here to
cases in which f is a continuous function defined over ¢ < x < b and
Py(x0,y0) is a point on the graph of y = f(x) for which a < %o < 5. A
line L through Py is said to be a line of support of the graph of y = f(x)
if there is a positive number 8 such that the part of the graph of y = f(x)
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for which xo — 8 < x < xo -+ & lies entirely on or above L or lies entirely
on or below L. To emphasize that tangent lines were defined as we
defined them because of custom and not because of logical necessity,
we can imagine that a man from Mars might come to our earth with a
language identical with ours except that his meanings of the terms “line
of support” and “tangent line” could be obtained by interchanging ours.
This man from Mars might wonder why on earth we study our tangent
lines instead of his. The problems at the end of this section may provide
reasons.

To be honorable, we must show that the remark made in Section 3.7
about tangents to curves is in agreement with the ideas of this section.
Putting 2(¢) = O gives the assertion that if r(¢) is the vector OP running
from the origin to a particle P which traverses a curve C as ¢ increases,
and if

(5.16) r(t) = (i + (),

where x and y are differentiable functions of ¢ for which r’(¢) = 0, then,
for each ¢, the vector

(5.161) r'()) = & (01 + y' ()i

is tangent to the path. In case the particle P always lies on the graph
of the equation y = f(x), we always have y(¢) = f(x(t)). Therefore,

(5.162) r(®) = x(Oi + f(x(2))j,

and differentiating with the aid of the chain rule gives the result that,
at each time ¢, the vector

(5.163) r'(t) = Z (O] + f(=®)j]

is tangent to the graph. The hypothesis that r'(¢) ¢ 0 implies that
%'(t) # 0. Since #’(¢) is a nonzero scalar, our result is equivalent to the
statement that, for each «, the vector

(5.164) i+ 1)
i . . ) .
@ having its tail at the point (x,y) on the graph is
tangent to the graph at the point. With or with-
Figure 5.165 out the aid of Figure 5.165, we can see that this

vector lies on the line through (x,y) having slope
f'(x). Thus the tangent line obtained by use of vectors is the same as
the tangent line obtained by use of slopes.

The remainder of the text of this section is devoted to a useful theorem
which is, from our present point of view, thoroughly difficult. The
theorem is important because it gives precise information that is very
often used. The proof of the theorem shows that we must learn more
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mathematics before we can fully comprehend the details. In the worst
of circumstances, we are like a person who cannot swim but is thrown into
the water and given a chance to fight for his life. Most of us will soon be
swimming around in the scientific oceans, and Theorem 5.17 will slowly
metamorphose from an ugly demon to a friendly angel. The theorem is
closely related to the preceding paragraph and to the chain rule, but it is
different from both. Using different notation, it sets forth conditions
under which the first of the two equations

x=filt), y=fal)

can be “solved” for t and the result substituted in the second equation to
obtain y as a function of x. Moreover, the theorem tells how we can
find a formula for the derivative of y with respect to x even though we
cannot work out a useful formula that gives y in terms of x. The useful-
ness of the theorem and the difficulty of the proof are both due to the
fact that the conclusion of the theorem guarantees existence of various
things. If we replace the condition #’(t) > 0 by the condition &'(¢) < 0
in the theorem, the intervening details become somewhat different but the
final conclusion (5.171) is valid. We could say that the theorem is a
theorem about elimination of parameters, butin case fo(t) = tsot = yitis
an inverse-function theorem.

Theorem 5.17 Let x(t) and y(t) be continuous over the closed interval
t, £ t < t; and be differentiable over the open interval ty < t < t» and let
#() > 0 when t1 <t <ts Let x(t1) = a and x(ts) = b. Then a <,
and to each xo for which a < xo < b there corresponds exactly ome to for
which t1 < to <ty and x(ty) = xo, and to in turn determines exactly one
yo for which yo = y(to). This correspondence between numbers xo and yo
determines a function f for whick yo = f(x0) when a < %0 < b, and hence
y = f(x) when a < x < b. Moreover, this function f is differentiable and
the first of the formulas

dy
(5.171) F(x) = %%, % _ z_:
dt

is valid when x = x(t) and t, < t < to. The second is also valid when it 1s
understood to mean what the first does.

To help us understand the things we do
to prove this theorem, we start sketching
Figure 5.172. We mark the points (1,4)
and (t5,6) in a tx plane. For a schematic
graph of x(t), we sketch a curve headed
upward to the right because we think it
should be so because x’(t) > 0. Theorem 0 t ) b t

Figure 5.172
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5.27, which we do not bother to read now, proves that this idea is correct
and that ¢ < 4. We next mark xo such that ¢ < xg < 5. We can
easily believe that the rising graph of x(t) must intersect the dotted
horizontal line at exactly one point (fo,x0). Theorems 5.48 and 5.27 prove
that this is correct, and we now have #. Our given function y, of which
we have not sketched a schematic graph, then determines the number y,

defined by yo = y(%), and we put yo = f(xo) in

¥ Figure 5.173. 'This gives one point on the graph
of y = f(x), and the same procedure gives each

1) other point on the graph. We now have the
formula y(¢) = f(x(2)). If we had proof that f

) is differentiable, we could apply the chain rule

ol « :o 3 % to obtain y'(¢) = f'(x(t))«’(¢) and divide by «'(z)
Figure 5.173 to get our answer, but this will not work because

we do not yet have the required proof. We
therefore start a direct attack upon difference quotients by taking a
fixed ¢ for which #; < ¢t < t» and writing

(5.174) flx@t + A9) — f(x(®) = y(t + A — y(2).
Dividing by x(t + Af) - x(t) gives the more promising formula
(5.175) f(x(t + A1) — f(x(t)) _ y(t 4+ At) — ()

x( + A — x(t)  x(t + Ar) — x()

Since y’(¢) and «/(¢) both exist and x'(¢) % 0, we can divide the numerator
and denominator of the right side by Atz and see that the right side has the
limit y'(t)/x'(t) as At— 0. The left side therefore has the same limit
and we obtain

[ fx(@ + AY) = flx@) ] _ ¥ @)
(5-176) 1:1‘30[ AGFA) =% | X0

This seems to be almost the desired result (5.171), but we must use it to
obtain additional information. Let ¢ > 0. Choose a positive number
8; such that

(5.177)

fle@ +49) — f=0) _ Y@
x(t + At) — x(2) x'(2)

whenever |At] < §;. Another appeal to theorems given later in this
chapter shows that there is a positive number 8, such that when |h] < 8,
there is a number At for which |At| < 8; and

(5.178) x(@ + At) = x(t) + k.
It follows that

fx®) +h) — f((=(®) _ '@
(5.179) 2 70 <e
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whenever |h| < 82. This gives (5.171) and completes the proof of
Theorem 5.17.

As was remarked, the proof of Theorem 5.17 is difficult because
existence of various things must be proved. To help us understand that
questions involving existence and differentiability of functions can be
significant, we look at an example. Let us assume that y is a differen-
tiable function of x for which

(5.18) x* 4y 4 sin x + sin y + 46 = 0.

Differentiating with respect to x with the aid of the chain rule then gives

(5.181) 2x+2yj—i+<¢05x+cos yj—i.—_()
or
(5-182) (2y + cos y) Z—Z' = —(2x + cos x)

and, when (2y 4 cos y) # 0, dividing by (2y + cos y) gives a formula for
dy/dx. The formula is illusory, however, because the original assump-
tion is incorrect. The inequalities #2 > 0, y2 2 0, sin x = —1, and
sin y = —1 imply that, whatever x and y may be,

(5.183) x4+ y2 4 sinx + sin y + 46 = 44.

Consequently, there are no numbers x and y for which (5.18) is true.
The assumption that there is a differentiable function f, defined over some
interval ¢ < x < b, such that

(5.184) 22+ [f@))*+sinx+sinflx) +46 =0 (a<x<5d)

is false. This example can help us understand the nature of Theorem
5.17. The theorem is not a weak one which tells what dy/dx must be if
it exists. The theorem sets forth conditions under which dy/dx must
exist and gives a formula which must be correct when these conditions
are satisfied. Proof of a weak theorem can be obtained by mixzing a few
words with the calculation

Ly &

At dt
(5185) dx = lim oA_x = Alt_n:) K.‘;‘ = Zx-:

At dt

but this one line is very far from the equivalent of a theorem which sets
forth conditions under which y is a differentiable function of x and the
formula is valid. Examples show that matters involving (5.185) are
not always completely simple. The distance 7 from Earth to Mars and
the blood pressure p of a particular yogi are both functions of time ¢, but
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the unqualified assertion that one of r and p is a differentiable function of
the other is quite dubious.

Returning to simpler considerations, we note that if the graph of a
function has a tangent line at a point P on the graph, then the line through
P perpendicular to the tangent is called the normal to the graph at P.

Problems 5.19

1 Find the equation of the line tangent to the graph of the given equation
at the given point

(a) vy = 2, (1,1) Ans:y —1 = 2(x — 1)
(5) y = sin 2%, (0,0) Ans.:y = 2x
(¢) y = xlog %, (1,0) Anscy =x — 1
(d)y=é’“,(0:1) Ans.:y = ax + 1
(¢) vy = sin %2, (0,0) Ans.:y =0
(f) ¥y = x cos %, (2m,2m) Ans:y = %
(&) v = (x + x28, (1,32) Ans.:y = 240x — 208

2 Find the equation of the tangent to the graph of the equation y = x»
at the point (x1,x7). Ans.:

y = nxP"% — (n — 1)x™.

3 First find the slopes of the graph of the equation y = x3 at the points for
which x = =1, x = —%, x =0, x = &, and x = 1. Use this information to
help construct a figure showing the graph and five tangents.

4 Find the area of the region bounded by the graph of y = x® and the tangent
to this graph at the point (1,1). Ans.: 3T

§ Even a crude graph suggests that at least one line can be drawn through
the point (—2,—3) tangent to the graph of the equation y = x2 4+ 2. Investi-
gate this matter.

6 Sketch reasonably accurate graphs of y = sin x, y = x, and y = —x over
the interval —27 < x < 4r. Let

f(x) = xsinx

and, after observing that f(x) = 0 when sinx = 0, f(x) = x when sinx =1,
and f(x) = —x when sin x = —1, sketch a graph of f(x). It is easy to guess
that the graph of y = f(x) is tangent to the graph of y = x wherever sin x = 1
and that the graph of y = f(x) is tangent to the graph of y = —x wherever
sin x = —1. Provethatitisso. Hint: Calculate f/(x) and observe that cos x =
0 wherever sin xis 1 or —1.

7 As we know, the part of the graph of the equation

y=\/aT——*x5=(a’—x’)5é

for which —a < x < a is an“ upper semicircle” with center at the origin. Let
Pq(x0,50) be a point on this graph. Use definitions or theorems of this section to
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prove that the graph has exactly one tangent at Py and that the equation of this
tangent is

3”"'3’0=—£9(x—xo).
Yo

Prove that this line is perpendicular to the line joining the origin to Py and hence
that the definition of tangent given in this section is in agreement with ideas of
tangents employed in elementary plane geometry.

8 With or without more critical investigation of the matter, shetch a figure
which indicates that the graph of the preceding problem has exactly one line of
support at P

9 Ifx =acostand y = asin g, it is easy to make the calculation

dy _dt _ acost

dx dx —asint

over each interval of values of ¢ for which sinz > O or sint < 0. Letting x, =

a cos to and yo = a sin #,, we find that the equation of the tangent to the graph
at the point Py(xq,y0) is

a cos tg

YT Y= a sin tg

@=x) o y-y=-2(—mx)
Yo
Sketch a graph which shows the geometric interpretations of these things.

10 TFind the equation of the tangent to the graph of y = #3 at the origin.
Sketch the graph and show that it does not have a line of support at the origin.

11 Draw a graph of the equation y = |x|. Show that this graph has no
tangent at the origin but does have many lines of support. Remark: Our word
‘“‘tangent” has its root in a Latin verb meaning “to touch,” and a mathematician
from Mars can defend his contention that our lines of support are “touching
lines” and hence should be called tangents. We must, however, stick to our
guns and insist that, in languages used on earth, these lines are not tangents.

12 Sketch the graph of ¥ = sin x and the normal to the graph at the point
(x, sin x). The normal intersects the x axis at the point (f(x), 0). Determine
whether f(x) increases as x increases. Hint: Borrow, from the next section, the
unsurprising fact that f(x) is increasing over an interval if f/(x) > O over the
interval.

13 In connection with Problem 12, we note that problems in applied mathe-
matics sometimes involve extraneous material that may obscure their mathe-
matical aspects. A witch with a broom sweeps the x axis while walking along the
graph of y = sin x in such a way that x is always increasing. She keeps the
handle of her broom perpendicular to her path. Is the broom always pushing
dust to the right?

14 The two formulas

d . .
— sin ¥ = cos ¥, cosx = —sin x

ax dx
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say something very specific about the slopes of graphs of y = sin x and y = cos x.

Sketch these graphs and observe that the formulas seem to be correct.
I5 Let x =L cos36, y =L sin® 0, where L is a given positive constant.
Find the equation of the tangent to the graph

y at the point for which 6 = 6, and show that this
- — tangent intersects the x and y axes at the points
—~ Z 71X i Ad(L cos B¢, 0) and B(0, L sin 8y). Show that
; AN ) |4B| = L.
i P AN v 16 Let x =L cos® 6, y =L sin3 0 as in the
A L1  preceding problem. Show that
N o) P x
NEAS T 17 X%+ 9% = L%
\ N Y /
N / L and use this to find equations of tangents and to
I~ =’ find the final result |4B| = L of the preceding
problem. Remark: The graph of these equations
Figure 5.191 is, as we shall see later, a hypocycloid of four cusps.

It appears in Figure 5.191.
17 We now solve a problem that is similar to Problem 11 of Section 3.6.
It is a rather tedious task to draw a graph of the equation

4] x8 — 2% — 2x — Tx3 + y8 =721

unless we have an electronic computer to help us do the chores. The graph does
contain the point Py(2,3), the constant 721 having been so determined that this
is so. Our problem is to find the equation of the tangent (if any) to the graph
at P,. Without being sure about the facts, we assume that there is a function
¢, defined over some interval 2 — § < x < 2 + §, such that the part of the
graph near P, has the equation y = ¢(x) and, moreover, ¢ is differentiable.
Then (1) holds when y = ¢(x) and, with the aid of our formula for differentiating
products of differentiable functions of x, we differentiate the members of (1) and
equate the results to obtain

dy dy
5 _ 29 — 2 — 212 52y _
2) 6x% — x o 2xy — 2 — 21x2% 4 6y 7 0
or
3) dy _ _ 6x° — 2zy — 2 — 21x?

dx 6y5 — x?

At the point (2,3) this has the value Y38z. The required equation of the tangent
line is

“4) y — 3 = ridz(x — 2),

provided, of course, that our assumption is correct.
18 Apply the method of the preceding problem to find the slope of the graph
of the equation
x2 4+ y2 =25
at the point (3,4).
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19 Itis easy to show that the graph of the equation

(1) x* 4 2x%9% + 94 — 2x% — 2x%y — 2xy? — 293
+ 5x2 + 592 —~6x — 6y + 6 =0

contains the point (1,1). What have we learned that could make us sure that
the graph contains another point? Ans.: Nothing. Remark: We do not yet
have enough mathematical equipment to enable us to answer basic questions
about natures of graphs of complicated equations. One who has or develops
interest in such matters must continue study of calculus. Problem 7 and the
following problems at the end of Section 11.3 provide reasons why profound
study of graphs should follow (not precede) study of calculus. While the opera-
tion gives no information about the natures of graphs of other equations, one
who cares to do so may show that (1) can be put in the form

(2) [ =1+ @ - DIx*+32+3 =0

and hence that the point (1,1) is in fact the only point on the graph.
20 Let f be the function for which f(0) = 0 and

f(x) = x?sin ’—23

when x # 0. Prove that f/(0) = 0 and hence that the x axis is tangent to the
graph of f at the origin. Sketch the graph of f and tell why the x axis is not a
line of support of the graph. Hint: To calculate f(0), use the fact that

f@) — £0)

x—0

xsin’%’éhl (x £ 0)

and apply the sandwich theorem.

21 When we study a science, it is sometimes worthwhile to obtain preliminary
ideas about machinery that we are not yet prepared to understand fully. This
is an example which involves curves and tangents. Let S be a set of points in a
plane (in E;) which is bounded (this means that there is a rectangle which con-
tains S), is convex (this means thatif P;and P;liein S,
then the whole line segment joining Py and P.lies in S),
and which contains at least one inner point (this means
that there is a point P in S and a positive number §
such that S contains each point inside the circle with
center at P and radius §). Figure 5.192 shows an
example. Let T' (capital gamma) be the boundary of
S; a point @ is a point of I' if each circular disk with
center at Q contains at least one point in S and also
at least one point notin S. We can wonder whether Figure 5.192
T should be called a curve. We can observe that
there may be points, such as 4, B, C, D in the figure, at which T' has many
lines of support but has no tangent. We can observe that there may be
points, such as E in the figure, at which T' has only one line of support and
has a tangent. We can say that T' has a corner at a point B if B is on
T and T has more than one line of support at B. We can wonder whether T'
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has a tangent at each point where it does not have a corner. We can wonder
whether we can associate angles with corners in such a way that, whenever we
take a finite set of corners, the sum of the angles at these corners must be less
than or equal to 2. We can wonder whether it is possible to construct a set S
such that T has a corner at each of its points. We can ask questions much
faster than we can answer them. We can conclude that we have some very
substantial and useful information about tangents, but we do not yet know
everything.

5.2 Trends, maxima, and minima Everyone who knows what it
means to say “it has been getting hotter all morning” or “the temperature
has been increasing all morning” should easily comprehend the following
definition. In most of the applications we shall meet, the set S will be a
set in E; (that is, a set of real numbers) which is either (i) the whole set
of real numbers or (ii) the set of numbers in a closed interval a < x < b
or (iii) the set of numbers in an open interval a < x < b. However, S
can be the set of positive integers or any other set in which we may be
interested.

Definition 5.21 A function f is said to be increasing over a set S in E,
if f1) < f(x2) whenever x, and xy are two numbers in S for which x, < xs.
The function is said to be decreasing over S if f(x1) > f(x2) whenever %, and
x9 are two numbers in S for which x; < x..

The following definition is more subtle. If the temperature was 30°
from 10:00 a.m. to 11:00 a.M., an articulate and truthful person would not
be expected to say that the temperature was increasing from 10:00 a.m.
to 11:00 a.m. However, in accordance with the following definition, the
temperature might have been monotone tncreasing all morning.

Definition 5.22 A function f is said to be monotone increasing over a
set S in Ey if f(x1) = f(xe) whenever x, and xo are two numbers in S for
which %, < x2. The function is said to be monotone decreasing over S if
f(1) = flxo) whenever x, and xy are two numbers in S for which %1 < xa.

The terminology in this definition is very useful, and it may seem to be
less than utterly foolish when we realize that f is called monotone (some
people have preferred the word monotonous) if it is either monotone
increasing or monotone decreasing. For
example, the function f having the graph
shown in Figure 5.23 is increasing over
the interval a £ x < x,, is decreasing
over the interval x; < x < b, is mono-
Figure 5.23 tone increasing over the interval

a < x £ %, and is monotone decreasing
over the interval x; < » < ». To appreciate the necessity for the fol-
lowing definitions, it may be sufficient to realize that it is impossible to
be quite sure what is meant when someone says that ‘“the temperature at
Pike’s Peak reached a maximum at noon last Friday.”
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Definition 5.24 Let f be defined over a nonempty set S in Ey.  We say
that f has a local (or relative) maximum over S at xq and that f(x0) s a local
maximum of f over S, if there is a positive number h such that f(x) < f(xo)
whenever x isin S and |x — xo| < h. We say that f has a global maximum
(or absolute maximum) over S at xo if f(x) < f(xo) whenever x isin S. A
local minimum and a global minimum are similarly defined, the relation
f(x) = f(x0) being replaced by f(x) 2 f(xo).

Applications of these definitions can be quite diverse. For example,
f(x) might be the number of telephones ringing in Chicago x hours after
the beginning of the nineteenth century and S might be the whole set of
positive integers or any other set of numbers we wish to select. For
many purposes it suffices to see how these definitions are applied when
S is an interval and f is differentiable over the interval. Let f be the
function whose graph is shown in Figure 5.25. Assuming that there is

b e e

© O

X4 b x

Figure 5.25
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nothing deceptive about the graph, we can see that f is increasing over
theintervalsa < x < x;andx; £ x < x4and thatfis decreasing over the
intervals x; < » < x; and x4 < ¥ < 5. Supposing that f'(x3) = 0 so
that the graph has a horizontal tangent at the point (x3, f(x3)), it appears
that f has local maxima at x; and x4 a global maxzimum at x4 local
minima at a, xs, and b, and a global minimum at a. There is neither a
local minimum nor a local mazimum at x; even though f'(x;) = 0. We
have described the trends (the increasings and the decreasings) and the
extrema (the maxima and minima) of f.

Sometimes we are required to obtain information about a function f
when we do not have a graph of f but do have a formula which determines
values of f(x) for different numbers x. As the discussion of Figure 5.25
indicates, it is often quite impossible to give precise information about a
differentiable function f until we have found the values of x for which
f'(x) = 0. These are the values of x for which the graph of f has hori-
zontal tangents, and they are called critical values of x. After we succeed
in finding when f'(x) = 0, when f'(x) > 0, and when f'(x) < 0, we may
find it convenient to construct a figure
more or less like Figure 5.251 in which we Figure 5.251
(i) mark the points at which f’(x) = 0and s+ 4 =-- sses sas -oc
the graph of f has horizontal tangents, (ii) % % x % b
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put plus signs above intervals over which f’(x) > 0 and the graph of f
has positive slope, and (iii) put minus signs above intervals over which
f'(x) < 0 and the graph of f has negative slope. Information about f
can then be obtained with the aid of the two following theorems.

Theorem 5.26 If a < xo < b and if f’'(x0) exists, then f cannot have a
maximum or a minimum over the interval a S x = b at xo unless f'(x0) = 0.

Theorem 5.27 If f is continuous over an interval a0 = x = b and
f'(x) > 0 when ao < x < bo, then f is increasing over the interval

doéxébo.

If f is continuous over an interval ao £ x = bo and f'(x) < 0 when

ao<x<bo

then f is decreasing over the interval ay = x = bo.

The second of these theorems is much more forthright and potent than
the first. It will be proved in Section 5.5. The first theorem says that if
a < xy < b and f'(xo) > 0 or f'(x0) < 0, then f cannot have even a local
maximum or a local minimum at x,. To prove this, we suppose first
that a < xo < b and f'(x0) = p, where p is a positive number. Then

. flxo+ Ax) — f(x0) _
Alg»lo Ax =

and we can choose a positive number § such that

a<x—0<x+066<b
and

flo + A%) — f(x0)
Ax

?
>3

whenever 0 < |Ax| < 8. If 0 < Ax < §, then the denominator of the
above quotient is positive, so the numerator must also be positive and
flxo) < f(xo + Ax). If —8 < Ax < 0, then the denominator of the dif-
ference quotient is negative, so the numerator must also be negative and
flxo + Ax) < f(xo). Thus if xp— 8§ <x; < xo < x2 < x+ 8, then
f(x1) < f(xo) < f(x3), so f cannot have either a local maximum or a local
minimum at x,. In case a < x9 < b and f'(xo) < 0, a similar argument
shows existence of a number § such that if x0 — 6 < x; < x0 < %2 <
%0 + 6, then f(x1) > f(x0) > f(x2) and f cannot have a local maximum or
a local minimum at x,. This completes the proof of Theorem 5.26.

It is quite as important to know what Theorem 5.26 does not imply as it
is to know what the theorem does imply. It does not imply that f has
an extremum (a maximum or 2 minimum) any place and it does not imply
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that f has an extremum at xo. It does imply that if f has an extremum at
%o, then xo must be either

(i) one of the end points @ and & or
(i1) such that f'(xo) does not exist or
(iii) such that f/(x0) = 0.

The points xo in these three categories are therefore the only ones that
need be examined when we are seeking extrema of f over the interval
a = x = 5. This information, meager as it is, is often helpful. Figure
5.271 may help us to understand it. The following theorems, which are
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easily interpreted in terms of Figure 5.25 and which are easy consequences
of Theorem 5.27, give all the information we need to solve many problems.

Theorem 5.28 (maximum) If f is continuous over a < x £ b, if
a < %0 < b, and if there is a positive number h such that f'(x) > 0 when
w0 — b < x < xoand f'(x) <0 when xy < x < %o + h, then f has a local
maximum (which may be a global maximum) at x,.

Theorem 5.281 (minimum) If f is continuous over a < x < b, if
a < x0 < b, and if there is a positive number h such that f'(x) < O when
%o — b < x < x and f'(x) > O when x0 < x < xo + h, then f has a local
minimum (which may be a global minimum) at x,.

Theorem 5.28 says, in slightly different words, that if we travel a
smooth road in such a way that we go uphill from 8:58 a.m. to 9:00 .M.
and go downhill from 9:00 a.M. to 9:02 am., we are atop a hill (but not
necessarily atop the highest mountain) at 9:00 Am. Theorem 5.281 has a
similar interpretation.

Problems 5.29
1 Letting f be defined over E, by the formula f(x) = x2 ~ 2x + 3, show that
fx) =2x—2=20x—1).

Observe that f’(1) = 0, and then make the more profound observation that
f'(x) <-0 and f is decreasing when x < 1 and that f(x) > 0 and f is increasing
when x > 1. Show that f(1) = 2 and use the information to sketch a graph of
y = f(x). Give all of the facts involving extrema (maxima and minima) of f.
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2 Letting f(x) = ax? 4+ bx + ¢ where a > 0, show that
b
f(x) =2a (x + Z)'

Tell why f is decreasing when x < —&/2a and increasing when x > —b/24.
Show that f has a global minimum at the point

(_ b _ b2 — 4ac>_
24 4a

3 Letting f(x) = ax® + bx + ¢ where a < 0, show that f is increasing when
x < —b/2a, that f is decreasing when x > —b/2a, and that f has a global maxi-
mum at —b/2a.

4 Letting f(x) = 1/(1 4 x2), show that fis increasing when x < 0, is decreas-
ing when x > 0, and hence has a global maximum when x = 0.

5 Show that the function f for which

3
fo0 = 1

is everywhere increasing and hence has no extrema.
6 Show that

x
x2—1

is decreasing except when x = +1.
7 Find all trends and extrema of the function f for which

16) =15

and sketch a graph of y = f(x). Hint: After calculating f/(x), put the result in
the form

sy _ A +x0 —%)
F&) ="+ =y

and, after observing that f/(—1) = 0 and f’(1) = 0, find the sign of f’(x) over
each of the intervals x < —1, —1 < x <1, and ¥ > 1. Then find f(—1) and
f(1) and make efficient use of this information. Find f'(0) and make the graph
have the correct slope at the origin.

8 Supposing first that x > 0, find the trends and extrema of the function
f for which

) =2+

and sketch the graph of y = f(x). Then let x < 0 and repeat the process without
use of symmetry, but use symmetry to check the results that are obtained.

9 This problem requires us to think about making tanks from rectangular
pieces of sheet iron. Starting with a rectangle 15 units wide and 24 units long,
w2 cut equal squares from the four corners and fold up the flaps to form a tank.
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Qur first step is to draw Figure 5.291 and look at it. 24

Our good sense should tell us that if the squares are [~~~ 77777
small, then the tank will be shallow and the volume will
be small. Taking larger squares should yield greater
volumes unless we make the squares so large that the
area of the base of the tank is small enough to overcome
the advantage of making the tank deeper. To become Figure 5.291
quantitative about this matter, we let x denote the

lengths of the sides of the squares and ask how the volume 7(x) of the resulting
tank depends upon x. In particular, we want to know what x maximizes /' (x).
Show that

V(x) = 2(15 — 2x)(24 — 2x)
= 4x3 — 78x% + 360x

and tell why x must be restricted to the interval 0 < x < 4% Show that

V'(x) = 1222 — 156x + 360
=12(x — 3)(x — 10).

Tell why 7(x) is increasing when 0 < x < 3 and is decreasing when 3 < x < %,
Show that the maximum /7 attainable is 486 cubic units.

10 A sheet-iron tank without a top is to have volume 7. A rectangular
sheet k feet high and 2w feet long, costing A dollars per square foot, is bent and
welded into a circular cylinder to form the lateral surface of the tank. A sheet
2r feet square of different material, costing B dollars per square foot, is trimmed
to form a circular base which is welded to the cylinder to form the tank. Find
the radius and height of the tank for which the total cost T of the material (the
total amount purchased, not merely the amount actually used in the tank) is a
minimum. Ans.:

3147 1 3[16B7
r= \/ B herTE
Hint: Start by showing that
T = 2rdrk + 4Br*

and then use the relation 7 = 7%k to express T in terms of just one of the vari-
ables 7 and £. Standard methods may then be used to minimize T.

11 Referring to Problem 10, find the radius and height of the tank for which
the cost of the material actually used is a minimum.

12 Referring to Problems 10 and 11, find the radius and height which mini-
mize the cost of the material actually used in making .

a tank which has a top exactly like the base. Figure 5.292
13 A long rectangular sheet of tin is 2a inches /= 77
wide. Find the depth of the P-shaped trough of / q%%//f Y
maximum cross-sectional area (see Figure 5.292) that { _
can be made by bending the plate along its central a
longitudinal axis. Ans.: a/~/2. Figure 5.293

14  After referring to Problem 13 and Figure 5.293, Y ~
formulate and solve a problem involving construction /¢ %// \‘
of troughs having rectangular cross sections.

a
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15 Show that of all rectangles having a given area, a square has the least
perimeter.

16 TFind the radius and height of the cone of greatest volume that can be
made from a circular disk of radius a by cutting out (or folding over, as chemists
do) a sector and bringing the edges of the remaining part together.

17 An ordinary tomato can is to be constructed to have a given volume 7.
Determine the height £ and radius 7 of the can for which total
surface area is a minimum.

18 As in Figure 5.294, the base and lateral surface of a
solid right circular cone are tangent to a sphere of radius a.
Find the height of the solid having minimum volume.

Outline of solution: The height y and base radius r are related

by the formula
a r

y—a +/rf+ 42

which equates two expressions for sin §. Squaring, solving
for 72, and using the formula 7 = %mwr2y for the volume of the solid, we find that

Figure 5.294

y-Te_9 v _mdy y—da
T3y -2 dy 3 (y—2a)?

The conditions of the problem require that y > 2a. If 22 <y < 44, then
dV/dy < 0 and 7 is decreasing. If y > 4a, then dV/dy > 0 and ¥ is increasing.
Thus 7 is minimum when y = 4a.

19 Supposing that x1, x5, * - -, x5 are given numbers, find the values of x,
if any, for which

Z (x - .‘)t.';.;)2
k=1

attains maximum and minimum values.
20 The elementary theory of probability tells us that the number py  defined
by

!
Pk = /Tnn——k)_' pE(l — p)~*

is the probability of exactly % successes in » trials when p is the probability of
success in each trial. Supposing that # and k are given integers for which » > 0
and 0 £ %2 £ n, find the number p which maximizes pn:. Hint: Ignore the
numerical coefficient and find the p which maximizes p¥(1 — p)**. Ans.:
p =k/n.

21 An observant senator observes that if he hires just one secretary, she will
work nearly 30 hours per week but that each additional secretary produces con-
versations that reduce her effectiveness. In fact, if there are x secretaries, x not
exceeding 30, then each one will work only

x2

30—?6
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hours per week. Find the number of secretaries that will turn out the most
work. Discussion and solution: If there are x secretaries, the number y(x) of
hours of work done per week is

x? 23
1) y@)=x@o_%)=3w~§6

It is required that x be an integer in the interval 0 £ » < 30, so there are only
31 possibilities. We can calculate the 31 numbers y(0), y(1), - - - , y(30) and
select the x which gives the greatest y(x). It is easier and more enlightening,
however, to use some calculus. Forgetting momentarily that x is an integer
number of secretaries, we observe that (1) defines y(x) for each real x. Differ-
entiating gives

2 1
@ ¥(@) =30 = T5 = 15 (300 — x2).

Thus y’(x) > 0 and y is increasing when 0 < x < 4/300. Moreover, y'(x) < 0
and y is decreasing when x > 1/300. Since 4/300 = 17.32, we see that y(x) <
y(17) when 0 £ x < 17 and that y(x) < y(18) when 18 < x < 30. Thus the
answer is 17 if y(17) > y(18) and is 18 if y(18) > y(17).

22 Asin Figure 5.295, a triangle is inscribed in a semicircular
region having diameter a. Find the 6 which maximizes the area ‘A\
of the triangle. Ans.: 0 = 7/4. 2

23 A printed page is required to contain 4 square units of .
printed matter. Side margins of widths a and tc?p and bottom Figure 5.295
margins of widths b are required. Find the lengths of the printed lines when
the page is designed to use the least paper. Ans.: \/aA/b.

24 Sketch a reasonably good graph of y = x? and then mark the point or
points on this graph that seem to be closest to the point (0,8). Then calculate
the coordinates of the closest point or points. Hint: Minimize the square of the
distance from the point (0,3) to the point (x,x?).

25 The strength (ability to resist bending) of a rectangular beam is propor-
tional to the width x and to the square of the height y of a cross section. Find
the width and height of the strongest beam
that can be sawed from a cylindrical log
whose cross sections are circular disks
of diameter L. Ans.. Width = L/+/3,
height = v/2 L/~/3.

26 The x axis of Figure 5.296 is the
southern shore of a lake containing a little
island at the point (4,b), where 2 > 0. A
man who is at the origin can run r feet per Figure 5.296
second along the x axis and can swim s feet
per second in the water. He wants to reach the island as quickly as possible.
Should he do some running before he starts to swim and, if so, how far? Partial
ans.: He should run

S

a——mb
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feet if » > s and this number is positive. Investigation of the whole matter is
not as simple as might be supposed. Hint: If x > 0 and the man runs from the
origin to the point (x,0), we should be able to calculate (in terms of x and the
given constants) the distance he runs, the distance he swims, and the total time
T required to reach the island.

27 Light travels with speed s; in air and with speed s» in water. Figure
5.297 can interest us in possible paths by which
light might journey from a point 4 in the air to
a point S on the surface of the water and then
to a point /7 in the water. Show that the total
time T is a minimum when the point § is so
situated that the angle 8; of incidence and the
angle 0, of refraction satisfy the condition

72

d II" (H!

.
NS0
&

Figure 5.297 sin 6, _ sin 0,
51 S2

Remark: The above formula is the Snell formula, one of the fundamental formulas
of optics. Phenomena such as the one revealed by this problem are of great
interest in physics and philosophy.

28 Asin Figure 5.298 a heavy object of weight # is to be held by two identical
cables. A kind engineer tells us that the tension
T in the cables is # /a® + x2/2x. A solemn
merchant tells us that the cost per foot of his
cables is T dollars, where T is the tension they
will safely withstand. We must buy the cables,
and we have a problem. Ans.: Webuy2+/2a
Figure 5.298 feet of cable costing #k/ /2 dollars per foot, so

we need 2#ka dollars.

29 Modify the preceding problem by supposing that the body must hang
below the point which lies between 4 and B at unequal distances @ and b from
4 and B.

30 The lower free corner of a page of a book is folded up and over until it
meets the inner edge of the page and then the folded part is pressed flat to leave
a triangular flap and a crease of length L. Supposing that the page has width a,
find the distance from the inner edge of the page to the bottom of the crease when
L is a minimum and find the minimum L. Hint: Minimize L2 Ans.: a/4 and
3 /3 a/4.

31 Sketch the part G; of the graph of the equation

1
y=zx+

that lies in the first quadrant and observe that the y axis and the line having
the equation y = x are asymptotes of G;. Someday we will learn that G; is a
branch of a hyperbola and that the point 7 on G; closest to the origin is a vertex
of the hyperbola. Find the coordinates of 7 and the distance from the origin
to 7. Ans: 2%, (14 +/2)27%) and V2 +2/2.

32 A given circle has radius a. A second circle has its center on the given
one, and the arc of the second circle which lies inside the given circle has length L.
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Prove that L is maximum when an appropriate angle 8 satisfies the equation
cot § = 6.

33 A spherical ball of radius 7 settles slowly into a full conical glass of water
and causes an overflow of water. The glass has height 4, and the lines on the
surface of the glass make the angle § with the axis of the glass. Find the radius
7 for which the overflow is a maximum. Remark: This problem is famous because
it is difficult enough to be remembered and discussed by those who have solved
it. Solution: With or without careful scrutiny of other cases, we suppose that

the ball is neither so small that it can be completely submerged nor so large that

it will fail to be tangent to the glass when it is in its lowest position. Letting
0, C, and B be the vertex of the _conical glass, the center of the ball, and the
bottom of the ball, we see that [0C| =  csc 8 and [OB| = r(csc 6 — 1). The
submerged segment of the ball has thickness %, where

1) h=a—r(csch—1).

The overflow (measured in cubic units) is equal to the volume 7 of this segment,
and Problem 2 of Problems 4.59 shows that

@) V = 3wh*(3r — k) = wlk*r — 343].
Differentiation gives

3) ‘fi—” w12 +2hr@-h j"]

e[ (-]

Using (1) and the formula for dk/dr calculated from it gives

vy mh
® dr T sin’ 6

9 [a sin § — (sin 6 + cos 26)7].
Since 2 sin 6 and (sin 6 + cos 26) are positive when 0 < 8 < 7/2, it follows that
V is a mazimum when
a sin 0
©) = sin 0 + cos 26

34 When distances are measured in feet, the equation of the path followed
by water projected from our fire hose is

_ a+ m’);’c2
yEMET 00

where m is the slope of the path at the nozzle which is located at the origin. Find
the value of m for which the water will reach the greatest height on a wall 40 feet
from the nozzle and find the greatest height. Partial ans.: One of the two answers
is 9.

35 Remark: The following big-government problem need not be taken too
seriously; its purpose is to neutralize a problem involving a country that allowed
its unemployed boomerang repairmen to starve to death. Determine the num-
ber of officials that must be supported in a country containing n workers, and
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use the result to determine the population of a Utopian country that minimizes
the burdens which individual workers must bear. Hint: Information about
officers in efficient productive organizations is not relevant, but Parkinson laws

may be used.
36 Find the minimum of the function F for which

FO = [ = @+ NP Ans.: 7k

5.3 Second derivatives, convexity, and flexpoints In Section 3.6
we called attention to the connection between second derivatives and
accelerations. This section shows how second derivatives can be used to
obtain information about functions and their graphs. To begin the pro-
ceedings, we look at Figure 5.31, which shows the graph of a function for

e e e e e =0

R
&
&
&
&
o
K

a

Figure 5.31

which the derivative (or first derivative) f’(x) and the second derivative
(the derivative of the derivative) f”(x) exist when 2 < x < 5. To get
some ideas, we think of the graph as being a road in a vertical plane upon
which we can travel from 4 toG, and we take the x axis to be at sea level.
During the whole trip, we are always above sea level. The sign of f(x)
gives us this information. At some times during the trip we are going
uphill, and at other times we are going downhill. The sign of f/(x) gives
us this information. As we travel from 4 to B, from C to D, and from
E to F we are passing over depressions (or pits), and as we travel from
B toC, from D to E, and from F toG we are passing over humps (or peaks).
As we shall see, f”(x) is our source of information about these things and
about points of inflection or flexpoints B, C, D, E, F at which slopes attain
local extrema.

The two following theorems are obtained by replacing f by f’ in Theo-
rems 5.26 and 5.27.

Theorem 5.32 If f' is differentiable over a < x < b and a < xo < b,
then f cannot have a flexpoint at xo unless f' (x%o) = 0.

Theorem 5.33 If f’ is continuous over an interval ay < x < by and
') > O when ao < x < bo, then f' is increasing over the interval ay <
% = bo. If f' is continuous over an interval ag < x < by and f"(x) < 0
when ao < x < by, then f' is decreasing over the interval ao < x < bo.
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The information contained in these theorems is sometimes very helpful
when graphs of given functions f are being drawn. For example, Figure
5.34 shows an application of the first part of this theorem; f”/(x) is positive

Slope increasing f(x)<0 )
f(x)>0 Slope decreasing
Figure 5.34 Figure 5.35

over an interval and f'(x), the slope, increases from —1 through 0 to +1
as x increases over the interval. Figure 5.35 shows an application of the
second part of the theorem; f/(x) is negative over an interval and (),
the slope, decreases from 1 through O to —1 as x increases over the
interval. Sometimes it is helpful to put ideas involving derivatives in the
form

ey — @Y _ 4 (dy\ _ dm _ dslope
(5.351) £ T dx® dx\dx)  dx T " dx

The important thing to remember is that f(x) is the derivative of f/(x)
and that a positive second derivative implies an increasing first derivative
and hence an increasing slope, and that a negative second derivative implies
a decreasing first derivative and hence a decreasing slope. It is sometimes
useful and even necessary to know about attempts to describe the dif-
ferences between the arcs of Figures 5.34 and 5.35 in other words. The
first runs through a depression and the second runs over a hump. The
first bends upward and the second bends downward. The first is convex
upward and the second is convex{ downward. In the first case, the
chord joining two points on the graph lies above the arc joining the two
points, and in the second case the chord lies below the arc. In the first
case each tangent to the graph lies (at least locally) below the arc, and
in the second case each tangent lies (at least locally) above the arc.

The virtue of the following theorem lies in the fact that it is a “local
theorem” which we can apply without determining signs of functions
over whole intervals and which is therefore sometimes easier to apply
than Theorem 5.28. )

Theorem 5.36 If f'(xo) = 0 and f''(x¢) > 0, then (as Figure 5.34
indicates) f has a local minimum at xo. If f'(x0) = 0 and f'(x5) < O,
then (as Figure 5.35 indicates) f has a local maximum at x,.

t In mathematics and optics a point set (which might in some cases be a lens) is congex
if it contains the line segment joining P; and P, whenever it contains Py and Ps. The set
is sometimes said to be concave if itis not convex. When we say that a part of a graphin the
xy plane is convex upward, we mean that the set lying above it is convex; we do not mean
that the graph is a convex set.
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To prove the first part of this theorem, let f'(x¢) = 0 and let f”(xo) = p,
where p is a positive number. Then

lim f,(xo + Ax) — f'(x0) = p.

Az—0 Ax

Let e = p/2. Then there is a positive number & such that f'(xo 4+ Ax)
exists when |Ax| < 6 and

f'(x0 + Ax) — f'(x0)
Ax

?
)
whenever 0 < |Ax| < 8. But f'(x¢) = 0, and hence

fl(xo + Ax) >0
Ax

and therefore f/(xo + Ax) and Ax are both positive or both negative when-
ever 0 < |Ax] < 8. When x; < x < x0 + 6, we can set x = xo + Ax
and conclude that 0 < Ax < & and f'(x) > 0. When x0 — § < x < x,
we can set x = xo + Ax and conclude that —§ < Ax < 0 and f'(x) < 0.
It therefore follows from the last part of Theorem 5.28 that f has a local
minimum at xo. In case f”’(xo) < 0, everything is the same except that
some signs are reversed and f has a local mazimum at x,.

Problems 5.39

1 Sketch a graph of y = 1/x. Calculate dy/dx and d%/dx®. If appro-
priate connections between these things are not immediately clear, there are
only three possibilities: (i) the graph needs repairs or (ii) the formulas for deriva-
tives need repairs or (iii) the text of this section must be studied more carefully.

2 The values of

1) = 4

are certainly near 0 when x is near 0 and when [x] is large. Give a full account
of the nature of the graph.

3 Supposing that g, b, and ¢ are constants for which ¢ > 0 and that
fx) =ax?+ bx + ¢,
calculate f’(x) and f”(x). Show that the only extremum of fis a minimum which

is attained when x = —b/2a. Show that the graph of f is everywhere bending
upward and that there are no flexpoints.

4 Supposing that a, b, ¢, d are constants for which 2 > 0 and that

f(x) = ax® + bx? + ex + 4,
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calculate f'(x) and f”(x). Show that the graph of f has exactly one flexpoint
for which ¥ = —5/3a and that f’ is increasing when x > —5/3a.

5 Show that if the %, y coordinate system is chosen in such a way that the
graph of

y=x3+bxt+cx+d
passes through the origin and has its flexpoint at the origin, then » = d = 0 and
y = x4+ cx.

Show that the graph of the latter equation has no extrema if ¢ = 0 and has two
local extrema if ¢ < 0.
6 Starting with the first of the relations
d%y a?

) R N

differentiate twice and obtain the second relation. Then start with the first
of the relations

2) xz-l-y’=a2 x+v—-——0

Z+(2) -0

and show that differentiating with respect to x gives the others. Use (2) and
(3) to obtain the second relation in (1). Tell why you should expect the sign of
the second derivative to be opposite to the sign of 4.

7 Supposing that @ and p are given positive numbers and considering posi-

tive values of x and y, use the two methods of the preceding problem to find
d%y/dx* when

3) 1+y

XP 4 y? = qa?

Make the results agree with each other and, for the case » = 2, with a result of
the preceding problem. Tell why the sign of the second derivative should (or
should not) depend upon p as it does in your answer.

8 Supposing that 2 > 0 and 4 > 0, show that the graph of

f(x) = asin (bx + ¢)

has a flexpoint wherever it intersects the x axis.
9 Sketch a reasonably accurate graph of the function f for which

f(x) = xsinx

and observe that the graph seems to have flexpoints on or near the x axis.
Show that if (x,y) is a flexpoint, then tan x = 2/x and y = 2 cos x. Remark:
These results show that if (x,y) is a flexpoint for which |«| is large, then tan x is
near 0, sin x is near 0, cos & is near 1 or —1, and y is near 2 or —2.

10 Supposing that # is 10 or 20, sketch the graph of y = sin® x over the
interval 0 £ x < 7/2 and mark a point which seems to be a flexpoint. Then,
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supposing that » > 1, show that the graph has a flexpoint at the point (%n5yn)
for which

1 . 1\n/2
cos X, = 7 or sin x, = (1 ) and Yo = (1 - 71) .

Remark: Unless we know about the famous number ¢, it is still not easy to esti-
mate y, when n is large. When we have learned the first of the formulas

lim (1 + ’_‘)" =%, lim ys = e% = 0.606531,
n— 0 n n— o
we will be able to put x = —1 and take square roots to obtain the second one.

11 This problem, like the preceding one, involves ideas. Supposing that
n > 1 and

M y =22 — 2 = 2x — 27",
show that

d 2n — 2
2) ;}2 = 22(2n — 1)(2x — x%)»~2 [x’ — 2x + 2: 1]

and hence that the graph of (1) has a flexpoint at the point (x,,y,) Where

1 1 7
welo\mor w=[1-moa

12 Determination of the natures of the graphs of equations like
1) y4 = x%(1 4 x2)

is an ancient and honorable pastime. Observe that if the point (x,v) lies on the
graph, then so also do the points (x,—v), (—x,y), and (—x,—v). If we find the
part G of the graph in the first quadrant, we can therefore use symmetry to obtain
the rest of the graph. Henceforth we consider only points on the graph for
which x 2 0 and y = 0. For these points,

@ y = (2t + x2)¥.

To each x there corresponds exactly one y for which the point (x,y) is on G
Moreover, y = (%)} = x, so G lies on or above the line having the equation
y = x. Show that, when x > 0,

3 dy 2%+« d’y x2(2x% — 1)
) 2 = 1 T % T

Show that the slope is decreasing over the interval 0 < x < 1/~+/2, increasing
over the interval x > 1/4/2, and attains the minimum value ~/825{;,5 at the
flexpoint having the coordinates 1/+/2 and +/34. Show that, when x > 0,

4) 0 v 2 g o x? *? ____1_.
@ Ve = T (VT st @ &
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and hence that the line having the equation y = x is an asymptote of G. The
graph of (1) is shown on a small scale in Figure 5.391.

y
N %
N\ : )%
NC 7
N N 1 P B/
N /// !
-2 -1 // N 1 9 x
/.//-1 \Q SN
¥ N\
A - N
/ \
Figure 5.391

13 Determine the natures of the graphs of the equations

(a) y* = (1 + &%) () v =x(x*—1)
(c) y* = 2" — 1) (@) v =x(1 — %)
(e) y* = ﬁ‘;z ) ¥ = T%’z
1 1
©y=GFHE-9 By =rHe-9

14 Sketch graphs of y = x, y = sin x, and then y = x + sin x. Then make
repairs in the last graph that may be necessary to make it agree with formulas
for the slope and the derivative of the slope.

15 DPersons interested in themselves and the surrounding world should not
neglect opportunities to learn about the honorable Gauss (or normal) probability
density function ® defined by the formula

CE i,
1 O(x) = —— 24
® =) Vine!
in which ¢ (sigma) and M are constants for whicho > 0. We should know that
¢® = 1, and we can cheerfully accept the facts that

2) e=271828 - - -, ¥ = 0.60653 « - - .

We want to determine the manner in which the graph of ¥ = ®(x) depends upon
the constants M (which is called the mean of ) and o (which is called the stand-

ard deviation of ®). Show that
_(z—M)?
202

©) ¥(x) = —\/—'2'_1%; (x — M)e
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K _ (x~20)?
1 %7
(=) W

1
{2t ¢

060653

Lro

A 1
M-3c M=o M Mic M+3c x

Figure 5.392

Tell why it is true that, as Figure 5.392 indicates, ® is increasing over the inter-
val x £ M, & is decreasing over the interval x 2 M, ® has a maximum at M,

and ®(M) = 1/4/2r 0. Show that

1 -t
4) o'(x) = \/Zrﬁ[(x - M2 - *

Tell why it is true that, as the figure indicates, ®'(x) is increasing and the graph
is bending upward when x < M — ¢ and when x > M + o, whereas ®'(x) is
decreasing and the graph is bending downward when M— o< x < M + 0.
Finally, show that, as the figure indicates,

0.60653
2" = 0.606538(M).
P 6538 (M)

Remark: The index will tell where this and other bits of information about Gauss
probability functions are concealed. We shall learn that

(5) (M —0) =dM+0) =

®) [Cewan =1,

and budding scientists are never too young to start hearing that, in appropriate
circumstances, the number

b
) L &(x) dx
is taken to be the probability that a number x lies between z and .
16 Sketch rough graphsof y = cos x, y = 2 cos %, y = cos 2x, and then
1) f(x) = 2 cos x — cos 2x

over the interval 0 £ x < . Find the maxima and minima of f and the flex-
points of its graph. Make the results agree.
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17 Make a sketch showing the points (x,y) on the graph of the equations

x = a(¢ — sin ¢), y = a(l — cos ¢)

for which ¢ = 0,7/2,m, 37/2, and 2. Show that the graph is convex downward

at each point for which y 5% 0. Remark: The graph is a cycloid.
be simplified by use of trigonometric identities. Thus

7 = a(l — cos ¢) = 2a sin’%é

d¢

d .

£=asm¢ =2asin%cos;—ﬁ
)

dy __sing 7 ¢

dx 1 —cos¢ g =ty

sin =
7

so dy/dx > 0 when 0 < ¢ < 7 and dy/dx <0 when 7 < ¢ < 2.

since
@
FRNEIF L S
d 2" =
¢ at sin (215 2 sm’%S
when siné2 # 0, we find that
4dy ot
d¥y _d¢ dx ¢ 2 1
> = = -
dz ;—: 2a s1n2%é 4a sin‘%é

Answers can

Moreover,

when sin% 7% 0 and hence when y 5% 0. The slope is therefore decreasing when

y #0.

18 Verify that the hypotheses and conclusion of the following theorem are

satisfied when f(x) = sin x, g(x) = (sin x)/x, and a = 7.

Theorem If a > 0, if f has two derivatives over the interval 0 = x < a, if

f0) = 0, if f"(x) < 0 when 0 < x < a, and if g(x) =
f(x)/x, then g is decreasing over the interval 0 < x < a. y
Remark: This theorem has a very interesting geometric
interpretation. The hypotheses imply that, as in Fig-

X,
ure 5.393, f(0) = 0 and the graph of fis convex down- e
ward. The graph can make us feel that, as x increases, ] 8
the angle # must decrease and hence f(x)/x must * x
decrease because f(x)/x is tan 6. It 1is, however, neces- Figure 5.393

sary to recognize that feelings and impressions obtained

by looking at one or a dozen figures do not constitute a proof of the theorem.
To prove the theorem, we begin by observing that, when 0 < x < g,

o) — fx) _ h)

x? x?

g =
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where h(x) = xf'(x) — f(x). We will know that g is decreasing over the interval
0 < x < aif we can show that A(x) < O when0 < x < a. Since

K (x) = zf"(x) + f'(x) = f(x) = 2f"(2),

our hypothesis that f”(x) < 0 when 0 < x < 2 implies that A’(x) < 0 when
0 < x < a. Thus h(x) is decreasing over the interval 0 < x < a. Since % is
continuous and £(0) = —f(0) = 0, it follows that A(x) < 0 when 0 < x < 4.
This gives the conclusion of the theorem.

19 Ideas of this section and the preceding one can be used to obtain informa-
tion about the graphs of the Bernoulli functions Bo(x), Bi(x), B2(x), - - - that
appeared in Section 4.3, Problem 10. We recall that By(x) = 1, that

(1 By (x) = Bas(x)
@) ﬁ, ' Bu(x) dx = 0

when = =1, 2, 3, - - - except that (1) fails to hold when # is 1 or 2 and x is
an integer, and that all of the functions except B;(x) are continuous. To keep
our task within reasonable bounds, we suppose we know the fundamental fact
that B,(0) = 0, B.(3) = 0, and B,(1) = 0 when # is odd, that is, when n = 1,
3,57, - - - . We want to show, without making tedious calculations, that the
miniature graphs of Bi(x), Ba(x), * - -, Bs(x) over the interval 0 S x =1
appearing in Figure 5.394 give correct information about the trends and the

f By(x)

By(x) By(x) By(x)
VQ D —_— ———
Bs(x) By(x) By(2) Byg(x)

Figure 5.394

zeros of these functions. When (12.384) and related formulas have been studied,
we will be able to see that scales on the vertical axes have been adjusted to make
the graphs visible; it can be shown that |B.(x)| < 4/(27)" when # > 1 and hence
that numerical values cannot be estimated from the graphs in Figure 5.394.

Supposing that 0 < x < 1, show that the formulas Bi(x) = 1 and 01 Bi(x) dx =

0 imply that Bi(x) = x — % and hence that the graph of Bi(x) is correct. Show
that the formula Bj(x) = B;(x) implies that Ba(x) is decreasing over the interval
0 < x < % and is increasing over the interval ¥ < x < 1. Show that this fact

and the formula j; ! By(x) dx = 0 imply that B,(0) > 0 and B5(3) < 0 and hence

that By(x) has exactly two zeros between 0 and 1. Show that the formula
BY(x) = Bi(x) implies that the graph of Bs(x) is bending downward over the
interval 0 < x < % and is bending upward over the interval ¥ < x < 1. Show
that the formula Bj(x) = Ba(x) implies that Bs(x) is increasing over the first
part of the interval 0 < x < 1, is decreasing over a central part, and is increasing
over the remaining part. Tell why Bs(x) is increasing over the interval 0 < x <
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% and is decreasing over the interval 3 < x < 1, and why By(x) has exactly two
zeros between 0 and 1. Continue this investigation until general conclusions
about the functions Ba(x) and their graphs have been reached.

5.4 Theorems about continuous and differentiable Junctions
Itis possible to look at Figure 5.42 and others more or less like it and claim
that these figures provide experimental evidence supporting the follow-
ing theorem of which we shall give a stronger version in Theorem 5.52.

Theorem 5.41 If L is a chord joining two points on the graph of a
differentiable function, then there must be at least one point on the graph at
which the tangent is parallel to L.

There are at least two reasons why this theorem is surprising. It is
thoroughly important, and it is impossible to prove it without making use
of some substantial mathematical machinery that has not yet appeared in
this course. The source of the difficulty
can be stated very crudely by saying that
Theorem 5.41 would be false if there were
“holes” in the set of real numbers so that
the graph of Figure 5.42 contains no points
having x coordinates x; and x;. To prove
Theorem 5.41, and for many other purposes,
we need a property or postulate or axiom
which guarantees that the set of real numbers Figure 5.42
is complete. While several different equiva-
lent axioms can be given, the following one involving a fundamental idea
of Dedekind (1831-1916) is in some respects the most natural one to
adopt.

Axiom 5.43 (Dedekind) Let the set of real numbers be partitioned
into two subsets A and B (see Figure 5.44) in such a way that (i) each real

A , B

X1 3 X2

Figure 5.44

number is put into either A or B, (ii) each of 4 and B contains at least one
real number, and (iii) if %1 is in 4 and %2 is in B, then x; < xs. Then
there is a real number £ (the partition number xi) which is either the
greatest number in A or the least number in B.

Once again we are in a position where we should know something about
our present state and prospects for future development. To attain full
comprehension of the Dedekind axiom, and the manner in which it is
used to prove basic theorems of mathematical analysis, is not a short
task. Experience shows that, except in unusual special circumstances,
it is quite unreasonable to suppose that enough time is available in a first
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course in calculus to explore these matters thoroughly. In order to
understand the proofs, it is necessary to sketch and study illustrations of
various kinds, and progress is very slow. Until considerable experience
has been obtained, it is not easy to reproduce the proofs even after they
have been completely understood. Students who peek at the proofs
can be compared with children of jewelers who peek at the innards of
watches. They start accumulation of knowledge of reasons why things
tick, and the overwhelming importance of getting started must be
recognized by everyone who knows that we toddle and walk before we
run. So far as this course is concerned, it is of primary importance to
understand the axiom and theorems of this section and to cultivate the
habit of formulating and using precise mathematical statements.

We begin a campaign to learn something about continuous functions
and differentiable functions and their graphs by proving the following
theorem.

Theorem 5.45 If f is continuous over an interval a < x X b, then f is
bounded over the interval, that is, there is a constant M such that

[fl=M (@ £ x=b).

Our proof will use the Dedekind axiom. Let x; be putin 4 if x; £ a.
Moreover, let x; be put in 4 if 2 < 1 < b and there is a constant M,
such that |f(x)| £ M, when @ £ x £ x1. Let B contain all other num-
bers. This determines a Dedekind partition, and we can let £ be the
partition number. Itis easy to see thata < £ < 5, but the remainder of
the proof is more delicate. Since f has right-hand continuity at a, we
canlete = 1 and choose a positive number § such that f(a) — 1 < f(x) <
f@)+1 and hence |f(x)] £ |f(a)l + 1 whenever ¢ < x £ a + 6.
Hence f is bounded over the interval 2 £ x < a + §, so a 4+ 5 belongs to
A and £ Z a+ &> a. Our next step is to show that £ = 5. If £ <5,
then we have 2 < £ < b as in Figure 5.451. Since f is continuous at £,

N S B

M a £-3 £ E+b b %
Figure 5.451

we can let ¢ = 1 and choose a positive number & such thata < £ — § <
£+ 8 <b as in Figure 5451 and |f(x)] < |[f(®)| + 1 when ¢ — 38 =
x = £+ 6. But £ — § belongs to 4, so there must be a constant M,
such that |f(x)| £ M, whena < x < t — 5. If we let M, be the greater
of My and |f(£)| + 1, then |f(x)] < M:whena < x < £ 4 6. Therefore,
£ 4+ & must belong to 4 and we have a contradiction of the fact that the
partition number £ must be either the greatest number in 4 or the least
number in B. All this shows that £ = b, and we are almost finished.
Let ¢ = 1 and choose a positive number & such thata < 4 — § < b and
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|f(x)] < f(®) + 1 whend — 8 < x < b. Since b — 3 belongs to A4, there
must be a constant M3 such that |f(x)] < M;whena < x < b — 5. If
we let M be the greater of M; and |f()| + 1, then |f(x)| £ M when
a < x £ b. This completes the proof of Theorem 5.45.

To strengthen Theorem 5.45, and for other purposes, we need informa-
tion about upper and lower bounds. A set S of numbers is said to have an
upper bound M,if x = M, whenever x isinSandissaidtohavealeastupper
bound (l.u.b.) or supremum (sup) M if M ) o
is an upper bound and there is no upper m, m x M M =
bound M; for which M; < M. Analo- Figure 5.453
gously, S is said to have a lower bound m,
if x 2 m; whenever x is in S and is said to have a greatest lower bound
(g.l.b.) or infimum (inf) m if m is a lower bound and there is no lower
bound m, for which m; > m. The inequality

(5.452) msms<x=<MzsM

shows how these numbers must be related when x is in S, and Figure
5.453 shows a way in which they are sometimes related.

Theorem 5.46 If a nonempty set S of numbers has an upper bound M,
then it has a least upper bound. Similarly, if a nonempty set S of numbers
has a lower bound my, then it has a greatest lower

bound. A ., . B
As Figure 5.461 indicates, we make a partition %-1 & M
of numbers by putting a number in B if it is an Figure 5.461

upper bound of S and putting a number in 4 if it is

not an upper bound of S. The set B contains M, and if x¢is a number in
S, then A contains the number xo — 1. Let £ be the partition number.
Let x be a number in S. Then, for each positive number ¢, x < £ + e
Hence x < £ and it follows that £is an upper bound of S. If ' < £, then
#" is in A4 and hence x’ is not an upper bound of S. Therefore, £ is the
least upper bound of S. This completes the proof of the first part of the
theorem. The second part is proved similarly.

Theorem 5.47 If f is continuous over an interval a = x < b, thenf(x)
attains minimum and maximum values over the interval at points of the
interval, that is, there exist numbers m, M, x1, and %2 such that a S x1 =
bya S x2S b, and

m = f(x1) < f(x) = flx)) = M

whenever a £ x < b.

To prove the part of the theorem involving M, we use Theorem 5.45 to
conclude that f must have an upper bound M;. It follows from Theorem
5.46 that the set of numbers f(x) for whicha S x < b hasa least upper
bound which we now denote by M. Then f(x) < M whena = x =),
and it remains to be shown that there is a number x; for which f(x2) = M.
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If f(a) = M or f(b) = M, we set x2 = aor xa = b. Otherwise, assuming
that f(a) < M and f(b) < M, we determine the required number &,
by means of a Dedekind partition. Put a number " in 4 if ¥’ < 4 and
also if a < ¥’ < b and for some e > 0 the interval a < x < &’ contains
no point for which f(x) > M — e. Let B contain all other numbers, and
observe that 5 is in B. Let x, be the partition number of this partition.
Clearly, f(x;) < M. If we assume that f(x;) < M, say f(x2) = M — ¢,
where o > 0, we can choose a positive number & such thata < xo — § <
%o+ 8 < b and f(x) < M — e/2 whenever xo — 6§ = x = x2 + 8. The
fact that x, — 8 is in 4 will then enable us to draw the erroneous con-
clusion that x; + 8 is in 4. Therefore, f(xs) = M. This completes the
proof of the part of Theorem 5.47 involving M. To prove the part of the
theorem involving m, we can use an analogous argument. We can,
alternatively and more easily, use the
fact that —f(x) must have a maximum
—m attained when x = x; and hence that
f(x) must have a minimum = attained
when x = x1.

The following theorem is known as
the intermediate-value theorem; Figure
5.481 provides experimental evidence.

Theorem 5.48 If f is continuous over an interval a < x < b and ifk
is a constant for which f(a) < k < f(b) or f(a) > k > f(b), then there exists
at least one number § for which a < § < b and f(§) = k.

Taking first the case in which f(a) < k < f(b), we prove the result with
the aid of a Dedekind partition. Let x; be putin 4 if ;1 = a and also if
a £ %1 = b and f(x) < &k whenever a < x < x;. Let x, be put in B if
x9 = b and also if a £ x, £ b and the interval ¢ £ x < x, contains a
number x for which f(x) = 2. Let ¢ be the partition number. Since
f(a) < k and f has right-hand continuity at a, we can let ¢ = £ — f(a)
and choose a positive number & such that |f(x) — f(a)| < € and hence
f(x) <k when a S x=<a+ 35 Hence a-+ 5 belongs to 4 and ¢ =
a+ 8> a. A similar argument shows that £ < . Therefore a < £ <
b. If we suppose that f(§) > £, then we can choose a positive number &
suchthata < t — 86 < ¢+ 8 <bandf(x) > kwhent —6=x= ¢+
8. This contradicts the fact that f(x) < # when a < x < £ — § and
f(x) > k for some x in the interval a < x < £ + 8. If we suppose that
f(§) = k, a similar argument leads to a contradiction. Therefore
f(&) = k. A very similar proof covers the case in which f(a) > £ > f(b)
and Theorem 5.48 is proved.

In ordinary circumstances we try to be too efficient to clutter our books
and our memories with obvious corollaries and applications of our
theorems, but one corollary of the intermediate-value theorem is so
important that we relax to look at it. If a function f is negative at %

e —————
o
R

Or a
Figure §5.481
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and is positive at xs, and if f is continuous over the closed interval having
end points at x1 and xs, then there must be at least one x3 between x, and %,
for which f(xs) = 0. This implies that the graph of a continuous function
f cannot run from a point (%1,91) below the x axis to a point (xs,y,) above
the x axis without intersecting the x axis at a point (x3,0) for which x;
lies between x1 and x». Instead of asking whether this result is “obvious,”
we can ask whether it is obvious that a man cannot walk from the Capitol
of South Dakota to the Capitol of North Dakota without stepping upon
the common boundary of the two Dakotas.

Problems 5.49

1 With the text of this section out of sight, try to produce adequate responses
to the following orders; if unsuccessful, study the text again and try again.

(2) Write a full statement of the Dedekind axziom.

(b) Write a theorem which gives precise information about boundedness of con-
tinuous functions.

(c) Write a theorem which gives precise information about extrema of con-
tinuous functions.

(d) Write a full statement of the intermediate-value theorem.

2 Using known properties of the function f for which f(x) = %, show how
the intermediate-value theorem (Theorem 5.48) can be used to prove that there
is a positive number £ for which £ = 2. Give all of the details, recognizing
that Theorem 5.48 cannot be applied until appropriate values of @ and & have
been captured.

3 Modify the work of the preceding problem to prove that there must be
at least one x for which f(x) = O when

@) flx) =x%—7 ®) fx) =x3—x—7

(‘)f(x)=1—:_s—xg—40 @) f(x) =x — cos x
4 Letting

@ f) =1+ 2+ 22+ 23+«

determine whether there are any numbers x for which f(x) < 0. Hint: Use the
fact that f(1) = 5 and

x—1
@) f@ =7—7 (x # 1).
Show that x5 = 1 only when x = 1, so f(x) is never zero and hence f(x) is never
negative.

5 Let f be defined over the closed interval —1 =< x <1 by the formulas
f(0) = 0 and f(x) = 1/x*> when —1 S x <1 and » # 0. Show that there is no
constant M such that [f(x)] £ M when —1 = x = 1. Solution: Suppose, intend-
ing to establish a contradiction of the supposition, that there is a number M



318 Functions, graphs, and numbers

for which |f(x)] £ M when —1 £ x = 1. Letx =1/V|M| + 2. Thenx =0
and —1 £ x £ 1, but f(x) = 1/x2 = |M| + 2, so [f(x)| > |M| = M.

6 Read Theorem 5.45. Then construct a figure which illustrates the mean-
ing of the following remark. If 2 < b and M > 0, then condition

M Ife)l < M (e=x=0)

is satisfied if and only if f is defined over the interval 2 £ x = b and the graph of
y = f(x) over the interval @ £ x = b lies between the graphs of the lines having
the equations y = —Af and y = M. Note that this gives a “geometrical mean-
ing” to Theorem 5.45. Note that the inequality (1) holds if and only if M > 0
and — M < f(x) < M whena = x £ .

7 Sketch a graph of the function f for which f(0) = 0 and f(x) = 1/x when
2#7# 0 and —1 S x = 1. Show that there is no M such that the graph of f
over the interval —1 < x < 1 lies entirely above the line having the equation
y=—M.

8 Give an example of a function which has an upper bound over the interval
—1 = x = 1 but has no lower bound.

9 Show that the function f for which f(x) = x has upper and lower bounds
over the open interval 0 < x < 1 but possesses neither a maximum nor a mini-
mum over this interval.

10 Show that the function f defined over the closed interval 0 < x < 2 by
the formula

f(x) = = =[x,

in which [x] denotes the greatest integer less than or equal to x, has an upper
bound but does not have a maximum.
11 Prove that there is a number x* for which a < x < b and f'(x*) =

/() — f(a)l/(¢ — a) when

(@) flx) =% a2a=0,b=1
B fx) =26 —T722+3x+40,a=—-1,b=1

12 Without undertaking extensive calculations that are easily made when
appropriate computing equipment is available, we call attention to the Newton
(1642-1727) method by which zeros of reasonable
functions are approximated in decimal form.
The method is based upon the elementary obser-
vation that, in many cases more or less like the
one shown in Figure 5.491, if x, (where # may

z
R initially be 1) is a reasonably good approximation
/ I *n *  to a number z for which f(z) = 0, then the tangent
Zn4l to the graph of y = f(x) at the point (x5, f(xn))
Figure 5.491 will intersect the x axis at a point (xp41,0) for

which #n41 is 2 much better approximation to z.
The Newton method is normally applied in cases where f has many continuous
derivatives and f'(x) # 0 when x is near z but # € 2. In such cases the equation
of the tangent at (x,, f(xs)) is

y = fl) = f'(n)(x — %n)
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and setting y = 0 gives

f(xa) |

T P

When the method is applied, we start with a first approximation xi, set » = 1
to calculate a second approximation x», set » = 2 to calculate a third approxima-
tion x3, and so on. To test the Newton method and understanding of it in situa-
tions where computations are not too onerous to be done with a pencil, calculate
xo when

(@) flx) =x2—2,x =14
(®) f(x) = 8 — 20, = 3
(€) flx) = x4+ 2 — 20, %, = 2
@) f(x) =x*4+ 5x — 50, %, =2

13 It is not always easy to tell what is obvious and what is not, the funda-
mental difficulty being that some things that have been thought to be “obviously
true” are false. Consider, for example, the “obvious” statement that “each
finite set of numbers contains a greatest element.” If, as is usual, the empty
set is considered to be a finite set, the statement is false. Consider, then, the
revised statement ‘“‘each nonempty finite set S of numbers contains a greatest
element.”” Is this obviously true? Let z be a positive integer and let the num-
bers be xi, 2, X3, * * * , #». The only thing we know about these things is that
they are numbers. One possible method of attacking the problem starts with
a comparison of ¥; and x,. If x; < x, we discard x; and consider the remaining
set, butif ¥, < x;, we discard xo. Instead of employing this “finite mathematics,”
we introduce some “infinite mathematics” that will make us think about least
upper bounds. The fact that x; < [ for each £ implies that

xr Z o] | + - - 0 ol

for each £. Hence the set S has an upper bound, and it follows from Theorem
5.46 that the set has a least upper bound M. If there is a & for which xx = M,
then this x; must be a (or perhaps the) greatest element of S. If we suppose
that there is no % for which x; = M, and hence that x; < M for each &, we can
obtain a contradiction of the hypothesis that S contains only # elements. To do
this, let y; be an element of S. Then y; < M and there must be an element y,
of S for which y; < y2 < M. The same argument shows that there must be an
element y; of S for which y2 < y3 < M, and so on. We run into a contradiction
of the assumption after we have used n elements of S. This proves that the set
S does contain a greatest element and provides the possibility that schemes for
finding “it” might even work.

13a Remark: To put the following problems and their consequences upon
a rigorous base, we should have a definition of the set S; of positive integers.
This set S; can be defined to be the subset of the set S of positive real numbers
for which the number 1 is the least element in S1; 2 + &4 is in S; whenever 4 and
barein S1;5 — aisin S; whenever @ and  are in S; and a2 < . It follows from
this that if 2 and A\ are numbers for which 0 < A < 1, then the interval ¢ < x =
a + A can contain at most one integer.
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14 Prove the Archimedes property of numbers: if € > 0 and 2 > 0, then there
is an integer n for which ne > a. Solution: Suppose ne £ a for each n. Then
the set S of numbers ¢, 2¢, 3¢, - - * is nonempty and has an upper bound. Hence
S must have a least upper bound M. There must be an integer m for which
me > M — e. Then (m + 1)e > M, and hence M is not an upper bound of S.
This contradiction proves that there is an z for which ne > a.

15 Prove that each nonempty set of positive integers contains a least element.
Solution: Let S be a set of positive integers. Since S is nonempty and has the
lower bound 1, S must have a greatest lower bound m. Let 0 < e < %. 'The
interval m £ x < m + € must contain an integer n in S, since otherwise m + ¢
would be a lower bound greater than m. Since the interval has length less than
% and cannot contain two integers, it follows that # is the one and only integer
in S which is less than m + e. Therefore, 7 is the least integer in S. Remark:
The fact that each nonempty set of positive integers contains a least element
will now be used to prove the following principle of mathematical induction. If
a particular assertion involving a positive integer k is true when k = 1, and if the
assertion is true when k = n + 1 provided n = 1 and 1t is true when k = n, then
the assertion is true for each positive integer. Let T be the set of positive integers
for which the assertion is true, and let F be the set for which the assertion is
false. If Fis nonempty, then F must have a least element m which is a positive
integer greater than 1. Then m — 1 must be in T and our hypothesis gives the
conclusion that m is in 7. Thus m is in both F and T and (on the basis of the
tacit assumption that we are dealing with statements that are either true or
false but not both) we have a contradiction that proves that F is empty. There-
fore, T contains each positive integer and the assertion is therefore true for each
positive integer.

16 Prove that if x is a number, then there is an integer # for which n < x <
n + 1. Remark: This property of numbers was mentioned in Section 1.1, and
the integer 7 is [x], the greatest integer in x. Solution: Suppose first that x > 2.
Using the Archimedes property of real numbers (Problem 14) with ¢ = 1 and
a = x shows that the set S of integers greater than x is a nonempty set of positive
integers. Hence, as Problem 15 shows, S must have a least element m. Then
x < m, but the inequality x < m — 1 must be false because otherwise m would
not be the least element of S. Therefore, m — 1 = x < m and we obtain our
result by setting » = m — 1. In case x < 2, we can choose an integer & such
that x + £ > 2. Letting m be an integer for which m £ x + 2 < m + 1, we
find that m — % is an integer # for whichn £ x <z + 1.

17 Prove that if x is a number and 7 is a positive integer, then there is an
integer k for which

Eo bl
n n

Remark: In case m is a nonnegative integer and #n = 10™, the result shows how

x 1is related to “finite decimals.” Proof: Problem 16 shows that there is an
integer k for which

ESsnx<k+1,

and the result is obtained by dividing by x.
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18 Prove that if x is a number, then there exist an integer N and a sequence

dy, da, da, + - - of digits (a digit being one of the integers 0, 1, 2, - - -, 9) such
that
d d Qo dn
M) N+p+iet tiomTig==
G d o des il
<Ntp+tit FTo= T 1

for each n =1, 2, 3, - - - . Solution: Let N = [x], so that N is the greatest
integer in x, and let § = x — N. Then 0 £ 6 < 1 and the required result will
follow if we prove that there exist digits dy, ds, ds, * * - such that

d d Ao d,
@ priE Tttt S0
dl dz ... dn—l dn + l
<ptiet  to= o
foreachn =1,2,3, - - - . To prove (2), it is sufficient to prove that

Y
@) 0=0-75-10:~ ~ 1o < 1o~

While it is of interest to take time to use (2) to determine what dy, da, d3, * - °
must be if they exist, we save time by defining integers d, d, d3, * * - by the
formulas

@ dy = [106]

a-[(o-8)]

a-f (o4~ 5)]

and, in general, foreachn =1,2,3, - *

@ A T R R 2]

Since 0 < 6 < 1, we find that 0 £ 106 < 10 and hence that d; is a digit. More-
over,

(8) =100 <d+1
and hence

d, 1
) 06 - 10 < 10

50 (3) holds when » = 1. Multiplying (9) by 10° gives

(10) 0= 10:(6 - f%) <10.
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Hence (5) shows that d is a digit and

(11 as10:(0 - 2) <t
Dividing by 102 and transposing give

d1 dy 1
(12) 0<6— ~ 102 < 10?

so (3) holds when # = 2. This procedure enables us to prove (3) by induction.
If dy, do, + * + d, are digits and (3) holds, then

13) 0< 10n+1(e - d‘ {%—’, - 10”) <10
and (7) shows that dny is a digit and
(14) dpyy < 10741 (0 - é -1%’, - 10,,) < dpp+ 1.

Dividing by 10**! and transposing give the result of replacing 2 by #» + 1 in (3).
This proves (3) by induction, that is, by use of the principle of mathematical
induction of Problem 15.

19 Let F(f) be the temperature or pressure at the place P where a circle
having its center at the origin of an x,y coordinate system is intersected by the
ray from the origin which makes the angle 8 (as in trigonometry) with the positive
x axis. It is supposed that F is continuous and F(6 + 2x) = F(6) for each 6.
Prove that there are two diametrically opposite points of the circle at which F
has equal values. Hint: Apply the intermediate-value theorem to the function
f for which f(6) = F(f) — F(6 + 7). Observe thatif f(o) > 0, then f(6 + 7) =
—f(86) < 0. Remark: While we do not yet have equipment required for proof,
we can learn an interesting property of continuous functions defined over sur-
faces like spheres. There are two antipodal (or diametrically opposite) places
on the surface of the earth having both equal temperatures and equal atmos-
pheric pressures.

20 Suppose that a world has existed so long and so favorably to fish that an
infinite number of fish have existed but that only a finite number of fish have
existed at any one time because the world contains only a finite number of atoms.
Prove that there is a least number mg such that the mass m (measured in some
standard system) of each past and present and future fish is less than or equal to
mo.

21 TItiseasy to presume thatif fis differentiable over theinterval -1 £ x £ 1
and if f/(0) = 1, then there must be a positive number % such that f is increasing
over the interval —& < x £ h. Use the function f for which f(0) = 0 and

f(x) =x+x’sin%, (x = 0)

to show that the presumption is false. Hint: Show that f/(0) = 1 and that,
when x 0,

.12 1

fiix) =1 +2xsmx—2—’—ccos~—;

X
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Observe that if # is a positive integer and x, = 1/4/2nm, then

(%) =1 —2~/2nm.

1t {follows that each interval 0 < x < & contains subintervals over which f'(x) < 0
and f is decreasing.

22 Boom-and-bust processes occur (or seem to occur) in economic and political
life. Persons who get their political information from clever press secretaries
of astute chiefs of state discover that the fortunes of their countries are at low
ebbs when new chiefs are installed and that these fortunes steadily improve
during the tenure of each chief. Such processes occur in electrical engineering
when a charge on a capacitor steadily increases until a spark jumps and the charge
disappears. This problem involves a particular boom-and-bust process in which
a and g are positive constants. It is supposed that, for each integer =, the
quantity y is 0 when ¢ = na and that y increases at a constant rate over the inter-
valna £t < (n + 1)ain such a way that y approachesg as ¢ approaches (n + 1)a
from the left. Sketch a graph of y versus ¢ and find a formula giving y in terms

Of z. 1 ar tial ans?
a a !

where [x] denotes the greatest integer in x.

23 While persons confining their mathematical contacts to modern mathe-
matics books need not worry about the matter, others may need a warning.
In the good old days, the word “finite’” was used in place of the word ‘“bounded.”
In order to understand assertions involving the word finite, it is sometimes not
sufficient to understand modern mathematics. Sometimes we need substantial
information about history, and sometimes we need conscious recognition of the
fact that assertions involving the word “finite” have different meanings at different
places and at different times. For example, the assertion that “f is finite at x0”
can mean that there is an interval with center at x such that f is bounded over the
interval. The assertion can, however, have other meanings, and this is the
reason why we should shudder when we hear it.

24 A function f is said to have a generalized first derivative Gf'(x) at x if

1 Gf'(x) = ,ltl_%f(x + 4 ’2_}'lf(x )

and is said to have a generalized second derivative Gf''(x) at x if

) Gf”(x) = ’ltl_l;%f(x -k - 2];5;") + fix + h)_

Prove that Gf'(x) = f'(x) when f'(x) exists. Hint: Use the fact that

fx+ k) —fx —h) 1[flx+ k) —f(x) | f(x — k) — fx)].
ORI )Zh( )=§[ 2 +5 == ]

Remark: The wide world contains several persons who have sharpened their wits
by trying to answer two questions which are not guaranteed to be easily answered.
Does the hypothesis that Gf'(x) = 0 when a < x < b imply that there is a
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constant ¢ for which f(x) = ¢ when @ < x < 5? Does the hypothesis that
Gf"(x) = 0 when a < x < b imply that there are constants ¢; and ¢, for which
f(x) = c1x + cowhena < x < 5?

5.5 The Rolle theorem and the mean-value theorem 1In this
section we prove some fundamental theorems and use them to review and
prove some theorems that have been previously given without proof.
The following theorem must be permanently remembered and known as
the Rolle (Michel, 1652-1719) theorem. It is not to be presumed that
Rolle proved or even knew this theorem, but he did discover some of its
applications to polynomials.

Theorem 5.51 (Rolle theorem) If a <b, if f is continuous over
a £ x b, if fis differentiable over a < x < b, and if f(a) = f(b) =0,
then there is at least one number x* for which a < x* < b and f'(x*) = 0.

The proof of this theorem is mildly tricky because it seems to be
necessary to consider three different cases. Suppose first that f(x) = 0
over the whole interval 2 £ x £ 5. Then f'(x) =0 when a < x <}
and we can choose x* to be any number between @ and 5. Suppose next
that there is a number x; for which a < %, < & and f(x1) > 0. Then
with the aid of Theorem 5.47 we see that f must attain a positive maxi-
mum f(x*) at some point x* for which ¢ £ x* < b, and we can be sure
that a < x* < b because f(a) = f(b) = 0. Since f'(x*) exists, it follows
from Theorem 5.26 that f'(x*) = 0. Suppose finally that there is a
number x; for which ¢ < 2 < b and f(x2) < 0. Arguments similar to
those used above then show that f must have a negative minimum at
some point x* for which @ < x* < b and that f'(x*) = 0.

The following theorem is known as the law of the mean or the mean-
value theorem of the derivative calculus. It is a strengthened version of
Theorem 5.41, which we have discussed briefly, the right member of
(5.53) being the slope of the chord joining the points (a, f(a)) and (3,
f(8)). 1It, like the Rolle theorem, must be permanently remembered.

Theorem 5.52 (mean-value theorem) Ifa < b, if f is continuous
over a £ x = b, and if f is differentiable over a < x < b, then there is at
least one number x* for which a < x* < b and

(5.53) Fix*) = f (bz’ —_' ];(a)
or
(5.54) f®) = f(a) = f'(x*) (& — a).

This theorem differs from the Rolle theorem because it is not assumed
that f(a) = f() = 0. It happens, however, that the theorem can be
proved by applying the Rolle theorem to the function ¢ defined by
¢(x) = f(x) — g(x), where g is the function whose graph is the chord
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f®)

x
Figure 5.55

joining the points (g, f(a)) and (b, f(5)) of Figure 5.55. The point-slope
form of the equation of a line gives the formula

(5.561) g — fa) =LA =L@, _ )

in which g(x) appears instead of the more familiar y. Hence,

(5.562) #) = 1) — fla) ~ 1O 21D ()
when a = x < b and
(5.563) ¢'(%) = F(x) — f(b) f(a)

when a < x < 5. Itis easily seen that ¢ satisfies the hypotheses of the
Rolle theorem. Choosing x* such that a < x* < b and ¢'(x*) = 0 gives
the required conclusion (5.53). Multiplying by (b — a) then gives
(5.54), and Theorem 5.52 is proved.

Theorem 5.57 If f is continuous over a < x < b and f'(x) = 0 when
a < x < b, then f(x) = f(a) when a < x S b.

To prove this theorem, we note first that f(x) = f(a) when x = a. If
a <x1 =b, we can apply the mean-value theorem to the interval
a = x £ x; to conclude that there is a number x* for which 2 < x* < x;
and

f@&) = fla) = f'(x*)(x1 — a).

But f'(x*) = 0 and hence f(x1) = f(a). Therefore, f(x) = f(a) when
a £ x < band Theorem 5.57is proved. It follows from this theorem that
if two functions F; and Fs have the same derivative over an interval, say
Fi(x) = Fy(x) = g(x) when a < x < b, and we put f(x) = Fa(x) — Fi(x),
then f'(x) = 0 when a £ x < b so f(x) must be a constant ¢ and

Fz(x) = Fl(x) + ¢

when ¢ £ x < b. ‘This proves Theorem 4.13.
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We now prove Theorem 5.27 the first part of which says that if fis
continuous over an interval ag £ # < boand f'(x) > 0 when as < x < p,,
then f is increasing over the interval ao < x < bo. Let a0 < %1 < &, <
bo. The mean-value theorem guarantees existence of a number x* such
that #; < x* < x, and

flx2) — f(x1) = f'(x*) (22 — ).

But f’(x*) > 0 and (x2 — x1) > 0, so f(x2) — f(x1) > 0. Thus f(x) >
f(x1) and f is increasing. For the second part of Theorem 5.27, every-
thing is the same except that f'(x*) < 0 and f is decreasing.

The following theorem expresses the fact that if a function f is con-
tinuous over a closed interval ¢ £ x < b, then it is uniformly continuous
over the interval.

Theorem 5.58 If f is continuous over a closed interval a < x < b, then
to each ¢ > O there corresponds a 6 > O such that

|f(x1) — flxa)| <

whenever a L x1 S b,a S %3 S b, and |x2 — x| < 6.

While neater proofs of this theorem can be given in advanced calculus
after more mathematics has been digested, there is virtue in knowing that
it is possible to base a proof upon a straightforward application of the
Dedekind axiom 5.43. The bookkeeping by which we inch along toward
the answer is really very elementary, and students who have the patience
to see that this is so are very likely to become the leading scientists of the
future. Let e be a given positive number. Let a number x be placed in
the set 4 if x < a and also if 2 < x < b and there is a positive number §
such that |f(x2) — f(x1)| < ¢ whenever a £ %, £ %, a £ %2 £ x, and
|#a — x1] < 8. Let B contain each number x not placed in 4. Let £ be
the partition number. Clearly, a £ £ £ 5. Since f is continuous at g,
we can choose a positive number §; such that |f(x) — f(a)| < €/2 when-
evera £ x < a+ 8. Then

[f(x2) — f(x)| = |[f(x2) — f(@] — [F(x1) — f(a)]|
£ |f(2) — f(@)] + f(x1) — f(a)| < f + ie <e

whenevera < %1 £ a + 81,4 = x2 < 8y, and [x2 — x| = 8;. Therefore,
a + 68, belongs to 4 and it follows that £ > a. Our next step is to prove
that £ = b by obtaining a contradiction from the assumption that
a < £ < b. Suppose, then, that a < § < b. Since f is continuous at £,
we can choose a positive number &, such that a < £ — 8§, < £+ 6, < b
and |f(x) — f(¥)| < ¢/2 whenever |x — & < 8§, Moreover, since £ — &
must belong to 4, we can choose a positive number §; such that 43 < 8
and |f(x2) — f(x1)| < ¢/2 whenever a S %1 S £t — 85, a S %2 S £ — 8y,
and |x2 — x1] < 8. Now suppose that a £ x; < £+ 8y, a S xs S £+
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32, and |x2 — #1] < 8. We may suppose that x; < x,. If x; and #.
both lie in the interval |[x — & < 8, then |f(xs) — f(x1)| < e If #; and
x2 both lie in the interval ¢ < x < £ — 8, then again |f(x,) — f(x1)] < e.

Ifa§.x1§£—523ndf_52<x2§5+52,then
[fl)) — fx)| S [f(x2) — f(& = 82)| + | f(§ — 82) — f(x1)| < §+ 76 = e

Thus, in each case, |[f(x2) — f(x1)| < ¢, so £ + 8,isin 4 and £ cannot be
the partition number. This contradiction shows that & = 5, but to
complete the proof of the theorem, we must show that 5 is in the set 4.
Since f has left-hand continuity at b, we can choose 8 > 0 such that
a<b—08<b and |f(x) — f(B)] < ¢/2 whenever b — & < x < b.
Since & — & must belong to 4, we can choose a positive number & such
that 8 < & and [f(x2) — f(x1)| < ¢/2 whenever a S %, < b — ¥, a S
x2S b — &, and |x, — x| < 8. Arguments used above show that
[f(x2) — f(x1)] < e whenevera < x1 £ 4,42 < x2 < b, and |x, — x| < 6.
This completes the proof of Theorem 5.58.

Problems 5.59

1 With the text out of sight, write completely accurate statements of ()
the Rolle theorem, () the mean-value theorem.

2 Sketch several graphs that seem to be graphs of functions satisfying the
hypotheses of the Rolle theorem, and see whether it seems to be true that the
star points exist.

3 Sketch several graphs that seem to be graphs of functions which, for one
reason or another, do not satisfy the hypotheses of the Rolle theorem but never-
theless it seems to be true that star points exist anyway.

4 Sketch several graphs that seem to be graphs of functions which, for one
reason or another, do not satisfy the hypotheses of the Rolle theorem and star
points do not exist.

§ Tell why there is no request for construction of graphs of functions that
satisfy the hypotheses of the Rolle theorem and star points do not exist.

6 Prove that if F/(x) > 0 when @ < x < b, then there is at most one x
for whicha < x < band F(x) = 0. Solution: If we suppose that a < x; < x2 <
b and F(x;) = F(x3) = 0, an application of the Rolle theorem yields the con-
clusion that there is a number £ for which x; < £ < x; and F/(¢§) = 0. This
contradicts the hypotheses and the result follows.

7 This problem requires us to review fundamental processes of the calculus
whose validity depends upon Theorem 5.57. Supposing that f and g are func-
tions defined and continuous over an interval containing the point x = @ and
that

@ fx) =gx), fla) =4,
we can then write

@ flx) = fg(x) dz + ¢,
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where [g(x) dx stands for some particular function whose derivative is g(x), and
then so determine ¢ that f(a) = 4. We can also determine f from the formula

3 1) = fa) + [ 1) a

in which the integral is a Riemann integral. Determine f in two different (or
superficially different) ways by using (2) and by using (3), and make the results
agree, when

(@) Fx) = 2, () = 3 (®) /() = sin ax, 0) = 0
(&) 7/Gs) = cos ax, J0) = 0 @ F&) = =, 40) = 1
(0) 1) = 2 @) = 3 O F@&) = vV () =0

8 Prove that if # and v are functions that have continuous derivatives over
an interval I containing a and x, then

L ® 4()7 ) di = u(t)o(s) ]: - [: o)’ () dt.

Hint: Let Fi(x) and Fo(x) denote the left and right sides of the formula. Then
show that Fy(a) = Fy(a) and that Fy(x) = Fy(x) when x is in 7.
9 Iff(0) =0and

, x27
Fe =37

the result of writing formula (2) of Problem 7 as an aid to finding f(1) is rather
(or more) futile, but we can write a version of (3) and undertake to estimate
f1). Doit.

10 Sketch a graph over the interval 0 £ x £ 1 of the function f for which
f(x) = 2 Lete =4%. Use your eyes to select a § > 0 such that |f(xs) — f(x1)]
< € whenever 0 £ %1 £ 1,0 < x, £ 1, and |xs — x1| < 8. Note that if this f

were the only continuous function, we would not need to work so long to prove
Theorem 5.58.

11 Supposing that f has a continuous derivative over the intervala < x £ b,
show that the functions F and G for which

FG) = fla) + % [ 11+ 76 + 17l &
6w =4 [T -7+ 7o
are both increasing over the interval a £ x < b and

f#) = F(x) — G(x).

Remark: This problem contains an important idea. It is sometimes useful to
know about the possibility of representing a given function as the difference of
two increasing functions.

12 Prove the following theorem, which is known as an extended (not gen-
eralized) mean-value theorem or as a Taylor theorem.
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(1) Theorem If f is such that f exists over an interval containing a and x,
then there is at least one number x* between a and x such that

® 1) = 1@ + 5 e - oy + L (o oy
Solution: Let
© 80 = 16) = ) TR e~ — f e~ o2

where C is a constant chosen such that ¢(2) = 0. Then ¢(a) = ¢(x) = 0 and
the other hypotheses of the Rolle theorem are satisfied. The Rolle theorem
therefore furnishes a number x* between 2 and x for which ¢/(x*) = 0. Thus,

@ PEN) = —fE F @) = @) — 2 + Cx — 2*) = 0.

Therefore, C = f”/(x*). Since ¢(a) =0, we can put ¢ = a in (3), equate the
result to 0, and transpose to obtain the required formula (2). Remark: With the
additional hypothesis that the second derivative f/ is continuous, we shall use
integration by parts in Section 12.5 to obtain more straightforward derivations
of (2) and related formulas.

13 This problem requires attainment of understanding of matters relating to
the following generalized mean-value theorem which involves two functions.

(1) Theorem Let f and g be continuous over the closed interval from a to x,
let f and g be differentiable over the open interval from a to x, and let the derivative g’
be different from zero over the open interval from a to x. Then there exists an x*
1n the open interval from a to x such that

@ f&) — fa) _ f(x*)
£ —gl@) ~ £CY
We assume that f and g are given functions satisfying the hypotheses of the

theorem. Two applications of the mean-value theorem then show that there
exist numbers x7 and x between 2 and x such that

fx) = f(a)
f@)—f@) _ _x—a _ f(D),
g(x) — gla)  g(x) — gla) g'(x3)

x — a

3)

While this result can be useful, it is crude because x7 and 3 are not necessarily
equal. We obtain the more useful and elegant result (2) by arranging our work
to make a single application of the Rolle theorem. The trick is to define a new
function ¢ by the formula

©) 3(t) = [f(x) — f(@)llg(t) — g(a)] — [f() — f(a)lle(x) — g(a)]-

It is easy to see that ¢(2) = ¢(x) = 0 and that the other hypotheses of the Rolle
theorem are satisfied. Hence the Rolle theorem implies that there is a number
x* between 2 and x for which

®) ¢'(t*) = [f(x) — /@)’ (*) — f'@&*)gx) — g(a)] =0,
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and the desired formula (2) follows from this. The generalized mean-valye
theorem has numerous applications, including the following one. Since x* lies
between a and x, (2) implies that

m @ =f@) _ . f(®)

(6) z—»a g(x) - g(a) z—a gl(x)

provided the limit on the right exists.
For the special case in which f(a) = g(a) = 0, (6) reduces to the famous and
useful L’ Hépital formula
, I
@ i @

which, like (6), is correct when the limit on the right exists.t In this case the
quotient f(x)/g(x) is said to be “an indeterminate form of the form 0/0 when
x = a.” The formula (7), which gives a method for finding limits of “indeter-
minate forms,” is called “the L’Hépital rule for evaluation of indeterminate
forms.” Stories about “‘evaluation of indeterminate forms” will not injure us
if we resolutely remember that we sometimes find limits but that we never
evaluate 0/0. When we apply the L’Hépital formula (7), we must not fall asleep
at the switch and write the derivative of the quotient f(x)/g(x); we write the
quotient of the derivatives. The following rather simple examples show how
the formula is applied:

®) m =1 — im 2% = 2
=12 —1 2511
©) lim sm:c:lim s & _ g
=0 X =0 1
(10) liml—cosx=limsmx=0
z—0 x —0 1
.1 —cosx . sinx . cosx 1
11 = = ==
ab I TimTm Tm T T3
(12) im =1 —im & =1
=0 X 20 1
. et —1—x . ez—1 et 1
(13) b — e Ty =3
(14) lim 1 l)_ x — sin x
2—0 \sin x ,,_.0 x sin x
= lim 1—cosx _ im sin x _9_0
20X COSXx +sinx rw02cosx —xsinx 2

14 Show that

lim nxrtl — (n 4+ 1Dam 4 1 n(n +1)
2

z—1 (x - 1)2

t Guillaume Francois de I"Hospital (1661-1704) introduced this formula in a book
HAnalyse des infiniment petits pour intelligence des lignes courbes (Paris, 1696, 182 pp.) which
enjoyed widespread popularity. While there can be objections to tinkering with names of
people, most authorities insist that we must accept evolution from ’Hospital to L’Hbpital
quite as cheerfully as we accept evolution from hostel to hotel. Even counterrevolutionists
must recognize that the name is spelled in different ways.
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15 Supposing that « is a positive integer and x 5 1, differentiate

3 « o “_xﬁ"’l_.l
1) 14+ x4+ 22+ %+ + xm = s
to obtain
_ tl— (4 D41
@ 142432+ -+t = & (x("_l)z)"

Multiply by x and differentiate again to obtain

(3) 12 + 22x + 32x2 + .« . e + nzxn—l
Cwatt — (20— Dat e (1) — x — 1
B (x — 1)

Finally, take limits as x — 1 to obtain the formula

@ 12+22+32+---+nz=___"("+1)6(2"+1>.
Remark: We could multiply (3) by x and differentiate and continue the process
to obtain formulas for sums of cubes and higher powers. The details mushroom
rapidly as we proceed.

16 Another L’Hbpital rule is embodied in the following theorem.

(1) Theorem If f and g are differentiable over the infinite interval x Z xqo
and if

@ lim f(x) = o, lim g(x) = oo,
Eanded z—re0

then

3 tim &) = fim £()

e g(*) o= g'(%)

provided the limit on the right exists.
To prove this theorem, suppose that the right member of (3) exists and is L.
Let

@ (%) = fx) — Le(x)-
Then

o #) _  f@) = L)
®) lm @ T am T rm 0-

Let e > 0. Choose x; such that x; > xq, g(x*) > 0 when x* 2 x,, and

1 (4%
© ?&Q <3 &+ 2 x)-
It then follows from the generalized mean-value theorem of Problem 13 that
$(x) — (=) | _ €
7 i L A = (x > x1).
) 6 — ¢ | <2 ‘
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Choose x2 such that x; > x; and g(x) > g(x1) when x > x». It then follows
from (7) that

d(x) — d(x1)
(®) l—_é(:c_)_ 2 (x > x3).
Choose x3 such that x3 > x and |¢(x1)/g(x)| < ¢/2 when x > x3. Then
o) | _ () — o(x1) | S(x1) d(x) — d(x1) B (x1)
o |55+ 5 @ | e | <
when x > x3. Therefore,
£) () _
(10) lm‘h@) L]‘ﬁﬁgu) 0.

and this gives the required conclusion (3) which involves “indeterminate forms
of the form © /».” The following rather simple examples show how the theorem
is applied.

a1n lim —— = lim 1. 0

z—> x2 + 1 z—no 2x

_—x- = = _2_ =
az i e i gy g -0
(13) lim 2T VE o LE BT
z—o x4+ z—® 1
. logx . ox1 .1
as Jim 52 = lim o = Jim 25 =0 >0
(15) lim tlogt = 11m llog-l- = lim —logx _ lim —1/x _ 0.
=04 z—© X z—® 1

Remark: Limits of functions of other types can be found by using the above
formulas. For example, to find lim x%, we put y = x* and find that logy =

z—0+
x logx,s0 lim logy =0, lim y =1, and lim x* = 1. Similar arguments
z—0+ z—0+ z—0+
show that lim xV= = 1.
—>®

17 Supposing that f, g, k are three functions satisfying the hypotheses of the
mean-value theorem, show that the function F defined by the first of the formulas

flx) glx) h(x) F&*) g&*) K=Y
fla) g(a) h(a)|, |fla) gla) h(a)
f®) &) k() @) g A(?)

satisfies the hypotheses of the Rolle theorem and hence that there is a number
x* for which ¢ < x < b and the second formula holds. Examine the case in
which A(x) = 1 for each x.

18 This problem provides an opportunity to learn some very interesting
mathematics but, like a bicycle rider who lacks appreciation of basic principles
of physics and engineering, we can pedal along withoutit. The following theorem
is a fundamental theorem of the calculus which is stronger than Theorem 4.37
because it does not require that f be continuous.

F(x) = =0
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Theorem If f is integrable (Riemann) over a < x < b and if F'(x) = f(x)
when a S x = b, then

a / * fx) dx = F(x)]z = F(3) — F(a).

Our proof of this theorem uses the mean-value theorem. Supposing that P
is a partition of the interval 2 £ x < b having partition points xq, x1, * * * , %a
for which

) a=x<x1< " <Xp1<2x, =05,

we find that

3) F(b) — F(a) = E [Fxe) — F(xi)] = i F' () (e — 201)

k=1 =1

.

when, for each &, x;: is an appropriately chosen point in the interval x;_; < x < xy.
Since F’(xf) = f(x,f), the last sum is 2 Riemann sum formed for the function f
over the interval a < x < 5. Since each sum is equal to F(b) — F(a), it follows
that the limit (which exists by hypothesis) of these sums must be F(5) — F(a).
The limit is the integral in (1) and the theorem is proved. Remark: The hypothe-
sis that F is differentiable and F'(x) = f(x) over 2 £ x £ b does not imply that
f is continuous over 2 £ x < b; in fact the last of Problems 3.69 gives examples
of functions which are differentiable over the interval —1 < x < 1 but have
derivatives that are unbounded over this interval. Thus, some discontinuous
functions can be derivatives, but the following theorem shows that a function
cannot be a derivative unless it (like continuous functions) possesses the inter-
mediate-value property.

Theorem If F is differentiable over a £ x S b and if F'(a) < ¢ < F'(b) or
F'(a) > q > F'(b), then there is a number & for which a < £ < b and F'(§) = q.

To prove this theorem, let g(x) = F(x) — ¢(x — a). Then g, like F, must be
continuous. Hence g(x) must attain a minimum value at some point £ for which
a = £ =<b. Consider the case in which F/(a) < ¢ < F'(). Since g'(a) =
F'(a) — ¢ <0, we see that £ cannot be a. Since g’(b) = F'(b) — ¢ > 0, we see
that £ cannot be 5. Hence a2 < £ < b and therefore g/'(¢§) = 0 and F'(§) = ¢.
In case F'(a) > ¢ > F'(b), g(x) must attain a maximum at a point £ for which
a < £< band F/(§) = ¢g. This proves the theorem.

19 Prove that if fis continuous over — o < x < o, if f(x) —0 asx — o,
and if f(x) = 0 as x — — oo, then f must have a global maximum or a global
minimum but not necessarily both. Hints: As in the proof of the Rolle theorem,
consider three cases. In case f(x) > 0 for at least one x, choose xo such that
f(x)) > 0. Choose a number H such that |f(x)| < 3f(x) when |¢| = H.
The maximum of f(x) over the interval |¥| £ H must then be the maximum of
f(x) over the infinite interval.

20 Persons who manufacture peanut butter and typewriters and electronic
organs have an abiding interest in demand curves. It is supposed that x units
of a commodity can be sold when the price is p(x) dollars per unit. The graph
of p versus x is the demand curve. The nature of the demand curve depends
upon the commodity, being relatively flat (or inelastic) for false teeth, since
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people are prone to purchase only those that are required no matter what they
cost, and being relatively steep (or elastic) for water, since people require only
enough to drink but like to wash everything and water their gardens when water
is cheap. Economists and others construct and study hypothetical demand
curves for pleasure and for business. It is usually supposd that p is a positive
decreasing differentiable function of x. When x units are sold at p(x) dollars
per unit, the total revenue R(x) is the product of x and p(x). Thus R(x) = xp(x).
When x units are sold, the profit P(x) is R(x) — C(x), where C(x) is the total
cost of producing and selling the x units. Thus

€Y P(x) = R(x) — C(x),

this being one way of saying that profit is obtained by subtracting expenses from
income. For better or for worse, economists use special terminology in studies
of price, revenue, cost, and profit. The numbers p'(x), R'(x), C’'(x), and P'(x),
these being derivatives at x, are called the marginal price, the marginal revenue,
the marginal cost, and the marginal profit. This terminology is (or is thought to
be) appropriate because if we are producing and selling x units and we know s(x),
R(x), C(x), and P(x), then a shift to x 4+ Ax, p(x + Ax), R(x + Ax), C(x + Ax),
and P(x + Ax) is ““marginal” when Ax is near zero and, for example, the number
which [P(x + Ax) — P(x)]/Ax approximates for marginal shifts is a marginal
profit. As is easily imagined, knowledge of functions, limits, and derivatives
is helpful when these things are being studied. Differentiating (1) gives the
formula

) P'(x) = R'(x) — C'(),

which says that the marginal profit is equal to the marginal revenue minus the
marginal cost. When, as frequently happens, P(x) is a maximum when P'(x) = 0
and there is just one x for which P’/(x) = 0, we obtain the following rule for maxi-
mizing profits: choose the x for which the marginal cost is equal to the marginal
revenue. When equations of demand curves and cost curves are given, we can
determine the x that maximizes profits. Qur course in analytic geometry and
calculus is considered to be a prerequisite for extensive study of economics
because it prepares us to understand definitions, work out formulas, solve prob-
lems, and attain over-all comprehension of the subject. In fact, knowledge of
the mean-value theorem is not superfluous. The formula

) P(x+1) — Px) = &1—12_—@

= P'(x*),

in which x* is an appropriate number between x and x + 1, can help us under-
stand the antics of elementary books that alternately use P(x + 1) — P(x) and
the slope of the graph of P for the marginal profit.

5.6 Sequences, series, and decimals Our mathematical foundations
always remain quite shaky until we obtain precise information about the
possibility of approximating and “representing” numbers by decimals.
Moreover, we should have some solid information about this “repre-
senting” business. We know what we mean when we say that lawyers



5.6 Sequences, series, and decimals 335

represent felons in courts of law, but nevertheless our precious corpus of
scientific information is not appreciably augmented when a solemn tutor
makes the unexplained statement that “decimals represent numbers.”

To attack this and other matters, we must learn about some things that
have many applications. A sequence sy, s3, 53, - + - of numbers is an
ordered collection of numbers in which there is a first, a second, a third,
etcetera. The individual numbers are called elements of the sequence;
they are not called terms because terms are things that are added, and
they are not called factors because factors are things that are multiplied.
When sy, 52, 53, * * - is a given sequence, it may be true (or it may be
false) that there is a number L such that s, is near L whenever # is large.
This statement is meaningful. It means that when sy, 54, 55, * - * is a
given sequence, it may be true (or it may be false) that there is a number
L such that to each ¢ > 0 there corresponds an integer N such that
|sa — L| < e whenever » > N. In case L exists, we write

lim s, =L,
n— o

as in Section 3.3, and we say that the sequence converges toL. In case the
limit does not exist, we say that the sequence is nonconvergent or divergent.

As we shall see, the elementary theories of sequences and series are
closely related. However, a series is very different from a sequence. A
series (or simple infinite series) is an array of numbers and plus signs of the
form

(5.61) urtus+us+ - -

Because the notion of addition is involved, the numbers w;, u2, u3, = - -
are called terms of the series. The terms are not necessarily nonnegative,
and it is standard practice to write the series

L+ (D +E+ D +E+H D+ -
in the form
I R R A Ik SRR

Our series #; + u2 + w3 + - * * contains so many terms that not even a
high-speed electronic computer could “‘add them all up” during its life-
time. In order to determine a number that can reasonably be called the
value of the series, we need a procedure involving more than brute-force
addition. While other procedures exist and are useful, the following is the
most elementary and best known useful procedure. Let the sequence
$1, S3, S3, * * - of partial sums be defined by the formulas 51 = uy,
52 = w1+ us, 53 = u1 + us + us, etcetera, so that

n

(5.62) :n=u1+ug+°"+un=2uk (n=1,2,3+"").

k=1
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If it happens that this sequence of partial sums converges to s, so that
(5.621) lim s, = s,

n—r
then we say that the series converges to s, and, leaving the significance of
the horrendous operations to be revealed in Problem 6 and Chapter 12,
we say that the series has the sum s and we write

(5.622) s=wtustus+ - o s= ) m

In case a given series is not convergent, we say that it is divergent. The
series

1—14+1-14+1-14---

is a classic example of a divergent series.

We are now ready to attack decimals. Let dy, dz, d3, - - * be a
sequence each element d, of which is one of the 10 digits 0, 1, 2, 3, 4, 5,
6,7,8,9. The array

(5.63) 0.dvdods - -+,

in which the first dot is a decimal point, is then an infinite decimal. We
confine our attention to decimals of this form; presence of a positive
integer before the decimal point causes no difficulties. Just as the left
side of the equation

3 1 6 9 0

is a remarkably efficient way of abbreviating the right side, so also (5.63)
is a remarkably efficient way of abbreviating the infinite series

(5.631) + 102 n 103+ o

Thus the infinite decimal is an infinite series in disguise.

Theorem 5.64 Each infinite decimal 0.dydds - - - comverges to a
real number s.

If we think it will serve a useful purpose, we can say that the decimal
“represents’” the number to which it converges. In any case, we write

(5.641) s = 0.dydods -

when the decimal converges to s. To prove the theorem, let s, denote
the sum of the first # terms of the series (5.631) so that

dn
Dot i
and
Sp = 0.d1d3 .. d,,.
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The set S consisting of the numbers sy, 5o, 55, * - is then nonempty and
has the upper bound 1, since 5, < 1 for each #n. Therefore, Theorem 5.46
implies that S has a least upper bound which we denote by s. Then
sn < sforeach n. Toeach e > 0 there corresponds an index N such that
sy > 5 — ¢ since otherwise s — ¢ would be an upper bound of S less
than s. But the numbers 4}, d5, d;, - - - are all nonnegative, and hence
s—e<sn =s when n> N. Therefore, lim 5, = 5 or s = 0.d;dods

n—>

- and Theorem 5.64 is proved. For future reference, we note that
very minor modifications of this proof yield proofs of the following two
theorems.

Theorem 5.65 If the terms of the series uy + wo + us + - - - are
nonnegative and if the sequence of partial sums has an upper bound, then
the series is convergent.

Theorem 5.651 If a sequence s1, 52, 53, * + + is monotone increasing
(that is, sm = sn when m < n) and bounded above (that is, s, < M for each
n) then the sequence is convergent. Similarly, each monotone-decreasing
sequence which is bounded below must be convergent.

In connection with Theorem 5.64, it is often necessary to recognize the
awkward fact that two different infinite decimals can converge to the
same number. For example,

3 =0250000 - -+, 3 =0.249999 - - - .

This situation occurs, however, only when one of the decimals has only
nines from some place onward. In Theorem 5.64 we started with a deci-
mal and found that it converges to a number. The next theorem is
different; we start with a number and find a decimal which converges to it.

Theorem 5.66 If s is a number for which 0 < s < 1, then there is a
decimal 0.dydody - - - which converges to it.

Our proof of this theorem involves manipulation similar to the manip-
ulations of Problem 18 of Problems 5.49, where more details are given.
Let d, be the greatest integer for which 0.d; = s. Then s — 0.1 <
0.d; < 5. Let d, be the greatest integer for which 0.did> < 5. Then
s — 012 < 0.d,d; < 5. Letd;bethe greatest integer for which 0.dydsds <
s. Then s — 0.13 < 0.didsd;s < 5. Continuation of this procedure
yields a decimal 0.d,d,ds - - - that converges to s so that

S = 0.d1d2d3 A
We conclude this section with a study of geometric series and repeating
decimals. When x # 1, the identity

(5.67) 11:2n=1+x+x2+...+xn—1

can be proved either by long division or by multiplying by 1 — x. When
|x| <1, the sequence ||, |x|2, |x[3, - - - is monotone decreasing and
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bounded below by 0 and hence must have a limit. If we let L denote
this limit, then

L = lim |x|**! = |x| lim |x|* = [%|L,
so (1 — |#|)L = 0 and hence L = 0. Therefore, as we have previously
proved in another way,
(5.671) lim x* = 0 (%] < 1).
But the right member of (5.67) is the sum of the first # terms of the series
in the right member of the formula

(5.672) =l (4 < 1).

Hence, when |x| < 1, taking the limits as #n becomes infinite of the mem-
bers of (5.67) gives (5.672). Multiplying the members of (5.67) by a
constant a gives the very important formula

(5.673)

lix=a+ax+ax2+ax3+*°- (x| < 1)
which must be permanently remembered. The series is a geometric series
with ratio x, the ratio being the factor by which we multiply one term to
get the next. The easy way to remember the formula is to remember
that, when the absolute value of the ratio is less than 1, a geometric series
converges to the first term divided by 1 minus the ratio.

A repeating decimal is one, like

3.16952 952 952 -

in which, from some place onward, the digits involve only periodic
repetitions of a collection containing one or more digits. With the aid of
(5.673) we can show that each repeating decimal converges to (or is) a
rational number, that is, a quotient of two integers. For example, if s
is the number to which the decimal displayed above converges, then

316 | 1 952 52
ﬁ'o+ﬁo(952+_+(1000)2+ . )

_ 316 1 952 316 1 952
=100 T 1001 - 100 1 100 T 1009%
It is presumed that we can add fractions when there is a reason for doing
so, and we can see that s is a quotient of integers with denominator 99900.
The most important fact concerning repeating decimals is set forth in
the following theorem.
Theorem 5.68 The (terminating or nonterminating) decimal expansion
of each rational sumber is a repeating decimal.
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Proof of this fact can be based on the ordinary process by which “long
division” is used to divide one positive integer, say P, by another, say Q.
At each sufficiently advanced stage of the process, we obtain a representa-
tion of P/Q of the form

i . P,
(5.681) =N+ 0duds dt {5

where N is an integer, the d’s are digits, and P, is an integer remainder
for which 0 £ P, < Q. After the long division has progressed past the
place where no digits other than zero are ‘‘brought down,” the remainders
and hence also the d’s run through cycles that produce the repeating
decimal. A cycle begins when a remainder becomes equal to a previous
remainder, and this must happen because 0, 1,2, - - - , Q — 1 are the
only values that remainders can have. Dividing 365 by 7 shows an
application of the ideas. The long division process never produces
decimal expansions which, from some place onward, consist exclusively of
nines, but these expansions are clearly repeating decimals.

The elementary arithmetical consequences of Theorem 5.68 are enor-
mous. We can easily write nonrepeating decimals, examples being

0.1234567891011121314151617 - - -
where the positive integers are written in order, and
0.101001000100001000001 - - - .

These decimals converge to real numbers that are not rational and are
called irrational (not ratio-nal). This proves existence of irrational
numbers. Moreover, we can easily generate the idea that if the digits in

0.d1d2d3d4 DR

are selected in some random way, then it is highly unlikely (or even
almost impossible) that the decimal would be a repeating decimal.
This leads us to the idea that “almost all”’ real numbers are irrational, and
there are different ways in which this idea can be made precise.

Problems 5.69
1 Show that if g, b, and ¢ are digits, then
() O.aaza - - - =5 ®) O.ababab - - - = 22+2
(¢) b.aaaa - - - =9b;}-a (d) c.ababab - - - _ %% +91ga+b
() Obaaa - - - =22 (1) Ocabat - - - = et 0act?
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2 Write an infinite decimal which converges to an irrational number between
0.43211 and 0.43212.

3 Supposing that 0.31690416 - - - and 0.31690444 - - - converge to irra-
tional numbers, write a rational number that lies between them.

4 Supposing that @ and b are different positive numbers, give a procedure
by which we can find a rational number #; and an irrational number x, that lie
between a and b.

5 For a long time before the advent of electronic computers, the base 10 of
the decimal system reigned supreme and most people thought that other bases
had only theoretical interest. Nowadays the base 2, which employs the two
binary bits 0 and 1 instead of the ten decimal digits 0, 1,2, - - - ,9,is very impor-
tant. In the binary system, the left member of the formula

(1) Bmbm—r * * * bobibo = bm2™ + bp12™1 4 - - -+ 5a22 + 512 + by,

in which each bit 4y is 0 or 1, abbreviates the right member. Thus the binary
representations of the first few positive integers are

) 1, 10, 11, 100, 101, 110, 111, 1000, 1001, - - - .
Similarly,

b_ b_ b_ b_
©) (babsbos** Na=F +m+m+m+ s

where the subscript 2 in the left member informs us that the “point” is not a
“decimal point” but is a “binary point” and that each 5 is a binary bit. One
reason for importance of binary bits lies in the fact that one “state” such as
““light on” or “switch closed” or “true’ can be represented by 1, while the oppo-
site “state” such as “light off” or “switch open” or “false’” can be represented
by 0. Perhaps without knowing why, we can pick up useful ideas by solving
a few simple problems. Show that

(¢) (100)10 = (1100100), (d) (416)10 = (110100000).
(e) (10011), + (10110), = (101001):  (f) (s%)10 = (0.00111),
(8) ()10 = (0.01010101 - - ),

Remark: Many persons with substantial lacks of enthusiasm for adding, sub-
tracting, multiplying, and dividing with decimal digits can find genuine amuse-
ment in learning to make these manipulations with binary bits. Scientists need
never be bored because of lack of interesting things to do.

6 Inquisitive students may ask why we write

¢))] s=wturtust -

when the series converges to s. The answer lies partly in the fact that it is much
easier to write (1) than to write the statement that “s is the number to which the
series u; + up + u3+ - + - converges” and partly in the fact that the method
of convergence which we have described is the simplest useful method for assigning
values to series. There are other methods that are both venerable and useful.
One of these is the method which is called the method of Abel (1802~1829) even
though it was extensively used by Euler (1707-1783) and was used by Leibniz
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(1646-1716) and others before Euler. A given series u; + us + us 4 -+ - is
assigned the value 7 by this method if the series

2 uy F ur + ugr 4 - - -
converges when 0 < 7 <'1 to the values f(r) of a function for which
©) lim f(r) = V.

r—1—

Use these ideas to find the Abel value of the series 1 ~ 1 +1 —1+4 - - - .
Hint: The series 1 — 7+ 72 — 734+ - - is a geometric series whose ratio is
—r, and the series converges to 1/(1 + ) when |7| <1 Remark: Our mathe-
matical notations would be more sensible but less brief if we were accustomed to
writing

(4) :=C{u1+ug+u3+”-}

to abbreviate the statement that the series in braces is assigned the value s by
the method of convergence and to writing

) F=A1—-141~14 -4}

to abbreviate the statement that the series in braces is assigned the value % by
the method of Abel. This more elaborate notation can show just what we are
doing when we adopt the convenient but absurd old idea that a conglomeration
of numbers and plus signs “is” a number or “represents” a number if and only
if it converges to the number. An intelligible theory of series requires a suitable
mixture of broad ideas of Euler and narrow ideas usually promoted by elementary
books of the nineteenth and twentieth centuries.

7 Each sequence sy, 59, 53, * * * of numbers determines its sequence My, M,,
M, - + - of arithmetic means defined by the formulas

M Mn=:1+:z+n...+:n=_lizsk (n =123 - ).
E=1

If

2 lim sp =5,

so that s, is near s whenever # is large, we can feel that M, should also be near
s whenever z is large and hence that

(3) lim M, =s.
Prove that (2) implies (3). Solution: Let € > 0. Choose an integer N such that
lsa — 5| < €/2 whenever n > N. Then, when n > N,

W M-, =0Tz db o) LY,y

” k=1
and hence
1 1 3 C,1 % e_C_ ¢
(%) IM,.-—:]é;kz:l]:k—:l+;k-§+1|:k—:|§n-\-nk- +12<n+27



342 Functions, graphs, and numbers

N
where C = 2 [s¢ — s|. If we choose Ny such that N1 > N and C/n < ¢/2
k=1

when n > N, then we will have
(6) |Mn — 5| <€

when n > N;. This proves (3). Remark: It often happens that the limit in
(3) exists when the limit in (2) does not exist. In case u; + %2 4+ uz 4 - - - s
a series having partial sums sy, 55, * * * and arithmetic means My, M, M;, - -
such that (3) holds, we can write

7 s=Cfm+ust+us+ - - -}

and say that the series is evaluable to s by the method of arithmetic means or by the
Cesaro method of order 1.

8 Supposing that n is a positive integer, sketch a graph of the function f,
for which fn(x) = n% when || £ 1/2 and f.(x) = 1/x when |x| > 1/2. Show
that f, is continuous over E;. Show that

lim fa(x) = g(x),
n— o
where g(0) = 0 and g(z) = 1/z when z % 0. Hint: Consider separately the
cases in whichx =0, x > 0, and x < 0.
9 Using the notation of the preceding problem, let

u1(x) = fi(x)

us(x) = folx) — fi(x)
us(x) = fa(x) — falx)
uq(x) = fa(x) — fa(x),

etcetera, so that ux(x) = fi(x) — fe-1(x) when 2 =2, 3, 4, - - - . Show that
each function u, is continuous over E; and that

0

2, wi(x) = g(#).

k=1

Remark: It is sometimes necessary to be sophisticated enough to know that a
series of continuous functions may converge to a discontinuous function. More-
over, we should be tall enough to peer over the wall of our garden and observe
that a series uj(x) + u2(x) + - - - of functions having partial sums fi(x),
fa(x), + - - is said to comverge uniformly over a set E to f(x) if to each positive
number e there corresponds an integer N such that |fa.(x) — f(x)| < € whenever
n = N and x is in E. The following theorem is proved in advanced calculus.
It a series uy(x) + us(x) + - - - of continuous functions converges uniformly over
E to f(x), then f must be continuous over E.

10 Starting with positive numbers a; and b, for which a; < 3;, let sequences
ay, @, a3, * * - and by, b, bs, - - - be defined recursively by the formulas

an + ba
2

1) Gpp1 = Vagby, b =
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Show that, foreachn =1,2,3, - - - |
2 an < app1 < bay1 < bp.
Tell why there must exist numbers L; and L, such that
3) lim a, = L, lim b, = L,.

n—o n—rw

Show also that

4) 0<bn+1—dn+1<a";-b"—an=b—";—a“
and hence
) 0=<L.—L 23— Ly,

soLy = Li. Remark: The common value of the two limitsin (3) has an impressive
name; it is the arithmetico-geometric mean of the two given numbers a; and 5.

11 This problem, which is in some respects the most significant problem in
this chapter, would be much too difficult if it were not prefaced by a rather elab-
orate story. We make the reasonable assumption that Mr. C., a particular
carpenter, never heard of the Dedekind axiom 5.43, and that his ideas about the
real-number system are incomplete. Next we make the reasonable assumption
that the class R* (read R star) of numbers that Mr. C. knows about is the class
of rational numbers which he may call “whole numbers and fractions.” This
class R* is, for many purposes, a thoroughly useful class of numbers. If x and
y belong to R¥, so do x 4+ y, x — v, xy, and also x/y, provided y ¢ 0. While
we may be somewhat surprised by the fact, it is nevertheless true that Mr. C.
could define graphs, limits, derivatives, indefinite integrals, Riemann integrals,
and many other things exactly as we defined them. Mr. C. could show, exactly
as we did, that if f(x) = x2, then f'(x) = 2x. There would be many respects in
which his analytic geometry and calculus would be thoroughly satisfactory.
He would say, exactly as we did, that f is continuous at %, if to each € > O there
corresponds a § > 0 such that |f(x) — f(xo)] < € whenever |x — xo| < §, but of
course only rational numbers appear in his work. Mr. C. would be totally
unaware of the existence of irrational numbers, but we could nevertheless select
an irrational number £ for which 0 < £ < 1 and put Mr. C. to work studying
the function f for which

f@) = =1 O=x<8
@ {f(x) =1 (¢<x=1).

Mr. C. would discover that f is defined for each x in R* for which0 = x £ 1,
and hence he would say that it is defined over the interval 0 £ x < 1. He could
prove that f is continuous at each x in R* for which 0 < x < 1. He would
therefore say that it is continuous over the interval 0 < x < 1. He could prove
that f'(x) = O for each x in R* for which 0 < x < 1. So far there is nothing
wrong, but there will be something wrong if Mr. C. tries to tell us that f'(x) = 0
when 0 < x < 1 and hkence “it is obvious” or “it can be shown’ that there must
be a constant % such that f(x) = # when 0 < x < 1. In fact, a look at the for-
mulas (1) defining f shows that there is no constant % such that f(x) = 2 when
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0 < x < 1. Itis now time to seek the moral of this story. If we are not sure
whether the set of numbers we use in our analytic geometry and calculus is the
complete set of real numbers for which the Dedekind postulate is valid, then we
cannot be sure about the validity of the ideas that we need to enable us to do
our chores. It is, therefore, not enough to know the axioms usually given in
one way or another in elementary arithmetic and algebra and “finite mathe-
matics.” We need, in addition, the Dedekind axiom or an equivalent axiom
which guarantees that we are using the complete class of real numbers in our
work. We now come to the problem. Tell whether it is necessary to use the
Dedekind axiom (or, what amounts to the same thing, to use consequences of the
Dedekind axiom or an equivalent axiom) in order to (a) prove the Rolle theorem
5.51, (b) prove the intermediate-value theorem 5.48, (c) define the area of a
rectangle to be the product of its dimensions, (d) define the derivative of a given

function f, (¢) prove existence of _/’1 2 (1/x) dx.

5.7 Darboux sums and Riemann integrals This section can be
omitted from this course without damaging understanding of the rest of
the book. There can, however, be no doubt that students with serious
interest in pure mathematics should master it and that everyone else
should read it. The section gives substantial information about a stand-
ard way of attacking matters relating to existence of Riemann integrals.
Let f be defined and bounded over an interval ¢ £ x £ b so that, for some
constants 7 and M, we have

(5.71) msflx) = M (@a==x=0).

As in our definition of Riemann sums, let P be a partition such as the one
shown in Figure 5.711 and, for each £, let x} be selected such that _; <

xf x3 x} x3
o—1l A Pl o—I o

=T O 2s

a=xy x A X, % x

Figure 5.711

x}f < x. Let Axg =x;—xk_1. Foreach k=1,2, - -, n, let

(5.712) my = glb. f(x), Mp= lub. f(x)

Zik) ST STk Ze1 ST STk

so that m; and M, are respectively the greatest lower bound and the least

upper bound of f over the interval xz_1 < ¥ < x,. The numbers UDS(P)
and LDS(P) defined by

(572)  LDS(P) = 3 miAm, UDS(P) = 3 Myam

k=1 k=1

are called the lower and upper Darboux (1842~1917) sums determined by
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0

|

|

|

|

d y ] D

a=x x % X  x3=b
Figure 5.721

P. Figure 5.721 is available for inspection. For each choice of the
points xf we have m; < f(x¥) < M; and hence

(5.722) LDS(P) = z f(x¥) Az, < UDS(P).

E=1
Therefore, for a given partition P, the different Riemann sums that can be
formed by making different choices of the points x} are all sandwiched
between the lower and upper Darboux sums. Information about
Riemann sums can therefore be gleaned from information about Darboux
sums.

The first step in our study of Darboux sums may seem to be a very
modest one. Let P be a given partition, and let P’ be a simple extension
of P. By this we mean that P’ is exactly the same as P except that P’
contains one additional partition point, say X, which lies between two of
the partition points of P, say x2 < X < x;3. The inequality
[ lub J@IX — x2) +[ Lub. f(x)](x; — X)

z2Sx < Sz<z3

<[ Lub. f(x)](X —x2) + [ Lub. f(@))(xs — X) = Ms Axs

T2 Sz <xT3 T2 ST E723

implies that UDS(P’) < UDS(P). Figure 5.721 is not needed in the
proof of the inequality but may nevertheless be helpful. Consideration
of simple extensions of simple extensions of P leads to the conclusion that
if P’ is any extension of P (so that P’ contains all of the partition points of
P and perhaps also some additional ones), then UDS(P") = UDS(P).
An analogous argument, in which greatest lower bounds appear and the
inequality signs are reversed, shows that if P’ is an extension of P, then
LDS(P') = LDS(P). Suppose now that P; and P, are two given parti-
tions, and let P; be an extension of both Py and P,. Then

(5.723) LDS(P;) = LDS(P;) = UDS(P;) < UDS(P3)

and hence

(5.724) LDS(P,) = UDS(Py).
This is a key result of the theory. Let the symbols in

(5.73) L=['fwdr U= 7 5
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denote, respectively, the least upper bound of all lower Darboux sums
and the greatest lower bound of all upper Darboux sums. These num-
bers are, respectively, the lower and upper Darboux integrals of f over the
interval ¢ £ x < b. It follows from (5.73) that, for each partition P,,
L < UDS(P»), and it follows in turn from this that L £ U. Thus

(5.731) LDS(P) =L = U = UDS(P)

for each partition P.

There are bounded functions f for which L < U. For example, let
a =0,leth = 1, and let f(x) = O when x is irrational and f(x) = 1 when
x is rational. The LDS(P) = 0 and UDS(P) = 1 for each P and there-
fore L =0and U = 1.

It can be proved that LDS(P) is near L and UDS(P) is near U whenever
|P| (the norm of P) is small. This result, which is sometimes called the
Darboux theorem, means that to each ¢ > 0 there corresponds a § > 0
such that

(5.74) [ILDS(P) — L} < ¢, [UDS(P) — Ul < e

whenever |P| < 8. This and (5.731) imply that, when |P| < 3§, the
numbers LDS(P) and UDS(P) are respectively located in the left and
right intervals of Figure 5.741 when L < U and of Figure 5.742 when

{-LDS(P) ',-UDS(P) (LDS(P) (UDS(P)
—I—+"° O—+ } " —+—1
L-¢ L u U+e I-¢ I I+e
Figure 5.741 Figure 5.742

L =U =1 Consider first the case in which L < U. Since each
Darboux sum can be approximated as closely as we please by a Riemann
sum having the same partition points, it follows that there exist Riemann
sums with norm |P| < & which differ from L by less than e and that there
also exist Riemann sums with norm |P| < § which differ from U by less
than e. It follows that if L < U, then f cannot be Riemann integrable
overa < x S b.
Consider next the case in which L = U = I. 1In this case

(5.743) I —e<LDS(P) =RS(P) =UDS(P) < I+ e

whenever RS(P) is a Riemann sum formed for a partition P for which
|P| < 8. Therefore,

(5.744) [ @ ax =1,

the integral being a Riemann integral.
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All this gives the following theorem which involves the numbers L and
U defined in the sentence containing (5.73).

Theorem 5.75 If f is defined and bounded over a < x < b, then fis
Riemann integrable over a < x £ b if and only if L= U Moreover,
(5.744) holds when L=U-=1

This theorem and (5.731) imply the following useful theorem.

Theorem 5.751 A function f is Riemann integrable over a < x < b if
and only if to each ¢ > O there corresponds a partition P such that

(5.752) UDS(P) —~ LDS(P) < «.

The above story provides ideas and results that are used in proofs of
the fundamental theorem (Theorem 4.26) on existence of Riemann
integrals. We shall use Theorem 5.751 to prove some less pretentious
theorems.

Theorem 5.76 If f is defined and monotone increasing (or monotone

. . . b .
decreasing) over a < x = b, then the Riemann integral /; f(x) dx exists.

Let e > 0. Suppose first that f is monotone increasing so that f(x') <
f(x") when a £ &’ < x” < b. Let P be a partition of 2 £ x £ & with
partition points %o, #1, * * * , #» as in Figure 5.711. Then

(5.761) UDS(P) — LDS(P) = E [ Lub. f(x) — glb. f(x)]Ax:

km1 ZTk-1 ST STk Tkt ST STk

3 [fm) — fedl Axe S 3 () — fGa P

k=1 k=1

(1) — f(IP| < e

provided |P| is sufficiently small. This and Theorem 5.751 establish
the result for the case in which f is monotone increasing. In case f
is monotone decreasing, the proof is exactly the same except that [f(xz) —
f(xr-1)] is replaced by [f(xr—1) — f(x)] and [f(b) — f(a)] is replaced by
[f(a) — f(B)]-

It is easy to extend Theorem 5.76 to obtain a better theorem. A func-
tion f is said to be bounded and piecewise monotone over the closed
interval 2 £ x < b if there is a constant M for which |f(x)| £ M when
a £ x = b and if there is a partition P of the interval ¢ £ x < b such
that, whenever x;_; and x, are two consecutive partition points, f is
monotone (maybe monotone increasing, maybe monotone decreasing)
over the open interval x;_; < x < .

Theorem 5.762 If f is bounded and piecewise monotone over a < x = b,

then the Riemann integral /a ’ f(x) dx exists.}

1 It is sometimes said that this theorem is a poor-man’s version of a stronger theorem
which says that f is integrable over 2 £ x < & if f has bounded variation over 2 < x < &.
Problem 10 at the end of this section provides opportunities to rise above poverty.
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Similarly, we apply the fundamental Theorem 5.731 to prove Riemanp
integrability of continuous functions and piecewise continuous functions.

Theorem 5.77 If f is continuous over a < x < b, then the Riemann
integral L ’ f(x) dx exists.

To prove this, let € > 0. Theorem 5.58 then enables us to choose 3
positive number & such that |[f(xs) — f(x1)| < ¢/(b — a) whenever
a<x=b,asx =b and |xs — x1] < 5. Let P be a partition of the

interval ¢ £ x £ b for which |P| < 8. Then, with the notation of
(5.712) and (5 72), we have My — my; < ¢/(b — a) and hence

= €.

n
(5.771) UDS(P) — LDS(P) = ¥ 7 -
E=1
The required conclusion then follows from Theorem 5.751.
A function f is said to be piecewise continuous over the closed interval
a = x < bifitis defined over 2 £ x £ b and if there is a partition P of
the interval ¢ £ x < b such that, whenever x;_; and xx are two con-
secutive partition points, f is continuous over the open interval x;_; <
x < xr and, in addition, the unilateral limits
lim  f(x), lim  f(x)
2Tkt TzE”
both exist. On account of the fact that functions that are piecewise
continuous over a closed interval must be bounded, it is not difficult to
use Theorem 5.77 to prove the following more general theorem.
Theorem 5.772 If f is piecewise continuous over a < x =< b, then the
Riemann integral exists.
Finally, we use ideas and notation of this section to prove the following
theorem.
Theorem 5.78 If f is Riemann integrable over the interval a < x S b
and f(x) Z 0O when a < x < b, then the set S of points (x,y) for which
a=x=50= y = f(x) possesses an area

o S| and |S] = f f() dx.
],‘,,{: [~ The proof depends upon the funda-
s R, mental definition of area given in Defini-
tion 4.44. Choose a constant M such
e Tr-1 Ty b ¥ that f(x) < M — 1 and observe that S is
Figure 5.781 a subset of the large rectangle R of Figure

5.781. Lete>0Oandlet0 <€ <e Let
the number |S| be defined by the formula |§| = _L ’ f(x) dx. To prove

the theorem, we shall show that |S| is in fact the area of S. Let P be a
partition for which

(5.782) Ef(;:‘) Az, < |S| + ¢, 2 fa) Az S — ¢
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whenever ;-1 = xf < x for each k. Defining My, and m, by (5.712), we

conclude that
678 L MibmSISI+d, Y mdnz S -,
= -]

Let R; and Ry, be, for each £, the rectangles (meaning rectangular regions)
consisting of points (x,y) for which x_; S x S a4, 0 <y £ My and
a1 S & < xp, iy £y S M. The two formulas (5.783) then give

n n

(5.784) k; IRl < IS| + ¢, k; IR < |R| — |S| + e

1f P(x,y) lies in S, then there is at least one k for which xx_; £ ¥ < x: and
hence 0 £ y < f(x) £ My, so P is a point of at least one rectangle R.
Similarly, if P(x,y) is a point of the set §’ consisting of the points in R but
not in S, then there is at least one % for which x;_; £ # < x and hence
me < f(x) £ M, so P is a point of at least one rectangle R;. It is there-
fore a consequence of Definition 4.4 that the set S does possess an area
and that its area is |S|. This completes the proof of Theorem 5.78.

Problems 5.79

1 Sketch a dozen graphs that look like graphs of functions f that are bounded
and piecewise monotone over the interval 0 £ x £ 1. Be sure to include graphs
of some discontinuous functions and of some nonmonotone functions.

2 Sketch a figure which is like Figure 5.721 except that the partition P con-
tains 10 or 20 partition points that are roughly equally spaced. Then look at
your figure and see how LDS(P) and UDS(P) are related.

3 Sketch a figure which shows the geometric meanings in the statement and
proof of Theorem 5.76.

4 As was remarked, Archimedes (287-212 B.c.) knew about some special
Riemann sums, and this matter may be worthy of brief consideration here.
When f is defined over rational values of x in the interval 0 £ x £ 1, we can
make a partition of the interval 0 < x < 1 into n equal subintervals of length
1/n by partition points x; for which x, = £/n and form the special Riemann sum

4=3 ()

which we can call an Archimedes sum. Without implying that Archimedes used
modern terminology involving sums, limits, and integrals, we can recognize that
there is historical evidence that we are merely putting ideas of Archimedes into
modern terminology when we say that f is Archimedes integrable over the interval
0 = x <1 and that f has the Archimedes integral I if 4, — I as n — ». Now
comes the problem. Supposing that f(x) = 0 when x is irrational and f(x) =1
when « is rational, show that if the symbol

[, 1) e
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represents an Archimedes integral, then the integral exists and has the value 1,
but that if the symbol represents a Riemann integral, then the integral does not
exist.

5 For each » =3, 4, 5, - - - the broken line joining in order the points

(0,0) (1/2,n), (2/2,0), (1,0) is the graph of a function f, defined over the interval
0 <x =1 Prove that

0 im [ A =1, [T lim (2] dx = 0.

n—w

Hint: Observe that f,(0) = O for each » = 3 and hence lim f,(0) =0. If0<

n—>r o

x £ 1, then fa(x) = Owhen 2/n < x, and hence when n > 2/x, so again lim f,(x)
n— o

= 0. Remark: Persons who push very far into the theory of Fourier series learn
that if

M 2
@ Fu(w) = = (4L2) =123 )
then
/2 /2 .
@) lim ﬁ, Fawde=1, [ [lim RG] de = 0.
n—w n—w

While consideration of the matter can be postponed, our course in analytic
geometry and calculus should be leading us toward abilities to sketch a graph
of F, and to appreciate the fact that the two formulas in (3) can be valid.

6 This problem invites investment of time in a speculative venture. It was
proved in Section 4.3 that the formula

) [P ax = F) | = P - Fa)

is valid whenever F has a continuous derivative over the interval ¢ < x < b.
It was proved in Problem 18 of Problems 5.59 that (1) is valid whenever F’
exists and is Riemann integrable over the interval 2 < x < 5. Even though
nobody requires us to learn everything, we may sometime be benefited by knowl-
edge that there is a function F for which (i) F’(x) exists when —1 < x <1 and
(i) F’ is not continuous but is Riemann integrable over —1 < x < 1. Let F
be defined by the formulas F(0) = 0 and

= —xtcosi4 [7 1
2 F(x) % cosx+];) 2t cos tdt (x = 0).

That F'(0) = O can be proved by using the inequality
(3) F (x) —F (0)

x—0

1

X COS —
x

=

+

l/’pz[ dt’ < 2+
xJo
and the sandwich theorem. When x # 0, differentiating (2) gives

®) F(z) = sin-}‘ ( #0).
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Thus F'(x) exists when —1 < x < 1. Asx approaches 0, F/(x) oscillates between
—1 and 1 and does not have a limit, so F’ is not continuous at the place where
x =0. However, F' is Riemann integrable over the interval —1 < x < 1
because F'(x) exists and is bounded over the interval and is continuous except
at one place. Thus our function F has the required properties. We could have
used the formula

) F(x) = /0 z sinltdt

instead of (2) to define F. It would then have been slightly easier to obtain (4)
but would not have been so easy to show that F/(0) = 0. There is a reason why
no simpler example can be given. Derivatives must have the intermediate-
value property, and no discontinuous function having the intermediate-value
property is simpler than the function ¢ for which ¢(0) = 0 and ¢(x) = sin (1/x)
when x 5 0.

7 If the unique individual that some textbooks like to call “the student’’
is unable to prove that each polynomial is bounded and piecewise monotone
over each interval 2 = x < b, there are only three possible places to place the
blame. Is it the student? Is it the textbook? Is it the problem?

8 We have, at one time and another, seen examples of faulty applications of
the noble but frequently invalid premise that a thing T must be an element of a
set S if T is the limit of a sequence of elements of S. One old example involves
the “idea” that a circle must be a polygon because it is the limit of polygons.
Another old example involves the “idea” that a Riemann integral must be the
sum of infinitely many things because it is the limit of sums. Should we swallow
the “idea’” that an irrational number must be a rational number because it is the
limit of rational numbers? Ans.: No.

9 We have the possibility of extending our intellectual horizons by investing
a few minutes or a few years in study of algebras which differ from the algebra
of real numbers. The algebra of rational functions invites us to consolidate old
ideas and capture new ones. When aq, a5, - - -, an and b, by, * * * , by are
constants for which the b’s are not all zero, the two polynomials P and Q for which

P(x)=ﬂo+alx+'°'+a,,.x”‘, Q) = bo+bix + * * * + bpx"

determine the rational function f for which f(x) = P(x)/Q(x) for those values
of # for which Q(x) £ 0. The sum f + g of two rational functions is the rational
function % for which k(%) = f(x) + g(x) for each x for which the sum is defined.
If cis a constant and f is a rational function, then ¢f is the rational function having
values ¢f(x). If f and g are rational functions, then fg is the rational function
having values f(x)g(x) and [unless g(x) = O for each x] f/g is the rational function
having values f(x)/g(x) when g(x) % 0. Textbooks in modern algebra call atten-
tion to many respects in which the algebra of rational functions is like the algebra
of real numbers. Terminologies involving rings, fields, and groups facilitate dis-
cussions of these matters. Nontrivial interest in the algebra of rational functions
starts to develop when order relations are introduced in a particular special way.
We say that f < g and g > f if there is a number #, such that f(x) < g(x) and
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g(x) > f(x) for each x for which x > xo. Progress with the theory depends upon
the basic fact that if f and g are rational functions, then f(x) = g(x) for each «
or there is a number x, such that f(x) < g(x) when x > x¢ or there is a number
%o such that f(x) > g(x) when x > x. This basic fact depends upon the fact
that if % is a rational function, then either A(x) = O for each x or there is a number
%o such that A(x) is continuous and positive or continuous and negative when
x > x,. It follows that if f and g are rational functions, then one and only one
of the three relations f < g, f = g, f > gis valid. Thus the set of rational func-
tions is, like the set of real numbers, now an ordered field. Let fo, the zero function,
be the rational function for which fo(x) = O for each x. Our algebra of rational
functions is said to have the Archimedes property (or to be Archimedian) if to
each pair of functions f and g for which f > fo and g > fo there corresponds an
integer n for which nf > g. This is of interest to us because we have proved,
with the aid of the Dedekind axiom, that the algebra of real numbers is Archi-
median. It could be presumed that the algebra of rational functions is so much
like the algebra of real numbers that the algebra of rational functions must be
Archimedian. However, the presumption is false, the algebra of rational func-
tions is not Archimedian. To prove this, let f and g be the rational functions
for which f(¥) = x and g(x) = x2 Careful applications of our definitions then
imply that f > fo, g > fo, and nf < g for each integer n. Thus our algebra of
rational functions is not Archimedian. When all matters which we have dis-
cussed are thoroughly understood, it becomes clear that the Archimedian prop-
erty of the algebra of real numbers is not a consequence of those properties of real
numbers that are ordinarily stated in elementary arithmetic and algebra. Alge-
bra books that give adequate treatments of matters relating to order relations,
bounds, limits, Dedekind partitions, and Archimedes properties are said to be
modern. We have seen some of the reasons why knowledge of modern algebra
is considered to be an essential part of a mathematical education.

10 While consideration of the matter is usually reserved for more advanced
courses, we have enough equipment to understand, and perhaps even prove,
basic facts involving functions of bounded variation. Let f(t) be defined over
a<t=<bandleta<x=b Supposing fsuch that T(x) exists (is finite) we
define numbers T'(x), P(x), and N(x) by the formulas

) Lub. 3, 1£6) = flad] = TG

@ Lu.b. {1/ — fte-)] + () — fe-1)]} = P(x)

1 n
1,
1 n
3) thggmm—mHn—mw—mHm=Nw.

In each case, the least upper bound is the least upper bound of sums obtained for
partitions P of the interval 2 £ ¢ < x. The function f is said to have bounded
variation (the term finite variation would be better) over the interval a £ ¢t < b.
Let T(a) = P(a) = N(a) = 0. The numbers T(x), P(x), and N(x) are, respec-
tively, the total variation, the positive variation, and the negative variation of f over
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the interval @ £ ¢t = x. Prove that T'(x), P(x), N(x) are all nonnegative and
monotone increasing over ¢ £ x < b. Prove that

@) T(x) = 2P(x) — [f(x) — f(a)]

®) T(x) = 2N(x) + [f(x) — f(a)]

(6) T(x) = P(x) + N(x)

) f@&) = f(a) + P(x) — N(x)

(8) f&) =[x + f(a) + P(x)] — [x + N(x)]

whena £ x £ b. Useourinformation to prove that if f(x) has bounded variation
over 2 £ x £ b [which means that 7'() is finite], then f(x) is the difference of two
increasing functions. Prove that if f(x) is the difference of two increasing func-
tions over a = x = b, then f(x) has bounded variation over ¢ £ x £ b. Hint:
To obtain (4), note that (2) contains a telescopic sum and put (2) in the form

o Lub. {5 2 176 - el + L2 SE) _ gy,

k=1

Remark: Our results and Theorem 5.76 imply that the Riemann integral f ’ f(x) dx
a

exists if f has bounded variationovera = x £ b. Moreover, we now have enough
information to appreciate the most important theorem in the theory of Riemann-
Stieltjes integrals; see Problem 11 of Problems 4.89. The theorem says that

10 [ 16 g

exists if f is continuous and g has bounded variation over 2 £ x < 5. Methods
of this section provide proof for the case in which f is continuous and g is increas-
ing, and the general result is then obtained by expressing g as the difference of
increasing functions. A much more difficult theorem says that if g is such that
(10) exists whenever f is continuous over 2 < x =< b, then g must have bounded
variation over a = x < b.



6 Cones

and conics

6.1 Parabolas Before plunging into the general aspects of this
chapter, we obtain more information about the parabolas that were
introduced in Section 1.4. Being realistic, we face some facts. We
remember that, for some strange reason, the graph of y = kx? is, when
k > 0, a parabola, but details involving the focus and directrix of this
parabola may have been quite thoroughly forgotten. We try to recall,
and henceforth remember, that the parabola has a focus F and a directrix
as in Fjgre 6.1_1 and that the parabola is the set of points P(x,y) for
which |FP| = |DP|. We have forgotten how the coordinates of F and the
equation of the directrix are related to %, and we may forget again, so we
should know how to discover the facts. To put a little variety into our
lives, we use the symbol “?” to represent the unknown distance from the
origin to F and from the origin to the directrix. Now we make the key
observation. The points on the horizontal line through F all lie at dis-
tance (2?) from the directrix. Hence the point (2?,?) which lies (27)

units to the right of F must lie on the parabola. The coordinates of this
354
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point must therefore satisfy the equation of the parabola,so ? = £(27)% and
? = 1/4k. The coordinates of F are therefore (0, 1/4£), and the equation

of the directrixisy = —1/4k. The square of Figure 6 11 having a vertex
y
y=he'~
P(x,5)

0 J x

Directrix —

So

Figure 6.11

atF and two vertices on the directrix is called a focal square of the parabola.
Another focal square lies to the left of the one in the figure. A figure
which shows a parabola together with its focus and directrix is imperfect
unless the parabola contains a vertex of each focal square.

The y axis, being an axis of symmetry and the only one, is called the
axis of the parabola. The point in which the parabola intersects its axis
is called the vertex of the parabola. More definitions will appear in the
problems. While parabolas have important applications in which foci
(plural of focus) and directrices (plural of directrix) never appear, most of
the problems involve situations in which they do appear.

Since preliminary ideas can be very valuable, we look briefly at Figure
6.12. The figure gives six views of the intersection of a cone and a plane

Figure 6.12

The cone is a right circular conical surface a part of which resembles a
conical paper cup or ice-cream cone. The vertex 7 and the axis of the
cone are in the plane of the paper. The intersecting plane is parallel to
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a line on the cone. The intersection is a curve of which a part (the solid
part) lies on the front half of the cone and a part (the dotted part) lies on
the back half of the cone. Our present requirement is exceedingly
modest. All we are required to do is grasp the idea that the curve looks
like a parabola. Our solid information about this matter will come in the
next section. Meanwhile, persons with artistic flairs can find useful
entertainment in sketching sections of cones made by planes not parallel
to lines on the cones.

Problems 6.19

1 Sketch a graph showing the parabola whose equation is y = x? together
with the focus and directrix of the parabola. Draw the focal squares and make
any repairs that may be necessary to make the parabola contain corners of the
focal squares. Prove that the tangents to the parabola at the latter corners
are diagonals of the focal squares, and make any additional repairs that may be
necessary.

2 Problems of this section deal quite exclusively with parabolas placed
upon coordinate systems in such a way that their equations have the standard
form y = kx? where k is a positive constant. We can, however, pause briefly
to note that the equation

(1) Y = Yo = k(x — x0)?

is the equation of a parabola having its vertex at the point (xo,50). Supposing
that a, b, ¢ are constants for which @ # 0, show that the graph of the equation

2) y=ax*+bx + ¢
is a parabola and find the coordinates of its vertex. Solution: From (2) we obtain
3) y=a(x'-’+-b-x )+c

Il

(x’-l- x+4a2)+c
(x+2‘,) +4at—62

and hence
4ac b\?
) y+ 5T (a4 L)

Thus the graph of (2) is a parabola having its vertex at the point (— -ibz’
- b—ji-t) Remark: In case a > 0, the equation (4) has the form (1), where

£ > 0 and the graph “opens upward” like the graph of y = kx?. In case a < 0,
(4) has the form

) Y — o = —k(x — x0)%
where £ > 0 and the graph “opens downward” like the graph of y = —kx%



6.1 Parabolas 357

These matters are important because equations of the form (2) appear very often,
but for basic studies of parabolas we use the standard form y = kx?, where £ > 0.

3 Show that the tangent to the graph of the equation y = kx? at the point
Pl(xl,kx1) has the equation

y — kxt = 2kxy(x — %1) or y = kx1(2x — x)).

Show that this tangent intersects the y axis, the x axis, and the directrix at the

points
40, ~k, B(30) ¢ (3 - oo - 1)

provided, for the last point, x; 0. Sketch a figure in which the parabola, the
tangent, and the points 4, B, C all appear.

4 Show that the normal to the graph of the equation y = kx? at the point
Pi(x1,kx3) has, when x; = 0, the equation

2 1
Y —kxy = — — (x — x1
2kxy )-
Show that this normal intersects the y axis, the x axis, and the directrix at the
points

(o, '217e + ), BrGa+2kab0), Y 3"‘ + 28%, — _1£
Sketch a figure showing all of these things.

5 Two points (¥),y1) and (xs,ys) lie on the parabola having the equation
y = kx% Prove that the coordinates of the intersection R of the y axis and the
line through these points can be put in the form
(0, — kx1x5). TFigure 6.191 illustrates results of
this and the next two problems, but the figures
look quite different when x; and x2 have opposite
signs.

6 Two points (x1,y1) and (x2y2) lie on the
parabola having the equation y = kx2. Prove Q
that the coordinates of the intersection of the
tangents to the parabola at these points can be N\
put in the form

y
Py

Py

(x_;;—_xg’ kx1xz). } B

7 Show that the results of the two preceding
problems yield the following the