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Preface

There is an element of truth in the old saying that the Euler textbook
Introductio in 4nalysin Infinitorum (Lausannae, 1748) was the first great
calculus textbook, and that all elementary calculus textbooks published
since that time have been copied from Euler or have been copied from
books that were copied from Euler. Euler, the greatest mathematician
of his day and in many respects the greatest mathematician of all time,
held sway when, except where the geometry of Euclid was involved, it
was not the fashion to try to base mathematical work upon accurately
formulated basic concepts. Problems were the important things, and
meaningful formulations of axioms, postulates, definitions, hypotheses,
conclusions, and theorems either were not written or played minor roles.

Through most of the first half of the twentieth century, elementary
textbooks in our subject taught unexplained but "well motivated" intui-
tive ideas along with their problems. Enthusiasm for this approach to
calculus waned when it was realized that students were not nourished by
stews in which problems, motivations, fuzzy definitions, and fuzzy theo-
rems all boiled together while something approached something else with-
out ever quite getting there. About the middle of the twentieth century,
precise formulations of basic concepts began to occupy minor but increas-
ingly important roles.

So far as calculus is concerned, this book attaches primary importance
to basic concepts. These concepts comprise the solid foundation upon
which advanced as well as elementary applications of calculus are based.
Applications, including those that have great historical interest, occupy
secondary roles. With this shift in our emphasis, we can remove the
mystery from old mathematics and learn modern mathematics when we
sometimes spend a day or two studying basic concepts and attaining
mastery of ideas, language, and notation that are used. The mathe-
matical counterparts of hydrogen and electrons are important, and we
study them before trying to construct the mathematical counterparts of
carbohydrates and television receivers.

This book contains just 76 sections, of which only a half dozen can be
omitted without destroying the continuity of the course. In a three-
term course meeting thrice weekly for fifteen weeks each term, times for
reviews, tests, and occasional excursions remain when two sections are
covered each week.

With few or no exceptions, each section presents each student an oppor-
tunity to make a thoroughly sound investment of time that will pay divi-
dends in personal satisfaction, intellectual enlightenment, and scientific
power. The material of the section is guaranteed to be worthy of study,
it being stoutly maintained that nobody should study inept material.
Each student is expected to read the text and problems of each section
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vi Preface

as carefully as an alert physicist reads an account of a newly developed
nuclear reaction, and to learn as much as he can. In most cases a reason-
able investment of time can produce satisfactory understanding of the
text as well as solutions of several of the problems at the end of the sec-
tion. Thus average students can make satisfactory progress. In some
cases it is an almost superhuman task to digest all of the problems and
remarks at the end of a section before additional mathematics has been
studied. Thus superior students have ample opportunities to acquire
large amounts of additional information and skill.

To a considerable extent, this book is a book about mathematics as
well as a mathematics textbook that teaches formulas and procedures.
The historical and philosophical aspects of our subject are not neglected.
The text, problems, and remarks frequently give students quite unusual
opportunities and incentives to think and to become genuine authorities
on developments of ideas, terminologies, notations, and theories. The
book strives to produce thoughtful articulate and perhaps even some-
what sophisticated students who will find that their course in calculus
gives them admirable preparation for intellectual pursuits. It is fre-
quently said that calculus textbooks contain so little of the spirit and con-
tent of modern mathematics that they do not enable students to decide
whether they have the interests and the aptitudes required for life-long
careers in pure mathematics or in another science in which mathematics
plays a major role. Hopefully, this book does.

The first third of the book contains all or nearly all of the information
about analytic geometry, vectors, and calculus that students normally
need in their introductory full-year college and university courses in
physics. One distinguishing feature of the book is the early introduc-
tion and continued use of vectors in three-dimensional space. These vec-
tors simplify, clarify, and modernize our mathematics and, at the same
time, make our course more interesting to teachers and vastly more inter-
esting and immediately useful to students. Modern meaningful defi-
nitions and terminologies of the calculus are used, but we retain and
explain the standard notations so students can be prepared to live in the
parts of the world outside their own calculus classrooms.

The logical structure of the book should be explained. We make no
effort to tell what points, lines, and planes are; we suppose that they
exist, and use the axioms of the geometry of Euclid. Similarly we make
no effort to tell what real numbers are; we suppose that the things exist
and use the axioms that govern operations involving them. The book
is based upon these axioms. If a theorem fails to have enough hypotheses
to imply the conclusion, it is a blunder. If an assertion or definition is
meaningless, it is a blunder. If an argument purported to be a proof or
a derivation has a flaw, it is a blunder. If we pretend to prove a formula
for something that has not been defined, this is a blunder. Being
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"rigorous" means, in mathematics, being free from blunders. "Giving
all the rigor that a student can appreciate" means avoiding all the blun-
ders that the student can detect. The author will not say that this book
is rigorous because minor errors are inevitable and major blunders are
possible, but he will say that he has tried to be rigorous. Thus students
can be and should be invited to be critical. Detection of a blunder should
be a major accomplishment.

The author will be delighted if students discover everything that is
bad in the book and everything that is good in mathematics. Teachers
need not and perhaps should not give as much attention to the theoretical
aspects of the subject as the text does. Because the text contains many
of those comments and explanations that teachers are normally called
upon to supply as answers to questions, teachers are enabled to devote
more of their attention to problems. Problems and applications are
important and, particularly when tests and examinations consist almost
exclusively of problems, major emphasis must be placed upon the prob-
lems. We will be unfair to our students if we behave like the president
of a construction company who trains an employee to be an architect
and then discharges him because he fails to lay bricks properly.

Ralph Palmer Agnew
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1
Analytic geometry
in two dimensions

1.1 Real numbers Without undertaking an exhaustive exposition of
the subject, this preliminary section presents fundamental ideas about
arithmetic, geometry, and algebra that are used throughout the book.
While much of the material will be familiar, students are expected to read
everything (including the problems) to assimilate information and points
of view required for comprehension of later sections of the book. The
rules of our game must be unmistakably clear at all times. We read
everything, and we work some of the problems.

The numbers with which we are most familiar are the positive real
numbers. These are the numbers, such as 1, 1, 2, 7r, 416, etcetera,
that represent weights of material objects, distances between towns,
etcetera. The negative real numbers are the negatives of these, examples
being --, -1, and - N/12. These positive and negative real numbers,
together with 0, which is neither positive nor negative, constitute the set

I



2 Analytic geometry in two dimensions

of real numbers or the real-number system. Except where explicit state-
ments to the contrary are made, the word number in this book always
means real number. It is assumed that we are all familiar with the idea
that numbers can be represented or approximated in decimal form. The
equality -- = 0.5 and the approximation

(1.11) it = 3.14159 26535 89793

must not frighten us. Searching questions about the possibility of
"representing" 9r and other numbers by "infinite decimals" can be post-
poned. Our decimal system was devised by Hindus and was carried to
Europe by Arabs in the twelfth century and earlier, but it took a few
centuries to convince Europeans that they should and could teach the
system to all of their children.

I

-4 -3 -2 -1 0 1 2 3 4 X

Figure 1.12

With each number x we associate a point on a line as in Figure 1.12.
The line is called the real line or the x axis, and the point associated with
0 (zero) is called the origin 0 (oh). If x is positive, say 2, the point
associated with x lies x, say 2, units to the right of the origin. If x is
negative, say -3, the point lies -x, say 3, units to the left of the origin.
This correspondence between numbers and points is one to one; that is,
to each number there corresponds exactly one point and to each point
there corresponds exactly one number. The number is called the coordi-
nate of the point. While points and numbers are entities of different
kinds, we sometimes find convenience in abbreviating our language by
using "the point x" to mean "the point having coordinate x." The part
of the x axis upon which positive numbers are plotted, or located, is called
the positive x axis.

The statement a = b is read "a equals b" or "a is equal to b." Simi-
larly, the statement "a 0 b" is read "a is not equal to b" or "a is different
from b." Thus the statements 2 = 2 and 2 ; 3 are true. The state-
ments 2 P6 2 and 2 = 3 are false.

When two numbers a and b are so related that the point corresponding
to a lies to the left of the point corresponding to b

d
b x

as in Figure 1.13, we say that a is less than b and
write a < b. In this case we say also that b is

Figure 1.13 greater than a and write b > a. For example,
2 < 6, -3 < 1, and -4 < -2. This terminology

agrees with common usage when temperatures are being compared; we
say that a temperature -3° is less, or lower, than a temperature P. The
inequality -2 < 0 means that -2 is less than 0 and that -2 is nega-
tive. The inequality 4 > 0 means that 4 is greater than 0 and that 4 is
positive. The statement that the weight w, measured in pounds, of a



1.1 Real numbers 3

horse is greater than 1990 and less than 2010 becomes

1990 < w < 2010.

This can be read "1990 is less than w is less than 2010." In this book,
Figure 1.12 precedes Figure 1.13 because 1.12 < 1.13, and both precede
Section 1.2 because 1.13 < 1.2; the decimal system governs the number-
ing of all items except those appearing in the lists of problems at the ends
of the sections. The basic idea that the number 1.131 or 1.135 can be
assigned to an item which appears between items numbered 1.13 and 1.14
is often used to bring order out of chaos and has hordes of valuable
applications. While facts of life are being considered and he still has his
full complement of readers, the author can extend his best wishes to the
canonical 20 per cent who will not complete this course. Those who
abandon their studies to work in the design department of a sport shirt
factory will be rewarded for commencement of their studies if they have
learned that items in their stocks can be identified by numbers in one
sequence and that numbers such as 416.35 and 416.351 can be assigned to
items that should be listed between 416.3 and 416.4. Numbers assigned
to items in books and factories are akin to numbers assigned to buildings
beside streets and to doors inside skyscrapers. In the best of circum-
stances, these numbers are assigned in an informative way, and they are
noticed and used when occasions arise. Persons who study Section 5.4
will be well aware that they are just getting started when they reach 5.41,
that they are about halfway through the text of the section when they
reach 5.45, and that they have reached the problems at the end of the
section when they reach 5.49.

The inequality a < b is read "a is less than or equal to b." The
inequalities 4 < 5 and 5 5; 5 are both true, but the inequality 6 S 5 is
false.

The absolute value of a number x is denoted by Ixl. It is equal to x
itself if x > 0; it is equal to 0 if x = 0; and it is equal to -x if x < 0.
Thus 171 = 7, 101 = 0, and 1-41 = 4. For each x we have Ixl >-- 0.

Moreover, Ixl = 0 if and only if x = 0. For each x we have either
Ixl = x or Ixl = -x, and since x2 and (-x)2 are equal it follows that
Ixl2 = x2.

With the aid of Figure 1.12, we acquire the idea that the distance
between the point with coordinate 1 and the point with coordinate 4 is 3.
The distance between the points with coordinates - 3 and 2 is seen to be
5, that is, 2 - (-3). By considering the different typical cases, we
reach the conclusion that the distancet between the two points with coordi-

t It is far from easy to formulate and use enough axioms involving the geometry of Euclid
and the set of real numbers to prove that the number lb - al is the distance between the
points having coordinates a and b. To place our ideas upon a rigorous base, we can do
what is usually done in more advanced mathematics: construct the foundations of ordinary
geometry and analysis in such a way that the number lb - al is defined to be the distance
between the two points having coordinates a and b.
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pates a and b is Ib - al, that is, b - a when b z a and a - b when b 5 a.
The fundamental fact that the distance from a to b is less than or equal to
the distance from a to 0 plus the distance from 0 to b is expressed by the
inequality

(1.14) la - bI 5 Ial + IbI.

Replacing b by -b in this inequality gives the inequality

(1.15) j a + bI s at + Ibi.

Problem 41 at the end of this section shows how this can be proved.
We learn in the arithmetic and algebra of real numbers that x2 = 0

when x = 0 and that x2 > 0 when x 5;,-' 0. If N is a positive number,
then there,ore two values of x for which x2 = N; the positive one of these
numbers by 1/N, and the negative one is denoted by - 1/N.
Thus 42 = 16, (-4)2 = 16, 16 = 4, and - = -4. Since
(-4)2 = 16 and 16 = 4, we see that

(1.16) 1/(-4)2= =4=I-4I.
This is a special case of the formula = Ixl, which holds for each real
number x. In particular, - = 0.

There are times when special properties of the number zero must be
taken into account. The facts that 0 + a = a and 0 for each
number a seem to be thoroughly understood by all arithmeticians, but
the role of zero in division may require comment here. It is a funda-
mental fact that we write x = b/a to represent the number x that satisfies
the equation ax = b, provided there is one and only one number x that
satisfies the equation. If a 0 0 and b = 0, then 0 is the one and only
number x that satisfies the equation and therefore

0=0
a

(a 54 0).

Thus 0/a = 0 provided a 0 0. If a = b = 0, then each number satisfies
the equation and therefore

0

6

is meaningless.

If a = 0 and b 0 0, then no number x satisfies the equation and therefore

b

6

is meaningless

when b 0 0. Thus we see that b/a is meaningless when a = 0, whether
b is 0 or not; division by zero is taboo. To look at the matter another
way, we observe that if a 0 0, then the equation ax = ay implies that
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x = y; but the equation 0.2 = 0.3 does not imply that 2 = 3. We must
always be suspicious of results obtained by division unless we know that
the divisor is not 0.

In order to pass literacy tests and to converse with our fellow men, it is
necessary to know that the numbers

(1.17) , -4, -3, -2, -1, 0, 1, 2, 3, 4,

are called integers. The numbers 1, 2, 3, - are the positive integers.
If m and n are integers and n 0 0, the solution of the equation nx = m is
written in the form m/n and is called a rational (ratio-nal) number. Each
integer m is a rational number because it is the solution of the equation
1x = m and is m/1. There is no greatest integer, because to each integer
n there corresponds the greater integer n + 1. Likewise, there is no
least integer, but 1 is the least positive integer. If e (epsilon) and a are
positive numbers, then there is a positive integer n for which ne > a; this
is the Archimedes property of numbers. Another basic fact which is
easier to comprehend than to prove is that if x is a number, then there is
an integer n for which n <- x < n + 1.

As we near the end of this introductory section, we call attention to
some additional terminology which is more important than beautiful
and to which we shall slowly become accustomed as we proceed. When
a < b, the set of points having coordinates x for which a <- x <- b is called
the closed interval of points (or numbers) from a to b. The points a and b
are end points of the closed interval, and they belong to (or are points of)
the closed interval. The set of points (or numbers) for which a < x < b
is called the open interval from a to b. The points a and b are still called
end points of the interval, but they do not belong to the open interval.
In each case, the number b - a is called the length of the interval. Thus
the length of an interval is the distance between its end points. When
a < b, the relations

b-a+b_b-a>0 a+b-a_b-a>0
2 2 2 2

imply that a < (a + b)/2 < b and that the point having the coordinate
(a + b)/2 lies between and is equidistant from the points having coordi-
nates a and b. This point is called the mid-point of the interval (open or
closed) having its end points at a and b. If b < a, the above inequalities
are reversed, but (a + b)/2 is still midway between a and b.

The following problems promote understanding of statements made by
use of inequality and absolute-value signs. For example, the inequality
148 < x < 152 says that the number x (which might be the weight of a
man) is greater than 148 and less than 152. This means that x differs
from 150 by a number with absolute value less than 2 and hence that
lx - 1501 < 2. It is just as easy to see that if Ix - 1501 < 2, then
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148 < x < 152. This is a special instance illustrating the fact that if
a and 8 (delta) are numbers for which a > 0, then the set of numbers x
for which a - 3 < x < a + S is the same (see Figure 1.18) as the set of

a-S a x a+S X

Figure 1.18

numbers x for which Ix - al < S. It is often convenient to allow 3, the
Greek d, to make us think of a distance. When S > 0, the set of points
(or numbers) x for which a - 5 < x < a + b or Ix - al < S is the set of
points (or numbers) x having distance from a which is less than the dis-
tance S. This set is an interval. A complete understanding of the nature
of the assertion Ix - al < 8 happens to be particularly important. There
will be times when we shall use e as well as 8. For example, Problem 42
of Problems 1.19 will invite attention to matters relating to the simple
but important fact that if x and a are numbers for which

(1.181) Ix-21 +Ix-31 <e,
then a cannot be 0.01.

Problems 1.19
Each of the following 40 statements is followed by a question mark, which

indicates that the statement may be true or may be false. By drawing appro-
priate figures or otherwise, determine which of the statements are true and which
are false. The answers (0 for false and 1 for true) arergiven at the end of the list
of statements. i
1 2<5? 2 -2>-3?' 3 7<7?D
4 7=7?! 5 7<-7?( 6 2<-5?
7 -2 5 -1?1 8 1-41 = 4? 9 1-31 < 2?

10 -5 = 5? 11 1-21 > 0? 12 jabi _ lalibi?

13 If p is the number of pages in this book, then 75 < p < 85?
14 If C is the circumference of a circle of radius r, then 6r < C < 6.3r?

(Remember that C = 27rr, where a = 3.14159-1-.)
15 Ifx = 5.4, then 29 <x2 < 30?
16 If x = 420, then 20<x<21?
17 Ifx=4,then2<x<9?
18 If 55x57,then 4;g x59?
19 If 55_x57,then 5 <x <7?
20 If5<x<7,then 5<_x;5 7?
21 Ifs 5x <7,then 5 <x <7?
22 Ifa<b,then jai <Ibl?
23 If-2<x<2, then0<x2<4?
24 If x2<4,then IxI5_2?
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25 Iflx-5l <2,then 3 <x<7?
26 If lx-2l <0.01,then 1x2-4l <0.0401?
27 If lx- 31 <1,then lx2-9l < 5?
28 If1 <x<2and1 <y<2,then lx-yI <1?
29 1(3.05)(3.06) - 91 < $?
30 There is no real number x such that x2 = -I?
31 If 0 < x < 1, then -1 < -x < 0?
32 Ifa<x<b,then-b<-x<-a?
33 If0<x<Iand0<y<1,then 0<x+y<1?
34 If 0 < x < 1, then 0 < 2x < 1 ?
35 If Ix - al 5 S, then Ix - al < S?
36 If Ix - al < 8,then Ix -al 5 S?t
37 If S = I and 0 < x < 1, then Ix2 - -11 < S?
38 If3= and 05x<1,then Ix2-1I<S?
39 Ifs = and0<x<1,then lx2--1I <S?
40 If S = - and 0 < x < 1, then ix2 -l 5 S?
Answers, 0 for false and 1 for true:

5 10 15 20 25 30 35 40

11011 01100 11011 11101 00011 10111 11000 10111

41 We learned while studying arithmetic and algebra that the product of
either two positive numbers or two negative numbers is positive, while the product
of a positive number and a negative number is negative. Supposing that x and y
are nonnegative, use the identity

(1) (Y - x)(Y + x) = Y2 - x2

to show that x 5 y if x2 S y2. Hence show that the inequality

(2) j a + bI < Iai + IbI

will be true if la + b12 < (lal + lb1)2 or

(3) (a + b)2 < a2 + 21allbl + b2.

Finally, show that (3) is true and hence that (2) is true.
42 Sketch several figures which lead to the conclusion that if x and e are num-

bers for which

(1) Ix-2I+Ix-3I<e,
then e > 1. Remark: Without using figures, we can prove the result by observing
that if (1) holds, then

1=I3-2I=I(x-2)-(x-3)I<Ix -2I+Ix -3l<e
and hence e > 1.

43 Using the ideas of the preceding problem, prove that if a, b, x, and a are
numbers for which

lx-al+Ix-bl<6,
then e > lb - al.
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44 Let h be positive and let X (lambda) be greater than 1. Observe that
Figure 1.191 shows the correct positions of six points having the coordinates

A 0 P1 B PO

-h 0 x-i h
+1h

Figure 1.191

a2+i
%2-1 h

P2

shown there when X = 2. Make a new figure which shows where Po, Pi, and P2
should be when X = 10. Make another new figure which shows where Po, P1,
and P2 should be when X = 191 .

45 Referring to Figure 1.191 and supposing that h > 0 and X > 1 as before,
show that Po is the mid-point of the line segment with end points at P1 and P2.

46 When an appropriate time comes, we shall prove that there is a positive
number, denoted by the symbol -\/2, whose square is 2. Everyone should know
that is not rational, and students possessing requisite time and acumen
should become familiar with a proof. We prove the fact by obtaining a con-
tradiction of the assumption that is rational and hence that is repre-
sentable in the form = m/n, where m and n are positive integers. We use
the fact that 28 = 22.7 and the more general fact that each positive integer n
is representable in the form n = 2qs, where q is a nonnegative integer and s is
one of the odd integers 1, 3, 5, 7, . If we suppose that = m/n, then

(1) 2 -
(M)2 2pr12 22pr2

n \2gs/ 22gs21

where p and q are nonnegative integers and r and s are odd integers. In case
q > p, (1) gives

(2) 21+25-2p52 = r2)

and this is false because the left side is divisible by 2, while the right side, being
the square of an odd integer, is odd and is not divisible by 2. In case p > q,
(1) gives

(3) s2 = 22p-2q-'r2,

and this is false because the right side is divisible by 2 while the left side is not.
This proves that is not rational; the assumption that is rational leads
to false conclusions. Remark: It is possible to give different proofs of this result
and of the more general fact that if n is a positive integer which is not one of the
perfect squares 1, 4, 9, 16, 25, 36, 49, .. , then is irrational. The standard
proofs depend, in one way or another, upon fundamental facts about factoring
positive integers.

47 Persons who make desk calculators do their menial arithmetical chores
can get very good approximations to square roots by use of an excellent method
which involves some very interesting arithmetical ideas. When we want to
approximate the square root of a positive number I given in decimal form, we
put 6 in the form .4 = 102"a, where n is an integer and 1 a < 100, and use
the fact that = 10" V. To obtain good approximations to V_a, we start
with a given first approximation x, for which 1 xl 10 and calculate some
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more elements of a sequence xi, x2, xs, of successively better approxima-
tions. If we suppose that xn (where n = 1 when we start) is one of these num-
bers which is different from N/"-a, we can absorb and prove the idea that
should lie between xn and a/xn. Do it. We then examine the tentative but
sensible suggestion that the average of x and a/xn may be a better approxima-
tion to N/-a. With this motivation, let

(1) xn+1 =2Cxn +xn

and prove that

(2)

and hence that

(3)

xn+1 - V r* xn - 2 \/a + - .'

xn+1 - / Ca = 1 (xn - 1/ a)2.
2xn

If we have not already picked up the idea that squares of small numbers are much
smaller, we can start by observing that (0.2)2 = 0.04, (0.04)2 = 0.0016, (0.0016)2
= 0.00000 256, and (0.00000 3)2 = 0.00000 00000 09. This leads us to the idea
that if xn is a good approximation to Va-, then is much better. In fact,
if one approximation xn is correct to k decimal places, we expect the next approxi-
mation xn+1 to be correct to about 2k decimal places. Jumps from 3 to 6 to 12
to 24 are quite amazing. Calculations based upon (1) can be made very rapidly.
When xn and a/xn agree to 10 decimal places and - lies between them, we have
very solid information. The method has another feature that even professional
computers like. Mistakes made before the final calculation do not produce an
incorrect answer, because using an erroneously calculated approximation is
equivalent to starting off with a different first approximation. There is even a
possibility that mistakes may be helpful.

48 Supposing that 0 < a < b, prove that

0<a+b_ <(b-a)2
2 a 8a

Hint: Obtain and use the equality

alb-1'aba2b-I-
(b a) 2

1 a b 2(a + b) + 4 Vah
2

Use the fact that if a quotient has a positive numerator and a positive denomi-
nator, we obtain a greater quotient when we replace the denominator by a smaller
positive number.

Remark: Persons who study science and philosophy can learn that noble but
basically ineffective efforts have been made to prove that points, lines, planes,
and numbers really exist in our physical universe, and to tell precisely what these
things are. It is the opinion of the author that discussions of such matters have
no place in a calculus textbook. As the preface says, we assume that these
mathematical things exist (at least as "mathematical models") and we make the
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usual assumptions about them. We can hear many different and even contradic-
tory tales about the world, but we can always be cheered by the fact that our
assumptions are universally considered to be interesting enough and useful enough
to be worthy of study. Absorbing these ideas may not keep us young and fair, but
we need the ideas to be debonair.

1.2 Slopes and equations of lines When we study trigonometry, we
learn about the plane rectangular coordinate system shown in Figures

Figure 1.21 Figure 1.22

1.21 and 1.22 and we become familiar with the formulas

ssing=y, tang=y, sec 0 =
(1.23) r x x

rcos0=x, cot0=x, csc 0 =r y y

which define the six basic trigonometric functions.t In each figure, the
horizontal axis is the x axis, the vertical axis is the y axis, and the inter-
section 0 of the two axes is the origin of the coordinate system. Since the

F(-2,3) TTJ(2,3)

A(3,2)

E(0 2)

II I

I(-3,0)
C(4,0)

I InIivI I 1 i
G(3,-1)

B(-4,-2) D(0,-2) H(4,
.

x

matter will be of great importance to
us, we review the standard procedure
for plotting (or locating) points whose
coordinates are given. To plot the
point 4(3,2), the point .4 whose coor-
dinates are the positive numbers 3
and 2, we start at the origin and go 3
units to the right (in the direction of
the positive x axis) and then go 2
units up (in the direction of the posi-

Figure 1.24 tive y axis) to reach the point 4 of
Figure 1.24. To plot the point B

whose coordinates are the negative numbers -4 and -2, we start at the
origin and go 4 units to the left (in the direction of the negative x axis)
and then go 2 units down (in the direction of the negative y axis) to reach
B. Everyone should examine Figure 1.24 to see that the other points are
correctly plotted. The signs of the coordinates tell us which ways we go,

f Our rigorous presentation of angles and trigonometric functions will come in Chapter 8.
Meanwhile we shall very often review and use facts about angles and trigonometric func-
tions that are learned in trigonometry.

-2
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and the absolute values of the coordinates tell us how far we go. The
quadrant (or subset) of the plane consisting of points having nonnegative
coordinates is called the closed first quadrant. The quadrant (or subset)
of the plane consisting of points having positive coordinates is called the
open first quadrant. The Roman numerals of Figure 1.24 show us how the
quadrants are numbered.

Figure 1.25 shows a line L which slopes upward to the right. The line
L does not necessarily pass through the origin, but we suppose that it

0 x

Figure 1.251

passes through a given point (xl,yl). The angle 0 (theta) lies between 0
and a/2 (that is, between 0° and 90°), and tan 0 is called the slope of the
line and is denoted by the letter m, so that

(1.252) m = slope = tan 0 = y - ylx - xl

when (xl,yi) and (x,y) are two different points on L.
Figure 1.251 shows a line L which slopes downward
to the right. This time tan 0 is negative, but it is
still called the slope of the line. We must always
remember that lines which slope upward to the right
have positive slopes and lines which slope downward
to the right have negative slopes. For horizontal

J

lines, we have 0 = 0, so tan 8 = 0 and in = 0; thus, m-
horizontal lines have slope zero. For vertical lines,
we have 0 = it/2 (or 0 = 90°), so tan 0 does not
exist; thus, vertical lines do not have slopes. To
locate a second point on a line which passes through
a given point and has slope m, we start at the given
point, go 1 unit to the right and then go in units in
the direction of the positive y axis. When m < 0, a
journey of m units in the direction of the positive y
axis is always interpreted to be a journey of Iml

m=-

Figure 1.253

units in the direction of the negative y axis. Everyone should look at
Figure 1.253 and think about this.

Theorem 1.26 -4 point P(x,y) lies on the line which contains the
Point Pi(xi,yi) and has slope m if and only if its coordinates satisfy the point-
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slope equation (or formula)

(1.27) y - y1 = m(x - xi).
Proof of this theorem is very simple. When x = xi, the point P(x,y)

lies on the line if and only if y = yi and hence if and only if (1.27) holds.
When x x1, the point P(x,y) lies on the line if and only if (1.252) holds
and hence if and only if (1.27) holds. This proves the theorem. Formula
(1.27) is known as the point-slope formula, and it must be permanently
remembered.

In accordance with general terminology which we shall introduce in
Section 1.5, (1.27) is an equation of the line which passes through the point
(xl,yi) and has slope m. Moreover, the line is the graph of the equation.
When we are required to obtain an equation of the line which passes
through the point (2, --) and has slope 3, we put x1 = , y1
m = 3, and write immediately

y+ 3(x-2).
Sometimes, but not always, it is desirable to put this equation in one of
the forms

y=3x-, 12x-4y-7=0,
and we tolerate the custom which allows any one of the three equations
to be called "the" equation of the line. Conversely, when we are required
to draw or sketch the graph of the equation

y + j = 3 (x - 201
we observe that the equation has the point-slope form with x1 = 2,
y1 = -I, m = 3 and then immediately draw the line through the point
(J,--4L) having slope 3. Problems at the end of this section provide
opportunities for practice in the art of using these ideas quickly, neatly,
and correctly.

When, as sometimes happens, we want to find an equation of the line
which passes through two given points PL(x1,y1) and P2(x2,y2) for which
x2 76 x1, we determine the slope m of the line from the formula

(1.28) in =
y2 - y1

or
y1 - y2

X2 - x1 x1 - x2

and then use the point-slope formula. For example, the slope of the line
passing through the points (3,-4) and (-2,1) is -5/5 or -1, and the
equation of the line through these points is y + 4 = -1(x - 3).

Problems 1.29
1 With Figure 1.24 out of sight, plot the points 4(3,2), B(-4,-2), C(4,0),

D(0,-2), and F(-2,3). If correct results are not obtained, read the explanations
of the text and try again.
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2 Plot the points 1I(-7,-1), B(-5,O), C(-3,1), D(-1,2), and E(S,5).
(These points all lie on a line, and the figure should not contradict this fact.)

3 Plot the points (6,2), (2,6), (-6,2), (-6,-2), (-2,-6), (2,-6), and
(6,-2). (These points all lie on the circle with center at the origin and radius
N/:F01 and the figure should not contradict this fact.)

4 Three vertices of a rectangle are (4,-1), (-6,-1), and (4,5). Sketch the
rectangle and find the coordinates of the fourth vertex.

5 For each of several values of x, plot the point P(x, 2 - x). What can be
said about the resulting set of points ?

(
6 Plot the points Pl(x1,Y1), Pz(xz,Yz), Q(xl + xz, Yl + yz),

xi ± xz
R ` 2

Y1 + Y2) and make an observation about the figure obtained by drawing the
2

line segments from these points to each other and to the origin when

(a) xi=6,Y1=0,xz=0,yz=4 (b) xi=2,y1=5,xz=6,yz=3
(c) xi=-2, Y1=-4,xz=7,Y2=1 (d) xi= -1, Y1= 1,X =1,Yz=0

.Ins.: The figure is a parallelogram together with its diagonals. Remark: Invest-
ing time in a good problem can produce dividends. Observe and remember that

the mid-point of the line segment joining (xi,yi) and (xz,yz) is (x1
2

xz, Y1

2 Yz

More information about such matters will appear in the next chapter.
7 Draw the triangle having vertices at the points P1(-3,1),P2(7,-1),P3(1,5).

For each k = 1, 2, 3, let mk be the slope of the
side opposite the vertex Pk. Work out the
slopes shown in Figure 1.291 and observe that

=jI 1\ m1=-1the answers look right.
8 Show that the equation of the line P1P3 P,

of the preceding problem is y = x + 4. Find n x
the x coordinate of the point on this line for
which y = 0. 11ns.: The answer is -4, and
ins ection of Fi ure 1 291 shows that this answerp g . Figure 1.291looks right.

9 When numerical values are assigned to the coordinates (xi,yi) of a point P1
and to m, it is possible to plot the point P1, to sketch the line L through P1 having
slope m, and (provided m 5,5 0) to estimate the x coordinate xo of the point
(xo,0) on L for which y = 0. It is then possible to find the equation of L and
determine xo algebraically. Do all this and make the results agree when

(a) (xi,yi) _ (1,2), in = 1 (b) (xi,yi) (1,2), m = -1
(c) (x1,Y1) _ (-2,1), m = 1 (d) (xi,yi) (-2,1), m = -1
(e) (xi,yi) _ (-2,-3), m = (f) (xi,yi) _ (4,-2), in = 2
(g) (xi,yi) _ (-1,4), m = (h) (x1,Y1) _ (1,1), in = I

10 When numerical values are assigned to the coordinates (x1,y1) and (x2,Y2)
of two points P1 and F2, it is possible to plot these points, to sketch the line L
through them, and (except when L is parallel to the x axis) to estimate the x
coordinate of the point (xo,0) on L for which y = 0. It is then possible to find the
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slope m of L, to find the equation of L, and to determine xo algebraically. Do all
this and make the results agree when

(a) (x1,Y1) _ (1,1), (x2,Y2) = (3,2)

(b) (xl,Y1) = (L-1), (x2,Y2) = (3,1)

(c) (xl,yi) = (-4,-2), (x2,Y2) = (-1,-1)
(d) (xi,Yi) _ (0,4), (x2,Y2) = (1,2)
(e) (x1,Y1) _ (1,2), (x2,Y2) = (2,1)

(1) (x1,Yi) = (-1,1), (x2,Y2) = (4,-1)

11 Plot at least five points P(x,y) whose coordinates satisfy the equation
y = 2x - 4. The coordinates can be found by giving values such as -1, 0, i,
1 to x and calculating y. Observe that these points appear to lie on a line L.
Show that the given equation can be written in the form y - 0 = 2(x - 2) and
hence that the points must lie on the line L through the point (2,0) which has
slope 2. Make everything check.

12 Supposing that a and b are nonzero constants, find the point-slope form
of the equation of the line L through the two points (a,0) and (0,b), and show that
this equation can be put in the forms

bx+ay-ab=0, 6+b=1.

The second form is the intercept form of the equation of L. Note that it is very
easy to put y = 0 and see that L intersects (or intercepts) the x axis at the point for
which x = a. It is equally easy to put x = 0 and see that L intersects (or inter-
cepts) the y axis at the point for which y = b.

13 A line intersects the x axis at the point (a,0) and cuts from the first quad-
rant a triangular region having area A. Find the equation of the line. Ins.:
24x + a2y = 2a11.

14 For each of the cases

(a) P1 = (1,1), P2 = (7,1), Pa =
(b) P1 = (2,2), P2 = (8,2), Ps =

(7,7)
(8,8)

(c) P1 = (-3,-1), P2 = (2,-7), P3 = (4,1)
(d) P1 = (-4,-2), P2 = (1,-8), P3 = (3,0)
(e) P1 = (-2,-4), P2 = (1,-5), P3 = (2,-3)

sketch the triangle having vertices P1, P2, P3 and the line L containing P, and the
mid-point of the side opposite P1. Use the figure to obtain an estimate of the
x coordinate of the point where L intersects the x axis. Then find the equation
of L and determine the coordinate algebraically. Produce results that have
reasonable agreement. Remark: There is one respect in which many problems
in pure and applied mathematics are like this one. Graphs or something else
give more or less good approximations to answers, but we need equations to get
correct answers. When equations give answers that seem to be wrong, the whole
situation must be given close scrutiny. Mistakes in sign are particularly damag-
ing, and we all make mistakes when we work too rapidly or too thoughtlessly.

15 A triangle with vertices 11, B, C is placed upon a coordinate system in
such a way that A is at the origin and the mid-point D of the opposite side is
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the point (h,0) on the positive x axis as in Fig-
ure 1.292. Supposing that the coordinates of C
are (h + a, k), show that the coordinates of B
must be (h - a, -k). Find equations of the
lines containing the sides of the triangles. Write
the equations in the form y = mx + b and check
the answers by determining whether the coordi-
nates of the vertices satisfy the equations. I UB(k-a, -k)

16 The vertices P1(xl,yi), P2(x2,y2), P3(xa,ya)
of a triangle are unknown, but it is known that

C(h+a, k)

X

Figure 1.292

the mid-points of the sides P1P2, P2P3, and P3P1 are respectively (7, -1), (4,3), and
(1,1). Find the unknowns and check the results by drawing an appropriate
figure.

17 Formulate and solve a more general problem of which Problem 16 is a
special case.

1.3 Lines and linear equations; parallelism and perpendicularity
When -4, B, and C are constantsf for which -4 and B are not both 0, the
equation

(1.31) 'Ix+By+C=0
is a linear equation and we must both prove and remember that its graph
is a line. In case B 0 0, we can put the equation in the point-slope form

y - \-
B\\)=-B(x-0)

and see that the graph is the line L which passes through the point
(0, -C/B) and has slope -14/B. In case B = 0, we must have 14 $ 0,
and we can put the equation in the form

CX

The graph of this equation is the vertical line consisting of all those points
(x,y) for which x = -C/!4. This proves the

ltresu . I -

The equation

(1.32) y = mx+b
can be put in the form y - b = m(x - 0), and
hence it is the equation of the lineL which passes

P(x, y)

Figure 1.33

through the point (0,b) and has slope m. The equation (1.32) is called

t The hypothesis that .4, B, and C are constants means merely that they are numbers that
are "given" or "selected" or "fixed" in some way. There is no implication that other num-
bers are unstable in the sense that they are moving around. We shall hear more about this
matter later.
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the slope-intercept formula. The easiest way to find the slope m of the
line having the equation 2x - 3y - 4 = 0 is to solve the equation for y
to obtain

y=Ix -I
and see that in = *.

Let L1 and Ls be two lines which are neither horizontal nor vertical and
let their slopes be ml and ms. Figure 1.34 reminds us of the elementary
fact in plane geometry that L1 and L2 are parallel if and only if 02 and 0,
are equal and hence if and only if tan 62 = tan 01 and ms = m1, Thus
L1 andL2 are parallel if and only if their slopes are equal.

L2 L1

Figure 1.34 Figure 1.35

For perpendicular lines, the story is more complicated. The lines L1
and L2 are perpendicular if and only if their slopes m1 and ms are negative
reciprocals, that is, ms = -1/m1 or m1 = -1/m2 or mlms = -1. To
prove this, we observe that L2 and L1 are perpendicular if and only if
02 = B1 + 7r/2 as in Figure 1.35 or 61 = 02 + 7r/2 when the roles of L1
and L2 are reversed. In the first case we have

(1.351) ms = tan (B1 -} 2) = -cot 01 = - tan 01 ml

and the result follows. To get the result in the second case, we merely
T reverse the roles of L1 and L2.

Figure 1.36
x

As in t'igure 1.36, let L1 and L2 be two
nonvertical lines and let 0 (phi) be the
angle through which a line must be rotated
to bring it from coincidence with L1 to coin-
cidence (or parallelism) with L2. When we
can find the slopes m1 and ms of L1 and L2,
we can determine , from the fact that

0 = 7/2 when m1m2 = -1 and

(1.37) tan ¢ = ms - in,
1 + mlms

when mlms 96 -1. The latter formula is proved by the formula

tan = tan 02 - tan 01 ms - m1(1.371) tan (Bs -, B1) = 1 -h tan B1 tan Bs 1 -}- mlms
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which employs the standard trigonometric for-
mula for the tangent of the difference of two
angles. When we are asked to find 0, we pre-
sent tan c as the answert to our problem.

As an application of some of the above ideas,
we find the equation of the line L of Figure
1.38. The positive number p is the distance

Figure 1.38

from the origin to the point P1, and L is perpendicular to the line
OP1 at Pl. The coordinates of Pi are p cos a (alpha) and p sin a. The
slope of OPl is tan a, or sin a/cos a, and the slope of L is the negative
reciprocal - cos a/sin a. Use of the point-slope formula gives the equa-
tion of L in the form

(1.381) y - p sin a = -
cos a (x

- p cos a).sin a

Multiplying by sin a and using the identity sine a + cos' a = 1 puts the
equation in the more attractive form

(1.382) (cos a)x + (sin a)y = p.

The line OPt, being a line perpendicular to L, is called a normal to L, and
the equation (1.382) is called the normal form of the equation of L because
it gives information about this normal. It is sometimes thought to be
worthwhile to know a speedy way to put the equation 14x + By + C = 0
into normal form. We suppose that 14 and B are not both 0 and that
C s 0. The trick is to transpose C to obtain A4x + By = -C and then
divide by one of ± .s /A2 + B2 to obtain

14 B -C
(1.383) X + y =

± x/,12 + B2 -{- \/22 + B2 ± A2 + B2'

where the sign is so chosen that the right side is positive. This equation
has the normal form. The right side is the distance p from the origin to
the line, and the coefficients of x and y are respectively the numbers cos a
and sin a which determine the angle a of Figure 1.38.

Problems 1.39
1 Each of the following equations is the equation of a line L. In each case,

find the slope m by finding the coordinates of the points in which the line inter-
sects the coordinate axes and then finding the slope of the line through those

f Traditionally, students are required by tests and examinations to find tan 0. Accord-
ingly, students who hope to pass examinations by learning a few formulas-and those who
aspire to a substantial understanding of their subject-are well advised to learn the neces-
sary ritual.
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two points. Then find in by putting the equation in the form y = mx + b
Make the results agree.

(a) x + y = 2 (b) x + y = 3
(c) 2x+y=2 (d) x+2y=2
(e) 2x+3y-40 (f) 2x+3y+40
(g) 2x-3y-4=0 (h) 2x-3y+40
(i) 1+2=1 (1) 1-2=1

2 Draw the triangle having vertices at the points P1(-3,1), P2(7,-1),
P3(1,5), and observe that PsP2 seems to be nearly perpendicular to P1P3. Find
the equation of the line through P3 perpendicular to PiP3 and show that this line
does contain the point F. (The figure appears among the problems at the end
of Section 1.2.)

3 For the points P1, Ps, P3 of the preceding problem, find the equation of
the line through P2 parallel to the line P1P3. Find the coordinates of the point
in which this new line intersects the y axis. Put this new line into the figure,
and make everything check.

4 For each of the following equations find numerical coordinates of three
points P1, P2, P3 whose coordinates satisfy the equation. If you cannot think
of a better procedure, let x1 = 0, x2 = 1, x3 = 2 and calculate y1i y2, ys Plot
the three points P1, P2, P3 and notice that they seem to lie on a line. Calculate
the Slopes of P2P2 and P1P3 and observe that they are equal. Observe that there
is ample opportunity to check all answers.

(a) y=x+1 (b) y=2x+3
(c) x+y=S (d) x + y + 2 = 0
(e) 2x-3y+4=0 (f) 2x+3y+4=0

5 Plot the lines having the equations y = 2x and y = 3x and observe that
the acute angle 0 between them seems to be rather small. Find 0 by finding
tan ,, and then construct and examine an appropriate figure to see that your
answer seems to be correct.

6 Supposing that k is a nonnegative number, find the acute angle between
the lines having the equations y = kx and y = (k + 1)x. Check the answer in
at least one special case. Tell why the angle should be small when k is large.

7 Sketch the line L1 which intersects the coordinate axes at the points (0, -4)
and (5,0), and the line L2, which intersects the coordinate axes at the points
(0, - 5) and (6,0). Find the acute angle between the lines. ins.: tan 0 = ,'T.

8 While assembly lines and mass production reduce costs of manufactured
items, there is an element of sanity in the idea that the total cost y of publishing
x copies of a book is ax + b. Sketch a graph of the equation y = ax + b and
discover the significance of the numbers a and b.

9 Find the equation of the perpendicular bisector of the line segment joining
the points P1(x1,y1) and Ps(x2,y2), putting the answer in the form Ax + By = C.
ins.:

z z z 2

(x2 - x1)x + (ys - yi)Y xz=
2

xl + Yz
2

Y1,
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10 Any given rectangle can be placed upon the x, y coordinate system in such
a way that its vertices are (0,0), (0,a), (b,0), and (b,a). Prove that if the diag-
onals are perpendicular, then the rectangle is a square.

11 Sketch a figure showing the triangle having vertices at the points Pi(xl,y,),
P2(x2,y2), and Pi(xa,Y3) For each k = 1, 2, 3, mark the mid-point Qk of the side
opposite Pk and find the coordinates of Qk. Supposing that the line QsQ1 is not
vertical, calculate its slope and show that it is parallel to the line P1P2.

12 Prove analytically (by calculating slopes) that the mid-points of the sides
of a convex quadrilateral are vertices of a parallelogram. Remark: Taking ver-
tices at (xi,yl), (x2,y2), (xa,ya),(x4,y4) produces "symmetric" formulas.

13 Show that the lines having the equations

aix + b,y = cl

a2x + b2y = c2

are parallel if and only if a1b2 - a2b1 = 0. If the lines are not parallel, they
must intersect at a point P(x,y) whose coordinates satisfy both equations.
Assuming that the lines are not parallel, solve the equations to obtain the formulas

b2c1 - blc2
X a,b2 - a2b1'

alc2 - a2c1

alb2 - a2b1

for the coordinates of the point of intersection. Remark: Those who have for-
gotten how to solve systems of linear equations can recover by noticing that we
can multiply the first equation by b2 and the second by -b1 and then add the
results to eliminate y and obtain an equation that can be solved for x. This
process is known as the process of successive elimination.

14 Copy Figure 1.292 and then find the equations of the three medians of the
triangle and show that these medians intersect at the point (2h/3, 0). Remark:
Since the median placed upon the x axis could have been any median of the tri-
angle, this provides a proof that the three medians of a triangle intersect at the
point which trisects each of them.

15 Show that the lines obtained by giving constant values to kin the equation

2x + 3y + k = 0

are all parallel. Show that the line L having the equation

2(x-xl)+3(y-yi) =0
belongs to this family and contains the point (x1,yl)

16 Show that if the lines .4P and BP joining the points 11(1,2) and B(5,-4)
to P(x,y) are perpendicular, then

(x - 1) (x - 5) + (y + 4) (y - 2) =0.

Remark: Persons well acquainted with elementary geometry should know that
P must lie on the circle having the line segment .4B for a diameter.

17 Put the following equations into normal form and check the results by
drawing graphs showing the lines having the given equations and the line seg-
ments through the origin perpendicular to these lines.
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(a) 2x + 3y = 12 (b) 2x - 3y = 12
(c) 2x - 3y = -12 (d) 2x + 3y = -12
(e) y=2x+3 (f) Y=0

18 Let k > 0. For each of several values of w, draw the perpendicular
bisector of the line segment joining the points (0, 1/4k) and (w, - 1/4k). Then
determine the condition which x and y must satisfy if the point P(x,y) lies

(a) on exactly one of these bisectors,
(b) on more than one of these bisectors,
(c) on none of these bisectors.

flns.: (a) y = kx2, (b) y < kx2, (c) y > kx2.

19 For what pairs of values of b and c do the two equations

3x + by + c = 0
cx - 2y + 12 = 0

have the same graph? Partial ans.: There are two pairs which are easily checked
after they have been found.

20 The points PI(xl,yl), P2(xs,y2), P3(x3,ys) are vertices of a triangle. Find
the coordinates (x,y) of the point QI where the line through Pl perpendicular to
the line P2P3 intersects the line P2P3. Partial ans.:

(xs - X2)2XI + (ys - yi)(ys - y2)X2 + (y2 - yI)(y2 -ys) x's.
X - (X3 -x2)2 + (ys - y2)2

Remark: It is possible to write the answer in different forms. This form enables
us to check quickly that interchanging the subscripts 2 and 3 does not change
the value of x. Such checks are often used to guard against clerical errors in
deriving or copying formulas.

21 Let the vertices of a triangle be Pi(xl,yl), P2(x2,y2), Pa(xa,ys) For each
k, let Lk be the line containing Pk which is perpendicular to the line containing
the other two vertices. Recognizing that altitudes are numbers (not line seg-
ments or lines), we call the lines L1, L2, Ls the altitudinal lines of the triangle.
Prove that these altitudinal lines are concurrent. Remark: The conclusion means
that there is a point Po, called the orthocenter of the triangle, at which the three
altitudinal lines intersect. When asked to prove the conclusion by synthetic
methods, we use our ingenuity (or that of some other people) in searches for
appropriate figures and ideas upon which the proof can be based. When asked
to prove the conclusion by analytic methods, we can proceed at once to apply a
powerful method that cannot fail to produce results if we do the chores correctly
We can find the equations of the three altitudinal lines and use two of the equa-
tions to find the coordinates of the point of intersection of two of the lines. If
this point lies on the third line, the conclusion is true. If (for some triangle)
the point fails to lie on the third line, the conclusion is false. The chores can be
done in the following way. Considering separately the case in which the line
PaPs is neither horizontal nor vertical (so that this line and L1 have slopes) and
the cases in which P,P3 is horizontal or vertical, we can find that the equation
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of Ll is the first of the equations

(1)

(2)

(3)

(x3 - x2)x + (YS - y2)y = (xs - X2)XI + (y3 - y2)Yl
(x1 - X3)X + (y1 - y3)y = (x1 - x3)x2 + (Y1 - Y3)Y2
(x2 - x1)x + (y2 - yl)Y = (x2 - x1)x3 + (y2 - yl)Ya.

It is possible to repeat the process to show that the equations of L2 and L3 are
(2) and (3). It is, however, more fun to observe that we can convert the deriva-
tion of the equation of Li into a derivation of the equation of L2 by making a
"cyclic advance" of the subscripts so that 1 goes to (or is replaced by) 2, 2 goes
to 3, and 3 goes to 1. The first cyclic advance converts (1) into (2), and another
cyclic advance converts (2) into (3). The routine way to finish the proof is to
solve (1) and (2) for x and y and show that these numbers (x,y) satisfy (3)
However, if we do not want to obtain and preserve the formulas for x and y, we
can finish the problem by observing that adding the members of (1), (2), and (3)
gives 0 = 0 and shows that the third equation is satisfied whenever the first two
are satisfied. For the record, we note that solving (1) and (2) for x and y gives
the formulas

(4) x =

(5) y =

y1(x3 - x2)xl + y2(xl - x3)x2 + y3(x2 - xi)xa
- (y2 - yl)(ys - y2)(yl - y3)

yi(xa - x2) + y2(xl - X3) + y3(x2 - XI)
xl(Y3 - y2)yl + x2(Y1 - ya)y2 + x3(y - yi)y3

- (x2 - xl)(x3 - x2)(xl - x3)
x1(Y3 - y2) + x2(y1 - YS) + x3(y2 - y1)

for the coordinates of the orthocenter. With the aid of the identity

(6) (y2 - yl)(ys - y2)(yl - YS) = yl(y3 - y2) + y2(Y1 - ya) + ya(y2 - Yi),

we can put these formulas in the forms

yl[xl(xa - X2) + Y2 - ya] + Y2[x2(xl - x3) + ya -' Yl] 7

+ y3[xa(x2 - x1) + Yl - y2](7) x =
yl(xa - X2) + y2(xi - x3) + y3(x2 - x11)

xi[yi(ya - y2) + x2 - xa] + x2[y2(yi - YS) + xa - x1]
+ x ) + x - x2)[ ( -a y3 y2 Yi i(8) Y =

x1(y3 - y2) + x2(yl - y3) + xs(y2 - yl)

and in many other forms which look quite different. Interchanging the x's and
y's in one of these formulas gives the other. Except for sign, the denominators
are equal to each other and (as we shall see later) to twice the area of the triangle.
As is to be expected, a cyclic advance of the subscripts does not alter the triangle
and does not alter the formulas for the coordinates of the orthocenter.

22 Again let the vertices of a triangle be P1(xi,yi), P2(x2,y2), Pa(xs,y3). Find
the coordinates of the point (x,y) of intersection of the three perpendicular bisec-
tors of the sides of the triangle, and write also the result of making a cyclic advance
(see the preceding problem) of the subscripts appearing in the answer. Remark:
Elementary plane geometry shows that the point (x,y) is equidistant from the
three vertices and hence is the center of the circle containing the vertices. The
circle is called the circumcircle (or circumscribed circle) of the triangle, and its
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center is called the circumcenter of the triangle. The answer can be put in the
forms

yl(xa - xz)(xa + X2) + y2(x1 - xa)(x1 + Si) + Y3(x2 - x1)(x2 + x1)
+ (y2 - yi)(ya - y2)(Y1 - y3)

2[yl(x3 - x2) + y2(x1 - XS) + y3(x2 - x1)]
x1(y3 - y2)(Y3 + Y2) + x2(y1 - Ya)(y1 + ya) + x8(y2 - y1)(Y2 + Y1)

+ (X2 - XI) (X3 - x2) (x l - Si)
2[x1(ya - y2) + x2(y1 - ya) + x3(y2 - y1)]

(1) x =

(2) Y=
and

y1(xa + y2 - x2 - Y2) + y2(xi + Y2 - x2 - Ya) + Ya(x2 + Y2 - xi - yi)- 2 2

(3) x 2[yl(xa - x2) + Y2(x1 - Si) + ya(x2 - xl)]
2 2 2

( = xl(xa + y3 - x2 - y2) + x2(x1 + Y1 - x3 - Y3) + xa(x2 + Y2 -
XI - Yi)

4)
y

2[x1(y3 - y2) + x2(yl - ya) + x3(y2 - y1)]

and in still other forms which look quite different.

Figure 1.391

23 The triangle in Figure 1.391 has vertices at Pi(xi,yi), P2(x2,y2), and
Pa(x,,y8). The mid-points M1, M2, Ma of the sides of this triangle are the ver-
tices of the mid-triangle of the given triangle. With or without making use of
the ideas and results of the preceding problem, find the coordinates of the cir-
cumcenter of this mid-triangle. Remark: The answer can be put in the form

yl(xa - x2)(2x1 + x2 + XS) + y2(x1 - x3)(2x2 + xa + Si)
(1) x = + ya(xs - x1)(2xa + Si + Si) - (y2 - y1)(ya - y2)(y1 - ya)

4[Y1(xa - x2) + Y2(x1 - Si) + ya(x2 - Si)]
x1(ys - y2)(2y1 + y2 + ya) + x2(yi - ya)(2y2 + ya + yi)

(2) = + x3(Y2 - y1)(2ys + y1 + y2) - (x2 - x1)(x8 - x2)(x1 - x-y 4[xi(ya - ys) + x2(y1 - ya) + x3(y2 - y1)]
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and in other forms which look quite different. As we shall see in the next prob-
lem, the circumcircle of the mid-triangle of the given triangle P1P2P3 is the famous
nine-point circle of the given triangle. The coordinates in (1) and (2) are there-
fore the coordinates of the center of this nine-point circle. The answers to this
and the two preceding problems are written in such a way that it is very easy to
see that the center of the nine-point circle is the mid-point of the line segment
joining the orthocenter and the circumcenter of the given triangle.

24 To see that there are opportunities to use ideas of the preceding problems
and the rest of this chapter in geometry, we look briefly at a triangle and its
nine-point circle. Figure 1.391 shows a triangle P1P2P3, the points Q1, Q2, Q3 in
which the altitudinal lines intersect the lines containing the sides of the triangle,
and the orthocenter P0. The points M1, M2, M3 are the mid-points of the sides
of the triangle, and the perpendiculars to the sides at these points intersect at a
point C, the circumcenter of the given triangle. The points R1, R2, R3 are the
mid-points of the line segments P1Po, P2Po, P&P0. The famous nine-point-circle
theorem says that the nine points M1, M2, M3, Q1, Q2, Q3, R1, R2, R3 all lie on a
circle. This circle, the nine-point circle, has its center at the mid-point S of the
line segment joining the orthocenter Po and the circumcenter C. The radius
of the nine-point circle is half the radius of the circumcircle. When the triangle
is equilateral, the orthocenter, the circumcenter, the center of the nine-point
circle, and the centroid (intersection of the medians) all coincide. When the
triangle is not equilateral, the four points are distinct but are collinear, and the
line upon which they lie is called the Euler line of the triangle.

25 In this problem we use results of Problems 21 and 23 to obtain a new
formula and a proof of the nine-point-circle theorem. We know from Problem
23 that the mid-points M1, M2, M3 of the sides of the triangle are on the circle;
in fact, these three noncollinear points determine the nine-point circle. The
remaining points R1, R2, R3, Q1, Q2, Qs, which we must prove to be on the nine-
point circle, are not necessarily distinct from each other and from M1, M2, M3i
but our proof will not be a "partial proof" which covers only "general cases."
Our proof will be a proof. Use a result of Problem 21 to show that the x coordi-
nate of the point R1 midway between the vertex P, and the orthocenter Po is

Y1(x3 - x2)(xl + x1) + Y2(x1 - x3)(xl + x2) + y3(x2 - x1)(x1 + x3)
+ (Y2 - yl)(Y3 - Y2)(YI - y3)

X - 2[y1(xs - x2) + Y2(x1 - xs) + Y3(x2 - x1))

Use this result to show that the x coordinate of the point midway between R1
and the mid-point M1 of the line segment P2P3 is the x coordinate of the center
of the nine-point circle given in Problem 23. Remark: This fact and the associ-
ated fact involving y coordinates imply that the points R1 and M1 are at opposite
ends of a diameter (line segment, not number) of the nine-point circle. Similar
proofs (which are attained by cyclic advances of subscripts) show that R2 and M2
are at opposite ends of a diameter and that R3 and M3 are at opposite ends of a
diameter. This proves that R1, R2, R3, lie on the circle. We recall that Ql is
the point at which the altitudinal line through P1 intersects the line containing
the vertices P2 and P3, that R1 is on the altitudinal line, and that M1 is on the
line containing P2 and P3. In case Ql coincides with M1 or R1, we conclude that
Q1 is on the circle. In the contrary case, the angle R1Q1M1 is a right angle.
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Since the line segment R1M1 is a diameter of the circle, this implies that Q1 must
be on the circle. Cyclic advances of subscripts prove that Q2 and Qa lie on the
circle. This completes the proof of the nine-point-circle theorem.

26 This problem involves the intersection of the medians of the triangle hav-
ing vertices P1(x1,y1), P2(x2,y2), P3(x3,ys) For each k = 1, 2, 3, let Mk be the
mid-point of the side opposite Pk. Show that the equation of the line containing
the median P1M1 can be put in the form

(1) (y2 + Ya - 2y1)(x - x1) - (X2 + X3 - 2x1)(y - y1) = 0.

Show that if we define z and y by the formulas

(2)

then

x1+32+xa Y1+Y2+Y8,
3

x2+x3 -2x1=x1+x2+x3 -3x1=3(x-x1)
y2+ya-2y1=y1+y2+y3-3y1=3(y - y1)

and (1) can be put in the form

(3) (y - y1)(x - x1) - (x - x1)(y - y1) = 0.

Show that (3) implies that the point (x,y) lies on the median P1M1. Finally,
show how this work can be modified to prove that the point (R,9) lies on the other
two medians and hence is the point of intersection of the medians. Remark:
One reason for interest in this matter can be understood when we know enough
about centroids. The point (z,y), the intersection of the medians, is the centroid
of the triangular region bounded by the triangle. It is also the centroid of the
set consisting of the three vertices of the triangle. Moreover, it is the centroid
of the triangle itself, that is, the set consisting of the sides of the triangle. The
coordinates of the intersection of the medians were obtained in a tricky way.
It is possible to put the equation (1) of the median P1M1 and the equation of the
median P2M2 in the forms

(4) (y2 + ya - 2y1)x - (x2 + xa - 2x1)y
= (Y2 + ya - 2y1)x1 - (x2 + xs - 2x1)Y1

(5) (ys + y1 - 2y2)x - (Xs + x1 - 2x2)y
_ (ya + y1 - 2y2)x2 - (xa + x1 - 2x2)Y2

and obtain the coordinates of the intersection of the medians by solving these
equations for x and y without using trickery. There is, however, no guarantee
that time invested in a study of (4) and (5) will produce attractive dividends.
It is easy to obtain ponderous formulas for x and y, but it is not so easy to reduce
the formulas to the right members of the formulas (2).

1.4 Distances, circles, and parabolas As we shall see, the distance
formula

(1.41) d (x2-x1) ++(y2-y1)2
gives the distance d between two points Pa(x1,y1) and P2(x2,y2) in the
plane. To prove (1.41), we notice first that if y2 = y1. then the points P1
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and P2 lie on the same horizontal line and the formula reduces to the
correct formula d = 1x2 - x11 If x2 = x1, then Pi and P2 lie on the same
vertical line and the formula reduces to the correct formula d = Iy2 - y11.
When P1(x1,y1) and P2(x2,y2) are two given points for which X2 5'!5 x, and
y2 0 yi, we can, as in Figures 1.42 and 1.421, let Q(x2,yi) be the point on

P2(x2, y2) P2(x2, Y2)

Iy2-Y11 Iy2-y11

Q(x2,y1) Q(x2,y1)

Figure 1.42
1x2-x11 Pl(xl,y1)

Figure 1.421

the horizontal line through Pi and on the vertical line through P2. The
length of the horizontal line segment P1Q is x2 - x1 if x2 - xl > 0, is
x1 - x2 if x1 - x2 >= 0, and is 1x2 - x11 in each case. The length of the
vertical line segment QP2 is y2 - Yi if y2 - yi >- 0, is y1 - Y2 if
Y1 - y2 > 0, and is Iy2 - yll in each case. With the understanding that
the distance d between P1 and P2 is the length of the line segment PiP2,
we can therefore apply the Pythagoras theorem to the right triangle P1QP2
to obtain

d2 = 1x2 - x112 + Iy2 - Yi12

and hence

d2 = (x2 - x1)2 + (y2 - yi)2.

Since d >- 0, taking square roots gives the
required formula (1.41).

We are all familiar with the fact, illustrated

x

Figure 1.43

in Figure 1.43, that the circle C with center at Po(h,k) and radius a is the
set of points in the plane whose distances from Po are equal to the radius a.
From the distance formula, we see that the point P(x,y) lies on this circle
if and only if

(1.44) (x - h) l + (y - k)' = a2.

This is therefore the equation of the circle with center at (h,k) and radius
a. We must always remember this and the fact that

(1.45) x2 + y2 = a2

is the equation of the circle with center at the origin and radius a.
The equation of the circle with center at (-2,3) and radius 5 is

(1.451) (x + 2)2 + (y - 3)2 = 25.
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When the parentheses are removed and the constant terms are collected,
this equation takes the less informative form

(1.452) x2 + y2 + 4x - 6y - 12 = 0.

This has the form

(1.453) x2+y2+Dx+Ey+F=O,
where D, E, and F are constants. It turns out that for some sets of
values of D, E, and F, (1.453) is the equation of a circle. To try to write
(1.453) in the standard form (1.44), we begin by writing it in the form

(1.454) (x2 + Dx + ) + (y2 + Ey + ) = -F.
The next step is to add a constant to the term x2 + Dx so that the sum
will be the square of a quantity of the form (x + Q). What shall we add?
A good look at the formula

(x+Q)2=x2+2Qx+Q2
provides the answer: divide the coefficient of x by 2 and square the result.
Thus we add D2/4 and E2/4 to both sides of (1.454) to obtain

or

(1.46) x+DI2+(y+2)2=D2+
E2

We can now see how the graph depends upon the constants D, E, and F.
In case D2 + E2 - 4F > 0, then (1.46) is the equation of the circle with
center at (-JD, ---E) and radius D2 + E2 - 4F. In case
D2 + E2 - 4F = 0, the equation becomes

(1.461) (x + -D)2 + (y + JE) 2 = 0.

This equation is satisfied when and only when x = -jD and y = -4E
so the graph is the single point (-JD, --E). In case D2 + E2 - 4F < 0,
there are no pairs of values of x and y for which the equation is satisfied.
One is tempted to say that the poor equation has no graph, but the graph
is actually the empty set, that is, the set having no points in it. Thus,
determination of the graph of the equation

x2+y2+6x-7y+8 =0
is made by completing squares. The process is important and must be
remembered.

Before starting the next paragraph, we look at some algebra and ways
in which it is printed. The quotient a/bc is called a shilling quotient and
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is often printed instead of the built-up quotient bc Learning to read

printed mathematics involving shilling quotients is an art that must be
cultivated, and this is a good opportunity. Since "multiplication takes
precedence over division" the quotient a/bc means a/(bc) and does not

mean (alb)c. Thus, for example, 1/2k means 1/(2k) or
1

2k
and does not

mean (1/2)k or 4k. When the next paragraph is read, the quotients
should be handwritten in built-up forms so the calculations can be made
more easily. If troubles appear, the difficulty may be the canonical one
that arises when a printer converts an author's 1/2k into 4k. Every-
thing should be checked.

We can get experience with the distance formula by starting to learn
about parabolas. A parabola is, as we shall show in Section 6.2, the set
of points (in a plane) equidistant from a fixed point F which is called the
focus and a fixed line L which is called the dtrectrix and which does not
pass through the focus.t In order to obtain the equation of a parabola in
an attractive form, we let 1/2k denote the distance from F to L so that
1/2k = p and k = 1/2p, where p is the distance (length of the "per-
pendicular") from F to L. Then we put the y axis through F perpen-
dicular to L and put the x axis midway between F and L as in Figure 1.47.

x

Figure 1.47

The parabola is the set of points P(x,y) for which FP = DP. Using the
distance formula and the fact that y + 1/4k > 0 when FP = DP gives

(1.471)
1

X
2 + \y - 4k)2 - y + 4k

t The assumption that F is a "fixed" point and L is a "fixed" line means merely that F
and L are "given" or "selected" in some way. There is no implication that other points and
lines are "unfixed" in the sense that they are moving. At one time the parabola was
defined as the path (or locus) of a point P which moves in such a way that it is always equi-
distant from F and L. There are reasons why it is better to say that a parabola is a point
set. Everybody knows that pencil points and numerous other things move, but even if we
swallow the dubious idea that "mathematical points" can move we still find that the old-
fashioned definition does not tell how a point P should move to trace the whole parabola and
not merely a part of the parabola.
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This holds if and only if

x2+iy 4k12=(y+4k)2.

Simplifying this gives the very simple and attractive equation

(1.472) y = kx2.

This is the equation of the parabola shown in Figure 1.47.
The point V on a parabola which lies midway between the focus and

directrix of the parabola is called the vertex of the parabola. For example,
when k ; 0, the point (xo,yo) is the vertex of the parabola for which the
point F(xo, yo + 1/4k) is the focus and the line L having the equation
y = yo - 1/4k is the directrix. As Problem 26 invites us to discover, the
equation of this parabola is

(1.473) y - yo = k(x - xo)2.

When k 76 0, the equation

(1.474) y = kx2 + ax + b

can be put in the form (1.473) by completing a square and transposing.
Thus, when k 94- 0, the graph of (1.474) is a parabola, and we must always

remember the fact. The distance from the focus to the vertex is 1IWhen
the positive y axis lies above the origin as it usually does, the focus

is above the vertex when k > 0 and is below the vertex when k < 0.
It is possible to proceed in various ways to calculate the distance

d from a given point P(xo,yo) to the line L having the given equation
Ax + By + C = 0. Problem 34 at the end of this section requires that
the answer be worked out in a specified straightforward way. It is some-
times convenient to omit the calculations and use the result, which is set
forth in the following theorem.

Theorem 1.48 The distance d from the pointP(xo,yo) to the lineL having
the equation Ax + By + C = 0 is given by the formula

(1.481) d = jJxo+Byo+C1
vl-,41 _+B2

In some applications of this theorem, we use the version obtained by
deleting the subscripts.

Problems 1.49
1 Draw the triangle having vertices at the points d(2,2), B(-5,-2), and

C(-2,-4). Calculate the lengths a, b, and c of the three sides BC, CA, and .4B
and show that c2 = a2 + V. This implies that the triangle is a right triangle
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having a right angle at C, and hence that the lines
BC and C.1 must be perpendicular. Calculate
the slopes of these lines and verify the perpen-
dicularity. Make everything check.

2 Figure 1.491 illustrates the familiar fact
that, when P1(xl,yl) andP2(x2,y2) are two distinct
points in a plane, the set of points P(x,y) equi-
distant from P1 and P2 is the perpendicular bi-
sectorL of the line segmentP1P2. Equate expres-
sions for the distance PP1 and PP2 and simplify the
of L in the form

P2 (X2, Y2)

Figure 1.491

result to obtain the equation

r xl + x21 r Yl + Y21
(X2-XI) x- 2 )+(Y2-yl)1\Y-

2 /I =0.

Then show that this line passes through the mid-point

xl + x2 Y1 + Y2P(
2 2 )

of the segment P1P2 and is perpendicular to the segment.
3 Sketch a figure showing the triangle having vertices at the three given

points and then calculate distances to determine whether the triangle is isosceles
(that is, has two sides of equal length):

(a) (1,0), (8,2), (3,-7) (b) (1,4), (6,-1), (7,6)

(c) (O,a), (a,O), (b,b) (d) (a,a), (-a,-a), (b,-b)

4 Find the length of the part of the x axis which lies inside the triangle
having vertices at the points (-3,-1), (5,1), and (1,5). Use a figure to deter-
mine whether the answer is reasonable.

5 Find the point on the x axis equidistant from the two points P1(-2,-1)
and P2(4,3) in two different ways. First, find the equation of the perpendicu-
lar bisector of the line segment P1P2 and find the point where this bisector inter-
sects the x axis. Then, with the aid of the distance formula, determine x so
that the distance from (x,0) to Pl is equal to the distance from (x,0) to P2-

6 Find the center and radius of the circle having the equation

(x - 1) (x - 5) + (y + 4) (y - 2) =0.

Show that the center is the mid-point of the line segment joining the points
J(1,2) and B(5,-4).

7 Find the center and radius of the circle having the equation

(x-xl)(x-x2)+(Y-Yl)(Y-Y2)=0.

8 Show that the equation of the circle C with center at Po(xo,yo)
a can be put in the form

I

and radius

(x - Xo)(X - xo) + (y - yo)(y - yo) = a2
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and that the equation of the tangent to C at a pointPi(xi,yi) on C can be put in

the form
(xi - xo)(x - xo) + (Yi - yo)(y - Yo) = a2.

Hint: Draw a figure and notice that when x, 0 xo, we can calculate the slope of
the line PoP1 and use the fact (from plane geometry) that the tangent to C at
Pi is perpendicular to PoPI.

9 Show that the circle passing through the three points A(0,2), B(2,0), and
C(4,0) has its center at the point (3,3) and has radius. Hint: The per-
pendicular bisectors of the segments AB and BC are easily found, and their
intersection is the required center.

10 A circle passes through the points (0,7) and (0,9) and is tangent to the
x axis at a point on the negative x axis. Find the radius, center, and equation
of the circle.

11 Let 0 < a < b and find the radius r and center (h,k) of the circle which
passes through the points (0,a) and (0,b) and which is tangent to the x axis at a
point to the left of the origin. Ins.:

a + b a + br = 2 , h=-, k= 2

12 A circle has a diameter (line segment, not number) on the x axis. The
circle contains the two points (a,0) and (b,c) for which c 0 0. Show that b 0 a
and find the center of the circle. Ins.:

/b2 + c2 - a2
2(b - a) , 0

13 The points 11(- a,0) and B(a,0) are the ends of a diameter (line segment,
not number) of a circle of radius a having its center at the origin. Write and
simplify the equation which x and y must satisfy if A, B, and P(x,y) are vertices
of a right triangle the side AB of which is the hypotenuse.

14 An equilateral triangle has its center at the origin and has one vertex
at the point (a,0). Find the coordinates of the other vertices and check the
results by use of the distance formula.

15 Sketch a figure which shows whether there are values of y for which the
point (O,y) is equidistant from the points (-4,1) and (7,-2). Then attack the
problem analytically. Make everything check.

16 An equilateral triangle in the closed first quadrant has vertices at the
origin and at (a,0). Find the coordinates of the third vertex and the slopes of
the sides.

17 An isosceles triangle is placed upon a coordinate system in such a way
that its vertices are (-a,0) ,(a,0), and (0,b). Prove analytically that two of the
medians have equal lengths.

18 A triangle has vertices at A(-a,0), B(b,0), C(0,c). Prove that if the
medians drawn from A and B have equal lengths, then the triangle is isosceles.

19 Find the values of the constant b for which the line having the equation
y = 2x + b intersects the circle having the equation x2 + y2 = 25. Ins.:
IbI 5 -vrl-25.
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20 A triangle has vertices Pj(xi,yi), P2(x2,y2),
P3(xa,ya). Prove analytically that 4 times the sum of
the squares of the lengths of the medians is equal to
3 times the sum of the squares of the lengths of the
sides.

21 Discover for yourself that a part of a parabola
can be drawn with the aid of the right triangle (or
rectangle), string, and pin mechanism shown in Figure
1.492. A string of length ED has one end fastened
to the triangle at E and has the other end fastened to
a pin at the focus F. A pencil point at P keeps the
string taut, so FP = DP, and traces a part of the

D

Figure 1.492

parabola as the base of the triangle is moved along the directrix. Such con-
structions are taboo in the classical ruler-and-compass geometry of Euclid, but
in analytic geometry we can recognize the existence of all kinds of machinery.

22 Supposing that p > 0, find and simplify the equation of the parabola
whose focus is at the origin and whose directrix is the line having the equation

y = -p. t1ns.: y =
2

(x2 - p2). Remark: If we set k = 1/2p, then. the

equation takes the form y = k(x2 - 1/4k2). The parabolas obtained by taking
different values of p or k constitute a family of confocal parabolas; concentric
circles have the same center and confocal parabolas have the same focus.

23 Supposing that p < 0, find and simplify the equation of the parabola
whose focus is at the origin and whose directrix is the line having the equation
y= -p.

24 Supposing that p > 0, find and simplify the equation of the parabola
whose focus is at the origin and whose directrix is the line having the equation

x = P. .4ns.: x = Zp (y2 - p2).

25 Find the equation of the parabola whose focus is the point (12,0) and whose
directrix is the line having the equation x = -12. .Ans.: x = y2/48.

26 Supposing that k # 0, use the distance formula to obtain the equation
satisfied by the coordinates (x,y) of points P equidistant from the point F(xo,
yo + 1/4k) and the line L having the equation y = yo - 1/4k. Outline offsolu-
tion: A point P(x,y) lies on the parabola if and only if FP = DP, where D is the
point (x, yo - 1/4k). Writing FP and DP in terms of coordinates gives an
equation which reduces to (1.473).

27 Supposing that h > 0 and X > 1, find and simplify the equation satisfied
by the coordinates of the points P(x,y) whose distances from the point A(-h,0)
are X times their distances from the point B(h,0). Ans.:

\x X2

- 1 h\2 +
Y

2
X221 1 h)2.

28 Still supposing` that h > 0 and X > 1, show that the graph of the answer
to Problem 27 is a circle having its center at a point Po on the x axis. Find the
x coordinates of the points Pl and P2 where the circle intersects the x axis. Ans.:
See Figure 1.191, which displays the x coordinates of the points and shows their
correct positions relative to A, 0, B and to each other.
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29 From the first two of the equations

(1) x2+y2+ajx+bjy+c1 =0
(2) x2+y2+a2x+b2y+c2=0
(3) (a2 - a1)x + (b2 - bi)y + (c2 - c1) = 0

we can obtain the third by equating the left members of (1) and (2) and simpli-
fying the result. Supposing that the graphs of (1) and (2) are nonconcentric
circles, show that the graph of (3) is a line perpendicular to the line containing
the centers of the circles. Show also that if these circles intersect in one or two
points, then the line contains the point or points of intersection. Remark: The
line is called the radical axis of the circles, it being named because some people
want to talk about it.

30 The points PI(xl,yl), P2(x2,ys), and Ps(xa,ya) are, in positive or counter-
clockwise order, the vertices of an equilateral triangle. Find formulas which
express xs and ya in terms of the coordinates of PI and P2. Solution: While the
problem can be attacked in other ways, we eliminate difficulties involving order
relations by observing that if the half-line extending from PI through P2 makes
the angle 0 with the positive x axis, then the half-line extending from PI through
Ps makes the angle 9 + it/3 with the positive x axis. Let a be the lengths of
the sides of the equilateral triangle. The definitions of the trigonometric func-
tions then give

(1)

(2)

x2-xl=acos0, y2-yl=asin0
xa-x1 =acos(B+3) =Zacos8-23asin6

(3) ys - yI = asin (0+3)= 2 acos0+asin0.

In obtaining the latter formulas, we use the "addition formulas"

(4)

(5)

cos (0 + 95) = cos 0 cos 0 - sin 0 sin 4,
sin (0 + 0) = sin 0 cos ¢ + cos 0 sin 4)

and the values of the sine and cosine of r/3 which can be determined with the
aid of Figures 1.493. From (2), (3), and (1), we obtain the
answers

1

\\\\ (6) xs = xI +

2

(x2 - xl) - 2 (y2 - yI)

(7) y3 =y1+ 2 (x2-XI)+(y2-y1).

Figure 1.493

Remark: The points in the xy plane for which both coordi-
nates are integers are called lattice points. Our results
enable us to show very easily that triangles having vertices
at lattice points cannot be equilateral. To prove this, let an

equilateral triangle have two of its vertices, say PI and P2, at lattice points.
Then x1, x2, y1, y2 are integers and, since Nr3 is irrational, (6) shows that xs can-
not be an integer unless y2 = y1. If y2 = yI, we must have x2 0 x1, and then
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(7) shows that ys cannot be an integer. This shows that if two vertices of an
equilateral triangle are lattice points, then the third vertex cannot be a lattice
point.

31 Let n be a positive integer. Let ml, m2, , m,,, xi, x2,
yl, y2, , yn be numbers for which

(1)

Let

mi+m2+ ... +mn = M> O.

(2) z = maxi + m2x2 + + m
Y

= 1y1 + m2y2 + + mnYn
M

1

M

For each k = 1, 2, , n, let rk be the distance from (x,y) to (xk,yk) and let
dk be the distance from (z,y) to (xk,yk). A timid person may be comforted by
the special case in which n = 4, ml = m2 = ma = m4 = 1, and the points (xk,yk)
are the vertices (1,1), (-1,1), (-1,-1), (1,-1) of a square. Confining attention
to the special case if this be deemed desirable, prove that

(3) mlri + m2r2 + ... +mnrn = M[(x - z)2 + (Y Y)2]
+ midi + m2d2 + + mndn.

With the aid of this result, let I be a constant and describe the set of points (x,y)
for which

(4) miri + m2r2 + + mnrn = I.

32 Let Pi, P2, P3 have coordinates (xi,yi), (x2y2), (xa,ya), respectively. The
triangle inequality

(1) (xa - x1)2 + (ya - yi)2 (x2 - x1)2 + (y2 - yi)2
+1/(xa-x2)2+(Ya-Y2)

says that the distance fromP1 toPs is less than or equal to the sum of the distance
from Pi to P2 and the distance from P2 to P3. In more advanced mathematics,
analytic proofs of (1) and more or less similar inequalities are very important.
Show that setting

(2) ai = X2 - X1, a2 = Y2 - Y1, bi = xa - x2, b2 = Ya - y2

puts (1) in the more agreeable form

(3) v (ai + bi)2 + (a2 + b2)2 < V ai -f- a2 } b1 b2.

By squaring and simplifying, show that (3) holds if

(4) laibi + aabaj < Vai + a2 bi b2.

By squaring and simplifying again, show that (4) holds if

(5) 0 < (aib2 - a2b1)2.
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Finally, tell why (5) must hold. Remark: In order to appreciate the significance
of this work, we must do a little thinking about "elementary" mathematics.
It is sometimes said that a straight line is the shortest distance between two points.
If this silly collection of words means anything it means that the length (a num-
ber) of the line segment (a point set) joining two points P1 and P2 is less than the
length (a number) of each other path (a point set) joining P1 and P2. We must
study more mathematics before we can learn what we mean by a path joining
Pi and P2 and what we mean by the length of such a path. In some parts of
"advanced" mathematics, the multifarious axioms of Euclid and the theorem
of Pythagoras are bypassed and the number d in the formula

d = (x2 - x1)2 + (y2 - y1)2

is defined to be the distance (in Euclid space of two dimensions) between the
two points P1(x1iy1) and P2(x2,y2). It is useful as well as possible to define d by
other formulas to obtain spaces that are not Euclid spaces. In such situations
it is necessary to use analytical methods instead of geometrical methods to
determine whether triangle inequalities hold.

33 Four numbers all, all, all, and all determine the equations

(1) x'=a11x+a12y
Y' = a21x + a22y

into which we can substitute the coordinates of a given point (x,y) to obtain the
coordinates of a transform, or transformed point, (x',y'). Supposing that (x1,y1)
and (x2,y2) are two given points and that D is the distance between their trans-
forms (xl, yl) and (x2i y2), find D2. Ans.:

(2) D2 = (ail + a21)(x2 - x1)2 + (ail + a22)(Y2 - y1)2
+ 2(ana12 + a21a22)(x2 - x1)(Y2 - y1)

Remark: The transformer is called isometric if the distance d between two points
is always the same as the distance D between their transforms. If the trans-
former is isometric, we can put x2 - xl = 1 and y2 - y1 = 0 to obtain

(3) ail + a21 = 1,

we can put x2 - x1 = 0 and y2 - y1 = 1 to obtain

(4) ail + a22 = 1,

and we can put x2 - x1 = 1 and y2 - y1 = 1 and use (3) and (4) to obtain

(5) a11a12 + a21a22 = 0.

On the other hand, if (3), (4), and (5) hold, then (2) shows that the transformer
is isometric.

34 Supposing that the first of the two equations

(1) Ix+By= - C, Bx - Xy = Bxo - Iyo

is the equation of a given line L and that Po(xo,yo) is a given point, find the
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equation of the line through Po perpendicular to L and show that it is equivalent
to the second of the two equations. Solve these equations to find that the
coordinates xl, yl of the foot P, of the perpendicular from Po to L are

(2)

Show that

B2xo - .4Byo - 14C f12yo - f4Bxo - BCxl = Z2 + B2 yl = 42 + B2

(3) xi - xo =
72

+B2 (Axo + Byo + C),

Yi - yo = J2 +
B2

(Axo + Byo + C).

Finally, use the fact that the distance d from Po to L is the distance from Po to
P, to obtain the formula

(4)
d=(Axo+Byo+CI

. /42 + B2

1.5 Equations, statements, and graphs The equation y = x + 2
can be regarded as a statement that is true for some pairs of values of x
and y, for example, x = 3, y = 5, and is false for some other pairs of
values of x and y, for example, x = 7, y = 7. A similar remark applies
to each of the equations x2 + y2 = 4, Ox + Oy = 1, and Ox + Oy = 0,
and to each of the inequalities 0 < x < 1, y < x, and x2 + y2 < 1.
Each is a statement that is true for some (or none or all) pairs of values
of x and y and is false for the remaining ones. The graph of such a state-
ment is the set or collection of points P(x,y) whose coordinates are pairs
of values of x and y for which the statement is true. For example, the
graph of the statement (or equation) y = x is a line L. We can always
know that there is a substantial difference between an equation (or state-
ment) and its graph (a point set). Hence, we may be carrying abbrevi-
ation of language a bit too far when we sometimes follow the old and mis-
leading custom of referring to "the line y = x" instead of to "the line
having the equation y = x." In any case, we should think about this
matter enough to know that we are introducing analytic geometry and
hopefully trying to make sense out of nonsense if we receive a mysterious
order to "find the part of y = x in x2 + y2 = 1" and proceed to find the
length of the part of the line having the equation y = x which lies inside
the circle having the equation x2 + y2 = 1.t

Most of the graphs that appear in our work are graphs of equations.
However, graphs of inequalities can be important, and we look at some
simple examples. The graph of the inequality xy > 0 consists of those
points P(x,y) in the first quadrant (where x and y are both positive)

t Persons who start picking up clear ideas about these things may even enjoy studying
statements and sets in mathematical logic and elsewhere.
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together with those in the third quadrant (where x and y are both nega-
tive); see Figure 1.51. The graph of the inequality y < x consists of
those points P(x,y) which lie on and below the line y = x of Figure 1.52.

x<O, y>O

B

III

x<O, y<O

Y

x>O, y>O

I

IV x

x>O,y<O

Figure 1.51

Figure 1.53

Y

x

Figure 1.52

Figure 1.54

The graph of the inequality x2 + y2 < 1 consists of the points inside the
circle with center at the origin and unit radius. This set of points is
often called the unit disk; see Figure 1.53. The graph of the inequality

Y

(-x,y) 4

-3 -2 -1

Figure 1.55
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Figure 1.56

3 x

1 < x2 + y2 < 4 is the set of points in the annulus or ring between two
circles; see Figure 1.54.

The equation y = x2 is, as we saw in Section 1.4, the equation of a
parabola. After plotting the points whose coordinates appear in the table
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x

Y

0

0

±1T

1
TW

+1

1
T

±1

1

± 43

I

±2 ± ±3

9

we are easily led to the correct conclusion that the graph of y = x2 is the
curve shown in Figure 1.55. It should be noted that the graph contains
no point (x,y) for which y < 0; if y < 0, there is no x for which y = x2.
The y axis is an axis of symmetry of the graph, because if (x,y) is a point
on the graph, then the point (-x,y) is also on the graph.

The graph of the equivalent equations

(1.561) xy = 1, 1
Y

x

is more complex. As we shall see later, the graph is a rectangular
hyperbola. It is easy to add more items to the table

x

Y

1

10

1
T 2 101

12
1

and to sketch the part of the graph to the right of they axis in Figure 1.56.
A similar table in which x and y are both negative enables us to sketch
the part lying to the left of the y axis. The graph contains no point (x,y)
for which x = 0 or y = 0. The x and y axes are not axes of symmetry,
but the origin is a center of symmetry, because if (x,y) is a point on the
graph, then the point (-x,-y) is also on the graph.

The symbol [x] represents, when we are properly warned, the greatest
integer in x, that is, the greatest integer n for which n < x. Thus
[1.99] = 1, [3.14] = 3, [0.25] = 0, [-0.25] = -1, [-3.01] = -4, and
[2] = 2. It is not difficult to show that the graphs of y = [x] and of the
saw-tooth function y = x - [x] - have the forms shown in Figures
1.57 and 1.571.

Trigonometric functions will appear very often in our work, and there
will be very many times when we must know the natures of the graphs of

Figure 1.57

-3 -2

y
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-1

2

1

O
-2

0

1 2 3 4 x

Figure 1.571
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Figure 1.58

Analytic geometry in two dimensions

y = sin x and y = cos x. The graphs are shown in Figure 1.58. We
must always know that, except at the points of tangency, the graphs lie
between the lines having the equations y = -1 and y = 1. Moreover,
7 is a little bit greater than 3, and this must be fully recognized when the
graphs are sketched. When we want to sketch the graphs, the first step
is to draw guide lines one unit above and one unit below the x axis. The
next step is to hop three units and a bit more to the right of the origin to
mark a, and make another such hop to mark 2a. We must be able to do
this and sketch reasonably accurate graphs of y = sin x and y = cos x
in a few seconds, and we must be able to look at the graphs and see
answers to trigonometric questions just as we look at dogs and see answers
to questions about canine structure. We cannot tolerate doubts about
the assertions sin 0 = 0, cos 0 = 1, sin a/2 = 1, cos 7r/2 = 0, and dogs
have two ears. The table on the back cover of this book can be used to
produce very accurate graphs, but this is seldom necessary.

Finally, we are never too young to be informed that substantial parts
of scientific lives are devoted to learning about and using equations akin
toy = e and y = log x. Graphs of these equations are shown in Figures
1.581 and 1.582. The exponentials and logarithms have base e, and e is a
number that we shall encounter very often. Here again the tables on the
back cover of this book can be used. While we should have basic informa-
tion about graphs before we start our study of functions, limits, and the

Figure 1.581 Figure 1.582

61Y

4 2

y

a

2
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calculus, most of our work with equations and graphs will be done with
the aid of the calculus.

Problems 1.59
Sketch graphs of the following equations and inequalities:

1 yx 2 x0 3 y0
4 y=(x-1)2 5 y=(x+1)2 6 y=x37 y=1+x 8 y=1+x2 9xy=-1

10 1 11 1 1y+x y(1+x)2 12 y1+x2
x 1

113 y 14 += 15 I+x2 xy y=x -
16 y=IxI 17 y=Ix-2I 18 y= (x+IxI)
19 0<x<1 20 0<y<1 21 0<x+y<1
22 Ixl<1 23 Ix-2I< 24 <x<
25 y < x2 26 lyi < Ixi 27 Iyi < x2
28 lxi + IyI 29 IxI + IYI < 1 30 Ixi + IYI > 1

31 With Figure 1.58 out of sight, sketch graphs of y = sin x and y = cos x.
If unsuccessful, glance at Figure 1.58 and try again.

32 Figure 1.591, which features half of an equilateral triangle each side of
which has length 2, shows that

r 1
sin

6 = 2' cos
6

= 2 sin 3 = 2 cos 3 = i AI %\\

\Cultivate the ability to sketch this figure quickly. Use the I \
information obtained from it to locate points on the graphs a
or y = sin x ana y = cos x. sketch a right triangle in 1

which each leg has unit length and obtain more points on Figure 1.591
the graphs. Finally, sketch graphs of y = sin x and
y = cos x again. Remark: We need familiarity with our graphs, and we need
confidence in them.
33 Sketch graphs of

(a) y = 3 sin x (b) y = sin 2x (c) y = sin (x + 2)

Remark: Graphs of equations of the form y = E sin (wx + a) are called sinusoids,
and we hear very often that E is the amplitude, w is the angular frequency, and
a is the phase angle of the sinusoid.

34 Where are the points (x,y) for which 0 5 x S 2ir and sin x 5 y S cos x?
35 Supposing that h 0 0, find the slope m of the secant line (or chord)

containing the two points of the graph of the equation y = x2 having x coordi-
nates xl and xl + It. 11ns.: 2xi + h.

36 It is sometimes quite important to have correct information about the
graphs of y = x8 and y = xK Sketch the graphs over the interval -2 5 x 5 2.
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37 With the aid of the quadratic formula, show that the point (x,y) lies on
the graph of the equation x2 + xy + y2 = 3 if and only if -2 5 x 5 2 and y

is one of the two numbers
y

Figure 1.592

-x - 3(4 - x2) -x -{- 1/3(4 - x2)
2 2

which are equal only when x = -2 and when x = 2.
Formulate and prove an analogous statement in which
the roles of x and y are interchanged. Find the coordi-
nates of the eight points in which the graph intersects the
lines having the equations x = -2, x = 2, y = -2,
y = 2, y = x, and y = -x. Remark: The graph is an

oval which is shown in Figure 1.592 and which is, as Chapter 6 will show us, an
ellipse.

38 Sketch a graph of y = sin x over the interval 0 5 x <= 2ir and then, with
the aid of simple arithmetic facts like 02 = 0, (0.4)2 = 0.16, (0.8)2 = 0.64, use
the result to obtain a graph of y = sine x.

39 Sketch graphs of y = cos 2x and y = (1 - cos 2x)/2. Remark: Because
of the trigonometric identity

1 - cos 2x
sine x = 2

the answers to this and the preceding problem are the same.
40 Perhaps the classic guns-and-butter interpretation of the formula

x+y=M
should not be overlooked. It is supposed that a chief has control of M man-
hours of human energy. The chief may preempt x man-hours to provide pressure
and power to keep his subjects in line and to preserve or extend his authority.
Then, even when x = M and y = 0, there remain y man-hours part of which
may be used for production of food, shelter, education, and sundries. Sketch
a graph which shows how x and y are related. Hint: Do not ignore the basic
idea that x > 0 and y 0.

41 Sketch graphs of the three equations = lx-, y = x, y2 = x2 and
make some relevant comments.

42 Let a > 0. Show that the equation

(1)

holds if and only if 0 5 x 5 a and

(2) y = (1/a - \/ x)2 = a -f- x - 2 1'-a-x.

Without making onerous calculations, sketch rough graphs of (1), (2),

(3)

and

(4)

y = a + x + 2 1/ax,

(y-a-x)2=4ax.
Remark: Chapter 6 will reveal the fact that the graph of (4) is a parabola. The
graphs of (1), (2), and (3) are parts (subsets) of the parabola.
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43 Let us suppose that a man who marries should select for his wife a woman
whose age is 10 years more than half his age. Construct a graph for use of
bachelors who are accustomed to picking information from graphs in the Wall
Street journal and everywhere else but are unaccustomed to making abstruse
mathematical calculations.

44 Let time t be measured in seconds so that, as we can see by replacing x
by t in Figure 1.58, sin i increases from 0 to 1 and decreases back to 0 in 7r (about
3) seconds. If you can acquire the ability to move your pencil point in the xy
plane in such a way that its coordinates (x,y) at time t are x = sin t and y =
Isin ti, you will get a V for victory.

1.6 Introduction to velocity and acceleration Teachers of mathe-
matics and physics are accustomed to difficulties involved in correlating
studies of graphs, vectors, velocities, and accelerations in mathematics to
studies of diagrams, forces, velocities, and accelerations in physics.
There is a reason why it is not easy to achieve complete correlation. In
order to be able to solve just one of his easiest problems involving motion
of a body or particle, a physics student requires a little information about
several basic concepts. This section is introduced at the end of our first
chapter because it may be a desirable or even necessary part of some
educational programs. Students can be advised to read it to obtain
preliminary ideas about their external world but, so far as this course is
concerned, can be advised to postpone the learning of the mathematics in
it. Some and perhaps most teachers will proceed directly to the next
chapter and will devote a classroom hour to this section only if and when
their students face the prospect of studying falling bodies in their physics
courses before they encounter derivatives and integrals in their mathe-
matics courses. The next chapter, Chapter 2, treats vectors in space of
three as well as fewer dimensions. While physicists can regret that this
delays our full treatment of velocities and accelerations, they can also
rejoice in the fact that the delay permits production of a much more use-
ful treatment of the matter.f

As the preface states, the first third of this book contains all or nearly
all of the analytic geometry and calculus that students normally encounter
in their introductory full-year college and university courses in physics.
In a few weeks, formulas like

(1.611) s =

2

gtz + vot + so

(1.612) vdt=gt+vo
(1.613)

d
a = da

d'ate _ g

t This is a very conservative statement. Vectors, like numbers, are important things
and there are many reasons why they should be encountered early and frequently when
geometry and calculus are studied.



42 Analytic geometry in two dimensions

will be completely familiar and meaningful to us. Meanwhile, we make a
preliminary study of ways in which they are related to experiments
involving falling bodies. Chapters 3 and 4 will give much less informa-
tion about the physics experiments but much more information about

the mathematics.
-3 Suppose we have, as in Figure 1.62, a vertical s axis with
-2 the positive s axis below the origin. For laboratory experi-
-1 ments, we can place one meter stick above another and

° place minus signs in front of the numbers on the upper
1
2 stick. We can suppose that a body is, at time t = 0,
3 falling or just being dropped so that it travels past the

s markings on our meter sticks with increasing rapidity as

Figure 1.62 time passes. On the other hand, we can suppose that the
body is rising at time t = 0 so that it rises for a while

before it begins its descent. We may suppose that distances are meas-
ured in centimeters, so that s = 20 when the body is 20 centimeters
below the origin, and that t is measured in seconds, so that t = 0.5 when a
timing device shows a half-second after our time origin or zero-hour.

Anyone who tosses a body upward and observes the ensuing motion
must realize that it is not an easy matter to use an ordinary clock to
obtain accurate data giving the coordinate s of the body at various times
t. While solid information about such matters must be obtained from
physicists, we can all recognize the possibility of getting useful data with
the aid of apparatus so arranged that at each of the times t = 0, t = 0.01,
t = 0.02, t = 0.03, an electric spark jumps from a pointer on the

falling body to burn a tiny hole in a long strip of
paper attached to the meter sticks. When enough
reasonably accurate information has been obtained

(12,82) in one way or another, we can use it to plot points
(t,s) in a is plane and obtain a graph more or less
like that shown in Figure 1.63. For each t within
the domain for which measurements are made,0 " tl tz t the s coordinate of the point P(t,s) on our graph is

Figure 1.63 a more or less good approximation to the coordi-
nate or displacement of the body at time t.

Some information should be in hand when we undertake to use our data
and graph to obtain information about our falling body. Without pre-
tending to have precise ideas yet, we can start with the rough idea that
forces and velocities and accelerations exist and that these things are
vectors or are represented by vectors. The reason our falling body
plummets toward the center of the earth, with speed increasing when it is
headed downward, is that the earth exerts a gravitational force upon it.
The magnitude of this force is the weight of the body. Since we find no
perceptible change in the weight of a body when we raise or lower it a few
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meters, we conclude that, so far as our problem is concerned, the mag-
nitude of the gravitational force may be considered to be a constant, that
is, the same at all places on our meter sticks. We can know that air
resistance retards the motion of moving bodies but, when heavy bodies
fall only a few meters, this produces consequences so small that our
measurements are unaffected. Thus, so far as our measurements can
tell, we are investigating the motion of a body which moves on a line
through the center of the earth with only a constant gravitational force
acting upon it.

In what follows, vectors are denoted by boldface letters as they usually
are in printed scientific works.t Study of physics books or the next
chapter reveals the meaning of the statement that the gravitational force
F which the earth exerts upon our falling body is mgu, where in is a
positive number (the mass of the body), g is a positive number (the scalar
acceleration of gravity), and u is a unit vector which lies on the line along
which our body falls and is directed toward the center of the earth. The
velocity V and the acceleration a of our falling body are vectors, but they
are representable in the form v = vu and a = au, where v and a are real
numbers that are not vectors and are sometimes called scalars to empha-
size the fact that they are not vectors. Thus v is not a velocity, but it is
the scalar component of a velocity. We call v a scalar velocity. Similarly,
a is a scalar acceleration.

Fortified by at least a hazy understanding of the significance of our
problem, we use experimental data of a table or of Figure 1.63 to learn
about the scalar velocity v and the scalar acceleration a of our body. Let
tl and t2 be two different times and let sl and s2 be the displacements of our
body at these times. As the formula

(1.64)
S2 - Sl
t2 - ti

= average scalar velocity

indicates, the quotient on the left is called the average scalar velocity of our
body over the time interval from the lesser to the greater of ti and t2.
In case tl < t2 and si < S2, the quotient in (1.64) has a very familiar form.
Except that the units may be different, the quotient is a positive number
of miles divided by a positive number of hours and hence is a number of
miles per hour that we normally call an average speed instead of an

t We pause to observe that boldface letters cannot be conveniently made with pencils,
pens, crayons, and typewriters, and that a vector F (boldface) is often denoted by F.
Readers are advised to look at F (boldface) and imagine that there is an arrow on top of it
so they will, in effect, see the F which they write when they want to emphasize the fact
that the symbol is (or represents) a vector. Thus the formula F = ma becomes F = ma
when it is transferred from printed material to handwritten hieroglyphics. Sometimes the
arrows are printed to remove the necessity for use of imaginations, but we can, in effect,
be paid for using our imaginations because printing the arrows increases costs of books.
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average scalar velocity. After appropriate preliminary topics have been
studied, Chapter 3 will tell precisely how the velocity V and the scalar
velocity v at time t are defined. It turns out that the scalar velocity v

and a number d, called the derivative of s with respect to t, are equal to

each other and, moreover, that the quotient in (1.64) is nearly equal to

v and dt whenever ti = t and t2 is nearly equal to t but t2 s t. To obtain

an estimate of the scalar velocity v at a particular time t from experimental
data, which may be presented in a graph, it therefore suffices to calculate
and use the average scalar velocity over a short time interval beginning
or ending at t. Use of experimental data for this purpose is rendered
difficult by the fact that, when tl and t2 are nearly equal, small relative
errors in measurements can produce huge errors in estimates of the value

Figure 1.65

of the quotient (s2 - sl)/(t2 - t1). It is a truly
remarkable fact that when reasonably accurate
data are collected and intelligently used, it is pos-
sible to estimate v for various values of t and to
find that the points (t,v) in a tv plane come so close
to lying on a line that all of the deviations can be
attributed to errors in measurement and calcula-
tion. Thus our experimental work leads to the con-
clusion that, as in Figure 1.65, the graph of v versus t
is either a part of a line or a very close approxima-
tion to a part of a line.

The scalar acceleration a of our falling body is defined in terms of the
scalar velocity v in the same way that the scalar velocity v is defined in
terms of the scalar displacement s. Thus, in addition to the basic
formula (1.64), we have the basic formula

(1.66)
t2 - tl

= average scalar acceleration

in which vl and v2 are the scalar velocities at times tl and t2. The scalar

acceleration a at time t and the derivative dt are equal to each other and,

moreover, the quotient in (1.66) is nearly equal to a and to dt whenever

t1 = t and t2 is nearly equal to t but t2 0 t. On the basis of the assump-
tion that the graph of v versus t is a part of a line as in Figure 1.65, the
average scalar acceleration is the slope ml of the part of the line. The
hypothesis that each average scalar acceleration is the constant m1 leads
to the conclusion that, at each time t, the scalar acceleration is ml; that
is, a = ml. Calculations from reasonably accurate data show that ml
is about 980 when centimeters and seconds are used and about 32 when
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feet and seconds are used. This number ml is the gravitational constant
g to which we have referred.

The simplest reasonable conclusion that can be drawn from data
involving falling bodies is the following. To each place on the surface of
the earth there corresponds a positive constant g, the scalar acceleration
of gravity at that place, such that when a body moves on a vertical line
near the surface of the earth with no appreciable external force other than
the gravitational force exerted upon it, reasonable answers to problems
can be based upon the assumption that the body is accelerated toward the
center of the earth and that the scalar acceleration is g. Another similar
but more lengthy conclusion involves the idea that the graph of v versus t
is a line and that reasonable results are obtainable from the formula
v = gt + vo, where vo is a particular constant that depends upon choice of
the time-origin used when studying a particular flight. Finally, it is
possible to use the data and quite primitive mathematics to reach the
more abstruse conclusion that there exist constants g, vo, and so, the latter
two of which depend upon the time-origin and the space-origin used in the
study of a particular flight, such that reasonable results are obtainable from
(1.611). A campaign to reach this conclusion can start with the observa-
tion that the graph in Figure 1.63 does look like a part of a parabola.

Mathematicians do not, except when they are behaving like physicists,
actually perform physical experiments. Mathematicians cannot, unless
they have physical laws or other information upon which proofs can be
based, prove the formulas that are useful in mechanical dynamics and
thermodynamics and hydrodynamics and aerodynamics and electro-
dynamics and economics and psychology and genetics and chemistry and
cosmology. But mathematicians can, when they are given a few weeks,
learn enough about derivatives and other things to enable them to start
with given information and produce more information with astonishing
ease. One who knows the content of Chapter 3 can start with the first
of the three formulas

(1.671) s =
2

gt2 + vot + so

(1.672) v =
dt

= gt + vo

d's
(1673) a=7=-t

dt2 _ g

and produce the other two as fast as he can write. All he needs to do is
apply standard rules for writing derivatives. The problems at the end of
this section provide preliminary ideas about this matter. It is much
more significant that one who knows the content of Chapter 4 can start
with the last of the formulas and produce the other two as fast as he can
write. All he needs to do is apply standard rules for writing integrals.
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The physical significance of the constants in (1.671), (1.672), and
(1.673) is worthy of notice. As we see by putting t = 0 in (1.671), so is
the value of s (the displacement) when t = 0, so so is called the initial
displacement. As we see by putting t = 0 in (1.672), vo is the scalar
velocity when t = 0, so vo is called the initial scalar velocity. It is easily
seen from (1.672) that v = 0 when t = -vo/g. The values (if any) of t
for which s = 0 can be obtained by putting s = 0 in (1.671) and solving
the resulting quadratic equation for t. In many applications, the space
and time coordinates are so chosen that the initial displacement so and
initial velocity vo are both 0. In this case (1.671) reduces to the simpler
formula

(1.674)

The related formulas

(1.675)

S = 1 gt2.

g

which give the time required for the body to fall a distance s and the speed
attained when the body has fallen a distances, are often useful.

We conclude with a remark about uniform circular motion. Suppose a
particle starts at time t = 0 on the positive x axis and moves, with angular
speed w (omega) radians per second, in the positive (counterclockwise)
direction around the circle of radius R having its center at the origin.
Letting r denote the vector running from the origin to the particle P
at time t gives the first of the formulas

(1.681) r = R( cos wti + sin wtj)
(1.682) v = wR(-sin wti + cos wtj)
(1.683) a = -w2R( cos wti + sin wtj)

where, as in Figure 1.684, i and j are unit vectors having the directions of

Figure 1.684

the positive x and y axes. Application of rules of Chapter 3 then gives
(1.682) and (1.683) as rapidly as we can write them. Looking at (1.681)
and (1.683) shows that a = -w2r and hence that P is always accelerated
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toward the center. The length of the vector r is always R, and the length
of the vector a is always OR. This shows that the magnitude of the
acceleration is always w2R. These results are important in physics and
engineering. Physics books that do not make effective use of good
mathematics do not derive their results so efficiently.

Problems 1.69
1 Supposing that g, eo, and so are constants and that

(1) s = -gt2 +
Sot + so

at each time t, use notation like that in (1.64), so that s = sl when t
s = s2 when t = t2, to obtain the formula

+(2) s2 - Sl = 'lEg (t2 - ti) + vo(t2 - tl)

and hence

(3)
s2-sl

= -'g(t2 + ti) + sot2 - tl

= to and

when to 0 to. Remark: Even though we have not yet encountered procedures by
which such statements are made precise, we can temporarily accept without
question the statement that the right side of (3) must be near gt + so whenever
tl and t2 are both near t and hence that

(4)

2

(1)

V=gt+Vo.

Supposing that g and 9o are constants such that

V = gt + no

at each time t, use notation like that in (1.66), so that v = vi when t = tl and
9 = 92 when t = t2, to obtain the formula

(2)

and hence

(3)
to - tl

when t2 0 t1. Remark: A remark similar to that of the preceding problem is
applicable here; the scalar acceleration a at time t is g.

3 We should now be well aware of the fact that Problems 9.29 will appear at
the end of Chapter 9, Section 2. While the trick is not used in this book, we can
use the numbers 9.2908 and 9.2922 to identify problems 8 and 22 of Problems9.29.

Now comes the problem. Write a single number to identify formula 15 of Prob-
lem 4 at the end of Section 6 of Chapter 12. Ins.: 12.690415. Persons who feel
that this trick is complicated should think about the matter to capture some of the
spirit of members of a research staff of a data processing department of IBM
(International Business Machine Corporation) who find that such tricks keep
them in business.

92-ti1 = g(t2 - tl)

- g



2 Vectors and geometry

in three dimensions

2.1 Vectors in E3 To facilitate discussions and solutions of problems
in geometry and calculus, and for many other purposes in pure and
applied mathematics, it is necessary to know about things called vectors.
All points and vectors with which we are concerned are supposed to lie in
ordinary Euclid space E3 of three dimensions in which such things as
points, lines, planes, cubes, spheres, and automobiles can exist. The
definitions of this section do not depend upon a coordinate system and are
therefore said to be intrinsic definitions. We shall hear more about this
matter later.

Before introducing vectors, we observe the familiar fact that two
distinct (that is, different) points P, and P2 determine the line P1P2 which
passes through P1 and P2 and extends beyond P1 and P2 in two directions
as in Figure 2.11. Vectors are more like line segments than like lines.
An ordered pairP1,P2 of distinct points, in which P1 and P2 are respectively
the first point and the second point in the pair, determines the vector PiP2
or "arrow" or "directed line segment" which runs (or extends) from the
48
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first point to the second point as in Figure 2.111. The purpose of the
arrowhead is to show that the vector runs from P1 to P2. The vector
shown in Figure 2.112 is not P1P2, but is P2P1 The length (or magnitude)
JP1P2I of a vector P,P2 is the length of the line segment upon which it lies,
that is, the distance between the points P, and P2. If P2 and P1 coincide,
that is, P2 = P1, the points do not determine a line but they do determine
the vector P1P2, which has length 0 and which is called the zero vector.

1 P,

Figure 2.11 Figure 2.111 Figure 2.112 Figure 2.113

As indicated in Figure 2.113, vectors are often denoted by boldface
letters which keep us informed that the symbols represent vectors rather
than numbers or chemical elements. Thus we can set u = P1P2 and
v = P,P.. Two nonzero vectors u and v are said to be equal, and we
write u = v when, as in Figure 2.113, they (i) lie on parallel lines, (ii) have
equal lengths, and (iii) have the same (not opposite) directions. Two
zero vectors uo and vo do not have directions, but we say that uo = vo
anyway. If u is a nonzero vector and v is a zero vector, then u P& v.
We use the ordinary 0 (zero) to denote the zero vector; it turns out that
we will not need an arrow or distinctive type face to tell us whether 0 is the
number zero or a vector having length zero. The advice given in a the
footnote on page 41 merits repetition here. Whenever we see F(boldface)
or any other letter that is boldface, we recognize that it is a vector and
imagine that there is an arrow above it so that we, in effect, see the sym-
bols F, u, etcetera, that are made by pencils, pens, and chalk. Thus our
imaginations convert what we see into what we write, and the disadvan-
tage of boldface print has disappeared.

It is both interesting and important to know what is meant by the
product kv of a number (real number or scalar) k and a vector v and by the
sum u + v of two vectors. The definitions will imply validity of the
formula 2u = u + u as well as other useful formulas. In case k = 0 or
v = 0 or both, the product kv is the zero vector, that is, kv = 0. In case
k 96 0 and v ;-d 0, the vector kv is a vector such that (i) v and kv lie on the
same or parallel lines, (ii) the length of kv is Iki jvi, and
(iii) v and kv have the same direction if k > 0 and oppo-
site directions if k < 0. Figure 2.12 shows examples.
This definition implies that if v is a nonzero vector, Vthen the unit vector (vector one unit long) in the direc-
tion of v is (1/Ivj)v or v/lvl.

Figure 2.12
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The sum r of two vectors u and v is,*s-in-Figttre-2-4-3, the vector which
runs from the tail of u to the head of v when the tail of v is placed at the

Figure 2.13

nl

Figure 2.131

head of u. The figure shows that
v + u = u + v. Because the sum
of two vectors is, as in Figure 2.13,
the diagonal of a parallelogram, the
rule (or law) for addition of vectors
is called the parallelogram law. Fig-
ure 2.131 shows the sum r of four
vectors u1, u2, ua, n4. In applied
mathematics the sum of two or more

vectors is sometimes called their resultant.
The difference u - v is defined to be the sum of u and -v, so that

u-v

Figure 2.14

u - v = u + (-v). The most obvious way to find
u - v is to find -v and add it to U. In substantially
all cases, it is quicker, easier, and more useful to observe
that u - v is the vector which we must add to v to
obtain the sum u. When the tails of u and v coincide,
the vector u - v runs from the head of v to the head of u.
It is worthwhile to look at the italicized statement and
Figure 2.14 until both are thoroughly understood and

remembered. The figure clearly says that

(2.141) u= v+ (U -V).

Since angles between vectors can be sources of confusion and mis-
understanding, we give a little careful attention to the subject. In case
one or the other of two vectors has length 0, there is no reasonable way to
determine an angle that should be called the angle between them, and we
say that the angle is undetermined or undefined. Two sharpened pencils

intersect, we can choose any point 0 in E3 and replace
the vectors by equal vectors having their tails at 0
as in Figure 2.15. Suppose first that these vectors u

of positive length represent vectors in the directions
of their sharpened tips. In case these vectors do not

o- and v have neither the same nor opposite directions.
Figure 2.15 These vectors then determine the plane in which they

lie. The angle 0 is determined by the method used in
trigonometry to introduce radian measure. The first step is to draw, in
the plane of the vectors, a circle of radius a with center atO and to find the
length s of the shorter of the two arcs into which the vectors cut the circle.
The number 0 defined by

length of arc(2.151) 0 = s
or angle =

a radius
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is called the angle between u and v or the angle which u makes with v or the
angle which v makes with u. Thus angles are numbers.t If u and v have
the same (or opposite) directions, slight modifications of the above con-
struction give s = 0 (or s = ua) and the same formula (2.151) is used to
define 0. In each case we have 0 < s 5 tra, and hence 0 < 0 5 jr.
When working with angles between vectors, we never have to bother with
"negative angles" and "angles greater than straight angles." For
perpendicular vectors, we have 0 = it/2. We, like electronic computers
and some trigonometric tables, use radian measure and seldom bother
with degrees, minutes, and seconds.

The remainder of the text (not problems) of this section gives basic
information about products of vectors. The importance of the material
will be revealed later in this book and by textbooks in other subjects in
pure and applied mathematics. It is not necessary to presume that the
material is difficult. In fact, students who do not have the good fortune
to study this material calmly in mathematics sometimes find that their
teachers in physics and engineering undertake to teach all of it in a few
seconds.

There are two different kinds of elementary products of vectors u and v
that turn out to be interesting and useful. These are the scalar product
(or dot product) defined by the formula

(2.16) Jul IvI cos 0

and the vector product (or cross product) defined by the formula

(2.17) u X V = Jul Jvi sin on.

These formulas will now be discussed. If u = 0 or v = 0 or both, the
angle 0 appearing in the formulas is not determined by u and v, but the
products u X v are defined
to be 0 anyway. Henceforth, we
consider cases in which Jul > 0 and
Jvi > 0, these being the lengths of u
and v. Then, as in Figures 2.18 and
2.181, the two vectors determine an
angle 0 for which 0 5 0 5 r. In case
0 5 0 5 7/2, the number lvi cos 0

Figure 2.18 Figure 2.181

is the length of the projection of the vector v on the vector u and the
scalar product is therefore the product of the length of u and the length

t Dictionaries convey assorted ideas akin to the ideas that an angle is the "enclosed space"
or "corner" or "opening" near the point where two intersecting lines meet. While we need
not expect to be injured by conflicting meanings of the word angle, we can use the term
"geometric angle B" to signify the "opening" between the two vectors of Figure 2.15. The
number B is then a measure of the size of the geometric angle 0, and we have satisfactory
but somewhat awkward terminology.
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of the projection of V on u. In case -Ir/2 < 0 < in, the scalar product is the
negative of this number. The definition of implies that 0 if
and only if cos B = 0. Thus 0 if and only if u and v are orthogonal
(that is, perpendicular to each other). Those who are or want to be con-
versant with principles of physics can note that if a particle P moves from
the tail to the head of the vector u with the constant force v acting upon P
during the motion, then is the work done by the force during the motion.

Referring to Figure 2.181, we can see that if u and v are collinear
vectors (vectors which lie on the same line), then 0 is 0 or in, so sin 0 = 0.
In this case the vector n of the formula (2.17) is not determined, but
u X v is defined to be 0 anyway. Henceforth, we suppose that 0 <
B < ir. In this case, the vector n is the unit normal to the plane of u and
v which is determined by the right-hand rule. A right hand is so placed
that the thumb is perpendicular to the plane of u and v and the fingers are
parallel to this plane and point in the direction that a line rotates in passing
over the geometric angle 0 from u to v (not v to u). The unit normal n
is then the vector which has the direction of the thumb and which is one
unit long. From Figure 2.181 we see that lvJ sin 0 is the altitude of the
triangle of which the vectors u and v form two sides. It follows from
(2.17) that u X v = 2An, where A is the area of this triangle. It must
always be remembered that the vector product u x v is a vector which,
when it is not 0, has the direction of the thumb when the right-hand rule
is applied. Moreover, it is necessary to observe and remember that,
except when u x v = 0, the vector v x u is not the same as the vector
u x v. After having found u X v by the right-hand rule, we must flip
the hand over so that the thumb points in the opposite direction to find
v x u, and it follows that

(2.182) v X u = -u X V.

Anyone can attain complete understanding of these matters by making a
few experiments in which two pencils (representing vectors) are held in
the left hand while the right hand is used to determine the direction of
their vector product. While vector products appear infrequently in this
book, they have many important applications.

Finally, we call attention to some simple formulas that are easy to use
but are not so easy to prove. The basic formula, which is proved in
Problem 17 below, is

(2.183) (u1 + v2) = ur(v1 + v2) + v2)
u1*v1 + u1'v2 +

Analogous formulas hold when the parentheses in the left member contain
sums of more than two vectors. Moreover, correct formulas are obtained
by replacing the dots by crosses. Proofs of this fact are given in text-
books on vector analysis.
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Problems 2.19
1 As in Figure 2.191, let A, B, C, , H be equally spaced points on the

line P1P2 with C = PI and G = P2. Apply appropriate definitions of the text
to show that

PD=P1P2, PE=P1P2, P1F=APP, PIG=PIP2
P H = IP P , P1B = -TP;P2, F1-4 = -3P1P2, DE=xPIP2.

Observe that the vector PIP lies on the line P1P2 if and only if there is a scalar
(or number or constant) X (lambda) such that

PIP = XP1P2.

Observe that the points P1 and P2 separate the line into three parts and tell what
values of X correspond to points in the different parts.

2 Construct a figure similar to Figure 2.191 which
shows points PI and P2 and also points .4, B, C, D for
which

P1:4 = -gP P , PIB = 8P1P21
PIC = $PIP, PID = I P2-

3 Let 0 (an origin), PI, and P2 be three points in E3
with PI -7- P2 as in Figure 2.192. Verify that if P is a
point on the line P1P2, then there is a scalar X for which

and

so

P1P = XP1P2 = X (OP2 -
01P1)

OP = PI + PIP = OPI + A(PP2 - OPI)

OP = XOP2 + (1 - X)OP1.

Show that if M is the mid-point of the line segment PIP2,
then

PM = (PPI + OP2).

4 Let i, j, and k be mutually perpendicular vectors
which run along bottom and back edges of a cube as in
Figure 2.193. Let PI, P2, P3, P4 be the mid-points of the
top edges upon which they lie. Show that

OPI=yi+k, OP2=i+-'ffj+k,

P4

Figure 2.193

and write similar formulas for U A, 0P41 and QP2.
5 Supposing that the vectors i, j, k of the preceding problem are unit vectors,

apply the definitions of products of vectors to prove that

1Xi=O, 1Xj=k.
Hint: In each case, write the definition of the product and use the angle correctly.

Figure 2.191

PI, k
P3
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P3

P2

6 We are going to prove a theorem in geome-
try. As in Figure 2.194, let P1, P2, Pa be vertices
of a triangle and, for each k = 1, 2, 3, let Mk be
the mid-point of the side opposite Pk. For each
k, let Ck be the point of trisection of the segment

M3 PkMk for which II'kCkl = siPkMd. We will prove.rP d dh
Figure 2.194

t at the points Cl, C2, Ca colncl a an we may
put C = C1 = C2 = C3. The line segments PkMk
are, in geometry, called medians of the triangle

Thus, our result shows that the three medians intersect at a point C which trisects
each of them. For reasons which we shall not now discuss, the point C is the cen-
troid of the triangular region T bounded by the sides of the triangle. To prove
our result, let 0 be any point and show that

OCl = OPl + R-IM, = OP, + s(OMI - OPl)

- 2 OP2+OPa-OPl ^OP1+OP2+OP3
3\ 2 3

The way in which P1, P2, and P3 appear in the result can make us feel sure that
we must have

OCk =OP1+OP2+OP3
3

for each k. However, calculate 0C2 and OCa and show that it is so.
7 The line segment PkCk joining a vertex

Pk of a tetrahedron to the centroid Ck of the
opposite face, as in Figure 2.195, is called a

P4
median of the tetrahedron. For each k, let Qk
be the point of quadrisection of the median
PkCk for which I PkQkl = aIPkCkl. Let 0 be any
point. When k = 1, prove the formula

OP1+OP2+OP8 +OP4
OQk = 4

and then prove or guess that the formula is valid when k = 1, 2, 3, 4. The point
Q for which

OQ-OP1+OP2+OPa+OP4
4

is the centroid of the tetrahedron. Thus the four medians of a tetrahedron

intersect at the centroid, and this centroid quadrisects each median.
8 Prove that the line segment joining the mid-points of two opposite edges

of a tetrahedron contains and is bisected by the centroid of the tetrahedron.
9 Determine whether, in all cases, the two line segments joining mid-points

of opposite edges of a quadrilateral must intersect and bisect each other. Be
sure to recognize that a quadrilateral in Ea need not have all of its vertices in the
same plane.
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10 Prove that if Pi, P2, P,, P4 are the vertices of a square having its center at
C, then

OC = OPi -I- OP2 + OP3-I- OP4
4

Hint: For each k we can write OPk = OC + CPk and notice that something can
be said about CPk and CP, when Pk and P, are opposite vertices of the square.

11 Prove that if PI, P2, , P8 are the vertices of a cube having its center
at C, then

OC=OPi+OP2-I-
+OP8

8

12 Figure 2 196 shows eight vectors i, j, -i, -j, i', etcetera which are unit
vectors (vectors one unit long) having their tails at the origin of an xy plane and
having their tips on the unit circle with center at the origin.
Discover reasons why the first pair of equations

2

is valid, and then solve the first pair to obtain the second
pair.

-i

i

i

-i
Figure 2.196

13 The vectors u, v, w run in positive (counterclockwise) directions along
three consecutive sides of a regular hexagon. Express w in terms of u and v
Hint: Sketch the hexagon and the line segments from the center that separate it
into six equilateral triangles. Perhaps the simplest observation that can be
made is u + v + w = 2v.

14 From the vertices of a triangle, vectors are drawn to the mid-points of the
opposite sides. Prove that the sum of the three vectors is zero._ _

15 What can be said about the location of Q if PQ = PA + PB + PC + PD.
where 11, B, C, D are the vertices of a square and P is on a side of the square?

16 Abilities to sketch figures and construct formulas involving vectors must
be cultivated. As in Figure 2.197, let u be a unit vector
(vector of unit length) having its tail at 0. Show that

1. Let v be another vector having its tail at the same
point 0. Show that the vector U defined by U = (v.u)u is
the vector running from 0 to the projection of the tip of v
on the line bearing the vector u. Observe that the vector V
defined by V = v - U or by V = v - (vu)u runs from the

Figure 2.197

tip of U to the tip of v. Verify that V is perpendicular to U by showing that

(vu)u] = 0.

Remark: More opportunities to become familiar with these things will appear
later. Meanwhile, we can note that we have seen the (or a) standard procedure
for resolving a given vector v into vector components parallel and perpendicular
to a given unit vector U.

i+j=Vi' i-(ii'-j')
1j =-(i'+j')
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17 Sketch a figure showing four points 0, P1i P2, and Q in Es and suppose
that IOQI = 1. Let Qi and Q2 be the projections of P1 and P2 on the line OQ.
Show that

(1) [ P OQIOQ = OQ1, [P1P2.OQ]OQ = Q Q2,

(2)

and hence that

[(OP1 + P1P2)'OQ]OQ = OQ2

(3) [(OP1 + P- P,.- = (OP-1 OQ + P1P2 OQ)OQ

and therefore

(4) (OP1 + P1P2)'OQ = OP1 OQ + P1P2 Q-

Remark: If we set u1 = OPI, U2 = P1P, and v = OQ, this shows that the formula

(5) (u1 +

is valid when u1 and u2 are vectors and v is a unit vector. It follows from this
that (5) is valid whenever u1, u2, and v are vectors. With the aid of (5) and
simpler properties of scalar products, we find that

(6) (u1 + v2) = (v1 + u2)

= u2) + u2)

= (u1 + (u1 +
and hence

(7) (u1 + v2) = u1v1 + u1v2 + u2v1 + u2v2.

This is the basic formula (2.183).
18 This problem and the next involve some very simple but very important

0

y ideas. Let r be the vector running from the
xi P(x,y) origin to P(x,y), the point P having coordi-

r nates x and y, as in Figure 2.198. Let i be a
unit vector having the direction of the posi-
tive x axis. Considering separately the cases
in which x > 0, x = 0, and x < 0, show that

i xi x xi is the vector running from the origin to the

Fignre 2.198 projection of P upon the x axis. Then let j
be a unit vector having the direction of the

positive y axis and prove that yj is the vector running from the origin to the
projection of P upon the y axis. Hint: All that is required is appropriate use of

Figure 2.199
the definition of the product of a scalar and a
vector.

19 As in Figure 2.199, let i and j be unit vectors
having the directions of the x and y axes of a plane
coordinate system. Let v be a nonzero vector
running from the origin to P(x,y). Show that

(1) v=xi+yj



2.1 Vectors in Ea 57

interval 0 < 0 < a, is (as in trigonometry) an angle which the line from 0 to P
makes with the positive x axis, then

(2) V = Ivj cos Oi + lvi sin Oj.

Let w be the vector obtained by rotating the vector v through a right angle in
the positive (counterclockwise) direction, so that (as in trigonometry) 0 + 7r/2
is one of the angles which the vector w makes with the positive x axis. Show that

w = IvI cos(0+2)1+jvj sin (0+)i

w = Ivi (-sin 0)i + IV! (cos 0)j

(5) w = -yi + xj.
Remark: While our present interest lies in vectors, our result is equivalent to
the fact that, whatever x and y may be, if we start at P(x,y), the point P having
coordinates x and y, and run in the positive direction along a quadrant of a circle
having its center at the origin, we will stop at the point Q(-y,x). This fact
implies and is implied by the formulas

(6) cos (0 + 2) = -sin 0, in (0 + 2) = cos 0

which were used to obtain (4) from (3).
20 Sketch some figures and discover the circumstances under which two

nonzero vectors u and v are such that lu + vi = lu - vi. Then prove that

(1) lu + vi2 = (u + v).(u + v) = vv

and

(2)

21 The span of the set of n vectors v1, v2, , vn is the set of vectors v
representable in the form

V = ciVi + c2v2 + + cuV.,

where c1, c2, , cn are scalars. Show that the span of the set of three given
vectors v1i v2, v3 is the same as the span of the set of three vectors u1, u2, U3
defined by the system of equations

ui = V1 + V2
U2 = V2 + Va
ua=V1 +Va.

Hint: The proof consists of two parts. Suppose first that w belongs to the span
of u1, u2, ua and seek an easy way to show that w must belong to the span of
vl, v2, Va. It remains to suppose that w belongs to the span of vi, v2, v3 and then
show that w must belong to the span of u1, u2, u3. As a start, solve the given
system of equations for v1, V2, va. One of the results is

V1 = gul - gut + U3.
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22 Using the definition of Problem 21, prove that if

(1) Clvl + C2v2 + C3v3 = 0,

where ci, C2, c3 are scalars that are not all zero, then some one of the vectors
v1j v2, v3 belongs to the span of the other two. Remark: In this case the set of
three vectors vi, v2, v8 is said to be a dependent (or linearly dependent) set. In
case (1) holds only when cl = c2 = C3 = 0, the three vectors are said to be inde-
pendent. These concepts are very important in several branches of mathematics.

23 Perhaps we need a little experience drawing and adding vectors that all
lie in the same plane. Start with a clean sheet of paper and draw unit vectors
u and v headed, respectively, toward the right side and top of the page. Let
PO be the point at the center of the page. More points in the sequence Po,
P1f P2, P3, are to be obtained in the following random way. Start with
k = 1. Get two coins of different size and toss them so that each lands H (head)
or T (tail).

If big coin is H and small coin is H, let Pk_1Pk = U.
If big coin is H and small coin is T, let Pk_1Pk = v.
If big coin is T and small coin is H, let Pk_1Pk = -U.
If big coin is T and small coin is T, let Pk_1Pk = -V.

Then draw PoPI. With k = 2, repeat the coin tossing to locate P2, and continue
until P1o has been reached. It is not improper to become interested in the proba-
bility that all of the points Po, P1, . . , P10 lie inside the circle with center at
the origin and radius 5. This is a random-walk problem and such problems are
of interest in the theory of diffusion. To prepare for investigation of these
things, we must study analytic geometry, calculus, probability, and statistics.

24 Using one die (singular of dice, a cube with six numbered faces) instead
of two coins, describe a procedure for obtaining paths for use in random-walk
problems in E3.

25 The problem here is to grasp the meanings of the following statements
when n is 2 and 3 and perhaps even when n is a greater integer. When P1, P2,

, P.+1 are n + 1 points that lie in the same E. but do not lie in an E.1,
these points are the vertices of an n-dimensional simplex. A line segment which
joins two of these points is an edge of the simplex, so the simplex has n(n + 1)/2
edges. To each vertex Pk there corresponds the opposite simplex of n - 1
dimensions having vertices at the remaining points. A median of a simplex is
the line segment joining a vertex Pk to the centroid 4 of the opposite simplex.
The n + 1 medians of the simplex all intersect at a point B, and for each k,

PbB = n + 1 Pk1k.
This point B is the centroid of the n-dimensional simplex and, when an origin 0
has been selected, the centroid B is determined by the formula

OB = OPl + OP2 + OP3 + ... +
n + 1

Remark: As the assertions may have suggested, simplexes of one, two, and three
dimensions are, respectively, line segments, triangles, and tetrahedrons. When
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n exceeds 3, the simplex does not have a plebeian name; it is an n-dimensional
simplex.

2.2 Coordinate systems and vectors in E3 To locate a point in a
plane (Euclid space E2 of two dimensions), it suffices to have a two-
dimensional rectangular coordinate system involving the two mutually
perpendicular x and y axes with which we are familiar. To locate a point
in E3 (Euclid space of three dimensions), it suffices to have a three-
dimensional rectangular coordinate system involving the three mutually
perpendicular x, y, and z axes of Figure 2.21. To partially overcome the
difficulties involved in picturing three-dimensional objects on a flat piece
of paper, we consider they and z axes to be in the plane of the paper which,
like a blackboard in a classroom, is vertical and consider the x axis to be
perpendicular to the y and z axes and sticking out toward us. We can
also consider the x and y axes to be wires on horizontal fences separating
rectangular fields and consider the z axis to be a vertical post at their
intersection.

Figure 2.21 Figure 2.22

To locate the point P(x,y,z) having nonnegative coordinates x, y, and z,
we start at the origin, go x units forward (in the direction of the positive x
axis), then go y units to the right (in the direction of the positive y axis) in
the xy plane, and then go z units upward (in the direction of the positive z
axis) to reach P(x,y,z). If x < 0, we start by going JxJ units in the direc-
tion of the negative x axis. Similar rules apply when other coordinates
are negative. Figure 2.21 shows the point P(3,3,3) and, in addition, the
projections Px, P, PZ, Qz, Q, and QZ of this point on the three coordinate
planes and coordinate axes. The figure is worth a little study. The
eight encircled points lie at the vertices of a cube. Each of the edges is 3
units long, but in the flat figure the distance between two points 1 unit
apart on the x axis is only a half or a third or a quarter of the distance
between two such points on the y and z axes. Further information about
the natures of figures involving rectangular coordinate systems in E3 can
be obtained by looking at Figure 2.22. This shows a sphere with center
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at the origin. The intersection (or section) of the sphere and the yz plane
is a circle through the north and south poles which could be drawn with a
compass. The intersection of the sphere and the xy plane is the equa-
torial circle which appears in the flat figure to be a flattened circle. The
intersection of the sphere and the xz plane is a circle composed of two
meridians passing through the poles. The three coordinate planes, the
xy plane, the yz plane, and xz plane, cut E3 into eight parts called octants.
The octant containing points having only nonnegative coordinates is
called the first octant, and most people neither know nor care whether the

Figure 2.23

others are numbered.
We can learn about coordinate systems and, at

the same time, prepare ourselves to solve problems
of many types in mathematics and other sciences
by introducing vectors. As in Figure 2.23, let 1, j,
and k denote unit vectors (vectors of length 1) in
the directions of the positive x, y, and z axes.
Since these vectors are orthogonal (which means
that two different ones are orthogonal or perpen-
dicular), normalized (which means that each one

has unit length), and lie in E3 (Euclid space of three dimensions), we say
that they constitute an orthonormal set of vectors in E3. The definition
of scalar products given in (2.16) implies that

(2.231) 1, 1, I

and that u and v are two different ones of the vectors i, j,
and k. Similarly, the definition (2.17) of vector products implies that

(2.232) 1xi=0, jxj=0, k x k = 0

and that

(2.233) ixj=k, jxk=i, kxi=j
j x i = -k, k x j = -i, i x k= -j.

To help remember these formulas, we can notice that if we write the
ordered set

(2.234) 1, j, k, i, j, k

of vectors, then the vector product of two consecutive ones in this order is
the next but that changing the order of the factors changes the sign of the
product. A rectangular coordinate system is said to be right-handed
when the x, y, and z axes are so oriented (or arranged) that their ortho-
normal set i, j, k of vectors is such that the formulas (2.233) are correct;
otherwise, the system is left-handed. We shall use only right-handed
systems so that we can always use the formulas (2.233).
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As in Figure 2.242, let OP be the vector running from the origin 0 to the
point P(x,y,z). The rules for multiplying vectors by scalars and for add-
ing vectors imply that

(2.24) OP = xi + yJ + zk.

The three vectors xi, yJ, and zk are the vector components of the vector OP,
and the three scalars x, y, and z are the scalar components.t We can start
getting acquainted with scalar products by observing that the angle
between a vector and itself is 0, so

IOPI2 = 10151 101 cos 0
=

(xi + yJ + zk)
=x2+y2+Z2

and hence that

(2.241) IOPI =.'s/x2+y2+z2.

This important formula holds whether x, y, and z are positive or not.
In case x, y, and z are all positive, we can give another proof of the
formula by applying the Pythagoras theorem twice to the rectangular

Y

Figure 2.242 Figure 2.243

parallelepiped (or brick) of Figure 2.243. Because the angles OQP and
ORQ are right angles, the Pythagoras theorem gives

UP-12 = 101, + 10,12

= IOR12 + IRQI2 + IQP12=x2+y2+z2
and (2.241) follows. The same methods give the distance formula

(2.25) IPiP1; = /(x2 - xi)2 + (y2 - y,)' + (s. - st)-
t When physicists talk about the components of a vector, they often mean vector com-

ponents. When mathematicians talk about components, they usually mean scalar com-
ponents. Hence the unqualified term "components" is ambiguous. We will have quite a
bonfire if we burn all the books that tell confusing tales about components and projections
and directed distances.
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for the length of the vector P1P2, that is, for the distance between P1 and
P2. This formula will be derived more carefully in the next section. A
sphere is defined to be the set of points P in E3 which lie at a fixed distance
r (called the radius) from a fixed point PO (called the center). It follows
from this definition and the distance formula that the equation

(2.26) (x - xo)2 + (y - yo)2 + (z - zo)2 = r2

is the equation of the sphere with center at Po(xo,yo,ze) and radius r.
A paraboloid should be something resembling a parabola, because the

Greek suffix "oid" means "like" or "resembling." A paraboloid (or
circular paraboloid) is defined to be the set of points P(x,y,z) in E3
equidistant from a fixed point F which is called the focus and a fixed plane
r which is called the directrix and which does not contain the focus. In

Figure 2.27

order to obtain the equation of a paraboloid
in an attractive form, we let 1/2k denote the
distance from F to r so that 1/2k = p and
k = 1/2p, where p is the length of the per-
pendicular from F to r. Then we put the z
axis through F perpendicular to r and put
the origin midway between F and r as in
Figure 2.27. The paraboloid is then the set
of points P(x,y,z) for which IFPI = I DPI,
where D is the projection of P on the plane r
and has coordinates (x, y, -1/4k). The
present situation is very similar to that in
Section 1.4, where the equation of a parabola

was worked out. A point P(x,y,z) lies on the paraboloid if and only if
IFPI2 = I DPI1 and hence, as use of the distance formula shows, if and only if

x2+y2+(z - 1)2
= Cz +-4k J2.

Simplifying this gives the more attractive equation

(2.28) z = k(x2 + y2).

This is the equation of the paraboloid shown in Figure 2.27.

Problems 2.29
1 Plot the points 4(1,1,0), B(1,0,1), and C(0,1,1).
2 In a new figure, repeat the construction of Problem 1 and insert the

horizontal and vertical line segments running from 11, B, and C to the coordinate
axes.

3 In a new figure, repeat all of the construction of Problem 2. Then insert
the point D(1,1,1) and the line segments joining D to 1, to B, and to C. Remark:
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The final figure should look much like Figure 2.21. It seems that we do not
inherit abilities to do things like this neatly and correctly. A little practice is
needed, and it often happens that the first figures we draw are very clumsy.

4 In the xy and xz planes, sketch circles of radius 3 having their centers at
the origin. Then complete the sketch of the sphere of which these circles are
great circles, that is, intersections of the sphere and planes through the center of
the sphere.

5 A spherical ball of radius 3 has its center at the origin. Sketch the part
of it that lies in the first octant.

6 Sketch a rectangular x, y, z coordinate system and observe that, in each
case, the graph of the equation or system of equations on the left is the entity
(point set) on the right:

X = 0 yz plane

y = 0 xz plane
z = 0 xy plane

x = y = 0 z axis
x = z = 0 y axis
y = z = 0 x axis
x = y = z line through (0,0,0), (1,1,1)

Remark: We make no effort to remember these facts, but whenever we see an
x, y, z coordinate system, we should be able to observe and use these facts as they
are needed.

7 There are many points P(x,y,z) whose coordinates satisfy the equation
y = 3. Some examples are (0,3,0), (0,3,1), (1,3,0), (1,3,1), and (-40,3,416).
Sketch a figure and become convinced that the graph of the equation y = 3 is
the plane ir which passes through the point (0,3,0) and is both perpendicular to
the y axis and parallel to the xz plane. Then, without so much attention to
details, describe the graph of the equation z = 2.

8 Plot the points (0,1,0) and (0,0,1) and then draw the line L through these
points. Show that if P(x,y,z) lies on L, then x = 0 and y + z = 1. Show also
that if x = 0 and y + z = 1, then P(x,y,z) lies on L. Remark: It is possible to
write a single equation equivalent to the system x = 0, y + z = 1. For exam-
ple, each of the equations

IxI+Iy+z-11 = 0
x2-I-(y+z-1)2 =0

does the trick. It is fashionable to keep the two equations, and one who wishes
to do so may learn something by thinking about the matter.

9 Put the equation x2 + y2 + z2 - 2x - 4y + 8z = 0 into the standard
form (2.26) of the equation of a sphere and find the center and radius of the sphere.
Hint: Complete squares. Check your result by observing that the coordinates
of the origin satisfy the given equation and hence that the distance from the
origin to the center of the sphere must be the radius of the sphere.

10 A set S consists of those points P in Es for which I API2 + IBPI2 = 16,
where A is the origin and B is the point (0,2,0). Show that S is the sphere of
radius having its center at the point (0,1,0). Sketch the coordinate system
and S.
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11 Make a sketch showing an x, y, z coordinate system, the sphere S having
the equation x2 + y2 + z2 = 9 and the line L having the equations x = 2, y = 2.
Find the length of the part of L that lies inside S. Hint: Do not depend upon
your figure to obtain precise quantitative information. Find and use the coordi-
nates of the points on the sphere for which x = 2 and y = 2. Ans.: 2.

12 By use of the distance formula, show that the equation of the set of points
P(x,y,z) equidistant from two given points Pi(xi,yi,zi) and P2(x2,y2,z2) can be

put in the form

(1) (x2 - xi) 1 x - Xl 2 'x2J + (Y2 - yl) (Y - YI

2
Y2)

` )\
zi +z2)

Remark: Our official introduction to planes in E3 will come in Section 2.4. Mean-
while, we can observe that if Pi and P2 are distinct points, so that x2 xi or
Y2 F6 yi or z2 F-` zi, then the set mentioned above is a plane and the equation
which we have found is its equation. The equation has the form

(2) fl(x - xo) + B(y - yo) + C(z - zo) = 0,

where 11, B, C are constants not all 0 and (xo,yo,zo) is a point in (or on) the plane.
13 Supposing that .1, B, C, xo, yo, zo are constants for which 4, B, C are not

all 0, show that the equation

(1) f1(x - xo) + B(y - yo) + C(z - zo) = 0

is the equation of a plane. Hint: Taking cognizance of Problem 12, solve the
equations

(2) x2-xi=A, y2-yi=B, z2-zi--C
(3) xi + x2

= x0, yi + Y2 = Yo,
Si + z2 = zo

2 2 2

to obtain two distinct points Pi and P2 such that the graph of (1) is the set of

points equidistant from Pi and P2.
14 The base of a regular tetrahedron has its center at the origin and has

vertices at the points (2a,0,0), (-a,N/1-3 a,0), (-a,- N/J a,0). The other vertex
is on the positive z axis. Find the coordinates of this other vertex. Check the
result by using the distance formula to determine whether the edges have equal
lengths. Finally, sketch the tetrahedron.

15 Determine whether it is possible to multiply all of the coordinates of the
points (2a,0,0), (-a, a,0), (-a,- a,0), (0,0, a) by the same con-
stant X to obtain new points that are vertices of a regular tetrahedron each edge
of which has length a.

16 A set C of points in Es is called a cone with vertex V if whenever it contains
a point P0 different from V it also contains the whole line through V and Po.
Each of these lines is called a generator of the cone, the ancient idea being that
if it moves in an appropriate way, it will "generate" the cone. A cone is called
the circular cone whose vertex is V. whose axis is the line L, and whose central
angle is a if V is on L and the cone consists of the points on those lines through V
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which make the angle a with L. Supposing that 0 < a < a/2, sketch the cir-
cular cone whose vertex is the origin, whose axis is the z axis, and whose central
angle is a. Then show that the equation of this cone is z2 = k2(x2 + y2), where
k = cot a.

17 Sketch a figure, similar to Figure 2.27, in which the paraboloid opens to
the right along the y axis instead of upward along the z axis. Note that inter-
changing y and z in (2.28) gives the equation y = k(x2 + z2) of the new paraboloid.

18 Sketch a figure, similar to Figure 2.27, in which the paraboloid opens for-
ward along the x axis instead of upward along the z axis. Note that interchang-
ing x and z in (2.28) gives the equation x = k(y2 + z2) of the new paraboloid.

19 Plot the eight points (±2, ± 2, ± 2) obtained by taking all possible choices
of the plus and minus signs. Then connect these points by line segments to
obtain the edges of the cube of which the eight points are vertices. Remark:
One who finds this problem to be unexpectedly difficult need not be disturbed.
The problem is unexpectedly difficult.

20 We embark on a little excursion to learn more about our abilities to sketch
graphs. The graph in E2 of the equation xy = 1 does not intersect the coordinate
axes, and it consists of two parts (or branches) that are easily sketched. The
graph in Es of the equation xyz = 1 consists of those points in Es having coordi-
nates (x,y,z) for which xyz = 1. The graph does not intersect the coordinate
planes, and it consists of four parts, namely, the one containing some points for
which x > 0, y > 0, z > 0, the one containing some points for which x > 0,
y < 0, z < 0, the one containing some points for which x < 0, y > 0, z < 0,
and the one containing some points for which x < 0, y < 0, z > 0. Everyone
should discover for himself that it is surprisingly difficult (or hopelessly impossible)
to draw x, y, z axes on a flat sheet of paper and sketch a figure which shows
what these four parts look like and how they are situated relative to each other
and to the coordinate system.

21 Draw the rectangular coordinate system obtained from that in Figure
2.23 by interchanging the x and y axes and the i and j vectors. Work out the
formulas for the vector products of these vectors and show that the system is
left-handed. As a safety measure, make a note on your figure that it is left-
handed and be sure that your formulas for vector products are not remembered.

22 It is not necessarily true that our study of mathematical machinery is
made more difficult when we pause briefly
to look at a rather complicated appli-
cation of it. Figure 2.291 shows a circle
C in the yz plane which has its center at
the point (0,b,0) and has radius a. We
suppose that 0 < a < b. The surface
T obtained by rotating this circle C about
the z axis is called a torus. Thus a torus
is the surface of a ring or hoop that is 'b a
more or less closely approximated by an
automobile tire. As the figure indicates, Figure 2.291

each point P on the torus T lies on the
circle which (i) contains a point P' on C, (ii) lies in a plane parallel to the xy
plane, and (iii) has its center at a point Q on the z axis. When the angles 0 and
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are determined by P and P as in the figure, we see that

(1) IQPI =IQP'I =b+acos6
and that

(2) OP = I QPI (cos 451 + sin 4)j)

so

(3) QP = (b + a cos B) cos 4)i + (b + a cos B) sin 4)j.

Letting r be the vector running from the origin to the point P on T, we see that

(4) r = QP + OQ = QP + a sin ok

and hence that

(5) r = (b + a cos 0) cos 4,i + (b + a cos 0) sin 4)j + a sin Bk.

Thus a vector r having its tail at the origin has its tip on the torus T if and only if
there exist angles 0 and B for which (5) holds. Thus (5) is a vector equation of the
torus. This implies that P(x,y,z) lies on the torus T if and only if there exist
angles 4) and 0 such that

(6) x(b+acos0)cos4), y=(b+acos0)sin 4), z = a sin 0.

These are parametric equations of the torus, the parameters being ¢ and B.
The torus is the graph of the parametric equations.

23 Show that the x, y, z equation of the torus of the preceding problem can
be put in one or the other of the two equivalent forms

(1) (a2 + b2 - x2 - Y2 - z2)2 = 4b2(a2 - z2)
(2) (b2 - a2 + x2 + y2 + a2)2 = 4b2(x2 + y2).

Hint: One way to start is to square and add the first two of the equations (6)
of the preceding problem. Remark: In case 0 < b 5 a, the equations of this
and the preceding problem are not equations of a torus but they are equations
of a surface.

24 Sketch the visible edges of the solid that remains when a cube having
edges of length a/2 is removed from the upper right front corner of a cube having
edges of length a. Remark: This figure can easily become a favorite doodle,
and perfectly normal people can become very much interested in it.

25 Mr. T., a topologist, claims that a given right-handed rectangular coordi-
nate system in Ea can, when considered to consist of three stiff wires rigidly
welded together at their origin, be moved around in Ea in such a way that it will
coincide with any other such system but cannot be similarly moved into coinci-
dence with a left-handed system. It is not always easy to understand such
assertions and'to give proofs of them. It is sometimes easy to wave some arms
around and give some more or less convincing arguments that could not be called
proofs. The difficulty here is that those who wave arms and produce more or
less convincing arguments sometimes reach erroneous conclusions. Anyone who
wishes to do so may think about this matter.
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2.3 Scalar products, direction cosines, and lines in E3 Let u and v
be vectors in Ea having scalar components ul, u2, u3 and vi, os, v3 so that

(2.31)
IV
u = uli + uj + uak

= vii + rJ + oak.

It may be helpful to look at Figure 2.311, which shows vectors u and v
and the projections of their tips on the xy plane.

Figure 2.311

Since the scalar product is defined by the formula

(2.312) Jul Ivl cos 0,

it could be supposed that we should find cos 8 in order to find It
turns out, however, that there is a very simple and useful formula for
and we can use this formula to find cos 8 whenever we want it because we
know that

1 +v2+va.(2.313) lul=1/u;+ui+ua, IVl= o2

We find that

(uli + utJ + o2j + oak)
= o2j + v,k) + v2j + oak) + ozj + oak).

With the aid of (2.231), we see that this reduces to the very important
formula

(2.32) ulvl + u2o2 + uaoa.

In order to help remember this formula, we can remember that the scalar
product of two rectors is the sum of the products of their scalar components.
Use of (2.32) and (2.312) gives, when Jul lvl ?d 0, the formula

(2.321) cos 0 = ulyi + u2v2 + U3V3
Jul IvI

which gives the angle 0 between two vectors in terms of the scalar com-
ponents of the vectors. This formula may be remembered. It is, in the
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long run, more sensible to concentrate upon the two formulas

I(2.33)
Jul IvI cos 0

u.v _ U101 + UIVI + u3t73

and to realize that the formula for cos 8 can be obtained very quickly by
equating the two formulas for

When, as above,
v=vli+vzj+rk

and lvi > 0, the vector in the parentheses in the right member of the
formula

(2.34) v = IVI (L,
i + Ivl j + Ivl

k)

is the unit vector in the direction of v. It is possible, and sometimes
thought to be useful, to recognize that the scalar components of the unit
vector are the cosines of the angles a, $, y which the vector v makes with
the unit vectors 1, j, k. This is true because the formulas

vi = IVI cos a, vj = IVI cos 0, vk = IVI cos y
vi=v1 vj =vg vk=v3

imply that

(2.341) ICI = cos a, cos 0, lol = cos y.

The angles a, 0, y, shown in Figure 2.342, are called the direction angles
of the vector v. The cosines of these angles are called the direction cosines
of the vector. Even those who do not like to prove formulas by use of
special figures in E3 should look at Figure 2.342 and see that the formulas

Figure 2.342

(2.341) can be proved by use of the formula that defines cosines in terms
of coordinates and distances. Squaring and adding the members of the
equations in (2.341) gives the formula

(2.343) cost a + cost 0 + toss y = I
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which provides an interesting way of making the more prosaic statement
that the sum of the squares of the numerical components of a unit vector
is 1. It is possible to put the formula (2.321) in the form

(2.344) cos 0 = cos a, cos a2 + cos$1 cos 02 + cos 71 cos 72,

where 0 is the angle between two vectors making angles a,, $i, 'y, and
a2, 02, 'y2 with the unit vectors 1, j, k. The formulas (2.343) and (2.344)
are impressive formulas, but persons who know about vectors may hold
the view that the formulas are antiquated and may concentrate their
attention upon the formulas (2.33).

The following numerical example shows an application of the ideas of
this paragraph. The vector in the left member of the formula

21-3j+4k=1/29 2 1- 3 j+ 4 k1-1-1/29 )
is the vector running from the origin 0 to the point P(2,-3,4). The
length of the vector is the square root of the sum of the squares of its
numerical components and hence is. The vector in parentheses in
the right member is a unit vector in the direction of OP. The fact that
its scalar components are cosines of direction angles is very often of no
importance.

It is easy to adapt these ideas to obtain information about the vector
P1P2 running from P,(x,,y,,z1) to Ps(x2,y2,z2) as in Figure 2.36. Starting
with the formulas

(2.35) OP, = x1i + y,j + zlk, OP2 = x2i + y2j + z2k,

it is easy to see that the rules for addition and subtraction of vectors give
the formulas

OP2 + OP1 = (X2 + x1)i + (Y2 + Yi)j + (Z2 + z,)k
OP2 - OP1 = (x2 - xi)i + (Y2 - yi)j + (z2 - zi)k.

But OP2 - OP1 = P1P2, and hence

(2.351) P,P2 = (X2 - x,)i + (y2 - Y1)j + (z2 - zl)k.

Therefore,

(2.352) jP1PI = 1/(x2 - x1)2 + (Y2 - yl)2 + (z2 - z1)2.

If to simplify writing we let d denote this distance between P1 and P2, then
we can put (2.351) in /the form

\
(2.353) P,P2 = d ` x2

d
X I + Y2

d
Y j + Z2 z1 k).
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The vector in parentheses is then the unit vector in the direction of P1P2,
and its scalar components are the direction cosines of PIP2.

Before introducing coordinate sys-
P,(x1.r1,Z1) tems, we called attention to the fact

P(x,y,z) that a point P lies on the line P1P2 if

P2(x2,y2z.) and o if there is a scalar A such0.0- that PIP = XPIP2 and
Figure 2.36 op-0P1).
When the points have coordinates as in Figure 2.36, this equation can be
put in the forms

(2.361) (x - xi)i + (y - Yl)j + (z - z,)k
= X(xs - xi)i + X(ys - Yi)3 + X(zs - z1)k

and

(2.362) x - xI = X(x2 - xi), Y - Y1 = X(y2 - y1),
z - zi = X(z2-zi).

In case x2 76 x1, Y2 0 yi, and z2 0 zi, these equations hold for some X if
and only if

(2.37)
x - xi= Y- yi= z- zi
x2 - XI y2 yi z2 - zi

In case x2 = xi, the condition on x is to be replaced by the condition
x = xi, and similar remarks apply to y2 and z2. With this understanding
the equations (2.37) are equations of the IineP1P2, that is, equations that are
satisfied by x, y, z when and only when P(x,y,z) lies on the line. The
numbers x2 - XI, y2 - yi, Z2 - zi are the numerical components of a
vector lying on the line PIP2, and we know how to find the direction
cosines of this vector.

It can be claimed that the equations

(2.38)
x - xi = Y - yi -Z_

a b c

zi

do not look like the equations (2.37) of a line, but we can put these equa-
tions in the form

x - xi y- yi _ z - Zi
(x1+a) - xi (y1+b) - yi (zi+c) - zi

which does have the form (2.37). Thus the equations (2.38) are in fact
equations of the line L which passes through the points Pi(xi,yi,zi) and
P2(xI + a, yi + b, zi + c). The numbers a, b, c are the scalar com-
ponents of the vector P1P2 on L, and they determine the direction cosines
of P1P2 in the usual way. The equations (2.37) and (2.38) are called
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point-direction equations of lines because they reveal coordinates of
points and scalar components of vectors lying on the lines.

Problems 2.39
1 Write the intrinsic (not depending upon coordinate system) formula for

the scalar product of two vectors u and v and be prepared to rewrite it at any
time.

2 Write the coordinate-dependent formula for the scalar product of the

two vectors
u = ail+b,j+c,k, v = asi+bsj+csk

and be prepared to rewrite it at any time.
3 Use the results of the first two problems to obtain a formula for the cosine

of the angle between the two vectors in Problem 2 and be prepared to repeat the
process at any time.

4 Find the scalar product of the two given vectors and use it to find cos 0,
the cosine of the angle between the vectors:

(a) u=2f-3j+ 4k, v = 21 + 3j + 4k 4nr.:cos0=
(b)u=21-3j-4k,v=21+3j+4k .Ins.:cos0= 29

(c) u = 21, + 3j + 4k, v = 21 + 3j + 4k .Ins.: cos 0 = 1
(d) u=21+3j+4k,v= -21-3j-4k Ans.:cos0= -1

(e) u = 21 + 3j, v = 31 + 4J Ins.: cos 8 =
18 324

= 325x/325

5 Determine c so that the two given vectors will be orthogonal (or per-
pendicular).

(a) u=21-3j+4k,v=21+3j+ck In$.:c
(b)u=i+j+k, v=i+j+ck 4ns.:c=-2

6 For each vector v, find the unit vector v, in the direction of v.

(a) v=21-3j+4k Ins.:vl= 3 i- 3 j+ 4
k

(b) v = 71 .Ins.: vi = i

(c) v=1+j .Ins.:vs=_L i+ j

7 Supposing that v and w are orthonormal vectors and that u = av + bw,
where a and b are not both zero, find the angle between u and w. Hint: Use the
basic formulas

u.w - Jul Jw) cos 0, (av +

.Ins.: cos 0 - b/ a2 + b'.
8 With the text of this section out of sight, sketch a figure showing points

(0,0,0), Px(xs,yt,zi), and Ps(xs,ys,zs). Starting with the assumption that P(x,y,z)
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lies on the line PiP2 and hence that there is a number X for which P1P = AP1P2i
show how vectors are used to obtain the coordinate equation

x - x1 y - Y1 z - z1
x2-xl Y2 -Y1 z2 -zl

Refer to Figure 2.36 and the text only if assistance is needed.
9 Show that the equations

``(1) x - x1 = X(x2 - xl), Y - y1 = X(Y2 - Yl), z - z1 = n(z2 - zl),

from which the text of this section obtained the equations

(2)
x-x1 Y -Y1 z-z1- - 1x2-x1 Y2-Y1 z2-z1

can be put in the form

(3) x = (x2 - xl)X + xi, Y -- (y2 - yl)X + y1,

Then show that the equations

z= (z2- z1)X + Z1-

(4) x = a1X + b1, y = a2X + b2, z = aaX + bs

can be put in the form

(5)
al a2 a3

Remark: The equations in (1), (3), and (4) are called parametric equations of
lines; different values of the parameter X yield different points on the lines. It is
fashionable to use the letter X for a parameter because people who work with
Lagrange (French mathematician) parameters (or multipliers) get the habit;
the letter i is used when time is involved and sometimes when time is not involved.

10 Look at the equations

x-x1 y-Y1 z- 2:1
x2-x1-Y2Yi-z2z1

of the line L which passes through the points P1(x1,yl,zl) and P2(x2,y2,z2) and tell
why these equations are satisfied when x = x1, y = y1, z = z1 and when x = x2,
Y = y2, z = z2. With this is mind tell how we can quickly find the coordinates
of two points on the line having equations

x-2 y+3 z+1
1-2=2+3-3+1

11 Find equations of the line L which passes through the points P1(2,-3,-1)
and P2(1,2,3) and then, after putting z = 0, find the coordinates of the point
(x,y,0) in which L intersects the xy plane. Ans.: x = y = -1 z = 0.

12 This problem involves a little introductory information that everyone
should have. The right-handed coordinate system shown in Figure 2.391 is the
one we ordinarily use. When we are wholly or primarily interested in vectors
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lying in the same plane, it is sometimes convenient to think of this plane as being
the plane of the paper upon which we print or write and to use the right-handed
coordinate system shown in Figure 2.392. Vectors of the form v = xi + yj + zk
for which z = 0 then lie in the plane of the paper and figures showing them are

Y

/.i

k i

J Y

Figure 2.391 Figure 2.392

y

i

Figure 2.393

undistorted. When we are interested only in vectors lying in one plane, we may
leave the z axis out of the figure and use Figure 2.393. The introduction is
finished, and we come to our problem. Use the method, involving slopes, of
Section 1.3 to show that tan 0 = when 0 is the angle between the vectors

u=2i+3j, v=3i+4j
running from the origin to the points (2,3) and (3,4). Use the method of this
section to show (or to show again) that

18 = 324cos0=
325 325

Then construct and use a modest but appropriate figure to show that the two
results agree. To conclude with another story, we can remark that the method
involving slopes may sometimes be preferred because it often gives answers
without radicals when easy problems in E2 are solved. However, the scalar-
product method is the more powerful method which works in E2 and in Ea and,
as some people learn, in E when it > 3.

13 A vector v makes equal acute angles 6 with the three positive coordinate
axes. Find 3 (to find cos 3 is enough) (i) by use of an identity involving direction
cosines and (ii) by using the edges and the diagonals of a cube having opposite
vertices at (0,0,0) and (1,1,1). Make everything check.

14 Referring to Figure 2.21, find the angle 0 between the two vectors running
from the origin to the mid-points of the top edges of the cube that pass through
P(3,3,3). Ans.: cos 0 = $.

15 Let v be a nonzero vector and w a unit vector having their tails at the
same point 0. Show with the aid of a figure that the vector (vw)w is the vector
component of v in the direction of w, and that the vector v - (vw)w is the
vector component of v orthogonal (or perpendicular) to w. Remark: This prob-
lem appeared among Problems 2.19 with different notation and additional
information.

16 When u 0 0, each vector v is representable as the sum of a vector com-
ponent cu and a vector component q orthogonal to u. Find q and find a way
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of checking the answer when

(a) u =2i-3j+4k,v=2i+3j+4k
(b) u = i + j, v = i(c)u=i+j+k, vi

17 Show that the two vectors

u, = cos Bi + sin 9j
u2 = -sin Bi + cos Oj

constitute an orthonormal set, that is,

lull = 1, Iu2I = 1, and u,-u2 = 0-

18 Show that the three vectors

u, = cos sin Bi + sin i sin Bj + cos Ok
u2 = cos cos Si + sin 0 cos Bj - sin Bk
us = -sin Oi --cos Oj

constitute an orthonormal set, that is,

u,, u, is 1 when p = q and is 0 when p ,-E q.

19 This problem requires that we learn the procedure by which we obtain
a useful formula for the gravitational force F which is exerted upon a particle
P1 having mass ml and situated at the point Pi(x,,y,,z,) by another particle P2
having mass m2 and situated at the point P2(x2,y2,z2). The very modest Figure
2.394 can help us understand what we do. We start with the Newton law of
universal gravitation, which is an "intrinsic law" that does not depend upon coordi-
nate systems. This law says that there is a "universal constant" G, which
depends only upon the units used to measure force, distance, and mass, such that
a particle P1 of mass m, at P, is attracted toward a second particle P2 of mass

m2 at P2 by a force F having magnitude

P,

Figure 2.394

(1) IFl = G
m,m2

d2
'

where d is the distance between the points. Our next
step is to put (1) in the form

(2) IFI = G :
MIM2

IP7P212

According to the Newton law, the direction of F is the direction of the vector
P,P2 (notP2P,). We have learned (and can relearn if the fact has been forgotten)
that each nonzero vector F is the product of IFI, the length or magnitude of F,
and the unit vector F/IFI in the direction of F. When F has the direction of
P1P2, this unit vector is P1P2/(P1P2I. Therefore,

(3)
F = G 'n1m2 P,P2

= Gm,-2
PIP2

IP1P'I2 IP1P21 IP,P218
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Thus when we know about vectors, we can put the Newton law in the following
much more useful form. There is a constant G such that a particle P1 of mass
ml at P1 is attracted toward a particle Pz of mass m2 at P2 by the force F defined
by (3). The problem which we originally proposed involved rectangular coordi-
nates, and it should now be completely obvious that the answer to our problem
is

(x2 - xl)1 + (Y2 - Y1)l + (z2 - zi)k
(4) F

=
Gmlm2

[('K2 - x1)2 + (y2 - yl)2 + (z2 - z1)2]'

Remarks: Persons who work with these things normally recognize the fact that
we do not, in our physical world, have "particles" concentrated at points. It is
sometimes possible, however, to obtain useful results from calculations based on
the assumption that particles are concentrated at points. When this assumption
has been made, we can complicate ideas and simplify language by replacing the
concept of "a particle Pi at the point Pl having mass m1" by the concept of
"a point P1 having mass ml." It can be insisted that this linguistic antic should
be explained; otherwise, a serious student of mathematics is entitled to ask where
the postulates of Euclid provide for the possibility that some points can be
heavier than others. Finally, it can be insisted that the formulas (3) and (4)
should not be remembered; it is better to know (2) and to understand the very
simple process by which we use it to obtain the more useful formulas (3) and (4)
whenever we want them.

20 Let Pi(xl,yl,zi) and P2(x2,y2,z2) be two distinct points in E3 and recall
(or prove again) that to each point P(x,y,z) on the line L containing Pl and P2
there corresponds a number X for which

(1) x = x1 + n(x2 - xl), Y = Y2 + X(Y2 - yl), z = z2 + n(z2 - zl)-

While we may not yet know why such matters are important, we can observe
that the equations

x' = a11x + any + a13z + b1

(2) y' = a21x + a22y + a23z + b2
z' = a31x + a32Y + a33z + b3,

in which the a's and b's are constants, provide mathematical machinery into
which we can substitute the coordinates (x,y,z) of a point in E3 and thereby obtain
the coordinates (x',y',z') of a point (usually another point) in E3. It is very
helpful to think of the equations (2) as being a transformer which transforms a
given point P(x,y,z) into a transform (or transformed point) P'(x',y',z'). Thus
the transformer goes to work on P(x,y,z), which engineers and others call an
input, and produces P'(x',y',z'), which they call an output. This problem con-
cerns transforms of points that lie on the given line L. Find, for each X, the
transform P'(x',y',z') of the point P(x,y,z) on L whose coordinates are given by
(1). .dns.: The result can be put in the form

x' = x1 + X(x2 - x1), y' = A + X(Y2 - A), z' = zi + X(z2 - a1),
where

xk = alixk + a12yk + a13zk + b2
Yk = a21xk + a22yk + a23zk + bx
zk = a31xk + a32yk + a33zk + b3



76 Vectors and geometry in three dimensions

when k = 1 and when k = 2. Remark: In case x2 = x'1, y2 Y1, 22 = zi,
the transforms of the points on L all coincide with the point (xl,yl, zl). In case
x2 0x1 or y2 FA- y' or z2 54 zi, the transforms of the points on L constitute the
line L' containing the distinct points P',(x',,yi,zi) and P2(x2,y2iz2) and, moreover,
the transforms of points on L between Pl and P2 lie on L' between P'1 and P.

21 Without use of a figure, suppose that 0 is a given number for which
0 < 0 < a/2 and find and simplify the condition that numbers x, y, z (not all
zero) must satisfy if the vector

r =xi+yj+zk
makes one of the angles 0 and 7r - 0 with the positive z axis. Ins.:

±IrI Iki cos 0

and z2 = c2(x2 + y2), where c = cot 0.
22 Two distinct (different) points Po and P1i together with a number 6 for

which 0 < 0 < a/2, determine a right circular cone consisting of Po (the vertex)
and those points P for which the vector PPo makes the angle 6 or 7r - 0 with
the vector POP1. Show that the intrinsic equation of the cone is

(p 1.F P)2 = IPoP1I2IP0FI2 cost B.

Supposing that Po, P1, and P have coordinates (xo,yo,zo), (xl,yl,z1), (x,y,z), and
that

(XI-xo)i+(y'-yo)j+(z,-zo)k = Bi+Bj+Ck,
find the coordinate equation of the cone. Ans.:

[.2(x - xo) + B(y - yo) + C(z - zo)]2
= (f12 + B2 + C2)[(x - xo)2 + (y -yo)2 + (z - zo)2] cost 0.

23 The vertex of a right circular cone is at the point (0,0,h), the axis of the
cone is parallel to the vector i + j, and the lines on the cone make the angle a/4
with the axis of the cone. Find and simplify the equation of the cone. .4ns.:
2xy = (z - A)2. Remark: Putting z = 0 shows that the graph in the xy plane
having the equation xy = h2/2 is a conic section, that is, the intersection of a
right circular cone and a plane.

24 Prove that the graphs of the equations

flx2 + B y2 + Cz2 + Dxy + Exz + Fyz = 0
and

x3+xyz+y3 =0
are cones with vertices at the origin. (See Problem 16 of Problems 2.29 for

information about cones.)
Figure 2.395 25 Let Pk(xk,yk,zk), k = 1, 2, 3, 4, be four given points

determining two skew (noncoplanar) lines P1P2 and P3P4 as
P P4 in Figure 2.395. Many persons, including some who are not

easily excited, become quite interested in the problem of
determining a point P'(x',y',z') on P1P2 and a point
P"(x",y",z") on P3P4 such that the line P'P" is perpendicu-

Pa P2 lar to both P1P2 and P$P4. Figure 2.395 may seem to be
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quite mysterious until it is realized that the lines P1P2 and P3P4 might be hori-
zontal, while P'P" might be a vertical line perpendicular to both of them. We
shall solve this problem with the aid of vectors. The first step is to observe
that the coordinates of P' and P" can be written down easily if we find constants
X (lambda) and µ (mu) such that P1P' = APIPZ and F P" = uPsP4. Therefore,
our real problem is to find X and µ. Starting with the formula

P'P" = P'P1 + P1P3 + P3P"

P'P" = -APIA + !.L + PIP;.

The requirement that P'P" be perpendicular to PIP and to P3P4 is equivalent to
the requirement that 0 and PP"P3P4 = 0. This is equivalent to
the requirement that A and µ satisfy the equations

(3)
APIP2P1P2 - µPP4'P1P2 = PP P P
AP1P2 P3P4 - µP3P4P3P4 = PIP. P.P4.

The question whether these equations have solutions for A and µ is now critical.
Such questions are so often critical that Theorem 2.57 will soon appear. For
the record, and perhaps for future reference, it can be noted that the determinant
of the coefficients of A and tc is

(4) - IP1P2I2 IP3P412 sine 0,

where 0 is the angle between the lines PIP2 and P3P4. If these lines are not paral-
lel, then the determinant is different from 0 and the equations uniquely deter-
mine A and µ. Our skew lines are not parallel. Therefore, A and s and hence
P' and P" are uniquely determined.

26 This problem requires that we pick up the idea that vectors and scalar
products are not unrelated to problems in statistics. Let n be a positive integer
and suppose at first that is = 3. Suppose n students took examinations in
English and Mathematics and got grades e1, e2, , e, and m1, m2, , ,

m,,. Let the mean (or average) of the English grades be B and let the mean of
the Mathematics grades be M. For each k = 1, 2, , n let

(1) uk=ek - E, Vk=Ink - M.

The numbers u1, n2, , u,, and v1, V2, .. , vn can be regarded as scalar
components of vectors u and v in Euclid space E. of n dimensions. Show that,
except in the trivial case in which Jul = 0 or JvI = 0, the cosine of the angle
between these vectors is determined by the formula

(2) cos 0 =
u1V1 + U 2V2 + + unyn

Iul IVl 1/u2l + u2 + . .. + un 1/vi + v2 + .. . + vn

Remark: It is not difficult to develop enough geometry of En to show that (2)
is valid when n > 3 as well as when n = 3. In statistics, the last member of
(2) is called the correlation coefficient of the English and Mathematics grades.
Show that if this coefficient is 1, then the vectors u and v must have the same
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direction and hence that there must be a positive constant A such that ok = Au,,
for each k. If possible, draw at least one substantial conclusion from this.
Tell what we would conclude if the correlation coefficient turned out to be -1.

27 Show how something in the preceding problem can be used to prove that

u,o, + uZOS + + 5 -%/ul + u4 + u;, 9, + v! + + v;

This is the Schwarz inequality. It is both interesting and useful.

2.4 Planes and lines in E3 Planes are important things, and we must
think about them and the natures of their equations. To start the pro-
ceedings, we can think of the top surface of a flat horizontal sheet of
paper as being a part of a plane T. Let P, be a point in w. A vertical
pencil then represents a vector V which is a normal to the plane. With-
out bothering to decide how the fact is related to this or that set of
postulates and definitions in Euclid geometry, we shall use the fact that
a point P different from Pt lies in w if and only if the vector P1P is hori-
zontal, that is, perpendicular to V. Our next step is to apply this idea to
a plane w, shown schematically in Figure 2.43, which is not necessarily
horizontal. Let V be a vector of positive length which is perpendicular
tow and which runs from the origin to a point (A,B,C) not necessarily in w.
Let PI(xl,yl,zl) be a point in w. A point P then lies in w if and only if

(2.401) 0.

This means that either P = P, or PIP is a vector of positive length which
is perpendicular to Y. Thus a point P(x,y,z) lies in w if and only if

(2.402) [Al + Bj + x,)1 + (y - yi)j + (z - z,)k] = 0

or

(2.41) A(x - xI) + B(y - y,) + C(z - z,) = 0

or

(2.42) Ax+By+Cz+D=0,
where D is the constant defined by D = -Ax, - By, - Cz,. It is easy

Figure 2.43

z

\ v-(A,B,G7 that (2.41) is the equation of a plane which/\ passes through the point (x,,y,,z,) and is

to remember that the equation of a plane
can always be put in the form (2.42), where
A, B, C, D are constants of which A, B, C are
not all zero. It is not so easy to remember

normal to the vector having scalar com-
ponents A, B, C, but this should be done.
To complete this little story, we must prove
that if A, B, C, D are constants for which
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A, B, C are not all 0, then the equation

14x+By+Cz+D=0
is the equation of a plane. In case .4 s 0, we can accomplish the result
by putting the equation in the form

_4 (x- Dl +B(y-0)+C(z-0)=0
and noticing that it is the equation of the plane which passes through the
point (-D/A, 0, 0) and is normal to the vector having scalar components
11, B, C. In case B 0 or C 54 0, the proof is similar.

The information which we have obtained can be useful in various ways.
Suppose, for example, we are required to find the equation of the plane 7r
which contains three given noncollinear (not on a line) points Pi(xl,yj,zj),
P2(x2,Y2,z2), P3(x3,y3,z3) The obvious way to solve this problem is to use
the fact that the equation of 9r must have the form of the first equation in
the system

14x+By+Cz+D=0
Ax1 + By, + Cz1 + D = 044)(2 14x2+By2+Cz2+D=0
Ax3 + By3 + Cz3 + D =O,

where 4, B, C, D are constants for which 14, B, C are not all 0. Since it
contains P1, P2, P3, the remaining three equations must be satisfied. In
case A 0 0, the equation of a can be obtained by solving the last three
equations for B, C, D in terms of J and substituting the results in the
first equation. In case A = 0, we must have either B 34 0 or C 0 0, and
a similar procedure will work. Except for cases in which some of the
coordinates of the given points are zero, solving the problem in this way
can be tedious. The next section will show how answers to this and
other problems can be expressed in terms of determinants.

We now look at an interesting procedure which often provides a good
way to find the equation of a plane Irl which contains two given points
P.1(x1,y1,z1) andP2(x2,y2,z2) and satisfies another condition. We simplify
matters by supposing that x2 F6 x1, y2 0 yl, and z2 0 z1. We know that
P1 and P2 determine a line L and that the family F of planes 7r that contain
P1 and P2 is identical with the family of planes in that contain L. We
capitalize this fact. If a point P(x,y,z) lies on L, then

x-x1 = y - yl Z -%I
X2 - x1 y2 - yi z2 z1

and hence

(2.45)
x-x1 - z-zl +Y-yl - z -zl0

(x2 - x1 z2 - zl) \Y- Yl z2 - zl -
or

(2.451) (x - x1) + (Y - yl) - A
+ fM (z - Si) = 0,

x2 x1 Ys - Yl z2 - zl
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where A (lambda) and µ (mu) are constants. Conversely, if A and µ are
not both 0, then (2.45) and (2.451) are equations of a plane containing L.
To see this, we notice that they have the form Ax + By + Cz + D = 0,
where A and B are not both 0, and that they are satisfied when x = xi,
y = yi, z = zi and when x = x2, y = y2, z = z2. Now we can solve
problems. Suppose we want to find the equation of the plane ui which
contains Pi and P2 and also a third point Pa(xa,ya,za) not on the line P1P2.
Our answer will be (2.45) or (2.451), and A and is are determined such
that they are not both zero and the formulas hold when x = x3, y = ya,
z = za. If the coefficient of A in (2.45) is zero, we can take A = I and
µ = 0; otherwise, we can set µ = 1 and solve for X. Suppose next that
we want to find the equation of the plane it which contains Pi and P2 and
is perpendicular to a given plane ir'. Our answer will be (2.451) when A
and i are determined such that they are not both 0 and a normal to x
is perpendicular to a normal to a'. Supposing that the equation of x is

Ax+Bv+Cz+D=0,
we find that the normals are perpendicular when

(2.46)
aA + ;1B (a + µ)C = 0.x2-X1 Y2-y1 Z2-z,

It is possible to find values of A and µ which satisfy this equation.
Let d be the distance from a given point Pi(xi,yi,z,) to a given plane x

having the equation

(2.47) Ax+By+Cz+D=0.
One way to find d is to find the point Po where the line through Pi per-

pendicular to v intersects it and then find
the distance from Po to Pi. Whether this
method is tedious or not can be a matter of
opinion, but it is quite lengthy even when
A, B, C, D, x1, y1, zi are given to be nice little
integers. With the aid of vectors, we can very

PA=1.y1.t1) easily find d in terms of A, B, C, D, xi, yi, zi.
Figure 2.471 Let P(x,y,z) be any point in ar, and let n be

a unit normal to ir. Then, as we can see with
the aid of the schematic Figure 2.471 in which Po and P are on ar and
PiPo is a normal to ir,

(2.472) d = I ;PP,I cos 0, =

But
AI+Bj+Ck

n
__

,%/,42 + B2 +
C21 PP, = (xi - x)i + (y1 - y)J + (z1 - z)k.
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Therefore,

473)
dA(xi-x)+B(yi-y)+C(z,-z)

(2 .

V/A2 + B2 + C2

This looks quite simple but, since P is in r, the equation of r shows that

-Ax - By - Cz=D
and we obtain the more useful formula

(2.48) d
Ax, + By, + Cz, + D

= I/A2+B2+ /+1.2

One who must teach his little sister to start with (2.47) and get (2.48) can
cook up a new five-step rule: (i) rub out the "=0"; (ii) put subscripts on
x, y, z; (iii) divide by V,42 + B2 + C2; (iv) stick on absolute-value signs;
and (v) equate the result to d. It is, as a matter of fact, useful to know
when and how it is possible to prepare instructions so explicit that routine
chores can be performed mechanically and can even be performed by
persons and machines unfamiliar with processes by which formulas are
derived and combined to accomplish their purposes.

Problems 2.49
1 Give geometric interpretations of the numbers xo, yo, zo, A, B, C appearing

in the equation A(x - xo) + B(y - yo) + C(z - zo) = 0 of a plane r and be
prepared to repeat the process at any time. Ans.: See text.

2 Write an intrinsic (not depending upon coordinates) equation of the plane
A which contains a given point Po and is normal to a given vector V. Hint: If
P is in 7, then POP must be perpendicular (or normal or orthogonal) to V. Ans.:

0.
3 How can we derive the coordinate equation of Problem 1 from the intrinsic

equation of Problem 2? Ans.: Set V = Al + Bj + Ck and

PoP= (x - xo)l + (y - yo)j + (z - zo)k
so that

A(x - xo) + B(y - yo) + C(z - zo).
4 Write an intrinsic (not depending upon coordinates) formula for the dis-

tance d from a point P, to a plane u which contains a point P and is normal to
a unit vector n. Hint: Construct an appropriate schematic figure and refer to
Figure 2.471 and formula (2.472) only if assistance is needed.

5 In each case, find the (or an) equation of the plane a which contains the
given point and is perpendicular to a vector having. the given scalar components
(or, in other words, perpendicular to a line having the given direction numbers).

(a) (0,0,0); 1, 1, 1 Ans.: x + y + z = 0
(b) (1,1,1); 1, 1, 1 Ans.: x + y + z = 3
(c) (1,2,3); 4, S, 6 Ans.: 4(x - 1) + S(y - 2) + 6(z - 3) = 0
(d) (x,,y,,z,); A, B, C Ans.: A(x - x,) + B(y - y,) + C(z - z,) = 0
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6 Because several of the coordinates are zero, it is relatively easy to deter-
mine fl, B, C, D such that the equation Ax + By + Cz + D = 0 is satisfied by
the coordinates of the three points (3,0,0), (0,4,0), (3,4,5). Do it and thereby
find the equation of the plane containing the three points. Ans.: 20x + 15y -
12z - 60 = 0.

7 A sphere of radius 3 has its center at the origin. Observe that it is not
easy to sketch a figure showing the plane a tangent to the sphere at the point
(2,2,1) and the point T where a intersects the z axis. Find the coordinates of T.
Hint: The plane 7r is normal to the line from the center of the sphere to the point
of tangency. fins.: (0,0,9).

8 If a, b, and c are nonzero constants, show that the equation

a+b+Z=1

is the equation of the plane which intersects the coordinate axes at the points
(a,0,0), (0,b,0), and (0,0,c). Find the scalar components of a normal to the plane.

9 Find the distance from the origin to the plane of the preceding problem.
Your answer is wrong if it does not reduce to 1/1/ when a = b = c = 1.

10 A plane n1 intersects the positive x, y, and z axes 1, 2, and 3 units, respec-
tively, from the origin. A second plane ir2 intersects each positive axis one unit
farther from the origin. Would you suppose that r1 and 72 are parallel? Find
the acute angle 0 between normals to the planes. fins.: cos 0 = 1/2916/2989.

11 Find the equation of the plane which contains the point (1,2,3) and is

parallel to the plane having the equation 3x + 2y + z - 1 = 0. Check the
answer.

12 Find the equation of the plane it which contains the point (1,3,1) and is
perpendicular to the line L having the equations

(1) x=t, y=t, z=t+2.
Hint: If you do not know what else to do, let t = 0 to get a point P1 on L and let
t = 1 to get another point P2 on L. Then 7r must be perpendicular to P1P2.
Your answer can be worked out neatly by solving the individual equations in
(1) for t to obtain

x-0_y-0 __z-2
1 1 1 -t'

This shows that a normal to i has scalar components 1, 1, 1 and hence that the
equation of a is

(x - 1) + (y - 3) + (z - 1) = 0
orx+y+z=5.

13 Find the equation of the plane r containing the point P1(1,1,1) which is
perpendicular to the line L containing the points (0,1,0) and (0,0,1). Find the
coordinates of the point P2 where L intersects a. Then find IP1P2I Observe
that the last number (which should be ) is the distance from a vertex of a unit
cube to a diagonal of a face not contain this vertex. Look at a figure and
discover very simple reasons why 1 < IP1P2I < 2.
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14 Determine the value of the parameter X for which the two planes which
have the equations

2x + 3y + 4z + 5 = 0
2x - 3y - Xz - 5 = 0

are orthogonal. Hint: Modest experiments with two sheets of paper enable us
to capture or recapture the idea that two planes are orthogonal (or normal or
perpendicular to each other) if and only if their normals are orthogonal. .4ns.:

15 If B, C, D are constants for which B and C are not both 0, then the equation
By + Cz + D = 0 is the equation of a plane r. Show that the vector Vl with
scalar components 0, B, C is normal to r. Show that the vector V2 with scalar
components 1,0,0, is normal to the yz plane. Show that Vl and V2 are per-
pendicular and hence that r is perpendicular to the yz plane.

16 Consider again the equation By + Cz + D = 0 or any other equation
involving y and z but not x. Let us agree (this is an important definition) that a
set Sl in Es is a cylinder parallel to a line L if, whenever it contains a point Po, it
also contains all of the points on the line Lo through Po parallel to L. Use this to
show that the graph of the given equation is a cylinder parallel to the x axis.
Solution: Let Po(xo,yo,zo) be any point on the graph of the given equation. Then
the numbers xo, yo, zo satisfy the equation. Since x does not appear in the equa-
tion, it follows that the numbers x, yo, so satisfy the equation for each x. This
means that all of the points (x,yo,zo) on the line Lo through (xo,yo,zo) parallel to
the x axis lie on the graph. Therefore, the graph is a cylinder parallel to the x
axis.

17 Supposing that B, C, and D are constants for which B and C are not both
0 and D 0 0, show that there is no number x for which the numbers x, 0, 0
satisfy the equation By + Cz + D = 0. What is the geometric significance of
this result?

18 Look at the equations

x - xl y -yl z-Zl
X2 - xl Y2 - y1 z2 - Zl

of the line containing two points P,(xl,yl,%,) andP2(xs,y2,z2) Describe completely
the graph of the equation obtained by deleting one of the members of this equality.
Sketch the three graphs obtained in this way.

19 Problem 12 of Problems 2.29 is of interest here. Solve the problem again
and think about it.
'20 Take a good look at the

(1)
X2

X xl(x -xl) +Y2 µ yl(Y - Yl) -Z ±zl(z-zl) =0.

Supposing that Pl(xl,yi,zl) and P2(x2,y2,z2) are two points for which x2 5 xi,
y2 0 yl, z2 zl and that X and µ are numbers not both zero, tell why (1) is the
equation of a plane containing Pl and P2. Then study the text again and attain
a better understanding of matters relating to (1).
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21 Supposing that A, B, C are not all zero and that D2 0 D1, let ir1 and 1r2 be
the planes having the equations

(1)

(2)

Ax+By+Cz+D1 =0
Ax+By+Cz+D2=0.

Show that the planes have parallel normals and hence that the planes are parallel.
Show again that the planes must be parallel by showing that they have no point
of intersection; if the coordinates of a point P(x,y,z) satisfy (1), they certainly
cannot satisfy (2). Supposing that A and u are constants not both zero, show
that the equation

(3) A(14x+By+Cz+Dl) +µ(Ax+By +Cz+D2) = 0
is the equation of a plane parallel to trl and 1r2 unless A +.o = 0. Supposing
that Po(xo,yo,zo) is a given point, show that A and µ can be so determined that the
graph of (3) contains Po. Solution of last part: The graph of (3) will be a plane
containing Po if and only if A + u s 0 and

(4) A(Axo + Byo + Czo + D1) + µ(Axo + Byo + Czo + D2) = 0.

Since D1 0 D2, the coefficients of A and g are different numbers that we can call
E and F. We can then put (4) in the form

(5) AE+kF=0
and obtain a solution of our problem by setting A = F and ,t = -E because, in
this case, A + µ = F - E 0 and (4) holds.

22 Supposing that the graphs of the equations

(1) Alx + By + Clz + D1 = 0
(2) A2x + B2y + C2z + D2 = 0

are distinct (that is, different) planes 7r1 and ,r2 that intersect in a line L and that A
and p are constants not both zero, show that the equation

(3) A(Alx + Biy + C1z + D1) + A(-42x + B2y + C2z + D2) = 0

is the equation of a plane 7r containing the line L. Solution: It is clear that if
P(x,y,z) lies on L, then the coordinates of P satisfy both (1) and (2) and hence (3)
To prove that (3) is the equation of a plane, we must prove that the three
equations

AA1 + s42 = 0, AB1 + liB2 = 0, AC1 + 4aC2 = 0

cannot be simultaneously satisfied when A and µ are not both zero. This matter
is more delicate. If we suppose that the three equations are satisfied and A 0 0,
we find that

Al = (-µ/A)A2, B1 = (-,u/A)B2, C1 = (-u/)')C2
and obtain a contradiction of the hypothesis that ir1 and ire are not parallel.
The case µ 5x!5 0 is similar.

23 Using the hypotheses and equations of the preceding problem, show how to
determine A and µ such that (3) will be the equation of a plane 7r containing L
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and a given point Po(xo,yo,zo). Hint: Consider separately the case in which Po
is on L and the case in which Po is not on L.

24 Let 7r1 and 72 be the planes having the equations

J2x+3y+4z-5 = 0
(1) l x-2y+3z-4=0
Verify that 1r1 and ire do not have parallel normals. This implies that al and 7r2
must intersect in a line L. Observe that a point P(x,y,z) lies on L if and only if it
lies on both al and a2 and hence if and only if its coordinates satisfy both of the
equations (1). We should be able to find point-direction equations of L by
finding the coordinates of two points P, and P2 on L and using them. Do this by
finding x and y such that the point (x,y,O) lies on L and then finding x and y such
that the point (x,y,l) lies on L. We now develop a simpler and more interesting
method for finding equations of L. Show that if P(x,y,z) lies on L, then

(2) 7x + 17z - 22 = 0.

Observe that (2), the result of eliminating y from the equations (1), is obtained
by multiplying the equations (1) by 2 and 3, respectively, and adding the results.
Observe that (2) is the equation of the plane which passes through L and is
perpendicular to the xz plane. Show also that if P(x,y,z) lies on L, then

(3) 7y-2z+3=0.
Discuss this matter. By solving the equations (2) and (3) for z, show that

(4) 7x - 22 _ 7y + 3
-17 - 2

and that these are equations of L. Observe that dividing these equations by 7
puts them in the point-direction form

22

(5)
x- =Y+3-z-0
-17 2 7

25 Find the equation of the plane in which contains the point (1,3,1) and the
line L having the equations

(1) x=t, y=t, z=t+2.
First solution: The equation of in has the form

(2) 4(x - 1) + B(y - 3) + C(z - 1) = 0.

Since in contains the given line, we must have

(3) .4(t - 1) + B(t - 3) + C(t + 1) = 0
for each t. Putting t = 3 and then t = 1 shows that

(4) 2.4+4C=0, -2B+2C=0.
Solving these equations for .4 and B and putting the results in (2) gives

(5) -2C(x - 1) + C(y - 3) + C(z - 1) = 0.
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Dividing by C and multiplying by -1 gives

(6) 2(x-1)-(y-3)-(z-1)=0
or

(7) 2x-y-z+2=0.
Second solution: Eliminating t from the first two and then from the first and last
of the equations (1) shows that L is the intersection of the planes having the
equations

(8) x-y=0, x-z+2=0.
Each plane containing L has an equation of the form

(9) X(x-y)+µ(x-z+2) =0,
where X and µ are constants. The plane having the equation (9) contains the
point (1,3,1) if and only if -2X + 2µ = 0. Putting µ = X gives the required
equation

(10) 2x-y-z+2=0.
26 There are nontrivial applications of the idea that a point which lies in

each of two nonparallel planes must lie on their line of intersection. Show that
the equation

x2 y2 z2

a2 + b2
62

= 1

will be satisfied if, for some constant X, the two equations

a+c=x(1+ (
b/' x\a e) -1 b

both hold. Try to determine a geometrical interpretation of this result. Try
to obtain another very similar result.

27 Let L and L' be the lines of intersection of the planes having the equations

a+c-all+b/
L

Ca cJ = 1 - b
L'

z
µ )=l+b

Work out the point-direction forms

2Xa (1 - X2)b

L:
f+ X2 1+X2 - z-0

-(1 - X2)a 2Xb (1 + X2)c

2µa (1 - µ2)bx _
1+µ2 y+ 1+µ2 _ z-0

-(1 - µ2)a -2µb (1 + µ2)c

of equations of L and L'.
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28 What can be said about the tip of the vector OP if

OP = c,OPI + c2OP2 + c30P3,

where cl, c2, c3 are scalars for which cl + Cl + c3 = 1? Ans.: It lies in the plane
(or each plane) which contains P1, P2, and P3.

2.5 Determinants and applications Rectangular arrays of elements
such as

)a21 a22 '

an a12 a23

a21 a22 a23 ,

a31 a32 a33

are called matrices. For the present we may think of the elements a2a as
being numbers. The middle matrix has three rows, the elements of the
second row being a21, a22, a23, and three columns (columns are things that
stand in vertical positions), the elements of the third column being
an, a23, ass. A matrix is square if it contains as many columns as rows,
and in this case the number of rows is called the order of the matrix.

With each square matrix we associate a number which is called the
determinant of the matrix or simply a determinant. The symbols 02, A3,
and A4 appearing in

(2.51) A2 = ail, axe

a21 'a22
A3=

all
all
a31

a12 a13

all a23

a32 an

A4 =

all all a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

are numbers, not matrices. It *ill, however, be a convenience to say
that an is the element in the third row and second column of the deter-
minant As instead of saying that it is the element in the third row and
second column of the matrix of which As is the determinant. A little time
spent learning about determinants can pay very handsome dividends.

The number A2 is defined by the formula

(2.52) A2 = alla22 - a12a21

This shows how to evaluate determinants of order 2. For example,

1 0

0 1
= 1,

a bl =ab-ab=0, 1 2

-3 4
= 4 - (-6) = 10.

The definitions of As and A4 are more complicated, and we introduce
helpful words and notations. To each element a;k of a determinant
there corresponds the minor A;k which remains after the row and column
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containing aik have been covered or removed. Thus for the determinant
As, we have

(2.53) 1Q 11 a22 a23 ' 412 = a21 a23,
1422 = all a13

1 a32 ass I a31 ass asl ass

and for the determinant A4 we have

-411 =
a22 a23 a24

a32 a33 a34

a42 a43 a44

, 412=
a23 a23 a24

a33 a33 a34

a41 a43 a44

, -423 =
all a12

asi a32

a41 a42

a14

a34

a44

While it is possible to give more gruesome definitions, the number A3
can be defined by the formula

(2.54)

or

As = a11A11 - a121412 + aisA13

a22 a23
A3=a11I - a12

a32 asi
a21 - a23

a31 asi
+ a13

a21 a22

a31 a32

which makes sense because we know how to evaluate determinants of
order 2. The above formulas give the expansion of As in terms of the
elements of the first row. It can be proved that the same number As is
furnished by expansions in terms of another row or any column. Thus

As = -a23421 + a22422 - a23423
As = a31A31 - a32432 4- a33433
AS = a11A11 - a21421 a314s1

As = -a12412 + a22422 - a32432
As = a13A13 - a231423 + a33433.

In these expansions, the sign of the term involving ail, is plus whenever
the sum (or difference) of the subscripts is an even number like 0, ±2,
±4, and is minus when the sum (or difference) is odd like ±1,
±3, ±5, . To put this in other words, we can say that we get
a plus sign whenever aik lies on the main diagonal (running from the upper
left corner to the lower right corner), and that we get a change in sign
whenever we move one step right, left, down, or up.

Progress to determinants of order 4 and more is now easy. The
expansion of A4 in terms of the elements of the first row is

(2.55) A4 = all411 - a12A12 + a13 d1a - a141414

and A4 has seven more expansions, in terms of the other rows and the
columns, all of which yield the same number A4. The usefulness of
the possibility of expanding a determinant of order 4 in terms of elements
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of the third row is demonstrated by the expansion

2 3 -1 6
3 -1 6

1 3 7 -2 = 3 3 7 -2 +0
3 0 0 0 -1 5 4
1 -1 5 4

which reduces the problem of evaluating a determinant of order 4 to
the problem of evaluating a single determinant of order 3.

It should be known and remembered that a determinant is 0 if two
of its rows (or two of its columns) are identical. For determinants of
order 2, this is obvious because

a b = ab - ab = 0 b- b=0
l =

tTh
a b

,
b

a a .
b

a

a

a

b

b

c

c = 0,

a

b

d a
e b =0

d e f c f c

can be seen by expanding the first determinant in terms of elements of
the bottom row and by expanding the second in terms of elements of the
middle column. When the result has been established for determinants
of order 3, the same trick enables us to establish the result for determi-
nants of order 4, and so on. A simple modification of the above pro-
cedure shows that if two adjacent rows (or columns) of a determinant
are interchanged, then the value of the determinant is multiplied by -1,
that is, the sign of the determinant is changed. It is sometimes useful
to know the formulas

al a2 a3 al a2 a3

(2.56) kbi kb2 kb3 = k bl b2 b3

Cl C2 ca C1 C2 Ca

al a2 a3 ai a2 a3 al a2 a3

(2.561) bi + ci b2 + C 2 ba + Ca = bi b2 b3 Cl C2 C3

dl d2 d3 dl d2 d3 dl d2 d3

and others like them. They can be proved by expanding the determi-
nants in terms of elements of the middle row. The results are particu-
larly useful when, for some constant k, we have cl = kd1, C2 = kd2, and
c3 = kdi. In this case the last determinant in the above formula is zero
and we obtain the formula

al a2 asal a2 a3

b1 b2 b3(2.562) bl + kdl b2 + kd2 b3 + kdi =
dl d2 d3dl d2 d3
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What this and similar formulas say is that we do not change the value
of a determinant when we add a constant multiple of the elements of one
row (or column) to the elements of another row (or column). For
example, we obtain the first equality in

2 -3 1 2 1 1 2 1 -5
1 -2 3 1 0 3 1 0 0

3 3 -5 3 9 -5 3 9 -14

by adding 2 times the elements of the first column to the elements of the
second column, and then we obtain the second equality by adding -3
times the elements of the first column to the elements of the last column.
As we have seen, this reduces the problem of evaluating a determinant
of order 3 to the problem of evaluating a determinant of order 2.

The following two theorems, and their obvious modifications involving
systems containing two or more than three equations, are very important.

Theorem 2.57 The system of equations

a11x1 + a12x2 + a13x3 = yl
a21x1 + a22x2 + a23x3 = y2
a31x1 + a32x2 + a33x3 = y3

has a unique solution (is satisfied by one and only one set of numbers
x1i X2, x3) if and only if

all a12 a13

a21 a22 a23

a31 a32 a33

0,

that is, the determinant of the coefficients is different from 0.
Theorem 2.58 The system of equations

allxl + a12x2 + a13x3 = 0

a21x1 + a22x2 + a23x3 = 0

a31xl + a32x2 + a33x3 = 0

has a nontrivial solution (a solution for which x1, x2, x3
and only if

all a12 a13

a21 a22 a23

a31 a32 a33

= 0,

are not all 0) if

that is, the determinant of the coefficients is 0.
Proofs of these theorems belong in books and courses in algebra, but

everybody can observe that the first system of equations

2x1 + 4x2 = 8 2x1 + 4x2 = 8 2x1 + 4x2 = 0
x1 - 2x2 = 1, xl + 2x2 = 0, xl + 2X2 = 0
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has a unique solution, the second system has no solutions, and the third
system has many solutions including the nontrivial one x1 = 2, x2 = -1.
Partly because of these two theorems, determinants are important.
Determinants were originally devised to speed the process of solving
systems of equations whose coefficients are given in decimal form. It is
sometimes said that young algebra students should not be taught to
solve systems of equations by use of determinants because the method
is inefficient and yields too many errors; the method of successive elimi-
nations is much better. This argument is vulnerable, because students
who solve systems of equations by use of determinants acquire facility
in use of determinants. In this course, it is recommended that deter-
minants be used only for purposes for which they are useful.

Problems 2.59
1 Show that

A B
1 2

C
-1 =14A -8B-2C.

3 4 5

2 Supposing that Pl(x,,yl) and P2(x2,y 2) are fixed points in E2, show that
the equation

x

xl

X2

Y 1

Yi 1

Y2 1

=0

Ax+By+C=0
and that the graph contains P, and P2. Comment upon the result. Solution:
Expanding (1) in terms of the elements of the first row gives (2). The equation
(1) is satisfied when x = x,, y = y1 and when x = x2, y = y2 because in each
case the determinant has two identical rows. The equation (2) is the equation
of a line unless A = B = 0, that is, unless P, and P2 coincide. If P, and P2 do
coincide, the equation (2) becomes Ox + Oy + 0 = 0 and the graph is the whole
plane.

3 Letting A be the first determinant in the formula

x
X1

X2

xa

y
Yi

Y2

Ys

x-x1 y-y1 z-z1
X1 y, z1

X2 - x1 Y2 - Y1 z2 - z1
xa - x1 y8 - y, Z3 - z1

0
1

0

0

show how the formula can be obtained and show that

x-x1 y-yi z-a,
x2-x1 y2 -y1 z2 -z1
x3-x1 ys-y1 Z3-zl
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Now write formulas for the coefficients 11, B, C in the expansion

A=f1(x-x1)+B(y-yi)+C(z-zi).

Show that the graph of the equation A = 0 contains the three points Pi(xi,yi,zl),
P2(x2,y2,z2), P3(x3,y3,z3) Comment upon the result.

4 Let ITI denote the area of the triangle T having vertices at the points
P1, P2i P of Figure 2.591. With an eye on the figure, discover a way in which the
formula

(1) JTJ =y'
Z

y(x-xl)+y 2y2(x2-x) -y' 2 y2(x2 -xi)

can be obtained. After expanding the products, show that some of the terms
cancel out and that the formula can be

IY P(x,y) put in the form

P2(x2,Y2)

(2) (T! = ±.

xl

Figure 2.591

x X2
with the plus sign. It can be shown that
(2) is correct with the plus sign when the
vertices P, F1, P2 occur in positive (coun-
terclockwise) order, and that (2) is cor-

rect with the minus sign when the vertices P, Pb P2 occur in negative (clockwise)
order. The members of (2) are 0 when the points are collinear. Many people
remember this.

5 This and the next two problems, together with Problem 11 at the end of
the next section, show that if Y is the volume of the tetrahedron (or simplex)
in E3 having vertices (x,y,z), (xl,yl,z1), (x2,y2,z2), (xa,y3,z3), then

where the sign is chosen such that F > 0 (or Y >= 0 if we allow degenerate tetra-
hedrons to be called tetrahedrons). Verify that this formula is correct with the
negative sign for the special case in which a, b, c are positive constants and the
four vertices are, in order, (0,0,0), (a,0,0), (0,b,0), and (0,0,c). Hint: Remember
or learn that the volume of a simplex (tetrahedron) in E3 is one-third of the
product of the altitude (number, not line segment) and the area of the triangular
base.

6 Letting D be the determinant of the preceding problem, show that

D= -
X

-xl
-x2
-x,

y z 1

-yi -z1 -1
-y2 -Z= -1
-y3 -Z3 -1

x y z 1

x-XI y -yl z - Zl 0
x-X2 Y -y2 Z - Z2 0
x-x3 y - ys z -z3 0
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and hence that the formula for the volume of the tetrahedron can be put in the
form

Y= ±g
y - yi z- zi
Y -Y2 z-z2
Y-333 z-z3

7 Three vectors u and v and w with scalar components ul, u2, u3 and v1, v2, v3
and wi, w2, w3 have their tails at the same point P and are edges of a tetrahedron
having volume Y. Show that the formulas for F in the two preceding problems
can be put in the form

Y=±g
u1 U2 u3

Vi V2 93

W1 w2 W3

8 Supposing that Pi(xi,yi), P2(x2,y2), and Pa(x3,y3) are three noncollinear
(not on a line) points in E2, show that the equation

=0

has the form
11(x2+y2)+Bx+Cy+D=0

and that the graph contains the three points. Comment upon this result.
9 Show that if Pi(xi,yi), .. , Ps(x5,y5) are five different points in

then the equation
x2
2

XI
2

X2
2

X3

2X4

2X5

has the form

x33

xiyi
x2Y2

x3333

x4334

x5Y5

Y2
2

Yi

Y2
2

Y3

Y4

Ys

X

xi

X2

X3

X4

X5

=0

E2,

11x2+Bxy+Cy2+Dx+Ey +F=0

and that its graph contains the five points.
10 Use the ideas of the above examples to obtain the equation of a sphere in

E3 which contains (or passes through) an appropriate collection of given points.

11 Let Pl(xi,yi,zi), , P5(x5,ys,z5) be five given points (the coordinates
are supposed to be known numbers) such that no four of them lie in the same
plane. Tell how to decide whether the line L containing Pi, P2 is parallel to the
plane a containing P3, P4, Ps and tell how to find the point of intersection when

L intersects ir. Solution: There are many ways to attack this problem. The
following method gives answers in terms of the known coordinates with relatively
little calculation. A point P(x,y,z) lies on the line L if and only if, for some con-
stant X,

(1) x = xi + X (X9 - xi), 7 = yi + a(v2 - yi), % = z3 + X(z2 -- zi).
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This point P lies on ir if and only if D = 0, where

(2) D =

But

(3)

where

x1 + X(xs - x1) Y1 + X(ys - yl)
X3 Y3

x4 Y4

X6

(4) D, =

x1 y1 z, I
X3 y3 53 1

X4 Y4 Z4 1

X6 Y6 Z6 1

Y5

D = D1 + XD2,

D2 =

z,+X(zs-z,) 1+0
53 1

54 1

Z6 1

X2 - X1 Y2 - Y, Z2 - z1 0

X3 y3 53 1

X4

X5

Y4

Ys

Now D, 3 0 because P,, P3, P4, P6 do not lie in the same plane. In case
Ds = 0, there will be no X for which D = 0 and hence no point P on L which lies
in -r, so L and it must be parallel. In case Ds 5 0, there will be exactly one X for
which D = 0, that is, X = -D,/D3. Putting this in (1) then gives the coordi-
nates of the point of intersection of L and jr.

12 Find out whether the plane containing two vertices of a tetrahedron and
the mid-point of the opposite edge must contain the centroid of the tetrahedron.

13 This story can be read by anyone. It interests nearly everyone, but stu-
dents who do not have a lot of time at their disposal can postpone the pleasures
and benefits enjoyed by those who fully understand it. Matrices are often
denoted by single letters. For examples, w e ca n set

1 7 4 9
(1) P-

, Q-
1 1, R= -7 - 6 9

1

1 -1 1/ \0 1

1
-1

2 3

-4

S

-
6 -2

5

12

),
T
-

(
) U =

2

),
Y

=
8

-4 3 -2 3 \-1 \-4/
We shall, among other things, develop enough algebra of matrices to enable us
to understand and verify the fact that these matrices satisfy the conditions

PQ=R QP=S PQ0QP,
(2) QT = U, PU=Y, P(QT)=Y, (PQ)T=V

det (PQ) = det (QP) = (det P) (det Q).

If I is a square matrix, we can denote its determinant by det -4. Two matrices
A and B are said to be equal, and we write .4 = B, if they (i) have the same num-
ber of rows, (ii) have the same number of columns, and (iii) have equal elements
in corresponding positions. We can multiply matrices by scalars (numbers),
and we can add two matrices which have the same number of rows and the same
number of columns. For example, when P and Q are the matrices displayed
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above and k is a scalar, we have

(3) kP= -3k 2 k
-k 3k

k -k k / P+Q= \ 1 0 0)

When we multiply a matrix by a scalar k, we multiply each element by k. When
we add two matrices, we add them elementwise. These rules are very different
from those applicable to determinants. The really crucial step in the develop-
ment of a useful algebra of matrices is the determination, in terms of two suitable
matrices 11 and B, of a third matrix C which we shall call the product '2B of -4
and B. Let J have n rows and p columns and let B have q rows and n columns,
so that the number of rows of .4 is the same as the number of columns of B.
The product AB is then a matrix C having p rows and q columns, the element
c,k in the 5th row and kth column of C being determined by the formula

(4) c3k = a,lblk + a,2bsk + ... +

a,,, are the elements of the 5th row of .4 and blk, bay, , b. k
are the elements of the kth column of B. To demonstrate that applications of
this ritual are not fearsome, we let J, B, C be the matrices P, Q, R defined above
and see how the result

(5)

C i -1 1/\0 1 -1/-\ 2

4 -6
-6 9)

3 -4)

is obtained.To obtain the element 7 in the first row and the first column of the
last matrix, we run one finger across the first row of the first matrix, and at the
same time, run another finger down the first column of the second matrix and
(with regret that we do not have three hands) write the sum

(6) 2.3 + 1.1 + 3.0 = 7

of the products of the elements that our fingers encounter. To obtain the ele-
ment 4 in the first row and second column of the last matrix, we apply the fingers
to the first row of the first matrix and the second column of the second matrix and
obtain

(7)

To obtain the element 3 in the third row and second column of the third matrix,
we follow the third row of the first matrix and the second column of the second
matrix to obtain

(8) 1.1 + (-1)(-1) + 1.1 = 3.

Nine such excursions suffice to work out the product of two matrices of order 3.
Only three such excursions suffice to give the general formula

(9)

an
aSY

83

32

ass sJ
-

Ca3ixi + a31x2 + a33xJ31



96 Vectors and geometry in three dimensions

or the special case

(10)
(13 _ I -') 21 1 2

0 1 -1C3) \-1
If we let

(11)
=

(all a12

33 X =
x

21 a22 a),
3/'

Y =a

Y31 32

a33

y

then (9) shows that the whole system of equations

a11x1 + a12'X2 + a13x3 = yl
(12) a21x1 + a22x2 + a23x3 = y2

asix1 + a32x2 + a33x3 = y3

is equivalent to the single matrix equation !IX = Y. It is standard practice
to think of X and Y as being vectors having scalar components xl, x2, x3 and yl,
y2, y3 and to think of the matrix .4 as being an operator (or transformer) which
transforms (or carries or converts) the vector X into the vector Y. In this and
other contexts, matrices have very many important applications. One who
wishes an easy exercise can prove that the formula

(13)
Caa31ll aa.12 aa2aall: all a21

2 le a22

a31 a33 a33 a13 a23

a311 1 0 0

a32) = 0 1 0)
a33 0 0 1

is valid whenever the rows of the first matrix are the scalar components of three
orthonormal vectors. The last matrix in (13) is called the identity matrix I
(of order 3) because Al = IX = B whenever .I is a square matrix (of order 3).
If 4 is a square matrix of order n and det J 0 0, then there is a unique (that is,
one and only one) matrix B such that 14B = I, where I is the identity matrix
of order n. This matrix B is such that -4B = BA = I. It is called the inverse
of J and is denoted by -4-1. If AX = Y and det r4 0 0, then X = d-1Y. If
det 4 = 0, the matrix .4 cannot have an inverse because

(14) det (AB) = (det fl) (det B)

when 14 and B are square matrices of the same order and, moreover, det I = 1.
One who is really ambitious may attack the famous eigenvalue problem for
matrices. The problem is to start with a given square matrix fl and learn about
the scalars A (the eigenvalues) and the nonzero vectors X (the eigenvectors) for
which AX = AX.

14 This problem involves square matrices of order 2; analogous results hold
for square matrices of greater order. Suppose

%l = a11y1 + a12y2 yl = bunt + b1Px2
st = aalyl + a2sya, y2 = h2lx1 + b:2x2.

Let

X
= (X2 /, y = ` Y2), s = z2), - (aal

a2talt
B

\b21 b22),

14
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so that z = Ay, y = Bx, and z = A(Bx). Show that z = Cx, where the matrix
C is the product of 4 and B, that is, C = l1B. Remark: The result shows that
products of square matrices are defined in such a way that 11(Bx) = (.4B)x.

I5 A two-by-two matrix of numbers ak determines the system of equations

x' = affix + any
y' = a^_lx + ally

which transforms a given point (x,y) into its transform (x',v'). Let three points
(x1,yi), (x2>y2), (x3,y3) have transforms (xi,y ), (x2,Y2), (ta,Y3). As an exercise in
multiplying matrices (or determinants), prove that

x1

X2

X1

Yi 1

Y2 1

Y3 1

a11x1 + a12y1 a21x1 + I
a11x2 + a12y2 a21x2 + a22y2 1

a11x3 + a12y3 a21x3 + 1

X1

X2

X3

Y1 1

yz 1

Yz 1

all a21 0
a12 all 0

0 0 11

Remark: With the aid of the results of this problem, we can prove some theorems
in geometry. Let D = aua22 - a12a21, so that D is the determinant of the matrix
of the transformer. The area Ti 1of the triangular region having vertices at the
transforms is equal to IDI times the area I TI of the triangular region having ver-
tices at the original points. The orientation (clockwise or counterclockwise) is
preserved if D > 0 and is reversed if D < 0. If D = 0, the transforms are
collinear. The transformer conserves areas if and only if (DI = 1, that is,
D = 1 or D = -1. If the transformer is isometric (conserves distances), then
it also conserves areas, and hence IDS = 1. These results can be extended to
give information about transforms of oriented simplexes having four ordered
vertices (xk,yk,zk), k = 1, 2, 3, 4, in E3. When

D1 =

X1

xz

X3
D=

all a32 ala
a21 a22 a23

a31 a3: a33

the simplex is (by definition) positively oriented when D1 > 0 and negatively
oriented when D1 < 0. The transformer conserves volumes if and only if D = 1
or D = -1, and it preserves orientation if and only if D > 0.

2.6 Vector products and changes of coordinates in E3 Let u and v
be vectors in E3 having scalar components u1j u2, u3 and v1, V2, v3 with
respect to a right-handed x, y, z coordinate system endowed with the
usual unit vectors i, j, k. Then

(2.61) u = uji + uaj + u3k, v = vii + vzj + v3k.

The vector (or cross) product has been defined by the formula

(2.611) u X V = Jul lvf sin On
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involving the angle 0 and the unit normal (thumb vector) n of Figure
2.612. We now work out a convenient formula which gives u X v in

Figure 2.612

terms of the scalar components of u and v. Remembering that the
vector product of two vectors depends upon the order of the factors, we
shall be very careful. We have

u X v = (uii + u2j + u3k) X (vii + v2j + flak)
= uli x (v11 + 021 + 03k)

uj x (vii + vzj + vak)
u3k x (vii + vzj + v3k)

so

u X V= uivli X i + ulv2i X j+ ulvai x k
142011 X i + 142V,j X j+ u2vij x k

-I- uavlk x i + uav2k x j + u3v3k x k.

With the aid of the helpful fact about the vector product of two con-
secutive vectors in the parade ijkijk, given in (2.234), we obtain the
unlovely formula

(2.613) u X v = i(u03 - u3V2) - j(u103 - ua01) + k(u1v2 - 14201)

This looks better when we put it in the form

142 ua

02 va

-i 141 ua

V1 0a
+ k

141 142

01 02

Our next step is to allow ourselves the liberty of putting vectors into the
first row of a determinant so we may put this in the form

(2.62) U X V =
i j k
141 U2 ua

V1 02 0a

which is very easily remembered. It is the fashion to remember (2.62)
and to expand the determinant in terms of elements of the first row when-
ever this is desirable. When we must find the vector product of two
vectors u and v defined by

u=i-2j+3k, v=21-j-k,
all persons except typists and printers are happy to solve the problem
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neatly by writing
i j kI

uxv= 1 -2 31=5i+7j+3k.
12 -1 -11

We should all know enough to be able to guard against computational
errors by observing that our answer is perpendicular to u because
5 - 14 + 9 = 0 and is perpendicular to v because 10 - 7 - 3 = 0.

To exhibit an application of vector products to a problem in geometry,
we suppose that we are given two orthonormal vectors i' and j' in E3
(this means that i' and j' are unit vectors and are orthogonal or per-
pendicular) and are required to find a third vector k' such that the three
vectors i', j', k' constitute a right-handed orthonormal system. The
answer is given by the formula k' = i' X j'. This is so because

(2.621) it X j' = ji'I ji'l sin on = n,

where n is the unit thumb vector, and this is exactly what k' must be.
This problem can be put in a different form. Suppose we are given
a right-handed rectangular x, y, z coordinate system endowed with the
usual orthonormal vectors i, j, k. Suppose further we know the scalar
components all, a12, a13 and a21, all, a23 of two orthonormal vectors i'
and j' so that the coefficients in the first two of the equations

1' = a11i + aid + alak
(2.63) j' = a21i + a22j + a23k

k' = a31i + a32j + aaak

are known. The problem is to determine the numbers as,, all, ass so
that the three vectors i', j', k' will form a right-handed orthonormal
system. These numbers are determined from the formula

asli+aa2j+aaak=k' =i' Xj' =
i j k
all a12 a13

a21 a22 a23

and the problem is solved or almost solved. To write more formulas is
somewhat anticlimactic, but we can do it. Equating coefficients of
i, j, and k gives

(2.631)
as, = al2a23 - alsa22
all = a1sa21 - a11a23
ass = a11a22 - al2a21

and then the problem is surely solved.
Everyone should read the remainder of this section, but teachers who

want to confine attention to other topics may inform their charges that



100 Vectors and geometry in three dimensions

hasty reading and preliminary ideas will be satisfactory preparation for
future encounters with the material.

Here we begin to explore some of the reasons why the system (2.63)
of equations is important. Suppose we have, as in Figure 2.64, two

z

op

Figure 2.64

right-handed rectangular coordinate systems in E3. The x, y, z coordi-
nate system having origin at 0 and bearing an orthonormal set i, j, k
of vectors is shown on the left. The x', y', z' coordinate system having
origin at 0' and bearing an orthonormal set i', j', k' of vectors is shown on
the right. Our first task is to study the important systems of equations

(2.65)

1' = aj i + a1gj + a13k,
j' = a2li -1- a22j + a23k,

k' = a31i + a32j + a33k,

aiii' + a2ij' + a31k'
j = a12i' + a22J' + a32k'

k = a13i' + a23j' + a33k'

that relate the vectors in the two orthonormal sets. We observe a fact
that can be considered to be remarkable even when we know the reason
for it: the coefficients in the system of equations obtained by solving
the first system for i, j, k are easily written down by interchanging the
rows and columns in the first system. The reason is simple. The
orthonormality of the vectors implies that, in each system, all is
a12 is an is a21 is and so on until, finally, a33 is k'-k. The
numerical coefficients in each row (and hence also in each column) in
the right member of each system are the scalar components of a unit
vector. The nine coefficients are cosines of direction angles, but we
carefully avoid attempts to work out formulas by means of figures
showing the nine angles.

As soon as we look at the point P of Figure 2.64, we realize that P has
two sets of coordinates, there being a set x, y, z for the unprimed or old
coordinate system and another set x', y', z' for the primed or new coordi-
nate system. If we know enough about the relative positions of the
two coordinate systems, we should be able to find one set of coordinates
when we know the other set. We shall solve this problem with the aid
of vectors. To specify the relation between the two coordinate systems,
we suppose that, with reference to the unprimed coordinate system, the
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coordinates of 0' are xo, yo, zo, so that

(2.66) 00' = xoi + yoj + zok,

and that the unit vectors i, j, k and 1', j', k' of the two coordinate systems
are related by the fundamental formulas (2.65). It is now surprisingly
easy to solve our problem. Let P be a point in E3 having unprimed
coordinates x, y, z and primed coordinates x', y', z', so that

(2.661) OP = xi + yj + zk, 0'P = x'i' + y'j' + z'k'.

Putting the formula OP = 00' + 0'P in the form OP - 00' = 0'P
then gives

(2.662) (x - xo)i + (y - yo)j + (z - zo)k = x'i' + y'j' + z'k'.

An expression giving the right side in terms of i, j, k is obtained by
multiplying the members of the first three equations in (2.65) by x', y', a',
respectively, and adding the results. The coefficients of i, j, and k turn
out to be, respectively, the right members of the equations

x - xo = alix' + ally' + a3iz'

Y - yo = a12x' + a22y' + a32z'
z - zo = aiax' + a23Y' + a33z'.

These equations therefore result from equating the coefficients of i, j,
and k in (2.662). Transposing gives the formulas

x = xo + aiax' + aziy' + a31%'

(2.67) y = yo + ai2x' + a22Y' + a32z
z = zo + aiax' + any' + a33z'

which express the unprimed coordinates of a point in terms of the primed
coordinates of the point. A very similar procedure gives the formulas

x' = xo + aiax + any + aiax
(2.671) Y' = y' + a2ix + a22Y + a23z

Z' = zp + a31x + a32Y + a33z

which express the primed coordinates of a point in terms of the unprimed
coordinates of the point. The formulas (2.67) and (2.671) are known
as the formulas for changes of coordinates. The formulas (2.67) are
often used to convert an equation involving coordinates x, y, z into a
new equation involving new coordinates x', y', z'. As can be expected,
it is sometimes far from easy to so determine the numbers xo, yo, zo
and a,, in (2.67) that the new equation will have the simplest possible
form. For the present we do not need to know much about these
matters, but we should know that there are situations in which one
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particular coordinate system is better than others and that there exist

formulas relating the coordinates in two different coordinate systems.
It is sometimes said that fundamental problems in analytic geometry

are not adequately covered in textbooks that combine the study of
analytic geometry and calculus. Much more analytic geometry will
appear later in this textbook. Meanwhile, we consider a fundamental
problem in analytic geometry that is sometimes ignored in elementary
geometry books. Suppose we say, with reference to some rectangular
x, y, z coordinate system, that a set S in E3 is a quadric surface if it is
the set whose points P(x,y,z) satisfy an equation of the form

(2.68) 4x2+Bye+Cz2-}-Dxy+Exz+Fyz+Gx+Hy+Iz+J = 0,
where the coefficients A, B, C, D, E, F are not all zero. Our big question
is the following. Can it happen that Miss White chooses a particular
x, y, z coordinate system and finds that a particular set S* is a quadric
surface because there do exist coefficients 11, B, , F not all 0 such
that S* is the set of points P(x,y,z) for which 11x2 + By2 + ... = 0,
while, at the same time, Mr. Black chooses another x, y, z coordinate
system and finds that the same set S* is not a quadric surface because
for his system the required coefficients do not exist? If the answer is
affirmative, then the above definition of quadric surface and the above
set S* should be placed in the museum of the SPC (Society for the Pro-
motion of Confusion). It can be shown that the answer is negative
and hence that the definition of quadric surface does make sense. To do
this, we let x', y', z' denote the coordinates of Mr. Black and substitute
the values of x, y, z from (2.67) into (2.68) to find what the equation of
S* will be in the coordinates of Mr. Black. The critical equation turns
out to be

(2.681)

where

A'x'2 + B'y'2 + C'z'2 + D'x'y' + E'x'z' + F'y'z'
+ G'x' + H'y' + I's' + J' = 0,

I' = flail + Bata + Ca13 + Dana,, + Eaua,3 + Fa,2a,3,

and formulas for the other coefficients can be written out. Proof that
the coefficients A', B', C', D', E', F' are not all zero can be based upon
the fact that substituting the expression for x', y', z' from (2.671) into
(2.681) must yield the original equation (2.68). If A', B', C', D', E', F'
were all zero, this substitution would show that A, B, C, D, E, F are all
zero, and this is not so. The principle involved is the following: As we
see from (2.671), a change from coordinates x, y, z to x', y', z' cannot
increase the degree of a polynomial in x, y, z. Moreover, the change
cannot decrease the degree because, as we see from (2.67), the change
from x', y', z' back to x, y, z cannot bring a polynomial of lower degree
back to the original polynomial.
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So far as we know, some quadric surfaces may be rather complicated
things, and it is of interest to know what the intersection Sl of a quadric
surface and a plane -7r may be. Such a set Si is a quadric section. A little
thought can save us a lot of trouble. We can introduce a coordinate
system in such a way that the plane a is the plane having the equation
z = 0. The equation of the quadric surface must have the form (2.68).
Putting z = 0 in (2.68) shows that the quadric section must be the set
of points P(x,y) in the xy plane whose coordinates satisfy the equation

(2.682) 4X2 + Bye + Dxy + Gx -}- Hy + J = 0.

Quadric surfaces and quadric sections will be studied later. Meanwhile,
we make some remarks that may be at least partially understood. The
family of quadric surfaces includes spheres, circular cylinders, circular
cones, ellipsoids, various kinds of paraboloids and hyperboloids, and,
in addition, assorted degenerate things such as empty sets, lines, planes,
and pairs of planes. The equations z2 + 1 = 0, x2 + y2 = 0, z2 = 0,
and z2 - 1 = 0 do have the form (2.68). The family of quadric sections
includes circles, parabolas, ellipses, hyperbolas, and, in addition, such
degenerate things as the empty set, points, lines, pairs of lines, and the
whole plane.

Problems 2.69
1 Supposing that u and v are vectors in E3 having scalar components u,,

u2i us and v, V2, v3, tell how u X v can be expressed as a determinant. Ans.:
(2.62).

2 Calculate w = u X v and check your answer by showing that 0
and 0 when

(a) u=21-3j+ 4k,
(b) u=21-3j+-4k,
(c) u=i+j,
(d) u=i,

v=2i+3j+4k
v=2i+3j+4k
v= i+ j+ k
v= i+ j

3 Two unit vectors u, and u2 have their tails at the same point P on a
sphere which we consider to be the surface of an idealized earth. Suppose that
P is neither the north pole nor the south pole of the earth, that u, points east,
and that u2 points north. Find the direction of ui X u2. Ans.: UP-

4 Show that the vectors i' and j' defined by

i' = 1(i - 2j + 2k)
J1 = $(2i - j - 2k)
k'= ai -I- bj+ck

constitute a two-dimensional orthonormal system and then so determine a, b,
c that the three vectors constitute a right-handed three-dimensional orthonormal
system. Ins.: k' = 11(2i + 2j + k).
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5 Show that the vectors

U1=cosOsinOi+sinosinOj+cosOk
u2= cosOcos Oi+sin Ocos Oj - sin Ok
u3 = -sin 0 i + cos O j

in the order u1, u2, u3 constitute a right-handed orthonormal system.
6 If

OP1 = 2i + 3j + 2k
OP2=3i+2j+ k
OP3=2i+ j+ k,

find a vector orthogonal to the plane containing Pi, P2, P3. Hint: The vector v
defined by v = P1P2 X P1P3 is an answer, and v = -i + j - 2k.

7 Check the answer to the preceding problem in the following way. Write
the equation of the plane through P1 orthogonal to v and then show that P2 and
P3 lie in this plane.

8 Show that the lines having the equations

x-I y+6 z+10 x-6 y+l z+5
1 - 2 - 3 ' 2 -1 = -4

intersect. Then find equations of the line perpendicular to both at their point
of intersection. Solution: The vectors OP and OQ running from the origin to
points P and Q on the two lines are

OP= (1+t)i+(-6+2t)j+(-10+3t)k
OQ = (6 + 2u)i + (-1 - u)j + (-5 - 4u)k,

where t and u are scalars that depend upon P and Q. Equating these vectors
shows that they coincide when t = 3, u = -1 and hence that the given lines
intersect at the point R for which

OR = 4i - k.

Thus R is the point (4,0,-1). This result is easily checked. The vector

i j k
1 2 3

2 -1 -4
= -5i + 10j - 5k

is orthogonal to vectors on the given lines and hence the equations

x-4 y-0 z+1
1

= -2 - 1

are equations of the required perpendicular line.
9 Prove that each vector v satisfies the equation

i X(v Xi)+j X(v Xj)+k X(v xk) =2v.
10 Show that (I X J) X j 0 1 x (j x j).
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11 Prove that if u and v and w are vectors having scalar components ul,
u2, u3 and v1, 82, V3 and w1, w2, w3, then

X w) = (uli + u2j + u3k)

X w) =
u1

91

W1

U2 U3

V2 83

W2 W3

i j k
fl1 53 93

W1 w2 w3

Remark: The number X w) is called the scalar triple product of the three
vectors, and we shall see how it is related to volumes of tetrahedrons and paral-
lelepipeds. Let v and w be nonzero nonparallel vectors having their tails at a
point .Q as in Figure 2.691. Then

(3) v Xw=lviJwJ sinOn=2IT2ln,

where 0 is the angle between v and w, n is the unit normal determined by the
right-hand rule, and I T21 is the area of the two dimensional triangle T2 of which

Figure 2.691

v and w form two sides. Let u be a third vector which has its tail at d and makes
the angle 0 with n. In case 0 < 0 < a/2, the number is the distance from
the tip of u to the plane of the vectors v and w. The volume V of the tetrahe-
dron having base T2 and opposite vertex B is therefore given by the formula

(4)

Hence

(5)

V =

V = x w).

The volume of the tetrahedron is half the volume of the pyramid whose vertex
is B and whose base is the parallelogram of which v and w are two adjacent sides.
The volume of this pyramid is one-third the volume V5 of the parallelepiped of
which u, v, w are adjacent edges. Therefore,

(6) Vp = X W).

Thus, when 0 < 4, < r/2, the scalar triple product X w) is the volume of
the parallelepiped of which u, v, w are three adjacent edges. When 0 = 7r/2,
the vector u lies in the plane of v and w and the scalar triple product is zero.
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When ,r/2 < 0 < 7r, the scalar triple product is the negative of the volume of the
parallelepiped.

12 Prove that if i, j, k and i', j', k' are two right-handed orthonormal sets
of vectors, then the determinant of the coefficients in the system

i.' = alli + a12j + a13k
Y = a211 + a22] + a23k
k' = a31i + a32j + a33k

must be +1. Outline of solution: The hypotheses imply that j' X k' = i' and
hence that X k') = 1. But

x k') = (alli + ai2j + ai3k).
i j k

= A,a21 a22 a23

I a31 a32 a33

where A is the determinant of the coefficients, and the result follows.
13 It is clear from geometrical considerations that if i, j, k and i', j', k' are

two right-handed orthonormal sets of vectors in E3 for which k' = k, then there
must be an angle 0 such that the "new" vectors i' and j' are related to the "old"
vectors i and j as in Figure 2.692. The new vectors and new z' axis and new y?

Figure 2.692

axis are dashed in the figure, and the vectors k and k' are not shown. It is easy
to see, with the aid of the figure, that

(1) i' = (cos 4,)i + (sin ¢)j
j' = -(sin 4,)i + (cos 4,)j.

Check up on this story by using (1) and vector methods to prove that, whatever
0 may be, it is actually true that 10 = 1, Ij'l = 1, i' X j' = k.
Solve the equations (1) for i and j to obtain the formulas

(2) i = (cos 4,)i' - (sin 4,)j'
j = (sin 4,)i' + (cos ¢)j'

which give the new vectors in terms of the old. Observe that changing the sign
of 0 converts one system of equations into the other. Finally, show that if P
lies in the plane of Figure 2.692 and if

(3) OP=xi+Yj=x'i'+Y]',
then

(4) OP = x'f(cos ¢)i + (sin ¢)j] + Y'[-(sin 4,)i + (cos O)jl
=[x'cos0-y'sin¢li+[x'sin0+y'cos4jj
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and therefore

(5) x = x' cos 0 - y' sin 0
y = x' sin 0 + y' cos 4).

Remark: The formulas (5) are, perhaps unwisely, called "formulas for rotation
of axes" in E2. Actually, they are used to convert equations involving "old"
coordinates x, y into new (and sometimes simpler) equations involving new
coordinates x', y'.

14 Supposing that u and v are nonzero noncollinear vectors, show that the
vector

(u X V) X U
I(uXv)XuI

is a unit vector which lies in the plane of u and v and is orthogonal (or perpen-
dicular) to U.

15 Cultivate some useful skills by following instructions and paying particu-
lar attention to steps that seem to be worthy of notice. Draw vectors PP2 and
Pp3 and then draw the angle 0 and the unit normal n that appear in the definition
of PP-2 X PP3. Show that the area A of the parallelogram having adjacent sides
on PP2 and PP3 is

A = IPP2I IPP3I sin 0.

Draw another vector PPl and show that the distance d from Pl to the plane of
pp2 and FP3 is

d =

where the sign is so taken that d ? 0. Then, depending upon circumstances,
remember or learn that V = 4d, where V is the volume of the parallelepiped
having adjacent edges on PP,, PP2, PP3 if d 0 0 and V = 0 if Pi lies in the plane
of PP2 and PP3. Use this to show that

V = X PP3).

Supposing that P has coordinates x, y, z and that the points Pk have coordinates
Xk, yk, Zk, show that

V = ±[(x, - x)i + (y' - y)j + (zl - z)k]-
i j k

x2-x y2-y z2-z
xa - x y3-y z3-z

and hence that
x, - x yl - y zI - z

V = ± x2-x y2-y z2-z
X3 - X y3-y z3-z

Use this to show that

x y z i x y z 1

Y- + x, - x yi - y zl - z 0 xl yi zI 1

x2-x y2-y z2-z 0 X2 y2 z2 1

x3-x y3-y z3-z 0 X3 ya z3 1
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16 Prove that a line which is not completely contained in a quadric surface
can intersect the quadric surface at most twice. Solution: Suppose the coordi-
nate system is so chosen that the given line has the equations y = z = 0, and
let the equation of the quadric surface be (2.68). A point (x,0,0) then lies on
the surface if and only if 11x2 + Gx + J = 0. If there is an x for which this
equation is not satisfied, then at least one of !1, G, I must be different from 0 and
there are at most two values of x for which the equation is satisfied.

17 The purpose of this long problem is to develop ideas about the transversals
of three given skew (no two lying in the same plane) lines PIP2, P3P4, P5P6. A
line L is called a transversal of the given lines if it intersects the lines P1P2, P3P4i
PbP6 at points Q, Q1, Qs as in Figure 2.693. For each k = 1, 2, . , 6 the coordi-

nates (xk,yk,Zk) of Pk are given numbers and we want information about the
coordinates of Q, Q1, Q2. The latter coordinates are determined with the aid of
numbers X, X1, X2 for which

(1) P1Q = XP1P2, P3Q1 = a1P3Q4, P5Q2 = XZP5P6

Our first step is to select a number X (or to think of X as being "fixed") and ask
whether a transversal through Q exists. If X is so chosen that the plane 7r1 con-
taining Q, P3, P4 does not intersect the line P,P66 or intersects the line P5P6 at a
point Q2 for which the line QQ2 is parallel to the line P3P4, then no transversal
through Q exists. Henceforth, we suppose that X is not so unhappily chosen.
A transversal through Q is then obtained by drawing the line L through Q and
the Point Qz where al intersects the line QsQ6. The value of X2 can be calculated
in terms of X from the equation

xs + X 2(X6 - x5) Ys + X2(Y6 - ys) Z5 + X2(Z6 - Zs) 1

(2) xa 1a za 1 = 0
X4 y4 Z4 1

xl + X(xs - x1) Y1 + M(y2 - y1) zl + X(z2 - 71) 1

which says that Q2 is the point on the line PiP6 which lies in the plane a1 contain-
ingPa, P4, Q. Similarly, the value of X1 can be calculated in terms of X from the
equation

(3)

xa + X1(x4 - xa) ya + X1('4 - ya) Za + X1(24 - za)
X5 Y6 z5

xb Y6 Z6

x1 + X(xt - x1) Y1 + X(ya - yl) a1 + X(z2 - zl)

=0
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which says that Q1 is the point on the line P3P4 which lies in the plane 72 con-
taining P5, Pe, Q. Thus the required coordinates of Q, Q1, Q2 are determined in
terms of X. Remark: Study of the set S of points P(x,y,z) that lie upon trans-
versals can be very interesting. If P lies upon the transversal through Q, then,
for some scalar µ,

(4) OP = (1 -µ)0Q + µ0Q1
But

(5) OQ = (1 - X)OP1 + AOP2,

and, since (3) shows that there are constants .4 and B for shich h1 = !A + B,

(6) OQ1 = (1 - [sly + B])OP3 + (AX + B)OP4.

Therefore,

(7) OP = (1 - µ)(1 - )OP1 + (1 - µ)XOP2 + µ0P3
- µ(AX + B)OP3 + µ(_A + B)OP4.

Hence there are vectors v1, v2, v3, v4 such that

(8) OP = V1 + Xv2 +µV3 + aµv4

It follows that there are scalars, a1, , d3 such that

x=ai+b1X+r1µ+d1Xµ
(9) y = a2 + b2X + e2µ + d2Xµ

I a = a3 + b3X + c3t1 + d3aµ

It can be shown that the equations (9) are parametric equations of a quadric
surface. In fact, eliminating X and µ from the equations (9) shows that x, y, z
must satisfy an equation of the form (2.68). Thus S is a quadric surface, and
we have a quite straightforward procedure for determining its equation in terms
of the eighteen given coordinates of the six given points P1, P2, - - , P6. Stu-
dents who attain full comprehension of this matter will have passed far beyond
the minimum requirements of this course, and they can find the experience to
be both enjoyable and beneficial.

18 Those who wish to extend acquaintance with matrix theory should copy
the systems of equations in (2.65) and look at them while reading this. Let U
and UT denote the matrices of the coefficients (or scalar components or direction
cosines) of the systems so that

U
= (all a12

a2l a22 a2 a12 4

22

a

/ ' UT

=

\a31 all a33 a13 a23 a333

The matrix UT is called the transpose (or transposed matrix) of the matrix U,
and this invites us to realize that UT can be obtained from U by transposing
(interchanging) the rows and columns of U or by transposing the elements of U
across its main diagonal. The rows of U are scalar components of orthonormal
vectors, and the matrix is square. Such matrices are called unitary (or ortho-
normal) matrices. Therefore, U is unitary. When U is unitary, an application
of the rule for multiplying matrices shows that UUT = 1, where I is the unit
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matrix. Therefore U'1 = UT. This is important; the inverse of a unitary
matrix U is U.

19 This problem requires us to agree with Miss Garnett that methods of
analytic geometry can be used to solve a challenging problem that may baffle
those who seek more elementary solutions. It is supposed that a, b, c are positive
numbers and that the points 4(0,0), B(c,O), C(a,b), D(a + c, b) are vertices of a
parallelogram. Let a point E(u,O) on the bottom side of the parallelogram be
joined to the top vertices C and D and let a point F(t,b) on the top side of the
parallelogram be joined to the bottom vertices A and B. The lines EC and F11
intersect at P,, and the lines ED and FB intersect at P2. The line P1P2 meets
the side SIC at Q, and meets the side BD at Q2. The question then arises whether
the distance from Q, to A is equal to the distance from Q2 to D. Elementary
geometrical considerations show that the answer will be affirmative if the line
P,P2 contains the center P3 of the parallelogram, this center P3 being the inter-
section of the diagonals of the parallelogram. Show that, for each k = 1, 2, 3,
the elements of the kth row of the determinant

to bu

t+u-a t+u - a
ac + cz to b(c - u)

1

a+2c-t -u a+2c-t -u
a+c b

2 2

are xk, yk, 1, where xx and yk are the coordinates of P. Then prove that the

determinant is 0 and hence that the line P1P2 actually does contain P3.
20 Let P1(x,,y,), P2(x2,y2), P3(x3,ya) be vertices of a triangle such that no two

of the vertices lie on a line through the origin. Let X1, Xs, X3 be three different
numbers, and for each k = 1, 2, 3, let Qk be the point Xkyk) The two tri-
angles P1P2P3 and Q,QtQ3 are then perspective, the center of perspectivity being the
origin. The lines P1P2 and Q,Q2 intersect at a point R3, the lines P2Pa and Q2Q3
intersect at a point R,, and the lines P3P1 and Q3Q1 intersect at a point R2. The
famous Desargues theorem says that the three points R,, R2, R3 lie on a line L. It
is easy to sketch figures illustrating the theorem, but proofs are not easily origi-
nated. Possessors of sufficient time, paper, and technique may cultivate addi-
tional technique by finding the x coordinate of R3, and then interchange x and y
and advance subscripts to discover that the coordinates of R2 and Ra are the first
two elements of the bottom rows of the determinant in the equation

x y 1

(X2 - 1)X,x, - (X, - 1)X3x3 (X3 - 1)X,y, - (X1 - 1)X3y3
1

x3 - x, x3 - X,
(X1 - 1)4V2 - (X2 - 1)X,x, (X, - 1)a2y2 - (A2 - 1)11x1

X, - 1\2 X1 - Xz

=0.

This is, therefore, the equation of the line L through Rz and R3. Considerable
courage is required to show that the coordinates of R, satisfy this equation and
thus obtain an analytic proof of the Desargues theorem.
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3 limits,

derivatives

3.1 Functional notation As we progress in a study of a science, it is
necessary to become familiar with terminology and notation used for con-
veying information. One of the most important
mathematical words is the word function. We
may look at Figure 3.11, in which x, y, and z are
the lengths of the sides of a triangle and 8 is the
angle at the vertex V opposite the side of length z, Figure 3.11
and say that z is a function of x, y, and 0 which we
shall denote by f(x,y,B). By this we mean that when x, y, and 0 are
given numbers for which x > 0, y > 0, and 0 < B < r, the number z
is completely determined and has a value which we denote by the symbol
in the right member of the formula

(3.12) z = f(x,y,B).

III
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This equation is read "z equals f of x and y and 0." It happens that the
law of cosines, which involves one of the more important formulas which
should be learned in trigonometry, gives the formula

(3.13) f(x,y,B) _ /x2 + y2 - 2xy cos 0

from which we can compute f(x,y,B) when x, y, B are given numbers. In
spite of the fact that numbers do not move, it is sometimes a convenience
to think of x, y, 0, z as being "variables" and to think of z as being the
"dependent variable" which is a function of the three "independent
variables" x, y, 0.

Many examples are more complicated than this, and we can broaden
our intellectual horizons by thinking briefly about one of them. It is
standard practice to write

(3.14) v = f(x,y,z,t)
= fj(x,y,z,t)i + f2(x,y,z,t)j + f3(x,y,z,t)k,

where v, a vector, is the velocity of a fluid (which might be air) at the place
having rectangular coordinates x, y, z and at time t. We say that v and
its scalar components are functions of the four variables x, y, z, t. We
mean that when x, y, z are coordinates of a point in the region being con-
sidered and when t is a time (measured in specified units from a specified
zero hour) in the time interval being considered, the velocity v and its
scalar components at that place and time are completely determined and
that f(x,y,z,t) denotes the velocity and fj(x,y,z,t), f2(x,y,z,t), f3(x)y,z,t)
denote the scalar components.

There are two useful and more or less modern ways of attaching mean-
ings to the symbols f and f, appearing in the above example. One is the
dynamic approach and the other is the static approach. In the dynamic
approach, f and fl are regarded as operators or transformers (like machines)
to which we can feed appropriate ordered sets x, y, z, t of numbers. Then
(after mechanical squeaking or electronic flashing or what not) f and f,
produce the required vector f(x,y,z,t) and the required number fi(x,y,z,t).
In the static approach, f is regarded as being the set of ordered quintuples
(x, y, z, t, f(x,y,z,t)) of four numbers and a vector in which the allowable
independent variables come first in the appropriate order and the vector
f(x,y,z,t) comes last. In this static approach, fl is a set of quintuples of
numbers. It is a common but not universal practice to consider these
ideas to be more tangible and useful than the idea that f is a law or rule by
means of which f(x,y,z,t) can be calculated when x, y, z, t are given. A
simpler example may partially clarify these matters. As soon as we know
that the area y of a circular disk is determined by its radius x (x being
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positive because radii of disks are positive numbers), we can say that y is a
function of x and write y = g(x). Then g(2) is the area of a disk of radius
2 and g(2.03) is the area of a disk of radius 2.03. In each case g(x) = 7rx2.

We can think of g as being the operator which converts x into 7rx2 when
x > 0 or as being the set of ordered pairs (x,irx2) for which x > 0.

It is important to know about a particular special way in which a scalar
function of one scalar variable can be determined. Suppose we have a
given set S of ordered pairs (x,y) of numbers such that the set does not
contain two pairs (xl,yl) and (x2,y2) for which x2 = x, and 3'2 vi. To
each number xo that appears as the first number in one of the pairs (x,y),
there is then one and only one number yo such that the pair (xo,yo)
appears in the set. We may let f(xo) denote
this number yo, and we have yo = f(xo). Thus
the given set S of ordered pairs (x,y) becomes
the set of ordered pairs (x, f(x)). When the
pairs of numbers in the set are associated with

zI
1 -o

points and are plotted in the usual way, an
O 1 2 3 x

the con-le being shown in Figure 3.15exam ,p
dition on the ordered pairs means that no two

Figure 3.15

points fall on the same vertical line. In the example of the figure, we
see that f(x) = 2 when x = 0, that f(x) = 1 when 1 < x < 2, that
f (x) = 2 when x = 2, and that f (x) = x - 2 when 2 < x < 3. When
x has a value different from 0 and not in the interval 1 < x _<_ 3, no
meaning has been attached to f(x) and we say that f(x) is undefined.
In this and other cases, the set of values of x for which f(x) is defined is
called the domain of the function, and the set of values attained by f (x)
is called the range of the function. All this is perfectly explicit and pre-
cise, and it should be thoroughly understood by everyone. One who
wishes to regard f as an operator must realize that each set S of the type
described above completely determines the number f (x) that f must
produce when it operates upon a given number x in the domain of f.
Likewise, one who wishes to regard f as a set S must realize that the opera-
tor f determines his set S of pairs (x, f(x)). Everyone must realize that a
set S* of points in a plane endowed with an x, y coordinate system deter-
mines both the operator f and the set S, provided no two points of S*

lie on the same vertical line. As sometimes happens in mathematics and
elsewhere, we have a situation in which different individuals can hold

different personal preferences. For example, a person who wishes to
regard f as an operator can take a dim view of the idea that an appropriate
set S of ordered pairs of numbers "is" a function because it determines a
function. He can feel that this is too much like saying that a social
security number "is" a worker because it determines a worker, and he can
object to the idea that social security numbers eat mashed potatoes.
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The contraption in the central part of Figure 3.151 is guaranteed to
make nearly everybody imagine a more or less complicated process by
which f might operate upon a given input x (an element of the domain of
f) to produce the corresponding output y (an element of the range of f).
The last problem of this section provides ideas about functions, operators,
and transformers that are needed in advanced mathematics and are help-
ful in elementary mathematics.

Figure 3.151

If we know that y is always positive and that x and y are always related
by the formula x2 + y2 = 9, we can discover that y = 1/9 - x2 when
-3 < x < 3. Thus y is determined as a function of x which is defined
over the interval -3 < x < 3, and the graph is as shown in Figure 3.16.
Similarly, if we know that y is negative and x2 + y2 = 9, we can conclude
that y = - -\/9 _-x2 and we have a function whose graph appears in

Figure 3.16 Figure 3.161 Figure 3.162

Figure 3.161. If we know that x2 + y2 = 9 but do not know whether y
is positive o. negative, we cannot determine y in terms of x. The best
we can do is say that, for each x in the interval -3 < x < 3, y is one or
the other of 1/9 - x2 and - N/'9-- x2. Figure 3.162 shows the graph
of a function f for which x2 + [f(x)J2 = 1, it being true that f(x) > 0 for
some values of x and f (x) < 0 for other values of x. Observe that the
equation x2 + y2 = 1 does not, by itself, determine y as a function of x,
but that there do exist functions f for which x2 + [f(x)]2 = 1.

One purpose of all this discussion is to emphasize the fact that our ideas
about functions must be both broad and precise. We must remain calm
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when someone says that the temperature u at the north pole of our earth
is a function of the time t and, without bothering to introduce a new
letter whose significance must be remembered, uses the symbol u(t) to
denote the temperature at time t. Many
problems in pure and applied mathematics
involve functions about which we have some
information and seek more. Moreover, we
must allow ourselves freedom to use standard
terminology that everyone else uses to convey a x, x.. b x
ideas and information. We say that a func-
tion f is increasing over an interval a 5 x 5 b

Figure 3.163

if, as Figure 3.163 indicates, f(xi) < f(x2) whenever a 5 x1 < x2 < b.
Similarly, f is decreasing over the interval if

(3.164) f(xi) > f(x2) (a < x1 < x2 < b).

In this displayed statement, the "whenever" is omitted. The line can be
read "f (xl) > f (X2) whenever a <_ x1 < x2 < b." If, as Figure 3.163
indicates, f is increasing over the interval a 5 x <_ b and if f(a) = .1 and
f(b) = B, we say thatf(x) increases from 14 to B as x increases from a to b.
While we use this convenient terminology, we need not be gullible people
who are easily persuaded that numbers x and f(x) can actually increase.
To see 6 increase and say hello to 7 as it proceeds toward 8 could be quite
amusing, but we make no pretense that such things actually happen. To
avoid misunderstandings, the author wishes to publicly proclaim that
he is not recommending rejection of the good old terminology; he is
merely insisting that we know what we mean when we say that y or f(x)
increases as x increases from a to b.

Problem 15 at the end of this section deals with a famous number-
theoretic function. From some points of view, a perfect definition of this
function can be phrased as follows. Let it be the function whose domain
is the set of real numbers and which is such that, for each x in the domain,
rr(x) is the number of primes less than or equal to x. This makes the "law"
or "rule" concept sound very good. We can easily make the pretense
that a sufficiently dynamic operator could produce the numbers 7r(x) that
we need to form the set S of pairs (x,,7r(x)) needed for the static concept.
It will be observed that, in Problem 15, the function is defined in fewer
words.

Trigonometric functions and polynomials are simpler examples of func-
tions that are important in advanced as well as in elementary science.
A polynomial (or polynomial in x) is a function P having values defined by

(3.17) P(x) = aoxn + alxn-1 + + an_1x + a,.

or by

(3.171) P(x) = bo + bix + b2x2 + + bnxn,
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where n and ao, al, , an and bo, b1, . , b,a are constants, n being
a nonnegative integer. A rational (ratio-nal) function is a quotient of
polynomials, an example being the function Q for which

(3.172) Q(x) = x+1
xs +x-12

for each x for which the denominator is different from zero. When we
define a function by a formula more or less like (3.172), we ordinarily
understand that the domain of the function is the whole set of numbers x
for which the formula actually determines a number. We must, how-
ever, recognize the fact that the function g for which g(x) = when
1 < x S 4 is different from the function h for which h(x) = when
x 0; the domains of the functions are different, and the functions are
therefore different. To clarify this point, we can recognize that a
machine which is capable of cracking only medium-sized nuts is different
from a machine that is capable of cracking nuts of all sizes.

If we have a load of coal of weight w and we toss a lump of coal on or
off the load, then the new weight will be a new number which we can call
w + Ow. Thus Ow, which may be either positive or negative, is the
difference of two weights (the new minus the old). The number Aw, read
"delta w," is a single number (not the product of two numbers A and w).
This simple notational device turns out to be unexpectedly convenient.
In physical chemistry Ap is the difference of two pressures, Av is the dif-
ference of two volumes, and At is the difference of two times. In physics,
Av is the difference of two (vector) velocities, and AY is the difference of
two potentials. In economics OP is the difference of two prices, and in

Figure 3.181 Figure 3.182

biology AP may be the difference of two populations. If, as in the
discussion involving Figure 3.181, the left member of the formula

(3.183) z = f(x,Y,O)

represents the length of the side opposite the vertex Y, then the left
member of the formula

(3.184) z+AZ =f(x+ox,Y+AY, e+AO)
represents the length of the side opposite the vertex Y in the triangle of
Figure 3.182. Of course we can and sometimes shall use shorter symbols
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such as h, k, p, q for Ax, Ay, tO, Az, but very often the extra labor involved
in writing the more elaborate delta symbols is a small price to pay for the
elimination of the superfluous symbols whose meanings may be forgotten
and confused.

At the conclusion of the text of this section, the author makes some
remarks that he would have made at the beginning if he had thought that
they could have been understood. The old word "function" has been
and is and will be used in many different ways. Students who get around
will have serious difficulties unless they are so well informed and tolerant
that they can accumulate and dispense information by reading and hear-
ing and talking quite different languages. It is like being able to play
football with those who play football and to play basketball with those
who play basketball; one who knows only ping-pong is sometimes handi-
capped. This, of course, does not imply that a particular teacher is
required to stand by while many different games are played simultane-
ously in his classroom. Each individual teacher may, with the full back-
ing of the author, go as far as he likes in prescribing the rules of the game
to be played in his own classroom.

Problems 3.19
1 If

f(x) = x, g(x) = xz, h(x) = 21, O(x) = 1_+X2'
1

verify the following assertions and replace the question marks by appropriate
answers.

(a) f(0) = 0, f(-3) -3, f(2) _ ?
(b) g(O) = 0, g(-2) = 4, g(5) _ ?
(c) h(-1) _ -, h(0) = 1, h(2) = 4, h(7) = 1.4142

(d) h(5) h(-2) _ ?, h(-) = ?
(e) c(T) = 3, 4(2) = ?, 0(-2) = ?, O (A) _ ?
(f) f(8) - f(5) = 3, f(2.1) - f(2) _ ?

(g) g(3) - g(2) = 5, g(2.1) - g(2) _ ?
(h) h(3) - h(2) = 4, h(1) - h(0) _ ?
(i) q(1.1) - 0(1) _ -.0475, k (O.2) - (0) _ ?

f(4.5) - f(4) f(2.8) - f(2.7)= 1
(7)

0.5 0.1

(k)
g(4.1) - g(4)

= 8.1,
g(2.8) - g(2.7)

0.1 0.1

(l)
4(2.1) - 0(2) -.152,

0(0.2) - 0(0) _ ?
0.1 0.2

(m)
g(x + 2) - g(x) = 2x + 2,

g(x + 0.5) - g(x) =
2 0.5

(n)
g(1 + AX) - g(l) = 2 + Ax, g(ox) - g(0)

Ax dx
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(o) Ax + Ox) - AX) g(x +
Ox) - g(x) = 2x + Ax

6x Ax

(p)
4(x + Ax) - ¢(x) -2x- Ax

22AX ][1 + (x + AX) ][1 + x

2 The signum function having values sgn x (read signum x, almost like sine x)

1

is defined by the formula

sgn x = 1 (x > 0)
sgn x = 0 (x = 0)
sgn x = -1 (x < 0).

x Show that Figure 3.191 displays the graph of sgn x and
then draw the graph of sgn (x - 2). Show that IxI = x- -1 sgn x. Hint: Consider separately the cases in which

Figure 3.191 x>0,x = 0, andx <0.
3 The Heaviside (1850-1925) unit function having

ly values defined by

1

Figure 3.192

H(x) = 1 (x > 0)
H(x) (x = 0)ffl

H(x) = 0 (x < 0)

is named for the mighty electrical engineer who popu-
x larized its use. Show that Figure 3.192 displays the

graph of H(x) and then draw the graph of H(x - 2).
Show that

H(x) = 1 -+ -2gn x, sgn x = 2H(x) - 1.
i

4 We need more evidence that not all functions
have simple graphs that are easily drawn. Let D be
the dizzy dancer function, defined over the interval
0 <= x 5 1, for whichx

D(x) = 0 (x irrational)
Figure 3.193 D(x) = 1 (x rational).

Think about this matter and acquire the ability to make a figure more or less
like Figure 3.193 to "represent" the graph of D.

5 A function g is defined by the formulas

g(x) = x2 (0 <_ x 5 1)
g(x) = x (otherwise).

Plot its graph.
6 A function f is said to be an even function if f(-x) = f(x) whenever x

belongs to the domain off and is said to be an odd function if f(-x) _ -f(x)
whenever x belongs to the domain of f. Prove that the polynomial having values
2 - 3x2 + 5x' (with only even exponents appearing) is even. Prove that the
polynomial having values x - 7x5 + 2x7 (with only odd exponents appearing)
is odd. Prove that the polynomial having values I - 2x + 3x2 is neither even
nor odd.
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7 If h(x) = x + 1/x when x 76 0, show that h(11t) = h(t) when t 0 0 and
that [h(x)]2 = h(x2) + 2. Work out a formula for h(h(x)) and check the formula
by setting x = 2.

8 If f(x) = x2 + 3x + 1, show that f(-3) = 1, f(-1) = -1, f(O) = 1,
f() _, f(2) = 11, and

f(x+Ax) =x2+3x+1+(2x+3)Ax+Ax2
when Ax2 means (Ax)2. It is quite appropriate to use this formula as a basis
for a feeling that, when x has a particular fixed value such as 0 or -2 or a, the
value of f (x + Ax) is nearly the same as the value of f(x) whenever Ax is nearly 0.

9 If f(x) = mx + b, show that

f(x2) - f(xi) = m

whenever x2 0 xi. Sketch a figure and comment upon the result.
10 If f(x) = x2, show that

f(x + h) - f(x) = 2x + h
h

when, as always when we make calculations of this kind, h 0 0. Sketch a
graph of the function and use the above formula to find the slope of the line L
passing through the two points on the graph for which x = 1 and x = 1.001.
The answer is 2.001, and it is quite appropriate to have a feeling that this is
nearly the slope of the line tangent to the graph at the point (1,1).

11 If f(x) = x2, simplify

f(x+Ax) +f(x -Ax) - 2f(x).
Ax2

12 If f(x) = 1/x, and if x and x + Ax are both different from 0, show that

f(x+Ax)-f(x)_ -1
Ax X (X -+ Ax)

13 Make appropriate use of the trigonometric formulas

sin (a+0) = sin a cosf+cosa sinO
cos (a + e) = cos a cos # - sin a sin 0

to obtain the formulas

sin (x+h)-sinx_sinhcosx-I-Coshsinx

cos (x + h) - cos x sink I - cos h
h

= - h sin x - h cos x.

14 Show that y will be a function of x for which

x2 + xy(x) + [y(x)I2 = 3
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if -2 5 x S 2 and, for each such x, y(x) is one or the other of the two numbers

-x - -\/3(4 - x2) -x + 3(4 - x2)
2

,
2

which are equal only when x = -2 and when x = 2. Hint: Use the quadratic
formula.

15 An integer n greater than 1 is said to be composite if, like 39, it is repre-
sentable as the product of two integers each greater than 1 and is said to be a
prime if, like 29, it is not so representable. The primes are 2, 3, 5, 7, 11, 13, 17,
19, 23, 29, - - - , there being an infinite set of them. One of the famous func-
tions of number theory is x(x), the number of primes less than or equal to X.
It is easy to see that x(8.27) = 4. It has been proved that x(103) = 168,
x(106) = 78,498, and x(109) = 50,847,478. To graph x(x) over the whole inter-
val 0 S x 5 109 would be quite a chore. However, draw the graph over a
shorter interval, say 0 < x S 40, and try to pick up some ideas.

16 Another famous number-theoretic function has, for each positive integer
n, the value d(n), where d(n) is the number of positive integer divisors (including
I and n) of n. For example, the divisors of 6 are 1, 2, 3, and 6. Verify the
entries in the little table

n= 1 2 3 4 5 6 7 8 9 10 11 12 13
d(n)=122 324243 4 2 6 2

and calculate d(233252).
17 We take a brief preliminary look at some functions that play fundamental

roles in physics, mechanics, and statistics. Let n be a positive integer. For each
k = 1, 2, 3, - - , n, let a particle Pk of mass Mk be concentrated at the point
Pk(xk,yk). In what follows we use Z (xi, the Greek x) to denote a number which
can easily be considered to be the x coordinate of a point, and we use M with a
superscript to make us think of a moment. For each number t, the number
Mp?f defined by

(1) M`'e=ml(xI- )+ms(xs- )+ ... +mn(xn
is called the first moment of the mass system about the line having the equation
x = !;. Supposing that the total mass

(2) M = ml + m2 + .. + mn
of the system is positive, we can put (1) in the form

- \.
(3) M (maxi + m2x2 + ... + M.X.

M

Similarly, for each number rt (eta) the number M,('-',, defined by

(4) M, = ml(y, - il) + m2(y2 - 17) + . .. + mn(Y, - rl)
is called the first moment of the mass system about the line having the equation
y=n,and
(5) Mas = M lm1Y1 + -2Y2

M
... + miYn - nl.
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The particular point (x,71) for which Mt # = 0 and .11v1', = 0 is called the cen-
troidt (thing like a center) of the mass system. The coordinates of the centroid
are denoted by z and y. Thus, t1fz = 0 and M411 = 0, and it follows from (3)
and (5) that

(6) z = m1x1 + m2r2 + ... + mnx, - M15'1
+ m2y2 + . .. + mny,,

M I
_

M

In case mk = 1 for each k, (2) shows that M = n and the formulas (6) reduce to

(7) = x1 + x2 + - - + xn, y = Y1 + Y2 + + Y.
n n

In this case the centroid (z,y) is called the centroid of the set of points P,, P2,

P,,. To prepare us for Section 4.7 and other sections where less simple
mass systems are considered, we should take brief cognizance of a more general
definition. Let p be a nonnegative integer. The number is defined by
(8) Mgt = m1(x1 + m2(x2 - s)" + . . . + m,(xn - S)p
and is called the pth moment of the mass system about the line having the equa-
tion x Similarly, the number MC,7 defined by

(9) Mien = mi(Y1 - 7])p + m2(Y2 - 77)p + . . + m,,(Y, - 77)p

is called the pth moment of the mass system about the line having the equation
y = 71. In physics and mechanics (but not so often in statistics) the second
moment is called moment of inertia. Since we are studying functions, we can
observe that, if our mass system contains 40 particles, there is a sense in which
the moments in (8) and (9) are functions of 82 variables of which two are p and .
While this textbook does not require calculations of these moments, we can recog-
nize that there are many situations in which calculations must be made, and this
is one of the reasons why the world contains so many calculating machines and
computers of assorted mechanical and electronic varieties.

18 If f(x) = 1 + x + x2 + xa + x4, show that f(1) = 5 and

f(x)=x5-1=1-x5
x-1 1-x

when x 0 1.
19 Remark: This remark invites more complete comprehension of ideas and

terminology involving functions. The left-hand part of Figure 3.194 represents

Domain 0-I ) Black box

T Y egg
Figure 3.194

a set D of numbers or of vectors or of entities of some other kind that is called a
domain. The central part of the figure represents a mechanism that is sometimes

t We are being rather unrealistic if we suppose that everybody always chooses the same
coordinate system when studying a given system of particles. The coordinates of the cen-
troid depend upon the coordinate system used, but (we omit the proof) the location of the
centroid relative to the system of particles is the same for all coordinate systems. For
example, if three particles of equal mass lie at the vertices of a triangle, then the centroid
lies at the intersection of the medians of the triangle.
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called a black box and is sometimes called a transformer T. When an element x
of the domain is selected and fed into the black box or transformer, the x is called
an input and the black box or transformer is supposed to produce an output
which is an element y of a set R which is called a range. Thus to each x in D
there corresponds exactly one y in R which is called the transform of x and is
denoted by T(x) so that y = T(x). Thus we have a transformer T which trans-
forms each x in D into a transform T(x) in R. So far we have used the words
"transformer" and "transform," but we have not used the word "transformation."
Our domain and transformer and range determine and are determined by the
set S of ordered pairs (x,y) for which x is an element of D and y is the element of
R for which y = T(x), and we call this set S a transformation Ts. The domain
(set of inputs) and range (set of outputs) of the transformer Tare also the domain
and range of the transformation Ts. We now have adequate terminology and
notation. The transformer T is the active "operator" that converts each ele-
ment x of D (or each first element of one of the pairs in Ts) into the transform
T(x) in R (which is the appropriate second element of a pair in the set S which
constitutes Ts). The transformer T and the transformation Ts are inherently
different things, and there can be no doubt that our science is inadequately
developed when we apply the same name and the same symbol to the two things.
The worst of it is that, when the word "function" is used, this one word sometimes
means a transform T(x), sometimes means the transformer T, and sometimes
means the transformation Ts. Perhaps an assertion involving the word "func-
tion" will help us to see why we must make a rather serious study of terminology
before we can be intelligent readers and listeners. It is the function (see the
nonmathematical meanings given in a dictionary) of a function (transformer)
to carry an element of the domain D of the function (transformer or transforma-
tion) into the function (transform) in the range R of the function (transformer
or transformation). Commenting upon this matter from the point of view of
mathematical logic, Professor Rosser remarked to the author that some of our
terminological difficulties are due to the fact that the already overburdened
old word "function" was used as a name for the set S of ordered pairs. It is
possible that terminology will slowly improve, but meanwhile we can be com-
forted by the fact that the bad terminology rarely if ever actually injures us.
We can be irked by the fact that a "diameter" of a circle is sometimes a line
segment (a point set) and is sometimes a number (the length of the line segment),
but we are rarely if ever injured and there seems to be no overwhelming demand
for improvement of the terminology.

3.2 Limits When we were infants learning to walk and to talk, and
perhaps even after that, we heard many statements that we could not
comprehend. When an explorer tells us that he found a complete set of
normalized Legendre polynomials in an ancient cave in Peru and that the
carbon test shows that the set is 24,500 years old, it may be difficult for us
to learn what he is talking about and whether he is telling a truth.
Moreover, statements involving erudite technical terminology are not the
only ones that can be troublesome. Sometimes we must do considerable
working and thinking before we can fully understand statements that
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involve only simple words and may seem, at first sight, to be childishly
simple.

It is reasonable to suppose that the harangue of the previous paragraph
is leading up to something, and that the lightning is about to strike. It
is. We are going to undertake to make a sane appraisal of the assertion

(3.21) x2 is near 9 whenever x is near 3 but x 5,16 3

which we shall call the assertion in the first box. The assertion does not
say anything about the value of x2 when x = 3. It does not say that
x2 is 9 when x = 3, and hence it does not pretend to tell the whole truth.
There is a fundamental reason why it is not completely easy to tell what
the assertion does mean. The reason is that it simply does not make
precise mathematical sense to say that a number x is near 3. Whether
416 or 4 or 3.01 or 3.00001 or 2.98 is considered to be near 3 or not can be a
matter of opinion and can depend upon circumstances. Likewise, it
does not make precise mathematical sense to say that x2 is near 9.
Discouraging as this may be, we must recognize that it may be possible
to attach a precise meaning to the assertion in the first box without attach-
ing meanings to the "assertions" x is near 3 and x2 is near 9. After all,
the word "attaching" can mean something even when "atta" and
"ching" do not. It should be possible to tell precisely what the assertion
does mean, because the assertion uses words in a thoroughly serious
attempt to convey information. A fundamental idea is involved.

Our first attempt to make sense out of (3.21) is to replace it by the
assertion

(3.211)
x2 is a good approximation to 9 whenever x is
a good approximation to 3 but x 0 3

in the second box. This change in the wording can be psychologically
satisfying, and we started with (3.21) only because it is shorter than
(3.211). We have not, however, conquered our fundamental difficulty,
because the statement that one number is a good approximation to
another is neither more nor less illuminating than the statement that one
is near the other.

It is a remarkable fact that much of the mathematical progress of the
past century is based upon the development and use of a particular special
method of attaching meaning to the statements in the first two boxes.
The method is called the epsilon-delta method because it traditionally
employs the two Greek letters a (epsilon) and S (delta). The meaning of
the assertions in the first two boxes is, by this method, defined to be the
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same as that of the assertion

(3.22)
To each positive number e there corresponds
a positive number S such that

Ix2 - 91 < e whenever 0 < Ix - 31 < S

which we shall call the epsilon-delta assertion.t When we first see the
epsilon-delta assertion, we are entitled to feel that it lacks the intuitional
appeal of the preceding assertions, but it turns out to be the fully mean-
ingful assertion which can be proved if it is true and can be disproved if it
is false.

Before further discussion of the assertions in the boxes, we can note
that they are so long that it is tedious to write them very often and that
they are universally abbreviated by the efficient and effective shorthand

(3.23) Jim x2 = 9
X- s

in our fourth and final box. Thus the assertions in the four boxes are
equivalent; if one is true, then all four are true; and if one is false, then all
four are false. They all mean the same thing.

The only possible discordant phrase in the symphony is the noise we
make when we read the assertion in the last box. We say that the limit
as x approaches 3 of x2 is 9. Thus we have another technical statement
couched in terms of the dubious concept of moving numbers. Stephen
Leacock (1869-1944) was wise enough to realize that if a number x really
could approach 3 from more than one direction, then it should be able to
reverse the process and go away from 3 in more than one direction. In
any case, Leacock enabled Lord Ronald (a character in "Nonsense Novels,
Gertrude the Governess: or, Simple Seventeen") to fling himself upon his
horse and ride madly off in all directions. We make no attempt to explain
our basic concept in terms of moving numbers. Such attempts are much
too mystic and vague for advanced technical books, and we can hold the
view that they are at least a little bit.too mystic and vague for elementary
books. In our book, the collection of words "the limit as x approaches
3 of x2 is 9" does not suggest that numbers jump around; it suggests that
"xt is near 9 whenever x is near 3 but x is different from 3," and this
basic concept is made precise by the epsilon-delta assertion.

f In this and similar assertions, we avoid difficulties by using the word "each" in prefer-
ence to "any" because the troublesome word "any" often means "at least one." Residents
of Los Angeles can be expected to give lusty affirmative answers when asked whether any
major city of the United States lies west of the Mississippi River. If ei < es and Jx2 - 91 <
el, then J x2 - 91 < se. For this reason the epsilon-delta assertion will be true if to each a for
which 0 < e < 0.001 there corresponds a positive number S such that Jx2 - 91 < e
whenever 0 < Ix - 31 < S.
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It is both easy and customary to adopt the absurd view that everybody
has spent huge amounts of time squaring all sorts of numbers near 3 and
has somehow picked up positive knowledge that the assertions in the
boxes are true. Instead of trying to discover how uncertain we should be,
we eliminate uncertainties by proving the epsilon-delta assertion.
Let e > 0. If 0 < S < 1 and 3 < e/7, then

(3.24) Ix2 - 91 = I (x + 3) (x - 3)j
=Ix+31lx-31 <71x-31 <76 <

whenever 0 < Ix - 31 < 6. To obtain the inequality ix + 31 < 7
which was used in (3.24), we can use an appropriate figure or, alterna-
tively, use the fact that if Ix - 31 < S and 5 < 1, then

Ix+31 =Ix -3+615Ix -3(+6<5+6<7.
Thus an appropriate 6 can be found and the assertion is true. It is not
inappropriate to think about this matter for a few minutes or perhaps
longer.f

We are familiar with the nature of the graph
of the equation y = x2, and it is comforting to 9+

see that the epsilon-delta assertion has a simple
geometric interpretation. It says that if e > 0 9

and if horizontal lines are drawn through the s-e
i

11

points with y coordinates 9 - e and 9 + a as in
Figure 3.241, then there exist vertical lines
(dotted in the figure) such that, with the possible
exception of a single point for which x = 3, the
part of the graph between the vertical lines is also
between the horizontal lines. The little sister we
mention occasionally might be irked by the pos-
sible exceptional point, but she certainly would 3-63+5
be clever enough to put in the dotted lines after Figure 3.241
we had shown her a figure containing the hori-
zontal lines; the process is thoroughly elementary and we need not
require that efforts be made to seek the greatest 6 that serves the pur-
pose. Even though it does not make precise mathematical sense to say

t The famous flea assertion "each flea has a smaller flea to bite him" is, in some respects,
similar to the epsilon-delta assertion. We recognize that the "each flea" at the front of the
assertion invites us to think about fleas one at a time, not every flea or all fleas at once. To
prove the flea assertion, we would be required to start with a given flea, say Mr. F. (who
could be any flea but would not be every flea or the collection of all fleas), and show that
there is a smaller flea which is so related to Mr. F. (and which may be said to correspond
to Mr. F.) that it bites him. To prove the epsilon-delta assertion, it suffices to start with a
given positive number e (which could be 416 or or 0.00001 or any other positive number
but naturally cannot be all of these things at once) and then show that there is a positive
number 6 so related to e that jx2 - 91 < e whenever x 0 3 and Ix - 31 < S.



126 Functions, limits, derivatives

that e is small, we need not deny ourselves the satisfaction of the feeling
that, when the given a is small, the dotted lines must be close together
and the S must be small.

For the case in which f(x) = x2 and a = 3, we have been discussing
questions involving values of f(x) when x is near a. Our serious interest
often lies in such questions when f(x) has a more complicated expression,
say one of

1 2+x- VJ_ sinx
(1 -x)110.

X X x

We should therefore know that the assertions in the four boxes

(3.25)

(3.251)

(3.26)

(3.27)

f(x) is near L whenever x is near a but x 0 a.

f(x) is a good approximation to L whenever
x is a good approximation to a but x 5A a.

To each e > 0 there corresponds a h > 0 such that
lf(x) - LI < e whenever 0 < Ix - at < S.

lim f(x) = L.
x-.a

have identical meanings. When we have plenty of time, we can always
replace the epsilon-delta assertion by the following more ponderous but
psychologically satisfying one. To each positive number a there corre-
sponds a positive number S such that f (x) approximates L so closely that
If(x) - LI < e whenever x is different from a but approximates a so
closely that Ix - at < S. The assertion (3.27) is read "the limit as x
approaches a of f(x) is L."

If f and a are such that there is no L for which the four assertions are
true, then we say that

lim f(x)

does not exist. Complete comprehension of this matter is essential;
otherwise, we must be eternally confused by a statement that a thing at
which we are looking does not exist.

Some assertions involving limits are not completely simple. There
will come a day when we must know there is a number e, having the
approximate value in

(3.271) e = 2.71828 18284 59045,
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such that

(3.272) lim (1 + x) If- = e.
X-O

Anybody can collect a little evidence in support of this assertion by mak-
ing calculations when x has such values as ±J, ±j-, ± 4, and ±-L, but
it is not so easy to prove the assertion. In fact we must have very sub-
stantial information about limits before we can, in Chapter 9, define
functions having values ex and, when x > 0, log x. Meanwhile, many of
the problems that confront us will be solved very quickly and easily with
the aid of the following fundamental theorems. We call them limit
theorems, but they are nothing but basic theorems in the theory of
approximation.

Theorem 3.281 If

lim f(x) = L1, limf(x) = L2,

then L2 = L1.
Theorem 3.282 If b is a constant, then

Theorem 3.283

lim b = b.

lim x = a.
x-a

Theorem 3.284 If c is a constant, then

lim cf(x) = c lim f (x)
x-ia z-sa

provided the limit on the right exists.
Theorem 3.285 The formulas

lim [f(x) + g(x)] = lim f(x) + lim g(x)
x- a x-+a

lim [f(x)g(x)] = [lim f(x)][lim g(x)]
z-a

/
2a x-+a

f(x) - _

llima f(x)

lim,a g(x) lim g(x)
z-4a

are valid provided the limits on the right exist and, in the case of the last
formula, lim g(x) 0.

x- a
Theorem 3.286 If

lim f (x) = L
z a

then
lim lf(x) - LI = 0

and conversely.
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Theorem 3.287 (sandwich theorem or flyswatter theorem) If for
some positive number p

g (x) < f (X) < h (x)

whena - p <x <aandwhen a <x <a+ p,andif

lim g(x) = L, lim h(x) = L,
z- a

then

= L.lim f (x)

Theorem 3.288 If p is a constant positive exponent, thent the first of
the formulas

lim xP = aP, lim xP = aP

holds when a > 0 and the second holds when a >__ 0.

These theorems are easily understood and will turn out to be very use-
ful. Unless his teacher rules otherwise, each individual student has three
options. He can claim that the theorems are so obvious that they do not
need proof and, even though this is surely a precarious way to start a
successful mathematical career, he may even be right. He can claim that
they are not obviously true but he will accept them because they are
printed and the teacher says there are no misprints. Finally, he may
want to see proof because he is suspicious or inquisitive or wants to
develop abilities to prove things. In the latter case he may attack
Appendix 1 at the end of this book. Whatever we do, we should always
believe that if f(x) lies between g(x) and h(x) and if g(x) and h(x) are both
near L whenever x is near a but x 0 a, then f (x) must be near L whenever
x is near a but x 0 a. This is what the sandwich theorem says, and the
meanings of the other theorems are also simple.

The first two of the following problems are designed to promote under-
standing of the epsilon-delta assertion (3.26). We must always remember
that if the epsilon-delta assertion is true, then to each (not all or every)
epsilon that is positive there corresponds a delta that is positive such that
t f (x) - Lj < ewhenever x is different from a but so near a that Jx - at < 3.
It is not asserted that there is a delta which corresponds to every epsilon.
It is asserted that to each epsilon there corresponds a delta. The epsilon
comes first, and the delta follows.

t The meaning of the second of these statements is explained in Section 3.3. The
theorem is, as Appendix 1 says, proved in Chapter 9 after the theory of exponentials and
logarithms has been developed. See Theorem 9.271.
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Problems 3.29
1 It is not enough to be able to read the four assertions which involve f(x)

when x is near a but x 0 a. We must be able to write them. Try to write
them with the text out of sight and, if unsuccessful, read the text some more and
try again.

2 In terms of epsilons and deltas, write a complete statement giving the
exact meaning of each of the following true statements:

(a) x3 is near 27 whenever x is near 3 but x 0 3.
(b) sin x is near 0 whenever x is near 0 and x 0.

(c) sin x is near 1 whenever x is near 0 and x 9d 0.
x

(d) 1 - zos x is near 0 whenever x is near 0 and x 5A 0.

(e) x is near 1 whenever x is near 1 and x 3 1.

(f) lim sin x = 1 (g) lim l - cos x = 0
x- O X x-.0 X

(h) lim 1 - cosx = 1 (i) lim ex = e2
x-i0 x2 2

(j) lim (1 + x) 112 = e (k) lim ex - 1 = 1
X-0 x-0 X

(1) lim
sin (x + Ox) - sin x =cos z

Ax-+o Ax

(m) lim cos (x + Ox) - cos x sin x
9x-.0 Ax

(n) lim nx"+' - (n + 1)x" + 1 = n(n + 1)
x-+1 (x - 1) 2 2

Answer to last part: To each E > 0 corresponds a 6 > 0 such that

nx"+1 - (n+1)x"+1 -n(n+1) <
I (x - 1)2 2

whenever 0 < Ix - 11 < 6.
3 The first formula of Theorem 3.285 assures us that if f(x) is near 3 and

g(x) is near 5 when x is near a but x 0 a, then f(x) + g(x) is near 8 whenever x
is near a but x 0 a. Give similar applications of the other two formulas in the
theorem.

4 Tell whether you would like to learn and use new notation by which one
or the other of the "formulas"

(1) approx f(x) = L, approx f(x) = L
e,0<jx-aj<5 x=a

is used to abbreviate the epsilon-delta assertion: to each positive number e
there corresponds a positive number 6 such that f(x) approximates L so closely
that lf(x) - Ll < e whenever 0 < Ix - al < 3. If you have no opinion, think
about the matter and get one. Remark: A person who thinks that this is a
silly question may be thoroughly mistaken. It is not unreasonable to suppose
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that scientists of the future will adopt notation like that in (1) and that their
historians will wonder why on earth people ever concocted tales about moving
numbers and converted a few basic theorems in the theory of approximation
into a mystic "theory of limits" that kept the world agog for several centuries.
In our book, the theory of limits sometimes sounds like a theory of moving
numbers but it is in fact a part of the theory of approximation. Let us get on
with it.

5 Verify the following assertions and replace the question marks by appro-
priate answers. The basic limit theorems may be used.

(a) lim 3x = 15

(c) lim (3 - 2x) = 3
X-0

(e) lim (y + 1)(y + 2) = 20
Y-3

(g) lim x2 - x + 1 = 21

+x+1 31

(b) lira 3x = ?
z-.2

(d) lim (4x - 5) = ?
z-.o

(f) lim(x+2)2=?
z-.4

(h) lim x2 - 2 = ?
z- 2x2 + 2

6 Pay very close attention to the problem of evaluating

lim h - y_
h-.o h

because the process involves some troublesome points. Tell why the last part
of Theorem 3.285 cannot be used here. Look at the problem and observe that
it is difficult or impossible to guess what the answer (if any) is. Observe that
we must put the quotient in a more manageable form before we can find its limit.
The next step is to remember from experiences in algebra or to learn right now
that the numerator and denominator of the quotient should be multiplied by the
"conjugate" of the numerator. Thus

lim 2+h-1.2=lim 2+h-V-2 V2-{ h+\
h-.o h h-.o h 1V2+h+V2_

=lim 2+h-2 =lim 1

-h-0 h(v'2+h+/) 2+h+ 2v'
Tell which of the theorems of this section are used in making the last step. To
be sure that this process is thoroughly understood, make the small notational
adjustments necessary to obtain the formula

lim V;+tx1`= 1

AX--+0 Ax 21/x

Put in at least as many steps as appear in the special case.
7 Supposing that a > 0, show that

lim
x - = 2a.

x-.0 z-}-a2-a
8 Show that

lim 1 + x2 - 1 = 0.
z~o x
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9 Supposing that y = x2 and y +i y = (x +Ax)2, show that

10

lim Ly = 2x.
,iz-.0 Ox

Prove that
lim (x + x3 = 3x2.

11

AX-0 Ax

Prove that, when x > 0,

lim V(x + Ax)3 - 1x3 3= 2tix..%x-O ,x
12 We have shown that

sin (x+h) -sinx
h

sihhcosx - l - hoshsinx

and we shall learn that

lim sin h = 1
h-.o At

lim 1-cosh=0
h-.o h

Use these facts to find that

lim sin (x + h) - sin x
= cos X.

h-0 h

13 Supposing that y 54 0, prove that

z z
lim
z--.0x2+y2

14 Supposing that y = 0, prove that

xz-yzlim--=1.
X-Oxz+y2

15 Prove that if lim f(x) = L, then to each positive number a there corre-

sponds a positive number 3 such that

jf(x2) - f(xi)I < E

whenever 0 < Ix2 - al < 5 and 0 < Ix1 - al < 5. Remark: Proof of this result
depends upon the idea that it two things are near the same place, then the things
must be near each other. The details require careful attention, however. To
prove the result, let e be a positive number. Then e/2 is a positive number.
Hence there is a positive number S such that If(x) - LI < E/2 whenever 0 <
Ix - al < S. Therefore,

l f(xs) - f(xl) I = I U(x2) - L] - U(xi) - LI !

5lf(x2)-LI+lf(xi)-LI<2+2=E

whenever 0 < Ix1 - a! < 8 and 0 < (x2 - al < 3.
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16 Recall that the signum function having values sgn x (read signum x) is
defined by the formula

sgn x = 1 (x > 0)
sgn x = 0 (x = 0)
sgn x = -1 (x < 0).

Show that
lim sgn x

does not exist. Solution: To prove this without the aid of the result of Problem
15, we let f(x) = sgn x and prove that there is no numberL for which the epsilon-
delta assertion is true. To do this we assume (intending to show that the assump-
tion must be false) that there is a number L for which the assertion is true. Let
e be a number for which 0 < e < 1, and let S be a corresponding positive number
such that l f (x) - LI < e whenever 0 < Ixl < S. If 0 < x < 6, then f(x) = 1
and hence 11 - Ll < e. If - S < x < 0, then f (x) _ -1 and hence -1 - Ll <
e. Therefore,

2=11+11 =11-L+I+LI 511-LI+I1+Ll < 2e

and hence e > 1. This contradicts the inequality e < 1 and establishes our
result.

17 Show that if f(x) = Ixl, then

lim f(0 + h) - f(0)
h--0 h

does not exist. Solution: Let g(h) denote the above quotient. When h > 0,
we find that g(h) = h/h = 1, and when h < 0, we find that g(h) -h/h = -1.
The result then follows from the preceding problem.

18 Prove that the first of the assertions

Jim xz = 4, Jim x2 = 5 (?)
x-.2 x- 2

is true and that the second is false.
19 If D is the dizzy dancer function for which

D(x) = 0 (x irrational)
D(x) = 1 (x rational),

prove that there is no a for which lim D(x) exists.

20 Suppose that, in some vast universe, it really is true that each flea has a
smaller flea to bite him. Suppose also that the universe contains at least one
flea. Do these hypotheses imply that there exist fleas having mass less than
1 milligram? ilns.: No. The hypotheses would be satisfied if to each positive
integer n there corresponds a flea whose mass in milligrams is 1 + 1/n, and the

flea of mass I + 1/n is bitten by the flea of mass 1 + n I- 1
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3.3 Unilateral limits and asymptotes When we are talking about
the function f for which f(x) = sgn (x - a) and see the graph shown in
Figure 3.31, and in some other cases as well,
we can cheerfully assert that AR (lambda sub
R) is a number such that f(x) is near AR when-
ever x is near a and x > a. We can feel sure i a x

that we know the meaning of the assertion, but
we must nevertheless know that the epsilon- Figure 3.31
delta version of the assertion is the following.
To each e > 0 there corresponds a S > 0 such that lf(x) - ARJ < e
whenever a < x < a + 3. This time the condition x 74- a does not enter
the assertion to bother our little sister and everything is very simple.
The abbreviated version of the assertion is

(3.32) lim f(x) = X.
x-+a+

The new thing in this symbol is the plus sign that follows the a. Perhaps
the best way to read this is "the right-hand limit as x approaches a of
f (x) is XR," but it is always awkward to write one thing and say another,
so the reading usually boils down to "the limit as x approaches a plus of
f(x) is AR." In case there is no number for which the assertion is valid,
we say that the right-hand limit does not exist. A similar succession of
ideas leads to the symbol

(3.321) lira f(x) = AL,
x-+a-

which says that the left-hand limit as x approaches a of f(x) is AL.
If a function f and a number xo are such that the unilateral limits AR

and AL in

(3.33) lim f(x) = AR, lira f(x) = AL
X- xo+

exist and are different, then the function f is said to have a jump (or an
ordinary discontinuity) at the point xo. The magnitude of the jump is
JAR - AL!. If AR > AL, then f has an upward jump, and if AR < AL, then
f has a downward jump.

Another assertion that turns out to be both interesting and important
is the assertion that a function f and a number L may be such that f(x)
is near L whenever x is large. When making this assertion precise, we do
not use the letters a and 3 but, instead, use a and some other letter, say
N, that we can easily regard as a "large" number. The assertion means
that to each e > 0 there corresponds a number N such that

(3.34) 1f(x) - Li < e (x > N).

By tossing in some surplus verbiage, we can put this in terms that may be
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psychologically satisfying. Whenever a positive number a is selected,
we can find a positive number N so large that f(x) approximates L so
closely that If(x) - Ll < e whenever x is so large that x > N. The
abbreviated version of this assertion is

(3.341) lim f(x) = L.
X_W

This is read "the limit as x approaches infinity of eff of ex is ell," or "the
limit as x becomes infinite of eff of ex is ell." This does not mean that
"infinity" is a place toward which numbers can gallop. All tales about
infinityt and galloping numbers are completely irrelevant, and there is no
sense in which x really "becomes infinite." The assertion (3.341) means
that f (x) is near L whenever x is large. We examine an example. Every-
one who has an appreciation of the magnitudes of the numbers 1/2,
1/416, 1/7,528,432, and 1/1020 must believe that 1/x is near 0whenever x
is large, that is,

(3.342) lim 1 = 0.
X,w X

To prove this, let e > 0. Let N = l/e. Then the inequality

x01 <e
is valid whenever I < ex and hence whenever x > 1/e and hence when-
ever x > N. Thus when a positive number e is given, we are able to find
a number N for which the e, N assertion is true. Therefore, (3.342) is a
true assertion. It is equally easy to attach a meaning to the assertion
that f(x) is near L whenever x is negative and has a large absolute value.
The abbreviated version of this assertion is

(3.343) lim f(x) = L.
__-M

We say that the limit as x approaches minus infinity of f(x) is L.
There are some important modifications of these ideas that should now

be easily understood. In case f(x) = 1/(x - a) and also in some other
cases, we can cheerfully assert thatf(x) is large whenever x is near a and
x > a. This assertion is abbreviated to

(3.35) lim f(x) = Co.
s-.a+

It means that to each number M there corresponds a a > 0 such that

(3.351) f(x)>M (a<x<a+6),
t For those who are really interested in infinity, a remark appears at the end of the

problems of this section.
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that is, f(x) exceeds M whenever a < x < a + 6. The assertion that
f(x) is large whenever x is large is abbreviated to

(3.352) lim f(x) = Co.

It means that to each number Al there corresponds a number N such that

(3.353) f(x) > M (x > N).

It is quite appropriate to recognize that ideas akin to those of this sec-
tion sometimes appear in elementary geometry books when information
about lengths of circles is being sought. Let C be a circle having radius #s
and diameter 1. We can imagine that, for each integer n >_ 3, we have
inscribed a regular polygon P. with n sides and have found its length L.
We can assume (or perhaps prove) that there is a number, which we can
call a, such that Ln is near 7r whenever n is large. By this we mean that
to each e > 0 there corresponds an integer N such that JL - 7rj < e
whenever n > N. The abbreviated form of the assertion is

(3.354) lira L = Tr.
n-ao

It is not necessary to try to explain how a polygon (which is something but
cannot do anything) can sprout more sides and approach the circle as the
number of "its" sides becomes infinite. The number it appearing in this
way is the length of circle of diameter 1. We are all familiar with the fact
that the length of a circle having radius r and diameter d is 27rr, or ud.

The ideas of this section have swarms of applications. In particular.
we can use them to introduce some ideas and terminology of analytic
geometry. We begin by considering the graph of the equation y = f (x),
where f is a given function. If

(3.36) lim f(x) = L or lim f(x) = L,
x-+m z-. - m

then the line having the equation y = L is called a horizontal asymptote
of the graph. If

(3.361) lira f(x) = ao or lim f(x) _ -

or lira f(x) = co or lim f(x) = - oo,
x-+a- x-.a-

then the line having the equation x = a is called a vertical asymptote of
the graph. Employing a modification of these ideas, we consider a case
in which -1 and B are numbers such that

(3.37) lira [f(x) - (Ax + B)] = 0 or
x O

lim U (x)(x) - (Ax + B)l = 0.
x--a
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In this case, the line having the equation y = 4x + B is called an
asymptote of the graph. This asymptote is horizontal if .1 = 0. We
want to be able to apply similar jargon to graphs of equations, such as

(3.38)
x2 y2-1
a2 b2

which are not graphs of functions. When we start with an equation of the
form (3.38) and transpose all of the terms to the left side, we obtain an
equation of the form

(3.381) F(x,y) = 0.

If f is a function such that (3.381) is true when y = f(x), then each
asymptote of the graph of y = f(x) is also an asymptote of the graph of
(3.381). Problem 7 at the end of this section involves the famous
equation (3.38).

Problems 3.39
1 Using epsilons appropriately, give a full statement of the meaning of

each of the following truthful assertions. In case an assertion is so subtle that
we are not yet prepared to prove it and appreciate its consequences, we need not
be disturbed. Scientists can, for example, understand the assertion "there is
helium in the sun" before they are able to prove the fact and understand the role
of helium in the production of energy radiated by the sun.

(a) lim 1 = 0
x-+mx

(c) lim 1 = 00
x-+0+ X

(e) lim N / ' - x 2 = 0

(g)

(i)

(k)

lim tan x = m
x r/2-
lim log x = 00

a-+m

lim e- = 0

(u) ez = lim CI

3!

+

(1)

lim

lim

xlog(I+1)
X

el = co

(t) Urn 1x}" = 0, (}xJ < 1)
n-..o
xn
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x2 x4 x3 x2n
cosx lim L1 -2i+¢i-6i+ +(_1)n(2n)!1

n-. w .11

(v)

r x3 xs x7

n

x2nt1 l(a) sinx= lim +(-1)n(2n+1)!J
-, w

\
l 1(x) sin ax = lim C7rx (1 - is) (1 - 22/ (1 - 32) . . (1 - ns/J

(y) x! = lim L \ n!e / \
(x - 1, - _, - 3,

nw (x + 1)(x + 2)(x + 3) . . . (x + n)

(a) lim x!
x-+-1+

2 Does the statement

approx 1 = 0
e,n>N 71

.)

abbreviate the statement that to each positive number e there corresponds an
integer N such that Il/ni < e whenever n > N? fins.: It can, but it does only
if we agree that it does. Remark: Whether the above abbreviation is better than
the abbreviation

lim l =0
n-.-

is purely a matter of opinion. If a person has the habit of using one notation,
the other must seem to be quite absurd, awkward, and unteachable.

3 Draw a graph of the equation y = x2. Then, supposing that 11 is a given
number, show how the figure can be used to support the assertion that

lim x2 = oo.Z-
4 4 One of the assertions

lim 1 = 0, (?), lim l ao (?)
X-0 x x-0

is true and the other is false. Give a full discussion of this matter. Remark:
Here and elsewhere, displayed assertions followed by question marks may be
false assertions.

5 With the aid of the idea that the numerator and denominator of the first
quotient can be divided by x, show that

(a)
wx - 1

= 1x + I
lim x2+2x+3 = 1

-.,2x2-2x+3 2
(d)

lim(f)

-x2s

+ 11 - 2 (c) =limes 3x3 + 1 = 3

(e) lim x2 + 2x + 3 - 0
x-.wx3-2x+3

(b) lim
x-.w

(g) xlim =
x-.0 1/1 + x

6 Show that both coordinate axes are asymptotes of the graph of the equa-
tion y = 1/x.

7 There will come a day when we must learn that the graph of the equation

x2 y2 _
a2 - bs - 1.
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in which a and b are positive constants, is a hyperbola.
(x, y(x)) lies on the hyperbola and y(x) > 0, then

Y(x) = b x - a2.
a

Show that

lim 1b x - y(x)] = 0
z-4. a

Show that if the point

and hence that the line having the equation y = (b/a)x is an asymptote of the
hyperbola. Hint: The formula

x- z2-a2 =x- x2-a2x-} x2-a2
1 x+ xs-as

turns out to be a useful source of information.
8 Find the equations of the asymptotes of the graphs of the equations

(a) y
'+2

Ans.: x 1 y=1x-1 ,

\2
C

x +1
b A( ) Y = x 2)

(r)Y=x+x

ns.: x

Ans.: x

2,y

0,y=x
is

(d) Y = Cx + x Ans.: x = 0

(e) xy = x + y Ans.:x=1,y=1
(f) x2 + y2 = x + Y Ans.: None

(g) Y= x-}-1-Vx- Ans. y = 0

9 According to part f of Problem 1, the first of the statements

lim Vx- = 0 (?),

is true.

lim -Vx = 0 (?)

Is the second statement also true?
J 10 Prove that

Remark: This remark is dedicated to unfortunate individuals who never knew
or have forgotten that if

then

S.=1+ 2 + 3 + 4 +... +(n-1)+n,

S.=n+(n-1)+(n-2)+(n-3)+ + 2 +1
and addition gives 2S. = n(n + 1), so S. = n(n + 1)/2.

11 Starting with the definition

(1) n!= 1.2.3...n,
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which is applicable when n is a positive integer, show that 1! = 1, 2! = 2,
3! = 6, 4! = 24, 5! = 120, 6! = 720, and 7! = 5040. Then give a full statement
of the reason or reasons why it is true that, when z is a positive integer,

(2) z! = lim 1.2.3 z

3 z! = lim 1.2.3... z(z + 1)(z + 2) ... (z + n)
( ) n-» (z + 1) (z + 2) .. . (z + n)

4
__

z
n!n- n+In-I-2 n + z

( ) ' n .(z+1)(z+2) . .. (z+n) n n
n

5 Z! = lim
n!-n:

( ) ,,.. (z + 1)(z + 2) ... (z +
n)

Remark: To show that the above manipulations serve a useful purpose, we take
a little mental excursion. A complex number z is a number of the form x + iy,
where x and y are real numbers and i is the imaginary unit for which i2 = -1.
While this book neither develops nor uses the algebra and calculus of complex
numbers, we remark that x + iy is the real number x if y = 0 and that x + iy
is a real integer if y = 0 and x is a real integer. We are now ready to look at
(5). We have seen that (5) is correct if z is a positive integer and the definition
(1) is applicable. While proof of the fact lies far beyond our present capabilities,
it can be proved that the limit in the right member of (5) exists and is a complex
number whenever z is a complex number which is not a negative integer. More-
over, when z is a complex number which is not a negative integer, z! is defined
to be this limit. It follows from the definition that z! is a real number whenever
z is a real number which is not a negative integer. Carl Friedrich Gauss (1777-
1855), who had the habit of knowing how things should be done, made very
effective use of (5). The index can always show us where this and other informa-
tion about factorials is concealed.

12 If the preceding problem and remark have been digested, prove that
0! = 1. Remark: Proof of the more esoteric facts that (-i)! = -\/;and (i.)! _
-/2 will not be too difficult when more mathematics of the right kind has been
learned.

13 Observe that 8! = 8(7!). Then, assuming that the limits exist, prove that

n!n:+r1.(z+1+1)(z+1+2) .. . (z+1+n)
_ (z + 1) lim n!n°

n-W (z + 1)(z + 2) . . . (z + n)

Finally, use the remark of Problem 11 to prove that

(z + 1)! _ (z + 1)(z!)
when z is not a negative integer.

14 For what pairs of numbers n and k does it make sense to define the binomial
coefficient function by the formula

nll _ n! ?

Ck/ k!(n - k)!'
Hint: If necessary, read Problem 11. Ins.: When n, k, and n - k are numbers
(real or complex) that are not negative integers.
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15 Try to make friends of the contents of the preceding problems by proving
that

(1)
()+(

k n 1) - \n k

when n, k - 1, and n - k are not negative integers. Remark: As some people
learn while studying algebra, the ordinary binomial coefficients (in which n and
k are integers for which 0 < k < n) are the coefficients appearing in the formulas

(2) (a + b)° = 1
(3) (a + b)1 = a + b

(4) (a+b)2=a2+2ab+b2
(5) (a + b)3 = a3 + 3a22b + 3ab2 + b3

and, in general, in the binomial formula

(6) (a + b)n = (Ol anbo + (1n) an-ib +
C2/

an-2b2 + .. + (nl a°b".

With the aid of (1), it is easy to fill in the rows of the Pascal triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

which displays binomial coefficients. The sum of two consecutive elements of
one row gives the element that lies below the space between them, and more
rows of the Pascal triangle are easily written.

16 We can feel sure that if x > 1, then xn must be large whenever n is large,
but it is nevertheless worthwhile to be able to prove the precise version of the
statement. When x > 1, there is a positive number h such that

(1) x=1+h;
in fact, h = x - 1. Observe that

(2) x2=1+2h+h2>1+2h
(3) x3= 1+3h+3h2+h3>1+3h
and that the binomial formula shows that

(4) xn>1+nh
when n >= 2. It follows that if M is a given number and we choose a number N
such that N > 2 and N > M/h, then we will have

(5) x">1+nh>nh>M
whenever n > N. Therefore,

(6) lim x" _ 00 (x > 1)."-
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17 We can feel sure that if IxI < 1, then x" is near 0 whenever n is large.
How can we prove it? Solution: Let e > 0. Suppose first that x = 0. Then

ix"I < e when n > 1. Suppose finally that 0 < jxj < 1. Let y = 1/IxI so that
y > 1. Then the preceding problem shows that

Jim y" = co .

If we choose an index N such that y" > 1/e when n > N, then

jx"i=y <e
when n > N. Therefore,

18 Prove that

lim x" = 0
n-.0

lim 1 + I +23+ +fl = 1. T2,,

(IxI < 1).

Jim [1 + x + x2 + ... + x"] = 1 1 x (IxI < i).

Hint: Long division (or factoring) shows that

1 - x"+1l+x+x2-}- 1-x
and we may use the fact that lim x" = 0 when IxI < I.

19 Once again, let the "bracket symbol" [x] denote the "greatest integer
in x," that is, the greatest integer less than or equal to x, so that [8] = 8 and

[15.359] = 15. Show that, for each integer n,

lim [x]=n, lim [x]=n-1.
z- n+ X--+n-

20 Prove that if g is a function and .4 and B are numbers such that jg(x)j S 11
whenever x > B, then

limg(x)=0

and that, if L is a number, then

21 Prove that

lim (L + g(x)1 = L.
X-. ( x JJ

1Jm [x] = 1.x X
Hint: Let 0(x), read "theta of x," denote the "fractional part" of x so that
8(x) = x - [x] and [x] = x - 8(x).

22 Sketch a graph of the function h for which h(x) = [x]/x when x >= 1,

and observe that h(x) really is near 1 whenever x is large.
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23 Sometime we will learn that

(1) lim 0.,.2-
Hence there must be an integer N such that

(2) T.
n3 I

< 100

when n > N. Some numerical calculations can make us quite sure that (2) is
valid when n > 20. Even though the author considers the problem to be too
difficult for assignment at this time, it may be worthwhile to seek a way to deter-
mine whether (2) is valid when n > 20.

24 Prove that if x is a rational number, say p/q, where p and q are integers,
then sin n!irx = 0 for each sufficiently great integer n. Prove that if x is an
irrational number, then sin n!hrx 0 0 for each integer n. Using these results,
show that

1 - lim sgn sin2 narx = D(x)
n- w

where D is the dizzy dancer function for which D(x) = 1 when x is rational and
D(x) = 0 when x is irrational.

25 Some old analytic geometry books pretend to prove that if n is a positive
integer and Po, P,, , P. are polynomials in x, then the line having the
equation x = x, will be an asymptote of the graph of the equation

(1) Po(x)yn + Pl(x)yn-1 +.... + P,_i(x)y + Pn(x) = 0

provided Po(x1) = 0. These old books present unclear and unreliable treatments
of matters involving limits and asymptotes, however, and the stated result is
false. Prove that the line having the equation x = 0 is not an asymptote of the
graph of the equation

(2) x2y2+x2y+1 =0.

Remark: An example which establishes falsity of an assertion is called a counter-
example. Persons who speak German (and many others also) call it a Gegen-
beispiel. The simpler equation x2y2 + 1 = 0 serves the present purpose; the
graph of this equation is the empty set.

26 Prove that if f1, f2, f3 are continuous at a, if

(1) lim y(x) = 00,
z- a+

and if, for some positive number 8,

(2) f1(x)[y(x)]2 +f2(X)Y(X) +f3(x) = 0 (a < x < a + S),
then f1(a) = 0. Hint: Choose a positive number S1 such that S1 < S and y(x) >
I when a < x < a + Si. Then, supposing that a < x < a + S1, divide the
members of (2) by [y(x)]2 to obtain

fl\x) +
f2(x) + fs(x) = 0.
y(x) [y(x))2
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27 For hundreds of years, people have been interested in the magnitude of
7r(x), the number of primes less than or equal to x, when x is large. About the
year 1900, mathematicians succeeded in proving a remarkable fact that had been
surmised since the time of Euler (1707-1783). It was proved that

(*) lim a(x) = 1.
x w x

log x

We may know very little about logarithms and may not yet have learned that,
in mathematics above the level of elementary trigonometry, loglo x denotes the
logarithm of x with base 10 and log x denotes the logarithm of x with base e.
We may not yet know how to calculate log x when x is a given positive number.
Nevertheless we should be able to tell the meaning of the star formula. Do it.
Remark: Anyone who wishes to make a very modest calculation may use the fact
that log 20 is approximately 3 and may determine ir(20). When working on chalk
boards and scratch pads, many people make effective use of stars and daggers and
other things (instead of numbers) to designate significant formulas. The valuable
idea is illustrated only occasionally in this book.

28 It is sometimes said that mathematics is a language. Perhaps it would be
more sensible to say that mathematics is a collection of ideas and that mathe-
matics books use language in more or less successful attempts to reveal the ideas.
In any case, language is important and definitions constitute a basic part of this
language. To help us realize this fact, we consider an example involving regular
polygons. A regular polygon is a set in E2 consisting of the points on the line
segments PoPI, P1P2, ... , where the points P0, PI, , P, ,, Po are
equally spaced on a circle, n being an integer for which n > 3. Under this
definition, a circle is not a regular polygon. We do not have pencils sharp enough
to draw regular polygons having a million sides, but we can nevertheless tolerate
the idea that if we could draw one on an ordinary sheet of paper, then the result
would look like a circle. We cannot, however, tolerate the ancient collection of
words "a circle is a regular polygon having an infinite number of infinitesimally
small sides" as a part of our doctrine of limits. To take a sensible view of this
matter, we can know that there was a time when the best of our scientific ancestors
used fuzzy language and whale-oil lamps but we can also know that they worked
mightily to produce better products.

29 As was stated in Section 1.1, a number x appearing in this book is a real
number unless an explicit statement to the contrary is made. This circum-
stance does not prohibit recognition of the fact that numbers other than real
numbers can appear in mathematics. It is possible, and is sometimes worth-
while, to define and employ a set S* of numbers which contains each real number
x in the set S of real numbers and, in addition, two numbers - oo and om. When
the set S* is employed, each real number x is said to be finite and the numbers
- oo and oo are said to be infinite (not finite). Order relations are introduced
in such a way that - oo < oo and - oo < x < co whenever x is a real number.
While these order relations are simple and attractive, it turns out to be impossible
to formulate a useful collection and algebraic laws (or postulates) in such a way
that oo - oo and 0 co are numbers in S*. Persons starting with enthusiasm
for - oo and co usually lose most of their fascination when they learn that the
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relations 0 oo = 1, a = oo, and a = - oo are as absurd in the "algebra" of S*
as the symbol a is in the algebra of S. We can be momentarily delighted by the
"algebraic law" which says that oo + x = oo whenever x is a real number, but
general usefulness of the unorthodox "algebra" is greatly impaired by the fact
that the relation y + x = y does not imply that x = 0 because y might be 00
and x might be 416. For present purposes, we do not need substantial informa-
tion about these matters, but a little basic information can be very helpful.
There are circumstances in which - oo and oo are considered to be numbers, but
there are no circumstances in which - oo and oo are real numbers to which we
can apply the algebraic rules (or laws or axioms or postulates) that apply to
real numbers. Whether or not we consider - oo and oo to be numbers, it is
worthwhile to recognize that some of the most convenient terminologies and
notations of modern mathematics are relics of times when the "doctrine of limits"
was based upon visions of a number x galloping toward infinity and becoming
so infinitely great (but still not co) that its reciprocal becomes infinitesimally
small (but still not 0). These infinitesimals of mathematics, like the aether and
phlogiston of physics and chemistry, can now be regarded as mystic absurdities,
but they were hardy concepts having tremendous impacts upon present as well
as past science and philosophy. We can conclude these remarks with another
bit of history. In the good old days when mathematical terminology was incredi,
bly erratic, sane physicists got the habit of saying that a number is "finite" when
they wished to emphasize their idea that it is neither zero nor infinite nor infi-
nitely small nor infinitely large. It will be interesting to see how long physicists
continue to make modern mathematicians shudder by using the word "finite"
to mean "good honest nonzero noninfinite number, with no nonsense." The
physicists have good intentions, but mathematicians consider zero to be a finite
number, with no nonsense.

3.4 Continuity This section contains information about functions
and limits that we will need. Our first task is to obtain a full under-
standing of the following definition.

Definition 3.41 .4 function f is continuous at xo (or at the point with
coordinate xo, or at the point xo) if

lim f(x) = f(xo).
X-- ze

The assertion that f is continuous at xo is nothing more nor less than the
assertion that f(x) is near f(xo) whenever x is near xo. It means that to
each e > 0 there corresponds a b > 0 such that

(3.42) 1 AX) - f(xo)I < e Ox - XOI < S).

The definition implies that f cannot be continuous at xo unless f(xo)
exists, that is, unless xo belongs to the domain of f. In case f(xo) exists,
the first inequality in (3.42) automatically holds when x = xo and we do
not need to bother with the restriction x 5 xo that appears in the defini-
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tion of limit. With a small change in notation, we can see that f is
continuous at x if and only if

(3.421)

or

(3.422)

lim f(x + Ox) = f(x)
AZ-.o

lim [f(x + Ax) - f(x)1 = 0.

Figure 3.43 shows, for the case in which f(x) = x2 and Ox > 0, the
geometric interpretations that can be given to the numbers appearing in
these formulas.

Figure 3.43

Definition 3.44 .4 function f is said to have right-hand continuity at a
if the first of the assertions

(3.441) lim f (x) = f (a), lim Ax) = f (b)
m-.a+ x-.b -

is valid and to have left-hand continuity at b if the second is valid.
Supposing that a < b, we can let fl be the function having the graph in

Figure 3.442 so that fi(x) = 0 when x < a, f,(x) = 1 when a < x < b,
and fi(x) = 0 when x > b. This function is continuous at each x for
which x 0 a and x 0 b. The function has right-hand continuity at a

.I----f----' -- ----f----
a b x a b x

Figure 3.442 Figure 3.443

and has left-hand continuity at b. It does not have left-hand con-
tinuity at a, and it does not have right-hand continuity at b. Let f2
be the function having the graph in Figure 3.443 so that f2(x) = 0 when
x <- a, f2(x) = 1 when a < x < b, and f2(x) = 0 when x > b. This
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function, like fl, is continuous except when x = a and x = b. However,
f2 has left-hand continuity at a and right-hand continuityt at b.

Definition 3.45 4 function f is continuous over an interval a 5 x 5 b
if it is continuous at each xo for which a < xo < b and, in addition, has
right-hand continuity at a and left-hand continuity at b.

The definitions of this section are designed to be useful in discussions of
examples of functions, and we begin by looking at examples of functions.
Let g be the function, defined for x 0 0, for which

(3.451) g(x) = x (x ; 0).

This function is continuous at each xo 0 0 because, when xo 0, our
theorems on limits imply that

(3.452) mx0 g(x) = lx'm 1 x
= 1

lim x
= 1

xo = g(xo)
x-.xo

However, g cannot be continuous at 0, because g(O) is undefined and there
is no possibility of having lim g(x) = g(0). We say that g is discon-

x- O

tinuous at 0. Now let h be the function defined over - m < x < oo
(this means merely that the domain of h is the entire set of numbers) by
h(0) = 0 and
(3.453) h(x) = z (x s 0).

This function, like g, is continuous at each xo F6 0, but this time h(0)
exists and there is no possibility of having lim h(x) = h(0), because

lim h(x) does not exist. Let w (omega) be the peculiar function for
x-.o
which w(0) = 1 and w(x) = 0 when x 5-4- 0. For this function both
w(0) and lim co(x) exist, but the function is discontinuous at 0 because

(3.454) lim w(x) = 0 0 1 = CO(O).
x-.o

t It is to be expected that some readers, particularly those more interested in applied
mathematics than in pure mathematics, may feel that matters now being considered are
much too theoretical to have practical interest. Some people know, and others can learn,
that when a battery has its terminals connected to appropriate electrical hardware, it almost
instantly produces an electromotive force (the kind of a force that pushes or pulls electrons
around) which we may, for present purposes, suppose to have the constant value 1. When
the battery is not connected, the electromotive force produced by it is 0. Thus, batteries
which are connected over some time intervals, and disconnected over other time intervals,
produce electromotive forces that are, as functions of time, very closely approximated
by step functions such as those we have been considering. The discontinuous functions
are introduced to simplify problems, not to complicate them. This is one of the reasons
why persons interested in applications of science must recognize existence of discontinuous
functions.
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The graphs of the signurn and Heaviside functions shown in Figures 3.191
and 3.192 should indicate that these functions are continuous every-
where except at x = 0. One who has seen numerous examples of func-
tions and their graphs should realize that he can enter the construction
business to produce more examples. He can start with a clean coordinate
system and, as in Figures 3.46 and 3.47, mark points ±x1, ±x2, ±x3,

Y

Y=ql(x)

- xi - za

Figure 3.46

on the x axis and then sketch a part of a graph which oscillates through
these points in any way he likes. Provided only that the graph contains
no two different points having the same x coordinate, the graph will be
the graph of a function. In Figure 3.46 the graph is drawn tangent over
and over again to the lines having equations y = 1 and y = -1. In
Figure 3.47 the graph is drawn tangent over and over again to the

Y
Y=q2(x)

Figure 3.47

parabolas having the equations y = x2 and y = -x2. It can be shown
that the graphs of the functions defined by ql(x) = sin(1/x) when x 96 0
and q2(x) = x2 sin(1/x) when x 34 0 and q2(0) = 0 look very much like the
graphs in Figures 3.46 and 3.47, but we need not worry about this matter
now. It should be clear from Figure 3.46 that ql cannot be continuous
at x = 0 because lim ql(x) does not exist. For the function q2 the story-

X 4o

is different. Since

(3.471) -x2 < q2(X) < x2,
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it follows from the sandwich (or flyswatter) theorem that

(3.472) lim q2(x) = 0 = q2(0),
x-0

so q2 must be continuoust at x = 0.
It is easy to prove fundamental facts about functions formed by com-

bining continuous functions in various ways. With the aid of Theorem
3.285 on limits, we see that if h(x) = f(x) + g(x) over an interval con-
taining xo, and if f and g are continuous at xo, then

lim h(x) = lim f(x) + lim g(x) = f(xo) + g(xo) = h(xo).
r-+xo x- xo x- xo

This shows that the sum of two continuous functions is continuous where-
ever the terms being added are both continuous. Very similar argu-
ments show that the product of two continuous functions is continuous
wherever the factors are continuous and that the quotient of two continuous
functions is continuous whenever the numerator and denominator are

continuous and the denominator is not zero.
We should now see that the function f, which

is defined over the interval -1 5 x < 1 and
which has the graph shown in Figure 3.48, is
continuous over the interval 0 < x < 1; it is

-i o 1 x continuous at each xo for which 0 < xo < 1, it
Figure 3.48 has right-hand continuity at 0, and it has left-

hand continuity at 1. As a bonus for knowing
about limits, unilateral limits, and continuity, we find that we can easily
understand and remember some fundamental facts that are frequently
used in applied as well as in pure mathematics. A function f has a
limit as x approaches a if and only if the two unilateral (right and left)
limits exist and are equal. The function is continuous at a if and only
if the two unilateral limits exist and are equal tof(a).

Problems 3.49
1 The statement that

5x3 + 2x2 - 4x + 16

is continuous is an abbreviation of the statement that the polynomial function
P having values P(x) defined by the formula

P(x) = 5x3 -1- 2x2 - 4x + 16

t It has sometimes been thought to be meaningful, and perhaps even true or helpful or
both, to say that a function f is continuous if and only if "it is possible to draw the graph of
f without lifting the pencil from the paper." Enthusiasm for this statement must be chilled
when we realize that a continuous function may have an infinite set of oscillations in a
finite interval and that feeble mortals never succeed in drawing more than a finite set of
them.
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is continuous. Prove the statement by filling in the intermediate steps in the
formula

lim P(x) P(a)
a-4a

and tell which theorems on limits are used in the process. Remark: The same
procedure shows that each polynomial is continuous.

2 Letting

Q(x) _
(x - 1) (x - 3)

(x - 2) (x - 4)'

show that Q is continuous at each x except 2 and 4.
3 Prove that the quotient of two functions is continuous wherever both

functions are continuous and the denominator is not zero. Remark: We recall
that the quotient of two polynomials is sometimes called a rational function.
Our results show that a rational function is continuous wherever the denominator
is not zero.

4 Determine the points of discontinuity of the functions f,, etcetera, for
which

(a) fi(x) = 1 + x2 (b) f2(x) 1

x
x2

(c) fa(x) = x(1 1 x) (d) f4(x) jxj

1 1

(e) fs(x) = x2 + 2x - 3

5 Does the assertion

(f) fn(x) = x2 + 2x + 3

approx f (x) =f(a)
..I=-al<s

abbreviate the assertion that to each positive number a there corresponds a posi-
tive number 3 such that lf(x) - f(a)i < e whenever Ix - al < 5? Ins.: It
can, but it does only if we agree that it does.

6 Taxi fare is 50 cents plus 10 cents for each quarter mile or fraction
thereof. Letting f(x) denote the fare for a ride of x miles, sketch a graph of f
and tell where f is discontinuous.

7 Assume (as is not quite true) that it takes 0.5 calorie of 220

heat to raise the temperature of 1 gram of ice 1 degree centigrade, u0

that it takes 80 calories to melt the ice at 0°C, and that it takes e0-

1.0 calorie to raise the temperature of I gram of water one degree so-

centigrade. Supposing that -40 S x < 20, let Q(x) be the +0-

number of calories of heat required to raise one gram of H2O TITfrom temperature -40°C to x°C. Sketch a graph of Q. Ans.: ,O _20 u

Figure 3.491.
8 The magnitude of the gravitational force which the earth Figure 3.491

exerts upon a particle is called its weight W. Suppose (as would
be true in the mechanics of Newton if the earth were a homogeneous spherical
ball) that there exist constants kl and k2 such that

W=klx (05x<R)
W=xs (xzR),
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where x is the distance from the center of the earth to the particle and R is the
radius of the earth. Supposing that W is a continuous function of x and that
W = 100 when x = R, calculate k, and k2 and sketch a graph of W versus x.

9 Prove that if f is continuous at xo, then so also is the function g having
values defined by g(x) = If(x)l.

10 It is never too soon to start becoming acquainted with the idea that if,
during some time interval t, < t < t2, a bumblebee or molecule or rocket buzzes
around, then at each time t in the interval it is surely someplace and that if we
let f,(t), f2(t), f3(t) denote its x, y, z coordinates at time t, then fi, f2, f3 are con-
tinuous functions of t. Since wholesome comprehension of mathematics is salu-
brious, we recognize that we do not quite know how to prove that bumblebees
never fly out of our E3 for a minute or two. Moreover, we do not know how to
devise a mathematical proof that a bumblebee cannot gather honey all morning
in Pennsylvania, be in Chicago at noon, and hunt clover in Los Angeles all after-
noon. The best we can do is make the physical assumption that fi, f2, fa are
continuous and know what the assumption means. What does the assumption
mean? dns.: If t, < t < t2, then

urn fk(t + At) = fk(t)

when k = 1, when k = 2, and when k = 3.
11 Abandoning some of the notation of the preceding problem, we suppose

that x, y, z are given functions that are continuous

*+A0 -l"W.-A., over some interval in which t is supposed to lie.
"/- ` ``

`.1 L t P d h i i hEe (t) enote t e po nt n aving coordinates3

x, y, z for which x = x(t), y = y(t), and z = z(t).
r(tP(t) While the fact will be considered later with more

d il leta s, we can pause to earn that the ordered set_-1,,/
of points P(t), ordered so that P(t') precedes P(t")

Figure 3.492 when t' < t", is called a curve C. The point P(t)
is then said to move along or traverse the curve C as t

increases. Figure 3.492 may be helpful. For each t, let r(t) be the vector run-
ning from the origin 0 to P(t). This determines a vector function r for which

(1) r(t) = x(t)i + y(t)j + z(t)k.

Conversely, if r is a given vector function, then it (and the given coordinate
system) determines its scalar components. From (1) and

(2) r(t +,6a) = x(t + At)i + y(t + At) j + z(t + At)k

we obtain

(3) r(t + At) - r(t) _ [x(t +,&t) - x(t)]i + [y(t + At) - y(t)]j
+ [z(t + At) - z(t)]k

and

(4) jr(i + At) - r(t)I = [Ix(t + At) - x(t)I2 + (y(t + At) - y(t)IZ
+ Iz(t + ot) - z(t)IT .



3.4 Continuity 151

As is easy to guess, the vector function r is said to be continuous at t if

(5)

and we write

(6)

if w is a vector for which

(7)

Limo Ir(t + At) - r(t) I = 0,

lim r(t) = w
t--.to

lim Ir(t) - wI = 0.
t-.to

It is a consequence of (4) that a vector function is continuous if and only if its
scalar components are continuous.

12 Using ideas from the preceding problem, let

r(t) = x(t)i + y(t)j + z(t)k
w=ai+bj+ck

and prove that lim r(t) = w if and only if
t- to

lim x(t) = a, lim y(t) = b, lim z(t) = c.
t-+to t-+to t--.to

Hint: Write and use a formula for Ir(t) - wI.
13 Once again, let the symbol [q] denote the greatest integer which is less

than or equal to q. Let f be the function for which

when x > 0. Draw the graph off and tell where f is discontinuous.
14 Using the "bracket notation" of the preceding problem, determine whether

lim x r
z-.o+ Lx1J

exists.
T5 Letting D be our old friend, the dizzy dancer function, for which

D(x) = 0 (x irrational)
D(x) = 1 (x rational),

show that there is no a for which

lim D(x) = D(a)
a-.a

and hence that this function is everywhere discontinuous.
16 A potential new friend g is defined over the closed interval 0 5 x 5 1 in

an interesting way. If x is irrational, then g(x) = 0. If x is 0, then g(x) = 1,
and if x = 1, then g(x) = 1. If x is a rational number for which 0 < x < 1 and
if x = m/n, where m and n are positive integers having no common positive
integer factor exceeding 1, then g(x) = 1/n. Thus g(y) = $, g(() = e, g(*) = 3,

g(a) = +, g(') = , g(3) _ 1, g(3) = 3, etcetera. Sketch a figure indicating the
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nature of the graph of g. Show that g is discontinuous at each x for which x is
rational and that g is continuous at each x for which x is irrational. Hint: If e is
a given positive number, then the set of numbers x for which g(x) > e contains
only a finite number of elements. This fact is useful. Remark: While interest
in the matter should be postponed, this is an example of a bounded function
having a countably infinite set of discontinuities. Moreover, each subinterval
of the interval 0 <_ x < 1 contains an infinite set of these discontinuities, but the
set of discontinuities has Lebesgue measure zero. The function g is the famous
corn-popper function.

17 Some people know very much about the function F for which F(r) is the
number of lattice points (points having integer coordinates) lying inside and on
the circle of radius r having its center at the origin. Give at least a little precise
information about F.

18 Give an example of a function f such that 0 _< f(x) S 1 when 0 <- x 5 1
and such that f is continuous at each point of the interval 0 < x _<_ 1 except at

19 Give an example of a function which (i) is defined over the closed interval
0 <_ x <= 1, (ii) is continuous over the open interval 0 < x < 1, and (iii) is not
continuous over the closed interval 0 5 x < 1.

20 Show that if xi, x2, x3 and .4, B, C, D, E are constants for which x, < x2 <
x3andC00, D 0,E71- 0, and if

f(x) = Ax + B + Clx - xii + DJx - x2l + EIx - xai,

then f is continuous and the graph off is a broken line consisting of line segments
joined at vertices whose x coordinates are xl, x2, xa.

21 Let

(1) A-) _ -x (x 0)

f(x) = x (0 < x 1)

f(x) =2-x (1 _<_x2)
f(x) = 0 (x 2),

so that the graph off is a broken line having corners at the points (0,0), (1,1), and
(2,0). Determine five constants A, B, C, D, E such that

(2) f(x) _ Ax + B + CixJ + DJx - 11 + Elx - 21.

Hint: For each of the four intervals x S 0, 0 5 x <= 1, 1 5 x <- 2, and x > 2,
replace the left member of (2) by the appropriate expression and replace the right
member of (2) by the appropriate expression not involving absolute-value signs.
Ans.:

f(x) = --x+(xI - Ix-11+ lx-21.

3.5 Difference quotients and derivatives Let f be defined over an
interval a < x 5 b and let x be a number for which a < x < b. Let
Ax be a number, which may be positive or negative but not 0, for which
a 5 x + Ax 5 b. We may then set

(3.51) y = f(x), y + Ay = f(x + .x),
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subtract to obtain
AY = AX + Ax) - AX),

and then divide by Ax to obtain

(3.52) AY = f (x -I- Ax) - f (x)
Ax Ax

This quotient, which is clearly a quotient of differences that are calculated
in a special way, is called a difference quotient. Difference quotients have
already appeared in our problems, and we shall see later that they have
important interpretations. Leaving the hosts of applications to be par-
tially revealed later in this textbook, and to be continually revealed to
those who pursue further studies in the sciences (including mathematics),
we now come to one of the two most important ideas in the calculus. If
the difference quotient in (3.52) has a limit as Ax approaches zero, then
f is said to be differentiable at x and the limit is called the derivative of f
at x. In case the limit fails to exist, the function is said to be nondiffer-
entiable at x and we say that the derivative of f at x does not exist.
There are two very different and very useful notations for derivatives.
The first, appearing in the formula

(3.53) f'(x) = Jim Y = Jim f(x + Ax) - f(x),
&,,-.o Ax AX-0 Ax

is usually read "eff prime of ex," but it can be read "eff prime at x" or
"the derivative off at x." This "prime notation" is called the Newton
(1642-1727) notation.t The second notation, appearing in the formula

dy Ay _ f (x + Ax) - f (x)(3:54)
dx , -.o x_

urn
Ax '

is read "dee y dee x" or "the derivative of y with respect to x" and was
originated by Leibniz$ (1646-1716). There will be times in the future
when we will consider dy/dx to be the quotient of the two numbers dy
and dx. Meanwhile, the whole symbol dy/dx is to be regarded as a
single symbol, just as the symbol H represents a single letter of the alpha-
bet and not 11 divided by 11. A longer and perhaps dismal discussion of
this terminology and notation appears in a remark at the end of the prob-
lems of this section; congratulations can be bestowed upon readers wise
enough to know that the discussion is semisuperfluous.

According to an old and honorable tradition, the definition of dy/dx and

t The original Newton notation was the "dot notation" or the "flyspeck notation"
which employed j instead off', but replacing the dot by the prime is a clerical modification
that preserves the original idea of Newton.

$ Leibniz, like Newton, published his scientific works in Latin. The Latin spelling
"Leibnitz" is sometimes seen and sometimes helps people to pronounce the name correctly.
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the manner in which it is applied can be (or should be) remembered with
the aid of the famous "four-step rule." We may not always get 4 when
we count the steps, but the rule is the four-step rule anyway.

Four-step rule 3.55
Definition A4pplication

Y = f (X) Y = x2
Y+Dy =f(x+Ox) y+Ay = (x+11x)2 = x2+2xAx+Ax2

Ay = Ax + Ax) - AX) Ay = 2x six + zx2
Ay = Ax + Ox) - AX) '&y = 2x + Ox
O Ox 9xx

Ay
dxI o Ax

4
dx = 2x

The steps are as follows: select (or "fix") an x in the domain of f, write
y = f(x), introduce Ox, write y + Ay = f(x + Ax), subtract to get Ay,
divide by Ax to get Ay/Ax, and, finally, find the limit as Ax --+ 0 to obtain
dy/dx. Whether we consciously use the four-step rule or not, we all
need experience in the art of calculating derivatives by finding limits of
difference quotients, and problems at the end of this section provide
some of it. Meanwhile, we gain experience by proving the following
formulas which can be and must be remembered.

Theorem 3.56 If u and v are differentiable functions of x and if c
and n are constants, then

(3.561)

(3.562)

(3.563)

(3.564)

(3.565)

(3.566)

d (u +v)
=dx+dx

d _ du
dx cu - c dx

d xrtnx"_I

d u" = nun-I du

dx dx

dxuv - udxvdx
du dv

d_uadx- udxTX-Vu

x v v2

provided that v s 0 in (3.566) and that in (3.563) and (3.564) we have
x 0 0 and is s 0 when n is a negative integer and (except in some special
cases) x > 0 and u > 0 when n is not an integer.

The first three of these formulas enable us to obtain results like

Z(x4-3x'+5x2-7x+6) =4x$ -9x2+1Ox- 7
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as rapidly as we can write. Thus scientists differentiate polynomials with
gusto. Using (3.563) with n = -j gives

d 1 __ d x_/ =
dx / dx

when x> 0, and using it with n = . gives

d xVx = d x34 = 3x34
dx dx 2

when x> 0.
The last formula (3.566) can be remembered for years with the aid of a

little trick. We remember that the derivative of a quotient is a bigger
and better one and begin by drawing a long line to separate the numerator
from the denominator. We continue by putting v2 in the denominator
and then, while the v is in mind, begin the numerator by writing v. This
starts things right, and the rest can be remembered.

In our proof of the theorem, we fix (or select) an x in the domain of the
functions and put u = u(x), v = v(x), u + Au = u(x + Ax),

so that
V + Av = v(x + Ax)

du _ Auu = u (x + Ax) - u (x)
TX a +o Ox loo Ax

dv = lim Av = lim v(x + Ax) - v(x)
TX s. ..o Ax 10 Ax

We prove (3.561) and (3.562) together by starting with

y = Cu + civ,

where c and ci are constants; we can put c = cl = 1 to get (3.561) and we
can take ci = 0 to get (3.562). Then

y + AY = c(u + Du) + ci(v + Av)

and subtraction gives
Ay = C Du + ci Av.

Hence

Ox
= C

Ox + ci Ax

The hypothesis of Theorem 3.56 implies

lim
Au
Ax

=
du

l.o Ax = ax'
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Therefore, an application of a theorem on limits gives

TX =
C TX + c,

TX*

As has been remarked, putting c = ci = 1 gives (3.561) and putting
ci = 0 gives (3.562).

Postponing (3.563) and (3.564), we start proving the product formula
(3.565) by setting y = uv. Then

Y + AY = (u + Au) (v + Av)
= uv + u Av + v Au + Au Av,

so Ay = u AV + v Au + Au Av. Dividing by Ax and inserting an extra
factor Ax in the numerator and denominator of the last term give

(3.57) - = uAv+vAu+Au AV Ax.
Ax Ax Ax Ax Ax

Taking limits as Ax approaches zero gives

dx=uax+Vdx+dxdx°'

The last term is zero, and this proves (3.565). Proof of the quotient
formula (3.566) is very similar, but the formula is important and we shall
prove it. Let y = u/v. Then

(3.571)

Y+AY =
u + Au
v.+..AV

_u+Au_u _vAu - uAV
Ay v+Av v v2+vAv

Au AV

AY _ vAx - uAx
Ax v2 +

v AV Ax

Taking limits as Ax approaches zero gives

du do
dY dx - u dx
ax V2

and this proves (3.566).
The power formulas (3.563) and (3.564) remain to be proved, and we

deal with (3.563) first. Let y = x*. In case n = 0, we have y = 1 and
must prove that dy/dx = 0. This is true because if y = 1 for each x,
then Ay = 0, so Ay/Ax = 0 and hence dy/dx = 0. In case n = 1, we
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have y = x and must prove that

This is true because if y = x, then Ay = Ox, so Ay/Ax = 1 and dy/dx = 1.
The case n = 2 is covered in the application under the four-step rule
headline. There are several somewhat different ways to obtain (3.563)
for greater integer values of n. Perhaps the most informative method
consists of using the product formula (3.565) to obtain

d u1u2u3 __ d(ulu2)u3 = d UIU2 d U3

dx dx dx
u3 + UIU2

dx

= dxl U2U3 + u1 d U3 + UIU2 d

and then putting ul = U2 = u3 = x to obtain

(3.572)
dxn = nxn-1

dx

when n = 3. Another application of the same idea, in which the product
u1u2u3u4 is written as the product (ulu2u3)u4 of two factors, gives

du1u2u3u4 dul due du3 duo
dx dx U2U3U4 + ul dx U3U4 + ulu2 ax, U4 + UIU2U3 dx

and putting n1 = u2 = u3 = U4 = x gives the formula (3.572) for the
case in which n = 4. The same procedure gives the result for greater
integers. Perhaps the simplest proof can be based upon the fact that if
(3.572) holds for a given n, then use of the product rule gives

dx'a+1 d

dx dx
x.x" = xnx"-1 + x".1 = (n + l)xn.7

Since the formula is valid when n = 0, mathematical induction shows that
it is valid when n is a nonnegative integer. In case n is a negative integer
(so that -n is a positive integer) and x 0 0, the result is proved by the
calculation

dxn d 1 1

dx = dx x-n - X-2-

which involves the formula for the derivative of a quotient. In case n is
a constant which is not an integer, (3.563) is still valid at least when
x > 0. Proof of this appears in Theorem 9.27, and proof of (3.564) then
follows from the chain rule of Theorem 3.65.



158 Functions, limits, derivatives

Very much more about derivatives remains to be learned, and we give
a modest but important contribution to theory by proving the following
theorem.

Theorem 3.58 If f(x) exists, then f must be continuous at x.
Our hypothesis and a theorem on limits enable us to write

limo [f (x + Ax) - f (x)l = limo x)
- Ax) Ox

= r ii i o f (x + AX) - f (x)1
[ lno Axl = f' (x) .0 = 0.

Therefore,

lim AX + Ox) = Ax),
az- o

and it follows from this that f is continuous at x.
The attainment of a technique for differentiating accurately and

efficiently is of prime importance in the calculus. When we are called
upon to evaluate the left member of the equation

d x (1 + x2)(1) - x(2x) __ 1 - x2
dx1 +x2 (1 +x2)2 (1

+x2)2'

we should say to ourselves "the derivative with respect to x of u (mean-
ing x) over v (meaning 1 + x2) is equal to the quotient with denominator
v2 [write (1 + x2) 2] and numerator v [write (1 + x2)] times du/dx [write 1]
minus u [write x] times dv/dx [write 2x]." We must learn to talk to our-
selves in such a way that we can quickly produce such results as

d l + x2 x(2x) - (1 + x2) _ x2 - 1
dx x x2 x2

d x - (1 - x2)(1) - x(-2x) _ 1 + x2
dx 1 - x2 (1 - x2)2 (1 - x2)2

d 1 0-1(2x) 2x
TX 1 + x2 (1 + x2)2 (1 -+X2)2'

With the formula for the derivative of a product in mind, we obtain

dx(x2-x+1)(x2+2x+1) = (x2-x+1)(2x+2)
+ (x2 + 2x + 1)(2x - 1)

by saying "the derivative with respect to x of u (meaning x2 -- x + 1)
times v (meaning x2 + 2x + 1) is equal to u (write x2 - x + 1) times
dv/dx (write 2x + 2) plus v (write x2 + 2x + 1) times du/dx (write
2x - 1)."
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Problems 3.59
1 Give the definition of the derivative of f at x. 4nr.: (3.53) or (3.54).
2 Find dy/dx from the definition of derivatives and then check the answers

by use of formulas for differentiation when

(a) Y = %Ix

_ 1

(t) Y x+

(b)Y=N/X-

(d) Y 1 + x

(e)Y=4xx (f)Y=112x
1

(g) Y + x2 (h) Y 1x2

3 Sometimes we are given a formula for f(x) and are required to find the
derivative off at a, where a is a number given in decimal form. In some cases
it is easiest to find f'(a) directly from the formula

f,(a) = l
. o

f(a + AX) - f(a)
a

or f'(a) = lim f (a + h) - f(a)
A-0 h

In some cases it is easiest to work out a formula for f'(x) and put x = a in the
result. Work the problem both ways when

(a)f(x)=x2-3x+ 1, a = 416
(b) f (x) = x2 - 3x + 1, a = 0

(c)f(x)=1 +x' a=2

(d) f(x) = 1 x x2, a = 0

J4 Formulas for derivatives are often wonderful, but there are times when it
is best to use the definition of derivatives to obtain f'(a). Letting g(x) = xIxj,
find g'(0) or show that g'(0) does not exist. Ans.:

g'(0) = lim g(h) - g(0) = lim hIhj
0.

a-+O It h-+o It

5 Supposing that

y = 1 +x+x2+_x3+.x4

z=5+4x-3x2+5x3+x4,
tell what facts or formulas or both enable us to write

dx = 1 + 2x + 3x2 + 4x3

dz=4-6x+15x2+4x3.
dx
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6 Calculate

dx
(x2 + 3)(x2 - 2)

by use of the product formula. Then multiply the given factors and differentiate
the result. Make the answers agree. Hint: Look at (x2 + 3)(x2 - 2) and read
u (meaning x2 + 3) times v (meaning x2 - 2). Then apply the formula for the
derivative of uv.

7 This is another lesson on use of formulas. It is expected that persons
studying calculus are familiar with the "quadratic formula." When we want to
find the values of x for which

2x2 + 3x - 4 = 0,

we say "axe + bx + c = 0" and, without writing anything, realize that we put
a = 2 and b = 3 and c = -4 in the memorized formula

-b ± b2-4ac
2a

Then we write only
-3± 9+32x= 4

When we use differentiation formulas, we should be equally efficient. When we
must differentiate

(1) y = (3x2 + 1)s,
we should realize that we must differentiate something of the form u" (not x's),
where u is a function of x. The formula

(2)
d

dxun=nu' 1 dx

should come into our minds but should not be written. We should look at (1)
and read "y equals u to the nth power" and realize without writing anything
that u = 3x2 + 1 and n = S. We should then say "dy/dx equals n (write 5)
u (write 3x2 + 1) to the power n - I (write 4) times du/dx (write 6x)." Thus
we look at (1) and, after a little chat with ourselves, write

(3) dx = 5(3x2 + 1)4.6x

= 30x(3x2 + 1)4.

Minor modifications of this technique can be tolerated, but speed and accuracy
must be developed. Write the formula (1) and practice differentiating it as a
golfer practices putting; perfection is required.

8 Look at the calculations

y = (1 - x2), z = (1 + x2)-1
dy - 1 (1 - x2)-/(-2x) A = -(1 + x2)-2(2x)dx dx

until you see where they come from and understand them thoroughly. Nothing
is to be written.
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9 Calculate
d 1 - x2 d

(1- + x2)1dx + x2' dx

by the quotient formula and by the product formula. Make the results agree.
10 It can be observed that the sum of the first two of the expressions

x2 1

2 + 1' x2 +
1, 1 { x2

x7is
the third. Find the derivatives of these things and check the results by show-

ing that the sum of the first two is the third.
11 The formulas

d . d

dx sin x = cos x,
dx cos x = - sin x

will be proved in Section 8.1. Copy them on a nice clean piece of paper, and
take a casual look at the calculations

d d sin xtan x - =
cos2x+sin2x 1

cos2 x cos2 x
sin2 x - cos2 x - 1

sec2 x
dx ax cos x
d d cosx-
dx dx sin x-cot x _ - csc2 x

sin2 x sin2 x

dx sec x = dx (cos x)'1 =-(cos x)-2(- sin x) = cos x
csin x

os x
_ sec x tan x

d csc x = d (sin x)-1 = -(sin x)-2(cos x) = sinx sins x = - csc x cot X.

Then, with the calculations out of sight, try to reproduce them.
12 Show that

dax+b ad-bc
dxcx+d

_
(cx -+d)*

13 Supposing that n is a positive integer and x 0 1, show how the identity

- 1
(1) 1 +x+x2+x3+ +xn =

xn+l

x- 1
can be used to obtain the less elementary identity

(2) 1 + 2x + 3x2 + .. + nxn'1 = nxn+l - (n + 1)xn + I
(x-1)2

Multiply by x and differentiate again to obtain another identity.
14 Calculate the coordinates of the points on the graph of y = f(x) at which

f'(x) = 0 when

(a) f(x) = x3 - 3x As.: (-1,2) and (1,-2)
(b) f(x) = x3 - 3x + 2 .dns.: (-1,4) and (1,0)
(c) f (x) = 2x + 3 Ans.: None

(d) f(x) = .1ns.: (0,0)
1 + x2

(e) f(x) =
x and (1,1)

1 + x2
(J) f(x) = ax2 + bx + C Ans.: (-b/2a. -(b2 - 4,2r)/4,1)
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15 A long time ago it was discovered that if P is a polynomial, then between
each pair of values of x for which P(x) = 0 there must be at least one value of x
for which P'(x) = 0. For the special case in which

P(x) = (x - 1)(x - 2)(x - 3),

find the values of x for which P(x) = 0 and the values of x for which P'(x) = 0,
and verify the statement about the zeros of P and P. Remark: This matter will
become quite unmysterious when we learn about the Rolle theorem.

16 In connection with the definition of the derivative of a function f at a
point x, we recognized the possibility that this derivative may fail to exist.
To clarify this matter, we should know about the simplest example of a con-
tinuous function f which is not everywhere differentiable. To investigate such
matters, we should know about the right-hand derivative f+(x) and the left-hand
derivative f-'(x) that are defined by the formulas

f+(x) = lim
f(x + Ax) - f(x) f, (z) = lim f(x + Ax) - f(x)

er-.o+ Ax AZ-->o- Ax

when these limits exist. It is easy to guess and almost as easy to prove that f is
differentiable at x if and only if

f+(x) = f_ (x) = f'(x).

For the simplest example in whichf(x) = Jxl, show that ff(0) = 1 and f-'(0) _ -1
and hence that f'(0) does not exist. It is not so easy to construct a continuous
function which is everywhere nondifferentiable, but Weierstrass (1815-1897)
started this construction business a long time ago.

17 Construct and look at a graph similar to those in Figures 3.46 and 3.47
but having the loops tangent to the lines having equations y = x and y = -x.
Letting this be the graph off and, letting f(0) = 0, discuss continuity of f at 0
and discuss f' (0), f'_(0), and f'(0).

18 For reasons that may be partially explained by the remark at the end of
this set of problems, we give, in terms of the notation of Newton, a complete
statement and proof of the part of Theorem 3.56 that involves the product
formula (3.565).

(1) Theorem If g and h are functions differentiable at x and if f is the func-
tion for which

(2) f(x) = g(x)h(x)

when x belongs to the domains of g and h, then f is differentiable at x and

(3) f'(x) = g(x)h'(x) + h(x)B (x)

Proof: Since g and h are differentiable at x, there must be an interval I with
center at x over which g and h are defined. When x + Ax lies in this interval,
we have

(4) f(x + ,Ax) = g(x + Ax)h(x + Ax)
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and hence

(5) f(x + .x) - f(x) = g(x + Ex)h(x + Ax) - g(x)h(x).

To make the right side more tractable, we subtract and add the term g(x + Ox)h(x)
and then divide by Ox to obtain

(6) f (x +
Ax)

- f (x) = g(x + Ax)
h(x + Ax) - h(x)

Ox Ax

+ h(x) g(x + X) - g(x)

But the hypotheses of our theorem, the definition of derivative, and Theorem
3.58 imply that

(7) lim g(x + Ax) = g(x), lim
h(x + z - h(x) = h'(x),

lim g(x + Ax) - g(x) - g'(x)p-,Q Ax

It follows that the limit, as, x approaches zero, of the right member of (6) is the
right member of the formula

AX)(8) lliimof(x + - f(x)
= g(x)h'(x) + h(x)g'(x)AX

The limit of the left member must be the same. Therefore, (8) holds, and (3)
then follows from the definition of the derivative of f at x. This proves the
theorem. This proof is essentially the same as the proof involving (3.57). If
we set u = g(x), v = h(x), y = f(x), u + Au = g(x + Ax), V + AV = h(x + dx),
and y + Ay = f(x + Ax), then (6) becomes

(9) Ax = (u + Au) Ox + v
Ox

which is, except for a minor shuffling of terms, the same as (3.57). The version
involving (3.57) is usually preferred in elementary courses because the formulas
involving Du, Ov, and Ay flow more smoothly and quickly than those given above.

19 Remark: As was said in passing in the text, discussions of names and sym-
bols can be long and perhaps dismal. We call a rose "a rose" because everyone
else does, and we do not need another reason. We call the number

(1) lim Ax + Ax) - AX)
Ago Ox

when it exists, "the derivative of f at x" because everyone else does, and we do
not need another reason. We can denote this number by f'(x) because everyone
else does, and we do not need another reason. If we want to know what f'(x)
means, we do not look at f' (x); we look at the definition of f'(x) and see that

(2) f'(x) = lim f(x +Ax) - f(x)
Ax-4o Ax
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We can observe that the Newton notation in the formula (2) uses functional
notation in a thoroughly standard way; if f is a function and x is a number,
then the right side of (2), when it exists, determines the value of the function
f at x. If, for example, f'(x) = 2x for each real x, then f'(0) = 0, f'(6) = 12,
f'(x2) = 2x2, and f'(sin x) = 2 sin x. It could be presumed that one good symbol
for the number in (1) should be enough, but it is not enough. Even if there were
no other reason, we would still be required to know another symbol in order to
be able to read scientific literature and to converse with scientists. We must
know that we can set y = f(x), so that in a particular case we have y = x2, and

we can denote the derivative of f at x by the symbol
ddx

If we want to know

what dy means, we do not look at ay; we look at the definition of y and find that,
dx dx dx

in the particular case,

(3) dy = 2x.
dx

According to the definition,

dz

is the derivative of f at x, and the meaning of

dx is not changed when we read "dee y dee x" or "the derivative of y with respect

to x" or even "the derivative of y with respect to x at x." The assertion (3)
always means that the derivative of f at x is 2x, and weird ways of reading the
assertion do not change the meaning of the assertion. The meaning of the
assertion is not changed when we realize that a silly result is obtained by sup-
posing that the d's and the x and the y in (3) are numbers and canceling the d's
to get y/x = 2x. The meaning of the assertion is still unchanged when we
realize that we never put x = 6 in the two members of (3) to obtain

(4)
dy
d6 =

12.

We do, however, allow ourselves the liberty of writing

(5)
z

dx = 2x or dx x2 = 2x

to abbreviate the statement that if y = f(x), where f is the function for which
f(x) = x2, then the derivative of f at x is 2x. From a logical point of view, every-
thing we have done can be summarized very simply. If we want to know the
meaning of the word "quibble," we do not look at the word "quibble"; we look

at a definition. Let us then quit quibbling about the meaning of dx We can
conclude with a cheerful remark. Whenever we are likely to encounter diffi-
culties with the Leibniz notation, we can discard it and use the Newton notation.

3.6 The chain rule and differentiation of elementary functions
To be able to illustrate methods by which fundamental formulas for
derivatives are used, we suppose that we know the five fundamental
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formulas

(3.61) dx xn = xn-1, x sin x =cos x, x cos x = - sin x
d(3.62)

dxd

ex = ex, dx log x x

only the first of which has been partially proved.t In the last two of
these formulas, the base is e, the base of natural exponentials and loga-
rithms, which appears in (3.272) and which will appear later. One of our
tasks is to learn a procedure by which we can obtain a correct formula
for dy/dx when y = sin is and u is a differentiable function of x which is
not necessarily x itself. The answer is

dd uy6213 )( . dx = cos is dx

To see why this is so, and to see how many similar formulas can be
obtained, we consider the general situation in which y is a function of is
and is is a function of x, say y = f(u) and is = g(x). Then y is linked to x
through the links of a short chain; x determines is and is determines y, so y
is a function of x. While the operation may seem somewhat ponderous
when

(3.622) y = ¢(x) = f(g(x)) = sin g(x) = sin is = sin 2x,
we can let q5(x) = f(g(x)) and sketch the schematic Figure 3.63 which
catches the functions g, f, and 0, re-
spectively, in the act of transforming
(or mapping or carrying) x into is, is
into y, and x into y. The function 0
for which 4(x) = f(g(x)) is sometimes
called a composite function.

The following theorem is the chain
Figure 3.63

rule, which sets forth conditions under which y has a derivative with
respect to x that can be calculated from the chain formula

(3.64)
dy _ dy du
dx du T

The result is given in terms of the "d" notation of Leibniz and the
"prime" notation of Newton, so that we can, in applications, choose the
one that seems to be most convenient or informative.

t These formulas will be proved in Chapters 8 and 9. A contention that we can and
should learn and use these formulas before they are proved is pedagogically sound. It is as
practical as the contention that embryonic electrical engineers should learn that copper
wires conduct electric current, and use this information in various ways, before they study
solid-state physics and learn mechanisms by which electrons travel along conductors and
semiconductors.
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Theorem 3.65 (chain rule) If f and g are functions such that g is
differentiable at x and f is differentiable at g(x) and if we set y = f(u) and
u = g(x) so that y = f(g(x)), then the chain formula

(3.66) dy = dy du =dx du dxf'(u)g'(x) = f'(g(x))g'(x)
is valid at x.

To prove this theorem, we use the notation of the theorem to obtain

(3.661) Au = g(x + Ax) - g(x), Ay = f(u + Au) - f(u)
and observe that u and y are determined by x alone, while Au and Ay are
determined by x and Ax. Consider first the usual case in which there is a
number S1 such that 3, > 0 and Au 34 0 whenever 0 < JAxI < Si. Then,
when 0 < JAxI < Sl, we can write

(3.662) DY = DY Au = f(u + Au) - f(u) g(x + Ax) - g(x)
Ax Au Ax Au Ax

and, after observing that

(3.663) lim Au = lim - Ax = L 0 = 0,
AZ-0 5,,o Ax dx

take limits as Ax approaches zero to obtain the required result. Because
division by zero is taboo, exceptional cases are more troublesome. We
can avoid this difficulty and handle all cases at once by setting

(3.664) c&(Au) =
oy = f (U + Au) - f (u)
Du Du

(3.665) O(Au) = du = f'(u)

Then, whether Au is zero or not, we can write

(3.666) AY = cb(Du)
Du = (Au) g(x + Ax) - g(x)

Ox Ox Ax

(Au 0 0)

(Au = 0).

and take limits as Ax approaches zero to obtain the required result.
The basic elementary functions can be separated into three classes.

The first class contains powers and roots of x, that is, functions of the
form x°, where a is a constant. The second class contains the six trigo-
nometric functions and the six inverse trigonometric functions. The
third class contains exponential functions of the form bx and logarithmic
functions of the form logb x, the base b being a constani. Thus there are
just 15 types of basic elementary functions. The class of elementary
functions includes the frightful function 4 having values

(3667) h(x) = log (1 + x2) + [ex + (x4 - 7x2 + sin-' 3x2)4] .
sin e2' + e°'' as + x sine 4x - cos xb



3.6 The chain rule and differentiation of elementary functions 167

and all others obtainable by making "finite combinations" of basic
elementary functions together with addition, subtraction, multiplication,
and division. This class contains very many important functions. It is
therefore important to know that we can work out a formula for the
derivative of any given elementary function when we know (i) Theorem
3.56, (ii) 15 basic formulas for derivatives of basic elementary functions,
(iii) the chain rule, and, in addition, we possess (iv) a technique which
enables us to apply these things.

Of the 15 basic formulas, the most important 5 were listed at the
beginning of this section and are relisted in the first column of the follow-
ing little table.

(3.671) d X, = nxi-1 d
un =un-1 du

YX_

(3.672) dx sin x = cos x d sin u = cos u du

(3.673) - cosx = - sinx dxcosu = - sinudx

(3.674) dx ex = ex d
d

eu = eu dx

(3.675) dx log x = 1 d log u = u du

If we know the first formula on the left, we can set y = u" and use the
chain formula (3.66) to obtain the chain formula

d un = dy = dy du = nun-1
du

dx dx du dx dx

written opposite it. If we know the second formula on the left, we can
set y = sin u and use (3.66) again to obtain the chain formula

d dy __ dy du dudx sin u =
dx du dx = (cos u) dx

written opposite it. The same procedure shows that each basic formula
has a chain extension. Of the ten basic formulas not listed above, four
(which appear in Problem 11 of Section 3.5 and have probably been for-
gotten) give derivatives of the last four trigonometric functions, and the
remaining six give derivatives of the inverse trigonometric functions.
Proofs of all of the formulas will appear later. Except for three formulas
that are rarely used, the formulas are listed on the page opposite the
back cover of this book.

Our fund of information about logarithms is quite meager, but we can
slowly add to it. We begin with the idea that log x exists (as a real
number) only when x > 0. In case x < 0, log x does not exist but
IxI > 0 and log IxI does exist. When x < 0, we can use the chain formula
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to obtain

TX TXlog lxi = d log (-x) - lx d(dxx) xd
Thus we can extend the two formulas in (3.675) to obtain the more
general formulas

(3.676)
d log lxI = 1X d log Jul =

1 du
TX x TX u dx

in which it is required that x ; 0 and u 0 0 but it is not required that x
and u be positive.

Up to the present time, our work with difference quotients and deriva-
tives has involved only fundamental definitions and formulas. Figures
and geometric ideas, which might be helpful but which might also be mis-

Figure 3.68

leading, have been completely ab-
sent. Section 5.1 will present our
thorough introduction to matters
relating to slopes of graphs and
tangents to graphs. Meanwhile, we
may be helped and may be unmisled
by looking at Figure 3.68, which
shows the graph C of a differentiable
function f. The points P and Q hav-
ing coordinates (x,y) or (x, f(x)) and

(x + Ax, y + Ay) or (x + Ox, f(x + Ox)) are shown, but the line PQ
joining P and Q is not drawn. The first of the two formulas

(3.681)
y = f(x + Ox) - AX) = slope of line PQ
AX Ax

(3.682) dz = f'(x) = slope of tangent to C at P

= slope of C at P

is correct because it is obtained by applying the definition of the slope of a
line. The second formula is correct by definition; the line through P
whose slope is the limit as Ax approaches zero of the slopes in (3.681) is,
by definition, the line tangent to C at P, and, moreover, the slope of C at
P is, by definition, the slope of the line tangent to C at P. The definition
gives precision to the venerable idea that the slope of the line PQ is close
to the slope of the tangent at P whenever Q is close to P. The definition
(3.682) turns out to be very important. Indeed, there are many situ-
ations in which magnitudes play minor roles and it is important to know
that the graph C of y = f(x) has a horizontal tangent (tangent of zero
slope) at each point (x,y) on C for which f'(x) = 0, has a tangent of
positive slope at each point (x,y) on C for which f'(x) > 0, and has a
tangent of negative slope at each point (x,y) on C for which f' (x) < 0.
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Problems 3.69
1 Calculate f'(xo) and write the equation of the line tangent to the graph of

y = f(x) at the point (xo,yo) when

(a) f(x)=x2, x0 =1 11ns.:y-1 =2(x1)
(b) f(x) = x(1 - x), xo = 0 Ans.: y = x
(c) AX) = ex, xo = 0 Ans.: y = x + 1

X
(d) f(x) = 1

+
x2, xo = 1 .4ns.: y = T

2 Become thoroughly familiar with the following technique, because it
enables us to do many chores quickly and correctly. Suppose we are required
to find dy/dx when

(1) y = sin 2x.

We must realize that we are not required to differentiate sin x but are required
to differentiate sin u, where u is a function of x. We look at (1) and read "y
equals sine u" and realize without making a lot of noise and without writing
anything that u = 2x. We then write dy/dx and say this is equal to cos u
(write cos 2x) times du/dx (write 2). When we follow orders, we get

(2)
dy

=
dx

(cos 2x)2,

but it is always better to put the answer in the neater form

(3) dy = 2 cos 2x
dx

which does not require parentheses.
3 Read the equations

(a) y = (x2 + 1)" (b) y = cos ex
(c) y = sin (ax + b) (d) y = e-
(e) y = cos ax (f) y = log (x2 + 1)

the way we read them when we want to find dy/dx. In the first case, we can
tolerate "y equals u to the nth" as a contraction of "y equals u with the exponent
n" or "y equals u to the nth power." In another case, we can tolerate "y equals
e to the u," which looks bad in print but is universally understood. Now, sup-
posing that n, a, and b are constants, concentrate upon the task of learning five
basic formulas and applying them to obtain the answers

(a) dx = 2nx(x2 + 1)n-1

(c) dx = a cos (ax + b)

= -a sin ax

(b) - = -ex sin ex

(d) dx = aeax

Ly 2x
(f) dx x2 + I

Practice the technique until the answers can be obtained quickly and effortlessly.
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4 Each of the formulas

y = x2 sin x, y = xex

can be read "y equals u times v." Do this and obtain the derivatives

dy =x2 cosx+2xsinx, dz =xex+ex.

5 Each of the formulas

Y =
sin x log x

x Y x

can be read "y equals u over v." Do this and obtain the formulas

dy x cos x - sin x dy _ 1 - log x
dx x2 ' dx x2

6 Derivatives of derivatives are called derivatives of higher order; the deriva-
tive off at x is f'(x), the derivative of f at x is f"(x), the derivative of f" atx is
f"(x) or fC3)(x), and so on. Supposing that % is a number and

f(x) = z

.+
x = (z + x)-1,

show that

f'(x) _ -(z + x)-2, f"(x) = 2!(z + x)-3, f(3)(x) = -3!(z +
x)-4,

f(s)(x) = 4!(z + x)-5, f(l)(x) -5!(z + x)-S, f(s)(x) = 6!(z + x)-7,

where 2! = 1.2, 3! = 12.3, 4! = 1.2.3.4, etcetera. Supposing as usual that
0! = 1 and 1! = 1, observe that

f(%)(x) _ (-1)"n!(z + x)-a-1 (n = 0, 1, 2, ...)

when we agree that the result of differentiating f zero times is f itself.
7 Lettingf(x) = (1 - 2x)-1, show that

f(")(x) = 2^n!(1 - 2x)-"-1 (n = 0, 1, 2, ...).

8 Letting f(x) = log (1 + x2), show that

f, (x) 2x ,, 2 - 2x2
1 + x.2' J (x) _ (1 + x2)2

and calculate one more derivative.
9 The formulas

(a) sin (a + b)x = sin ax cos bx + cos ax sin bx
(b) cos (a + b)x = cos ax cos bx - sin ax sin bx
(c) e(a-Fb)x = eaxebx

(d) log ax = log a + log x

are permanently remembered by all good scientists. For each formula, calculate
the derivatives with respect to x of the two sides and show that the results are
equal.
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10 Supposing that a and w (omega, to keep physicists and engineers happy)
are constants and

show how the formula
Q = eat sin wt,

dQ
= eal(w cos wt) + (sin wt)aeaddt
= ea,(w cos wt + a sin wt)

is obtained. Then let I = dQ/dt and show that

dl
dt

= ea'[2aw cos wt + (a2 - w2) sin wt].

Remark: It is not necessary for us to know that, if a < 0, Q might be the charge
on the capacitor of an LRC oscillator, in which case the electric current would be
I and the voltage drop across the inductor would be the product of dI/dt and the
inductance L of the inductor. It is, however, a good idea to know that the things
we are learning are important in applied mathematics.

11 Prove that

d ex - ez 2 _\2.
dxex+e s - ez+e z

12 If, for a positive integer n,

yn(x) = sin x + sin 2x + sin 3x + + sin nx
1 2 3 n '

show that
y;,(x) = cos x + cos 2x + cos 3x + + cos nx.

13 Calculate f'(x) from the first and then from the second of the formulas

AX) = log I

1 +
-x I , f ( x )

Make the results agree. Hint: Do not forget the second formula in (3.676);
the derivative with respect to x of log Jul is (1/u) du/dx and the absolute-value
signs quietly disappear.

14 Observe that if y is a differentiable function of x, so also is the function
F having values

F(x) = x2 + xy(x) + [y(x)]2.

Tell precisely what formulas are used to obtain the formula

F'(x) = 2x + xy'(x) + y(x) + 2y(x)y'(x)

dx =2x+xdx+y+2ydx

fins.: The power formula, the formula for the derivative of a product, the chain
formula, and the formula for the derivative of a sum.
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15 Supposing that y is a differentiable function of x for which

x2 + xy(x) + [y(x)]2 = 3,

apply our fundamental formulas for calculating derivatives to obtain the formula

2x + Y(x)
Y,(x) x + 2y(x)

Hint: Equate the derivatives with respect to x of the two members of the given
equation. Remark: This process, by which we start with an equation involving
y(x) and [without obtaining an explicit formula for y(x)] obtain an explicit formula
for y'(x), is called "implicit differentiation." To gain understanding of this
terminology, we can note that the formula y = x + 1 says explicitly that y is
x + 1 while the equation y - x - 1 = 0 only implies, and hence says implicitly,
that y is x + 1. It is sometimes said that the equation x2 + y2 = I determines y
implicitly, but the fact is that the equation does not determine y. Saying that "y
is either 1 - x2 or --/1 - x2" does not determine y any more than saying
"a blonde did it" determines the culprit in a whodonit.

16 Write the first displayed formula of the preceding problem in the form

x2 + xy + y2 = 3

and use the Leibniz notation for derivatives to obtain the formula

dy 2x + y
dx x+2y

Observe, however, that the calculation is illusory unless y is a differentiable func-
tion for which the given equation holds.

17 Clarify matters relating to the two preceding problems by showing that
y is a differentiable function satisfying the given equation if

Y(x) _
-x - 2 (4 - x2) (-2 < x < 2)

and also if

Y(x)=-x+ 3(4-x2
2

(-2 < x < 2).

18 A graph of the equation

x2+xy+y2=3
appears in Figure 1.592. Find the equations of the tangents to this graph at the
two points for which x = 0. Be sure to obtain results that agree with Figure
1.592.

19 It is not a simple matter to "solve" the equation

(1) ya + y = x

for y. If y is a differentiable function of x for which the equation holds, however,
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we can differentiate with respect to x with the aid of the chain rule to obtain

(2) 3y2dxmdx=1 or 3[y(x)]2y'(x) + y'(x) = 1

and hence

dy 1 1
(3) or

y,(x)
= .dx 3y2 + 1 3fy(x)]2 + 1

From (3) and the assumption that y is a differentiable function of x, we see that
the derivative itself is a differentiable function of x. The derivative of the
derivative is called the second derivative and is denoted by the symbols in the
left members of the formulas

(4)
d2y -6y -6y
dx2 - (3y2 + 1)3' Y "(X) = (3y2 + 1)1

By differentiating the members of (3), show that the formulas (4) are correct.
20 Supposing that y is a differentiable function of x for which the given rela

tion holds, differentiate with respect to x to find dy/dx when

(a) xy = 7

(b) sin y = x

(c) ey = x

(d) sin xy = x + y

21 Find f'(x) when

(a) f(x) = log (x + .\/a2 + x2)

(b) f (x) = log ( a2 + x2 - x)

(c) f(x) = (log sin 2x)2

(d) f(x) = log (sin 2x)2

(e) f(x) = log sin (2x)2

n

(f) f(x) = (1 +C)

flns.: dy - y

flnr.:
dx cos y or ± 1 x

e4ns.: dx = ey or x

flns.: dx 1 - x cos xy

dns
1a2+x2.

-1
Ans.:

a2+ x2

Ans.: 4 cos 2x log sin 2,x
sin 2x

fins : 4 cos 2x
sin 2x

flns.: 8x cos 4x2
sin 4x2

Ins.: n[1 + (1 - 2x)e2z]xn-l
(1 + e2x)n+l

22 The Hermite polynomials, depending upon a parameter a that is usually
taken to be 1 or 2 in applications, are defined by the formulas Ho(x) = 1 and

n

(1) HH(x) = (-1)neax2/2 __ a axe/2 (n > 1).
dXn
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Show that if (1) holds, then

(2)

(3)

(4)

Functions, limits, derivatives

Hn(x)e ax2l2 = (-1)n E ax2f2
dx

= (-1)n dxn+i aax2l2+[-axH,(x) + H'(x)le axe/2
do+1

o+
12axHn(x) - H(x) = (-1)n+iea==/ 2

d
a -2

'l dxn+i

and

(5) axHn(x) - H.'a(x).

Use (5) and the fact that Ho(x) = 1 to obtain the formulas

Ho(x) = 1
Hi(x) = ax
H2(x) = a2x2 - a
Hs(x) = a°x° - 3a2x
H4(x) = a4x4 - 6a°x2 + 342
H5(x) = a6x6 - 10a4x° + 15asx
He(x) = a6x6 - 1Sa°x4 + 45a4x2 - 15a°
H7(x) = a7x7 - 21a6x° + 105a°x° - 105a4x.

23 The Laguerre polynomials are defined by the formulas Lo(x) = 1 and

...).L,,(x) = ex den
(xne x) (n = 1 ,2,3,

Show that
Lo(x) = 1

Ll(x) = -x + 1
L2(x) =x2-4x+2
Lo(x) = -x° + 9x2 - 18x + 6
L4(x) = x4 - 16x° + 72x2 - 96x + 24.

24 Supposing that y = eli6l or h(t) = eein °, use the chain rule and the formula
for derivatives of products to obtain the first three derivatives with respect to
t of these things. dns.:

-(1) dd = h'(t) = eeia t cos t

(2) d2y = h"(t) eein t sin t + e' ' COS2 t

(3) dt3 = h"'(t) _ -e'in' cos i - 3eBin' cos t sin t + e8in= cos° t.

25 Assuming existence of all of the derivatives we want to use, show that if
h(t) = f(g(t)), then

(1) Y(t) = f'(g(t))g'(t)
(2) h"(t) = f(g(t))g"(t) +f"(g(t))Ig'(t)l2
and write a formula for h"'(t). Then show that these formulas reduce to those
of Problem 24 when f(x) = el and g(t) = sin t.
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26 The preceding problem involved three functions and the Newton notation
for derivatives. This problem requires use of the Leibniz notation. Supposing
that "y is a function of x and x is a function of t so y is a function of t," and that
each function has three or more derivatives, write formulas for the first three
derivatives of y with respect to t. Finally, check your answers against those of
the preceding two problems. Partial ans.:

dydydx
(1) dt dx dt

d2y dy d2x d23, (dxl2
(2) dt2 dx dt2 + dx2 \dt /

d3y dy d3x d23, d2x dx d3y dx 3

(3) dt3 = dx dt3 + 3
dx2 dt2 dt + Ti % dt

27 Suppose we momentarily agree that the first of the formulas

dy dy dx d2y d2y (dxl2
dt = dx dt dt2 = dx \dt I (?)

is true "because" we get a correct result by canceling dx's from the right side.
Show that we should not apply the same "reasoning" to the second formula.

28 Read Theorem 3.65 and observe that the hypotheses are satisfied if
f(x) = 1 + x + x2, g(x) = 0, and u = g(x) = 0 for each x, while y = f(u) for
each u so that y = f(g(x)) = 1 for each x. Hence the conclusion of the theorem
implies that

dy dy du
dx=dudx

for each x. Observe that dy/dx = 0 and du/dx = 0 for each x. Our major
question now appears. Is there a reason for uneasiness about the meaning of
dy/du when u = 0 for each x? Remark and ans.: This question was raised by an
extremely sane person who happened at the moment to be thinking too much
about the manner in which we read dy/du and too little about the meaning of
dy/du. According to our basic definition, dy/du is f'(u), the derivative of f at
u. Since f(x) = 1 + x + x2 for each x, we find that f' (x) = 1 + 2x for each x,
so f'(u) = 1 + 2u for each is. Thus, dy/du = 1 + 2u. If it happens that
u = 0 for each x, then dy/du = 1 for each x. We have no reason to be uneasy
unless we manufacture trouble by recreating old tales about varying variables
that we sometimes call galloping numbers. The notation of Leibniz is often
more convenient than that of Newton, but it is also more likely to engender
mental aberrations. Nobody expects u to be galloping around while we calculate
f' (u)

29 Is the function f for which f(x) = JxI an elementary function? Remark
and ans.: This is a tricky question. An intelligent perso d make an incor-
rect guess until he discovers or is reminded that jxI _ 2 The function f is
elementary, but f'(0) does not exist.

30 Let p and q be positive integers. Let y(O) = 0 and let

y(x) = xD sin z (x 0 0).
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Show that, when x 0 0,

y'(x) = -qx"-q-1 cos I + pxP-1 sin x5

Tell why this formula cannot be valid when x = 0. Then show with the aid of
the sandwich theorem 3.287 that if p > 2, then y'(0) = 0. Show that if p >
q + 1 then lim y(x) = 0. Show that if p < q + 1, then lim y(x) does not exist.

31 Before starting this problem, we make the profound observation that 0
times a number is 0 but that nobody ever tries to define the product of 0 and
something that does not exist. With this in mind, show that the first of the
formulas

(1) a lxi2 = 2x, ax x12 = 21xl 'x

is valid for each x and that the second is valid if, and only if, x p 0. Hint: For
the first part, observe that x12 = x2. For the second part, consider separately
the cases for which x > 0, x < 0, and x = 0. Remark: Putting f (x) = x2 and
g(x) = Jxj shows that g'(x) can fail to exist even when it is known that df (g(x))/
dx exists. The calculations in

(2) 0(x) = f(g(x)), 4'(x) = f'(g(x))g'(x),
dy dy du
dx

_
du dx

may therefore be incorrect even when 0 and f are both differentiable. In any
case, we are not doing rigorous mathematics when we start with the first of the
formulas

(3) siny=x, cosy-=1

and obtain the second without giving a thought to the question whether y is a
differentiable function of x. Congratulations can therefore be showered upon
students who, at this time, have a healthy lack of enthusiasm for problems like
Problem 20.

3.7 Rates, velocities Let f be defined over some interval a :9 x < b
and let y = f(x). When x and x + Ax both lie between a and b and
Ax 5 0, the difference quotient in

(3.71)
AY = f (X + Ox) - AX)
Ox Ax

is the average rate of change of y with respect to x over the interval from the
lesser to the greater of x and x + Ax. If this average rate (which is the
difference quotient) has a limit as Ax approaches zero, then this limit
[which is the derivative dy/dx or f'(x)] is the rate of change of y with respect
to x at the given x. These are definitions which can, perhaps without
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disastrous loss of meaning, be abbreviated to the forms

(3.72) Average rate = difference quotient = Dy = f(x + Ax) - f(x)
Ox Ax

(3.73) Rate = derivative = dx = f'(x).

Of course, we are never required to prove definitions, but these are
important and we must have or acquire an understanding of them and a
feeling that they do (or do not) use words of the English language in a
reasonably appropriate way. Shifting the letters from y and x to x and t,
we see that the definition involving (3.72) shows that if x is a number of
miles and t is a number of hours, then the average rate of change of x
with respect to t is a number Ox of miles divided by a number At of hours
and hence is a number of miles per hour. Some applications of this are
very simple and agree with all primitive ideas about rates. When we are
thinking about a particular automobile journey in which the automobile
moves steadily in one direction along a straight road, we can let x and
f(t) denote the distance (number of miles) traveled during the first t hours
of the trip. We are all accustomed to calculating the average rate over a
given time interval and to calling this average rate an average speed.
Suppose now that an untutored (but not necessarily stupid) individual is
asked how he might, without looking at a perfect speedometer, determine
a number Q which could reasonably be called the speed at a particular
time t. His reply might be lengthy and partially intelligible. He
should, sooner or later, arrive at the idea that the average speed over a
long trip is likely to be a very bad approximation to Q, but that the aver-
age speed over the time interval from t to t + At (or from t + At to t in
case At < 0) should be near Q whenever At is near 0 but At 0 0. We
have learned how to make this idea precise. It is done in the definitions
we are discussing. Similar stories involving other rates (degrees centi-
grade per centimeter, coulombs per second, and dollars per year, for
examples) show that the definitions are sensible and should have swarms
of important applications.

Our simple discussion of the journey of an automobile moving steadily
in one direction along a straight road involved the word "speed" but
carefully avoided the words "velocity" and "acceleration." To appre-
ciate what is coming, we should know some history. The words "speed,"
"velocity," and "acceleration" are very old. A long time ago, say before
the year 1900, they were all numbers (scalars); velocity and acceleration
could be negative but speed never could be. Nowadays, in all enlight-
ened communities, velocities and accelerations are always vectors and
we must learn about them. To get started, we consider the path traced
by a bumblebee (or molecule or rocket or satellite or what not) as it
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buzzes through space E3. While other tactics are both possible and use-
ful, we suppose that we have a rectangular x, y, z coordinate system
bearing unit vectors i, j, k as in Section 2.2. At each time t, the coordi-
nates of the bumblebee can be denoted by x(t), y(t), z(t). Letting r(t)
denote the vector running from the origin to the bumblebee, we obtain
the vector equation

(3.74) r(t) = x(t)i + y(t)j + z(t)k.

This vector r(t) is called the displacement (or displacement vector) of the
bumblebee at time t. Supposing that At 0, we can write

(3.75) r(t + At) = x(t + At)i + y(t + At)j + z(t + At)k

and form the difference quotient

r(t + At) - r(t) _ x(t + At) - x(t) i +, y(t + At) - y(t) j
At At At

+ z(t + At) - z(t) k
At

which can be written in the abbreviated form

(3.751)
ArAxi+Ayj+Azk.
At At At At

In accordance with general terminology, this difference quotient is called
the average rate of change of the vector r(t) with respect to t over the
interval from the lesser to the greater of t and t + At. It is also called
the average velocity of the bumblebee over this same interval. In case
the above difference quotients have limits as At - 0, the limit of the
average velocity is called the velocity at time t and is denoted by v(t).
Thus

(3.76) v(t) = r1(t) = x'(t)i + y'(t)j + z'(t)k

or

(3.761) v(t) = dt dt
i + dt J + it -

providedprovided the derivatives exist. Figures 3.762, 3.763, and 3.764 show how
the vectors Ar, Ar/At, and v(t) might appear in a particular example.

Figure 3.762 Figure 3.763 Figure 3.764
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The scalar components of the velocity v or v(t) are sometimes denoted
by the symbols v., v, v, so that

(3.765)

and

(3.766)

vx =
x/(t)

dt' vv = y'(t) dt' V. = z' (t) dt

V = vxi + vvj + vzk.

The acceleration a(t) is a vector which is defined in terms of velocities
in the same way that velocities are defined in terms of displacements.
Thus, provided the derivatives exist,

(3.77) a(t) = v'(t) = r"(t) = x"(t)i + y"(t)j + z"(t)k

or

(3.771)
t2

k,a(t) = dt = dt2 = dt2 i + dt2 j + dz
where the "double prime" in (3.77) and the number 2 appearing in "dee
squared x dee t squared" in (3.771) denote second derivatives, that is,
derivatives of derivatives. We still have to learn what is meant by the
speed (a scalar) of the bumblebee. It is defined by

(3.78) Speed = length of velocity vector,

so that, in our notation,

+
()2.

(3.781) Speed = 1V(t)1
()2

Perhaps it should be explained that the t appearing in the above equa-
tions is called a parameter, that (3.74) is a parametric equation of the path,
and that the path is the graph of the parametric equation. According to
this definition, a parameter is a number. It is an element of the domain
of the functions in (3.74), and we need not complicate our lives by harbor-
ing impressions that parameters are complicated things. Section 7.1
gives a careful explanation of circumstances in which the graph is called
a curve.

In Section 5.1 we shall give a rather detailed discussion of tangents to
graphs. Meanwhile, it can be remarked that if the vectors in (3.751)
and (3.761) are not 0, then the line through P(x,y,z) and P(x + Ax,
y + Ay, z + Az) is called a chord of the curve being considered, and the
line through P(x,y,z) having the direction of v(t) is called the tangent to
the curve at P(x,y,z). Therefore, we can find the direction of the tangent
to a sufficiently decent curve by finding the velocity of a particle which
moves along the curve with nonzero velocity. The tangent line and the
velocity vector have, by definition, the same direction. To bridge the
gap between our work and plebeian terminology used in the prosaic
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workaday world, we need still another definition. When we say that a
moving body is, at time t, "going in the direction of a vector w" we mean
that its velocity v has the direction of w, that is, v = kw, where k is a
positive scalar. In case w is a unit vector, the scalar k is the speed of the
body. It is not so easy to tell what the body is "doing" when v = 0 or
v does not exist. The ancient Greek philosophers tried to make people
think about motion, and we never quite know how much they smiled
when they insisted that an arrow cannot move where it is and cannot
move where it isn't and, hence, cannot move at all. Thoughts about such
matters can bring the conviction that definitions are not superfluous.

A few simple observations should be made. In case the bumblebee
buzzes around in a plane which we take to be the xy plane, the above
story is unchanged but calculations are simplified by the fact that z(t) = 0
for each t. In case the bumblebee buzzes around in (or on) a line which
we take to be the x axis, we have y(t) = z(t) = 0 for each t. In modern
terminology, scalars cannot be velocities but can be scalar components
of velocities. In case a particle moves on a coordinate axis or on a line
parallel to a coordinate axis, its velocity and acceleration are still vectors
but their scalar components in the direction of the axis are scalars which
we shall call the scalar velocity and scalar acceleration of the particle.
For example, if a particle is moving on an x axis in such a way that its x
coordinate at time t is the scalar (or number)

x = /It'+Bt2+Ct+D+Esin cot,
then the scalar (or number) v (not v) defined by

v =
YT

= 3At2 + 2Bt + C + Ew cos wt

is its scalar velocity at time t and the scalar (or number) a (not a) defined
by

2

a = ate = 611t + 2B - Ewe sin wt

is its scalar acceleration at time t. The speed is ldx/dtl. When the posi-
tive x lies to the right of the origin, the particle is "moving to the right"
at those times for which dx/dt > 0 and is "moving to the left" when
dx/dt < 0. It is not so easy to tell what the particle is "doing" when
dx/dt = 0 or dx/dt does not exist.

Problems 3.79
1 A stone is thrown downward 10 feet per second from the deck of a bridge.

The distances it will have fallen t seconds later is assumed to be

s = 10t + 16t2.
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Supposing that 0 < t < t + At, work out a formula for the average speed of the
stone over the time interval from t to t + At. Then work out a formula for the
speed at time t. 11ns.: 10 + 32t + 16 At and 10 + 32t.

2 A vertical y axis has its positive part above the origin. A particle moves
upon this axis in such a way that its coordinate at each time t is

y = -1it2+Bt+C,

where 11 is a positive number. Show that the scalar velocity v is

v = - 2 At + B,

that the particle is going up when t < B/2A, and that the particle is going down
when t > B/211. Show that the scalar acceleration is always -2A. Show that
the greatest height attained by the particle is B2/411 + C.

3 In the context of the preceding problem, so determine 11, B, and C that
the scalar acceleration is always - 32 and the particle is 3 units below the origin
and going upward with speed 8 when t = 0.

4 A particle moves along the x axis in such a way that its x coordinate at
time t is

x=2t5-5t4-2t2-2t+1.
Find its scalar velocity and scalar acceleration at time t. ins.:

10t4-200 -4t-2, 400 -60t2-4.

5 A body moves on a line in such a way that its coordinate x at time t is

3

x= 3-4t2+15t+6.

Find the time interval over which the scalar velocity is negative, and find the
distance the body moves during the interval. 11ns.: $.

6 A particle moves along an x axis in such a way that, when t z 0, its
coordinate is

x = k2t2 + c2,

where k and c are positive constants. Show that its speed is always less than
k and approaches k as t becomes infinite.

7 If an oak tree in Ohio was 20 feet tall when it was 15 years old and was
36 feet tall when it was 25 years old, the average rate of change of height (meas-
ured in feet) with respect to time (measured in years) over the 10-year interval
is 1.6 feet per year. Tell why it is not reasonable to suppose that the tree grew
steadily at the rate of 1.6 feet per year for 10 years. If the tree grew from height
30 feet to height 32 feet in a calendar year from January 1 to December 31, sketch
a reasonably realistic graph which shows how the height of the tree might depend
upon t during the year.

8 The charge Q (measured in coulombs) on an electrical capacitor at time
t is Qo sin wt, where Qo and w (omega) are constants. The rate of change of Q
with respect tot (measured in coulombs per second, that is, in amperes) is the
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current I in the circuit containing the capacitor. Find a formula which gives I
in terms of t.

9 This problem involves uniform circular motion. Let a particle P start
at the point (a,0) of the plane Figure 3.791 and move around the circle with

center at the origin and radius a in such a way that
the vector OP rotates at the constant positive rate
co (omega) radians per second. Letting r = pp,
show that

(1) r = a(cos wti + sin wtj)
(2) v = aco(-sin wti + cos wtj)
(3) a = -aw2(cos wti + sin wtj)

and hence that

Figure 3.791 (4) a = - aw2u,

where, at each time t, u is a unit vector running from the origin toward P.
Show that 0 and interpret this result. Show that Ivi = aw and interpret
this result. Remark: The result (4) is important in physics. It says that, in
uniform circular motion, the particle is always accelerated toward the center and
that the magnitude of the acceleration is awe. Some additional terminology
should be encountered frequently and slowly absorbed. When a particle moves
upon a line in such a way that its coordinate at time t is el + B sin (wt + ¢),
the motion is said to be sinusoidal or (particularly in old books) harmonic or
simple harmonic. The numbers 95, w/2r, and B are the phase, the frequency
(cycles per unit time), and the amplitude of the motion. Glances at the compo-
nents of r and a in the above formulas show that the projection of P upon a
diameter (line, not number) of the circle executes sinusoidal motion. More-
over, the projection is always accelerated toward the center, and the magnitude
of the acceleration is proportional to the distance from the center. See also
Problem 16.

10 As in the text of this section, let a particle move in E3 in such a way that
its displacement, velocity, and acceleration are

(1) r(t) = x(t)i + y(t)j + z(t)k
(2) v(t) = x'(t)i + y'(t)j + z'(t)k
(3) a(t) = x"(t)i + y"(t)j + z"(t)k

and the square of its speed is

(4) IV(t)12
= [x'(t)]2 + [y'(t)]2 + [z'(t)]2.

Using this information, prove that if the particle moves with constant speed c,
then the acceleration is always orthogonal to the velocity. Hints: Do not get
scared. Equate the right member of (4) to c2. Equate the derivatives of the
members of your equation. Look at your result. Remark: One who thinks that
this result is mysterious should remember or discover which way he tends to
topple when he sits in an automobile which rounds an unbanked curve at con-
stant speed.
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11 This problem involves the uniform circular helical
motion of a particle Q in E3 which runs up the helix (spiral
staircase) of Figure 3.792 in such a way that its projection
P upon the xy plane executes the uniform circular motion
of Problem 9 whiles its z coordinate increases at the posi-
tive rate b units per second. Supposing that Q occupies
the position (a,0,0) when t = 0 and letting r = OQ, show
that

r = a(cos wti + sin wtj) + btk
v = aw(-sin wti + cos wtj) + bk
a = -aw2(cos wti + sin wtj).
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Figure 3.792

Find the speed of Q. Remark: One who gets interested in this helix may try
to find the length of one turn by two different methods. First, use the speed of Q
in an appropriate way. Second, find out what happens when the cylinder upon
which the helix lies is cut along a vertical generator and rolled out flat.

12 A projectile P moves in such a way that its displacement vector at time
t is

(1) r = (vo cos a)ti + [(vo sin a)t - .gt2]j,

where a, vo, g are constants for which 0 < a < 7r/2, vo > 0, g > 0. Show that
its velocity at time t is

(2) v = [(vo cos a)i + (vo sin a)j] - gtJ.

Show that a = -gj. Show that the coordinates x, y of P at time t are

(3) x = (vo cos a)t, y = (vo sin a)t - gt2.

Eliminate t to obtain the equation
gx2

(4) y = (tan a)x - 2
C 2vo cost a

and note that the path of the projectile is a part of a parabola. Show that
y = 0 when t = 0 and that the projectile is then at the origin. Show that y = 0
when i = (2vo sin a)/g and that the projectile is then at the point (R,0), where

(5)
R 2v2 o sin a cos a = vo sin 2a

g g

This number R is called the range of the projectile, and this range is clearly a
maximum when sin 2a = 1 and hence when 2a = a/2 and a = 7r/4. Show that
the initial velocity (velocity at time t = 0) is

(6) (vo cos a)i + (vo sin a)j

and that this makes the angle a with the positive x axis. Show that the initial
speed is vo. Tell, in terms of vectors, how the velocity at later times is related
to the initial velocity. Find the velocity (not merely speed) of the projectile
when it hits the point (R,0).
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13 While the matter must remain mysterious until some mathematical
secrets have been revealed, the tip P of a cog of a particular hypocyclic gear
moves in such a way that its displacement vector at time t is

r = a(cos3 wti + sin3 wtj),

where a and w are positive constants. Find and simplify formulas for its velocity,
speed, and acceleration. Ans.:

v = Saw sin 2wt(-cos wti + sin wtj)

Speed = 32w sin 2wtI

3aw2a =
2

sin 2wt(sin cod + cos wtj) + 3aw2 cos 2wt(-cos cod + sin wtj).

14 A particle P moves in such a way that its displacement vector at time t is

_ 2t t2-1,

Show that Iri = 1 at all times and hence that the path of P must lie on the unit
circle with center at the origin. If a particle moves on a circle in such a way that
it has a nonzero velocity vector v, then v must be tangent to the circle and hence
orthogonal (or perpendicular) to r. Check this story by calculating v and show-
ing that yr = 0. Find the times at which the particle crosses the coordinate
axes, and then obtain more information about the motion of P.

15 Prove that if a particle P moves in E3 in such a way that it has displace-
ment vectors and velocity vectors r(t) and v(t) at time t, then

d
jr(t)l =

r
t)dt jr(t)l

when the particle is not at the origin. Tell why this implies that if the path of P
lies on a sphere with center at the origin, then v must be normal (or orthogonal
or perpendicular) to r and hence v must be tangent to the sphere. Remark:
It can be presumed that we do not known much about curves and surfaces in
Es, but we can presume that if a particle P makes a decent trip along a decent
curve lying on a decent surface, then at each time the velocity vector having
its tail at P must be tangent to the surface as well as to the curve.

16 If a particle moves along the x axis in such a way that, at time t,

x = a sin (cot + 0)

where a, co, 0 are constants for which a > 0 and co > 0, the particle is said to
describe (or execute) sinusoidal (or harmonic) motion. Calculate the first and
second derivatives of x with respect to t and show that

d2x
dt2

= - w2x.

Remark: This shows that the scalar acceleration of the particle is proportional to
the scalar displacement of the particle from the origin (or equilibrium position)
about which it oscillates.
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17 A particle P moves in E3 in such a way that the vector r running from the
origin to P is

r = r[sin 0 cos 01 + sin 0 sin q'j + cos 9k],

where r, 0, and 0 are all differentiable functions of t. Find the velocity and
speed of the particle at time t. 11ns.:

r'(t) = r'(t)u + r(t)9'(t)v + r(t)4,'(t) sin Ow

where u = sin 0 cos 4,i + sin 0 sin 4,j + cos 6k
v=cosBcos4i+cos8sin4,j - sinOk
w = - sin 4,i + cos 4,j

and
Ir'(t)I = {[r'(t)]2 + [r(t)0'(t)]2 + [r(t)q5'(t) sin 6]2} .

Remark: Problem 5 of Problems 2.69 shows that the vectors u, v, and w are
orthonormal. The numbers r, 4,, and 0 are spherical coordinates which appear
in Figure 10.12 and are studied in Chapter 10. When a is a positive number and
r = a for each t, P is always on a sphere and the above formulas become the
standard formulas used for study of curves that lie on spheres. Chapter 7 gives
solid information about curves.

18 A spherical earth has its center at the origin and has radius a. A particle
P moves on the surface S of the earth in such a way that the vector r running
from the origin to P is

(1) r = a[sin 0 cos ¢i + sin 0 sin ¢j + cos Ok]

where 0 and 4) are differentiable functions of t. Show that the velocity of P
at time t is

(2) r'(t) = aO'(t)v + a4,'(t) sin Ow

where

(3) v = cos 0 cos ci + cos 0 sin ¢j - sin Ok
(4) w = -sin ci + cos 4,j.

Remark: We invest a moment to look at some facts involving compass directions.
When 0 < 0 < 7r so that P is neither at the north pole nor at the south pole, the
vector v points south from P and the vector w points east from P. When 9 and
¢ are so related that, for some constant q,

(5) 4,'(t) sin 0 = qO'(t),

the vector r'(t) and the path of P always make the same constant angle with w
and hence always have the same compass direction. The path of P is then said
to be a rhumb curve, or loxodrome. Such curves are followed by ships that keep
sailing northeast. When we have learned more calculus, we will be able to show
that (5) holds if and only if there is a constant c for which

(6)
4i=glogl-cos0+c

sin 8 or 4, = q log (csc 8 - cot B) + c

or 4,=glogtan0+c.
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19 The vector formula

r = (b + a cos 0)cos fi + (b + a cos O)sin Oj + a sin Ok

of Problem 22 at the end of Section 2.2 provides the possibility of studying curves
on a torus. Supposing that 0 and 0 are differentiable functions of t, find r'(t).
Rns.:

r'(t) = aO'(t)[- sin 0 cos Oi - sin 0 sin q5j + cos Ok]
+ (b + a cos sin q5i + cos (hj].

20 The rod OP of the linkage of Figure 3.793 has length a and has one end
P fixed at the origin 0. The rod QP has length b.

Its lower end moves to and fro on the x axis in
such a way that its x coordinate is c + sin it at
time t. Its upper end is fastened to the first rod

O c+sin wt
w Q at P, and the motion of Q causes the first rod to

Figure 3.793 rotate. Write the formula (the law of cosines)
which expresses b2 in terms of other quantities, and

differentiate to obtain a formula for dd/dt. Then use the formula

r = OP = a (cos 0i + sin 0j)

to obtain a formula for the velocity v of P. Ins.:

v = aw
[a cos 0 - (c + sin wt)] cos wt (-sin

0i + cos 6j).a(c + sin wt) sin 0

21 A cam can furnish us something to differentiate. A circular disk of radius
a is mounted on a cam shaft at 0.
Supposing that C is the center of the
disk and that 0 < b <= a, let IOCj = b.
The eccentric disk rotates about 0 with
constant angular speed, the angle POC
being wt. The mechanism to the right

thef the di k i Fi 794 ke3

Figure 3.794

n gure epss .P(x,0) o
point P(x,0) of a rod pressed against
the rotating disk so that P(x,0) moves

to and fro on the x axis as the disk rotates. The formulas

(1) OB = b cos wti, BC = b sin wtj, j PI = N/a2 -- IBCI2

show that

(2) r = [b cos wt + a2 - b2 sin2 wt]i,

where r = OP = OB + BP. Find the velocity v and the acceleration a of P,
and do not spend all day trying to discover the significance of the fact that (2)
reduces to

(3) r = a[cos wt + Icos wti]i

when b = a.
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22 Let a particle of mass m move in a vertical plane in such a way that its
coordinates x, y are differentiable functions oft (time) and the vector r(t) running
from the origin to the particle at time t is

r(t) = x(t)i + y(t)j.

The kinetic energy E, of the particle can then be calculated from the formula

EI =mIv(t)12.

Assuming that a constant gravitational force -mgj is exerted upon the body,
we can calculate its gravitational potential energy E2 from the formula

E2 = mgy(t)

In appropriate circumstances, the number E defined by

E=E1+E2
is the total energy of the particle. For present purposes we do not need basic
information about these things, but we should know enough calculus to be able
to calculate the total energy at time t of a projectile of mass m for which

r(t) = coti + (cit - .gt2)j.

Do it. r?ns.: E = 1m(co + ci). Remark: The fact that E has the same value
at all times is no surprise to persons who know about "conservation of energy."

23 Supposing that

(1) r(t) = p(cos 4i + sin 4)j),

where p and 4) are functions oft having two derivatives, differentiate to obtain
r'(t) and then differentiate again to obtain r"(t). Ans.:

(2) r (t) d2 d`
-- P (2 dt

(cos 4)i + sin ¢j)
2

-I- [2 ap a + p a] (-sin Oi + cos 4)j).

24 Give a full statement of reasons why it is true that if p and 4) are functions
of i such that p has one derivative and ¢ has two derivatives, then the product

p2 do has one derivative and

d
2
d _ dp Lo 2 d20

dt p dt - Zp dt dt +
P

dt2

25 We can pick up assorted ideas by thinking about income tax rates. Let
I(x) denote the income tax which T, a taxpayer in a particular class, must pay
when his net taxable income is x. Of course x and I(x) are to be measured in
appropriate units such as dollars or marks or kilobucks. A government may
decree that if xl < x S x2, then I(x) is yi plus ki per cent of the excess of x over
xi. We can simplify this by letting ml = kl/100 and writing

I(x) = y, + mi(x - xi) (Xi S x < x2)
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Our knowledge of the natures of graphs of
lines now shows that the graph of y = I(x)
over the interval x1 < x 5 x2 is a line seg-
ment having slope ml. Figure 3.795 shows
the graph of y = I(x) that can be constructed
from information given in a possible tax

1(x) table. Everybody says that tax rates are
different in different tax brackets, being for

01 x0 x1 xy x3 xS z example m1 (or 100m1 per cent) when
Figure 3.795 x1 < x < x2. Our fundamental problem is

the following. Show that if x1 < x < x2,
then our definition of a rate as a derivative is in agreement with the things that
have been said about tax rates. Show that when x is x1, the tax rate does not
exist but that the "right-hand rate" and "left-hand rate" do exist.

3.8 Related rates Useful information about derivatives and their
applications can be gained by solving problems more or less like the fol-
lowing one. Figure 3.81 represents a ladder which is 10 units (feet or
meters) long. The top of the ladder rests against a vertical wall and is

Figure 3.81 Figure 3.82

8 units above the horizontal floor upon which
the bottom of the ladder rests 6 units from
the wall. It is supposed that the bottom of
the ladder is moving away from the wall at
the rate of 2 units per second, and we are
required to find the rate at which the
invisible man at the top of the ladder is
plunging earthward. To solve this problem,
we begin by constructing the more propitious

Figure 3.82 in which the ladder still has length 10 but x and y are varia-
bles which (unlike 8 and 6) can have different values at different times i
when the ladder is skidding. The variables x and y are related by the
formula

(3.83) x2 + y2 = 100.

In order to obtain a relation involving dx/dt (the rate at which the bottom
of the ladder is moving away from the wall) and dy/dt (the rate at which
our man is moving upward), we need the fundamental idea that we should
consider x and y to be functions of t and differentiate with respect to t.
Equating the derivatives of the members of (3.83) and dividing by 2
gives the formula

(3.84) xdx+ydt =0

which relates the related rates dx/dt and dy/dt. Putting x = 6, y = 8,
and dx/dt = 2 shows that dy/dt = -J. This shows that our poor
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man is rising -* units per second and is therefore falling -- units per
second, and our problem is solved. It can be insisted that our solution
of the problem would have been more easily understood if we had used
the more elaborate symbols x(t) or fl(t) and y(t) or f2(t) instead of x and
y to denote distances. Thus we could have written

[x(t)]2 + [y(t)]2 = 100, x(t)x'(t) + Y(t)Y'(t) = 0
or

[fl(t)]2 + [.12(t)]2 = 100, fl(t)f'(t) +f2(t)f2(t) = 0
instead of (3.83) and (3.84). One who wishes to do so may insist that
(3.83) and (3.84) abbreviate more meaningful formulas just as the sym-
bols AA and AAA abbreviate Alcoholics Anonymous and American
Automobile Association. It is, however, required that we learn the
abbreviations to expedite our work and to enable us to understand others
who use the abbreviations.

When we are interested in problems involving rates of change of the
volume V and the radius r of a sphere, we start with the formula

(3.85) V = 4-7rr3 or P(t) _ 4-ir[r(t)]3.

Supposing that V and r are differentiable functions of time t, we can
differentiate to obtain

(3.851) dy
t

= 4ar2
dr

t

When numerical values are assigned to two of the three quantities r,
dr/dt, dV/dt, we can solve (3.851) for the remaining quantity.

We need very little information about the external world to appreciate
the idea that if an appropriate piston is pushed into a closed cylinder con-
taining a gas, then the volume Y of the confined gas will decrease and
the pressure p exerted by the confined gas will increase. In appropriate
circumstances, calculations can be based upon the formula

(3.86) pY = c,

where p and V are differentiable functions of t and c is a constant. Dif-
ferentiation with respect to t gives the formula

(3.861) p dY -E- Ydp = O,

which involves four numbers. When three of these numbers are known,
we can calculate the remaining one.

If a particle is moving along the graph of the equation y = x2 in such
a way that its coordinates x, y are differentiable functions of t, then

(3.87) dy = 2dx

dt x dt
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When two of the three numbers in this formula are known, we can calcu-
late the remaining one. Some more or less instructive problems involv-
ing such motions require use of the formula

(3.871) lol = C
2 + ()2

for the speed of the particle. When motions in E3 are to be investigated,
it may be advantageous to use the vector formulas

(3.88) r=xi+yj+zk
(3.881) v=dti+dtj+atk
in which x, y, z represent the coordinates of the particle at time t. Of
course, this motion reduces to motion in the xy plane when z = 0 for
each t.

Problems 3.89
1 As in Figure 3.891, a rope 13 feet long extends from a boat to a point on

a dock 5 feet higher. A man on the dock is pulling rope in at the rate of 72 feet

Figure 3.891

per minute. How fast is the boat moving?
4ns.: 78 feet per minute.

2 A light atop a pole is H feet above a level
street. A man h feet tall walks steadily, F feet per
second, along a line leading away from the base of
the pole. At what rate is the tip of his shadow
moving when he is x feet from the pole?

_ins.: H F h feet per second.

We may be short on information about formation of raindrops in clouds,
but we can study the growth of a spherical drop during the part of its develop-
ment when, for some constant k, the rate, in cubic centimeters per second,
at which it collects water is the product of i and the area of its surface. At
what rate does the radius increase? fins.: k centimeters per second.

4 It is observed that the radii of volatile mothballs decrease at the rate of
0.5 centimeter per year. Find the rate at which mothballstuff is evaporating
from a collection of 100 mothballs of radius 0.6 centimeter. .,lns.: About 226
cubic centimeters per year or about 0.62 cubic centimeter per day.

5 Sand is falling at the rate of 2 cubic feet per minute upon the tip of a
conical sandpile which maintains the form of a right circular cone the height of
which is always equal to the radius of the base. Sketch a figure and calculate the
rate at which the height is increasing when the height is 6 feet. llns.: 1/18vr feet
per minute.

5 Thread is being unwound at the rate of .4 centimeters per second from
an ordinary circular cylindrical spool of radius R centimeters. The unwound
part of the thread has length s and is stretched into a line segment TE tangent
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to the spool at the point T. Find the rate of increase of the distance from the
axis of the spool to the end E of the thread. Hint: It is not necessary to make an
extensive study of the path traversed by the end E; it is sufficient to construct
and use an appropriate right triangle .4ns.: .4s//R2 + s2 centimeters per
second.

7 A particle is moving with constant speed k along the graph of y = sin x
in such a way that its x coordinate is always increasing. Derive the formulas

dy dx dx k dy k cos x
dt = COS x dt' dt - 1 + cos2 dt - 1 co+ os x

involving the scalar components of the velocity. Show also that

d2x k2 sin x cos x
dt2 (1 + cost x)2

8 A particle of mass m starts from rest (that is, starts with speed 0) at the
point (xo,yo) of Figure 3.892 and, with the earth's gravitational field pulling it
downward, slides without friction on the graph of the equation y = x2. We
grasp an opportunity to see how basic scientific concepts can be employed to
obtain information about the motion of the particle.
When 0 S y < yo and the particle is at the point (x,y),
the loss in potential energy is mg(yo - y) and the gain
in kinetic energy isIv12, so

Iv12 = 2g(yo - y).

With the aid of this information, derive the formulas

0X2 Yo - Y (dy)2 x2(yo - y)
F) = 2g 1 + 4x2' dt / = 8g 1 + 4x2

Figure 3.892

which determine (except for algebraic sign) the horizontal and vertical scalar
components of the velocity of the particle when it is at the point (x,y).
Remark: There is a reason why the formulas refuse to tell the signs of dx/dt and
dy/dt. As time passes, the particle oscillates to and fro over an arc of the
parabola in such a way that the scalar components of the velocity are sometimes
positive and sometimes negative.

9 Figure 3.893 shows a connecting rod of length b which earns its name by
connecting a piston (which is free to
move to and fro in a cylinder) to a P b

point P on a crankshaft which is free a
Piston

to rotate in a circle of radius a having 0 x
its center at 0. We should not be too
busy to observe that b exceeds 2a in Figure 3.893
ordinary engines and pumps. Obtain
a formula relating dx/dt, the scalar velocity of the piston, to dB/dt, the angular
speed of the crankshaft. Hint: Use the law of cosines in the form

b2=a2 + x2- tax cos 8.
dx ax sin 0 dO

flns.:
dt x - -ac 0 s 0 dt
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10 Let 0 be the angle between the lines of Figure 3.893 that have lengths b
and x. Show that

do acosBdO
at =bcos0d

Hint: At each time the numbers a sin 0 and b sin 0 are equal to each other
because they are both equal to the distance (or the negative of the distance)
from P to the line having length x. Thus we use a slight extension of the trigo-
nometric law of sines.

11 A circle of radius R has its center at the point (0,R) of an xy plane. A

motorcycle is racing at night along the circle in the first quadrant toward the
origin. When the motorcycle is at distance s (measured along the circle) from
the origin, its headlight illuminates a spot at the point (x,0) on the x axis. Show
how the rate at which the spot is moving depends upon R, s, and the rate at
which the motorcycle is moving. Outline of solution: Study of an appropriate
figure can lead us to the first and then the second of the formulas

(1) R= tan q5, x=Rtan2R'

where 0 is the angle between the vectors running from the center of the circle
to the origin and the point (x,0), and

length of arc s/2 _ s
(2) radius R

_
2R

Since

(3)
d d sin cos2 ¢ + sin2 4) do _ 2 dq
dt

tan = dt cos 4 - cost 0 dt - secdt'

differentiating with respect to t gives the answer

(4)
dxIsec s ds
dt - 2 2R dt

Remark: In the context of the motorcycle problem, dr/dt and dx/dt are both
negative. The answer will give very interesting information to those who study
it. Those who do not use the metric system for measuring distances and speeds
may observe that if s and R are numbers of feet and ds/dt is a number of miles
per hour (or furlongs per fortnight), then dx/dt will be a number of miles per hour
(or furlongs per fortnight).

12 A man or a boy or a particle is, for reasons that are sometimes explained,
at the point P1(xi,yi,z,) and is moving with speed q, in the direction of the unit
vector a,i + b,j + c,k. A second animate or inanimate object is at the point
Ps(xs,ys,zs) and is moving or being moved with speed q2 in the direction of the
unit vector aai + bd + c2k. We are required to find the rate at which the dis-
tance between the two objects is changing. Do it. Solution: Let the bodies
beat the points P(x,y,z) and Q(u,v,w) at time t. The distance between the bodies
at time t is then the positive number s for which

(1) s2 = (U ` x)s + (o - Y)s -}- (w - z)2.
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Even though we have written (1) in such a way that t does not appear, we rise
to the occasion and differentiate with respect to t to obtain

du dxl dv _ dyl dw dzl
(2) sdsdt =(u-x)(dt dt/+(v-y)Cdt dt/+(w-z)Cdt dt/

To obtain the answer, we determine s from (1) and then ds/dt from (2) when

(3) U X2, V 2, W Z2, x=x1, y =yl, z=zl
du do dw dx dy

(4) = q2a2,
_
- g2b2,

_
- 72C2, = Qlal, = flbl,dt dt dt

Tt
Tt

dz

dt = 41c1

Remark: The formula (2) is trying to tell us something. The vector PQ in the
formula

(5) PQ = (u-x)i+(v-y)j+(w-z)k
is the displacement of Q relative to P. The velocity v of Q relative to P is
obtained by differentiating this with respect to t. Thus

(6) °dn a Tt)i+(dt
-at)k.

Hence (2) tells us that

(7) s dt =

that is, the left side is the scalar product of the displacement vector and the
velocity of Q relative to P. Since IPQI = s, the vector PQ/s is a unit vector in
the direction of PQ. The relations (2) and (7) therefore bear a simple message.
They tell us that the rate of change of the distance between two bodies is the scalar
component of the relative velocity of the bodies in the direction of the line joining the
bodies. This agrees with and is perhaps even a consequence of the fact that if
one body moves in a circle having its center at the other body, then the distance
between the bodies is always the radius of the circle.

13 Kitty was riding a horse on a merry-go-round of radius R. When she was
south of the center pole and going east with speed s, she exuberantly threw a ball
toward the pole. Kitty expected to hit the pole, but unfortunately Chester was
riding gallantly ahead of her and the ball hit him on the chin when he was east of
the center. Sketch a figure showing the east and north vector components of the
velocity (relative to terra firma) of the ball and mark the place where Chester was
sitting when Kitty threw the ball.

3.9 Increments and differentials As we become educated, we pick
up assorted ideas akin to the idea that we never try to find the weight
(1 avoirdupois grain or 0.0648 gram) of a kernel of medieval wheat by
finding the weight of a truckload of the stuff and subtracting the weight of
the decreased load resulting from removal of the kernel. The difficulty
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lies in the fact that small relative errors in the large weights can produce
huge relative errors in the small difference. The obvious way to find
the order of magnitude of the number Ay defined by

(3.91) Ay =f(x+Ax) -f(x)
is to calculate the terms on the right side and subtract. However, when
the numbers Ax and Ay are very small in comparison to x and f(x) and
f(x + Ax), this calculation can be thoroughly tedious and impractical.
The following alternative way of estimating Ay is very often used. If
f and x are such that f'(x) exists, we can define O(x,Ax) by the formula

(3.92)
Ay = f(x + Ax) - f(x)

= f'(x) + -b(x,Ax)
Ax Ax

and conclude that

(3.921) lim A(x,AX) = 0.

Multiplying (3.92) by Ax gives the formula

(3.922) Ay = f'(x) Ax + 0(x,Ax) Ax,

which separates Ay into the sum of two "parts." In case f'(x) s 0 and
Ax is near 0, the "part" 4(x,Ax) Ax is small in comparison to the "part"
f'(x) Ax and the number f'(x) Axis the "principal part" of Ay. Therefore,
when f' (x) 0 0, we can write the formula

(3.93) Ay r.. f'(x) Ax

to mean that the numbers Ay and f'(x) Ax have the same order of mag-
nitude when Ax is near 0, that is,

lim
Ay = 1.

Am-Of (x) Ax

In any case, it is a common practice to use the number f'(x) Ax as an
approximation to Ay when f, x, and Ax are given and JAxJ is judged to
be small enough to make the approximation useful. In some cases it is
equally useful to use the number Ay/f(x) as an approximation to Ax
when f, x, and Ay are given.

We have seen that, in appropriate circumstances, the numbers Ay
(an increment of y) and Ax (an increment of x) are such that Ay and f (x) Ax
are nearly equal in the sense that their ratio is nearly 1. While it may be
difficult to see why we should become excited about the matter, it is
worthwhile to think about and even use pairs of numbers dy and dx for
which dy is exactly (not merely approximately) equal to f' (x) dx so that

(3.94) dy = f'(x) dx.



3.9 Increments and differentials 195

Such numbers dy and dx are called differentials, and some useful observa-
tions can be made. When f and x are such that f'(x) exists, we can let
dx be any number that pleases us and calculate dy, and, provided f'(x) 0
0, we can also let dy be any number we please and calculate dx. Our
interest in differentials can start to develop when we see that, as Figure
3.95 indicates, the point (x + dx, y + dy) must lie on the line tangent
to the graph of f at the point (x,y). This is true because f'(x) is the
slope of the tangent and (3.94) implies that dy/dx is this slope when
dx 0. Since increments Ay and Ax are numbers such that the point
(x + Ox, y + Ay) lies on the graph of f and differentials dx and dy are
numbers such that the point (x + dx, y + dy) lies on the tangent to
the graph at the point (x,y), it is clear that both of the two equalities
dx = Ax and dy = Ay can be true only when the two points (x + Ax,
y + Ay) and (x + dx, y + dy) coincide at a point of intersection of the
graph and the tangent.

Figure 3.95 Figure 3.951

It is particularly easy to produce the differential formula (3.94) when
we use the Leibniz notation for derivatives. The calculation in the left-
hand column

Y = f(x) Y = x2

dy = f' (x) dy = 2x
dx dx

dy = f(x) dx dy = 2x dx

produces the formula whenever f and x are such that f' (x) exists, and the
calculation in the second column shows how things go when f(x) = x2.
This circumstance emphasizes the fact that, when f and x are such that

f'(x) exists and dz is as usual the derivative f'(x), the differentials dy

and dx are defined in such a way that the quotient dx (dy divided by dx)

is the same as the derivative dx when dx 0 0. To find the differential

formula relating dy and dx when f and x are given, it is therefore sufficient
to set y = f (x), differentiate to obtain the formula

(3.952) dx = f'(x),
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and then multiply by dx. A little experience with these things makes us
realize that if y = sin x, we can write the formula dy = cos x dx without
bothering to write the intermediate step dy/dx = cos x.

In most situations where increments Ay, Ax and differentials dy, dx
simultaneously appear, it is convenient to suppose that dx = Ax. In
such cases, glances at figures more or less like Figure 3.951 can fortify
the idea that Ay can easily be twice dy when Ax and dx are equal but
not small, but that Ay and dy must have the same order of magnitude
when f'(x) v 0 and the equal numbers Ax and dx are near 0. Thus a
useful cookbook modus operandi runs as follows.

When f, x, and Ax are given such that f' (x) s' 0 and we want an approxi-
mation to the number Ay defined by

(3.96) Ay = AX + Ax) - AX),

we put Ax = dx, calculate the number (or differential) dy defined by

(3.961) dy = f'(x) dx,

and use dy as an approximation to Ay.
It is instructive to consider a thoroughly simple example in which all

of the details are easily understood. Letting x and Ax be numbers which
could be 38.27 and 0.05, we can determine the increment Ay in the area
of a square when the lengths of its sides are increased from x to x + Ax.
Letting y = x2 and y + Ay = (x + Ax)2, we find that

(3.97) Ay = (x + Ax)2 - x2 = 2x Ax + Axe.

When Ax > 0, the number 2x Ax is the sum of the areas of the two
rectangles of Figure 3.971 which have dimensions x and Ax. The number

AX

Figure 3.971

0x2 is the area of the smaller square in the upper right-hand corner of
the figure. The differential dy is, when dx = Ax,

(3.972) dy = 2x dx = 2x Ax,

and it is easily seen that this is a good approximation to Ay when Ax is
small in comparison to x.

It is sometimes convenient to solve problems more or less like the fol-
lowing one in order to determine the accuracy of measurements required
to produce required accuracy of results computed from the measurements.
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If we measure the edges of a cube and decide that, subject to errors in
measurement, each side has length x, we conclude that, subject to con-
sequences of errors in measurement, the volume V of the cube is x3.
If the edges have exact lengths x + Ax, then the exact volume is (x + Ax) 3,
or V + AV, and the number AV is the error in Y produced by the error
Ax in x. In quantitative treatments of this matter, we let Y = x3 and
use the differential dY defined by

(3.98) dV = 3x2 dx

as an approximation to AV. In some practical situations, it is reasonable
to assume that (for some positive constant p that might be j- or 2 or 10),
the error dx in x has a magnitude not exceeding p per cent of x. This
means that

(3.981) Jdxi <
100

jxI.

With this assumption, we find from (3.981) that

(3.982) I dVI 5 3x2
100 x = 00 x3 = 100

This leads us to the idea that if we measure the length of the edge of a
cube with an error not exceeding p per cent, the resulting error in the
computed volume will not exceed 3p per cent.

Problems 3.99
1 Find the increment AA4 and the differential dl of area produced when a

circular disk of radius r is expanded or contracted to a circular disk of radius
r + A. .4ns.: A14 = 7r(2hr + h2) and dll = 2rrrh. Remark: We have another
opportunity to try to understand a formula. Sketch a figure in which Jhi is
small in comparison to r and observe that the difference of the two disks is a
circular ring of thickness JhJ. Since the inner (or outer) boundary of this ring
has length 27rr, it is not surprising that the area of the ring is approximately
21rrihi.

2 The area .4 of a sphere of radius r in Es is 4rrr2; this should seem to be
reasonable because the area of a hemisphere should be about twice the area of an
equatorial disk. The volume Y of the spherical ball bounded by this sphere is
4grrr8. Find the increment AY and the differential dY of volume produced when
the radius changes from r to r + h. Show that the formula for dY can be put
in the form dY = .4h and try to see a geometrical reason why 4h should be a
good approximation to AY when Jhl is small.

3 Use differentials to obtain an approximation to the number of cubic
centimeters of chromium plate that must be applied to the lateral surface of a
circular cylindrical rod 30 centimeters long to increase its radius from 2.34
centimeters to 2.35 centimeters. Ins.: About 4.4 cubic centimeters.



198 Functions, limits, derivatives

4

(1)

Suppose that x and y are differentiable functions of t such that

x2+y2 = 1.
Show that differentiating with respect tot and multiplying by dt gives the formula

(2) x dx + y dy =0.

Remark: In case t = x, we can divide (2) by dx and recover the first of the formulas

(3) x + y dx = 0, x dy + Y = 0,

which is valid when y is a differentiable function of x for which (1) holds. In
case t = y, we can divide (2) by dy and recover the second formula in (3), which
is valid when x is a differentiable function of y for which (1) holds.

5 Supposing that n is a constant and x is positive, observe that the first
of the formulas

(1) y = x", log y = n log x

is equivalent to the second. Use these formulas to obtain

(2)

and

(3)

dy = nx' dx

1dy=n1dx.

Use (2) to show that if ldxl 5 (p/100)x, then idyl 5 (Inlp/100)y. Then use (3)
to obtain the same result.

6 Gradual changes in tensions or compressions or temperatures can produce
gradual changes in the lengths of iron rods that form a triangle such as that

u

Figure 3.991

shown in Figure 3.991. Therefore, because the law of cosines
must hold at each time t, it makes sense to suppose that we
have four positive differentiable functions oft such that

(1) w2 = u2 + v2 - 2uv cos 0.

Equate the derivatives with respect to t of the members of (1)
and multiply by dt to obtain the differential formula

(2) w dw = (u - v cos 6) du + (v - u cos 0) dv + uv sin 0 d8.

Remark: It is sometimes both possible and unwise to underestimate potentialities
of formulas. The formulas (1) and (2) contain eight numbers u, v, w, 0, du, dv,
dw, and dB. There are many situations in which some information about some
of these numbers is known and the two formulas can be used to eke out more
information. Some problems are much more recondite than the one solved by
finding w from (1) and then finding dw from (2) when the values of the other six
numbers are known.

7 Supposing that T, L, and g are positive, observe that the first of the
formulas

L 1 1(1) T = 2a Zig, 71, = 41r2 g, log T= log2a -
2

log L - 2 log g
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is equivalent to the other two. Use these formulas to obtain

(2)
dT =

.(:)-bigdL 2Ldg
g g

(3) 2TdT = 4rzgdL 2Ldg

(4) T dT
= 2 L dL g dg.

Making a suitable application of the fact that 1,41 < JBI + ICI whenever 4, B,
and C are numbers (not necessarily positive) for which 4 = B + C or 4 = B - C,
use (2) to show that if IdLI 5 (p/100)L and (dgl S (q/100)g, then JdTj <_
[-(p + q)/100]T. Repeat the process by use of (3) and (4). Remark: The
first of the formulas (1) is a standard formula for the period T (a number of
seconds) of a pendulum of length L which oscillates in a world where the scalar
acceleration of gravity is g. Our result shows that if errors in measurement of L
and g do not exceed p and q per cent, respectively, then the error in T will not
exceed ''T(p + q) per cent.

8 A pendulum clock gains 3 minutes in 24 hours. By what per cent should
the pendulum be lengthened? 4ns.: 0.42 per cent.

9 Under appropriate conditions the pressure p and the volume V of confined
gas satisfy the relation

(*) pv"=C,
where ry (gamma) and C are constants that depend upon the gas and the condi-
tions. Obtain the formula
(**) dp+ydV0

p T'

in two different ways. First, differentiate the members of (*) as they stand.
Then operate upon the equation obtained by taking logarithms of the members
of (*). Remark: It is so often desirable to take logarithms before differentiating
that the process is named logarithmic differentiation. The derivative of the
logarithm of a function is called the logarithmic derivative of the function.

10 Apply the procedure of the preceding problem to the relation

pV = nRT,

in which n is the number of gram-moles of a gas, R is a universal proportionality
constant known as "the gas constant," and T is the absolute, or Kelvin, tempera-
ture. It is now supposed that p, Y, and T are all functions of t and the relation

dp dV dT
p + V T

is to be obtained.
11 For dense projectiles fired short distances over a horizontal plane, the

range R is calculated from the formula

z

R = v--°
sin 2a,

g
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where g is the (scalar) acceleration of gravity, vo is the initial speed, and a is the
angle of elevation of the gun so 0 < a < 7r/2. Find a formula in which we can
put estimates of errors in g, v0, and a to obtain an estimate of the resulting error
in R. Hint: Use logarithms. t1ns.:

dv0

V0
+Idg

g

2a cos 2a
sin 2a

do!

Remark: When a is not too close to it/2, the factor multiplying Ida/al has the
order of magnitude of Icos 2al. When a is near 7r/2, the factor is very large.
We are now able to enlighten rabbit hunters when they ask us why they are
unlikely to hit their targets when they shoot almost straight up.

12 Find the maximum possible percentage of error in the computed estimate
of the volume of a cone that can be caused by errors not exceeding p per cent and
q per cent in measurements of the height and the base radius of the cone. Ans.:
p+2q.

13 When three resistors having resistances rr, r2, r3 are connected in parallel,
the resulting resistance R is determined by the formula

1 1 1 1

-T1+r2 .+73

With the aid of the fact that resistances are always positive, prove that if no
error in a resistor exceeds p per cent, then the error in R produced by these errors
cannot exceed p per cent. Remark: This conclusion really means something to
those who design the mazes hidden in our television sets. Problems involving
silver bands and gold bands and tolerances (percentages of error) cannot be
ignored. Engineers do not like to behave like rabbit hunters who shoot almost
straight up.

14 Show that the conclusion of the preceding problem is violently false if the
numbers rl, r2, r3 are not resistances of resistors but are numbers of which some
can be positive and some can be negative.

15 Let r be a differentiable function of t. For example, we may have

(1) r(t) = x(t)i + y(t)j + z(t)k,

where all of the functions are differentiable and the vectors i, j, k are the unit
orthonormal vectors of Section 2.2. By a definition analogous to the one involv-
ing scalar differentials, a vector dr and a scalar dt constitute a pair of differentials
if

(2) dr = r'(t) dt.

With or without using the rectangular representation (1) and the fact that

Ir(t)12 = [x(t)]2 + [y(t)]2 + [Z(t)]2,
prove that

dlr(t)12 =

16 The specific heat of a substance is sometimes said to be the number of
calories of heat required to raise the temperature of 1 gram of the stuff 1 degree
centigrade. This definition is sometimes useful but, because substances have
different specific heats at different temperatures, the following definition is much
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better. The specific heat o (sigma) of a substance at temperature x is Q'(x),
Where Q(x) is the number of calories of heat required to raise (or lower) the temperature
of 1 gram of the stuff from 0°C to x°C. For study of this matter, let v* be the
specific heat calculated from the first definition so that

(1) a* = Q(x + 1) - Q(x), or = Q'(x) = lim Q(x -I- h) - Q(x)
h--.o h

We can see one of the reasons why knowledge of calculus is needed for study of
physical chemistry when we see that v* is a difference quotient and v is a deriva-
tive. Since the graph of Q is never (or not ordinarily) a line, v* and o. are usually
different. The schematic Figure 3.992 illustrates one situation. As is easily

Q(x+1)
v c*
-- -Q(x)

Figure 3.992

imagined, there are situations in which the graph of Q is "almost straight" over
the interval from x to x + 1 and v* is a "good approximation" to or. On the
other hand, v* can be dust and ashes when the interval from x to x + 1 straddles
a temperature at which a substance changes from a solid state to a liquid or from
a liquid to a gas.

17 There are reasons why we should conclude with a historical remark. In
the good old days when the "doctrine of limits" was based upon visions of gal-
loping numbers and the "infinitely small infinitesimals" were considered to be
almost the most wonderful products of human thought, differentials were con-
sidered to be the most wonderful. Differentials were the important things, and
the things that we now call derivatives were merely the "differential coefficients"
appearing in formulas like dy = f'(x) dx or dy = 2x dx. Thus differentials have
their origin in old mathematics; it was the fashion to consider them to be "infi-
nitely small" but not quite zero. When at long last the concept of the "infi-
nitely small" was becoming obsolete, attempts were made to salvage differentials
by promoting the idea that they really are not ordinary numbers at all but are
numbers that are in the process of approaching zero.t So far as this course is
concerned, the details of this remark are unimportant. We should, however,
know that differentials have a long and checkered history and that we may
expect to encounter some quite strange concepts as we get around in the world.

t For those who have not peered into old books and consider this to be too incredible to be
true, we quote three passages from W. E. Byerly, "Elements of the Differential Calculus,"
Ginn and Heath, Boston, 1879. Page 149 tells us that ".,1n infinitesimal or infinitely small
quantity is a variable which is supposed to decrease indefinitely; in other words, it is a variable
which approaches the limit zero." Page 185 tells us that "It is to be noted that a differential
is an infinitesimal, and that it differs from an infinitesimal increment by an infinitesimal of a
higher order." Page 186 tells us that "there is a practical advantage ... in regarding the
differential as the main thing, and looking at the derivative as the quotient of two differentials."



4 Integrals

4.1 Indefinite integrals There are about as many different types of
integrals in mathematics as there are elements in chemistry, but only a
few of them occur in first courses in calculus. This chapter introduces
basic ideas about two kinds of integrals. These ideas may not be coming
too soon to meet the needs of students taking other courses in which
mathematics appears. In this section, and in some other places where
the deviation from complete linguistic rectitude does not create deceptive
statements, we sometimes refer to "the function f(x)" or to "the function
having values f(x)" instead of to the function f which, for each x in some
interval, has the value f(x).

It is very often true that we have a given function f(x) and we are
interested in those functions F(x) or y or y(x) (if any) for which

(4.11) F(x) = f(x) or dz = f(x)

when x lies in some interval. Before discussing this situation, we intro-
duce notation that is universally used. In case F(x) or y is a function for
202
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which (4.11) holds, we represent it by the ingenious symbol in the formula

(4.111) F(x) = ff(x) dx or y = ff(x) dx.

The second equation is read "y equals an integral of eff of x dee x."
We should all know that it can be read "y equals an indefinite integral
of eff of x dee x," or "y equals a function whose derivative with respect
to x is f ' or "y equals an antiderivative with respect to x of f," but
simplicity always prevails and we read what we see and say what is to
be written. The integral sign f is an elongated S, the f (x) is called the
integrand, and the dx tells us that derivatives with respect to x are
involved.t This matter turns out to be so important that we must con-
tinually remember the following definition.

Definition 4.12 The indefinite integral in the formula

(4.121) y = ff(x) dx = O(x)

is (if it exists) a function of x whose derivative is the integrand f(x); in other
words, the formula

(4.122)
dx = f(x) _ (x)

and the formula (4.121) are both true or both false.
For an example, let us see what we know and can learn about the

functions y for which the equivalent formulas

(4.123) dx = 2x, y =
J

2x dx

are valid. We may remember that we differentiated x2 and got 2x.
Hence a function y for which the formulas are valid might be x2 but it
does not have to be because y might be x2 + 1 or x2 - 5 or x2 + 416.
It can be proved that a given function y will satisfy the equivalent
formulas (4.123) if and only if there is a constant c such that y = x2 + c.
Thus

(4.124) f 2x dx = x2 + c.

To be precise about this matter, we state the following theorem which
will be proved later in a remark following the proof of Theorem 5.57.

I Perhaps it should be emphasized at once that the dx in the symbol is not a number. If
we resist temptations to jump to the conclusion that the dx and the crossbar on the f and
the integral sign are numbers, we overcome a difficulty that makes some people feel that the
good old symbol should be abandoned in favor of another which provides fewer temptations.
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Theorem 4.13 If two functions y and F have the same derivative over an
interval, then there is a constant c such that

y(x) = F(x) + c

for each x in the interval.
Considerable information is packed into the little formula

(4.14) y

=
f f (x) dx = F(x) + c

in which F(x) is any one particular function whose derivative with
respect to x is, over some interval, the integrand f (x) of the integral
It tells us that, whatever the value of the constant c may be, F(x) + c
is a function y whose derivative with respect to x is the integrand f(x).
Moreover, it tells us that if y is a function whose derivative is the inte-
grand, then there must be a constant c for which y = F(x) + c. The
full meaning of the assertion (4.14) has been stated, and this is what is
important. Simply because we must converse with our fellow men and
must read scientific writings, we must join our fellow men in learning
some terminology. The constant c in (4.14) is a "constant of integration"
and the poor fellow is sometimes said to be "arbitrary." The integral
is called an "indefinite integral" to distinguish it from other types of
integrals that are sometimes called "definite integrals." This rather
strange terminology will not injure us if we do not allow it to interfere
with our understanding of the meaning of (4.14). The assertion "each
indefinite integral of f is the sum of a particular indefinite integral and
a constant of integration" sounds weird but is true. The "meaning"
of the word "indefinite" can be understood if we realize that when c is a
constant, say 416, F(x) + c is an "indefinite integral" of f(x) just as
the mayor of Chicago is an "indefinite citizen" of Chicago.

In caseF'(x) = f(x), G'(x) = g(x), and a, b are constants, differentia-
tion formulas show that

(4.15) f [af(x) + bg(x)] dx = aF(x) + bG(x) + c

and

(4.16) f[af(x) + bg(x)] dx = off(x) dx + bfg(x) dx.

These formulas tell us that "integrals of sums are sums of integrals" and
that "constants can be moved across integral signs." The formulas do
not provide justification for moving functions across integral signs; other-
wise, we could replace 96 by = in the formula

(4.161) f f (x) dx : f (x) f dx = f (x) (x + c)

and eliminate all of our troubles.
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The following little table gives two versions
and most useful integration formulas.

xn+i
(4.171)

/

xn dx = n +

(4.172) J sin x dx = - cos x +c

(4.173) fcosxdx-_sinx+c

(4.174)
J

ex dx = ex + c

(4.175) J x A = log Jxl + c

of each of the five simplest

I
n du _ un+1

u
dx

dx
n

1 +

du

c

sin u dx = - cos uJ
ax

J cos u dx dx =

+ c

sinu+c

J eu du dx = + c

I du
J

udxdx=logJul +c

In the formulas of the second column, u is supposed to be a differentiable
function of x. Subject to the requirement that n 0 -1 in (4.171), and
that x and u are confined to intervals over which the integrands in (4.171)
and (4.175) exist, these formulas are proved by observing that they have
the form (4.14) whereF'(x) = f(x). We need not learn all of the formulas
we see, but the formulas in the above table are used so often that they
must be learned.

When the formulas in the column on the right are being used, presence
of the factor du/dx must be carefully observed. It is not correct to
think of u as being sin x and to claim that use of (4.171) shows that the
members of the formula

(4.181) sine x dx 76
sing x

3 + c

are equal. We can, however, think of u as being sin x and read the, left
member of the formula

(4.182) f sin' x cos x dx = sin' x
+ c

I

in the form "integral of u to the nth power dee u dee x dee x" and then
apply (4.171) to obtain the right member.

It is not correct to claim that the members of the formula

(4.183)
J

(5x + 7)2 dx 54 (5x
3

7)s
+ c

are equal. We can, however, let I denote the left member, observe that
the integrand has the form un, where du/dx = 5, and write

(4.184) 1 = 5
J

(5x + 7)2(5) dx = 5 (5x
3

7)1 + c.
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Thorough understanding of this particular example is of utmost impor-
tance because it involves an idea that is very often used to overcome a
difficulty. In (4.183) we have an integral of the form fu" dx which does
not have the form fun (du/dx) dx. However, du/dx is 5, a constant,
so we can insert the factor 5 in the integrand and compensate for the deed
by inserting the factor - before the integral.

To obtain the formula

(4.185) f
1 + x2 2x dx = log (1 + x2) + c,

we read the left side "integral of one over u dee u dee x dee x" and apply
(4 175). If the factor 2 had been missing from the integrand in (4.185),
it would have been necessary to insert the factor and compensate for the
deed. Thus

x2 2x dx = 2 log (1 -I x2) + c.(4.186) f 1 + x2
dx = 2 J 1 1

Our very modest table of integrals beginning with (4.171) does not
reveal the answer to the question whether there are any functions F(x)
for which the formulas

(4.187) F'(x) = 1 -- x2' f 1 -L x2 dx = F(x) + c

are valid. Many useful purposes are served by this table and the more
extensive one appearing opposite the back cover of this book, but one
who has solved several of the problems at the end of this section is ready
to recognize the fact that there exist much more elaborate tables of
integrals. The books of Buringtonf and Dwight$ are exceptionally use-
ful examples of books that give hundreds of integration formulas, tables
of values of functions, and other mathematical information. It is possi-
ble to proceed through our course without using tables other than those
on the back cover and facing page of this textbook. However, students
who contemplate following educational programs in which mathematics
appears are well advised to purchase one of these books (or perhaps
another more or less similar one recommended by teachers) and to spend
occasional moments (and sometimes hours) inspecting its organization
and studying its contents. Ability to understand and use the tables is
not inherited but can develop rapidly as more calculus is learned.
Experience shows that persons who have completed courses in calculus

t R. S. Burington, "Handbook of Mathematical Tables and Formulas," 3d ed., McGraw-
Hill Book Company, Inc., New York, 1948, 296 pages.

t Herbert Bristol Dwight, "Tables of Integrals and Other Mathematical Data," 4th ed.,
The Macmillan Company, New York, 1961, 336 pages.
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refer to tables in books of tables in preference to tables in calculus text-
books. Teachers can be particularly helpful when they require that
their students purchase identical books of tables and make frequent
comments about use of the tables. Sometimes use of a book of tables is
permitted in tests and examinations where use of a calculus textbook is
forbidden.

Problems 4.19
1 Tell the meaning of ff(x) dx. Be prepared to give full information at

any time.
2 Show that, when x is properly restricted,

(a) f (2+3x+4x2)dx=2x+3222+433+c
2 2

(b) f 1-xdx+2+c+ 2(c) f ( x
1

)dx=3(x+3)\Ix +c

(d) f x(1-x)dx= 22- 3+c

3 Is the formula
fx3 dx = xfx2 dx (?)

true or false?
4 Brevity is sometimes but not always a virtue. It can be claimed that the

second formula in (4.171) would be much more easily understood and used if it
were written in the form

f [u(x)]"u'(x) dx = [n(+ 1 + c.

Think about this, and then write the other four formulas in terms of the Newton
notation for derivatives. Note that the last formula takes the form

f u'(x) dx = log 1U(X)1 + c.
U

Remark: We can abbreviate (4.171) to the form fun du = u"+'/(K + 1) + c, but
for present purposes we can hold the view that further abbreviation of (4.171) is
a step in the wrong direction. We need not be in a hurry to join the ranks of
gullible people who think that the du appearing in the symbol fu du is a number
because a correct result is obtained by pretending that du is "the" differential
u'(x) dx and writing

fu du = fu(x)u'(x) dx = 1''[u(x)]2 + c.

When we do not use the abbreviation, we do not need to worry about it.
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5 Look at the integral
f(1 + 5x) dx

and tell what must be done to enable us to evaluate the integral by
formula involving u".

6 Evaluate the integrals

(a) f (1 - x)3 dx (b) f sin 2x dx (c) f cos 3x dx

(d) f (1 - 2x) 2 dx (e) f e2z dx (f) f 2x + 3 dx

14ns..

use of the

(a) -(1 - x)4/4 + c (b) - cos 2x + c
(c) sin 3x + c (d) -g(1 - 2x)3 + c
(e) Te2z + c (f) y log I2x + 31 + c

7 Sometimes we can make small alterations in the way integrands are written
to put the integrands into forms where basic formulas are easily applied. Pay
careful attention to the examples

n
1f tan x dx = f cos x dx - f cos x (-sin ) dx log cos xj + c

cf x log x dx = f log x x dx = log Ilog xI +

f xez' dx = f ez'(2x) dx = eye +

Then evaluate

(b) f
o z x

dx(a) f x fl -+ x2 dx
2

8 While the terminology plays a minor role in elementary calculus, we can
start learning that the equation

(1) dy = 2xdx

is an example of an equation that should be called a derivative equation but is
called a differential equation. Functions y for which (1) holds are called solutions
of (1), and we know that (1) has many solutions. The particular solution of
(1) satisfying the boundary condition

(2) y = 16 when x = 3

is found in a straightforward way. If (1) holds, then

(3) y = f2x dx = x2 + C,

where c is a constant that can be 5 or - 3 or 416 but cannot be all of these things
at once. The function in (3) will satisfy (2) if 16 = 9 + c and hence if c = 7.
Thus the answer is y = x2 + 7. With clues to methods being provided by this
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example, find the solutions of the following differential equations satisfying the
given boundary conditions.

(a) Lx=0,y =1when x=0 11ns.:y = 1

(b) ±x=1,y=2when x=3 Ans.:y=x-1
dy

cos 2x, y = 0 when x = 0=(c) lIns.: y = sin 2x
dx

ay=ea=,y=1when x=0(d)
dx

Ans.:y=-Tear+s

9 A body moves to and fro on a line in such a way that its scalar velocity
v at time t is given by the formula

v=t2-8t+15.
During what interval of time is the scalar velocity negative, and how far does the
body move during that time? Hint: Ifs is the coordinate of the body at time t,
then ds/dt = v and hence

to

3
-4t2+15t+c,

where c is a constant that is 0 if we choose the origin such that s = 0 when t = 0.
11n$.: g units.

10 If y is a function of x satisfying the differential equation

(1)

and if we know that y > 0, then we can divide by y to obtain the first and then
the rest of the formulas

(2) y dx = k, log y = kx + c, y = ekx+o, y = ekxe°,

where c is a constant that depends upon the particular function y with which
we started. But ec is a constant that we can call .1, so

(3) y = Aekx.

If we know that y satisfies the boundary condition y = yo when x = 0, then we
can put x = 0 in (3) to find that A = yo and hence

(4) y = yoekx

Remark: Without assuming that y 5-6 0, we can solve (1) with the aid of a trick.
Transposing a term in (1) and multiplying bye kx give the first and hence the
second of the formulas

e kx(dx-ky)=0, d e kxy=0.
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This gives the first and hence the second of the formulas

e kxy = f1, y = Aekx.

Integrals

More complete treatments of these matters are given in textbooks on differential
equations.

11 After having digested the preceding problem (which required that some
ideas and methods be absorbed), find the solutions of the following differential
equations that satisfy the given boundary conditions

(a) dz=y,y=1when x=0 fins.:y=ex

(b) dx=2y,y=3when x=4

(c) dx=y,y=Owhenx=0

12 Fill in the right members of the three formulas

d-x dxate - dt
when

x = ?

,Ins.: y = 3e2cx-9)

Ans.: y = 0

(a) dt2 = g fins.: g, gt + ci, -ITgtl + cit + c2

(b) x = gt2 + cit + c2 Ans.: Same as (a)

(c) d x = sin t fins.: cos t, sin t, -cost + c

(d) dt = cos 2t 4ns.: -2 sin 2t, cos 2t, "W sin 2t + c

(e)
dx

= e2t e4ns.: 2e2t, e2d, ,-e2t + c
dt

13 A particle P moves in the xy plane in such a way that its acceleration a
(a vector) is always -gj. Thus

a=0i-gj.
Show that its velocity and displacement vectors must be

v=cii+(-gt+kl)j
r = (cit + cz)i + (-gt2 + kit + k2)j,

where the c's and k's are constant. Find the equation of the path in rectangular
coordinates when ci 0 0 and again when ci = 0. Hint: To solve the last part,
put r = xi + yj so that

x = Cit + c2, y = -.lgt2 + kit + k2
and eliminate t.

14 This problem requires us to think about indefinite integrals and gives our
first glimpse of the famous and important formula for integration by parts.
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Let x be confined to an interval I over which two given functions u and v are
differentiable. The standard formula

(1) d u(x)v(x) = u(x)v'(x) + v(x)u'(x)

then (why?) gives the formula

(2) f[u(x)v'(x) + v(x)u'(x)] dx = u(x)v(x) + c.

In case the separate integrals are cooperative enough to exist, we can (why?)
put (2) in the form

(3) fu(x)v'(x) dx + fv(x)u'(x) dx = u(x)v(x) + c

and transpose to obtain the formula

(4) fu(x)v'(x) dx = u(x)v(x) - fv(x)u'(x) dx,

which is known as the formula for integration by parts. For the particular case
in which u(x) = x and v(x) = ex, show that (4) reduces to

(5) fxex dx = xex - ex + c.

Finally, check (5) by showing that the derivative of the right side actually is the
integrand.

15 Read and work the preceding problem again.
16 With Problem 14 out of sight, start with the formula for the derivative

of a product and construct the formula for integration by parts and give an
application of it.

17 Start with the function fo for which fo(x) = 1 when -1 < x < 1 and
determine the natures of the functions f1, f2, fs, - for which the formulas

fn(x) = f.-1(x), fn(x) = ff.-,(x) dx, (n = 1,2,3, . . .)

are valid. .ns.: There exist constants c1, c2, C3, such that

fi(x) =x+c1
f2(x) = $x2 + clx + C2
f s(x) = -19X' + VCix.2 + c2x + C8
f4(x) = VITX4 + $Clxs + c2x2 + C3X + Ca

etcetera. Remark: These things will appear later.
18 Prove that the first of the formulas

f sgn x dx = jxj + c1, f sgn x dx = Jxl + C2

is correct when x > 0 and the second is correct when x < 0. Prove that there
is no constant c such that the formula

f sgn x dx = lxI + C
is correct when x = 0.

19 This problem contains hundreds of parts, and there is much to be said for

spending several hours or days solving a considerable number of them. To
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solve one part, pick an integral formula from a (preferably your) bool, of tables
that has the form

f f (x) dx = F(x) + c

(except that most tables omit the constants) and show that F'(x) = f(x). This
promotes an understanding of integral formulas and provides practice in differ-
entiation. It is never too early to start acquaintance with formulas involving
X where X is one or another of a + bx, a2 + x2, a2 - x2, ax2 + bx + c, etcetera.
In these situations, modesty and timidity are not virtues. We profit most when
we attack the problems that seem most impenetrable and discover that they
really are very simple.

4.2 Riemann sums and integrals This section introduces the sums
and integrals that are named after Riemann (1826-1866) in spite of the
fact that Archimedes (287-212 a.e.) knew how special ones could be
used in a few special cases. Let f be a function which is defined over an
interval a <- x < b and has values f(x) such that

(4.21) m<f(x) <M (a<x5b)
where m and M are constants. This amounts to saying that f is bounded
over the interval; M is an upper bound and m is a lower bound. Our next
few steps are so simple that it may be difficult to see why they are impor-
tant. As in Figure 4.212, let x be a fixed (or selected) number for which
a < x 5 b. Thus x can be b, but it is not necessarily so. Let n be a
positive integer. We make a partition P of the interval from a to x
into n subintervals by inserting points to, t1, t2j , t.-I, tn, where

(4.211) a=to<tj<t2< <tn_1<tn=x.
These points are the circled points of the figure and are the end points
of the subintervals.

O
tl

O
t t3a

-0 tA-11 ti Q
to tl t2 t3 t,,_2 to-1 t
Figure 4.212

b

t

Let At, denote the length of the first subinterval so that At, = ti - to,
let Ot2 denote the length of the second subinterval so that At2 = t2 - ill
and so on so that

(4.213) Atk = tk - tk-1 (1 5 k 5 n).

It is not required that the points to, t1, , in be equally spaced. The
greatest of the numbers Ail, Ot2j - - , Atn is called the norm of the parti-
tion P and is denoted by the symbol IPJ. Thus JPJ is the length of the
longest of the subintervals in P. Our next act introduces the star char-
acters. Let tl (read tee one star) be a number (or point) in the first
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subinterval so that to < tl < ti, let t2 be in the second subinterval so
that ti <= t2 < t2, and so on so that

(4.214) 4-1 < tk _< tk (1 < k S n).

Our machinery, which is still very much simpler than that in an elec-
trically operated dishwasher, enables us to produce numbers that are
called Riemann sums. We multiply f (tk ), the value of f at tk , by Ate,,
the length of the interval containing tk, and add the results. Thus, denot-
ing the Riemann sum by the symbol RS, we have

(4.22) RS = f (tl) At, + f (t2) f (t*) Ot3 + . . . + f (t*) Otn.

Because it takes too long to write this, we abbreviate it to the form

(4.221) RS = f(tk) Atk.
k-1

The right side is read "sigma k running from 1 to n eff of tee kay star
delta tee kay" and it denotes the sum of the terms obtained by giving k
the values 1, 2, 3, , n. The E (sigma) is called the summation
symbol, and it is very convenient.

Everybody should see that, when the function f and the numbers a
and x are given, it is easy to select the partition P in very many different
ways and to select the points tk in very many different ways. When an
electronic computer is kind enough to do the arithmetical chores, it is
even easy to produce very many Riemann sums.

Experience shows that we should avoid future difficulties by allowing
the partitions and Riemann sums to slumber peacefully while we invest
a moment to think about the names which we have attached to the parti-
tion points and the intermediate star points that determine them. The
points in Figure 4.212 were called to, tl, , t.n and t', t2, , t*.
We could, without changing the value of the Riemann sum, have called
these same points Xo, X1, , X, and A*, XZ, , X. Thus there
is a sense in which the names of these points are "dummy names"; we
could have called the points is or u's or v's or X's or µ's or pi's. When
this matter is understood, we must ask and answer two questions. First,
why did we avoid the "natural" names xo, xi, , x and xi, x2*, ,

X,*? The answer is that we already have the interval from a to x on an
x axis appearing in our work, and we will have too many x's around the
house if we allow any more to enter. Secondly, why did we use the names
to, tl, , t,a and tl, t*, . , t*? The only answer we can give is
that they are as good as any and better than most alternatives. In
situations where we can conveniently use the "natural" names xo, xl,

, x,, and x*, x2, , x*, we usually do so. Finally, we do not use
the letter i to denote "dummy integers" in (4.214) because the habit
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of using i leads to awkwardness when we finish study of calculus and enter
realms where i is always the imaginary unit whose square is -1. We
use k because it is as good as any and better than most.

We now come to the most fundamental remark that appears in the
theory of Riemann integration; analogous remarks appear in theories
of other integrals. Depending upon the function f and the numbers
a and x that have been selected, it may be true (or it may be false) that
there is a number I such that to each positive number e there corresponds
a positive number S such that

n

(4.23) 1 f(tk) Litk - II < e
k=1

whenever JPJ < S. This is, of course, just a precise way of saying that
there may be a number I such that each Riemann sum with a small norm
is near I. If this I exists, then f is said to be Riemann integrable over the
interval from a to x and I is said to be the Riemann integral off over the
interval. This integral is denoted by the symbol in the formula

(4.24) I= fXf(t)dt

and the symbol is read "the integral from a to x of eff of tee dee tee."
The numbers a and x are called the lower limit and the upper limit of
integration, and we always read the lower one first. The symbol t is
called a dummy variable of integration, the derogatory terminology being
applied because the value of the integral would be the same if t were
replaced by s or u or a or 0 or any other symbol that cannot be confused
with a, x, f, and d. It is a convenience (and sometimes also a source of
misunderstanding, confusion, and controversy) to drag in the notation
of limits and write '

(4.25) lim f (tk) Litk = f a5 f (t) dt.
jPj-'O k=1

A much more substantial convenience results from boiling this down to

(4.251) lim I f (t) At = f ''f(t) dt,

the idea being that we can restore the omitted embellishments whenever
there is a reason for doing so.

In case no such number I exists, we say that f is not Riemann integrable

over the interval from a to x and that faZ f (t) dt does not exist (that is,
does not exist as a Riemann integral). To emphasize the fact that a
bounded function f and an interval a < x S b can be such that af b f (t) dt
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does not exist, we look briefly at an example. Let f be the dizzy dancer
function D, defined over the interval 0 = x < 1, for which

(4.252)
J D(x) = 0 (x irrational)

D(x) = 1 (x rational).

It is clear that, whatever the partition P of the interval 0 < x S 1 may
be, the Riemann sum

(4.253) D(tk) Otk
k=1

has the value 0 if the numbers ti , t2 , , t* are all irrational and has
the value 1 if the numbers ti, t27 , t* are all rational. It follows
from this that there is no number I such that to each positive number e
there corresponds a positive number S such that (4.23) holds whenever
1PI < S. This shows that the symbol fo1 D(t) dt has no meaning or that

fo

1

D(t) dt does not exist.

If we suppose, as above, that f is a function which is bounded over an
interval, then the following theorem shows that the answer to the ques-
tion whether f is integrable over the interval depends only upon the set
of discontinuities of f.

Theorem 4.26 4 function f is Riemann integrable over an interval if
and only if it is bounded and the set of discontinuities off which lie in the
interval has Lebesgue measure zero.

This theorem is proved in modern textbooks that fully earn the right
to be called textbooks on advanced calculus. The proof is, from our
present point of view, both long and difficult, and we do not need to
know anything about it. Moreover, we do not need to understand the
theorem, but we should not be injured by taking a hasty look at Figure
4.261 and making a modest attempt to understand one of the definitions

a 11 14 I I6 b13 15

Figure 4.261

which has fundamental importance in more advanced mathematics.
A set D of points on a line is said to have Lebesgue measure 0 if to each
e > 0 there corresponds a collection 11, I2, 13, of intervals such that
each point of D lies in at least one of these intervals and, for each n = 1,
2, 3, . , the sum of the lengths of the first n intervals is less than e.
Sometimes it is very easy to show that a given set D has Lebesgue measure
0 by showing that if e > 0, then there exist intervals I1, 12, 13 . such
that each point of D is in at least one of these intervals and, moreover,
the length of I1 is less than e/2, the length of I2 is less than e/22, the length
of I3 is less than e/23, etcetera. The collection of intervals may be a



216 Integrals

finite collection, that is, it may contain only 1 or 2 or 3 or 416 or 31,690
or some other positive integer number of intervals. The collection of
intervals may be a "countably infinite collection," that is, it may contain
a first, a second, a third, etcetera, so that to each positive integer k
there corresponds an interval Ik In each of these two cases, the collec-
tion of intervals is said to be a "countable collection." Only a most
rudimentary understanding of these matters enables us to reach the con-
clusion that if D contains only 0 or 1 or 2 or 3 or 416 or any other finite
number of points, then D must have Lebesgue measure 0. In any case,
we should have at least a hazy understanding of the fact that Lebesgue
(1875-1941) was a great French mathematician and that Theorem 4.26
implies the much simpler following theorem which we are required to
know in this course.

Theorem 4.27 If f is bounded over the interval a 5 x < b and if f is
continuous over the interval (or is discontinuous but has only a finite set of
discontinuities in the interval), then the Riemann integral in

(4.271) f a0 f (t) dt = lim I f (t-) At,,

exists when a < x < b.
As we near the end of the text of our introductory section on Riemann

sums and integrals, we pause to think about our present state and future
development. We have a new symbol, namely, f a--f(t) dt. If a < b,
if a < x < b, and if f is defined over the interval a < x < b, then (depend-
ing upon a, x, and f) the symbol may be meaningless or it may be a
number. Answers to questions depend upon partitions and Riemann
sums. Partitions are so simple that our little sister can understand them
completely and be puzzled only by our great interest in them. Riemann
sums Ef(tk) Itk are less simple, but we can construct them in great pro-
fusion. Matters grow substantially more complex when we ask whether
there is a number fax f(t) dt such that to each positive number e there
corresponds a positive number S such that

(4.28)
n

k 1
f (tk) L1tk - f ax f (t) dt < E

whenever P is a partition of the interval a <_ t 5 x for which JPt < S.
We should all recognize this and admit that full comprehensions of
machinery and its applications is not quickly attained. In fact a sub-
stantial part of this textbook is devoted to promotion of understanding
of Riemann sums and their applications. We shall have plenty of oppor-
tunities to learn.
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So far, the integral in (4.271) has been defined only when x > a.
now complete the definition by setting

We

(4.281) f as f (t) dt = 0,
fax

f (t) dt = - f a
f (t) dt,

the second formula being valid when x < a and f is integrable over the
interval from x to a.

Problems 4.29
1 Practice the art of telling how the number

LX f(i) dt

is defined. Be prepared to give the full details, including Riemann sums, at
any time.

2 Tell whether you think it wise to abbreviate the statement "To each
positive number e there corresponds a positive number S such that

[nn

Ljl f(tk) At, - far' f(t) di I < e

whenever the sum is a Riemann sum formed for a partition P of the interval
a < t _< x having norm less than S" to the statement

lim f(tk) Itk = f X f (t) dt.
PI-0 k=1

a

Remark: If you do not have an opinion, think about the matter and get one.
3 For better or for worse, the "formula"

limI f(tk)L1tk =
faXf(t)

dt

is considered to be an assertion. Tell precisely what it means.
4 Tell whether you would like to learn and use a completely new notation by

which the "formula"

approx I f (tk) L1 tk = f
x

f (t) dt
eJPI<5 k=1 a

is used to abbreviate the statement that to each positive number a there corre-
sponds a positive number S such that

I f(tk) Otk - fax f(t) dt I < e
k=1

whenever P is a partition of the interval a 5 t <-- x for which JPJ < S. Remark:
If you do not have an opinion, think about the matter and get one.

5 We often hear about the great scientific progress of our modern era,
and we should think about an example. One of the great strides forward is made
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by abandoning the good old idea that the elementary functions (polynomials,
trigonometric functions, etcetera) are always the simplest and most useful func-
tions. There are very many situations in which step functions are the simplest
and most useful functions. Our first problem is to follow instructions to prove
that

(1)

rrn n

RS = 4 f(tk) At, = 7 At,,
k=1 k=1

Draw a figure showing a partition P of the interval 2 < x 5 S into subintervals
having lengths At,, Ot2, , At. and observe that

n++

(2) G Atk = 3.
k=1

Observe that the integral in (1) involves the function f for which f (x) is always 7.
Show that, with the notation of the text,

(3)

f25 7 dt = 21.

n

=7 1 Atk=7.3 = 21.
k=1

Since each Riemann sum is 21, it is quite apparent that RS is near 21 whenever
the norm of P is near 0. This proves the formula (1).

6 Supposing that a < b and k is a constant, prove that

(1) fab k dt = k(b - a).

Remark: We are (or soon will be) authorities on areas of rectangular regions.
We can observe that if k > 0, then the right side of (1) is the area of a rectangu-
lar region having base length (b - a) and height k and hence is the area of the
region of Figure 4.291 which is bounded by the graphs of the equations x = a,

k

Y

0
OI a

it
x

Y
a b

0 x

-k
b

Figure 4.291 Figure 4.292

x = b, y = 0, and y = k. In case k < 0, we can put (1) in the form

(2) fabkdt = -(-k)(b - a),

where -k > 0, and observe that the right side is the negative of the area of the
region in Figure 4.292 bounded by the graphs of the equations x = a, x = b,
y = 0, and y = k. We must always know that areas of rectangles are positive
The idea that rectangles below the x axis have negative areas is as absurd as the
idea that cities south of the equator have negative populations.
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7 This problem requires us to attain a complete understanding of a more
complex situation. Let

f(x) =3 (2 <x<4)
f(x)=4 (4<x<5)

and let f(2), f(4), and f(5) be defined in any way that pleases (or displeases) the
fancy. Then Theorem 4.27 implies existence of the integral I in

I = 125 f (t) dt.

We want to find I, that is, to find the numerical value of I. Draw a figure show-
ing the interval 2 <= x 5 5 and, in addition, the graph off. Make a partition P of
the interval 2 =< x < 5 in which 4 is one of the partition points. Choose the
points tk in such a way that they are not at the ends of the intervals in which they
lie. Show that the terms in the Riemann sum RS can be split into two sums
RS1 and RS2 in such a way that RS1 contains those terms for which 2 < tk < 4
and RS2 contains those terms for which 4 < tk < 5. Show that RSl = 6 and
RS2 = 4 and hence that RS = 10. Our next step is to realize what we are
trying to do. We are not trying to prove that f is integrable and are not required
to prove that IRS - 11 is small whenever the norm of P is small. We are trying
to find I, and we can use the known fact that IRS - 11 must be near 0 whenever
the norm of P is near 0. Therefore IRS - 11 must be near 0 whenever P is a
partition of the type constructed above and the norm of P is near 0. But RS =
10 for each partition of the type constructed above, and it follows that I = 10.
Notice that we have, in the course of our work, proved that

125f(t) dt = J
"f(t) dt + f5f(t) dt.

Interpret the numerical results in terms of areas of rectangular regions.
8 Supposing that x1 < x2 < x3 and that k1 and k2 are constants, draw a

figure showing the interval x1 5 x 5 xs and a graph of the function f for which
f(xi) = f(x2) = f(xa) = 0 and

f(x) = kl (x1 < x < x2)
f(x) = k2 (x2 < x < X3)-

Show that

f-07
f(t) dt = f-xs f(t) dt + J1 f(t) dt

= kl(x2 - xl) + k2(xa - x2)
Tell how the result can be interpreted in terms of areas of rectangular regions
when (a) k1 and k2 are both positive, (b) k1 > 0 and k2 < 0, and (c) k1 and k2
are both negative. Explain the manner in which these results can be extended
to step functions that have constant values over 3 or 300 intervals instead of just 2.

9 Tell why each of the following Riemann integrals exists or fails to exist.

(a) f of (2 + 3t + 4t2) dt
it+1

(b) fo t + 2 dt

(c) f 11 t dt (d) lit dt
Hint: Use theorems given in the text.
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10 In a campaign to obtain good ideas about Riemann sums and integrals,
we can use the discontinuous function 4, defined over the interval 0 i x 5 1,
for which

(1)

O(x) = 0 when x s 1
1 1 1 1

1 when x =
1

and m is a positive integer.
M

Sketch a figure which shows the nature of the graph of (P. Then mark the end
points xa, xi, - , x,, and the intermediate points x1 , x2 , . . , xn of a partition
P of the interval 0 < x <= 1 for which 1PI < 0.1; to mark the end points of a
partition for which JPJ < 0.0001 would be a tedious operation requiring sharper
pencils and better microscopes than we normally carry around. Try to see
reasons why the Riemann sum

(2) (xk) Axk
k=1

must be near 0 whenever JP1 is near 0 and hence that

(3) fo1 0(x) dx = 0.

Then start cultivating the art of understanding and originating thoughts about
Riemann sums more or less like the following. Let e be a given positive number
for which 0 < e < 1. Let h = e/10 and suppose at first that IPI 5 h. The
terms of the Riemann sum (2) are all nonnegative. Those terms for which xk
can be a point of the interval 0 S x <= h contribute at most 2h to the sum.
Those terms for which xk > h will be 0 unless xk = 1/m, where in is an integer
for which 1/m > h or in < 1/h. Thus there are less than 1/h nonzero terms for
which xk > Jr and O(xk) 5,6 0. Since each one of these terms can contribute at
most JPI to the sum of these terms, it follows that the sum of all of these terms
cannot exceed (1/h)jP1. Therefore,

(4) 0 S 1 0(xk) Lixk S 2h + h JPJ < 0.2e + 101Pl-

k=1

If we let S = 2E2/25, we will have

(5) 0 < LI O(xk)Oxk < E
k=1

whenever JPJ < 3. This implies the first and hence the second of the formulas

(6) I imo 4(xk) .xk = 0, f olo(x) dx = 0.
k-1

11 Supposing that g is the corn-popper function of Problem 16 of Problems
3.49, determine the value (if any) of r0 1 g(x) dx.
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12 Our purpose is to discover that some very obvious and superficially useless
remarks about Riemann sums lead to the very useful conclusion that the formula

(1) Iaxf(t) dt = J((X 5)/Pf(pu + q)p du

is correct whenever p and q are constants for which p Fx- 0 and the integral on the
left exists. Let us begin by looking at (1). If we suppose that two variables t
and u are related by the formulas

q
(2) t=pu+q, U

p Adu

we can put t = pu + q and dt = (dt/du) du in everything after the integral sign
in the left side of (1) to obtain everything after the integral sign in the right side
of (1). We can observe that the lower limit of integration on the right side is
the value attained by u when t is the lower limit of integration on the left side.
Similarly, the upper limit of integration on the right side is the value attained
by u when t is the upper limit of integration on the left side. Of course, we are
entitled to take a dim view of these manipulations until we discover how simple
and useful they are. Meanwhile, we forget about (1) and start working with
some Riemann sums. Let P be, as in Figure 4.293, a partition of the interval
a < t < x having partition points to, ti, , to and intermediate points
ti, t2i , in. Supposing that t and u are related by the formulas (2) and
that p > 0, we set

(3)
tk-

uk =
q, * tk - q

uk = (k = 1,2, ,n).

p p
To simplify writing, we set

(4) =to-q -a q X =in q=x9
p p p p

The numbers uo, ui, , u and ui, u2 , , un then form the partition

a ty t2 tk to X

to t1 t2 tk-1 tl tn-1 to

Figure 4.293

A u1 u'
I a i

u1

uo U1 162 U'k-1 Uk

U. X

Un_I Un

Figure 4.294

points and the intermediate points of partition Q of the interval A 5 u -<_ X
shown in Figure 4.294. Moreover, when

Atk = tk - tk-1,

t- dt

Auk = Uk - uk-1,

Atk = (puk + q) - (puk-1 + q) = p Auk
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and

(7)

n n
)-1 j

LI J (tk) Otk = I f(pu + q)p Auk.
k=1 k-1

The result (1) follows from this. Let I denote the left member of (1). Let
e > 0. There is then a S > 0 such that

(8)

n

I -
k = 1

f (,k*) Axk I < (IPI < S)

Since (6) implies that IPI = p!QI, we see from (8) and (7) that

(9)

n

I I
k

f(puk + q)p Duk I < E (IQI < S/p)

But the sum in (9) is a Riemann sum formed for the partition Q of the interval
.4 < u <- X and the function F having values

(10) F(u) = f(pu + q)p

when -4 5 u -< X. It therefore follows from the definition of Riemann integrals
that

(11) fA F(u) du = I.

But (4) and (10) show that the left member of (11) is the right member of (1).
This proves our conclusion (1) for the case in which p > 0. In case p < 0,
some details must be modified because Figure 4.294 must be turned end-for-end,
but the result is still correct. The formula (1) which we have proved is called
the formula for linear changes of variables in Riemann integrals.

13 By use of formula (1) of Problem 12 show that

(a) f (t - c)2 dt b-c
= f u2 du Hint: Put t - t = u.a-c

(b) f o,/2 sin 2t dt = f oA sin u du

f h 1 1 f h/a 1
(c) o a + x2 dx = a o 1 + t2 dt Hint: Put x = at.

(d) f h 1 dx = f h1a
dt

0 1/a2 - x2 Q 1 t2

(e) fab sin x dx = fab hh sin (x + h) dx

Hint: Before you start, replace one of the variables of integration by a different
variable of integration.

(f) fabf(x) dx = fab h f(x + h) dx.

Remark: This last formula shows that we can add a constant to the variable of
integration if we subtract it from the limits of integration. This information
is sometimes very useful.
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14 Assuming that the integrals exist, show that

(1) f hf(x) dx = fohf(-x) dx.

Remark: This innocent formula and a result of the next section enable us to pro-
duce the better formula

(2) f hh
f (x) dx = f

oh
f (x) dx +

J
oh f(x) dx

= fhU(-x) +f(x)jdx.

h
This gives the very useful fact that f_hf(x) dx = 0 when f is an odd function,

that is, f(-x) = -f(x), and that

f
hhf(x)

dx = 2 ffh f(x) dx

when f is an even function, that is, f(-x) = f(x).
15 Remark: This remark is designed to indicate that mathematics is a lively

subject in which even good ideas can be modified in various ways, and that there
are integrals of many different types. We can be irked by the fact that the Rie-
mann integral

fog AX) dx

does not exist when f is the function for which f(x) = 1 when 0 < x < 1 and
f(x) = 2 when 1 < x _<- 2. The difficulty is that f(1) is undefined and that
Ef(tk) Atk is undefined when tk = 1 for some k. If, however, we extend the
definition off by setting f(1) = 75, then the new extended function is Riemann
integrable over the interval 0 5 x S 2. We cannot reasonably undertake to
remove this irksome situation by changing the definition of the Riemann integral,
because changing basic definitions destroys our means for communication of
information. We can, however, introduce new types of integrals. We can, for
example, use the letter F to make us think of a finite set and produce the following
definition. A function f is Riemann-F integrable over a <_ x <_ b if there is a
finite set F such that f is defined at all points of the interval a < x < b except
at the points of F and, moreover, there is a number I such that to each e > 0
there corresponds a number S > 0 such that IRS - 11 < e whenever RS is a
Riemann sum for which IPI < 3 and the points tk are all different from points
of F. This definition does not require f to be defined everywhere over a 5 x 5 b
and it removes the irritation. Still another definition can be constructed by
making similar use of the letter C to make us think of a countable set of points,
this being either a finite set or a set whose elements can be placed in one-to-one
correspondence with the set 1, 2, 3, of positive integers. A more sophisti-
cated definition makes use of the letter N to make us think of a null set, this being
a set having Lebesgue measure 0. As has been remarked, there are many kinds
of integrals. Mathematicians who use integrals without knowing which ones
they are using are comparable to chemists who use chemicals without knowing
which ones they are using.
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4.3 Properties of integrals In what follows, all integrals bearing
limits of integration are Riemann integrals. They are limits of Riemann
sums, and it could be expected that, except for cases in which the inte-
grands are step functions, it must be impossible to obtain their exact
values and it must be difficult to obtain reasonably good approximations
to them. It turns out, however, that there is a calculus, an invention of
Newton and Leibniz, by which exact values of very many of the most
important integrals can be calculated very quickly. Dictionaries tell us
that a calculus is "a method of computation." The particular calculus
that appears at the end of this section was found to be so overwhelmingly
important that it came to be known as "the calculus." This calculus
enables us, for example, to evaluate the integral in the formula

(4.31) 2 73fx2dx
= 3

by writing nothing more than this. Meanings of words have evolved in
such a way that we now consider "calculus" or "the calculus" to be a
name assigned to a part of mathematics involving derivatives and
integrals. t

For making calculations involving integrals, we often need the results
set forth in the following theorems. Proofs of these theorems may be
omitted; these theorems are rather simple consequences of Theorem 4.26
and properties of Riemann sums and their limits.

Theorem 4.32 If f is integrable over an interval containing a, b, and c,
then

f cf(t) dt + fbf(t) dt = f b f(t) dt.

Theorem 4.33 If f and g are integrable over a < x <_ b and .4 and B
are constants, then

fzxz
[.1f(t) + Bg(t)l dt = A

fx2,
f(t) dt + B

fyxs
g(t) dt

whenever xi and x2 lie in the interval a < x 5 b.
Theorem 4.34 If a < b, if fl, f2, fa are integrable over a < x < b, and if

fl(x) < f2(X) < f3(x) (a s x s b)
then

f ab f l(t) dt <
fA f2(t) dt c f afa(t) dt.

t Historians who claim that Archimedes knew calculus do not always point out that the
knowledge was attained posthumously when the meaning of "calculus" changed. Com-

plete misunderstanding of this matter can serve as a basis for the absurd contention that
Newton and Leibniz merely rediscovered inventions of Archimedes.
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Theorem 4.341 If k is a constant, then

f-22
k dt = k(x2 - xl).

If a < b, if f is integrable over a <- x 5 b, and if

m 5 f(x) < M (a c x< b)

m(b - a) < fb
f(t) dt < M(b - a)

labmob l a f(t)dt<M.

heorem 4.343 If f is integrable over a < x <- b, then soT
function having values Jf (x) and

f x2 f (x) dx fx2 l f(x)I dx

also is the

whenever xl and x2 lie between a and b.
The next theorem is not so obvious, and it is so important that we shall

discuss it and prove it. Much of the theory and many of the applications
of the calculus involve relations between derivatives and integrals.
Theorems which give information about derivatives of integrals or inte-
grals of derivatives are called fundamental theorems of the calculus. The
following theorem is one of the best of these. It has very many applica-
tions and shows, among other things, that if f is continuous over a 5 x S
b, then there exists a function F for which F(x) = f(x) when a S x S b.
In fact, it shows that if f is continuous, then the Riemann integral in
(4.351) is an "indefinite integral" of f.

Theorem 4.35 If f is integrable over a < x <_ b, then the function F
defined by

(4.351) F(x) =
fas

f(t) dt

is continuous over a <- x 5 b and

(4.352) F(x) = f(x)

for each x for which f is continuous.
To start the proof, we observe that if x and x + Ox both lie in the inter-

val, then

(4.353) F(x + Ox) - F(x) = fax+ex f(t) dt - faxf(t) dt =
f70+' f(t)

dt.

To prove continuity of F, we use Theorem 4.26 to see that f must be
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bounded and hence that there is a constant positive M for which -M <_
f (x) S M or I f (x) I <= M. Therefore,

1F(x + Ax) - F(x) I < I fxz+Ax M dt M

The sandwich theorem then implies that

(4.354) lim F(x + Ax) = F(x)
Ax- o

and hence that F is continuous at x. It can be observed that we have
proved more than was promised; the function F must have bounded
difference quotients. To prove (4.352), let x be a point at which f is
continuous. From the two formulas

F(x + Ax) - F(x) 1 rx+-'x
Ax

_
Ax

f (t) dt, Ax) = Ax 1
x+Ax f(x)

dt

we obtain

F(x + Ax) - F(x) -
(4.355)

Ax Ax) Yx x
- f(x)] dt.

Let e > 0. Choose a number 3 > 0 such that

If(t) - f(x) I < E/2 (it - xI < s).

Then when JAxI < S, we can use Theorems 4.343 and 4.341 to obtain

F(x + Ax) - F(x) - AX)
I

<
Ax I

1 x+Az

x x
If(t) - f(x) I dt

1 fx+Ax E2 dt = 2 < E.
Ax x

A

Therefore,

(4.356) lim
F(x + Ax) - F(x) = f(x)

AX-0 Ax

and (4.352) follows from the definition of F'(x). This completes the proof
of Theorem 4.35.

Supposing now that f is continuous over a < x < b, we proceed to show
how Theorem 4.35 can be used to obtain the promised method for evalu-
ating Riemann integrals. Putting x = a in (4.351) shows thatF(a) = 0.
Putting x = b in (4.351) and then changing the dummy variable of inte-
gration from t to x gives

F(b) = f a'f(x) dx.

Therefore,

(4.36) fab f(x) dx = F(b) - F(a).



4.3 Properties of integrals 227

When problems are being solved, it is always convenient to use the bracket
symbol in the formula

(4.361) F(x) ]a = F(b) - F(a).

This symbol can be read "eff of x bracket a, b." The symbol means
exactly what the formula says it does; to obtain its value, we write the
value of F(x) when x has the upper value b and subtract the value of F(x)

3
when x has the lower value a. For example, x3 2 = 27 - 8 = 19. It is
easy to see that the value of the bracket symbol is unchanged when we
add a constant to the function appearing in it. Thus

F(x) + c]b = [F(b) + c] - [F(a) -4- c] = F(b) - F(a).

Therefore, we can put (4.36) in the form

(4.362) f ab f (x) dx = F(x) + c]a

where c is 0 or any other constant. Since we have assumed that f is
continuous over a 5 x 5 b, it is a consequence of Theorem 4.35 that
F'(x) = f(x) when a 5 x < b. Since each function whose derivative
with respect to x is f(x) must have the form F(x) + c, the result (4.362)
can be put in the following form.

Theorem 4.37 If f is continuous over a 5 x < b and if F'(x) = f(x)
when a < x S b, then

f ab f(x) dx = F(x)]' = F(b) - F(a).

In substantially all applications of this theorem, the notation of indefi-
nite integrals is used. In such cases the following version of Theorem
4.37 gives precisely the information we actually use to evaluate integrals.

Theorem 4.38 The formula

(4.381)
fb

f(x) dx = F(x)]a = F(b) - F(a)

is correct if f is continuous over a S x :-:5 b and

(4.382) ff(x) dx = F(x) + c
when a5x5b.

When we are able to find a useful expression for the F(x) in (4.382),
the integral in (4.381) can be evaluated with remarkable ease. We sim-
ply ignore the limits of integration on the first integral until (4.382) has
been obtained and then, taking c = 0 unless it seems desirable to give c
some other value, insert the bracket symbol to obtain (4.381). For
example,

xa

f2 xzdx
3J_

- -2
2
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Problems 4.39
1 Make a small table of integrals by copying formulas from the second

column of (4.171) to (4.175). Combine the processes of learning these formulas
and using them to show that

(a) foI (x - x2) dx ='- (b) fo1 x(1 - x) dx

{c) foi x2(1 - x2) dx (d) f1 x2(1 - x)2 dx = sa

(e) fix dt = log x (f) jo 1 -}- x2
dx = log 5

(g) fo, sin x dx = 2 (h) fog cos x dx = 0

(i) foe-- dx = 1 - e-1 (j)
f'2

(x + x)2 dx =

1 h sin (a + bh) - sin a
(k)

h
f cos (a + bt) dt =o bh

2 Verify the formula

fo
1 plot
x'(1 - x)Qdx= (p+q+1)i

for some pairs of small nonnegative integers p and q. Remark: Anyone who
wishes to augment his corpus of scientific information should be informed that
this is a famous and important formula. The integral is the beta integral. The
formula is correct whenever p and q are real or complex numbers with nonnega-
tive real parts. When Cauchy extensions of Riemann integrals have been defined
and are used, it can be proved that the formula is correct when p and q are com-
plex numbers with real parts exceeding -1.

3 While we are not now indulging in proofs of such things, the two integrals

o (1 + x)8 1 +x(1) I1 1
dx, f1 1

dx

are nearly equal when s is near 1. Nevertheless, we must use different integration
formulas to evaluate the integrals. Obey the rules and show that

(2(
1 1 _21-8-1

df l)) x
1 - so (I + x)e

s( )

3 f + d l 2)( o 1 x x = og .

Remark: While the details need not be fully understood at the present time, we
pause to learn that the right member of (2) really is near log 2 when s is near 1.
This means that

(4)
21-8 - 1lim = log 2.

e-.1 1 - s
To see that (4) is correct, we can let

(5) f(x) = exIog2
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and, after observing that x log 2 = log 2x and hence f(x) = 2z, put (4) in the
form

limf(1 - s) -.f(0) = log(6) &-I s 2.

But it follows from the definition of derivatives that the left member of (6) is
f'(0). From (5) we find that f'(0) = log 2. Therefore, (6) and (4) are correct.
The conclusion to be drawn from this story is that the function F defined by

i
(7) F(s) = fo (1 + x)8 dx

is a continuous function and, unless we can find another scapegoat, we must
blame the well-known perversity of inanimate matter for the strange fact that
F(s) is expressed in terms of exponentials when s p& 1 and is expressed as a loga-
rithm when s = 1.

4 This problem, like very many of the fundamental problems of science,
requires much more looking and thinking than calculating. Look at Figure
4.391, which shows the graph of a step function f defined over the interval
a 5 x < b, and observe that f(x) ? 0. Remember that, in the problems at the
end of Section 4.2, we discovered (or almost discovered) that

(1) fabf(x) dx =ISI,

where ISI is the area of the set S of points (x,y) for which a S x <= b and 0 < y 5
f(x). The next step is the most difficult one. We should realize that, at the
present time, our ideas about areas of nonrectangular point sets are at best some-
what vague and nebulous and are at worst nonexistent or even erroneous. The
rest of our work is much easier. We look at Figure 4.392, which shows the graph
off over the interval a 5 x 5 b for the special case in which f(x) = x2, a = 0,
and b = 1. As above, let S be the set of points (x,y) for which a :s': x 5 b and
0 5 y 5 f(x). Our next step is to look again at Figure 4.392 and express the

_In

a b x

Figure 4.391 Figure 4.392

cheerful opinion that the set S ought to have an area which we can denote by
ISI and that the formula (1), which holds whenever f is a nonnegative step func-
tion, ought to hold whenever f is a nonnegative integrable function. Our final
step is to seek what a physicist could call experimental verification of this cheerful
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opinion. Look at Figure 4.392 and note that S seems to fill up about one-third
of the square having opposite vertices at the points (0,0) and (1,1), and hence
that the area ISI of S should be about one-third. Now comes the calculation.
Show that

f 1 1x2 dz = g.
0

5 Sketch a graph of the equation y x + 1 over the interval 1 5 x 5 3
and use elementary geometrical ideas to find the area of the part of the plane
bounded by this graph and the graphs of the equations x = 1, x = 3, and y = 0.
Then evaluate the integral

f13(x+1)dx

and find out whether we obtain more experimental verification of the cheerful
opinion of the preceding problem.

6 Figures 4.393 and 4.394 show graphs of y = sin x and y = cos x over the
interval 0 S x _< v. Observe that a* particular region of Figure 4.393 seems to

Y

Figure 4.393

1

0
r

x

-1

Figure 4.394

fill about two-thirds of the enclosing rectangle and hence that the region ought
to have area about 2ir/3. Then obtain the first of the formulas

or /2
fo sin x dx = 2,

for

cos x dx = 1,
f"7/2

a/2
cos x dx = -1

and give an interpretation of the result. Then obtain the second and third
formulas and interpret the results in terms of regions in Figure 4.394.

7 Prove that if u and v have continuous derivatives over the interval

a<x5b,then

- fab
v(x) u'(x) dx.

fab
u(x)v'(x) dx = u(x)v(x) I.

Hint: Decide how the formula

f ab F(x) dx = F(x) ]a

can be used. Remark: The formula to be proved is one of the most useful
formulas in the calculus; it is the formula for integration by parts.

8 Some of the most important applications of integrals involve inequalities,
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and we look at an example. Let A be a positive number and start with the fact
that

(1)

when 0 < x <= A. Replace x by t in (1) and integrate over the interval 0 <--_ t 5
x to obtain, with the aid of Theorem 4.34,

(2) x < es - 1 S eAx

1 S ez <eA

(05x511).
Replace x by t in (2) and integrate over the interval 0 5 t < x to obtain

(3) 22 5 et - (1 + x) 5
e4

(05x51).

Continue the process to obtain

(4)

(5)

3!<e -+x+2!)5e3!
'x4 < ex _ (1 +x+'x2+x3) eAx'
¢! = 2! 3! 4!

when 0 <= x 511. Remark: Continuation of the process (with the aid of mathe-
matical induction) shows that, for each positive integer n,

(6) x-I 2 i

While we now have so many other things to do that we shall not look at the details,
we can observe that (6) provides a straightforward and foolproof way to obtain
decimal approximations to e' , e, e2, etcetera, correct to 4 or 40 decimal places.
We can discard much of the information in (6) by observing that x"/n! approaches
0 as n -> oo and hence that

x2
(7) es = lim x3 x"l(1 -{- x -{- ' ! -{- -}- i

The formula (7) is the spectacular one, but (6) is often much more useful. We
shall learn more about these things later.

9 Applying the idea of the preceding problem to the inequality

show that
-1 < sin x 5 1,

-x_-<1-cosx__<x,
x2 S

x2-
2

x - sinx<=
2

when x > 0. Remark: More extensive information will appear in a problem of
Section 8.2.

10 The Bernoulli functions Bo(x), B1(x), B2(x), satisfy the conditions

(1) Bo(x) = 1
(2) B'n(x) = B,, i(x) (n = 1,2,3, ...)

(3) 101 dx = 0 (n = 1,2,3, ...)
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over the interval - oo < x < co, except that (2) fails to hold when n is 1 or 2
and x is an integer. They all have period 1, that is, Bn(x + 1) = Bn(x) for each

1 2 3

Figure 4.395

n and x. They are all continuous except that
Bl(x), the saw-tooth function having the graph
shown in Figure 4.395, is discontinuous at the
integers. In fact, B1(x) = 0 when x is an integer
and

(4) B1(x)=x-[x]-
when x is not an integer. Show that (1) and (2) imply existence of constants
Bo, B1, B2, suc h that, when 0 < x < 1 and 0! = 1 as usual,

(5) B o(x) =
o0

(5.1) B I(x) = Box + B
0!1! 1!0!

(5.2) B
z

+
B1x

z(x) =
Boz

+
B2

10121 2!0!

(5 3) B 3(x) = Box- + B1xz + Bzx
-}-

B3
.

013! 112! 2!1! 3!0!

(5.4) B 4(x) =
Box' + Blx3 + Bzxz + Box + B4
0!4! 1!3! 2!2! 3! 1! 4!0!

and write two more of these formulas. Because of continuity, each of these
formulas except (5.1) holds when 0 < x 5 1. The numbers Bo, B,, B2,
are the Bernoulli numbers and, when n >t 2,

(6) Bn = n!Bn(0).

Show that the above formulas can be put in the neater forms

(7) 0!Bo(x) = Bo

(7.1) 1!Bl(x) = Box + B,
(7.2) 2!Bz(x) = Boxz + 2Blx + B2
(7.3) 3!B3(x) = Box3 + 3B,xz + 3B2x + B3
(7.4) 4!B4(x) = Box4 + 4Bix3 + 6B2x2 + 4B3x + B4

involving binomial coefficients and write two more of these equations. Use (3)
to show that, when n >= 2,

Bn(1) - B.(0) = foI Bn(x) dx = 101 Bn-i(x) dx = 0

and hence

(8) Bn(1) = Bn(0)

Use (1) and (7) to show that Bo = 1. Then use (7.2) and (8) to show that
B1 = -i-. Then use (7.3) and (8) to show that B2 = . Then calculate one
or two more Bernoulli numbers. Remark: Bernoulli functions and numbers
have important applications and some people know very much about them.
It can be shown that Bo = 1, B1 = - , B2 = g, Be = 0, B4 = - 1 8, B5 = 0,
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B6 , B7 = 0, B8 = -'96, and that IB2n1 is very large when n is large. Some-47
books, particularly those that give a few formulas involving Bernoulli numbers
but do not treat Bernoulli functions, use notation which conflicts with the nota-
tion used above.

11 Prove that if f is integrable over the interval 0 < x 5 1, then

(1) nnonk if(n) = fo1f(x)dx.

Solution: To keep all of the bewitching mysticism of mysterious mathematics
out of our solution, let E be a given positive number. Choose a positive number
S such that

(2)

nII
f(xk) Axk - f

o 0

1

AX) dx I < e
k

whenever the sum is a Riemann sum formed for a partition P of the interval
0 < x < 1 for which JPJ < 3. Let N be an integer for which N > 2 and N >
1/S. Let n be an integer greater than N. Let P be a partition of the interval
0 < x < 1 into n equal subintervals each having length 1/n. Then xk = k/n
for each k. Let xk = xk so that xk = k/n for each k. Since Lxk = xk - xk_1 =
1/n for each k, we see that lPnI = 1/n. Since n > N, we have 1/n < 1/N and
hence 1/n < S. Therefore, IPnI < S and (2) holds when the sum is the Riemann
sum formed for the partition Pn. But for the partition P. we have xk = k/n
and Oxk = 1/n, so

(3) 1 f(xk)Axk= f1k1 =1 i f(kl.
k-1 k=1 n n n k=1 \n J)

It follows that

1 fCkl _ r1
f(x) dx

nk=1 n 0
< E(4)

when n > N, and this gives the desired conclusion (1).
12 The basic formula (1) of Problem 11 has numerous quite astonishing

applications. Letting s be a nonnegative number and letting f(x) = x', use the
formula to prove that

(1) lim
18+28+38+ ... +n'1 .

n-. w na+l 1 + s

Write the formulas to which this reduces when s = 0, T, 1, -, 2, and 3. Remark:
Textbooks that specialize in proofs by mathematical induction give the formulas

(2) 1 + 2 + 3 + ... +n =n(n+ 1)
2

(3) 12 + 22 + 32 + .. + n2 = n(n + 1)(2n + 1)
6

(4) 13 +23 +33 + ... +ns=n(n-I-1)2.
4
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With the aid of these formulas, it is easy to verify (1) for the cases in which s
is 1 and 2 and 3. In fact, Archimedes did it. The formulas of this problem
have tremendous importance in the history of science because they stimulated
interest in limits of sums that culminated in the invention of "the calculus"
by Leibniz and Newton.

13 Letting f(x) = (1 + x)', where s is a constant for which s s' -1, derive
the formula

lim (n+i)'+(n +2).+ . . . + (n+n)' 28+1 - 1

n-. n'+1 S + 1

Write the formulas to which this reduces when s has the values -2, 0, -,
1, and 2.

14 Letting f(x) = (1 + x)-1, derive the formula

lim( 1 + 1 + 1 ++ 1 ) log 2.n-,.\n+1 n+2 n+3 n + n

15 Letting f(x) = 2x/(l + x22)8, where s is a constant for which s 76 -1,
derive the formula

2e_2 1 2 3

R w
n [ (n2 + 12)' + (n2 +. 22)' + (n2 + 32)' +

+ (n2 + n2)' 1 2(s 1 1) L1 211J

Write the formulas to which this reduces when s has the values -2, -1, - , 0,
and 1.
16 Letting f(x) = 2x/(1 + x2), derive the formula

li
in2[n2+12'"2+22+n2 3 32+ 21 = log 2.

T 1J

17 Letting f (x) = 1
+ x2

and borrowing the fact that f
o 1 + x2 dx = 4

derive the implausible formula

1 1 11 1

n m n Gs +-V + n2 + 22 + n2 +32 + + n2 + n2 \ = 4 r .

18 Persons are sometimes credited with substantial knowledge of calculus
when they can simplify

(1) d a e' dt.
dx

fo:

The problem can and should be solved by noticing that puttingf(t) = t-" enables
us to use the fundamental theorem of the calculus (Theorem 4.35) to obtain

(2) du
d

f ouf(t) it = f(n).
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When (2) holds and u is a differentiable function of x, we can use the chain rule
to obtain

(3) dx fouf(t) dt = [
du

fou f(t) dt]
dx

= f(u) du

Use these ideas to show that (1) is 2xe -'.
19 Letting

2T
F(x) = o e-1 dt,

use the ideas of the preceding problem to obtain a simple formula for F'(x).
Then find F(x), that is, find a simpler expression for F(x), and differentiate it to
obtain F'(x). Make the results agree.

20 Prove that if f is continuous and u and v are differentiable, then

TX
!Haf(t) dt = f(u)

du
- f(v) dx

Hint: Use the formula

fu f(t) dt = fuf(t) dt - f"f(t) dt

and the ideas of Problem 18:
21 Supposing that A is a positive constant, x > 0, and

F(x) _
f

az 1
dt,

x t

show that F(x) = 0 without use of the formula f dt = log t + c.

4.4 Areas and integrals We all know what is meant by a rectangular
region R having base length b and height h. When the x axis of a rec-
tangular coordinate system is parallel to the base, R is the set of points
(x,y) for which xo < x < xo + b and
yo < y < yo + h as in Figure 4.41.
We are all familiar with the idea that yo+h

R has an area and that this area is
bh, the product of the base length
and the height. There is an old- p xo xo+b x

fashioned view that this matter is
quite simple, but modern mathema-

Figure 4.41

ticians, like modern atomic physicists, find that there is much to be
learned about things that our ancestors thought were simple. It is
quite absurd to presume that it is easy to prove that the area of R is bh;
in fact it is quite absurd to presume that it is possible to prove that there
is a number (bh or not) which is the area of R unless we have some defini-
tions or postulates or something upon which proofs can be based. We
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escape this awkward situation with the aid of a definition designed for
the purpose.

Definition 4.42 If R is a rectangular region having base length b and
height h, then the product bh is called the area of R. This area is denotedt
by the symbol IRI so that JRI = bh.

This takes care of the matter of areas of rectangular regions, but we
are not yet out of trouble. Let T be the triangular set consisting of those
points within the rectangular region of Figure 4.41 which lie on and
beneath the diagonal drawn there. When we try to decide whether there
is a number which is the area of T, we find that we still need definitions
or postulates or something before we can do anything. If we try to
take care of triangular regions, circular disks, circular sectors, and sets
of other special types by hordes of special definitions, we will find our-
selves forever wallowing in confusion. While students in elementary
calculus courses are normally not expected to know much if anything
about the matter, we should at least know that our friend Lebesgue con-
structed a theory of area which is usually called the theory of Lebesgue

Figure 4.43

two-dimensional measure. This eliminates the
confusion and is now very important in applied
as well as in pure mathematics. We should not
be injured and may possibly be benefited by a brief
look at the Lebesgue theory. Let S be a set of
points (x,y) which is contained in but does not
completely fill a rectangle R. Figure 4.43 may be

helpful, but may also be misleading because the set S need not look
at all like the one shown in the figure. Let S' be the set of points in R
but not in S.

Definition 4.44 The set S is said to have area (or two-dimensional
Lebesgue measure) ISI if ISI is a number such that to each e > 0 there corre-
spond (i) a countable collection R1, R2, R3, of rectangular regions such
that each point of S lies in at least one of these regions and

(4.45) 1R51 + JR2I + - + IR.1 < IS! + e (n = 1, 2, 3, ...)

and (ii) another countable collection Ri, R2, R3, - of rectangular regions
such that each point of S' lies in at least one of these regions and

(4.46) IRil + IRJJ + ... + IRJJ < IRI - BSI + e (n = 1,2,3, ...).
f This notation accords with a general principle with which we are slowly becoming

acquainted. If Q is a number or a partition or a point set or perhaps even an assertion or a
crate of oranges, we expect IQI to be a real nonnegative number which is associated with Q
in some particular way and is, in some sense or other, a measure or a norm or a value of Q.
The simplest useful example is that in which Q is a real number and IQI is its absolute value.
When applications of areas are involved, it is often necessary to recognize that h and k are
numbers representing lengths measured in particular units (say centimeters) and that the
area is a number of appropriate "square units" (say, square centimeters).
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It is possible to describe complicated rules for constructing sets S for
which no such number ISI exists, and we say that such sets do not possess
area' (or are nonmeasurable). However, such sets are much more com-
plicated than those that appear in this book. This discussion of areas
will have served a purpose if it provides a reason for acceptance of the
fact that the theory of area is much more complicated than the theory of
Riemann integrals and that intuitive ideas about areas do not provide a
satisfactory basis for proofs of theorems about Riemann integrals. We
can, however, be reassured by the facts that many of the results of the
theory of area are thoroughly simple and that they are in complete agree-
ment with all of the results we shall obtain by use of Riemann integrals.
We shall not use Riemann integrals to obtain illusory information about
areas of sets that do not possess areas. More information about this
matter will appear in Section 5.7.

In what follows, we suppose that M, a, and b are constants and that
f is a function, Riemann integrable over a S x S b, for which 0 < f(x)
M when a S x < b. Let S be the set of points (x,y) for which a x <_ b
and 0 < y < f (x). The set S may look more or less like the sets shown in
Figures 4.471 and 4.472. In each case we can describe S as the set of

a Aa b x

Figure 4.471

points or part of the plane or region bounded on the left and right by the
graphs of the equations x = a and x = b and bounded below and above
by the graphs of the equations y = 0 and y = f(x). In case f is con-
tinuous and the graph of y = f(x) looks like that shown in Figure 4.472,
we can comfortably describe S as the region bounded by the graphs of
the four equations.$

t Newspapers and magazines keep us permanently aware of the fact that there are
inadequacies in old-fashioned intuitive physical theories of matter and that these intuitive
theories do not provide an adequate basis for modern physics. Since these newspapers and
magazines keep us quite generally uninformed about theories of areas and volumes, it may
be necessary to consult Appendix 2 at the end of this book to learn that there are bugs in
intuitive theories of areas and volumes.

I Of course climatologists who talk about areas of abundant rainfall, and philosophers
who talk about areas of scientific thought, could be expected to call S the area bounded by
the graphs. But in mathematics and perhaps even in climatology (we never know about
philosophy) an area is always a number and scientists do not, in their most brilliant
moments, call S an area.
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When an enlightened scientist must calculate the area ISI of S, he writes

(4.48) ISI = lim If(,) Ax = f a'f(x) dx

and, at least in simple cases, evaluates the integral with the aid of Theorem
4.38. The procedure by which (4.48) is obtained must now be explained.
The first step is to sketch an appropriate figure which will look more or
less like Figure 4.471 or Figure 4.472. The next step is to make a parti.
tion P of the interval a < x S b into subintervals, but we do not bother
to draw more than one of the subintervals. Without bothering with
subscripts and stars, we let Ax denote the length of the interval and let x
be a point of the interval. We then draw the rectangle whose width is
Ax and whose height is f(x). The first step in building the formula
(4.48) is to write f(x) Ax, because this is the area of the rectangle (or
rectangular region). We then tell ourselves that this area is a good
approximation to the area of the part of S that lies between the vertical
sides of the rectangle, and, while this is no time to get excited about the
matter, we could tell ourselves that the two areas might be exactly equal
if we choose the x shrewdly enough. The next step is to add the area of
the rectangle we have drawn to the areas of the other rectangles which we
have not drawn to obtain Mf (x) Ax. Even if we did not know in advance
that lim Ef(x) Ax exists, we should have a feeling that Ef(x) Ax should be
near ISI whenever the numbers Ax are all small (that is, whenever the
norm of P is near zero) and hence we should write

(4.481) ISI = lim Mf(x) Ax.

The final step is to recognize that the right side of this equation is the
limit of Riemann sums and hence is the Riemann integral in (4.48).

The ritual involving partitioning (or splitting up), estimating, summing
(or adding), and taking a limit to obtain a Riemann integral equal to a
number in which we are interested is known as "the process for setting up
the integral." The ability to "set up integrals" efficiently and correctly
is very valuable, and problems in calculus textbooks that require the
finding of areas are designed to promote abilities in this art. Students
cannot know, unless they are told, that they are wasting their time if they
never bother to set up integrals but only use remembered formulas to
calculate areas and volumes and the ubiquitous moments of inertia.

Problems 4.49
1 Figure 4.491 shows graphs of two equations y = f1(x) and y = fs(x)

which intersect at the points (-2,-6), (0,0), and (2,6). The graphs bound
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two regions R1 and R2. Use partitions and Riemann sums to obtain the
formulas

IR1I = f
0

-2 [fi(x) - 12(x)] dx,
IR21

fog

[j2(x)
- fi(x)] dx,

1811 + IR21 = f221f1(x) -f2(x)1 dx.

Remark: The widths and heights of rectangles are always positive, and mistakes
in sign are undesirable. When hasty calculations indicate that an area or a

R ,

f,( x ) y

o'

R

1

fi(x)1

_2

1 -3

'- f2(x)
5

Figure 4.491

population of a city is negative, the calculations
should be examined.

2 The graphs in Figure 4.491 are graphs of
y = 3x and y = x3 - x. Find IR1I + 1R21, this
being the sum of the areas of the two regions
bounded by the graphs. 14ns.: 8.

3 With Figure 4.492 to provide assistance,
make a partition of the interval 0 <- x <- 2 to ob-
tain the area IS11 of the set S1 bounded by the
graphs of y = 0, x = 2, and y = x2. Try to repair

Y

Figure 4.492

the work if the result does not have reasonable agreement with an estimate made
by counting squares and partial squares included by S1. Then interchange the
roles of x and y to find the area IS21 of the set S2 bounded by the graphs of x = 0,
y = x2, and y = 4. Make a partition of the interval 0 < y < 4 and be sure that
the correct integrand and limits of integration( appear in the calculation

IS21 = lim I f(y) Ay =
JvVZf(y)

dy

In this case also, try to repair the work if the result clashes with the result of
counting squares. Finally, have another look at Figure 4.492 and see what
IS1I + IS21 should be.

4 Referring again to Figure 4.492, obtain IS21 by starting with a partition
of the interval 0 S x S 2 and using an estimate of the area of the part of S2
that stands above the interval of length Ax (or Axk) containing the point x (or xk).
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5 Use the technique of the text to find the area of the triangular patch
bounded by the lines having the equations y = 2x, y = 0, and x = 3. Check
your answer by use of elementary geometry.

6 Let f4 be the area of the region bounded by the x axis and the graph of
the equation y = x(1 - x). Sketch an appropriate graph showing a sample
rectangle and fill in the details involving the formula

A = lim x(1 - x) Ox = 101 (x - x22) dx = 9.

Find the area of the region bounded by the coordinate axes and the graph
of the equation y = x3 - 8. 14ns.: 12.

8 Find the area of the part of the plane bounded by the graphs of the equa-
tions y = x3 - 3x and y = x. 11ns.: 8.

9 Find the area of the region bounded by the graphs of the equations y = x,
y = 2x, and y = x2. 11ns.:

10 Find the area of the region in the first quadrant bounded by the x axis
and the graphs of the equations y = x and y = 2 - x2. 14ns.: (8 ' - 7)/6.

11 Let 4 be the area of the part of the plane which lies between the lines
having the equations x = 9r and x = 21r and is bounded by the x axis and the
graph of the equation y = sin x. Sketch an appropriate graph showing a sample
rectangle and, observing that the height of the rectangle is the positive number
- sin x (not the negative number sin x), fill in the details involving the formula

r
'4 = lim (- sin x) Ax

2A= - r sin x dx = 2.

12 Someday we will be able to show that the graph of the equation x3 + yil
= a is a positive constant, a part of a parabola. Find the area of the
region bounded by the graph and the coordinate axes. Ans.: a2/6.

13 Is the area of the region bounded by the graphs of the equations

y=x3+x2, Y=x3+1
the same as the area of the region bounded by the graphs of the equations

Y = x2, Y = 1?

14 The graph of each of the following equations contains a loop; determine
the nature of the graph and find the area of the region bounded by the loop, it
being assumed that a is a positive constant.

(a) y2 = x(a - x)2 Ans.: Aa,56
(b) y2 = x(x - a)2 .Ins.: Aa%

15 The graphs of the equations y = jx2 and y = x + 4 bound a region R.
With the aid of a reasonably good figure, make an estimate of the area JRI of R.
Then find JRf by making partitions of an appropriate part of the x axis so that
vertical strips appear in the calculation. Then find JRI by a method in which
horizontal strips appear. Make the results agree with each other and use your
estimate to provide assurance that the two answers are reasonable.
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16 Let .4 be the area of the circular disk of

radius a shown in Figure 4.493. Explain the
ideas associated with the calculation

11 =lim12axAx = 2r faxdx = -a2.

Hint: Think of the ring between the two inner
circles as being a ribbon of width Ax and length
21rx, the length being (by definition of a) the cir-
cumference of a circle of radius x.

Figure 4.493

17 Sketch graphs of sin x and cos x over the interval 0 < x < ,r and then,
with the aid of this information, sketch graphs of sin2 x and cos' x. Use these
graphs to obtain a reason why it should be true that

(1)

Note also that

(2)

o sin x dx = for cos2 x dx.

for (sin2 x + cos2 x) dx = for I dx = r.

What can we now conclude about the integrals in (1) ? Taking a totally different
tack, use the formulas

(3)
1 - cos 2x l +cos 2x

sin2 x = 2 , cos2 x - 2

to evaluate the integrals in (1). Make all of the results agree.
18 Prove the formula

10a

7ra2
a2 - x2 dx =

4

by observing that the integrand is nonnegative and constructing a region of
which the integral is the area. Hint: Let y = a2 - x2 and, after tinkering
with this equation, draw an appropriate figure.

19 Let a and b be constants for which 0 < b < a. Show that if y >= 0,
0<x5 a, and

x.2 y2

(1)
a2
+

b2
= 1,

then

y = b
-1/ a 2 - x2.

a

Let S be the set of points inside the graph of (1); as we shall learn later, the graph

is an ellipse. With the aid of Figure 4.494 show
that

f
ISI a 1 o

a2 - x2 dx.

Figure 4.494

With the aid of the preceding problem, show that 641!aBSI = Trab. This is a result that many people
remember: the area of a circular disk is ,raa and
the area of an elliptic disk is 7rab.
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20 This problem is interesting because it shows how a basic formula involving
areas (a well-known formula which we have not yet proved) can be used to obtain
preliminary derivations of formulas involving trigonometric and inverse trigo-
nometric functions. Rigorous derivations will be given in Chapter 8. Supposing
that 0 < t < a, construct and look at an appropriate figure to derive the formula

(1)
fol

a2-x2dx=mot a2-t +Ta2sin 1a

in which the first term on the right is the area of a particular triangle and the
last term is the area of a circular sector having radius a and central angle 0,
where 6 = sin-' (t/a) and 0 < B < it/2. Anyone who is short on information
about areas of circular sectors is reminded that the area of a sector having central
angle 0 is, as it ought to be, the product of 6/27r and the area 7ra2 of the whole
circle. We can suddenly become interested in (1) if we realize that we have
theorems and rules that enable us to write formulas for the derivatives with
respect to t of everything in it except the last term and hence that we can obtain
a formula for the derivative of the last term. To capitalize this idea, put (1) in
the form

(2) sin ' a a2 C2 fo
.Va2 - x2 dx - t a2 - t2

and then differentiate and simplify results to obtain the formula

(3) - t2d sin-' Q =
a2

1

Remark: We invest a moment to look at the formula

(4)
d

sin-1 t =
at 1 - t2

to which (3) reduces when a = 1. At least in the case where 0 < t < 1 and
0 < 8 < 7r/2, trigonometry books emphasize the fact that the angle 0 of Figure
4.495 is "the angle whose sine is t" or "the inverse sine of t," so that 6 = sin-' t

t

i

Figure 4.495 Figure 4.496

and t = sin 0. The graph in Figure 4.496 shows how 0 and t are related. The
relation (4) is equivalent to the relation

(5) Ae(l .o At 1 - t2
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and this is equivalent to the relation

!6)
At

Jim 09 = 1 - t2 = 1/1 - sine B = cos 6
ne-.o

or to the first of the formulas

(7) dBsin0=coscosdB 0 -sing.

The second follows from the first and the calculation

(8) dx cos 0 = dx sin (2 -O)= - cos (2 - 6) = - sin B.

21 Show how formulas of the preceding problem can be used to obtain the
integration formulas

f a=- x2dx=-Ix a2-x2+ a2 sin x+c
a

f
1/az1- x2

dx = sins a + c.

Then keep in contact with the external world by finding these formulas in your
book of tables.

22 Sketch a few figures which illustrate applications of the following fact.
If f is integrable (and hence bounded) over a 5 x < b, we can choose a positive
constant B such that f(x) + B > 0 when a 5 x <- b and write the formula

lbf(x) dx = fab [f(x) + B] dx - fab B dx,

which shows that fabf(x) dx is the result of subtracting the area of a rectangle

from the area of the set of points (x,y) for which a 5 x <--_ b and -B 5 y < f(x).
Remark: This problem and the next provide ways of reducing questions involving
integrals to questions involving integrals with nonnegative integrands.

23 Sketch a few figures which illustrate applications of the following fact.
If f is integrable (and hence bounded) over a 5 x S b, so also are the functions
g and Is defined by

g(x) _
1f(x)I

2
f(x)

h(x) =
If(x)I 2 f(x)

Moreover, g(x) ? 0, h(x) Z 0, f(x) = g(x) - h(x), If(x)I = g(x) + h(x), and

f.
b
AX) dx = f ab g(x) dx - f.'h(x) dx

fab If (x) I dx = f ab g(x) dx + f ab h(x) dx.
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24 If f(x) = JxJ, then f(x) = sgn x except when x = 0. When a < 0 < b,
Theorem 4.37 does not guarantee correctness of the formula

f6
sgn x dx = JxJ ]a

b = jbl - lal,

but the formula may be correct anyway. What are the facts? Ans.: The
formula is correct.

25 This remark is dedicated to a distinguished professor in a distinguished
university in New Jeisey. He claimed that it does not make sense to ask a
student to evaluate the integral fo

2
x8 dx. The man was right. The integral

is a number, the limit of Riemann sums, and the number is 4. Thus, the man
was insisting that it does not make sense to ask a student to evaluate 4. What

the foxy professor really wanted to do was to emphasize the fact that fo
2

x3 dx

is something more than some black ink on white paper. It is a number. There
are times when the thing is called a symbol, but it is not a symbol. The fact

that [ foe x3 d, I2 = 16 would be hard to explain if the thing were considered

to be a symbol because we do not square symbols to get 16; we square numbers to
get 16. We must agree that we should know what we are doing when we are
asked to "evaluate" foe x3 dx and then go to work to find that the "answer" is

4. A few thoughts about these matters may even pay off sometime.

4.5 Volumes and integrals It could hardly be expected that funda-
mental ideas and definitions involving volumes of sets in E3 could be
simpler than the corresponding ideas and definitions involving areas of
sets in E. In the best treatments of the subject, the volume of a set is
its three-dimensional Lebesgue measure. The theory begins modestly
with the definition which asserts that the volume V of a rectangular
parallepiped (or brick or three-dimensional interval) having length a,
width b, and height c is the product of the dimensions, so that V = abc.
In the theory of volumes, bricks play the same role that rectangles play
in the theory of areas of sets in E2. It turns out that each bounded set
in E3 that we shall dream of considering has associated with it a number
which is the volume of the set. If two of our sets S1 and S2 are such that
S1 is a subset of S2, which means that each point of S1 is also a point of
S2, we can be sure that the volume JS1l of S1 is less than or equal to the
volume IS21 of S2. If a set S is composed of two parts S1 and S2 which
have no points in common, we can be sure that ISI = ISIJ + JS21. If one
of our sets S1 has a volume JS11 and if S2 is another set congruent to S1,
then S2 has a volume and IS21 = IS11. Appendix 2 at the end of this book
shows that the theory of volumes is (like the theory of "solid" physical
matter) not as simple as the naive believe. While a full discussion of
volumes lies far beyond the scope of this book, the theory of Lebesgue
measure in E3 justifies all of the methods we shall use for finding volumes.
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We now illustrate the "slab method" for finding volumes of three-
dimensional sets that are commonly called "solids." With the expecta-
tion that the method will be fully
understood and applied to find vol-
umes of other solids, we find the vol-
ume of the solid cone of Figure 4.51
which consists of the points in E3
lying between the planes x = 0 and
x = h and inside or on the conical
surface. When we are not required

Figure 4.51

to explain the details of the method, we solve this problem in two lines
by writing

(4.52) Y = lim 11(x) Ox = foh d(x) dx
b \2 .b2 xa h

=
fhr

(h x l dx =
h2 3 Jo =rb2h.

Even when we are not required to give explanations to someone else, we
do not write this without talking to ourselves. We make a partition P
of the interval 0 < x < h, but we draw only one subinterval having
length Ox and let x be a point of the subinterval. Planes perpendicular
to the x axis at the ends of the interval have between them a part of the
solid that we can call a slab. Let 14(x) be the area of the section in which
the solid intersects the plane which contains the point we have selected
and is perpendicular to the x axis. In case JPJ is small, the number
14(x) Ox is exactly equal to the volume of our slab or is a good approxi-
mation to it. We next write

(4.53) 214(x) Ax

and tell ourselves that this is either exactly or approximately the sum of
the volumes of the slabs and hence is exactly or approximately V. Hence
it should be true that

(4.54) Y = lim IJ(x) Ox.

But the right side of this formula is the integral in (4.52). Our next step
is to observe that 14(x) is the area of a circular disk whose radius y is
such that y/x = b/h and hence y = (bb/h)x. Thus

(4.55) 4(x) = 1r
()2

= rb x2.

With this information, we can quickly complete the work in (4.52).
Observe that it would not be easy to find the volume of the solid cone of

Figure 4.51 by employing slabs resulting from a partition of the interval
-b <_ y < b of the y axis. The difficulty resides in the fact that planes
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perpendicular to the y axis intersect the solid in plane sets the areas ()f
which are not easily found.

Finally, we illustrate the "cylindrical shell method" for finding volumes
of solids by finding the volume of a solid cone in another way. We
consider the solid cone to be the solid obtained by rotating, about the x
axis, the triangular region T in which the solid cone intersects the first

h

quadrant of the xy plane. This re-
gion appears in Figure 4.56. This
time we make a partition P of the
interval 0 5 y s b of the y axis.
When y7,_1 < yk 5 yk, the lines in

z the xy plane having the equations
y = Yk-1 and y = yk cut from T a
strip approximating a rectangular

Figure 4.56 region of length [h - (h/b)yk] and
width Dyk. When this rectangular

region is rotated about the x axis, it generates a cylindrical shell resem-
bling a tin tomato can from which both top and bottom have been
removed. Different points in this shell have different distances from the
x axis, but when JPJ, the norm of P, is small, these distances are all
nearly y*. Taking 2iryk* to be the circumference of the shell, we use the
number

(ii(4.57) 21ryk* - b ya
/

to approximate the area of the shell. Multiplying this by Ayk, the
thickness of the shell, gives an approximation to the volume of the shell.
This leads us to the formulas

(4.571) V = lim I 2lryk (h - b yk LIyk

and
f

(4.58) V=2irh Ibyt1-_y1dy=*rb2h.

For finding volumes of cones, the slab /method produces answers much
more easily and quickly than the cylindrical shell method. Most of the
problems at the end of this section should be solved by the slab method,
but the cylindrical shell method sometimes works better than the slab
method.

Problems 4.59
1 Find the volume of the spherical solid (or ball) of radius a which has its

center at the origin. Find out whether it is easier to partition the whole inter-
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val -a S x 5 a or to take double the result of partitioning the interval 0 5 x 5
a. Remark: Scientists should always remember that the volume is 4ira3.

2 Supposing that 0 < h 5 2r, find the volume Y of the segment of the
spherical ball with center at the origin and radius r which lies between the planes
having the equations x = r - h and x = r. Ins.:

Y = jr f r

h
(r2 - x2) dx = rrh2(3r - h).

3 The region in the first quadrant bounded by the graphs of the equations
y = kx2, x = 0, and y = fl is rotated about the y axis to produce a solid S which
is a part of a solid paraboloid like the nose of a bullet. Show that ISI, the volume
of S, is exactly half the volume of a solid circular cylinder having the same base
and altitude.

4 The region bounded by the graphs of the equations y = kx2 and y = A
is rotated about the line having the equation y = A. Find the volume of the
resulting solid. Ans.:

16af12 11

15 k'

5 A region R is bounded by the graphs of the equations xy = 1, y = 0,
x = a, and x = b for which 0 < a < b. Find the volume ISI of the solid S
obtained by rotating R about the x axis. fins.: ir/a - -7r/b.

6 The region bounded by the graphs of the equations x = 1, x = 2, y = 0,
and y = Uz V9 - x2 is rotated about the x axis. Find the volume of the result-
ing solid. Ans.: 80ir/27.

7 The region bounded by the line and hyperbola having the equations
x + y = 5 and xy = 4 is rotated about the y axis. Find the volume V of the
solid thus generated. fins.: 9w.

8 Let a cylindrical shell (which resembles the part of a tomato can remaining
after the top and bottom have been removed) have length L and have inner and
outer radii rk_1 and rk. Supposing as usual that Ark = rk - rk_l, prove that
the volume of the shell is

(21rrk )L Ark,

where rk* is the number defined by rk = '(rk-i + rk).
9 Set up two different integrals for the volume

of the solid torus (or anchor ring) obtained by
rotating the circular disk of Figure 4.591 about
the y axis. First make a partition of the interval
0 5 y S a of the y axis and estimate volumes of
washers (things normally associated with nuts and
bolts). Then make a partition of the interval

Figure 4.591

b - a 5 x < b + a and estimate volumes of cylindrical shells (things which, if
they had tops and bottoms, would be tin cans). Evaluate one of the integrals.
Remark: The correct answer agrees with the result of applying a famous old
theorem which says that the volume of the solid of revolution is the product of
the area of the set rotated and the distance the centroid (in this case, the center)
goes. The theorem is the theorem of Pappus.
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10 Find, in two or three different ways, the volume of the solid obtained by
replacing the disk of the preceding problem by the square with horizontal and
vertical sides tangent to the disk. One of the methods is suggested by the remark
at the end of the preceding problem.

11 Find the volume of the solid obtained by rotating, about the y axis, the
region bounded by the graphs of the equations y = 3x2 and y = 12. Ans.:
24,r.

12 Find the volume of the solid generated by rotating, about the x axis,
the region in the first quadrant bounded by the graphs of the equations y = ka,
x= 0, andy=8. Ins.:!- -

13 Let a > 0. Two circular cylinders of radius a have their axes on the
x and y axes. With axes so oriented that the z axis is vertical, sketch the part
of the first cylinder which lies in the first octant and between the planes x = 0
and x = Sa. Then sketch the part of the second cylinder which lies in the first

Figure 4.592

octant and between the planes y = 0 and y = 2a.
For three values of z, sketch the lines in which a
horizontal plane through (0,0,z) intersects the parts
of the cylinders in the figure, and then sketch the
curve in which the parts of the cylinders intersect.
If the figure is reasonably good, it should be easy
to find the volume V of the solid bounded by the
three coordinate planes and parts of the two cylin-
ders. Do it. Ins.: Figure 4.592 and V = 2a3/3.

14 Find a reason why the answer to the preced-
ing problem must be less than as.

15 A cylindrical hole is drilled through the center of a spherical ball. It is
observed that the length of the hole is L. Show that the volume of the part of the
ball remaining is the same as the volume of a spherical ball of diameter L.

16 A section of a tree trunk is a section of a right circular cylinder of radius a.
A wedge is removed by making two cuts to a diameter (line, not number), one
cut being in a horizontal plane and the other being in a plane which makes the
angle 0 with the horizontal plane. Find the volume of the wedge.

Ins.: -gal tan 0.
17 It is of interest to know that our methods are powerful enough to enable

us to derive the standard formula

(1) Y = garabc

for the volume Y of the solid in Es bounded by the ellipsoid having the equation

(2)

x2 2
L

z2

a2 --b2 -r i

in which a, b, c are positive constants. The formula for the volume can be
remembered with the aid of the fact that if a = b = c = r, then (2) is the (or an)
equation of a sphere of radius r and (1) gives the volume of the ball which it
bounds. To start to find the volume of the part of our solid containing points
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(x,y,z) for which y 0, we make a partition of the interval 0 < y 5 b. When
0 < y < b, we can put (2) in the form

(3)

and hence in the form

(4)

When y has the constant value yt*., (4) has the form

,.2 .2

!q2 + B2 = 1,

x2 z2 1
(b2-y2)

x2 2

(b b2 --Y2)
+ (b b2 -

2)2

= 1.

where

(6) =b b2-Yk2, B=b b2-Yk2

This shows that, as Figure 4.593 indicates, the plane having the equation y = yk
intersects our solid in an elliptic disk
which, according to Problem 19 of
Section 4.4, has area TrdB or

(7)
aac

b2
(b2 Yk2)

The volume of the slab of our solid
which lies between the planes having
the equations y = yk_, and y = yk is

Figure 4.593

then exactly or approximately the result of multiplying (7) by oyk. Thus

(8)
racV = 2 lim I
b2

(b2 - Yk 2) AY."

the factor 2 being required because we partitioned only the interval 0 S y 5 b.
The limit of Riemann sums being a Riemann integral, we obtain

(9) v 2bcc
fob (b2 - y2) dy

and hence (1). In case two of the three numbers a, b, c are equal, say a = c,
the graph of (2) is called a spheroid. When finding the volume of the solid
bounded by a spheroid, it is possible to simplify matters by using circular disks
instead of elliptic disks. Some scientists consider it to be more fun to work out
the above formulas than to remember that a spheroid for which a = c < b
is called a prolate spheroid (like the surface of a cucumber or a watermelon) and
that a spheroid for which a = c > b is an oblate spheroid (like the surface of a
pancake or an unscarred earth that bulges at its equator and is flattened at its
poles because of its rotation).

18 From time to time, we recognize the fact that some scientific terminologies
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and notations have their historical origins in primitive ideas that are fuzzy or
incorrect. The number in the right member of the formula

(1) lim I f(x) Ax = fa f(x) dx

is, when it exists, defined in terms of Riemann sums in a way which we must
now understand. If (1) holds, then to each positive number e there corresponds
a positive number S such that

(2) I f(xk) Axk - fa b f (x) dx I< E
km1

whenever P is a partition of the interval a 5 x < b for which JPJ < S. For a
long time before this precise idea of Riemann revolutionized (or counter-revolu-
tionized) mathematics, it was generally considered to be meaningful to regard

the limit of sums as "the sum of infinitely many infinitesimals." Thus fa f(x) dx
a

was considered to be an "infinite sum" of products of "finite" numbers f(x) and
"infinitesimal" numbers dx. The "reasoning" involved is quite as flimsy and
unrewarding as the "reasoning" which reaches the "conclusion" that "a circle
is a polygon having infinitely many infinitesimal sides because it is a limit of
polygons." In mathematics, as in other sciences, many of our ancestors were
intrigued by ideas which are now considered to be obsolete. Nowadays we accept
the idea that the sum of the volumes of many thin slabs can be a good approxima-
tion to the volume of a spherical ball, but we reject the fuzzy idea that the
volume of the ball is the sum of the volumes of infinitely many infinitely thin
slabs. It is not easy for historians to decide which of our great ancestors really
had quite correct ideas about approximations and limits and, without swallowing
ideas about sums of infinitesimals, merely used the fuzzy terminology because it
was the fashion to do so. There can be tenuous connections between ideas and
words. If Leonhard Euler wrote in a language in which apples were called
"potatoes that grow in the air," historians unaware of the fact have an oppor-
tunity to conclude that this intellectual giant did not know the difference between
potatoes and apples. Some people believe that the notation for integrals is bad
because it makes too many people think that the dx is a number. The author
believes that terminologies and notations involving limits are the real sinners
because they make too many people think that numbers and partitions and other
things are mobile. Perhaps replacing "lim" by "approx" in (1) would cure many
of our ills.

4.6 Riemann-Cauchy integrals and work This section introduces
integrals that are, in some cases, not Riemann integrals but are con-
structed from Riemann integrals by use of ideas that were made precise
by the French mathematician Cauchy (1789-1857). It may happen that
the integral in the right member of the formula

(4.61) f 'f(x) dx = lim f 'f(x) dx
h-> m a
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exists as a Riemann integral whenever h ? a and that this integral, as a
function of h, has a limit as h becomes infinite. In such cases, this limit
is the Riemann-Cauchy integral off over the semi-infinite interval x > a
and is denoted by the symbol in the left member of (4.61). In each other
case, we say that the integral in the left member of (4.61) does not exist
as a Riemann-Cauchy integral. For example, when r > 0,

11 1](4.611) xdx=h
r x 2dx=lim -l]=limrr -hf

L J

We can bravely start to calculate a Riemann-Cauchy integral by
tentatively writing

h h
(4.612)

o°°

cos x dx = lim f o cos x dx = lim [sin x]o = lim sin h
h-+ m h-. m h- o

with the understanding that we will get an answer if the last limit exists.
The last limit does not exist, however, so the integral does not exist.

Riemann-Cauchy integrals of another type are defined by the formula

(4.62) f oa f (x) dx = lira f ha f (x) dx
h-+0+

when a > 0 and the integrals and limit exist. Consider the example for
which f(x) = x-34 when x > 0, while f(x) is either undefined or is defined
in some other way when x < 0. Then f is not bounded over the interval
0 < x 5 1 and hence L' f(x) dx cannot exist as a Riemann integral.
However,

(4.621) f 1 x-34 dx = lim 1
x 3 dx

0 h-o+ h

= lim 2x34 lim [ 2 - 2 1/h] = 2,
h-O+

so the first integral exists as a Riemann-Cauchy integral. Riemann-
Cauchy integrals of still other types are defined by the formulas

(4.622) f 0
f(x) dx = lim f -h f(x) dx

a h-0+ -a
f a.

f (x) A = lim f ha f (x) dx
h-+ - m

when the integrals and limits exist. Finally, the Riemann-Cauchy
integrals in the left members of the formulas

(4.623) f . f(x) dx = f a. f(x) dx + f f(x) dx

(4.624) f ab f (x) dx = f a` f (x) dx + f eb f(x) dx
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are defined by these formulas whenever the integrals on the right exist as
Riemann-Cauchy integrals. Perhaps attention should be called to the
fact that some elementary books reserve the term "definite integral"
for application to an integral of a particular brand (which is sometimes

0

Figure 4.631

the Riemann brand and is sometimes not care-
fully delineated) and apply the term "improper
integral" to each integral of another kind.

It is impossible to have a tranquil scientific
career without thorough understanding of
matters relating to

(4.63)
- 1

1 2 dx.lx

The graph of the integrand is shown in Figure
s 4.63 1. The integral cannot exist as a Riemann

integral because the integrand x-1 is undefined
when x = 0. Even if we set f (O) = 0 and

f (x) = x2 when x 0, the integral f
1

1 f (x) dx will still fail to exist as

a Riemann integral because f is not bounded over the interval
-1 < x < 1. According to (4.624), the formula

(4.632) J 11 x2 dx = J of x2 dx J x2 dx

will be valid when the integrals are Riemann-Cauchy integrals provided
the two integrals on the right side exist. The calculation

(4.633) J
of

x2 dx = hl-lo+ f
__1h

x2
dx = lo+ 1i - 1 = 00

shows that the first integral on the right does not exist, and the calculation

(4.634) f 1
x2

dx = lim
J

1 1 dx = lim 11- 1 I= ao
o h-+0+ h x2 h-o+ h

shows that the second does not exist. Hence, the integrals in (4.632) do
not even exist as Riemann-Cauchy integrals. The calculations do, how-
ever, enable us to convey information by writing

(4.635)
f-1

2
dx dx +

fil
2 dx ao .

x lx x

Persons do not lead these tranquil scientific lives when they realize that

(4.636) d -11 = 1

dx x x2
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except when x = 0

fi

and cheerfully make the calculation

(4.637) i2 dx = -11 = -2 (????)
i x x 1-1

which would be correct if (4.636) were valid over the whole interval
-1 < x < 1. Since the wide world contains many definitions of inte-
grals in addition to those of Riemann and Riemann-Cauchy, it is some-
what presumptuous to assert that (4.637) is ridiculous. However, when
we confine our attention to Riemann and Riemann-Cauchy integrals,
we can observe that (4.637) is incorrect.

Integrals of the types in (4.61) and (4.623) are particularly useful.
For example, the formula

(4.64)
fo. (x-M)21

e 202 dx = 1 (er > 0)

is not easily proved, but it lies at the foundation of very much work in
probability and statistics. Proof of this formula will appear later.

We conclude this section with a discussion of work in which the
formula

(4.65) (a > 0)

plays a fundamental role. To begin, we study the amount of work done
by a force F which pulls a particle P from the place on an x axis where
x = a to the place where x = b. The force F may have the direction of
the x axis but, as in Figure 4.651, this
is not necessarily so. Let f(x) denote F
the scalar component of the force F in
the direction of the motion, that is, in 0 a .X b x

the direction of the x axis. In case f (x) Figure 4.651
is a constant, measured in pounds (or
dynes), and the distance b - a is measured in feet (or centimeters),
the work W done by the force is measured in foot-pounds (or dyne-
centimeters) and is defined by the formula

(4.652) W = f(x)(b - a).

Since work and distance are scalars and force is a vector, it is quite
incorrect to perpetuate the ancient idea that "work is force times dis-
tance"; we must use scalar components of forces. In case the scalar
componentf(x) is different for different numbers x, the definition (4.652)
is inapplicable and we need integration to calculate W. The procedure
is almost identical with the procedure used to calculate areas and vol-
umes. We make a partition P of the interval from a to b with a "small"
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norm JP1 and write f(xk) Oxk as an approximation to the amount of work
done in pulling the particle from the left end to the right end of the kth
subinterval. The sum

(4.653) Tlf(xk) Oxk

should then be a good approximation to our answer W and hence we

should have

(4.66) + W = lim I f (xk) 1 xk = f 'f(x) dx.

Our statements about (4.653) and (4.66) were necessarily vague and
optimistic because the quantity W that we are trying to calculate has not
yet been defined. We must recognize the fact that we cannot prove
correctness of a formula for W when we have no definition or other
information that tells us what W is. In the absence of another definition
or other information, we must adopt the principle that our work with
partitions and Riemann sums provides the motivation for the definition
whereby W is defined by the formula

(4.661) W = f ab f(x) dx

whenever f is a function for which the integral exists as a Riemann integral.
The above ideas will now be applied to basic problems. The Newton

(1642-1727) law of universal gravitation says that if two particles of mass
in, and m2 are concentrated at distinct points Pl and P2, then these
particles attract each other with a force whose magnitude is proportional
to the product of the masses and inversely proportional to the square of
the distance between them. Suppose we have a particle of mass m,

concentrated permanently at the
MI f 1 origin, Figure 4.67, and that we
0 a x b x have a "test particle" of unit mass

Figure 4.67 that we wish to move along the
positive x axis. There is then a

constant k, which depends only upon the units used to measure mass,
force, and distance, such that the force on the test particle has magnitude
km,/x2 when the particle is at distance x from the origin. The work Wa,b
required to move the particle from the point a (that is, the point with
coordinate a) to the point b is then to be calculated from the formula

(4.671) Wa b =
1 b

kml
dx.

x2a

From this we find the remarkably simple formula

(4.672) Wa,b = kml - kb 1.
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It follows from these formulas that

(4.673) lim Wa,b = r°° k=1 dx
b.. X a

25S

This formula is responsible for some terminology that scientists often use.
The limit in (4.673) is called "the amount of work required to take the
test particle from a to infinity" and this amount of work is called the
potential (or gravitational potential) at the point a due to the particle of
mass ml at the origin. It is an easy consequence of these definitions and
formulas that the potential, say u, at the point P(x,y,z) due to a particle
of mass ml concentrated at the point Po(xo,yo,zo) is

(4.68) u= km1

'f (x -xo)2+ (y- yo)2+ (z- zo)2

The basic importance of the concept of potential u lies in the fact that if a
particle of mass m is moved from a point P1 to a point P2 with no forces
upon it except gravitational forces and a force F, and if the speeds at
P1 and P2 are equal, then the work done by the force F is equal to the
product of m and the potential difference, that is, the potential at the
starting point Pi minus the potential at the destination P2.

All of the above ideas and formulas apply to electrostatic potentials as
well as to gravitational potentials. In the electrical case, we start with
two charges qi and q2 and apply the Coulomb (1736-1806) law
IFl = kgig2/x2, which is the electrical analogue of the Newton law of
gravitation.

Problems 4.69
1 Suppose somebody writes

I l1dx= oo, f 1dx= ooo x 1 X

with the hope that he is conveying information to you.
Ans.:

What does he mean?

lim 1 1 dx = oo, lim I 1 dx = oo.
h->o+ h x h-'.0 1 x

2 Prove that

i

dx = o0r
XPIi'XPdx P-1' Jo

dx = oo,
w 1 1

11 xP 1o x' 1-P
3 Show that, when k > 0,

1,

e k: dx = k
0
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01 1

Figure 4.691

Integrals

4 Remembering that e = 2.71828, and
remembering or learning that e3 is about 20, e°
is about 400, and e9 is about 8000, make some
calculations to indicate that Figure 4.691
snows the nature or the graph of y = e--.
Observe that the area of the shaded region

seems to be about the same as the area of the unit square. What are the facts?
5 The region bounded by the cissoid having the equation

X3
y2

2a - x

and its asymptote is rotated about the asymptote. Using the cylindrical shell
method, set up an integral for the volume V of the solid thus generated. Clue

and ans.:
Y = 2 lim 12tr(2a - x)y Ax

Y = 4a fo2a x3' (2a - x)3 dx.

Remark: With the aid of information about beta integrals, it can be shown very
quickly that V = 21r2a3.

6 Show that putting M = 0 and o = 1// in (4.64) gives the formula

2dx= N/1-r.

Sketch a graph of y = e =' which is good enough to show that this result seems
to be correct.

7 Prove that if f (x) = 4 when 0 < x < 1 and f (x) = 5 when 1 < x < 2,
then

foe f(x) dx = 9.

Note that f(x) is undefined when x = 0, when x = 1, and when x = 2.
8 Prove that

h
lim x dx = 0, lim

hz
dx = co.

h. o -h

9 Even persons having little contact with the external physical world know
that rods and wires and springs stretch when they are pulled and that the amount
of stretching depends in some way upon the amount of pulling. Engineers have
understanding of elastic limits and of circumstances under which useful results
are obtained by applying the law of Robert Hooke. The Hooke law says that
the magnitude of the force required to stretch a rod of natural length L to length
L + x is

k
z X,

where k is a constant that depends upon the rod. The number x is the elongation
of the rod, and the magnitude of the force is proportional to the elongation.
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Figure 4.692, which shows the rod before and after stretching, may be helpful.
Supposing that 0 < a < b, find the work done in stretching the rod from length
L + a to length L + b. .4ns.:

(bz - z).
kTL_

10 A conical container (see Figure 4.693) has height
a feet and base radius R feet. It is filled with sub-
stance (water or wheat, for example) which weighs w

L

' F
L+x

Figure 4.692 Figure 4.693

pounds per cubic foot and which must be elevated (by a pump or shovel or other
elevator) to a level H feet above the vertex. Suppose that H z a. Find the
work W required to accomplish the task. Hint: Start by making a partition of
the interval 0 < y _< a and calculating an approximation to the work required
to lift the material which constitutes a horizontal sheet or slab. All calculations
are based upon the fundamental idea that gravity pulls things downward, and that
the magnitude of the force on a thing is its weight. fns.:

W=w7rRza(H-a)3

4

Note that if V is the volume of the conical solid, then the answer can be put in
the form W = wV(H - *a).

11 Modify Problem 10 by replacing the conical container by a container
such that, for each y* for which 0 S y* S a, the plane having the equation y = y*
intersects the contents of the container in a set having area d(y*). Then set
up an integral for the work W. .4ns.:

W=w foa(H-y)A'(y)dy

12 In many problems involving motion of particles, we need the concept of
kinetic energy, or energy due to motion. This problem requires us to study and
learn a method by which we can use calculus to derive an important formula.
We suppose that, at time t = 0, a particle of mass in starts from rest, with kinetic
energy zero, at the origin of an x axis and is pulled in the direction of the positive
x axis by a force F of constant magnitude for which F = Ci at all times. We
suppose that no force other than F operates on the particle. Letting x denote
the coordinate of the particle at time t, we use the Newton law F = ma to obtain
the vector equation

z

(1) m dz i = ma = F = Ci.
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From this we conclude that there must be a constant vector cl such that

(2)

mxi = TCt2i.

But (dx/dt)i is the velocity v at time t, and putting t = 0 in (2) shows that
c1 = 0. Therefore,

(3)

KE=Cx=2m(Ct)2= -njv12.

From this we conclude that there is a constant vector C2 such that

(4) mxi = Ct2i + c2.

But x = 0 when t = 0, so c2 = 0. Therefore,

(5)

The kinetic energy KE of our particle at time t is defined to be the amount of
work done by the force F in bringing the particle from its state of rest at time
t = 0 to its state of motion at time t. Since IFI has the constant magnitude C
and has the direction of motion of the particle as the particle moves the distance
x, the amount of work done is Cx. Thus KE = Cx and, with the aid of (5) and
(3), we find that

(6)

Therefore,

(7) KE = "ffmIvl2.

m d i=Cti+c1.

MV = m di i = Cii.

The next problem requires that the same result be worked out by a different
method without the assumption that F is a constant.

13 A particle P of mass m is moved around in E3 by a continuous net force F
which operates over a time interval a 5 t < b. The Newton law F = ma then

0

Figure 4.694

tk_1 and tk. Tell why the scalars

(1) r(tk-1)] and L1tk

should, when IPI is small, both be good approximations
to the work done by F in forcing P from Pk_1 to Pk. Tell why it should be
reasonable to adopt either one of the formulas

(2) W = lim ' r(tk_l)]
IPI-o k=1

(3) W = lim L1tk
IPI- O k.1

shows that the displacement vector r (which is OP),
the velocity vector v, and the acceleration vector a
are continuous functions of t. Make a partition of
the interval a < t < b and look at Figure 4.694 which

k-1 shows, among other things, the positions of P at times
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as the definition of the work done by F over the time interval a < t < b. Show
that (3) is equivalent to the definition

(4) W = f b dt.
a

It remains for us to learn a little trick by means of which information
gleaned from this formula. Using the Newton formula F = ma gives

(5)

Hence

(6)

and

(7)

F(t)-v(t) =

m m dt jv(t)l2.

f r b

2 m J b d
d

1v(1)12 I
1

dt 1 m I X012]a
L a

W = 2 mIv(b)I2 -
2

mlv(a)12.

can be

In case v(a) = 0, our work gives another derivation of the formula for the kinetic
energy of a particle of mass in having speed Iv(b)l.

14 The graph of the equation
a2x

Y = x2 + b2'

which usually appears in the disguised form x2y + b2y - a2x = 0, is called a
serpentine. Find the area (finite or infinite) of the region in the first quadrant
between the serpentine and its asymptote.

15 Accumulation of familiarity with Riemann sums may bring a desire to
b

know why fa f(x) dx cannot exist as a Riemann integral when f is defined but
unbounded over the interval a < x <- b. If the integral exists and has the value
I, then there must be a partition P of the interval a < x < b such that

n

(1) I , f(xk)Axk - II < 1
kml

whenever xk_1 S xk <- xk for each k. Show that if (1) holds, then

(2) lf(xl)I < (ix1)-1 r1 + I + I f(xk)I AXk
L k=2

when xo <= xi S x1. This shows that f must be bounded over the first subinterval
of the partition P. Similar arguments show that f must be bounded over the
other subintervals and hence also over the whole interval a S x <_ b.

4.7 Mass, linear density, and moments This section involves
some ideas that turn out to be important in many ways. Let F be a
function which is defined over some finite interval a _< x < b and is
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monotone increasing over the interval. This means that F(xi) < F(x2)
whenever a 5 x1 < x2 < b. Such functions F arise in many ways. We
can, for example, let P (a number) denote the population of an island,
state, or country, let P(x) denote the number of persons having age less
than or equal to x, and let

(4.71) F(x) = P(x)
P

We can also suppose that the interval a 5 x < b represents a line segment

Figure 4.72

or a slim beam, as in Figure 4.72,
upon which sand and perhaps other
things are piled and from which hams
and other things are hung, and let
F(x) be the total mass which rests
upon or hangs from the part of the

interval from a to x. Because of the vividness of the latter interpretation,
F is sometimes called a mass function even when F(x) is a number which
is important in social sciences and which has nothing whatever to do with
such things as pounds and tons and grams and slugs. When x and
x + Ax both lie in the interval from a to b, the difference quotient

(4.73)
F(x + Ax) - F(x)

Ax

represents the average mass per unit length or the average linear density
over the interval with end points at x and x + Ax. In case this quotient
has, for a given x, a limit as Ax approaches zero, this limit is called the
density at x. When this density exists, we call it f(x) so that, by our
definition of derivatives, f(x) = F'(x). This idea of density has its
simplest applications in cases where F(x) has a continuous derivative.
In these cases the function f having values f(x) is called the density
function of the mass function F, and f(x) = F(x) for each x.

We are now ready to start introducing moments. Without assuming
that F is differentiable or even continuous, let t(xi) be a number (or point)
not necessarily in the interval from a to b, and let p be an integer which
is either 0 or positive. Let P be a partition of the interval a S x <_ b as
shown in Figure 4.74. The number F(xk) - F(xk_l) is the number
obtained by starting with the total mass in the interval a 5 x < xk and

Figure 4.74

xr 4
o t 1.0f a=x xl X2

XA*

-1-4-
X k-1

T
xh

xA-
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subtracting the total mass in the interval a < x < xk_l. Thus it is the
total mass in the interval xk_1 < x _< xk. The number

(4.75) (xk - )P[F(xk) - F(xk-1)]
represents the pth moment about the point of a single particle of mass
F(xk) - F(xk_1) concentrated at the point xk and, when the norm of P
is small, this should be a good approximation to the pth moment about
of the total mass in the interval xk_1 < x S xk. Moreover, the sum

(4.76)

n

Y (xk - )"[F(xk) - F(xk-1)]
km1

should be a good approximation to the pth moment about of the total
mass in the interval a 5 x < b. Our statement about (4.76) was neces-
sarily vague and optimistic because the quantity we are trying to calculate
has not yet been defined. It is a fundamental fact, which is proved in
the theory of Riemann-Stieltjes integrals, that there is a number M`=P'e
such that the sum in (4.76) is near it whenever JPI is small, that is,

n

(4.77) Mgt = lim I (xk - )P[F(xk) - F(xk-1)]
IPI- 0 k=i

This number M??'F is called the pth moment about the point of the mass
in the interval a 5 x 5 b. In case p = 0, the pth moment is the total
mass in the interval a 5 x < b. In mechanics, the second moment is
called moment of inertia. In statistics and elsewhere, the particular
number x for which Myi>- = 0 is called the mean (or mean value) of F over
the interval a < x 5 b. In mechanics and elsewhere, the point having
coordinate x is called the centroid of the mass. The number M"'==, the
second moment about the centroid or mean, is particularly important in
mechanics and statistics.

The above discussion applies equally well to mass functions F that
possess continuous density functions f and to those that do not. When
F does possess a continuous density function f, we can solve problems with
the aid of only Riemann integrals. In the latter case the number

(4.78) f (xk) Oxk

is taken to be an approximation to the total mass in the interval
xk-1 < x S Xk, and instead of (4.76) we use the Riemann sum

n
(4.781) 1 (xk - )f(xk) .xk

k=1

as an approximation to M"". Taking limits as the norm of the partitionX=t
P approaches 0 then gives the formula

(4.782) MZe't = f ' (x - )Pf(x) dx.
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Problems 4.79
1 As suggested by Figure 4.791, let a rod having constant linear density

(mass per unit length) 6 be supposed to be concentrated on the interval a 5 x b

of the x axis. Starting by making a partition of the interval a < x b

calculate M,(1-`b the pth moment about of

a b
x the rod. -Ins.:

Figure 4.791 Af.'!4=p+1i(b-t)P'"1-(a-

2 Using the result of the preceding problem, prove that MX"-'t = 0 if and
only if = lff (a + b).

3 Supposing that

fabf(x)dx=M>0,

show that the constant 9 satisfies the equation

if and only if

fab(x-z)f(x)dx=0

Mx =
fab

xf(x) dx.

Remark: Always remember that, in statistics and elsewhere, x is called the mean
(or mean value) of f over the interval a < x 5 b and that, in mechanics and
elsewhere, x is the x coordinate of a centroid. Remember (or learn) that a
centroid is, as it should be, a point "like a center."

4 Supposing that
fabf(x)dx=M>0

and that the mean (or x coordinate of the centroid) is 9, prove that

M` MM m(x-c)2M.
State the meaning of this formula in words, and use the formula to determine the
value of Z for which M`t has the least possible value. Hint: Start by writing

M() = f ab (x - t)2f(x) dx = f ab [(x - 9) + (x - ))2f(x) dx.

5 Let f be the function for which f(x) = 0 when x < 0 and f(x) = e
when x > 0. Determine and graph the mass function F of which f is the density
function.

6 The density function f defined by the first of the formulas

f() 1
_(X-as)= = 1 e_(t >=

diX l a v
e 2°' F(x' ) - 2va1_m

has the mass function (or cumulative function) F defined by the second formula.
With the aid of the formula (4.64) make a preliminary attempt to learn the
natures of the graphs of y = f(x) and y = F(x) when M = 0 and v = 0.01.
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7 When M = 7, the graphs of the functions in the preceding problem are
different from the graphs obtained when M = 0. What is the difference?

8 When a particle having mass m rotates in a circular path with angular
speed w radians per second at a constant distance r from an axis of rotation, its
speed is rw and its kinetic energy is 4mr2w2. With the aid of this information,
calculate the kinetic energy of a circular disk of radius a which has mass 8 per
unit area and which is rotating with speed w radians per second about an axis
through its center perpendicular to its plane. Hint: Base the solution on esti-
mates of the area of a ring, the mass of the ring, and then the kinetic energy of
the ring. Ans.: KE _ jw6aaw2. The answer has the form KE _ yIw2, where I,
the polar moment of inertia of the disk about the axis used, is8a4.

9 The cone of Figure 4.51 has mass 3 per unit volume and is rotating w
radians per second about its axis. Find its kinetic energy. Hint: Use the answer
of Problem 8.

10 Figure 4.792 can make us wonder whether we are becoming wise enough
to determine the attractive force F upon a particle of mass in at P(x,y,z) that is
produced by a bar or rod concentrated upon an
interval a < x < b of the x axis of an x, y, z y

coordinate system. We suppose that the bar
has linear density 8(x) at the point (x,0,0) and
that 8(x) is integrable but not necessarily z

a b `
constant over the interval a 5 x 5 b. The Figure 4.792
first task is to set up an integral for F. The
following solution of this problem should be read even by those who can solve
the problem without aid and assistance, because it fortifies our understanding
of the process by which integrals are set up. We make a partition Q of the inter-
val a 5 x < b, but we call the partition points to, t1, , t because the num-
ber x is the x coordinate of P. If the trick helps us, we can consider the x axis
to be simultaneously an x axis and a t axis. For each k = 1, 2, , it let tx
be chosen such that tk_1 5 tk 5 tk. We then use the number

(1) s(tk) ti

as an approximation to the mass of the part of the rod in the interval tk_I < t 5
tk. Supposing that this mass is concentrated at the point Pk(tk,0,0), we use the
number

(2) Gm
S(tk) Otk

IPPk12

as an approximation to the magnitude of the force OFk on the particle at P pro-
duced by the part of the rod in the interval tk_I 5 t < tk. Problem 19 of Prob-
lems 2.39 discusses this matter and shows how we derive the formula

(3) AFk = Gin
E(tk) Otk PPk

IPPkIs

by use of the fact that a nonzero vector is the product of its magnitude and a
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unit vector in its direction. Our next step is to write PPk in terms of the coordi.
nates of P and P, and to write

(
(4) [1Fk = Gm E S (tk)

tk - x)i - yj - xk
7

Otk.
[(lk - x)2 + Y2 + zJ

Everything is now prepared for the crucial steps. When the norm JQJ of the
partition Q is small, the sums in (4) should be good approximations for the force
F that we are trying to define. In other words, F should be the limit of these
sums. But these sums are Riemann sums and, provided P(x,y,z) is not a point
on the interval a --<- x S b of the x axis, they have a limit which is the Riemann
integral in the formula

rb (t - x)i - yj - zk
(5) F = Gm Ja a(t) ((t - x)2 + Y2 + z2]3

dt.

Our work motivates the definition whereby F is defined by (5). While (5) serves
as a source of information about F in other cases, we confine our attention here
to the case in which the density is a constant, say &(t) = bo for each t, and, more-
over, y = z = 0 and x < a < b. In this case, F has the direction of i, and if
we denote its magnitude by Fi(a,b,x), then

(6)

It is easy to see that

b
Fi(a,b,x) = Gmbo

f.
(t - x)-2 dt

a - 1
= Gmbo

(1

a-x b-x

(7) lim Fi(a,b,x) =Gmbo lim Fi(a,b,x) = eo.
b--.m a - x x-.a-

If these formulas agree with our intuitive notions, then at least some of our
intuitive notions are good. The second result in (7) gives us a lesson in approxi-
mation. Since particles near ends of actual steel rods are not subject to huge
attractive forces, we must conclude that very bad approximations to forces on
these particles are obtained from calculations based on assumptions that the
rods are concentrated on their axes.

11 Modify Figure 4.792 to fit the case in which h > 0, a = -h, b = h,
b(x) = bo, x = 0, and z = 0. Show that, in this case, formula (5) of the pre-
ceding problem becomes

ti-F =Gmbo f
h Yj

-h (t' {- y2),, dt.

After having a good look at the coefficients of i and j, show that

(h
F = -2Gmboyj Jo (t2 +

Y2)
dt.

12 A thin cylindrical shell S of radius R has its axis on the x axis of an x, y,
z coordinate system and has its ends in the planes having the equations x = a
and x = b. This shell has constant areal density (mass per unit area) S. Find
the gravitational force F which it exerts upon a particle m* of mass in which is
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concentrated at the point (c,0,0). Hint:

As suggested by Figure 4.793, make a
partition P of the interval a S x < b.
Consider the part of the shell between
the planes having the equations x = xk_1
and x = Xk to be a circular ring having
its mass Mk concentrated in the plane
having the equation x = xk. Let AFk

Figure 4.793

be the force exerted upon m* by this ring. Because of symmetry, the components
of AFk orthogonal to i are zero. Moreover, the i component of OFk (which is
iFk) is the same as the i component of the force on m* produced by a single
particle of mass Mk concentrated at the point (xk*,R,0) in E3. Therefore,

Mk(x* - c)i
(1) OFk = Gin [(x* - c)2 + R2] '

and we are ready to calculate Mk and get on with the calculus. Ins.:

(2) F = 2a6GmR ('1(a
- c)2 + R2 c)2 + R2) i.

13 We can claim that if the density S and the radius R of the cylindrical shell
of Problem 12 are so related that the total mass is M, then the answer to Problem
12 should be nearly the same as one of the answers to Problem 10 when R is
near zero. Is it so? Ins.: Yes, unless misprints disrupt the harmony.

14 A circular disk of radius H has its center on the x axis of an x, y, z coordi-
nate system and lies in the plane having the equation x = xo. This disk has
constant areal density (mass per unit area) S. Set up an integral for the gravita-
tional force F which the disk exerts upon a particle m* of mass m which is con-
centrated at the point (c,0,0) when c ; xo. Hint: Make a partition with the
aid of which the disk is split into a collection of concentric rings so that a repre-
sentative ring has radius rk . The hint of Problem 12 provides a formula that
can be adapted to give the force which the representative ring exerts upon m*.
Ans.:

(1)
H r

F = 2aSGm(xo - c)i
Io [r2 + (xo - c)21

dr

(2) F 27r&Gm xo - c (
xo1 c

1
i.() ( )

L I 1/H2 + (xo - c)2J

When M is the total mass of the disk so that M = irH26, the answer can be put
in the form

(3)
_ GmM xo - c xo - c 1

F-2 H2 Elxo - cI H2 +(xo -
c)2.1i.

Remark: We really should look at these formulas. For example, (2) gives very
interesting information when H is large and our disk is a huge part of a homo-
geneous plane. One who wishes additional mental elevation should undertake
to realize that we can replace gravitational laws and constants by electrostatic
ones and obtain information about forces on electrons produced by charges on
plates of capacitors.
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15 A cylindrical solid of radius R has its axis on the x axis of an x, y, z coordi-
nate system and has its ends in the planes having the equations x = a and x = b.
This solid has uniform density (mass per unit volume) S. Find the gravitational
force F which this solid exerts upon a particle m* of mass m located at the point
(c,0,0) of E3, it being assumed that c < a. Hint: Make a partition of the interval
a < x b. Consider the part of the cylinder between the planes having equa-
tions x = x7,_1 and x = Xk to be a circular disk in the plane having the equation
x = xk. Let AFk be the force exerted upon the particle m* by this disk. A
formula of Problem 14 can then be applied. .1ns.:

F=2rGmSiI [1- xc ]dx
a 1/(x - --C)2+ R2

F = 2irGmS[b - a - (V-(b - c)2 + R2 - \/ (a - c)2 + R2)] J.

This can be put in the form

F - 2 GmM r 1 - -\/(b - c)2 + R2 - 1/(a - c)2 + R2]
R2 b-a

where M = sR2(b - a)S, the total mass of the cylindrical solid.
.16 Let S be a thin spherical shell which is assumed to be concentrated on a

sphere (surface, not ball) of radius a having its center at the origin. The shell
has constant areal density (mass per unit area) S. Let m* be a particle of mass in
which is concentrated at a point (-b,0,0) which lies at the origin or at distance
b from the origin on the negative x axis. Thus b >= 0, and we suppose that
b , a so m* does not lie on the sphere. The gravitational force F exerted upon
m* by the shell depends upon the location of m*. If 0 5 b < a so that m* is
inside the sphere, then F = 0. If b > a so that m* is outside the sphere, then

(1) F = G MM
i,

where M is the total mass of the shell. Thus when m* lies outside the shell,
the force on it exerted by the shell is the same as the force exerted on it by a
particle at the center of the shell whose mass is the total mass of the shell. From
our present point of view, proofs of these famous and important results (which are
discussed in more general terms in Section 13.8) can be comprehended more
easily than they can be originated. To start our proof, we slice the spherical
shell into ribbons to which we can apply a basic result given in Problem 12.

The spherical shell is obtained by
rotating the semicircle of Figure 4.794
about the x axis. We make a partition

m* f , P of the interval 0 S 0 5 ir. With the
aid of the basic formula

Figure 4.794 (2) Angle = length of arc
radius

we see that the lines making angle 8,,_, and Ok with the positive x axis have
between them an arc of the circle of length a(9k - Bk_1), or a ABk. When this
arc is rotated about the x axis, it produces a part of the spherical shell which can
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be described roughly as a circular ribbon having radius a sin Sk, width ai Ok,
length 27r a sin Sk*, area 27r a2 sin Ok* ABA;, and mass Mk, where

(3) Mk = 21rba2 sin Ok* MBk.

Considering this ribbon to be a circular ring of mass Mk and radius a sin Ok* which
has its center on the x axis and which lies in the plane having the equation x =
a cos Sk, we use formula (1) of Problem 12 with c = -b to obtain the formula

(b + a cos BL*) sin 84
(4) AFk = 27rGm3a2i AOk

[(b + a cosOk)2+(a sin9k)213

for an approximation to the force upon m* produced by one element of the
spherical shell. The limit of the sum of these things should be the force F that
tie are seeking. But the sum is a Riemann sum and its limit is a Riemann
integral. This leads us to the formula

(5) F = 27rGmbaiU,

where U is the unruly integral defined by

f ,r (b + a cos 8)a sin 8
(6) U - J o [b2 + 2ab cos 0 + a2]3 dB.fThe

hypothesis that b > 0 and b 5-6 a implies that the denominators in (4) and
(6) are never zero and hence that the integrand in (6) is continuous. Before
making a serious attack on the integral, we can observe that it is certainly positive
when b > a and that it is 0 when b = 0. To simplify the integral, we make the
substitution (or change of variable)

(5) a cos 0 = x,

so that -a sin O d8 = dx. Since x = a when 8 = 0 and x = -a when 8 =7r,
rules which have not yet been adequately treated imply that

ra b+x
(6)

U=J-a[b2+

To simplify the integral some more when b 3-6 0, we make the substitution
b z - a2

b2+2bx+a2=t, x=t
2b

a

Since dx = (1/2b) dt, t = (b - a)2 when x = -a, and t = (b + a)2 when x = a.
substitution in (6) gives

b2-a2
1 ,b+

(7) U = 2b
r

J (bba)2

t 2b
dt.

Thus

(8)

(9)

(b+a)sU = z r [t-3, + (b2 - a2)t] dt,
4b J (b-a)2

r bIa)_
U = 1 I t3h - (b2 - a2)t-3h]

2b2

21 b2-a2 b -al
(10) -1b-aIJ
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In case 0 < b < a, this gives

(11) U-2b2C(b l a)-(a-b)- bb

+a2 b-aJ=O
and (5) shows that F = 0 as we wish to prove. In case 0 < a < b, (10) gives

_ 1 b2 - a2 b2 - a2 2a
(12)

LT-2b2C(b+ a)-(b-a) b+a T b-a]b2

Putting this in (5) gives
F - Gm(4wra21)i - GmM.

b2 b2 11

where M = 4ira2S, the total mass of the spherical shell. This is the desired result
(1) and the fundamental facts about attractions of spherical shells are now
established.

17 Use the method of Problem 16 but modify the details in appropriate
places to obtain the force FH exerted upon m* by the hemispherical shell that
remains after removal of the part of the spherical shell whose points have nega-
tive x coordinates.

18 A spherical ball (or solid sphere) is said to be radially homogeneous if
there is a function S such that the ball has density (mass per unit volume) S(r)
at each point having distance r from the center of the sphere. Supposing that
0 < a < b, find the gravitational force exerted upon a particle m* of mass m
located at the point (-b,0,0) in E3 by a radially homogeneous spherical ball
(like an idealized earth or golf ball) B which has radius a, which has its center at

the origin, and which has a density function 6
which is not necessarily constant but is inte-
grable. Solution: As suggested by Figure
4.795, we make a partition P of the interval

-b -a 0 xk a x 0 5 x 5 a. When xk_1 < xk 5 xk as usual,
Figure 4.795 the points of B having distance xk* from 0 such

that xk_I < xk 5 xk form a spherical shell
whose volume is approximately the product of the area 47rxk* 2 and the thickness
Ark. The mass Mk of this shell is therefore approximately

(1) 1Vfk = 4,rxk 26(xk) AXk.

Considering the shell to be concentrated upon the sphere having center at 0
and having radius xk* enables us to use a result of Problem 16 to show that the
force AFk which the shell exerts upon m* is approximately

(2) AFk = Gm[47rxk 2S(xk) Axk) i.
b2

The limit of the sum of these things should be F. But the sum is a Riemann
sum and its limit is the integral in the formula

Gmi
(3) F =

72 o
4ax2S(x) dz.
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This answer can be greatly improved if we notice that methods very similar to
those which we have used enable us to show that the integral in (3) is the total
mass M of the ball B. Thus we can put (3) in the form

GmM.
(4) F = b2 t.

This proves that the force exerted upon m* by a radially homogeneous ball is
the same as the force exerted upon m* by a single particle, at the center of the
ball, whose mass is the total mass of the ball. Thus, when computing forces
upon particles outside the ball, we may "consider the mass of the ball to be con-
centrated at its center," the assertion in quotation marks being rather weird
because mass is a number and we do not ordinarily squeeze numbers.

19 Use the method of Problem 18 to show that if S is a radially homogeneous
spherical shell having inner and outer radii r, and r2 for which rl < r2, then
F = 0 when F is the gravitational force which the shell exerts upon a particle
inside the shell.

20 With the aid of arguments involving continuity, the final formulas of
preceding problems for gravitational forces upon particles exerted by solid
spherical balls and solid unconcentrated spherical shells can be proved to be
correct when the particles lie on boundaries of the balls and shells. Using this
fact, show how it is possible to split a given radially homogeneous solid ball into
an inner solid ball and an outer spherical shell to calculate the force which the
given ball exerts upon a particle m* of mass m concentrated at an inner point
of the given ball.

4.8 Moments and centroids in E2 and E3 Section 4.7 introduced us
to moments, about a point on a line, of material concentrated upon the
line. This section introduces us to two similar ideas. In the first place,
we consider moments, about a line, of material concentrated in a plane
containing that line. In the second place we consider moments, about a
plane, of material in E3.

To begin, let R be a bounded region in the xy plane which lies between
the lines having the equation x = a and x = b. It is supposed that when
a 5 x* _<_ b, the line having the equation x = x* intersects R in an
interval (or collection of intervals) having length (or total length) f(x*).
It is not necessary that f be continuous, but we do assume that R has
area IRI and that JRI = f ab f (x) dx. If the region R is, as in Figure 4.81,

Y=f2(x)

* -xk

Figure 4.81

b
x
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the set of points (x,y) for which a < x S b and fl(x) 5 y < f2(x), then
everything is quite simple and f(x) = f2(x) - fi(x). Our next step is to
suppose that the points (x,y) of R are points of a material body (much like
a sheet of paper or a sheet of copper) that has been compressed into a
plane in such a way that, for some positive constant S, a part of the com-
pressed material body has mass S AR if that part occupies a part of the
region R having area AR. The compressed body is called a lamina, and
it is a homogeneous lamina because the areal density (mass per unit area)
has the same constant value S at all places in the lamina.

Letting p be an integer which is either 0 or positive, we proceed to define
the number Mz'-')e, the pth moment of the lamina about the line having
the equation x = , by a formula from which it can be calculated. Fol-
lowing the method of Section 4.7, we make a partition P of the interval
a 5 x < b into subintervals. For each k, the lines having the equations
x = xk_1 and x = Xk have between them a part of the lamina that can be
called a strip parallel to the line having the equation x Supposing
as usual that xk-1 < xk* < xk, we use the number

(4.82) f (xk) LIxk

as an approximation to the area of the strip and accordingly use the
number

(4.821) Sf (xk) Lxk

as an approximation to the mass of the strip. When the norm of P is
small, all points of the strip lie at about the same distance Ixl* - El from
the line having the equation x = t, and multiplying the above mass by
(xx - )P should therefore give a good approximation to the pth moment
of the strip about the line having the equation x = . The Riemann sum

(4.822) SZ(xk - )pf(xk) .Xk

should then be a good approximation to the moment of the whole lamina.
Since the Riemann sums have a limit which is the Riemann integral in
the right member of the formula

(4.83) Mgt = S f ab (x - E)Pf(x) dx,

our work motivates the definition by which the required moment is
defined by this formula.

The number the pth moment of the lamina about the line
having the equation y = rl, is defined by the analogous formula

(4.831) M = 8J d (y - 0)Pg(y) dy,

where c and d are numbers such that the lamina lies between the lines
having the equation y = c and y = d and g(y*) is the length of the inter-



4.8 Moments and centroids in Ez and E, 271

val (or the sum of the lengths of the intervals) in which the line having the
equation y = y* intersects the lamina. In case p = 0, the pth moment
is the mass of the lamina. In mechanics and some other places, the sec-
ond moment is called the moment of inertia.

While the facts can be established only by considering the different
rectangular coordinate systems in the plane of the lamina, the lamina
itself determines a point in the plane of the lamina that is called the
centroid of the lamina. With reference to the particular coordinate
system which we have chosen, the x coordinate of this centroid is the
number x for which Ma_t = 0 when E = x. Thus

(4.84)

and it follows that

S
fab

(x - 9)f(x) dx = 0

S bf b x
(4.841) Mx = S

fb

xf(x) dx, x = a

f(x) dx
f6

a f(x) dx

where M, the denominator in the second formula, is the mass of the
lamina. Similar formulas suffice to determine the y coordinate 9 of the
centroid. For example,

(4.842) M9 = S
fcd

yg(y) dy

The centroid of a lamina has an important physical property. If the
lamina is in a plane perpendicular to the direction of the forces in a
uniform parallel force field, then the lamina will balance upon each line
(or knife-edge) which passes through the centroid and will balance upon a
pin placed at the centroid. It follows that if L is a line of symmetry of a
lamina, then the centroid lies on L. Moreover, if a point P is a center of
symmetry of a lamina, then the centroid is P.

We now turn our attention to the three-dimensional world which con-
tains, in addition to cubes and spherical balls, so many distractions that
relatively few of its inhabitants assimilate substantial information about
nonmeasurable sets in E3. To keep these complicated and paradoxical
sets out of our gardens, we shouldt (and therefore do) start with a set
S in E3 which is assumed to possess positive volume V. In order to be
able to use Riemann integrals, we assume that wherever we introduce an
x, y, z coordinate system in E3, there will be numbers a and b for which our
set S lies between the planes having the equations x = a and x = b.
We assume that, for each t for which a < t S b, the plane having the
equation x = t intersects S in a section having area which we denote by
il(t). In many applications this area function is continuous. To be

t This is another situation in which we can be kept on the path of rectitude by knowledge
of the contents of Appendix 2 at the end of this book.
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fully rigorous about the matter, we assume that the Riemann integral in

(4.85) Y = f b
1(x) dx

exists and is the volume Y of the set S. Our next step is to suppose that
the points (x,y,z) of the set S are points of a material body B such that,
for some positive constant S, a part of the body has mass 6 AV if that part
occupies a part of the set S having volume V. Our body B (which
really is somewhat different from the conglomeration of atomic particles
that constitute a potato) is said to be homogeneous because its density
(mass per unit volume) has the same constant value S at all places in the
body.

child thinks a potato is.
Supposing that is a number and

that p is 0 or a positive integer, we
should now find it easy to construct
formulas for calculation of the num-

xk
V ber MZj E, the pth moment of the body

a x- B about the plane having the equation
Figure 4.86 x = . Realizing that schematic

figures can be helpful even when
some wise people consider them to be semisuperfluous, we sketch Figure
4.86. We make a partition P of the interval a < x < b into subintervals.
Supposing as usual that xk_1 < xk < xk, we use the number

(4.87)

At last we have a body B which might, for example, be what a

A' (xk) AXk

as an approximation to the volume of the slab which lies between the
planes having the equations x = xk_i and x = xk. Multiplying by the
density S gives an approximation to the mass of the slab. When the
norm of P is small, all points of the slab lie at about the same distance
14 - kj from the plane having the equation x = t and multiplying the
mass by (xt* - k,)P should therefore give a good approximation to the pth
moment of the slab about the plane having the equation x = . The
Riemann sum

(4.871) S2(xk - )P.4(xk) AXk

should then be a good approximation to the moment of the whole body.
Since the Riemann sums have a limit which is the Riemann integral in
the right member of the formula

(4.872) Mw = S f ab (x - i;) P11(x) dx,

our work motivates the definition by which the required moment is
defined by this formula. Analogous formulas define moments about
planes parallel to the other coordinate planes.
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In case p = 0, the pth moment is the mass of the body. We shall not
comment upon second moments of solid bodies about planes, but brief
comments about first moments may be appropriate. As was the case for
laminas, our body B determines a point in E3 which is called the centroid
of the body. With reference to the particular coordinate system which
we have chosen, the x coordinate of the centroid is the number x for which
Mme = 0 when E = x. Thus

(4.88) ffb (x - 9),4 (x) dx = 0

and it follows that

(4.881) MR = S
rb

x4(x) dx, x = a

S f b
x.4(x) dx

J ,a S f 'A (x) dx

where M, the denominator in the second formula, is the mass of the body
B. Analogous formulas serve to determine the other coordinates y and z
of the centroid. As was the case for centroids of laminas, the centroid
of a body B in E3 has an important physical property. An ordinary
wheel mounted on an axle through its center balances in the gravitational
field of the earth which is (so far as an ordinary wheel near the surface is
concerned) nearly a uniform parallel force field. Similarly, the body B,
when mounted on an axis through its centroid, must balance in a uniform
parallel force field. If a plane it is a plane of symmetry of the body B,
then the centroid of B is a point in ir. If a line L is a line of symmetry of
B, then the centroid of B is a point on L. If a point P is a center of sym-
metry of B, then the centroid of B is P.

All through this section, the moments that have appeared have been
"moments of mass," that is, moments of lamina or solid bodies that possess
mass. Our methods and formulas are easily modified to produce numbers
that are "moments of area," that is, moments of sets in B2 that possess
positive area, and "moments of volumes," that is, moments of sets in E3
that possess positive volumes. The moments and the centroid of a set
S in E2 which possesses positive area are, by definition, the same as those
of the lamina of unit areal density (unit mass per unit area) which coin-
cides with the set. Similarly, the moments and the centroid of a set S
in E3 possessing positive volume are defined to be the moments and the
centroid of a body of unit density (unit mass per unit volume) which
coincides with S. Thus formulas for moment and centroids of "geo-
metrical" sets are obtained by putting S = 1 in formulas for "moments
and centroids of mass." These concepts are introduced because they
are useful. For example, calculations involving forces which bend a beam
depend upon a number I which is the moment of inertia of a cross section
of the beam about a line through the centroid of the cross section.
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Problems 4.89
1 Find the pth moment about the line having the equation x = of the

lamina of constant areal density (mass per unit area) 5 which occupies the plane
region consisting of points (x,y) for which

a:x<=b, 0Sy<h. As.:p+1I(b-

2 A semicircular disk of radius a has its center at the origin and lies in the
right half-plane containing points (x,y) for which x >= 0. Find its centroid.

11ns.:x=37r'y-0.

3 A homogeneous spherical ball of radius a has its center at the origin.
Find the centroid of the hemispherical part of the ball containing points for
which Ins.: z=$a,y =0,i=0.

4 Prove that the centroid of a right circular conical solid of height h has dis-
tance h/4 from the base of the solid.

5 Find the pth moment about the y axis of the region bounded by the x
axis, the line having the equation x = 1, and the graph of the equation y = xr,
it being supposed that r is a nonnegative constant. Ans.: 1/(p + r + 1).

6 Copy Figure 1.292 and let T be the triangular region bounded by the
triangle having vertices at A, B, C. Set up and evaluate all of the integrals
required for evaluation of ITI, the area of T, M,?0, the first moment of T
about the y axis, and MM,0, the first moment of T about the x axis. Then
use the formulas ITIx = M)0 and JT!y = My )a to find z and y. Remark:
The point (z,y) is the point (2h/3, 0). This shows that the centroid of T lies on
the median SID. More remarks can be made.

7 This problem involves hydrostatic forces which liquids exert upon surfaces
of bodies immersed in them. Before formulating our problem, we digress to eke
out some information. If an ordinary rectangular or cylindrical tank has hori-
zontal sections having area A square feet and if the tank is filled to depth d feet
with a liquid weighing w pounds per cubic foot, then the total weight of the con-
tents of the tank is wdA. If we divide this total weight wdA by the area -I of
the base of the tank, we obtain the number wd, which is the weight per square
foot that the base supports. This number wd, the product of w and the depth,
is called the pressure at depth d. This pressure wd is a scalar, the magnitude of
the force per unit area which the liquid exerts upon the flat horizontal base of
the tank. Our next task is to capture the idea that the jumble of words "pressure
in a gas and in a liquid is transmitted (sent across?) equally in all directions"
is often presumed to convey. To be very humble about this matter, we can
believe or perhaps even know that water will spurt from a hole in the bottom of a
tank of water and will spurt almost as vigorously from a hole near the bottom
of the tank but in a vertical side of the tank. Fortified by this idea, we can
cheerfully accept the ponderous physical principle or law which says that if a
plane region having area I is beneath the surface of a liquid, and if dl and d2
are numbers such that each point of the region has a depth d for which d, <= d 5
d2, then the force which the liquid exerts upon one side of this region is orthogonal
or normal or perpendicular to the region and there is a number d* such that
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dl < d* < d2 and the magnitude of the force is p*11, where p* is wd*, the pressure
at depth d*. Our little lesson in hydrostatics is ended, and we can now formulate
our problem. We confine our attention to forces upon one side of a plane region R
which lies, as in Figure 4.891, beneath the sur-
face of a liquid and in a vertical plane. The x 1Top surface of liquid

axis is taken to be horizontal and in the top
surface of the liquid. The y axis is taken to a-------
be vertical with y positive measured down- A/yk-i
ward; this means that the point (x,y) lies y
below the x axis when y > 0. It is supposed
that the region R lies between the lines having bk-
the equations y = a and y = b and that, when
a < y* < b, the line having the equation
y y* intersects R in an interval (or collec-

Figure 4.891

tion of intervals) having length (or total length) f(y*). It is assumed that the
region R and the function f are bounded. It is not necessary that f be con-
tinuous, but we do assume that R has area IRI and that IRI = fa

b
f(x) dx. Our

problem is to set up an integral for the magnitude of the force which the liquid
exerts upon one side of the region R. The procedure should now be completely
familiar. We make a partition of the interval a 5 y < b into subintervals and
choose yk such that yk-i <- y* < yk. The number

(1) f(Yk) QYk

is taken as an approximation to the area of the part of R that lies in a strip parallel
to the surface of the liquid. Multiplying this by wyk gives an approximation to
the magnitude of the force of the part of R. Since the forces on the parts of R
all have the same direction, the sum

(2) wZYaf(Yk) AYk

gives an approximation to the magnitude IFI of the force on the whole region R,
and the approximation should be good when the norm of the partition is small-
Thus it should be true that

(3) IFI = lim wEykf(Yk) DYk

Since the right member of (3) exists and is a Riemann integral, our work motivates
the definitions where IFI is defined by the formula

(4) IFI = w f ab Yf(y) dy.

In order to make numerical calculations, we must know or be able to compute
a, b, and f(y). The really interesting thing about our result is that it can be put
in the form

(5) IFI = wyA,

where 4 is the area of the region R and 9 is the depth of its centroid. Thus the
magnitude of the force on the plane region R is the product of the pressure at the een-
troid and the area of the region. Many problems can be solved very quickly by
use of this fact.
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8 Using the fact that the pressure at depth d below the surface of water is
wd, but without using more formulas from the preceding problem, find the mag-
nitude of the force exerted upon one face of an isosceles right triangle submerged
in water so that one leg is horizontal and 5 feet below the surface while the other
leg extends 3 feet upward. fIns.: 18w.

9 According to an examination given at Cornell, the cost, in dollars per mile,
of improving the road from Alibab to the Babila oil field 400 miles down the road
is 10,000 plus 500 N/x, where x is the distance from Alibab. Find the total cost
of the improvement. flns.: 6 + millions.

10 A circle of radius a lies in the xy plane and has its center at the origin.
For each positive integer n, points Po, Pi, - - . , P. are equally spaced on the
arc of the circle lying in the first quadrant and, for each k for which 1 5 k 5 n,
a vector rk is drawn from the origin to a point on the circle between Pk_i and Pk.
Show that

(1) lim
r, + r2 + ... + r,, = 2a (i + A

n--> m n 7r

where, as usual, i and j are unit vectors on the x and y axes. Hint: Make use of
the fact that if

(2)

then

(3)

Ok = k7r, .,Ok = 2n,

rk = 2a
(cos ON + sin 6k *j) DOk,

12 7r

where Ok lies between Ok_i and Ok. The left member of (1) is therefore the limit
of a Riemann sum.

11 One way to review Riemann integrals and make them seem simpler is to
learn about Riemann-Stieltjes integrals. Let f(t) and g(t) be defined over an
interval a S t < x, and let P be a partition of the interval a < t S x with parti-
tion points tk and intermediate points tk as in Section 4.2. If there is a number I
such that to each e > 0 there corresponds a a > 0 such that

n

(1) I
Lf(tk)Ig(tk) - g()1 - I I <kl

whenever JP1 < 5, then I is called the Riemann-Stieltjes integral off with respect
to g over the interval a 5 t < x and is denoted by

(2)
Ia

f(t) dg(t).

These integrals are very important in more advanced mathematics, and some
people think that they should at least be mentioned in elementary calculus.
Many people have devoted substantial parts of their lives to study of problems for
which f(t) = ts. Start picking up ideas by evaluating (2) when a = -1, x = 1,
f(t) = t2 + 2t + 3, and g(t) = sgn t. fins.: 6.

4.9 Simpson and other approximations to integrals When f is a
polynomial in x, and in some other cases, we can discover an elementary
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function F for which f f (x) dx = F(x) orf(x) = F' (x) and can then evaluate
b f(x) dx by the calculationfa

(4.91) f 'f(x) dx = F(x) Ja = F(b) - F(a).

As was pointed out in Section 3.6, derivatives of elementary functions
are always elementary functions that can be calculated by use of appro-
priate rules. It must not be presumed, however, that if f is an elementary
function, then there must exist an elementary function F for which
f(x) = F'(x). While proofs of such things do not grow in ordinary
gardens, it is nevertheless known that if f(x) is one or another of

-%/1-I-x4, x , VI±sin'x,
1/4 - sine x

then there is no elementary function F for which f(x) = F'(x).
This section is devoted to methods by which we can obtain useful

decimal approximations to

(4.92) Jab f (x) dx

in cases where it is impossible or difficult to obtain a useful formula for a
function F such that (4.91) holds. Some pedestrian methods are worthy
of brief mention. When a reasonably accurate graph of f is drawn on
graph paper as in Figure 4.93, we can ob-
tain an informative approximation by
counting the squares and estimating the
partial squares that lie within the appro-
priate region. Chemists and others who
have access to scissors and appropriate
scales can cut out the region and weigh the
paper. Another method involves use of a
planimeter, an instrument which will reveal
a useful approximation to the area of a
region after it has been suitably adjusted
and a needle point on a movable arm has
traced the boundary of the region. In
some situations, the simplest and most
direct method is illustrated by Figure 4.931.
The interval a < x <- b is cut into n equal

a b x

Figure 4.93

a b x

Figure 4.931

subintervals of length h, where h = (b - a)/n, and a point xk* is selected
in the kth subinterval. Then

(4.932) f ab f(x) dx = E + h f(xx ),

sin x 1 ey

where a is an error term and the sum is a particular Riemann sum. Of
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course, we should try to minimize errors by choosing the heights of the
rectangles in such a way that, in each strip, the area of the set which lies
in the region but outside the rectangle is nearly equal to the area of the
set which lies inside the rectangle but outside the region.

This paragraph introduces the trapezoidal formulafb[o
(4.94) .f (x) dx = e -f - h + Yn-I +

the derivation of which will help us to understand the much better
formula (4.95) which will appear in the next paragraph. We sepa-
rate the interval a < x < b into n equal subintervals of length h, where
h = (b - a)/n, by points xo, x1, . , x such that xo = a, xn. = b, and
xk = xk-1 + h for each k = 1, 2, , n. As in Figure 4.943, where
n = 4, we let Yk = f(xk) for each k. As an approximation to f x'f(x) dx

xo

we use L' L(x) dx, where L(x) = Ax + B and the constants are chosen
such that the graph of L(x) = Ax + B is a line passing through the two
points Po(xo,yo) and Pi(xl,yl). The details of the calculation

(4.941) dx = `o + ' yo (x - xo) dx = h Yo 2 '
fox,

fZIL()
L

are easily supplied; in case yo and yl are positive, the details are super-
fluous because the quantities are equal to the area of a trapezoid and ele-
mentary geometry shows that the formula is correct. Using (4.941) and
analogous formulas, we see that

(4.942) fxk f (x) dx = ek + h Yk-12 Yk,
xk l

where the "error term" Ek will be "relatively small" if the graph of f over
the interval xk_1 < x < xk
is "near" the chord joining

P Pk_1 and Pk. Summing
the members of (4.942)

Y4 h 'd if

a=xo x1

Figure 4.943

x2 x3 x4 = b

glues L. e trapezol a or-
mula (4.94).

_ To derive the trape-
x zoidal formula (4.94), we

began by approximating
f(x) over the interval

xo S x 5 x1 by the function L(x) whose graph is a line passing through
the two points Po and P1. To derive the more useful Simpson formula

b(4.95)= e+[yo+4y1+2y2+4ya+2y4+ff(x)
+ 4yn-1 + yn],
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in which n is always an even positive integer, we begin by approximating
f(x) over the interval xo < x x2 by the function Q(x) of the form

(4.951) Q(x) = A(x - x1)2 + B(x - x1) + C

whose graph passes through the three points Po(xo,yo), PI(xl,yi), and
P2(x2,y2). Since (4.951) can be put in the form Q(x) = 11x2 + Bix + C1,
its graph is a parabola if A ; 0 and is a line if A = 0. As is easy to guess,
the graph of Q(x) is ordinarily a much better approximation to the arc
P0P2 than the graph consisting of the two straight chords PoP, and P1P2
is, and hence the error term in the Simpson formula is ordinarily much
nearer 0 than the error term in the trapezoidal formula. We find that

x= Q(x) dx = f A (x 3 xi) + B (x 2 x1)2 + C(x - xi)
J

`+h
xo L xi-h

so

f(4.952) x2 Q(x) dx = 3 [214h2 + 6C].

The three formulas
yo = Q(xo) = Q(xj - h) = lfh2 - Bh + C
yl = Q(xl) = C
Y2 = Q(x2) = Q(xl + h) = -40 + Bh + C

enable us to determine .4, B, C in terms of yo, yi, y2 It serves our
purpose, however, to add the first and last of the formulas to obtain

yo+y2=2Ah2+2C
and to note that 4y1 = 4C so

Yo + 4yi + Y2 = 2Ah2 + 6C.

This and (4.952) give the formula

h
[yo + 4y1 + y2].(4.953) 1 xs Q(x) dx =

3Jxo

Using (4.953) and analogous formulas, we see that

ff(x)dx e1+3[yo+4y1+Y2],

f
o

f(x)dx=+3
[y+4y+y

xr

f(x) dx = En/2 + 3 [yn-2 + 4y.-1 + ynn

Adding these gives the Simpson formula
b

(4.96) f(x) dx = e +
3

[yo + 4y1 +2y2 + 4ys + 2y4 + . .
a

+ 4Y.-1 + Y.],
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which appears in (4.95) and is so important that it merits reproduction.
We recall that n must be even and that h = (b - a)/n. Whenever f is
Riemann integrable over the interval a < x < b, the error term a is near
zero when n is large. When f is continuous, and perhaps in some other
cases as well, experienced operators of pencils and slide rules and calcula-
tors and electronic computers neglect the e and habitually use the remain-
ing Simpson sum in the right member of (4.96) as an approximation to the
integral. A particular sum is often judged to be as accurate as desired
when this sum agrees to the desired number of decimal places with the
sum obtained by doubling n. In many practical applications, sur-
prisingly small values of n yield the desired accuracy.

Nearly everyone who understands the trapezoidal and Simpson formu-
las generates the following idea. It should be possible to derive still
better formulas by approximating f by polynomials of higher degree
having graphs passing through more of the points Po, P1, P2, P3, . .

It turns out, however, that these formulas are more complicated than the
Simpson formula, and using them for a given h is not as satisfactory as
using the Simpson formula with a smaller h.

Problems 4.99
I Tables give

f 1 dx = log 2 = 0.69314 71806.
x

Show that the trapezoidal formula with n = 4 gives h = T, yo = 1, y, = 3
,and

f 2idx=e-}'T[
F } a+ } al=e+0.697024IV T

i x

and that use of the Simpson formula with n = 4 gives h = and

f -1dx=e+;'-+S[1+4+4+ +] =e+0.693254.1 x

Show that the error terms are respectively -0.003877 and -0.000107. Observe
that it is almost equally easy to use the trapezoidal and Simpson formulas.
Remember that properly educated persons use the Simpson formula whenever
suitable occasions arise, but that they rarely if ever use the trapezoidal formula.

2 Tables give
log 2.5 = 0.91629 07319.

Using the Simpson formula with two subintervals, obtain the approximation

f
251dx=

1 1+ 4 + 11=0.223148.
2 X 12 L2 2.25 2.5

Show how this and the last numerical result of Problem 1 give the approximation

log 2.5 = 0.91640 2.
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3 Using the Simpson formula with it = 2, obtain the approximations

and

4

12.57 1 dx 031 [ 215 + 2 6 + 217 = 0.07696 106

22.718 1 0.0 9 1+ 4+
1 0.00664 454.

2.7 X
dx

= 3 [2.7 2.709 2.718

Use these formulas and the first formula of Problem 2 to obtain the approximation

log 2.718 = 0.99989 633.

Remark: With a little skill and a desk calculator that makes divisions, it is not
difficult to extend these calculations to obtain good approximations to the number

e = 2.71828 18284 59045

for which f 1e z dx = 1 and log e = 1. Better ways to approximate logarithms

and e will appear later.
4 Someday we will learn the formulas

1+1
x2dx=tan'x+c, fo11+x^dx=4=0.7853981634.

Use the Simpson formula to find approximations to the last of these integrals,
and find the errors in the approximations, to obtain the numbers in the first two
or three rows of the following table.

it Simpson value Error

2 .78333 332 .00206 484

4 .78539 212 .00000 604

6 .78539 782 .00000 034

8 .78539 802 .00000 014

10 .78539 809 .00000 007

12 .78539 812 .00000 004

14 .78539 812 00000 004

16 78539 809 .00000 007

18 .78539 812 .00000 004

20 .78539 809 .00000 007

40 .78539 789 .00000 027

60 .78539 782 .00000 034

80 .78539 782 .00000 034

100 .78539 769 .00000 047

200 .78539 769 .00000 047

400 .78539 569 .00000 247

600 .78539 465 .00000 351

800 .78539 425 .00000 391

1000 .78539 395 .00000 421

10000 .78535 725 .00004 091

15000 .78535 442 .00004 374

20000 .78535 265 .00004 551

100000 .78499 059 .00040 757
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Remark: The last cases show results obtained from an electronic computer that
makes 8D calculations. When n is large, rounding errors seriously affect the
last digit or digits kept.

S A loaded freighter is anchored in still water. At water level, the boat is
200 feet long and, for each k = 0, 1, 2, , 20, has breadth yk at distance 10k
feet from the prow. Assign semireasonable numerical values to the numbers
yk and do not allow anyone to claim that you have not partially designed a boat.
Then use Mr. Simpson's idea to approximate the area of the water-level section
of your boat. Finally, recall an exploit of Archimedes and make an estimate of
the number of tons of freight that should be removed in order to raise your boat
1 foot.

6 Use the Simpson formula to obtain decimal approximations to the follow-
ing integrals. Keep two and three decimal places in the calculations, use a
slide rule if possible, and use the value of it given in parentheses.

(a)
J04

x2 dx, (n = 4) (b)
fo4

x3 dx, (n = 4)

loll
(c) fioo x

dx, (n = 2)

x

(d) fog sin x dx, (n = 6)

sin x
l/sin x dx, (n = 6)(e) f (f)

f dx, (n = 6)
o x

(g) fof (1 + x2)35 dx, (n = 4) (h) 101 e -l' dx, (n = 10)

(i) fi e-' dx, (n = 10) f 23 e x= dx, (n = 4)

7 Using the fact that x22 > 3x when x > 3, show that

e='dx< e3zdx=-le_3z -le9_1 1 = 1

13'
L 13 3 - 3 (20)3 24,000

8 Using the notation and ideas employed to derive (4.953), prove that if the
graph of the function f for which

(1) f(x) = K(x - x1)3 + 4(x - x,)2 + B(x - x1) + C

contains the three points Po(xo, yo), P1(x1, YI), P2(x2, y2), then

(2) f(x) dx =
h[yo+4y1+y2]f72 3

Remark: This result shows that the error term is zero and the Simpson formula
gives the exact value of the integral when f is a polynomial of degree three or less.
Thus we catch the idea that the Simpson formula gives good approximations even
when the integrand cannot be closely approximated over the intervals xk S x <
Xk+2 by quadratic polynomials but can be closely approximated over the intervals
by cubic polynomials. Further investigation shows that if we add to the right
member of (1) an integrable term ¢(x) for which 14(x)l 5 M(x - x1)4, then (2)
will contain an error term a for which lei -< (3)Mhb.
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9 An application of (2) of Problem 8 gives the famous old prismoidal formula

V= 6 [IB1I+4IMI+IB21](3)

for volumes of solids. To investigate this matter, put xo = a and x2 = a + H in
(2) to obtain

(4)

Iaa+Flf(x)dx
= 6

[f(a)+4f(a+?)+f(a+H)]

If a reasonably decent solid has bases in the planes having the equations x = a
and x = a + H, and if for each x' for which a <_ x' <_ a + H the plane having
the equation x = x' intersects the solid in a plane region having area f(x'), then
the left member of (4) is the volume Y of the solid. The quantity in brackets in
(4) is the sum of the area IB1i of one base B1, the area IB21 of the other base B2,
and four times the area IMI of the section M midway between the two bases.
Thus the formula (3) is correct when the solid has volume Y equal to the left
member of (4) and f(x) has the form

f(x) = K1x3 + K2x2 + K3x + K4.

Nearly everyone acquires substantial respect for the prismoidal formula when it
is discovered that the formula yields the correct formula for the volume of a
spherical ball of radius a. In this case H = 2a, the bases are points having area 0,
and the midsection M is an equatorial disk having area Tra2.

10 While the matter cannot be fully explored in a course in elementary
calculus, we can know that persons who study Lebesgue measure and integration
may learn that E3 contains sets much queerer than those considered in this book.
It can happen that each plane section perpendicular to the x axis is a square of
unit area so that (in the context of Problem 9) f (x) = 1 when 0 <= x < 1, but,
nevertheless, the squares are so heterogeneously scattered that the set fails to
possess a volume. For such queer sets the prismoidal formula is invalid because
the left member of (4) of Problem 9 is not the volume of the set. Experts in the
theory of measure can have sympathy for students of solid geometry who are a
bit mystified by the "Cavalieri theorem." This "theorem" says that two sets in
E3 have equal volumes if they have parallel bases and equal altitudes, and if each
plane parallel to the bases intersects the two sets in two plane regions having
equal areas. The queer sets which we have mentioned show that the "theorem"
is false. Appendix 2 at the end of this book shows how we can reconcile ourselves
to these matters. Some of us will learn more about these things than others, but
we can all know that there is much to be learned.



Functions,
5 graphs,

and numbers

5.1 Graphs, slopes, and tangents It is quite possible that we first
heard about tangents, or tangent lines, when we were very young. We
may have been shown a circle as in Figure 5.11 and have been solemnly
told that some lines in the plane of the circle intersect the circle twice,
some others do not intersect the circle at all, and some others, the tan-
gents to the circle, intersect the circle just once. When graphs more
complicated than circles appear, no such simple story can adequately
describe tangents. For example, the line T of Figure 5.12 intersects the
graph twice and seems to be tangent to the graph at Pa, while the line
L intersects the graph only once and does not seem to be tangent to the
graph. To attack this rather delicate matter, we start with a given
function f defined over some interval and draw the graph G of y = f(x) as
in Figure 5.13. We next select an x within the domain of f and call it
284
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Figure 5.11 Figure 5.12 Figure 5.13

xo to emphasize the fact that it remains fixed throughout our discussion.
Our task is to try to decide what we should mean when we say that
a line T is tangent to G at P(xo,yo). We gain the possibility of making
progress when we choose a number Ax for which Ax n 0, plot the point
P(xo + Ox, yo + Ay) on G, and draw the chord joining our two points on
G. Our first feeble idea can be that T is tangent to G at P(xo,yo) if the
chord is nearly coincident with T whenever .x is near zero. We can, so
far as nonvertical tangents are concerned, improve this idea to gain the
concept that the line T through P(xo,yo) having slope m is tangent to G
at P(xo,yo) if the slope Ay/Ax of the chord is near m whenever Ax is near
0. We know how to express this concept in terms of limits and deriva-
tives, and we do it in the following definition.

Definition 5.14 If f'(xo) exists, then the line T through the point (xo,yo)
having slope f'(xo) is said to be tangent to the graph of y = f(x) at the point
(xo,yo). If f'(xo) fails to exist, then the graph fails to possess a nonvertical
tangent at the point (xo,yo).

From this definition and the point-slope formula for the equation of a
line, we obtain the following theorem.

Theorem 5.141 If f'(xo) exists, then the equation

Y - Yo = f'(xo)(x - xo)

is the equation of the tangent to the graph of y = f(x) at the point (xo,yo).
To assist in the development and communication of ideas, it turns out

to be exceptionally useful to agree that if a graph has a nonvertical
tangent at a point (xo,yo), then the slope of this tangent will be called
the slope of the graph at the point (xo,yo). In accordance with this idea,
we adopt the following definition.

Definition 5.15 If f'(xo) exists, then f'(xo) is said to be the slope of the
graph of y = f(x) at the point P(xo,yo).

In order to obtain a full understanding of tangents to graphs, and for
other purposes, it is helpful to know about "lines of support" of graphs
and other point sets that lie in a plane. We confine attention here to
cases in which f is a continuous function defined over a 5 x < b and
Po(xo,yo) is a point on the graph of y = f(x) for which a < xo < b. A
line L through P0 is said to be a line of support of the graph of y = f(x)
if there is a positive number 3 such that the part of the graph of y = f(x)
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for which xo - S < x < xo + S lies entirely on or above L or lies entirely
on or below L. To emphasize that tangent lines were defined as we
defined them because of custom and not because of logical necessity,
we can imagine that a man from Mars might come to our earth with a
language identical with ours except that his meanings of the terms "line
of support" and "tangent line" could be obtained by interchanging ours.
This man from Mars might wonder why on earth we study our tangent
lines instead of his. The problems at the end of this section may provide
reasons.

To be honorable, we must show that the remark made in Section 3.7
about tangents to curves is in agreement with the ideas of this section.
Putting z(t) = 0 gives the assertion that if r(t) is the vector OP running
from the origin to a particle P which traverses a curve C as t increases,
and if

(5.16) r(t) = x(t)i + y(t)j,

where x and y are differentiable functions oft for which r'(t) 0 0, then,
for each t, the vector

(5.161) r'(t) = x'(t)i + y'(t)j

is tangent to the path. In case the particle P always lies on the graph
of the equation y = f(x), we always have y(t) = f(x(t)). Therefore,

(5.162) r(t) = x(t)i + f(x(t))j,

and differentiating with the aid of the chain rule gives the result that,
at each time t, the vector

(5.163) r'(t) = x'(t) [i + f'(x(t))jI

is tangent to the graph. The hypothesis that r'(t) 0 0 implies that
x'(t) 0. Since x'(t) is a nonzero scalar, our result is equivalent to the

statement that, for each x, the vector

h i it il h i h ihav ng s ta at t e po e grap snt (x,y) on trx_vty i _ I

f'(x)i
(5.164) i + f (x)j

Figure 5.165
tangent to the graph at the point. With or with-
out the aid of Figure 5.165, we can see that this
vector lies on the line through (x,y) having slope

f'(x). Thus the tangent line obtained by use of vectors is the same as
the tangent line obtained by use of slopes.

The remainder of the text of this section is devoted to a useful theorem
which is, from our present point of view, thoroughly difficult. The
theorem is important because it gives precise information that is very
often used. The proof of the theorem shows that we must learn more
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mathematics before we can fully comprehend the details. In the worst
of circumstances, we are like a person who cannot swim but is thrown into
the water and given a chance to fight for his life. Most of us will soon be
swimming around in the scientific oceans, and Theorem 5.17 will slowly
metamorphose from an ugly demon to a friendly angel. The theorem is
closely related to the preceding paragraph and to the chain rule, but it is
different from both. Using different notation, it sets forth conditions
under which the first of the two equations

x = fi(t), Y = f2 (t)

can be "solved" for t and the result substituted in the second equation to
obtain y as a function of x. Moreover, the theorem tells how we can
find a formula for the derivative of y with respect to x even though we
cannot work out a useful formula that gives y in terms of x. The useful-
ness of the theorem and the difficulty of the proof are both due to the
fact that the conclusion of the theorem guarantees existence of various
things. If we replace the condition x'(t) > 0 by the condition x'(t) < 0
in the theorem, the intervening details become somewhat different but the
final conclusion (5.171) is valid. We could say that the theorem is a
theorem about elimination of parameters, but in case f2(t) = t so t = y it is
an inverse-function theorem.

Theorem 5.17 Let x(t) and y(t) be continuous over the closed interval
ti < t < t2 and be differentiable over the open interval ti < t < t2 and let
x1(t) > 0 when ti < t < t2. Let x(ti) = a and x(t2) = b. Then a < b,
and to each xo for which a < xo < b there corresponds exactly one to for
which tl < to < t2 and x(to) = xo, and to in turn determines exactly one
yo for which yo = y(to). This correspondence between numbers xo and yo
determines a function f for which yo = f(xo) when a < xo < b, and hence
y = f(x) when a < x < b. Moreover, this function f is differentiable and
the first of the formulas

(5.171) f'(x)

dy
y'(t) dy _ dt
x' (t)' dx dx

dt

is valid when x = x(t) and ti < t < t2. The second is also valid when it is
understood to mean what the first does.

To help us understand the things we do
to prove this theorem, we start sketching
Figure 5.172. We mark the points (ti,a)
and (t2,b) in a tx plane. For a schematic
graph of x(t), we sketch a curve headed
upward to the right because we think it
should be so because x(t) > 0. Theorem

Figure 5.172
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5.27, which we do not bother to read now, proves that this idea is correct
and that a < b. We next mark xo such that a < xo < b. We can
easily believe that the rising graph of x(t) must intersect the dotted
horizontal line at exactly one point (to,xo). Theorems 5.48 and 5.27 prove
that this is correct, and we now have to. Our given function y, of which
we have not sketched a schematic graph, then determines the number yo

defined by yo = y(to), and we put yo = f(xo) in
Figure 5.173. This gives one point on the graph
of y = f(x), and the same procedure gives each
other point on the graph. We now have the
formula y(t) = f(x(t)). If we had proof that f
is differentiable, we could apply the chain rule

o a xo b x to obtain y'(t) = f'(x(t))x'(t) and divide by x'(t)
Figure 5.173 to get our answer, but this will not work because

we do not yet have the required proof. We
therefore start a direct attack upon difference quotients by taking a
fixed t for which tl < t < t2 and writing

(5.174) f(x(t + At)) - f(x(t)) = Y(t + At) - Y(t)-
Dividing by x(t + At) - x(t) gives the more promising formula

(5.175) f(x(t + At)) - f(x(t)) = Y(t + At) - Y(t)
x(t + At) - x(t) x(t + At) - x(t)

Since y'(t) and x'(t) both exist and x'(t) 0, we can divide the numerator
and denominator of the right side by At and see that the right side has the
limit y'(t)/x'(t) as At--+ 0. The left side therefore has the same limit
and we obtain

(5.176) lim
f (x(t + At)) - f (x(t)) y'(t)

Aim [ x(t + At) - x(t) j
_

x(t)

This seems to be almost the desired result (5.171), but we must use it to
obtain additional information. Let e > 0. Choose a positive number
Sl such that

(5.177) f(x(t + At)) - f(x(t)) _ Y'(t)
x(t + At) - x(t) x'(t) < e

whenever jAtj < a,. Another appeal to theorems given later in this
chapter shows that there is a positive number S2 such that when Jkl < S2,
there is a number At for which jAti < Si and

(5.178)

It follows that

(5.179)

x(t + At) = x(t) + A.

f(x(t) + h) - f((x(t)) - y'(t)
h XI(t)

<e
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whenever 111 < 82. This gives (5.171) and completes the proof of
Theorem 5.17.

As was remarked, the proof of Theorem 5.17 is difficult because
existence of various things must be proved. To help us understand that
questions involving existence and differentiability of functions can be
significant, we look at an example. Let us assume that y is a differen-
tiable function of x for which

(5.18) x2+y2+sinx+sin y+46 =0.
Differentiating with respect to x with the aid of the chain rule then gives

(5.181) 2x + 2y dx + cos x + cos y dx = 0

or

(5.182) (2y + cos y) dx = - (2x + cos x)

and, when (2y + cos y) 7-5 0, dividing by (2y + cos y) gives a formula for
dy/dx. The formula is illusory, however, because the original assump-
tion is incorrect. The inequalities x2 > 0, y2 ? 0, sin x > -1, and
sin y > -1 imply that, whatever x and y may be,

(5.183) x2+y2+sin x+sin y+46>44.
Consequently, there are no numbers x and y for which (5.18) is true.
The assumption that there is a differentiable function f, defined over some
interval a < x < b, such that

(5.184) x2 + [f(X)12 + sin x + sin f(x) + 46 = 0 (a < x < b)

is false. This example can help us understand the nature of Theorem
5.17. The theorem is not a weak one which tells what dy/dx must be if
it exists. The theorem sets forth conditions under which dy/dx must
exist and gives a formula which must be correct when these conditions
are satisfied. Proof of a weak theorem can be obtained by mixing a few
words with the calculation

Ay dy

(5.185) dx l.o Ax o Ox dx'
-At dt

but this one line is very far from the equivalent of a theorem which sets
forth conditions under which y is a differentiable function of x and the
formula is valid. Examples show that matters involving (5.185) are
not always completely simple. The distance r from Earth to Mars and
the blood pressure p of a particular yogi are both functions of time t, but
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the unqualified assertion that one of r and p is a differentiable function of
the other is quite dubious.

Returning to simpler considerations, we note that if the graph of a
function has a tangent line at a point P on the graph, then the line through
P perpendicular to the tangent is called the normal to the graph at P.

Problems 5.19
1 Find the equation of the line tangent to the graph of the given equation

at the given point

(a) y=x2,(1,1) Ans.:y-1 =2(x-1)
(b) y = sin 2x, (0,0) tins.: y = 2x
(c) y = x log x, (1,0) Ans.: y = x - 1
(d) Y = e x, (0,1) tins.: y = ax + 1
(e) y = sin x2, (0,0) Ans.: y = 0
(f) y = x cos x, (27r,21r) Ans.: y = x
(g) y = (x + x2)6, (1,32) Ans.: y = 240x - 208

2 Find the equation of the tangent to the graph of the equation y = x"

at the point (xi,x1). Ans.:

y = nx1-lx - (n - 1)x1.

3 First find the slopes of the graph of the equation y = x3 at the points for
which x = -1, x = -, x = 0, x = -r, and x = 1. Use this information to
help construct a figure showing the graph and five tangents.

4 Find the area of the region bounded by the graph of y = x3 and the tangent
to this graph at the point (1,1). Ans.: N'_-

5 Even a crude graph suggests that at least one line can be drawn through
the point (-2,-3) tangent to the graph of the equation y = x2 + 2. Investi-
gate this matter.

6 Sketch reasonably accurate graphs of y = sin x, y = x, and y = -x over
the interval -27r 5 x < 4ir. Let

f(x) = x sin x

and, after observing that f(x) = 0 when sin x = 0, f(x) = x when sin x = 1,
and f(x) = -x when sin x = -1, sketch a graph of f(x). It is easy to guess
that the graph of y = f(x) is tangent to the graph of y = x wherever sin x = 1
and that the graph of y = f(x) is tangent to the graph of y = -x wherever
sin x = -1. Prove that it is so. Hint: Calculate f' (x) and observe that cos x =
0 wherever sin x is 1 or -1.

7 As we know, the part of the graph of the equation

y = Va2-x2=(a'-x2)''
for which -a < x < a is an" upper semicircle" with center at the origin. Let
Po(xo,yo) be a point on this graph. Use definitions or theorems of this section to
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prove that the graph has exactly one tangent at Po and that the equation of this
tangent is

Y- Yo
Yo

(x-xo).

Prove that this line is perpendicular to the line joining the origin to Po and hence
that the definition of tangent given in this section is in agreement with ideas of
tangents employed in elementary plane geometry.

8 With or without more critical investigation of the matter, sketch a figure
which indicates that the graph of the preceding problem has exactly one line of
support at Po.

9 If x = a cost and y = a sin t, it is easy to make the calculation

dy
dy = dt __ a cos t
dx dx - ssin t

dt

over each interval of values oft for which sin t > 0 or sin t < 0. Letting xo =
a cos to and yo = a sin to, we find that the equation of the tangent to the graph
at the point Po(xo,yo) is

_ a cos to (x - xo "coY Yo a sin to ) or y - yo = - (x - xo).
Yo

Sketch a graph which shows the geometric interpretations of these things.
10 Find the equation of the tangent to the graph of y = x3 at the origin.

Sketch the graph and show that it does not have a line of support at the origin.
11 Draw a graph of the equation y = Jxl. Show that this graph has no

tangent at the origin but does have many lines of support. Remark: Our word
"tangent" has its root in a Latin verb meaning "to touch," and a mathematician
from Mars can defend his contention that our lines of support are "touching
lines" and hence should be called tangents. We must, however, stick to our
guns and insist that, in languages used on earth, these lines are not tangents.

12 Sketch the graph of y = sin x and the normal to the graph at the point
(x, sin x). The normal intersects the x axis at the point (f (x), 0). Determine
whether f (x) increases as x increases. Hint: Borrow, from the next section, the
unsurprising fact that f(x) is increasing over an interval if f(x) > 0 over the
interval.

13 In connection with Problem 12, we note that problems in applied mathe-
matics sometimes involve extraneous material that may obscure their mathe-
matical aspects. A witch with a broom sweeps the x axis while walking along the
graph of y = sin x in such a way that x is always increasing. She keeps the
handle of her broom perpendicular to her path. Is the broom always pushing
dust to the right?

14 The two formulas

d . d

dx
sin x = cos x,

dx
cos x = - sin x
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say something very specific about the slopes of graphs of y = sin x and y = cos X.
Sketch these graphs and observe that the formulas seem to be correct.

15 Let x = L cos3 0, y = L sin3 0, where L is a given positive constant.
Find the equation of the tangent to the graph

Y
at the point for which 0 = Bo and show that this
tangent intersects the x and y axes at the points

Q

.1(L cos Bo, 0) and B(0, L sin Oo). Show that
ABI = L.

16 Let x = L cos3 0, y = L sin3 0 as in the

x
x3f + Y3i = L%

and use this to find equations of tangents and to

i
find the final result IABI = L of the preceding
problem. Remark: The graph of these equations

Figure 5.191 is, as we shall see later, a hypocycloid of four cusps.
It appears in Figure 5.191.

17 We now solve a problem that is similar to Problem 11 of Section 3.6.
It is a rather tedious task to draw a graph of the equation

(1) x5-x'y-2x-7x3+ys=721
unless we have an electronic computer to help us do the chores. The graph does
contain the point P0(2,3), the constant 721 having been so determined that this
is so. Our problem is to find the equation of the tangent (if any) to the graph
at Po. Without being sure about the facts, we assume that there is a function
4, defined over some interval 2 - S < x < 2 + S, such that the part of the
graph near Po has the equation y = 4,(x) and, moreover, 4, is differentiable.
Then (1) holds when y = 4,(x) and, with the aid of our formula for differentiating
products of differentiable functions of x, we differentiate the members of (1) and
equate the results to obtain

(2) 6x5-x2dx-2xy-2-21x2-} 6y5dx=0

or

(3)
d y 6x5 - 2xy - 2 - 21x2

dx 6y5 - x2

At the point (2,3) this has the value-. The required equation of the tangent
line is

(4) Y - 3 = i- fr(x - 2),

provided, of course, that our assumption is correct.
18 Apply the method of the preceding problem to find the slope of the graph

of the equation
x2 + y2 = 25

at the point (3,4).
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19 It is easy to show that the graph of the equation

(1) x4 + 2x2y2 + y4 - 2x3 - 2x2y - 2xy2 - 2y3
+5x2+5y2-6x-6y+6=0

contains the point (1,1). What have we learned that could make us sure that
the graph contains another point? Ans.: Nothing. Remark: We do not yet
have enough mathematical equipment to enable us to answer basic questions
about natures of graphs of complicated equations. One who has or develops
interest in such matters must continue study of calculus. Problem 7 and the
following problems at the end of Section 11.3 provide reasons why profound
study of graphs should follow (not precede) study of calculus. While the opera-
tion gives no information about the natures of graphs of other equations, one
who cares to do so may show that (1) can be put in the form

(2) [(x-1)2+(y-1)2][x2+y2+3]=0
and hence that the point (1,1) is in fact the only point on the graph.

20 Let f be the function for which f(0) = 0 and

f (x) = x2 sin 12

when x 96 0. Prove that f'(0) = 0 and hence that the x axis is tangent to the
graph off at the origin. Sketch the graph off and tell why the x axis is not a
line of support of the graph. Hint: To calculate f'(0), use the fact that

f(x) - f(0)x-0 x sin 12
x

s IxI (x 0 0)

and apply the sandwich theorem.
21 When we study a science, it is sometimes worthwhile to obtain preliminary

ideas about machinery that we are not yet prepared to understand fully. This
is an example which involves curves and tangents. Let S be a set of points in a
plane (in E2) which is bounded (this means that there is a rectangle which con-
tains S), is convex (this means that if P, and P2 lie in S,
then the whole line segment joining Pl andP2lies in S),
and which contains at least one inner point (this means
that there is a point P in S and a positive number S
such that S contains each point inside the circle with
center at P and radius 3). Figure 5.192 shows an
example. Let r (capital gamma) be the boundary of
S; a point Q is a point of r if each circular disk with A B

center at Q contains at least one point in S and also
at least one point not in S. We can wonder whether
r should be called a curve. We can observe that

Figure 5.192

there may be points, such as .4, B, C, D in the figure, at which r has many
lines of support but has no tangent. We can observe that there may be
points, such as E in the figure, at which r has only one line of support and
has a tangent. We can say that r has a corner at a point B if B is on
r and r has more than one line of support at B. We can wonder whether r
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has a tangent at each point where it does not have a corner. We can wonder
whether we can associate angles with corners in such a way that, whenever we
take a finite set of corners, the sum of the angles at these corners must be less
than or equal to 27r. We can wonder whether it is possible to construct a set S
such that I' has a corner at each of its points. We can ask questions much
faster than we can answer them. We can conclude that we have some very
substantial and useful information about tangents, but we do not yet know
everything.

5.2 Trends, maxima, and minima Everyone who knows what it
means to say "it has been getting hotter all morning" or "the temperature
has been increasing all morning" should easily comprehend the following
definition. In most of the applications we shall meet, the set S will be a
set in El (that is, a set of real numbers) which is either (i) the whole set
of real numbers or (ii) the set of numbers in a closed interval a < x 5 b
or (iii) the set of numbers in an open interval a < x < b. However, S
can be the set of positive integers or any other set in which we may be
interested.

Definition 5.21 -1 function f is said to be increasing over a set S in El
if f (xl) < f (X2) whenever xl and x2 are two numbers in S for which xl < x2.
The function is said to be decreasing over S if f(xi) > f(x2) whenever xl and
x2 are two numbers in S for which xl < x2.

The following definition is more subtle. If the temperature was 30°
from 10:00 A.M. to 11:00 A.M., an articulate and truthful person would not
be expected to say that the temperature was increasing from 10:00 A.M.
to 11:00 A.M. However, in accordance with the following definition, the
temperature might have been monotone increasing all morning.

Definition 5.22 -1 function f is said to be monotone increasing over a
set S in El if f (xl) 5 f (X2) whenever xl and x2 are two numbers in S for
which xl < X2. The function is said to be monotone decreasing over S if
f (XI) > f (X2) whenever xl and x2 are two numbers in S for which xl < x2.

The terminology in this definition is very useful, and it may seem to be
less than utterly foolish when we realize that f is called monotone (some
people have preferred the word monotonous) if it is either monotone

increasing or monotone decreasing. For
example, the function f having the graph

1 1 \ shown in Figure 5.23 is increasing over
A u the interval a < x < xi, is decreasing

xl x2
° 5 < bt ih i lover t erva s mono-e n x2 x ,

Figure 5.23 tone increasing over the interval

a 5 x < X2, and is monotone decreasing
over the interval xl S x 5 b. To appreciate the necessity for the fol-
lowing definitions, it may be sufficient to realize that it is impossible to
be quite sure what is meant when someone says that "the temperature at
Pike's Peak reached a maximum at noon last Friday."
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Definition 5.24 Let f be defined over a nonempty set S in El. We say
that f has a local (or relative) maximum over S at xo and that f(xo) is a local
maximum off over S, if there is a positive number h such that f(x) 5 f(xo)
whenever x is in S and Ix - xol < A. We say that f has a global maximum
(or absolute maximum) over S at xo if f(x) < f(xo) whenever x is in S. A
local minimum and a global minimum are similarly defined, the relation
f (x) < f(xo) being replaced by f (x) > f(xo).

Applications of these definitions can be quite diverse. For example,
f(x) might be the number of telephones ringing in Chicago x hours after
the beginning of the nineteenth century and S might be the whole set of
positive integers or any other set of numbers we wish to select. For
many purposes it suffices to see how these definitions are applied when
S is an interval and f is differentiable over the interval. Let f be the
function whose graph is shown in Figure 5.25. Assuming that there is

nothing deceptive about the graph, we can see that f is increasing over
the intervals a < x < xl and x2 < x S x4 and that f is decreasing over the
intervals xl < x -<_ X2 and x4 _< x < b. Supposing that f'(x3) = 0 so
that the graph has a horizontal tangent at the point (x3, f(x3)), it appears
that f has local maxima at xl and x4, a global maximum at x4, local
minima at a, x2, and b, and a global minimum at a. There is neither a
local minimum nor a local maximum at x3 even though f'(x3) = 0. We
have described the trends (the increasings and the decreasings) and the
extrema (the maxima and minima) of f.

Sometimes we are required to obtain information about a function f
when we do not have a graph of f but do have a formula which determines
values of f(x) for different numbers x. As the discussion of Figure 5.25
indicates, it is often quite impossible to give precise information about a
differentiable function f until we have found the values of x for which
f'(x) = 0. These are the values of x for which the graph of f has hori-
zontal tangents, and they are called critical values of x. After we succeed
in finding when f'(x) = 0, when f'(x) > 0, and when f'(x) < 0, we may
find it convenient to construct a figure
more or less like Figure 5.251 in which we Figure 5.251
(i) mark the points at which f' (x) = 0 and +++ _ _ _ ++++ ......
the graph of f has horizontal tangents, (ii) a xl x2 x3 x4 b
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put plus signs above intervals over which f'(x) > 0 and the graph of f
has positive slope, and (iii) put minus signs above intervals over which
f'(x) < 0 and the graph of f has negative slope. Information about f
can then be obtained with the aid of the two following theorems.

Theorem 5.26 If a < xo < b and if f'(xo) exists, then f cannot have a
maximum or a minimum over the interval a < x < b at xo unless f'(xo) = 0.

Theorem 5.27 If f is continuous over an interval ao < x S be and
f'(x) > 0 when ao < x < bo, then f is increasing over the interval

ao<x<bo.

If f is continuous over an interval ao 5 x < be and f(x) < 0 when

ao<x<bo

then f is decreasing over the interval ao < x < bo.
The second of these theorems is much more forthright and potent than

the first. It will be proved in Section 5.5. The first theorem says that if
a < xo < b and f'(xo) > 0 or f'(xo) < 0, then f cannot have even a local
maximum or a local minimum at xo. To prove this, we suppose first
that a < xo < b and f'(xo) = p, where p is a positive number. Then

lim
Axe + Ax) - f(xo) = p

AX-0 Ax

and we can choose a positive number S such that

and

a < xo - 3 < xo + 3 < b

Axe + Ax) - Axe )
pAx > 2

whenever 0 < IAxj < S. If 0 < Ax < 6, then the denominator of the
above quotient is positive, so the numerator must also be positive and
f(xo) < f (xo + Ax). If - S < Ax < 0, then the denominator of the dif-
ference quotient is negative, so the numerator must also be negative and
f(xo + Ax) < f(xo). Thus if xo - 6 < xl < xo < x2 < xo + S, then
f(x1) < f(xo) < f(x2), so f cannot have either a local maximum or a local
minimum at xo. In case a < xo < b and f'(xo) < 0, a similar argument
shows existence of a number 6 such that if xo - 6 < x1 < xo < x2 <
xo + 6, then f (xl) > f (xo) > f (X2) and f cannot have a local maximum or
a local minimum at xo. This completes the proof of Theorem 5.26.

It is quite as important to know what Theorem 5.26 does not imply as it
is to know what the theorem does imply. It does not imply that f has
an extremum (a maximum or a minimum) any place and it does not imply
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that f has an extremum at xo. It does imply that if f has an extremum at
xo, then xo must be either

(i) one of the end points a and b or
(ii) such that f'(xo) does not exist or

(iii) such that f'(xo) = 0.

The points xo in these three categories are therefore the only ones that
need be examined when we are seeking extrema of f over the interval
a 5 x < b. This information, meager as it is, is often helpful. Figure
5.271 may help us to understand it. The following theorems, which are

a c d o f g b x

Figure 5.271

easily interpreted in terms of Figure 5.25 and which are easy consequences
of Theorem 5.27, give all the information we need to solve many problems.

Theorem 5.28 (maximum) If f is continuous over a S x 5 b, if
a < xo < b, and if there is a positive number h such that f(x) > 0 when
xo - h < x < xo and f'(x) < 0 when xo < x < xo + h, then f has a local
maximum (which may be a global maximum) at xo.

Theorem 5.281 (minimum) If f is continuous over a <- x 5 b, if
a < xo < b, and if there is a positive number h such that f'(x) < 0 when
xo - h < x < xo and f' (x) > 0 when xo < x < xo + h, then f has a local
minimum (which may be a global minimum) at xo.

Theorem 5.28 says, in slightly different words, that if we travel a
smooth road in such a way that we go uphill from 8:58 A.M. to 9:00 A.M.
and go downhill from 9:00 A.M. to 9:02 A.M., we are atop a hill (but not
necessarily atop the highest mountain) at 9:00 A.M. Theorem 5.281 has a
similar interpretation.

Problems 5.29

1 Letting f be defined over El by the formula f(x) = x2 - 2x + 3, show that

f'(x)=2x-2=2(x-1).
Observe that f'(1) = 0, and then make the more profound observation that
f'(x) < 0 and f is decreasing when x < 1 and that f(x) > 0 and f is increasing
when x > 1. Show that f(l) = 2 and use the information to sketch a graph of
y = f (x). Give all of the facts involving extrema (maxima and minima) of f.
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2 Letting f(x) = axe + bx + c where a > 0,ll show that

f (x) = 2a (x -{ 2a).

Tell why f is decreasing when x < -b/2a and increasing when x > -b/2a.
Show that f has a global minimum at the point

b

2a'
b2 - 4acll

4a /
3 Letting f (x) = axe + bx + c where a < 0, show that f is increasing when

x < -b/2a, that f is decreasing when x > -b/2a, and that f has a global maxi-
mum at -b/2a.

4 Letting f (x) = 1/(1 + x2), show that f is increasing when x < 0, is decreas-
ing when x > 0, and hence has a global maximum when x = 0.

5 Show that the function f for which

3

f(x) = 1 + x2

is everywhere increasing and hence has no extrema.
6 Show that

x
x22-1

is decreasing except when x = ±1.
7 Find all trends and extrema of the function f for which

AX) = 1 + x2

and sketch a graph of y = f(x). Hint: After calculating f'(x), put the result in
the form

f,(x) _
(1 + x)(1 - x)

(1 + x2)2

and, after observing that f'(-1) = 0 and f'(1) = 0, find the sign of f'(x) over
each of the intervals x < -1, -1 < x < 1, and x > 1. Then find f(-1) and
f(1) and make efficient use of this information. Find f'(0) and make the graph
have the correct slope at the origin.

8 Supposing first that x > 0, find the trends and extrema of the function
f for which

f(x) = x + z

and sketch the graph of y = f(x). Then let x < 0 and repeat the process without
use of symmetry, but use symmetry to check the results that are obtained.

9 This problem requires us to think about making tanks from rectangular
pieces of sheet iron. Starting with a rectangle 15 units wide and 24 units long,
we cut equal squares from the four corners and fold up the flaps to form a tank.
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24Our first step is to draw Figure 5.291 and look at it.
-----------------Our good sense should tell us that if the squares are

small, then the tank will be shallow and the volume will
be small. Taking larger squares should yield greater

1;
115

volumes unless we make the squares so large that the
area of the base of the tank is small enough to overcome
the advantage of making the tank deeper. To become Figure 5.
quantitative about this matter, we let x denote the
lengths of the sides of the squares and ask how the volume Y(x) of the resulting
tank depends upon x. In particular, we want to know what x maximizes T'(x).
Show that

Y(x) = x(15 - 2x)(24 - 2x)
= 4x3 - 78x2 + 360x

and tell why x must be restricted to the interval 0 < x < - . Show that

Y'(x) = 12x2 - 156x + 360
=12(x-3)(x-10).

Tell why Y(x) is increasing when 0 < x < 3 and is decreasing when 3 < x <
Show that the maximum Y attainable is 486 cubic units.

10 A sheet-iron tank without a top is to have volume Y. A rectangular
sheet h feet high and 27rr feet long, costing 4 dollars per square foot, is bent and
welded into a circular cylinder to form the lateral surface of the tank. A sheet
2r feet square of different material, costing B dollars per square foot, is trimmed
to form a circular base which is welded to the cylinder to form the tank. Find
the radius and height of the tank for which the total cost T of the material (the
total amount purchased, not merely the amount actually used in the tank) is a
minimum. dns.:

_ s ZE _ 1
a 16B2Y

r = -B' h - r 142

Hint: Start by showing that
T = 2r.4rh + 4Br2

and then use the relation Y = rr2h to express T in terms of just one of the vari-
ables r and A. Standard methods may then be used to minimize T.

11 Referring to Problem 10, find the radius and height of the tank for w hich
the cost of the material actually used is a minimum.

12 Referring to Problems 10 and 11, find the radius and height which mini-
mize the cost of the material actually used in making
a tank which has a top exactly like the base.

291

Figure 5.292

13 A long rectangular sheet of tin is 2a inches
wide. Find the depth of the V-shaped trough of
maximum cross-sectional area (see Figure 5.292) that
can be made by bending the plate along its central
longitudinal axis. .4ns.: a/1/2.

dF' 529314 A f 13

a a

Figure 5.293

fter re erring to Problem an figure

MENME
formulate and solve a problem involving construction L
of troughs having rectangular cross sections.
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15 Show that of all rectangles having a given area, a square has the least
perimeter.

16 Find the radius and height of the cone of greatest volume that can be
made from a circular disk of radius a by cutting out (or folding over, as chemists
do) a sector and bringing the edges of the remaining part together.

17 An ordinary tomato can is to be constructed to have a given volume Y.
Determine the height h and radius r of the can for which total
surface area is a minimum.

18 As in Figure 5.294, the base and lateral surface of a
solid right circular cone are tangent to a sphere of radius a.
Find the height of the solid having minimum volume.

Outline of solution: The height y and base radius r are related
by the formula

a _ r
y - a r2+y2

Figure 5.294
which equates two expressions for sin B. Squaring, solving

for r2, and using the formula Y = irr2y for the volume of the solid, we find that

ira2 y2 dY ira2y y - 4a
Y 3 y - 2a' dy

_
3 (y - 2a)2

The conditions of the problem require that y > 2a. If 2a < y < 4a, then
dY/dy < 0 and V is decreasing. If y > 4a, then dY/dy > 0 and V is increasing.
Thus Y is minimum when y = 4a.

19 Supposing that xi, x2, , x, are given numbers, find the values of x,
if any, for which

n

I (x - xk) 2
k=1

attains maximum and minimum values.
20 The elementary theory of probability tells us that the number pn,k defined

by

pn.k
nl

= k!(n - k)! pk(l - p)n-k

is the probability of exactly k successes in it trials when p is the probability of
success in each trial. Supposing that n and k are given integers for which n > 0
and 0 < k 5 n, find the number p which maximizes pn.k Hint: Ignore the
numerical coefficient and find the p which maximizes pk(1 - p)'-k. Ans.:
p = k/n.

21 An observant senator observes that if he hires just one secretary, she will
work nearly 30 hours per week but that each additional secretary produces con-
versations that reduce her effectiveness. In fact, if there are x secretaries, x not
exceeding 30, then each one will work only

30 -
30
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hours per week. Find the number of secretaries that will turn out the most
work. Discussion and solution: If there are x secretaries, the number y(x) of
hours of work done per week is

x2\l x3
(1) y(x) =x(30- 0) = 30x- 30

It is required that x be an integer in the interval 0 <- x 5 30, so there are only
31 possibilities. We can calculate the 31 numbers y(0), y(1), , y(30) and
select the x which gives the greatest y(x). It is easier and more enlightening,
however, to use some calculus. Forgetting momentarily that x is an integer
number of secretaries, we observe that (1) defines y(x) for each real x. Differ-
entiating gives

X2 1
(2) y'(x)=30-To -10(300-x'-).

Thus y'(x) > 0 and y is increasing when 0 5 x < V/3-o(). Moreover, y'(x) < 0
and y is decreasing when x > 300. Since 300 = 17.32, we see that y(x) <
y(17) when 0 < x < 17 and that y(x) < y(18) when 18 < x =< 30. Thus the
answer is 17 if y(17) > y(18) and is 18 if y(18) > y(17).

22 As in Figure 5.295, a triangle is inscribed in a semicircular
region having diameter a. Find the 0 which maximizes the area
of the triangle. A'ns.: 0 = 7r/4. a

23 A printed page is required to contain -4 square units of Figure 5.295
printed matter. Side margins of widths a and top and bottom
margins of widths b are required. Find the lengths of the printed lines when
the page is designed to use the least paper. .4ns.: ,/afl/b

24 Sketch a reasonably good graph of y = x22 and then mark the point or
points on this graph that seem to be closest to the point (0,1). Then calculate
the coordinates of the closest point or points. Hint: Minimize the square of the
distance from the point (0,1) to the point (x,x2).

25 The strength (ability to resist bending) of a rectangular beam is propor-
tional to the width x and to the square of the height y of a cross section. Find
the width and height of the strongest beam
that can be sawed from a cylindrical log
whose cross sections are circular disks
of diameter L. .4ns.: Width = L/V,
height = N/2-L/-.

26 The x axis of Figure 5.296 is the
southern shore of a lake containing a little
island at the point (a,b), where a > 0. A 0
man who is at the origin can run r feet per
second along the x axis and can swim s feet

Run x

Figure 5.296

per second in the water. He wants to reach the island as quickly as possible.
Should he do some running before he starts to swim and, if so, how far? Partial
ans.: He should run

a r2-s2b
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feet if r > s and this number is positive. Investigation of the whole matter is
not as simple as might be supposed. Hint: If x > 0 and the man runs from the
origin to the point (x,0), we should be able to calculate (in terms of x and the
given constants) the distance he runs, the distance he swims, and the total time
T required to reach the island.

27 Light travels with speed s, in air and with speed S2 in water. Figure
5.297 can interest us in possible paths by which

_______C ______, light might journey from a point 11 in the air to

Figure 5.297

a point S on the surface of the water and then
to a point W in the water. Show that the total
time T is a minimum when the point S is so
situated that the angle 01 of incidence and the
angle 02 of refraction satisfy the condition

sin 01 sin 02
S1 S2

Remark: The above formula is the Snell formula, one of the fundamental formulas
of optics. Phenomena such as the one revealed by this problem are of great
interest in physics and philosophy.

28 As in Figure 5.298 a heavy object of weight W is to be held by two identical

x
Cable Cable

Figure 5.298

cables. A kind engineer tells us that the tension
B T in the cables is W a2 + x2/2x. A solemn

merchant tells us that the cost per foot of his
cables is kT dollars, where T is the tension they
will safely withstand. We must buy the cables,
and we have a problem. Ans.: We buy 2 a
feet of cable costing Wk// dollars per foot, so
we need 2Wka dollars.

29 Modify the preceding problem by supposing that the body must hang
below the point which lies between !1 and B at unequal distances a and b from

and B.
30 The lower free corner of a page of a book is folded up and over until it

meets the inner edge of the page and then the folded part is pressed flat to leave
a triangular flap and a crease of length L. Supposing that the page has width a,
find the distance from the inner edge of the page to the bottom of the crease when
L is a minimum and find the minimum L. Hint: Minimize V. An:.: a/4 and
3 ' a/4.

31 Sketch the part G1 of the graph of the equation

y=x+1
that lies in the first quadrant and observe that the y axis and the line having
the equation y = x are asymptotes of G1. Someday we will learn that G1 is a
branch of a hyperbola and that the point V on G1 closest to the origin is a vertex
of the hyperbola. Find the coordinates of F and the distance from the origin
to V. Ans.: (2-i', (1 + /)2-34) and V2 2

32 A given circle has radius a. A second circle has its center on the given
one, and the arc of the second circle which lies inside the given circle has length L.
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Prove that L is maximum when an appropriate angle 0 satisfies the equation
cot 0 = 0.

33 A spherical ball of radius r settles slowly into a full conical glass of water
and causes an overflow of water. The glass has height a, and the lines on the
surface of the glass make the angle 0 with the axis of the glass. Find the radius
r for which the overflow is a maximum. Remark: This problem is famous because
it is difficult enough to be remembered and discussed by those who have solved
it. Solution: With or without careful scrutiny of other cases, we suppose that
the ball is neither so small that it can be completely submerged nor so large that
it will fail to be tangent to the glass when it is in its lowest position. Letting
0, C, and B be the vertex of the conical glass, the center of the ball, and the
bottom of the ball, we see that 1OCl = r csc 0 and 15-BI = r(csc 0 - 1). The
submerged segment of the ball has thickness h, where

(1) h = a - r(csc 0 - 1).

The overflow (measured in cubic units) is equal to the volume Y of this segment,
and Problem 2 of Problems 4.59 shows that

(2) Y =rh2(3r - h) = Tr[h2r -h21.

Differentiation gives

(3) h2+2hrdhA A]
-h2 -

= 7rh [ 2r dh + h (1 - dr J J

Using (1) and the formula for dh/dr calculated from it gives

(4)
dY it

[a sin 0 - (sin 0 + cos 20)r].dr sin2 0

Since a sin 0 and (sin 0 + cos 20) are positive when 0 < 0 < 7r/2, it follows that
P is a maximum when

(5)
a sin 0

sin 0 + cos 20

34 When distances are measured in feet, the equation of the path followed
by water projected from our fire hose is

(1 + m2)x2y=mx-
100

where m is the slope of the path at the nozzle which is located at the origin. Find
the value of m for which the water will reach the greatest height on a wall 40 feet
from the nozzle and find the greatest height. Partial ans.: One of the two answers
is 9.

35 Remark: The following big-government problem need not be taken too
seriously; its purpose is to neutralize a problem involving a country that allowed
its unemployed boomerang repairmen to starve to death. Determine the num-
ber of officials that must be supported in a country containing n workers, and
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use the result to determine the population of a Utopian country that minimizes
the burdens which individual workers must bear. Hint: Information about
officers in efficient productive organizations is not relevant, but Parkinson laws
may be used.

36 Find the minimum of the function F for which

F(X) =
(OI

[x2 - (x + X)]2 dx. dns.: qI

5.3 Second derivatives, convexity, and flexpoints In Section 3.6
we called attention to the connection between second derivatives and
accelerations. This section shows how second derivatives can be used to
obtain information about functions and their graphs. To begin the pro-
ceedings, we look at Figure 5.31, which shows the graph of a function for

Figure 5.31

which the derivative (or first derivative) f'(x) and the second derivative
(the derivative of the derivative) f "(x) exist when a < x < b. To get
some ideas, we think of the graph as being a road in a vertical plane upon
which we can travel from d to G, and we take the x axis to be at sea level.
During the whole trip, we are always above sea level. The sign of f(x)
gives us this information. At some times during the trip we are going
uphill, and at other times we are going downhill. The sign of f'(x) gives
us this information. As we travel from A to B, from C to D, and from
B to F we are passing over depressions (or pits), and as we travel from
B to C, from D to E, and from F to G we are passing over humps (or peaks).
As we shall see, f"(x) is our source of information about these things and
about points of inflection or flexpoints B, C, D, E, F at which slopes attain
local extrema.

The two following theorems are obtained by replacing f by f in Theo-
rems 5.26 and 5.27.

Theorem 5.32 If f' is differentiable over a < x < b and a < xo < b,
then f cannot have a flex point at xo unless f"(xo) = 0.

Theorem 5.33 If f is continuous over an interval ao < x S bo and
f"(x) > 0 when ao < x < bo, then f is increasing over the interval ao <
x < bo. If f is continuous over an interval ao < x S bo and f"(x) < 0
when ao < x < bo, then f is decreasing over the interval ao < x < bo.
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The information contained in these theorems is sometimes very helpful
when graphs of given functions f are being drawn. For example, Figure
5.34 shows an application of the first part of this theorem;f"(x) is positive

Slop! increasing
f '(x)> 0

Figure 5.34 Figure 5.35

over an interval and f' (x), the slope, increases from -1 through 0 to +1
as x increases over the interval. Figure 5.35 shows an application of the
second part of the theorem; f"(x) is negative over an interval and f'(x),
the slope, decreases from 1 through 0 to -1 as x increases over the
interval. Sometimes it is helpful to put ideas involving derivatives in the
form

(5.351)
d2y - d dy _ dm _ d slope
dx2 dx (dx dx dx

The important thing to remember is that f"(x) is the derivative of f'(x)
and that a positive second derivative implies an increasing first derivative
and hence an increasing slope, and that a negative second derivative implies
a decreasing first derivative and hence a decreasing slope. It is sometimes
useful and even necessary to know about attempts to describe the dif-
ferences between the arcs of Figures 5.34 and 5.35 in other words. The
first runs through a depression and the second runs over a hump. The
first bends upward and the second bends downward. The first is convex
upward and the second is convex t downward. In the first case, the
chord joining two points on the graph lies above the arc joining the two
points, and in the second case the chord lies below the arc. In the first
case each tangent to the graph lies (at least locally) below the arc, and
in the second case each tangent lies (at least locally) above the arc.

The virtue of the following theorem lies in the fact that it is a "local
theorem" which we can apply without determining signs of functions
over whole intervals and which is therefore sometimes easier to apply
than Theorem 5.28.

Theorem 5.36 If f'(xo) = 0 and f"(xo) > 0, then (as Figure 5.34
indicates) f has a local minimum at xo. If f'(xo) = 0 and f"(xo) < 0,
then (as Figure 5.35 indicates) f has a local maximum at xo.

f In mathematics and optics a point set (which might in some cases be a lens) is convex
if it contains the line segment joining P, and P2 whenever it contains P, and P_. The set
is sometimes said to be concave if it is not convex. When we say that a part of a graph in the
xy plane is convex upward, we mean that the set lying above it is convex; ue do not mean
that the graph is a convex set.
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To prove the first part of this theorem, let f'(xo) = 0 and let f"(xo) = p,
where p is a positive number. Then

lim f'(xo + Ax) - f'(xo) _
AX-0 AX

Let e = p/2. Then there is a positive number S such that f'(xo + Ax)
exists when lAxj < S and

f'(xo + Ax) - f'(xo) p
Ax 2

whenever 0 < jAxi < S. But f'(xo) = 0, and hence

f'(xo + Ax) > 0
Ax

and therefore f'(xo + Ax) and Ax are both positive or both negative when-
ever 0 < jAx! < S. When X o < x < xo + S, we can set x = xo + Ax
and conclude that 0 < Ax < S and f'(x) > 0. When xo - S < x < x0,
we can set x = xo + Ax and conclude that -S < Ax < 0 and f'(x) < 0.
It therefore follows from the last part of Theorem 5.28 that f has a local
minimum at xo. In case f"(xo) < 0, everything is the same except that
some signs are reversed and f has a local maximum at X.

Problems 5.39
1 Sketch a graph of y = 1/x. Calculate dy/dx and d2y/dx' If appro-

priate connections between these things are not immediately clear, there are
only three possibilities: (i) the graph needs repairs or (ii) the formulas for deriva-
tives need repairs or (iii) the text of this section must be studied more carefully.

2 The values of

f(x) =
x

1 + xs

are certainly near 0 when x is near 0 and when jxj is large. Give a full account
of the nature of the graph.

3 Supposing that a, b, and c are constants for which a > 0 and that

f(x) = ax2 + bx + c,

calculate f(x) and f"(x). Show that the only extremum off is a minimum which
is attained when x = -b/2a. Show that the graph off is everywhere bending
upward and that there are no flexpoints.

4 Supposing that a, b, c, d are constants for which a > 0 and that

f (x) = axe + bx2 + cx + d,
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calculate f'(x) and f"(x). Show that the graph of f has exactly one flexpoint
for which x = -b/3a and that f is increasing when x > -b/3a.

5 Show that if the x, y coordinate system is chosen in such a way that the
graph of

y = x3+bx2+cx+d

passes through the origin and has its flexpoint at the origin, then b = d = 0 and

Y = x3 + cx.

Shoe that the graph of the latter equation has no e'trema if c > 0 and has two
local e'trema if c < 0.

6 Starting with the first of the relations

(1) y = (a2 - x2);6f
d2y a2

dx2 - y3'

differentiate twice and obtain the second relation. Then start with the first
of the relations

(2)

(3)

x2+y2=a2, x+yda=0

1+''ax +(ax) =0

and show that differentiating with respect to x gives the others. Use (2) and
(3) to obtain the second relation in (1). Tell why you should expect the sign of
the second derivative to be opposite to the sign of y.

7 Supposing that a and p are given positive numbers and considering posi-
tive values of x and y, use the two methods of the preceding problem to find
d2y/dx2 when

xp + yv = aP.

Make the results agree with each other and, for the case p = 2, with a result of
the preceding problem. Tell why the sign of the second derivative should (or
should not) depend upon p as it does in your answer.

8 Supposing that a > 0 and b > 0, show that the graph of

f(x) = a sin (bx + c)

has a flexpoint wherever it intersects the x axis.
9 Sketch a reasonably accurate graph of the function f for which

f(x) = x sin x

and observe that the graph seems to have flexpoints on or near the x axis.
Show that if (x,y) is a flexpoint, then tan x = 2/x and y = 2 cos x. Remark:
These results show that if (x,y) is a flexpoint for which IxI is large, then tan x is
near 0, sin x is near 0, cos x is near 1 or -1, and y is near 2 or -2.

10 Supposing that is is 10 or 20, sketch the graph of y = sins x over the
interval 0 5 x 5 7r/2 and mark a point which seems to be a flexpoint. Then,
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supposing that n > 1, show that the graph has a flexpoint at the point (xn,yn)
for which

cos xn = 1 or sin xn = 1 -
1\34

and ( 1)n12
n

n= 1-n
Remark: Unless we know about the famous number e, it is still not easy to esti-
mate yn when n is large. When we have learned the first of the formulas

lim 1 + xln = e, lim yn = e 3 = 0.606531,n-- of

we will be able to put x = -1 and take square roots to obtain the second one.
11 This problem, like the preceding one, involves ideas. Supposing that

n > 1 and

(1) y = xn(2 - x)n = (2x - x2)",

show that

(2) dz = 2n(2n - 1)(2x - X2)-2 rx2 - 2x + 2n - 1

and hence that the graph of (1) has a flexpoint at the point (xn,yn) where

xn=1- Zn1 1'
yn=[1-2n1 1]n.

12 Determination of the natures of the graphs of equations like

(1) y4 = x2(1 + x2)

is an ancient and honorable pastime. Observe that if the point (x,y) lies on the
graph, then so also do the points (x,-y), (-x,y), and (-x, -y). If we find the
partG of the graph in the first quadrant, we can therefore use symmetry to obtain
the rest of the graph. Henceforth we consider only points on the graph for
which x >- 0 and y >= 0. For these points,

(2) y = (x° + x2)3+.

To each x there corresponds exactly one y for which the point (x,y) is on G
Moreover, y >_ (x4)3a = x, so G lies on or above the line having the equation
y = x. Show that, when x > 0,

(3)
dy 2x3 + x d2y _ x2(2x2 - 1)
dx 2(x4 + 7x2 4(x4 + x2)%i

Show that the slope is decreasing over the interval 0 < x < 1//, increasing
over the interval x > 1/', and attains the minimum value /62572s at the
flexpoint having the coordinates I/ N/'2- and Show that, when x > 0,

(4) 0 < `x+x2-x= 4 x2 < x2
2
- 1

(1/x4 + x2 + x)( x4 + x2 + x2) (2x )(2x ) 4x
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and hence that the line having the equation y = x is an asymptote of G.
graph of (1) is shown on a small scale in Figure 5.391.

The

Y

I I /
2

-2 -1 / 1 2

00,

1 -21

x

Figure 5.391

13 Determine the natures of the graphs of the equations

(a) y4 = x(1 + x2)
(c) y4 = x2(x2 - 1)

x
(e) y2 = 1 + X2

1

(8) y = (x + 3) (x - 4)

14 Sketch graphs of y

(b) y4 = x(x2 - 1)
(d) y4 = x(1 - x)

x2
2

Y2

=1.+x2

(h) y2 - (x + 3) (x - 4)

= x, y = sin x, and then y = x + sin x. Then make
repairs in the last graph that may be necessary to make it agree with formulas
for the slope and the derivative of the slope.

15 Persons interested in themselves and the surrounding world should not
neglect opportunities to learn about the honorable Gauss (or normal) probability
density function '' defined by the formula

(1)

(x-M)'
0I(x) = 1 e
jr

\/21r o

in which o- (sigma) and M are constants for which a > 0. We should know that
e° = 1, and we can cheerfully accept the facts that

(2) e = 2.71828 , e-34 = 0.60653

We want to determine the manner in which the graph of y = t(x) depends upon
the constants M (which is called the mean of 4)) and v (which is called the stand-
ard deviation of 4)). Show that

1

(x-M)2, as(3) '(x) = -1 (x - M)e 2a' .
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Figure 5.392

Tell why it is true that, as Figure 5.392 indicates, (P is increasing over the inter-
val x <= M, cb is decreasing over the interval x M, 'I has a maximum at M,
and '(M) = 1/'v. Show that

(x-M)2

[(x - M)2 - Q2Je 2,2(4) CD "(x) _
0.5

Tell why it is true that, as the figure indicates, cb'(x) is increasing and the graph
is bending upward when x < M - v and when x > M + v, whereas V(x) is
decreasing and the graph is bending downward when M- a< x < M + o

Finally, show that, as the figure indicates,

(5) (P(M - o) = -1)(M + v) =
0.60653

= 0.60653 (M).
1/2ir or

Remark: The index will tell where this and other bits of information about Gauss
probability functions are concealed. We shall learn that

(6)
I0o

fi(x) dx = 1,

and budding scientists are never too young to start hearing that, in appropriate
circumstances, the number

(7) fab D(x) dx

is taken to be the probability that a number x lies between a and b.
16 Sketch rough graphs of y = cos x, y = 2 cos x, y = cos 2x, and then

(1) f(x) = 2 cos x - cos 2x

over the interval 0 5 x S i. Find the maxima and minima of f and the flex-
points of its graph. Make the results agree.



5.3 Second derivatives, convexity, and fiexpoints 311

17 Make a sketch showing the points (x,y) on the graph of the equations

x=a(4)-sin 0), y=a(1 -cos0)
for which ¢ = 0, 7r/2, ir, 3,t/2, and 2a. Show that the graph is convex downward
at each point for which y ; 0. Remark: The graph is a cycloid. Answers can
be simplified by use of trigonometric identities. Thus

dx

40d = a(l - cos 4)) = 2a sin2
2

d = a sin = 2a sin 2 cos 2

dy sin 4)
0cos 2

= cot T1dx 1 - cos ¢
sin 2

so dy/dx > 0 when 0 < 0 < ir and dy/dx < 0 when Tr < 4, < 27r. Moreover,
since

d d
cos

2 1

dO
cot 2=dt

when sin 2 0 0, we find that

sin 2 2 sin2 2

d dy d 0
d2y dO ax d¢ cot 2
dx2 dx

TO
2a sin2

2
4a sin"

2
when sin

2
54 0 and hence when y 0 0. The slope is therefore decreasing when

y00.
18 Verify that the hypotheses and conclusion of the following theorem are

satisfied when f(x) = sin x, g(x) = (sin x)/x, and a = 7r.
Theorem If a > 0, if f has two derivatives over the interval 0 5 x < a, if

f(0) > 0, if f"(x) < 0 when 0 < x < a, and if g(x) =
f(x)/x, then g is decreasing over the interval 0 < x < a.
Remark: This theorem has a very interesting geometric
interpretation. The hypotheses imply that, as in Fig-
ure 5.393, f(0) >-- 0 and the graph of f is convex down-
ward. The graph can make us feel that, as x increases,
the angle 0 must decrease and hence f(x)/x must
decrease because f(x)/x is tan 0. It is, however, neces-
sary to recognize that feelings and impressions obtained
by looking at one or a dozen figures do not constitute a proof of the theorem.
To prove the theorem, we begin by observing that, when 0 < x < a,

xf'(x) - f(x) = h(x)x2 x2
,
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where h(x) = xf'(x) - f(x). We will know that g is decreasing over the interval
0 < x < a if we can show that h(x) < 0 when 0 < x < a. Since

h'(x) = x f "(x) + f'(x) _ fi(x) = x

our hypothesis that f"(x) < 0 when 0 < x < a implies that h'(x) < 0 when
0 < x < a. Thus h(x) is decreasing over the interval 0 < x < a. Since h is
continuous and h(0) _ -f(0) 5 0, it follows that h(x) < 0 when 0 < x < a.
This gives the conclusion of the theorem.

19 Ideas of this section and the preceding one can be used to obtain informa-
tion about the graphs of the Bernoulli functions Bo(x), Bj(x), B2(x), that
appeared in Section 4.3, Problem 10. We recall that Bo(x) = 1, that

(1) B,',(x) =

(2) fat dx = 0

when n = 1, 2, 3, except that (1) fails to hold when n is 1 or 2 and x is
an integer, and that all of the functions except Bi(x) are continuous. To keep
our task within reasonable bounds, we suppose we know the fundamental fact
that B.(0) = 0, B (--) = 0, and B (1) = 0 when n is odd, that is, when n = 1,
3, 5, 7, . We want to show, without making tedious calculations, that the
miniature graphs of Bj(x), B2(x), , Bs(x) over the interval 0 5 x 5 1
appearing in Figure 5.394 give correct information about the trends and the

B1(x)

Bs(x)

Figure 5.394

B2(x)
v

B3(x) B4(x)

B6(x) B7(x) Bs(x)

zeros of these functions. When (12.384) and related formulas have been studied,
we will be able to see that scales on the vertical axes have been adjusted to make
the graphs visible; it can be shown that 4/(27r)n when n > 1 and hence
that numerical values cannot be estimated from the graphs in Figure 5.394.
Supposing that 0 < x < 1, show that the formulas B'(x) = 1 and foI Bi(x) dx =

0 imply that Bi(x) = x - 'ff and hence that the graph of Bi(x) is correct. Show
that the formula B'2(x) = Bi(x) implies that B2(x) is decreasing over the interval
0 < x < I and is increasing over the interval I < x < 1. Show that this fact
and the formula

o

i
B2(x) dx = 0 imply that B2(0) > 0 and B2(Y) < 0 and hence

that B2(x) has exactly two zeros between 0 and 1. Show that the formula
B'3 (x) = Bi(x) implies that the graph of B3(x) is bending downward over the
interval 0 < x < - and is bending upward over the interval " < x < 1. Show
that the formula B3(x) = B2(x) implies that Ba(x) is increasing over the first
part of the interval 0 < x < 1, is decreasing over a central part, and is increasing
over the remaining part. Tell why B4(x) is increasing over the interval 0 < x <
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and is decreasing over the interval < x < 1, and why B4(x) has exactly two
zeros between 0 and 1. Continue this investigation until general conclusions
about the functions B (x) and their graphs have been reached.

5.4 Theorems about continuous and differentiable functions
It is possible to look at Figure 5.42 and others more or less like it and claim
that these figures provide experimental evidence supporting the follow-
ing theorem of which we shall give a stronger version in Theorem 5.52.

Theorem 5.41 If L is a chord joining two points on the graph of a
differentiable function, then there must be at least one point on the graph at
which the tangent is parallel to L.

There are at least two reasons why this theorem is surprising. It is
thoroughly important, and it is impossible to prove it without making use
of some substantial mathematical machinery that has not yet appeared in
this course. The source of the difficulty
can be stated very crudely by saying that
Theorem 5.41 would be false if there were
"holes" in the set of real numbers so that
the graph of Figure 5.42 contains no points
having x coordinates x, and x2. To prove
Theorem 5.41, and for many other purposes,
we need a property or postulate or axiom a xi x2 b

which guarantees that the set of real numbers
is complete. While several different equiva-

Figure 5.42

lent axioms can be given, the following one involving a fundamental idea
of Dedekind (1831-1916) is in some respects the most natural one to
adopt.

Axiom 5.43 (Dedekind) Let the set of real numbers be partitioned
into two subsets .4 and B (see Figure 5.44) in such a way that (i) each real

a

t

Figure 5.44

number is put into either 14 or B, (ii) each of 4 and B contains at least one
real number, and (iii) if xl is in z1 and x2 is in B, then xl < xv Then
there is a real number (the partition number xi) which is either the
greatest number in A or the least number in B.

Once again we are in a position where we should know something about
our present state and prospects for future development. To attain full
comprehension of the Dedekind axiom, and the manner in which it is
used to prove basic theorems of mathematical analysis, is not a short
task. Experience shows that, except in unusual special circumstances,
it is quite unreasonable to suppose that enough time is available in a first
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course in calculus to explore these matters thoroughly. In order to
understand the proofs, it is necessary to sketch and study illustrations of
various kinds, and progress is very slow. Until considerable experience
has been obtained, it is not easy to reproduce the proofs even after they
have been completely understood. Students who peek at the proofs
can be compared with children of jewelers who peek at the innards of
watches. They start accumulation of knowledge of reasons why things
tick, and the overwhelming importance of getting started must be
recognized by everyone who knows that we toddle and walk before we
run. So far as this course is concerned, it is of primary importance to
understand the axiom and theorems of this section and to cultivate the
habit of formulating and using precise mathematical statements.

We begin a campaign to learn something about continuous functions
and differentiable functions and their graphs by proving the following
theorem.

Theorem 5.45 If f is continuous over an interval a < x < b, then f is
bounded over the interval, that is, there is a constant M such that

If(x)l < M (a<x<=b).
Our proof will use the Dedekind axiom. Let xi be put in A if xi 5 a.

Moreover, let xi be put in -4 if a < xi 5 b and there is a constant Ml
such that I f(x)1 5 Mi when a 5 x < xi. Let B contain all other num-
bers. This determines a Dedekind partition, and we can let be the
partition number. It is easy to see that a 5 t <_ b, but the remainder of
the proof is more delicate. Since f has right-hand continuity at a, we
can let e = 1 and choose a positive number S such thatf(a) - 1 <--_ f(x)
f (a) + 1 and hence If(x) l < Jf (a) l+ 1 whenever a x 5 a + S.
Hence f is bounded over the interval a < x <-- a + S, so a + S belongs to
A and i; ? a + S > a. Our next step is to show that = b. If E < b,
then we have a < t < b as in Figure 5.451. Since f is continuous at ,

A 0 B
b x2

Figure 5.451

a

we can let .E = 1 and choose a positive number 5 such that a < t - S <
+ 5 < b as in Figure 5.451 and Jf (x) l < l f (i;) J + 1 when - 5 <

x S + S. But - 5 belongs to A, so there must be a constant MI
such that Jf(x)J S MI when a S x < t - S. If we let M2 be the greater
of MI and If(t) + 1, then I f(x) S M2 when a < x 5 + S. Therefore,

+ S must belong to A and we have a contradiction of the fact that the
partition number t must be either the greatest number in -4 or the least
number in B. All this shows that i = b, and we are almost finished.
Let e = I and choose a positive number 6 such that a < b - 8 < b and
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If(x) I < f(b) + 1 when b - S < x < b. Since b - & belongs to 4, there
must be a constant M3 such that Jf(x)j < M3 when a S x < b - S. If
we let M be the greater of M3 and l f(b)l + 1, then I f(x)l <- M when
a < x < b. This completes the proof of Theorem 5.45.

To strengthen Theorem 5.45, and for other purposes, we need informa-
tion about upper and lower bounds. A set S of numbers is said to have an
upper bound M1 if x 5 M1 whenever x is inS and is said to have a least upper
bound (l.u.b.) or supremum (sup) M if M - CI--I C7--Iis an upper bound and there is no upper ml m x M M3 x

bound M1 for which M1 < M. Analo- Figure 5.453
gously, S is said to have a lower bound ml
if x > ml whenever x is in S and is said to have a greatest lower bound
(g.l.b.) or infimum (inf) m if m is a lower bound and there is no lower
bound ml for which m, > m. The inequality

(5.452) ml<m_<x<M<M1
shows how these numbers must be related when x is in S, and Figure
5.453 shows a way in which they are sometimes related.

Theorem 5.46 If a nonempty set S of numbers has an upper bound Mi,
then it has a least upper bound. Similarly, if a nonempty set S of numbers
has a lower bound ml, then it has a greatest lower
bound. A B-T-F I

As Figure 5.461 indicates, we make a partition x0Mi
of numbers by putting a number in B if it is an Figure 5.461
upper bound of S and putting a number in !4 if it is
not an upper bound of S. The set B contains M1, and if xo is a number in
S, then A contains the number xo - 1. Let be the partition number.
Let x be a number in S. Then, for each positive number e, x 5 + e.
Hence x <--_ and it follows that t is an upper bound of S. If x' < , then
x' is in .4 and hence x' is not an upper bound of S. Therefore, is the
least upper bound of S. This completes the proof of the first part of the
theorem. The second part is proved similarly.

Theorem 5.47 If f is continuous over an interval a < x <--_ b, thenf(x)
attains minimum and maximum values over the interval at points of the
interval, that is, there exist numbers in, M, xi, and x2 such that a S x1 5
b, a5X2Sb,and

m = f(x1) S f(x) S f(x2) = M

whenever a 5 x 5 b.
To prove the part of the theorem involving M, we use Theorem 5.45 to

conclude that f must have an upper bound M1. It follows from Theorem
5.46 that the set of numbers f(x) for which a S x _<_ b has a least upper
bound which we now denote by M. Then f (x) < M when a <= x <_ b,
and it remains to be shown that there is a number X2 for which f(x2) = M.
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If f(a) = M or f(b) = M, we set x2 = a or x2 = b. Otherwise, assuming
that f(a) < M and f(b) < M, we determine the required number x2
by means of a Dedekind partition. Put a number x' in A if x' S a and
also if a < x' _< b and for some e > 0 the interval a < x 5 x' contains
no point for which f(x) > M - e. Let B contain all other numbers, and
observe that b is in B. Let x2 be the partition number of this partition.
Clearly, f(x2) < M. If we assume that f(x2) < M, say f(x2) = M - eo,
where eo > 0, we can choose a positive number S such that a < xo - S <
x2 + S < b and f(x) < M - eo/2 whenever xo - S < x < x2 + S. The
fact that x2 - S is in .4 will then enable us to draw the erroneous con-
clusion that x2 + S is in A. Therefore, f(x2) = M. This completes the
proof of the part of Theorem 5.47 involving M. To prove the part of the
theorem involving m, we can use an analogous argument. We can,

alternatively and more easily, use the
fact that -f(x) must have a maximum
- m attained when x = x1 and hence that

f(x) must have a minimum m attained
when x = xi.

The following theorem is known as
the intermediate-value theorem; Figure

Figure 5.481 5.481 provides experimental evidence.
Theorem 5.48 If f is continuous over an interval a < x < b and if k

is a constant for which f(a) < k < f(b) or f(a) > k > f(b), then there exists
at least one number s; for which a < t < b and f(i;) = k.

Taking first the case in which f(a) < k < f(b), we prove the result with
the aid of a Dedekind partition. Let x1 be put in A if xl 5 a and also if
a S xl < b and f(x) < k whenever a <_ x < xi. Let x2 be put in B if
x2 ? b and also if a < X2 < b and the interval a 5 x < x2 contains a
number x for which f(x) >--_ k. Let be the partition number. Since
f(a) < k and f has right-hand continuity at a, we can let e = k - f(a)
and choose a positive number S such that If(x) - f(a) I < e and hence
f (x) < k when a< x S a -{- S. Hence a+ S belongs to d and l
a + S > a. A similar argument shows that E < b. Therefore a < i <
b. If we suppose that f(s) > k, then we can choose a positive number S
such that a<i;-6<i;+8<band f(x)>kwhen g-SSx<i+
S. This contradicts the fact that f(x) < k when a < x < i - S and

f(x) > k for some x in the interval a < x < E + S. If we suppose that
f() k, a similar argument leads to a contradiction. Therefore
f Q) = k. A very similar proof covers the case in which f (a) > k > f (b)
and Theorem 5.48 is proved.

In ordinary circumstances we try to be too efficient to clutter our books
and our memories with obvious corollaries and applications of our
theorems, but one corollary of the intermediate-value theorem is so
important that we relax to look at it. If a function f is negative at x1
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and is positive at x2, and if f is continuous over the closed interval having
end points at x, and x2, then there must be at least one x3 between x, and x2
for which f(x3) = 0. This implies that the graph of a continuous function
f cannot run from a point (xi,yi) below the x axis to a point (x2,y2) above
the x axis without intersecting the x axis at a point (x3,0) for which x3
lies between xi and x2. Instead of asking whether this result is "obvious,"
we can ask whether it is obvious that a man cannot walk from the Capitol
of South Dakota to the Capitol of North Dakota without stepping upon
the common boundary of the two Dakotas.

Problems 5.49
1 With the text of this section out of sight, try to produce adequate responses

to the following orders; if unsuccessful, study the text again and try again.

(a) Write a full statement of the Dedekind axiom.
(b) Write a theorem which gives precise information about boundedness of con-

tinuous functions.
(c) Write a theorem which gives precise information about extrema of con-

tinuous functions.
(d) Write a full statement of the intermediate-value theorem.

2 Using known properties of the function f for which f(x) = x2, show how
the intermediate-value theorem (Theorem 5.48) can be used to prove that there
is a positive number t for which t2 = 2. Give all of the details, recognizing
that Theorem 5.48 cannot be applied until appropriate values of a and b have
been captured.

3 Modify the work of the preceding problem to prove that there must be
at least one x for which f (x) = 0 when

(a) f(x) = x3 - 7 (b) f(x) = x3 - x - 7
a

(c) f(x) = 1 +
x2

- 40 (d) f(x) = x - cos x

4 Letting

(1) f(x) = 1+x+x2+x3+x4,
determine whether there are any numbers x for which f(x) < 0. Hint: Use the
fact that f(1) = 5 and

(2)

xb - 1
f(x) = x - 1 (x 0 1).

Show that x5 = 1 only when x = 1, so f(x) is never zero and hence f(x) is never
negative.

5 Let f be defined over the closed interval -1 < x 5 1 by the formulas
f(0) = 0 and f(x) = 1/x2 when -1 5 x 5 1 and x F& 0. Show that there is no
constant M such that Jf(x)1 5 Mwhen -1 5 x S 1. Solution: Suppose, intend-
ing to establish a contradiction of the supposition, that there is a number M
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for which If(x) 1 5 M when -1 5 x 5 1. Let x = 1/ lam. Then x F-- 0
and-1-<-<x<_1,butf(x)=1/x2=IMI+ 2, so lf(x)l>IMI>M.

6 Read Theorem 5.45. Then construct a figure which illustrates the mean-
ing of the following remark. If a < b and M > 0, then condition

(1) I.f(x)I < M (a<x<b)
is satisfied if and only if f is defined over the interval a 5 x S b and the graph of
y = f(x) over the interval a < x < b lies between the graphs of the lines having
the equations y = -111 and y = M. Note that this gives a "geometrical mean-
ing" to Theorem 5.45. Note that the inequality (1) holds if and only if M > 0
and-M<f(x)<MwhenaSx<_<b.

7 Sketch a graph of the function f for which f(0) = 0 and f(x) = 1/x when
x 0 0 and -1 < x 5 1. Show that there is no M such that the graph of f
over the interval -1 5 x <= 1 lies entirely above the line having the equation
y= -M.

8 Give an example of a function which has an upper bound over the interval
-1 <= x < 1 but has no lower bound.

9 Show that the function f for which f(x) = x has upper and lower bounds
over the open interval 0 < x < 1 but possesses neither a maximum nor a mini-
mum over this interval.

10 Show that the function f defined over the closed interval 0 5 x < 2 by
the formula

AX) = x - [x],

in which [x] denotes the greatest integer less than or equal to x, has an upper
bound but does not have a maximum.

11 Prove that there is a number x* for which a < x < b and f'(x*)
[f(b) - f(a)]/(b - a) when

(a) f(x) = x2, a = 0, b = 1
(b) f(x)=xe-7x2+3x+40,a=-1,b=1

12 Without undertaking extensive calculations that are easily made when
appropriate computing equipment is available, we call attention to the Newton

(1642-1727) method by which zeros of reasonable
functions are approximated in decimal form.
The method is based upon the elementary obser-
vation that, in many cases more or less like the
one shown in Figure 5.491, if x, (where n may
initially be 1) is a reasonably good approximationx x to a number z for which f (z) = 0, then the tangent

Yn+1 to the graph of y = f (x) at the point (x,,, f
Figure 5.491 will intersect the x axis at a point (xn,+i,0) for

which x,+a is a much better approximation to z.
The Newton method is normally applied in cases where f has many continuous
derivatives and f'(x) 0 0 when x is near z but x 9& z. In such cases the equation
of the tangent at (x,,, f(x.)) is

y - AX-) - J'(x,,)(x - x)



5.4 Theorems about continuous and differentiable functions 319

and setting y = 0 gives

AX-)xn.F.I = xn
f,(xn)

When the method is applied, we start with a first approximation x1, set n = 1
to calculate a second approximation x2, set n = 2 to calculate a third approxima-
tion x3, and so on. To test the Newton method and understanding of it in situa-
tions where computations are not too onerous to be done with a pencil, calculate
x2 when

(a) f (x) = x2 - 2, x3 = 1.4
(b) Ax) = x3 - 20, x1 = 3
(c) f(x) = x4 + x - 20, x1 = 2
(d) f(x) = x4 + 5x - 50, x1 = 2

13 It is not always easy to tell what is obvious and what is not, the funda-
mental difficulty being that some things that have been thought to be "obviously
true" are false. Consider, for example, the "obvious" statement that "each
finite set of numbers contains a greatest element." If, as is usual, the empty
set is considered to be a finite set, the statement is false. Consider, then, the
revised statement "each nonempty finite set S of numbers contains a greatest
element." Is this obviously true? Let n be a positive integer and let the num-
bers be x1, x2, x3, - -

. , xn. The only thing we know about these things is that
they are numbers. One possible method of attacking the problem starts with
a comparison of x1 and x2. If x1 < x2, we discard x1 and consider the remaining
set, but if x2 < x1, we discard x2. Instead of employing this "finite mathematics,"
we introduce some "infinite mathematics" that will make us think about least
upper bounds. The fact that xk S I xkl for each k implies that

xk s Ixil + IX2I + . . . + Ixnl

for each k. Hence the set S has an upper bound, and it follows from Theorem
5.46 that the set has a least upper bound M. If there is a k for which xk = M,
then this xk must be a (or perhaps the) greatest element of S. If we suppose
that there is no k for which xk = M, and hence that xk < M for each k, we can
obtain a contradiction of the hypothesis that S contains only n elements. To do
this, let y1 be an element of S. Then yI < M and there must be an element y2
of S for which yI < y2 < M. The same argument shows that there must be an
element y3 of S for which y2 < ys < M, and so on. We run into a contradiction
of the assumption after we have used n elements of S. This proves that the set
S does contain a greatest element and provides the possibility that schemes for
finding "it" might even work.

13a Remark: To put the following problems and their consequences upon
a rigorous base, we should have a definition of the set S, of positive integers.
This set S, can be defined to be the subset of the set S of positive real numbers
for which the number 1 is the least element in SI; a + b is in S1 whenever a and
b are in Si; b - a is in SI whenever a and b are in S1 and a < b. It follows from
this that if a and A are numbers for which 0 < a < 1, then the interval a 5 x <
a + A can contain at most one integer.
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14 Prove the Archimedes property of numbers: if e > 0 and a > 0, then there
is an integer n for which ne > a. Solution: Suppose ne 5 a for each n. Then
the set S of numbers e, 2e, 3e, is nonempty and has an upper bound. Hence
S must have a least upper bound M. There must be an integer m for which
me > M - e. Then (m + 1)e > M, and hence M is not an upper bound of S.
This contradiction proves that there is an n for which ne > a.

15 Prove that each nonempty set of positive integers contains a least element.
Solution: Let S be a set of positive integers. Since S is nonempty and has the
lower bound 1, S must have a greatest lower bound in. Let 0 < e < '. The
interval m < x < in + e must contain an integer n in S, since otherwise m + e
would be a lower bound greater than in. Since the interval has length less than
4 and cannot contain two integers, it follows that n is the one and only integer
in S which is less than m + e. Therefore, n is the least integer in S. Remark:
The fact that each nonempty set of positive integers contains a least element
will now be used to prove the following principle of mathematical induction. If
a particular assertion involving a positive integer k is true when k = 1, and if the
assertion is true when k = n + I provided n ? I and it is true when k = n, then
the assertion is true for each positive integer. Let T be the set of positive integers
for which the assertion is true, and let F be the set for which the assertion is
false. If F is nonempty, then F must have a least element m which is a positive
integer greater than 1. Then m - 1 must be in T and our hypothesis gives the
conclusion that m is in T. Thus m is in both F and T and (on the basis of the
tacit assumption that we are dealing with statements that are either true or
false but not both) we have a contradiction that proves that F is empty. There-
fore, T contains each positive integer and the assertion is therefore true for each
positive integer.

16 Prove that if x is a number, then there is an integer n for which n 5 x <
n + 1. Remark: This property of numbers was mentioned in Section 1.1, and
the integer n is [x], the greatest integer in x. Solution: Suppose first that x > 2.
Using the Archimedes property of real numbers (Problem 14) with e = 1 and
a = x shows that the set S of integers greater than x is a nonempty set of positive
integers. Hence, as Problem 15 shows, S must have a least element m. Then
x < in, but the inequality x < m - 1 must be false because otherwise m would
not be the least element of S. Therefore, in - 1 S x < in and we obtain our
result by setting it = m - 1. In case x <= 2, we can choose an integer k such
that x + k > 2. Letting m be an integer for which in < x + k < m + 1, we
find that m - k is an integer n for which n S x < n + 1.

17 Prove that if x is a number and n is a positive integer, then there is an
integer k for which

k<x<k-i 1
n n

Remark: In case m is a nonnegative integer and n = 10-, the result shows how
x is related to "finite decimals." Proof: Problem 16 shows that there is an
integer k for which

k5nx<k+1,
and the result is obtained by dividing by n.
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18 Prove that if x is a number, then there exist an integer N and a sequence
d1, d2, d3, of digits (a digit being one of the integers 0, 1, 2, , 9) such
that

dl d2 d
(1) N+10+102+ -10-1+1Onsx

d, d2 do-1 do + 1
< N +

10 + 102 + ... + 10n-1 + 10^

for each n = 1, 2, 3, . Solution: Let N = [x], so that N is the greatest
integer in x, and let 0 = x - N. Then 0 5 0 < I and the required result will
follow if we prove that there exist digits d1, d2, da, such that

(2) 10 + 02 + .. .

for each n = 1, 2, 3,

(3)

do-1 do

10-1 10,

2 0+<10+ d2 do-1 do + 110n-1 +
10,

. To prove (2), it is sufficient to prove that

n

05 9-1o- 022- ... 0n<iOn-

While it is of interest to take time to use (2) to determine what dl, d2, da, . . .

must be if they exist, we save time by defining integers d,, d2, da, by the
formulas

(4)

(5)

(6)

and, in general, for

(7)

Since 0 <= 0 <
over,

d, = [100]
l1d2 = [102(0 OIJ

d3 =[10a(6-10 1021

each n=1,2,3, .

pn)J

1, we find that 0 5 106 < 10 and hence that d, is a digit. More-

d, 5 100 < d, + l

056-10<10'

so (3) holds when n = 1. Multiplying (9) by 102 gives

(10) 05102(0-10)<10.
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Hence (5) shows that d2 is a digit and

(11) d2<102(B-ip)<d2+1.

Dividing by 102 and transposing give

(12) 0<8-10- d2 1

so (3) holds when n = 2. This procedure enables us to prove (3) by induction.
If d1, d2, d are digits and (3) holds, then

n

(13) 0<10n+'(8-10
U22 ... lp")<10

and (7) shows that d"+1 is a digit and

(14) d"}1<10n+1(0- -- d2 ...
10 102

Dividing by 10n+t and transposing give the result of replacing it by it + 1 in (3).
This proves (3) by induction, that is, by use of the principle of mathematical
induction of Problem 15.

19 Let F(8) be the temperature or pressure at the place P where a circle
having its center at the origin of an x,y coordinate system is intersected by the
ray from the origin which makes the angle 0 (as in trigonometry) with the positive
x axis. It is supposed that F is continuous and F(8 + 2a) = F(8) for each 0.
Prove that there are two diametrically opposite points of the circle at which F
has equal values. Hint: Apply the intermediate-value theorem to the function
f for which f (8) = F(8) - F(8 + a). Observe that if f (Bo) > 0, then f (0o + a) =
-f(8o) < 0. Remark: While we do not yet have equipment required for proof,
we can learn an interesting property of continuous functions defined over sur-
faces like spheres. There are two antipodal (or diametrically opposite) places
on the surface of the earth having both equal temperatures and equal atmos-
pheric pressures.

20 Suppose that a world has existed so long and so favorably to fish that an
infinite number of fish have existed but that only a finite number of fish have
existed at any one time because the world contains only a finite number of atoms.
Prove that there is a least number mo such that the mass m (measured in some
standard system) of each past and present and future fish is less than or equal to
mo.

21 It is easy to presume that if f is differentiable over the interval -1 S x < 1
and if f'(0) = 1, then there must be a positive number Is such that f is increasing
over the interval -h 5 x S h. Use the function f for which f(0) = 0 and

f(x) = x + x2 sin x= (x 3-1 0)

to show that the presumption is false. Hint: Show that f'(0) = 1 and that,
when x 0 0,

f'(x) = I + 2x sin 1

Z
- z cos xi
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Observe that if n is a positive integer and x = 1/-\/2na, then

I - 2 2nr.

It follows that each interval 0 < x < h contains subintervals over which f' (x) < 0
and f is decreasing.

22 Boom-and-bust processes occur (or seem to occur) in economic and political

life. Persons who get their political information from clever press secretaries
of astute chiefs of state discover that the fortunes of their countries are at low
ebbs when new chiefs are installed and that these fortunes steadily improve
during the tenure of each chief. Such processes occur in electrical engineering
when a charge on a capacitor steadily increases until a spark jumps and the charge
disappears. This problem involves a particular boom-and-bust process in which
a and q are positive constants. It is supposed that, for each integer n, the
quantity y is 0 when t = na and that y increases at a constant rate over the inter-
val na 5 t < (n + 1)a in such a way that y approaches q as t approaches (n + 1)a
from the left. Sketch a graph of y versus t and find a formula giving y in terms
of t. Partial ans:

y=qa-LaJ/,
where [x] denotes the greatest integer in x.

23 While persons confining their mathematical contacts to modern mathe-
matics books need not worry about the matter, others may need a warning.
In the good old days, the word "finite" was used in place of the word "bounded."
In order to understand assertions involving the word finite, it is sometimes not
sufficient to understand modern mathematics. Sometimes we need substantial
information about history, and sometimes we need conscious recognition of the
fact that assertions involving the word "finite" have different meanings at different
places and at different times. For example, the assertion that "f is finite at xo"
can mean that there is an interval with center at xo such that f is bounded over the
interval. The assertion can, however, have other meanings, and this is the
reason why we should shudder when we hear it.

24 A function f is said to have a generalized first derivative Gf'(x) at x if

(1) G f'(x) = l o f(x + h) - f(x - h)

and is said to have a generalized second derivative Gf'(x) at x if

(2) Gf"(x) = lim f (x - h) - 2f (x) + f(x + h)
h2

Prove that Gf'(x) = f'(x) when f'(x) exists. Hint: Use the fact that

(3)
f(x -I h) - f(x - h) 1 rf(x + h) - f(x) +f(x - h) - f(x)

2h ZL Is

Remark: The wide world contains several persons who have sharpened their wits
by trying to answer two questions which are not guaranteed to be easily answered.
Does the hypothesis that Gf'(x) = 0 when a < x < Is imply that there is a
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constant c for which f(x) = c when a < x < b? Does the hypothesis that
Gf"(x) = 0 when a < x < b imply that there are constants cl and c2 for which
f(x) = cix + C2 when a < x < b?

5.5 The Rolle theorem and the mean-value theorem In this
section we prove some fundamental theorems and use them to review and
prove some theorems that have been previously given without proof.
The following theorem must be permanently remembered and known as
the Rolle (Michel, 1652-1719) theorem. It is not to be presumed that
Rolle proved or even knew this theorem, but he did discover some of its
applications to polynomials.

Theorem 5.51 (Rolle theorem) If a < b, if f is continuous over
a =< x <_ b, if f is differentiable over a < x < b, and if f(a) = f(b) = 0,
then there is at least one number x* for which a < x* < b and f'(x*) = 0.

The proof of this theorem is mildly tricky because it seems to be
necessary to consider three different cases. Suppose first that f(x) = 0
over the whole interval a < x <_ b. Then f'(x) = 0 when a < x < b
and we can choose x* to be any number between a and b. Suppose next
that there is a number x1 for which a < xl < b and f(xl) > 0. Then
with the aid of Theorem 5.47 we see that f must attain a positive maxi-
mum f(x*) at some point x* for which a < x* < b, and we can be sure
that a < x* < b because f(a) = f(b) = 0. Since f' (x*) exists, it follows
from Theorem 5.26 that f' (x*) = 0. Suppose finally that there is a
number x2 for which a< x2 < b and f(x2) < 0. Arguments similar to
those used above then show that f must have a negative minimum at
some point x* for which a < x* < b and that f'(x*) = 0.

The following theorem is known as the law of the mean or the mean-
value theorem of the derivative calculus. It is a strengthened version of
Theorem 5.41, which we have discussed briefly, the right member of
(5.53) being the slope of the chord joining the points (a, f(a)) and (b,
f(b)). It, like the Rolle theorem, must be permanently remembered.

Theorem 5.52 (mean-value theorem) If a < b, if f is continuous
over a < x < b, and if f is differentiable over a < x < b, then there is at
least one number x* for which a < x* < b and

- f(a)(5.53) fF(x*) =
f (bb

a

or

(5.54) f (b) - f (a) = f' (x*) (b - a).

This theorem differs from the Rolle theorem because it is not assumed
that f(a) = f(b) = 0. It happens, however, that the theorem can be
proved by applying the Rolle theorem to the function 0 defined by
O(x) = f(x) - g(x), where g is the function whose graph is the chord



5.5 The Rolle theorem and the mean-value theorem 325

Figure 5.55

joining the points (a, f(a)) and (b, f(b)) of Figure 5.55. The point-slope
form of the equation of a line gives the formula

(5.561) g(x) - f(a) = f(b b - f(a) (x - a)
a

in which g(x) appears instead of the more familiar y. Hence,

(5.562) 0(x) = f(x) - f(a) - f(bb)b -
af

(a) (x - a)

when a<x5band

(5.563) 4'(x) = f' (x) - f(bb - a(a)

when a < x < b. It is easily seen that 0 satisfies the hypotheses of the
Rolle theorem. Choosing x* such that a < x* < b and q5'(x*) = 0 gives
the required conclusion (5.53). Multiplying by (b - a) then gives
(5.54), and Theorem 5.52 is proved.

Theorem 5.57 If f is continuous over a < x <_ b and f(x) = 0 when
a <x <b,then f(x) = f(a) when a <x <b.

To prove this theorem, we note first that f(x) = f(a) when x = a. If
a < xi < b, we can apply the mean-value theorem to the interval
a < x S xi to conclude that there is a number x* for which a < x* < xi
and

f (xi) - f (a) = f (x*) (xi - a).

But f'(x*) = 0 and hence f(xi) = f(a). Therefore, f(x) = f(a) when
a < x 5 b and Theorem 5.57 is proved. It follows from this theorem that
if two functions Fl and F2 have the same derivative over an interval, say
Fi(x) = F2(x) = g(x) when a < x < b, and we put f(x) = F2(x) - Fi(x),
then f'(x) = 0 when a < x < b so f(x) must be a constant c and

Fs(x) = Fi(x) + c

when a 5 x < b. This proves Theorem 4.13.
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We now prove Theorem 5.27 the first part of which says that if f is
continuous over an interval ao 5 x < bo and f' (x) > 0 when ao < x < bo,
then f is increasing over the interval ao < x < bo. Let ao < x1 < x2
bo. The mean-value theorem guarantees existence of a number x* such
that xi < x* < x2 and

f(x2) - f(xi) = f'(x*)(x2 - XI)-

But f'(x*) > 0 and (X2 - x1) > 0, so f(x2) - f(xi) > 0. Thus f(x2) >
f (xi) and f is increasing. For the second part of Theorem 5.27, every-
thing is the same except that f' (x*) < 0 and f is decreasing.

The following theorem expresses the fact that if a function f is con-
tinuous over a closed interval a 5 x < b, then it is uniformly continuous
over the interval.

Theorem 5.58 If f is continuous over a closed interval a -<_ x < b, then
to each e > 0 there corresponds a S > 0 such that

I f (xi) - f(x2) I < e

whenever a<xi<b,a<X2<b,and 1x2-x1I <S.
While neater proofs of this theorem can be given in advanced calculus

after more mathematics has been digested, there is virtue in knowing that
it is possible to base a proof upon a straightforward application of the
Dedekind axiom 5.43. The bookkeeping by which we inch along toward
the answer is really very elementary, and students who have the patience
to see that this is so are very likely to become the leading scientists of the
future. Let e be a given positive number. Let a number x be placed in
the set 4 if x 5 a and also if a < x < b and there is a positive number S
such that If(X2) - f (xi) I < e whenever a <--_ xl S x, a < x2 < x, and
Ix2 - x1I 5 S. Let B contain each number x not placed in A. Let t be
the partition number. Clearly, a < < b. Since f is continuous at a,
we can choose a positive number Sl such that I f(x) - f(a)I < e/2 when-
ever a 5 x < a + S. Then

If(X2) - f(xi)I = ILf(xz) - f(a)] - [f(xi) - f(a)] I

< If(x2) - f(a)I + If(xi) -f(a)I < + 2 < e

whenever a < xi 5 a + 51, a < X2 <= Sl, and Ix2 - xiI <--_ Sl. Therefore,
a + S1 belongs to I and it follows that t > a. Our next step is to prove
that Z = b by obtaining a contradiction from the assumption that
a < < b. Suppose, then, that a < < b. Since f is continuous at ,

we can choose a positive number 52 such that a < - S2 < + S2 < b
and If(x) - f(t) I < e/2 whenever Ix - fl < 62. Moreover, since - S2
must belong to -4, we can choose a positive number S3 such that as < S2
and If(X2) - f (xi) I < e/2 whenever a < XI G - 82j a < x2 <

r
S2,

and Ix2 - xiI < S3. Now suppose that a < xi < + S2, a < X2 < t
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S2, and Ix2 - xil < Ss. We may suppose that xi 5 X. If xi and x2
both lie in the interval Ix - I 5 S2, then If(x2) - f(xi)I < e. If xi and
x2 both lie in the interval a <-- x S_ - 32j then again l f(x2) - f(x')I < e.
If a C xi < - S2 and - S2 < x2 < E + S2, then

I f(x2) - f(xi) I = If(X2) - f( - S2)I + lf( - S2) - f(xi)I < 2 + 2 = e.

Thus, in each case, If(X2) - f (XI) I < e, so + S2 is in A and cannot be
the partition number. This contradiction shows that E = b, but to
complete the proof of the theorem, we must show that b is in the set A.
Since f has left-hand continuity at b, we can choose S' > 0 such that
a < b - S' < b and l f(x) - f(b) I < e/2 whenever b - S' S x < b.
Since b - S' must belong to A, we can choose a positive number S such
that S < S' and If(x2) - f (xi) I < e/2 whenever a <-- xl < b - S', a 5
X2 5 b - S', and lx2 - xii < S. Arguments used above show that
If(s) - f(xi) I < e whenever a G x1 5 b, a C X2 < b, and Ix2 - xi I < S.
This completes the proof of Theorem 5.58.

Problems 5.59
1 With the text out of sight, write completely accurate statements of (a)

the Rolle theorem, (b) the mean-value theorem.
2 Sketch several graphs that seem to be graphs of functions satisfying the

hypotheses of the Rolle theorem, and see whether it seems to be true that the
star points exist.

3 Sketch several graphs that seem to be graphs of functions which, for one
reason or another, do not satisfy the hypotheses of the Rolle theorem but never-
theless it seems to be true that star points exist anyway.

4 Sketch several graphs that seem to be graphs of functions which, for one
reason or another, do not satisfy the hypotheses of the Rolle theorem and star
points do not exist.

5 Tell why there is no request for construction of graphs of functions that
satisfy the hypotheses of the Rolle theorem and star points do not exist.

6 Prove that if F(x) > 0 when a < x < b, then there is at most one x
for which a < x < b and F(x) = 0. Solution: If we suppose that a < x, < x2 <
b and F(xi) = F(x2) = 0, an application of the Rolle theorem yields the con-
clusion that there is a number for which x1 < < x2 and F'() = 0. This
contradicts the hypotheses and the result follows.

7 This problem requires us to review fundamental processes of the calculus
whose validity depends upon Theorem 5.57. Supposing that f and g are func-
tions defined and continuous over an interval containing the point x = a and
that

(1) f'(x) = g(x), f(a) = A,

we can then write

(2) AX) = ta(x) dx + c,
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where fg(x) dx stands for some particular function whose derivative is 9(x), and
then so determine c that f(a) = d. We can also determine f from the formula

(3) f(x) = f(a) + f aXf' (t) dt

in which the integral is a Riemann integral. Determine f in two different (or
superficially different) ways by using (2) and by using (3), and make the results
agree, when

(a) f'(x) = 2x, f(2) = 3 (b) f'(x) = sin ax, f(O) = 0

(c) f'(x) = cos ax, f(0) = 0 (d) f'(x) = eaX, f(0) = 1

(e) f(x) = z f(2) = 3 (f) f' (x) = /, f(4) = 0

8 Prove that if u and v are functions that have continuous derivatives over
an interval I containing a and x, then

fax u(t)v'(t) dt = u(t)v(t) ]a - f ax n(t)u'(t) dt.

Hint: Let FI(x) and F2(x) denote the left and right sides of the formula. Then
show that FI(a) = F2(a) and that Fi(x) = F'2(x) when x is in I.

9 Iff(0) =0and
x27fi(x)

27 + X27'

the result of writing formula (2) of Problem 7 as an aid to finding f(1) is rather
(or more) futile, but we can write a version of (3) and undertake to estimate
f(l). Do it.

10 Sketch a graph over the interval 0 5 x S 1 of the function f for which
f(x) = x2. Let e = g. Use your eyes to select a 3 > 0 such that If(X2) - f(x1)j
< e whenever 0 5x1 <= 1, 0 5x2 5 1, and 1x2 - x11 < S. Note that if this f
were the only continuous function, we would not need to work so long to prove
Theorem 5.58.

11 Supposing that f has a continuous derivative over the interval a < x <= b,
show that the functions F and C for which

F(x) = f(a) + fax [1 + f'(t) + if'(t)!] dt

G(x) = fax [1 - f' (t) + If'(t)I] dt

are both increasing over the interval a 5 x <= b and

f(x) = F(x) - G(x).

Remark: This problem contains an important idea. It is sometimes useful to
know about the possibility of representing a given function as the difference of
two increasing functions.

12 Prove the following theorem, which is known as an extended (not gen-
eralized) mean-value theorem or as a Taylor theorem.
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(1) Theorem If f is such that f" exists over an interval containing a and x,
then there is at least one number x* between a and x such that

i a ii x*
f(x) = f(a) -I- (x - a) + f 2 !) (x - a) 2.

g(t) =f(x) - f(t) - j;) (x-t)-2 (x-t)2,

where C is a constant chosen such that ¢(a) = 0. Then ¢(a) = ¢(x) = 0 and
the other hypotheses of the Rolle theorem are satisfied. The Rolle theorem
therefore furnishes a number x* between a and x for which t'(x*) = 0. Thus,

(4) 0'(x*) _ -f'(x*) + f' (x*) - f"(x*)(x - x*) + C(x - x*) = 0.

Therefore, C = f"(x*). Since ¢(a) = 0, we can put t = a in (3), equate the
result to 0, and transpose to obtain the required formula (2). Remark: With the
additional hypothesis that the second derivative f" is continuous, we shall use
integration by parts in Section 12.5 to obtain more straightforward derivations
of (2) and related formulas.

13 This problem requires attainment of understanding of matters relating to
the following generalized mean-value theorem which involves two functions.

(1) Theorem Let f and g be continuous over the closed interval from a to x,
let f and g be differentiable over the open interval from a to x, and let the derivative g'
be different from zero over the open interval from a to x. Then there exists an x*
in the open interval from a to x such that

(2) f(x) - f(a) -_ f'(x*)

g(x) - g(a)
g'(x*)

We assume that f and g are given functions satisfying the hypotheses of the
theorem. Two applications of the mean-value theorem then show that there
exist numbers xi and x2 between a and x such that

f(x) - f(a)

(3) f(x) - f(a) - x - a f'(xi),

g(x) - g(a) g(x) - g(a) g (x2)
x - a

While this result can be useful, it is crude because xi and x2 are not necessarily
equal. We obtain the more useful and elegant result (2) by arranging our work
to make a single application of the Rolle theorem. The trick is to define a new
function ¢ by the formula

(4) O(t) _ [f(x) - f(a)][g(t) - g(a)l - [f(t) - f(a)I [g(x) - g(a)1

It is easy to see that q 5(a) = O(x) = 0 and that the other hypotheses of the Rolle
theorem are satisfied. Hence the Rolle theorem implies that there is a number
x* between a and x for which

(5) 0'(t*) = U(x) - f(a)]g'(x*) - f'(x*)[g(x) - g(a)l = 0,
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and the desired formula (2) follows from this. The generalized mean-value
theorem has numerous applications, including the following one. Since x* lies
between a and x, (2) implies that

(6) lim f(x) - f(a) = lim f W
x-.a g(x) - g(a) x-+a g, (x)

provided the limit on the right exists.
For the special case in which f(a) = g_(q) = 0, (6) reduces to the famous and

useful L'Hopital formula

(7) lim f(x) = lim f, x)
x-+a g(x) x-.a g'(x)

which, like (6), is correct when the limit on the right exists.t In this case the
quotient f(x)/g(x) is said to be "an indeterminate form of the form 0/0 when
x = a." The formula (7), which gives a method for finding limits of "indeter-
minate forms," is called "the L'H6pital rule for evaluation of indeterminate
forms." Stories about "evaluation of indeterminate forms" will not injure us
if we resolutely remember that we sometimes find limits but that we never
evaluate 0/0. When we apply the L'Hopital formula (7), we must not fall asleep
at the switch and write the derivative of the quotient f(x)/g(x); we write the
quotient of the derivatives. The following rather simple examples show how
the formula is applied:

(8)

-hmxs

lim x=2
X--.l x - 1 x-.1 1

lim
sin x = Iim cos x = 1

x-.o X u-.o 1

lim 1 - cos x = lim sin x = 0
X--,O X Z- O 1

1-lim cos x = lim sin x = lim cos x 1

x-.o x2 x-.o 2x x--.o 2 2

= 1limex-1=limex

x-.o x -.0 1

lim ex - 1 - x = lim ex - 1 = lim ex = 1

x-.o x2 x-.o 2x o T 2

lim 1 1l lim x - sin x
x-.o (sin x xl x-.o x sin x

lim
1 - cos x = lim sin x = 0 = 0.

x-0xcosx+sinx x-.o2cosx-xsinx 2

14 Show that

lim nx"+1 - (n + 1)x" + I - n(n + 1)
x-.1 (x - 1) 2 2

t Guillaume Francois de 1'Hospital (1661-1704) introduced this formula in a book
.dnalyse des infeniment petits pour intelligence des lignes courbes (Paris, 1696, 182 pp.) which
enjoyed widespread popularity. While there can be objections to tinkering with names of
people, most authorities insist that we must accept evolution from l'Hospital to L'Hopital
quite as cheerfully as we accept evolution from hostel to hotel. Even counterrevolutionists
must recognize that the name is spelled in different ways.
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15 Supposing that n is a positive integer and x ; 1, differentiate

- 1
(1) 1+x+x2+x3+. +x' =

xntl
x-1

to obtain

(2) 1 + 2x + 3x2 + . + 0x0-1 =
nxn+1 - (n + 12)x0 + 1

(x - 1)
Multiply by x and differentiate again to obtain

(3) 12 + 22x + 32x2 + . + n2xn-1

_n2xn+2 - (202 + 2n - 1)x0+1 + (n + 1)2x0 - x - 1
(x - 1)a

Finally, take limits as x -- 1 to obtain the formula

(4) 12+22+32+ +n2= n(n + 1)(2n + 1)
6

Remark: We could multiply (3) by x and differentiate and continue the process
to obtain formulas for sums of cubes and higher powers. The details mushroom
rapidly as we proceed.

16 Another L'Hopital rule is embodied in the following theorem.
(1) Theorem If f and g are differentiable over the infinite interval x Z xo

and if

(2) lim f(x) = oo, lim g(x) = co,

then

(3) Jim f (z) = Jim f ' (x)'- g(x) x-.- g'(x)

provided the limit on the right exists.
To prove this theorem, suppose that the right member of (3) exists and is L.

Let

(4) O(x) = f(x) - Lg(x).

Then

(5) lim
Y(x) = Jim f'(x) - Lg'(x) = 0.

X-.- g'(x) x-.- g'(x)

Let e > 0. Choose x1 such that x1 > xo, g(x*) > 0 when x* '-::t xi, and

(6)
I

'(x*)(x*) <
2

e (x* > xi).

It then follows from the generalized mean-value theorem of Problem 13 that

(7) Ox- O(xi) < eI

g(x) - g(xl)
I

2
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Choose x2 such that x2 > x, and g(x) > g(xi) when x > x2. It then follows
from (7) that

(8)
O(x) - O(xt) e

g(x) 2 (x > x2).

Choose x3 such that x3 > X2 and j(k(x,)/g(x)j < e/2 when x > x3. Then

(9) I O(x)
g(x)

ct(x) - 0(xi) 0(xi)
g(x) + g(x)

fi(x) - -P (X1)
Hg(x)

when x > x3. Therefore,

r
(10) lim Lg(z) - L] = 1' m g z) = 0,

q(x!) < eg(x)

and this gives the required conclusion (3) which involves "indeterminate forms
of the form ao / oo." The following rather simple examples show how the theorem
is applied.

(11) lim x = lim 1 = 0
xti,e x2+1 X_. 2x

(12) lim 3
x" = lim z x = lim ? = 0X- X+ x+1 x-..3z +1 X_

.T-

(13) lim x + x = lim 1 + ix = 1X-.. x+1 x-
(14) lim log x = lim X-1 = lim - = 0 (p > 0)

X-+. X3, x- x___1 x_, pxP

(15) lim t log t = lim flog 1 = lim -log x = lim i/x = 0.
a--.W X x x-. W x x-. ao

Remark: Limits of functions of other types can be found by using the above
formulas. For example, to find lim xx, we put y = xx and find that log y =

x--0+
x log x, so lim log y = 0, lim y = 1, and lim xx = 1. Similar arguments

x-.0+ x-.0+ x-.0+
show that lim xhIx = 1.

17 Supposing that f, g, h are three functions satisfying the hypotheses of the
mean-value theorem, show that the function F defined by the first of the formulas

F(x) =
f(x) g(x) h(x)

f(a) g(a) h(a)

f(b) g(b) h(b)

I

f (x*) g'(x*) h'(x*)
f(a) g(a) h(a)

f(b) g(b) h(b)

=0

satisfies the hypotheses of the Rolle theorem and hence that there is a number
x* for which a < x < b and the second formula holds. Examine the case in
which h(x) = 1 for each x.

18 This problem provides an opportunity to learn some very interesting
mathematics but, like a bicycle rider who lacks appreciation of basic principles
of physics and engineering, we can pedal along without it. The following theorem
is a fundamental theorem of the calculus which is stronger than Theorem 4.37
because it does not require that f be continuous.
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Theorem If f is integrable (Riemann) over a =< x 5 b and if F'(x) = f(x)
when a=< x<b, then

(1) ab f(x) dx = F(x) ]a = F(b) - F(a).

Our proof of this theorem uses the mean-value theorem.Supposing that P
is a partition of the interval a 5 x < b having partition points xo, xi, x
for which

(2) a=xo<x,< ...
we find that

(3)
n

+F(b) - F(a) _ (F(xk) - F(xk-I)) = 1, F'(xk)(xk - xk-1)
k=1 k=1

when, for each k, xk is an appropriately chosen point in the interval xk_I < x < xk.
Since F'(xk) = f(xk), the last sum is a Riemann sum formed for the function f
over the interval a < x 5 b. Since each sum is equal to F(b) - F(a), it follows
that the limit (which exists by hypothesis) of these sums must be F(b) - F(a).
The limit is the integral in (1) and the theorem is proved. Remark: The hypothe-
sis that F is differentiable and F'(x) = f(x) over a 5 x 5 b does not imply that
f is continuous over a 5 x < b; in fact the last of Problems 3.69 gives examples
of functions which are differentiable over the interval -1 <- x 5 1 but have
derivatives that are unbounded over this interval. Thus, some discontinuous
functions can be derivatives, but the following theorem shows that a function
cannot be a derivative unless it (like continuous functions) possesses the inter-
mediate-value property.

Theorem If F is differentiable over a < x 5 b and if F(a) < q < F(b) or
F'(a) > q > F'(b), then there is a number for which a < < b and q.

To prove this theorem, let g(x) = F(x) - q(x - a). Then g, like F, must be
continuous. Hence g(x) must attain a minimum value at some point for which
a < <- b. Consider the case in which F(a) < q < F'(b). Since g'(a) _
F(a) - q < 0, we see that cannot be a. Since g'(b) = F(b) - q > 0, we see
that cannot be b. Hence a < t < b and therefore g'() = 0 and F'() = q.
In case F(a) > q > F'(b), g(x) must attain a maximum at a point for which
a < < b and F'(E) = q. This proves the theorem.

19 Prove that if f is continuous over - oo < x < oo, if f (x) -> 0 as x --+ oo,
and if f(x) -> 0 as x-> - oo, then f must have a global maximum or a global
minimum but not necessarily both. Hints: As in the proof of the Rolle theorem,
consider three cases. In case f(x) > 0 for at least one x, choose xo such that
f(xo) > 0. Choose a number H such that l f(x)I < If(xo) when jxj H.
The maximum of f(x) over the interval jxj 5 H must then be the maximum of
f(x) over the infinite interval.

20 Persons who manufacture peanut butter and typewriters and electronic
organs have an abiding interest in demand curves. It is supposed that x units
of a commodity can be sold when the price is p(x) dollars per unit. The graph
of p versus x is the demand curve. The nature of the demand curve depends
upon the commodity, being relatively flat (or inelastic) for false teeth, since
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people are prone to purchase only those that are required no matter what they
cost, and being relatively steep (or elastic) for water, since people require only
enough to drink but like to wash everything and water their gardens when water
is cheap. Economists and others construct and study hypothetical demand
curves for pleasure and for business. It is usually supposd that p is a positive
decreasing differentiable function of x. When x units are sold at p(x) dollars
per unit, the total revenue R(x) is the product of x and p(x). Thus R(x) = xp(x).
When x units are sold, the profit P(x) is R(x) - C(x), where C(x) is the total
cost of producing and selling the x units. Thus

(1) P(x) = R(x) - C(x),

this being one way of saying that profit is obtained by subtracting expenses from
income. For better or for worse, economists use special terminology in studies
of price, revenue, cost, and profit. The numbers p'(x), R'(x), C'(x), and P'(x),
these being derivatives at x, are called the marginal price, the marginal revenue,
the marginal cost, and the marginal profit. This terminology is (or is thought to
be) appropriate because if we are producing and selling x units and we know p(x),
R(x), C(x), and P(x), then a shift to x + Ax, p(x + ax), R(x + Ax), C(x + Ax),
and P(x + Ax) is "marginal" when Ox is near zero and, for example, the number
which [P(x + Ox) - P(x)]/dx approximates for marginal shifts is a marginal
profit. As is easily imagined, knowledge of functions, limits, and derivatives
is helpful when these things are being studied. Differentiating (1) gives the
formula

(2) P'(x) = R'(x) - C'(x),

which says that the marginal profit is equal to the marginal revenue minus the
marginal cost. When, as frequently happens, P(x) is a maximum when P'(x) = 0
and there is just one x for which P'(x) = 0, we obtain the following rule for maxi-
mizing profits: choose the x for which the marginal cost is equal to the marginal
revenue. When equations of demand curves and cost curves are given, we can
determine the x that maximizes profits. Our course in analytic geometry and
calculus is considered to be a prerequisite for extensive study of economics
because it prepares as to understand definitions, work out formulas, solve prob-
lems, and attain over-all comprehension of the subject. In fact, knowledge of
the mean-value theorem is not superfluous. The formula

(3) P(x + 1) - P(x) = P(x } l)
I

- P(x) = P'(x*),

in which x* is an appropriate number between x and x + 1, can help us under-
stand the antics of elementary books that alternately use P(x + 1) - P(x) and
the slope of the graph of P for the marginal profit.

5.6 Sequences, series, and decimals Our mathematical foundations
always remain quite shaky until we obtain precise information about the
possibility of approximating and "representing" numbers by decimals.
Moreover, we should have some solid information about this "repre-
senting" business. We know what we mean when we say that lawyers
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represent felons in courts of law, but nevertheless our precious corpus of
scientific information is not appreciably augmented when a solemn tutor
makes the unexplained statement that "decimals represent numbers."

To attack this and other matters, we must learn about some things that
have many applications. A sequence s1i s2, s3, of numbers is an
ordered collection of numbers in which there is a first, a second, a third,
etcetera. The individual numbers are called elements of the sequence;
they are not called terms because terms are things that are added, and
they are not called factors because factors are things that are multiplied.
When S1, S2, s3, . . is a given sequence, it may be true (or it may be
false) that there is a number L such that sn is near L whenever n is large.
This statement is meaningful. It means that when s1, S2, S3, is a
given sequence, it may be true (or it may be false) that there is a number
L such that to each e > 0 there corresponds an integer N such that
is, - LI < e whenever n > N. In case L exists, we write

lim sn = L,
n-+ m

as in Section 3.3, and we say that the sequence converges to L. In case the
limit does not exist, we say that the sequence is nonconvergent or divergent.

As we shall see, the elementary theories of sequences and series are
closely related. However, a series is very different from a sequence. A
series (or simple infinite series) is an array of numbers and plus signs of the
form

(5.61) u1 + u2 + U3 + . . .

Because the notion of addition is involved, the numbers ul, u2, ua, '
are called terms of the series. The terms are not necessarily nonnegative,
and it is standard practice to write the series

1+(-i)+ -+(-1)+- +(-)+ ...
in the form

1-- +f+*-*+....

Our series ul + u2 + u3 + contains so many terms that not even a
high-speed electronic computer could "add them all up" during its life-
time. In order to determine a number that can reasonably be called the
value of the series, we need a procedure involving more than brute-force
addition. While other procedures exist and are useful, the following is the
most elementary and best known useful procedure. Let the sequence
s1, $2, S3, of partial sums be defined by the formulas s1 = ul,
J2 = u1 + u2, S3 = U1 + u2 + u3, etcetera, so that

n

(5.62) Sn = u1 + U2 + + U. = I uk (n=1,2,3,
k-1
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If it happens that this sequence of partial sums converges to s, so that

(5.621) n--
then we say that the series converges to s, and, leaving the significance of
the horrendous operations to be revealed in Problem 6 and Chapter 12,
we say that the series has the sum s and we write

(5.622) s = u1 + U2 + U3 + or s = I uk.
k-1

In case a given series is not convergent, we say that it is divergent. The
series

1-1+1-1+1-1+
is a classic example of a divergent series.

We are now ready to attack decimals. Let dl, d2, d3, be a
sequence each element d of which is one of the 10 digits 0, 1, 2, 3, 4, 5,
6, 7, 8, 9. The array

(5.63) O.d1d2d3 ,

in which the first dot is a decimal point, is then an infinite decimal. We
confine our attention to decimals of this form; presence of a positive
integer before the decimal point causes no difficulties. Just as the left
side of the equation

0.31690 = 0
3

+ 102 + 103 + 10' +

lo0

b

is a remarkably efficient way of abbreviating the right side, so also (5.63)
is a remarkably efficient way of abbreviating the infinite series

d, d2 d3
(5.631)

10 + 02+ 03+
Thus the infinite decimal is an infinite series in disguise.

Theorem 5.64 Each infinite decimal 0.d1d2d3 . . converges to a
real number s.

If we think it will serve a useful purpose, we can say that the decimal
"represents" the number to which it converges. In any case, we write

(5.641) s = 0.d1d2d3

when the decimal converges to s. To prove the theorem, let s denote
the sum of the first n terms of the series (5.631) so that

sn`10+102+...+10n

and

S. = 0.d1d2 ... dn.
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The set S consisting of the numbers s1, s2, s3, is then nonempty and
has the upper bound 1, since sn < 1 for each n. Therefore, Theorem 5.46
implies that S has a least upper bound which we denote by s. Then
s < s for each n. To each e > 0 there corresponds an index N such that
s,v > s - e, since otherwise s - e would be an upper bound of S less
than s. But the numbers d1, d2, d3, are all nonnegative, and hence
s - e < s 5 s when n > N. Therefore, lim s,,, = s or s = 0.d1d2d3

and Theorem 5.64 is proved. For future reference, we note that
very minor modifications of this proof yield proofs of the following two
theorems.

Theorem 5.65 If the terms of the series ul + u2 + u3 + are
nonnegative and if the sequence of partial sums has an upper bound, then
the series is convergent.

Theorem 5.651 If a sequence s1, s2, s3, is monotone increasing
(that is, sm < sn when in < n) and bounded above (that is, sn < M for each
n) then the sequence is convergent. Similarly, each monotone-decreasing
sequence which is bounded below must be convergent.

In connection with Theorem 5.64, it is often necessary to recognize the
awkward fact that two different infinite decimals can converge to the
same number. For example,

4
= 0.250000 , 4 = 0.249999

This situation occurs, however, only when one of the decimals has only
nines from some place onward. In Theorem 5.64 we started with a deci-
mal and found that it converges to a number. The next theorem is
different; we start with a number and find a decimal which converges to it.

Theorem 5.66 If s is a number for which 0 < s < 1, then there is a
decimal 0.d1d2d3 . . which converges to it.

Our proof of this theorem involves manipulation similar to the manip-
ulations of Problem 18 of Problems 5.49, where more details are given.
Let d1 be the greatest integer for which 0.d1 c s. Then s - 0.1 <
0.d, <_ s. Let d2 be the greatest integer for which 0.d1d2 S s. Then
s - 0.12 < 0.d1d2 < s. Let d3 be the greatest integer for which 0.didsd3
s. Then s - 0.11 < 0.did2d3 S s. Continuation of this procedure
yields a decimal 0.d1d2d3 . that converges to s so that

s = 0.d1d2d3 ... .

We conclude this section with a study of geometric series and repeating
decimals. When x 0 1, the identity

(5.67) 1 - xn
-}- x -f- x2 .+. + xn-1

can be proved either by long division or by multiplying by 1 - x. When
jxj < 1, the sequence jxj, Ixi2, 1xi3, is monotone decreasing and
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bounded below by 0 and hence must have a limit. If we let L denote
this limit, then

L = Jim jxjn}1 = Ixl lim Ixln = IxIL,
n--> ae n-+ m

so (1 - Jxj)L = 0 and hence L = 0. Therefore, as we have previously
proved in another way,

(5.671) Jim xn = 0 OxI < 1).n- -

But the right member of (5.67) is the sum of the first n terms of the series
in the right member of the formula

(5.672) 1 1
x

= 1 + x + x2 + Xa + (1xi < 1).

Hence, when lxi < 1, taking the limits as n becomes infinite of the mem-
bers of (5.67) gives (5.672). Multiplying the members of (5.67) by a
constant a gives the very important formula

(5.673)
a

=a+ax+ax2+ax3+... (ixI<1)1 - x
which must be permanently remembered. The series is a geometric series
with ratio x, the ratio being the factor by which we multiply one term to
get the next. The easy way to remember the formula is to remember
that, when the absolute value of the ratio is less than 1, a geometric series
converges to the first term divided by 1 minus the ratio.

A repeating decimal is one, like

3.16952 952 952

in which, from some place onward, the digits involve only periodic
repetitions of a collection containing one or more digits. With the aid of
(5.673) we can show that each repeating decimal converges to (or is) a
rational number, that is, a quotient of two integers. For example, if s
is the number to which the decimal displayed above converges, then

s
100 +

101

0 (.952 +
190052

0 + (1000)2
+

316 1 .952 316 1 952

100 + 1001 1--sa 100 + 100 999

It is presumed that we can add fractions when there is a reason for doing
so, and we can see that s is a quotient of integers with denominator 99900.

The most important fact concerning repeating decimals is set forth in
the following theorem.

Theorem 5.68 The (terminating or nonterminating) decimal expansion
of each rational number is a repeating decimal.
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Proof of this fact can be based on the ordinary process by which "long
division" is used to divide one positive integer, say P, by another, say Q.
At each sufficiently advanced stage of the process, we obtain a representa-
tion of P/Q of the form

(5.681) Q = N + 0.d1d2 . do + 10Q,

where N is an integer, the d's are digits, and P,, is an integer remainder
for which 0 < P. < Q. After the long division has progressed past the
place where no digits other than zero are "brought down," the remainders
and hence also the d's run through cycles that produce the repeating
decimal. A cycle begins when a remainder becomes equal to a previous
remainder, and this must happen because 0, 1, 2, - , Q - 1 are the
only values that remainders can have. Dividing 365 by 7 shows an
application of the ideas. The long division process never produces
decimal expansions which, from some place onward, consist exclusively of
nines, but these expansions are clearly repeating decimals.

The elementary arithmetical consequences of Theorem 5.68 are enor-
mous. We can easily write nonrepeating decimals, examples being

0.1234567891011121314151617

where the positive integers are written in order, and

0.101001000100001000001 - .

These decimals converge to real numbers that are not rational and are
called irrational (not ratio-nal). This proves existence of irrational
numbers. Moreover, we can easily generate the idea that if the digits in

04d24d4 .. .

are selected in some random way, then it is highly unlikely (or even
almost impossible) that the decimal would be a repeating decimal.
This leads us to the idea that "almost all" real numbers are irrational, and
there are different ways in which this idea can be made precise.

Problems 5.69
1 Show that if a, b, and c are digits, then

a 10a+b
(a) 0.aaaa (b) 0.ababab 99

9b + a 99c+10a+b
(c) b.aaaa - 9

(d) c.ababab . 99

9b+a 99c+10a+b
(e) 0.baaa (f) 0.cabab -

90
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2 Write an infinite decimal which converges to an irrational number between
0.43211 and 0.43212.

3 Supposing that 0.31690416 and 0.31690444 converge to irra-
tional numbers, write a rational number that lies between them.

4 Supposing that a and b are different positive numbers, give a procedure
by which we can find a rational number x1 and an irrational number x2 that lie
between a and b.

5 For a long time before the advent of electronic computers, the base 10 of
the decimal system reigned supreme and most people thought that other bases
had only theoretical interest. Nowadays the base 2, which employs the two
binary bits 0 and I instead of the ten decimal digits 0, 1, 2, . , 9, is very impor-
tant. In the binary system, the left member of the formula

(1) bmb,n-i . . . b2blbo = bm2m + bm_12m-1 + . .. + b2222 + b12 + bo,

in which each bit bk is 0 or 1, abbreviates the right member. Thus the binary
representations of the first few positive integers are

(2) 1, 10, 11, 100, 101, 110, 111, 1000, 1001, .

Similarly,
L

(3) (.b-1b-2b-3 ...)z = b=1 -f- b=2 -f- b=$ + b=4 -f- .. .
2 22 23 24

where the subscript 2 in the left member informs us that the "point" is not a
"decimal point" but is a "binary point" and that each b is a binary bit. One
reason for importance of binary bits lies in the fact that one "state" such as
"light on" or "switch closed" or "true" can be represented by 1, while the oppo-
site "state" such as "light off" or "switch open" or "false" can be represented
by 0. Perhaps without knowing why, we can pick up useful ideas by solving
a few simple problems. Show that

(a) (29)10 = (11101) 2 (b) (100) 2 = (4)10
(c) (100)10 = (1100100)2 (d) (416)10 = (110100000)2

(e) (10011)2 + (10110)2 = (101001)2 (f) ('is)10 = (0.00111)2

(g) (1010 = (0.01010101 . ) 2

Remark: Many persons with substantial lacks of enthusiasm for adding, sub-
tracting, multiplying, and dividing with decimal digits can find genuine amuse-
ment in learning to make these manipulations with binary bits. Scientists need
never be bored because of lack of interesting things to do.

6 Inquisitive students may ask why we write

(1) s=U1+us+u3+...
when the series converges to s. The answer lies partly in the fact that it is much
easier to write (1) than to write the statement that "s is the number to which the
series u1 + u2 + u3 + . .. converges" and partly in the fact that the method
of convergence which we have described is the simplest useful method for assigning
values to series. There are other methods that are both venerable and useful.
One of these is the method which is called the method of Abel (1802-1829) even
though it was extensively used by Euler (1707-1783) and was used by Leibniz
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(1646-1716) and others before Euler. A given series ul + u2 + u3 + is
assigned the value Y by this method if the series

(2) ul + u2r + u3r2 + . . .

converges when 0 < r < 1 to the values f(r) of a function for which

(3) lim f (r) = V.
r-+1-

Use these ideas to find the Abel value of the series 1 - 1 + 1 - 1 + .

Hint: The series 1 - r + r2 - r3 + is a geometric series whose ratio is
-r, and the series converges to 1/(1 + r) when Irl < 1 Remark: Our mathe-
matical notations would be more sensible but less brief if we were accustomed to
w citing

(4) s =C{ul+u2+u3+ ...}
to abbreviate the statement that the series in braces is assigned the value s by
the method of convergence and to writing

(5)

to abbreviate the statement that the series in braces is assigned the value V by
the method of Abel. This more elaborate notation can show just what we are
doing when we adopt the convenient but absurd old idea that a conglomeration
of numbers and plus signs "is" a number or "represents" a number if and only
if it converges to the number. An intelligible theory of series requires a suitable
mixture of broad ideas of Euler and narrow ideas usually promoted by elementary
books of the nineteenth and twentieth centuries.

7 Each sequence sl, Si, s3, of numbers determines its sequence M1, M2,
M3, - of arithmetic means defined by the formulas

(1) Mn =
Jl + S2 + .. S. = sk (n = 1,2,3...

If
k=1

(2) lim sn = s,n--
so that s is near s whenever n is large, we can feel that Mn should also be near
s whenever n is large and hence that

(3) lim Mn = J.
n- .

Prove that (2) implies (3). Solution: Let E > 0. Choose an integer N such that
Isn - sI < e/2 whenever n > N. Then, when n > N,

(4) Mn - s = (sl - s) + (s2 - s) + ... + (sn - s)
(sk - s)

n k-l
and hence

n

(5) IMn-sl5 ' Isk - sl+n Isk-sl;5 +n 2<n+ 2,
k=1 k- +1 k= 1
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N

where C = Z Isk - s4. If we choose Ni such that Ni > N and C/n < e/2
k=1

when n > N, then we will have

(6) I Mn - sl < e

when n > Ni. This proves (3). Remark: It often happens that the limit in
(3) exists when the limit in (2) does not exist. In case u1 + u2 + u3 + is
a series having partial sums s1, s2, and arithmetic means M1, M2, M3,
such that (3) holds, we can write

(7) S = Cil{u1 + u2 + u3 + . . .}

and say that the series is evaluable to s by the method of arithmetic means or by the
Cesaro method of order 1.

8 Supposing that n is a positive integer, sketch a graph of the function f
for which fn(x) = n2x when lxI < 1/n and fn(x) = l/x when IxI > I/n. Show
that f,, is continuous over El. Show that

lim fn(x) = g(x),

where g(O) = 0 and g(x) = 1/x when x s 0. Hint: Consider separately the
cases in which x = 0, x > 0, and x < 0.

9 Using the notation of the preceding problem, let

ui(X) = fl(x)
U2(X) = f2(X) - fl(x)

U3(X) = f3(x) - f2(X)

u4(x) = f4(x) - f3(x),

etcetera, so that uk(x) = fk(x) - fit_1(x) when k = 2, 3, 4, . Show that
each function un is continuous over El and that

I uk(x) = g(x)
k=1

Remark: It is sometimes necessary to be sophisticated enough to know that a
series of continuous functions may converge to a discontinuous function. More-
over, we should be tall enough to peer over the wall of our garden and observe
that a series u1(x) + u2(x) + of functions having partial sums f1(x),
f2(x), is said to converge uniformly over a set E to f(x) if to each positive
number a there corresponds an integer N such that lfn(x) - f(x)l < e whenever
n >t N and x is in E. The following theorem is proved in advanced calculus.
If a series u1(x) + u2(x) + . of continuous functions converges uniformly over
E to f(x), then f must be continuous over E.

10 Starting with positive numbers a1 and b1 for which a1 < b1, let sequences
a1i a3, a3, and b1, b2, b3, be defined recursively by the formulas

1 an + bn() an}1 '°
,

bn+1 = 2
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Show that, for each n = 1, 2, 3, ,

(2) an < an+1 < bn+1 < b, .

Tell why there must exist numbers L1 and L2 such that

(3)

Show also that

(4)

and hence

(5)

lim an = L1, lim b, = L2.
n---) . 8-100

an+bn bn - an0 <bn+1-an+1 <
2

-an= 2

0 < L2 - L1 < (L2 - L1),

so L2 = L1. Remark: The common value of the two limits in (3) has an impressive
name; it is the arithmetico-geometric mean of the two given numbers a1 and b1.

11 This problem, which is in some respects the most significant problem in
this chapter, would be much too difficult if it were not prefaced by a rather elab-
orate story. We make the reasonable assumption that Mr. C., a particular
carpenter, never heard of the Dedekind axiom 5.43, and that his ideas about the
real-number system are incomplete. Next we make the reasonable assumption
that the class R* (read R star) of numbers that Mr. C. knows about is the class
of rational numbers which he may call "whole numbers and fractions." This
class R* is, for many purposes, a thoroughly useful class of numbers. If x and
y belong to R*, so do x + y, x - y, xy, and also x/y, provided y 0 0. While
we may be somewhat surprised by the fact, it is nevertheless true that Mr. C.
could define graphs, limits, derivatives, indefinite integrals, Riemann integrals,
and many other things exactly as we defined them. Mr. C. could show, exactly
as we did, that if f(x) = x2, then f'(x) = 2x. There would be many respects in
which his analytic geometry and calculus would be thoroughly satisfactory.
He would say, exactly as we did, that f is continuous at xo if to each e > 0 there
corresponds a S > 0 such that lf(x) - f(xo)I < e whenever Ix - xol < 5, but of
course only rational numbers appear in his work. Mr. C. would be totally
unaware of the existence of irrational numbers, but we could nevertheless select
an irrational number for which 0 < < 1 and put Mr. C. to work studying
the function f for which

(1)
J f(x) = - 1 (0 5 x < )

1).lf(x)=1 ( <x=<

Mr. C. would discover that f is defined for each x in R* for which 0 < x < 1,
and hence he would say that it is defined over the interval 0 < x 5 1. He could
prove that f is continuous at each x in R* for which 0 < x < 1. He would
therefore say that it is continuous over the interval 0 < x 5 1. He could prove
that f(x) = 0 for each x in R* for which 0 < x < 1. So far there is nothing
wrong, but there will be something wrong if Mr. C. tries to tell us that f'(x) = 0
when 0 < x < 1 and hence "it is obvious" or "it can be shown" that there must
be a constant k such that f(x) = k when 0 < x < 1. In fact, a look at the for-
mulas (1) defining f shows that there is no constant k such that f(x) = k when
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0 < x < 1. It is now time to seek the moral of this story. If we are not sure
whether the set of numbers we use in our analytic geometry and calculus is the
complete set of real numbers for which the Dedekind postulate is valid, then we
cannot be sure about the validity of the ideas that we need to enable us to do
our chores. It is, therefore, not enough to know the axioms usually given in
one way or another in elementary arithmetic and algebra and "finite mathe-
matics." We need, in addition, the Dedekind axiom or an equivalent axiom
which guarantees that we are using the complete class of real numbers in our
work. We now come to the problem. Tell whether it is necessary to use the
Dedekind axiom (or, what amounts to the same thing, to use consequences of the
Dedekind axiom or an equivalent axiom) in order to (a) prove the Rolle theorem
5.51, (b) prove the intermediate-value theorem 5.48, (c) define the area of a
rectangle to be the product of its ddimensions, (d) define the derivative of a given

function f, (e) prove existence of
r12

(1/x) dx.

5.7 Darboux sums and Riemann integrals This section can be
omitted from this course without damaging understanding of the rest of
the book. There can, however, be no doubt that students with serious
interest in pure mathematics should master it and that everyone else
should read it. The section gives substantial information about a stand-
ard way of attacking matters relating to existence of Riemann integrals.
Let f be defined and bounded over an interval a 5 x < b so that, for some
constants in and M, we have

(5.71) m < f(x) < M (ax5b).
As in our definition of Riemann sums, let P be a partition such as the one
shown in Figure 5.711 and, for each k, let xk be selected such that xk_1 <

X1* x2 x3 k x
0 1 0-;-0 -cam;-o -o- o------------

a=xp x1 x2 xk_1 xk x,,_1

Figure 5.711

xk S xk. Let Axk = xk - xk_I. For each k = 1, 2, , n, let

(5.712) mk = g.l.b. f(x), Mk = l.u.b. f(x)
xk_I 52 ;9xk xk_1 SX SXk

so that ink and Mk are respectively the greatest lower bound and the least
upper bound of f over the interval xk_1 S x =< xk. The numbers UDS(P)
and LDS(P) defined by

n n

(5.72) LDS(P) _ Mk dxk, UDS(P) _ Mk Axk
k1 k-1

are called the lower and upper Darboux (1842-1917) sums determined by
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Figure 5.721

P. Figure 5.721 is available for inspection. For each choice of the

points xk we have Mk < f(xk) < M1, and hence
n

(5.722) LDS(P) < 1 f(xk) Axk < UDS(P).
k-1

Therefore, for a given partition P, the different Riemann sums that can be
formed by making different choices of the points xk are all sandwiched
between the lower and upper Darboux sums. Information about
Riemann sums can therefore be gleaned from information about Darboux
sums.

The first step in our study of Darboux sums may seem to be a very
modest one. Let P be a given partition, and let P be a simple extension
of P. By this we mean that P' is exactly the same as P except that P'
contains one additional partition point, say X, which lies between two of
the partition points of P, say x2 < X < x3. The inequality

[ l.u.b. f(x)](X - X2) + [ l.u.b. f(x)j(x3 - X)
xx=<x5X XSx<x3

[ l.u.b. f(x)](X - x2) + [ l.u.b. f(x)](x3 - X) S M3 0x3
X,5z5za x2 5x;gxa

implies that UDS(P') < UDS(P). Figure 5.721 is not needed in the
proof of the inequality but may nevertheless be helpful. Consideration
of simple extensions of simple extensions of P leads to the conclusion that
if P is any extension of P (so that P contains all of the partition points of
P and perhaps also some additional ones), then UDS(P') S UDS(P).
An analogous argument, in which greatest lower bounds appear and the
inequality signs are reversed, shows that if P' is an extension of P, then
LDS(P') >--_ LDS(P). Suppose now that P1 and P2 are two given parti-
tions, and let P3 be an extension of both P1 and P2. Then

(5.723) LDS(P1) < LDS(P3) < UDS(P3) 5 UDS(P2)

and hence

(5.724) LDS(P1) < UDS(P2).

This is a key result of the theory. Let the symbols in

(5.73) L = f' f(x) dx, U = f 'f(x) dx



346 Functions, graphs, and numbers

denote, respectively, the least upper bound of all lower Darboux sums
and the greatest lower bound of all upper Darboux sums. These num-
bers are, respectively, the lower and upper Darboux integrals of f over the
interval a < x < b. It follows from (5.73) that, for each partition P2,
L < UDS(P2), and it follows in turn from this that L S U. Thus

(5.731) LDS(P) : L < U < UDS(P)

for each partition P.
There are bounded functions f for which L < U. For example, let

a = 0, let b = 1, and let f(x) = 0 when x is irrational and f(x) = 1 when
x is rational. The LDS(P) = 0 and UDS(P) = 1 for each P and there-
fore L = 0 and U = 1.

It can be proved that LDS(P) is nearL and UDS(P) is near U whenever
IPI (the norm of P) is small. This result, which is sometimes called the
Darboux theorem, means that to each e > 0 there corresponds a S > 0
such that

(5.74) ILDS(P) - Lj < e, IUDS(P) - UI < e

whenever IP! < S. This and (5.731) imply that, when JP1 < S, the
numbers LDS(P) and UDS(P) are respectively located in the left and
right intervals of Figure 5.741 when L < U and of Figure 5.742 when

1LDS(P) 1UDS(P) fLDS(P) `-UDS(P)

L-e L U
U+! 1-e I I'k'e

Figure 5.741 Figure 5.742

L = U = I. Consider first the case in which L < U. Since each
Darboux sum can be approximated as closely as we please by a Riemann
sum having the same partition points, it follows that there exist Riemann
sums with norm JPJ < & which differ from L by less than e and that there
also exist Riemann sums with norm JPJ < S which differ from U by less
than e. It follows that if L < U, then f cannot be Riemann integrable
over a < x < b.

Consider next the case in which L = U = I. In this case

(5.743) I - e < LDS(P) 5 RS(P) < UDS(P) < I + e

whenever RS(P) is a Riemann sum formed for a partition P for which
JPJ < S. Therefore,

(5.744) f' f(x) dx = I,

the integral being a Riemann integral.
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All this gives the following theorem which involves the numbers L and
U defined in the sentence containing (5.73).

Theorem 5.75 If f is defined and bounded over a < x 5 b, then f is
Riemann integrable over a x _< b if and only if L = U. Moreover,
(5.744) holds when L = U = I.

This theorem and (5.731) imply the following useful theorem.
Theorem 5.751 4 function f is Riemann integrable over a <- x <_ b if

and only if to each e > 0 there corresponds a partition P such that

(5.752) UDS(P) - LDS(P) 5 e.

The above story provides ideas and results that are used in proofs of
the fundamental theorem (Theorem 4.26) on existence of Riemann
integrals. We shall use Theorem 5.751 to prove some less pretentious
theorems.

Theorem 5.76 If f is defined and monotone increasing (or monotone
decreasing) over a 5 x < b, then the Riemann integral

fa'f(x)
dx exists.

Let e > 0. Suppose first that f is monotone increasing so that Ax') -<
f(x") when a < x' < x" < b. Let P be a partition of a <-- x < b with
partition points xo, x1, , x as in Figure 5.711. Then

(5.761) UDS(P) - LDS(P) l.u.b. f(x) - g.l.b. Ax)] tlxk
k-1 Xk_L SZ Sxk zk_i <Z <Xk

n

_ I [f(xk) - f(xk-1)] Oxk C [f(xk) - f(x1---1)]IPI
k=1 k=1

[f(b) - f(a)]IPI < e

provided IPI is sufficiently small. This and Theorem 5.751 establish
the result for the case in which f is monotone increasing. In case f
is monotone decreasing, the proof is exactly the same except that [f(xk) -
f(xk_1)] is replaced by [f(xk_1) - f(xk)] and [f(b) - f(a)] is replaced by
[f(a) - f(b)]-

It is easy to extend Theorem 5.76 to obtain a better theorem. A func-
tion f is said to be bounded and piecewise monotone over the closed
interval a S x 5 b if there is a constant M for which I f (x) I< M when
a < x S b and if there is a partition P of the interval a < x <- b such
that, whenever xk_1 and xk are two consecutive partition points, f is
monotone (maybe monotone increasing, maybe monotone decreasing)
over the open interval xk_1 < x < xk.

Theorem 5.762 If f is bounded and piecewise monotone over a < x < b,

then the Riemann integral fab f(x) dx exists.t

t It is sometimes said that this theorem is a poor-man's version of a stronger theorem
which says that f is integrable over a 5 x 5 b if f has bounded variation over a S x <_ b.
Problem 10 at the end of this section provides opportunities to rise above poverty.
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Similarly, we apply the fundamental Theorem 5.731 to prove Riemann
integrability of continuous functions and piecewise continuous functions.

Theorem 5.77 If f is continuous over a < x 5 b, then the Riemann
b

integral f f(x) dx exists.

To prove this, let e > 0. Theorem 5.58 then enables us to choose a
positive number 3 such that If(X2) - f(xi)I < c./(b - a) whenever
a<x1<b,a=< x2__<b,andJx2-x11 <3. LetPbeapartitionofthe
interval a < x < b for which IPI < S. Then, with the notation of
(5.712) and (5.72), we have Mk - mk 5 e/(b - a) and hence

n

(5.771) UDS(P) - LDS(P) < 1 h Oxk = e.
k=1

The required conclusion then follows from Theorem 5.751.
A function f is said to be piecewise continuous over the closed interval

a < x < b if it is defined over a < x < b and if there is a partition P of
the interval a < x < b such that, whenever xk-1 and xk are two con-
secutive partition points, f is continuous over the open interval xk_1 <
x < xk and, in addition, the unilateral limits

lim AX), lim f (x)
X Xk-

both exist. On account of the fact that functions that are piecewise
continuous over a closed interval must be bounded, it is not difficult to
use Theorem 5.77 to prove the following more general theorem.

Theorem 5.772 If f is piecewise continuous over a < x < b, then the
Riemann integral exists.

Finally, we use ideas and notation of this section to prove the following
theorem.

Theorem 5.78 If f is Riemann integrable over the interval a < x <_ b
and f(x) >= 0 when a < x 5 b, then the set S of points (x,y) for which

a <- x <- b, 0 <- y <_ f(x) possesses an area
M b

S,
M,,

S

MA

Rk

b

ISI and 1,31 = J. f(x) dx.
The proof depends upon the funda-

mental definition of area given in Defini-
tion 4.44. Choose a constant M such
that f(x) <--_ M - 1 and observe that S is
a subset of the large rectangle R of Figure
5.781. Let e > 0 and let 0 < E < e. Let

a Xk_1 Xk

Figure 5.781

X

the number ISI be defined by the formula ISI = f s f(x) dx. To provea
the theorem, we shall show that ISI is in fact the area of S. Let P be a
partition for which

n nn+

(5.782) l f(k) Axk < ISI + W, La f(4) Lxk > S - E
k kffi1
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whenever xk-1 < xk < xk for each k. Defining Mk and mk by (5.712), we
conclude that

n n

(5.783) 1 Mk Oxk C ISI + E', I Mk Oxk > ISI -. E'.k 1

k

Let Rk and Rk be, for each k, the rectangles (meaning rectangular regions)
consisting of points (x,y) for which xk-1 < X < Xk, 0 < y < Mk and
Xk-1 < x < xk, Mk < y < M. The two formulas (5.783) then give

n n)t

(5.784) k11 IRkI < ISI + e, kI IRkI < IRI - ISI +

If P(x,y) lies in S, then there is at least one k for which xk_1 5 x S Xk and
hence 0 <= y < f (x) < Mk, so P is a point of at least one rectangle Rk.
Similarly, if P(x,y) is a point of the set S' consisting of the points in R but
not in S, then there is at least one k for which xk_1 < x 5 xk and hence
mk < f(x) S M, soP is a point of at least one rectangle R. It is there-
fore a consequence of Definition 4.4 that the set S does possess an area
and that its area is ISI. This completes the proof of Theorem 5.78.

Problems 5.79
1 Sketch a dozen graphs that look like graphs of functions f that are bounded

and piecewise monotone over the interval 0 =< x < 1. Be sure to include graphs
of some discontinuous functions and of some nonmonotone functions.

2 Sketch a figure which is like Figure 5.721 except that the partition P con-
tains 10 or 20 partition points that are roughly equally spaced. Then look at
your figure and see how LDS(P) and UDS(P) are related.

3 Sketch a figure which shows the geometric meanings in the statement and
proof of Theorem 5.76.

4 As was remarked, Archimedes (287-212 s.c.) knew about some special
Riemann sums, and this matter may be worthy of brief consideration here.
When f is defined over rational values of x in the interval 0 < x < 1, we can
make a partition of the interval 0 <= x =< 1 into n equal subintervals of length
1/n by partition points xk for which xk = k/n and form the special Riemann sum

`4n - fk-1 n n

which we can call an Archimedes sum. Without implying that Archimedes used
modern terminology involving sums, limits, and integrals, we can recognize that
there is historical evidence that we are merely putting ideas of Archimedes into
modern terminology when we say that f is Archimedes integrable over the interval
0 5 x < 1 and that f has the Archimedes integral I if A --- I as n ---+ oo. Now
comes the problem. Supposing that f(x) = 0 when x is irrational and f(x) = 1
when x is rational, show that if the symbol

foi f(x) dx
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represents an Archimedes integral, then the integral exists and has the value 1,
but that if the symbol represents a Riemann integral, then the integral does not
exist.

5 For each n = 3, 4, 5, the broken line joining in order the points
(0,0) (1/n,n), (2/n,0), (1,0) is the graph of a function fn defined over the interval
0 5 x 5 1. Prove that

(1) lim
roi

dx = 1, Jot [ lim f (x)] dx = 0.
n-- ro n-+ m

Hint: Observe that f,(0) = 0 for each n > 3 and hence lim 0. If 0 <n--
x 5 1, then fn(x) = 0 when 2/n < x, and hence when n > 2/x, so again lim f (x)n-,
= 0. Remark: Persons who push very far into the theory of Fourier series learn
that if

(2) Fn(x) _ ? (sin nx12
na\sinxI (n=1,2,3, )

then

(3) lim /2 F(x) dx = dx =
w

the in
and us to a

and the formulas can be valid.
6 This problem invites investment of time in a speculative venture. It was

proved in Section 4.3 that the formula

(1) f ab F(x) dx = F(x),a = F(b) - F(a)

is valid whenever F has a continuous derivative over the interval a 5 x < b.
It was proved in Problem 18 of Problems 5.59 that (1) is valid whenever F'
exists and is Riemann integrable over the interval a _<- x <- b. Even though
nobody requires us to learn everything, we may sometime be benefited by knowl-
edge that there is a function F for which (i) F'(x) exists when -1 <= x 5 1 and
(ii) F' is not continuous but is Riemann integrable over -1 5 x 5 1. Let F
be defined by the formulas F(0) = 0 and

(2) F(x) = -x2 cos 1 +
I:

2t cos 1
dt (x 0).

x o t

That F'(0) = 0 can be proved by using the inequality

(3)
IF(x)-0(0)ICIxcoszI+I

xJo I2t(dtI <_21xl

and the sandwich theorem. When x 74 0, differentiating (2) gives

(4) F'(x) = sin 1 (x 0 0).
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ThusF'(x) exists when -1 =< x 5 1. As x approaches 0, F(x) oscillates between
-1 and 1 and does not have a limit, so F is not continuous at the place where
x = 0. However, F is Riemann integrable over the interval -1 5 x 5 1
because F'(x) exists and is bounded over the interval and is continuous except
at one place. Thus our function F has the required properties. We could have
used the formula

(5) F(x)=sin1dt
loz t

instead of (2) to define F. It would then have been slightly easier to obtain (4)
but would not have been so easy to show that F'(0) = 0. There is a reason why
no simpler example can be given. Derivatives must have the intermediate-
value property, and no discontinuous function having the intermediate-value
property is simpler than the function 0 for which q5(0) = 0 and O(x) = sin (1/x)
when x 0 0.

7 If the unique individual that some textbooks like to call "the student"
is unable to prove that each polynomial is bounded and piecewise monotone
over each interval a 5 x 5 b, there are only three possible places to place the
blame. Is it the student? Is it the textbook? Is it the problem?

8 We have, at one time and another, seen examples of faulty applications of
the noble but frequently invalid premise that a thing T must be an element of a
set S if T is the limit of a sequence of elements of S. One old example involves
the "idea" that a circle must be a polygon because it is the limit of polygons.
Another old example involves the "idea" that a Riemann integral must be the
sum of infinitely many things because it is the limit of sums. Should we swallow
the "idea" that an irrational number must be a rational number because it is the
limit of rational numbers? dns.: No.

9 We have the possibility of extending our intellectual horizons by investing
a few minutes or a few years in study of algebras which differ from the algebra
of real numbers. The algebra of rational functions invites us to consolidate old
ideas and capture new ones. When ac, a,, , a,,, and bo, bi, , b are
constants for which the b's are not all zero, the two polynomials P and Q for which

P(x) = ao + alx + ... + amxm, Q(x) = bo + bix + ... + bnxn

determine the rational function f for which f(x) = P(x)/Q(x) for those values
of x for which Q(x) 76 0. The sum f + g of two rational functions is the rational
function h for which h(x) = f(x) + g(x) for each x for which the sum is defined.
If c is a constant and f is a rational function, then cf is the rational function having
values cf(x). If f and g are rational functions, then fg is the rational function
having values f(x)g(x) and [unless g(x) = 0 for each x] f/g is the rational function
having values f(x)/g(x) when g(x) 0. Textbooks in modern algebra call atten-
tion to many respects in which the algebra of rational functions is like the algebra
of real numbers. Terminologies involving rings, fields, and groups facilitate dis-
cussions of these matters. Nontrivial interest in the algebra of rational functions
starts to develop when order relations are introduced in a particular special way.
We say that f < g and g > f if there is a number xo such that f(x) < g(x) and
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g(x) > f(x) for each x for which x > xo. Progress with the theory depends upon
the basic fact that if f and g are rational functions, then f(x) = g(x) for each x
or there is a number x0 such that f(x) < g(x) when x > x0 or there is a number
xo such that f(x) > g(x) when x > xo. This basic fact depends upon the fact
that if h is a rational function, then either h(x) = 0 for each x or there is a number
xo such that h(x) is continuous and positive or continuous and negative when
x > X. It follows that if f and g are rational functions, then one and only one
of the three relations f < g, f = g, f > g is valid. Thus the set of rational func-
tions is, like the set of real numbers, now an ordered field. Let fo, the zero function,
be the rational function for which fo(x) = 0 for each x. Our algebra of rational
functions is said to have the Archimedes property (or to be Archimedian) if to
each pair of functions f and g for which f > fo and g > fo there corresponds an
integer n for which of > g. This is of interest to us because we have proved,
with the aid of the Dedekind axiom, that the algebra of real numbers is Archi-
median. It could be presumed that the algebra of rational functions is so much
like the algebra of real numbers that the algebra of rational functions must be
Archimedian. However, the presumption is false, the algebra of rational func-
tions is not Archimedian. To prove this, let f and g be the rational functions
for which f(x) = x and g(x) = x2. Careful applications of our definitions then
imply that f > fo, g > fo, and of < g for each integer n. Thus our algebra of
rational functions is not Archimedian. When all matters which we have dis-
cussed are thoroughly understood, it becomes clear that the Archimedian prop-
erty of the algebra of real numbers is not a consequence of those properties of real
numbers that are ordinarily stated in elementary arithmetic and algebra. Alge-
bra books that give adequate treatments of matters relating to order relations,
bounds, limits, Dedekind partitions, and Archimedes properties are said to be
modern. We have seen some of the reasons why knowledge of modern algebra
is considered to be an essential part of a mathematical education.

10 While consideration of the matter is usually reserved for more advanced
courses, we have enough equipment to understand, and perhaps even prove,
basic facts involving functions of bounded variation. Let f(t) be defined over
a 5 t <= b and let a < x <= b. Supposing f such that T(x) exists (is finite) we
define numbers T(x), P(x), and N(x) by the formulas

(1)

R

l.u.b. If(tk) - f(tk-1)I = T(x)
k=1

(2) l.u.b. [ I f(tk) - f(tk-1)I + V(4) - f(tk-01 I = P(x)
k=1

(3) l.u.b. 2 I If( ) - f(tk-1)I - [f(tk) - f(tk_1)I I = N(x).

In each case, the least upper bound is the least upper bound of sums obtained for
partitions P of the interval a 5 t 5 x. The function f is said to have bounded
variation (the term finite variation would be better) over the interval a < t 5 b.
Let T(a) = P(a) = N(a) = 0. The numbers T(x), P(x), and N(x) are, respec-
tively, the total variation, the positive variation, and the negative variation off over
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the interval a <= t =< x. Prove that T(x), P(x), N(x) are all nonnegative and
monotone increasing over a < x < b. Prove that

(4)

(5)

(6)

(7)
(8)

T(x) = 2P(x) - [f(x) - f(a)]
T(x) = 2N(x) + [f(x) -f(a)]
T(x) = P(x) + N(x)
f(x) = f(a) + P(x) - N(x)
f(x) _ [x + f(a) + P(x)] - [x + N(x)]

when a < x < b. Use our information to prove that if f (x) has bounded variation
over a < x < b [which means that T(b) is finite], then f(x) is the difference of two
increasing functions. Prove that if f(x) is the difference of two increasing func-
tions over a < x < b, then f(x) has bounded variation over a S x 5 b. Hint:
To obtain (4), note that (2) contains a telescopic sum and put (2) in the form

(9) 1

n
f (x) - f (a)l.u.b. I 1 If(tk) -f(tk-1)I + 2 } = P(x).

Remark: Our results and Theorem 5.76 imply that the Riemann integral fa b f (x) dx

exists if f has bounded variation over a < x 5 b. Moreover, we now have enough
information to appreciate the most important theorem in the theory of Riemann-
Stieltjes integrals; see Problem 11 of Problems 4.89. The theorem says that

(10) fabf(x) dg(x)

exists if f is continuous and g has bounded variation over a < x < b. Methods
of this section provide proof for the case in which f is continuous and g is increas-
ing, and the general result is then obtained by expressing g as the difference of
increasing functions. A much more difficult theorem says that if g is such that
(10) exists whenever f is continuous over a - x < b, then g must have bounded
variation over a 5 x < b.



6 Cones

and conics

6.1 Parabolas Before plunging into the general aspects of this
chapter, we obtain more information about the parabolas that were
introduced in Section 1.4. Being realistic, we face some facts. We
remember that, for some strange reason, the graph of y = kx2 is, when
k > 0, a parabola, but details involving the focus and directrix of this
parabola may have been quite thoroughly forgotten. We try to recall,
and henceforth remember, that the parabola has a focus F and a directrix
as in Figure 6.11 and that the parabola is the set of points P(x,y) for
which IFPI _ 1DPI. We have forgotten how the coordinates of F and the
equation of the directrix are related to k, and we may forget again, so we
should know how to discover the facts. To put a little variety into our
lives, we use the symbol "?" to represent the unknown distance from the
origin to F and from the origin to the directrix. Now we make the key
observation. The points on the horizontal line through F all lie at dis-
tance (2?) from the directrix. Hence the point (2?,?) which lies (2?)
units to the right of F must lie on the parabola. The coordinates of this
3"
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point must therefore satisfy the equation of the parabola, so ? = k(2 ?) 2 and
? = 1/4k. The coordinates of F are therefore (0, 1/4k), and the equation
of the directrix is y = - 1/4k. The square of Figure 6 11 having a vertex

x

Directrix D

Figure 6.11

atF and two vertices on the directrix is called a focal square of the parabola.
Another focal square lies to the left of the one in the figure. A figure
which shows a parabola together with its focus and directrix is imperfect
unless the parabola contains a vertex of each focal square.

The y axis, being an axis of symmetry and the only one, is called the
axis of the parabola. The point in which the parabola intersects its axis
is called the vertex of the parabola. More definitions will appear in the
problems. While parabolas have important applications in which foci
(plural of focus) and directrices (plural of directrix) never appear, most of
the problems involve situations in which they do appear.

Since preliminary ideas can be very valuable, we look briefly at Figure
6.12. The figure gives six views of the intersection of a cone and a plane

VV VV
Figure 6.12

The cone is a right circular conical surface a part of which resembles a
conical paper cup or ice-cream cone. The vertex V and the axis of the
cone are in the plane of the paper. The intersecting plane is parallel to
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a line on the cone. The intersection is a curve of which a part (the solid
part) lies on the front half of the cone and a part (the dotted part) lies on
the back half of the cone. Our present requirement is exceedingly
modest. All we are required to do is grasp the idea that the curve looks
like a parabola. Our solid information about this matter will come in the
next section. Meanwhile, persons with artistic flairs can find useful
entertainment in sketching sections of cones made by planes not parallel
to lines on the cones.

Problems 6.19
1 Sketch a graph showing the parabola whose equation is y = x2 together

with the focus and directrix of the parabola. Draw the focal squares and make
any repairs that may be necessary to make the parabola contain corners of the
focal squares. Prove that the tangents to the parabola at the latter corners
are diagonals of the focal squares, and make any additional repairs that may be
necessary.

2 Problems of this section deal quite exclusively with parabolas placed
upon coordinate systems in such a way that their equations have the standard
form y = kx2, where k is a positive constant. We can, however, pause briefly
to note that the equation

(1) y-yo=k(x-xo)2
is the equation of a parabola having its vertex at the point (xo,yo) Supposing
that a, b, c are constants for which a 0 0, show that the graph of the equation

(2) y=axe+bx+c
is a parabola and find the coordinates of its vertex. Solution: From (2) we obtain

(3) y=a(x2+bx }+ ca
z

=a(x2 }
ax+4a2)+c-Tz

a

= a (x +
ya)2 + 4ac4a bz

and hence J

2 - 4a b 12
(4) Y I- 4a = a (x + Tal

Thus the graph of (2) is a parabola having its vertex at the point (- Za'
b2 - 4ac

Remark: In case a > 0, the equation (4) has the form (1), where4a
)-

k > 0 and the graph "opens upward" like the graph of y = kx2. In case a < 0,
(4) has the form

(5) Y-yo=-k(x-xo)2,
where k > 0 and the graph "opens downward" like the graph of y = -kx2.
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These matters are important because equations of the form (2) appear very often,
but for basic studies of parabolas we use the standard form y = kx2, where k > 0.

3 Show that the tangent to the graph of the equation y = kx2 at the point
Pl(xi,kxi) has the equation

y - kxi = 2kx1(x - x1) or y = kx,(2x - x1).

Show that this tangent intersects the y axis, the x axis, and the directrix at the
points

.4(0, -kxi),B(-' 0),C(z'- 1,- 1J2 2 8k2x1 4k

provided, for the last point, x1 5-1 0. Sketch a figure in which the parabola, the
tangent, and the points B, B, C all appear.

4 Show that the normal to the graph of the equation y = kx2 at the point
Pi(xl,kxi) has, when x1 0 0, the equation

2 1y-kxl=-2kx1(x-xl).

Show that this normal intersects the y axis, the x axis, and the directrix at the
points

Sketch a figure showing all of these things.
5 Two points (xi,yi) and (x2,y2) lie on the parabola having the equation

y = kx2. Prove that the coordinates of the intersection R of the y axis and the
line through these points can be put in the form
(0,-kxlx2). Figure 6.191 illustrates results of
this and the next two problems, but the figures
look quite different when x1 and x2 have opposite
signs.

6 Two points (x1,yl) and (x2,y2) lie on the
parabola having the equation y = kx2. Prove

that the coordinates of the intersection of the

tangents to the parabola at these points can be

put in the form

(x, + x2,
kxlx2

2

7 Show that the results of the two preceding
Figure 6.191

problems yield the following theorem. Let P1 andP2 be two points on a parabola.
Let Q be the intersection of the tangents to the parabola at P1 and P2. Let R be
the intersection of the line P1P2 and the axis of the parabola. Then the mid-
point of the segment QR lies on the line tangent to the parabola at the vertex.
Solution: The results of the preceding problems show that the mid-point is
Cxl + x2

01
4 , and this point is on the tangent to the parabola at the vertex.
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8 Let P, be a point on a parabola which is not the vertex P. Let W be the
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intersection of the tangents to the parabola at Pl and V. Show that the line

Figure 6.192

from the focus F to W is perpendicular

to the line WP1. Hint: Let the parabola
have the equation y = kx2 and use the fact

that F has coordinates (0, 1/4k). See

Figure 6.192.
9 Let Pl be a point on a parabola which

is not the vertex V. Prove that the tangent
to the parabola at Pl meets the directrix and
the line through the focus F parallel to the
directrix at two points Q and R that are
equidistant from F. See Figure 6.192.

10 A particle P moves on the parabola
having the equation y = kx2 in such a way
that, at each time t, its x and y coor-

dinates are t and kt2 and the vector r running from the origin to P is

r = ti + kt2j.

Show that the velocity vector v is

v=i+2ktj,
and note that this vector is also a "fore and tangent" to the parabola at P.
Letting F be the focus of the parabola, show that

FP=ti+(kt'--k}j and

Letting cal be the angle between the vector FP and the tangent vector v, show
that

2ki
cos ¢i =

1,1 + 4k2t2

Letting 452 be the angle between the tangent vector v and the vertical vector j,
show that

cos 02 =
IVI IjI -\/1 +t4k2t2

and hence that 02 = 01. Remark: These formulas yield the famous reflection
property of parabolas. They imply that the line FP and the line extending
upward from P make equal angles with the normal to the parabola at P. This
implies that if light or something else goes in a line from F and is reflected from
the parabola in such a way that the angle 0,. of reflection is equal to the angle
0, of incidence, then its path after reflection is parallel to the axis of the parabola.

11 Modify the work of the preceding problem to make a direct attack upon
the angles which FP and j make with the normal to the parabola at P. Remark:
This should be done when our primary interest lies in angles of incidence and
reflection.
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12 This problem and Figure 6.193
delve a bit deeper into the geometry of
parabolas. The figure shows the pa-
rabola having the equation y = kx2,
where k > 0. The focus F and the
directrix have the coordinates (0, 1/4k)
and the equation y = -1/4k. Let
x, > 0. Show that the line through
P,(x,, kxi) parallel to the axis of the pa-
rabola intersects the directrix at the
point D,(x,, -1/4k). Show that the
tangent to the parabola atP, intersects
the axis of the parabola at the point
Q,(0,-kx2). Show that the quadrilat-
eral Q,D,P1F is a rhombus, that is, an
equilateral parallelogram. This rhom-
bus could be called a focal rhombus; in
any case it is a focal square when
x, = 1/2k and the rhombus is a square.

Figure 6.193

Show that the diagonals of this rhombus
are perpendicular to each other and that they intersect at the point (x,/2, 0).
Finally, show how these results and elementary geometry can be used to prove
the reflection property of the parabola, namely, that the line from the focus to
P1 and the line through P, parallel to the axis of the parabola make equal angles
with the tangent to the parabola at P,.

13 Write the equation of the tangent to the graph of the equation y = x2
at the point (x,,x1) and then try to determine x1 so the tangent will contain (or
pass through) the point

(a) (1,1) (b) (1,0) (c) (0,1) (d) (-1,-1).
14 Find the equation of the normal to the graph of y = x2 at the point (x,,xi)

on the graph. Show that if yo 5 -, then there is only one value of x, for which
the normal passes through the point (O,yo), but that if yo > , then there are
three values of x1 for which the normal passes through the point (O,yo). Sketch
a figure or figures which show that the results seem to be reasonable.

15 As is the case for circles, a line segment joining two points on a parabola
is a chord of the parabola, and the set of mid-points of the chords parallel to a
given chord is called a diameter of the pa-
rabola. Thus a diameter is a point set, not
a number. Letting the parabola have the
equation y = kx2, where k > 0, prove that
for each in the diameter determined by
chords having slope in is the line segment
containing points (x,y) for which x = m/2k
and y > m2/4k.

16 A focal chord of a parabola is a line
segment which contains the focus and has its
ends at points on the parabola. Supposing
that x2 < 0 < x, as in Figure 6.194, show

Figure 6.194
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that the two points Pi(xi,kxi), P2(xs,kz2) on the graph of y = kx2 are end points
of a focal chord if and only if (2kxi)(2kx2) _ -1 and hence if and only if the
tangents to the parabola at P, and P2 are perpendicular.

17 With or without the aid of the results of the preceding problems, show
that two different tangents to a parabola intersect on the directrix if and only if
the tangents are perpendicular and hence if and only if the points of tangency
are ends of a focal chord.

18 Prove that the center of a focal chord of a parabola is equidistant from the
directrix and the ends of the chord.

19 Two equilateral triangles in E2 are similar in the sense that one can be
transformed into the other by a translation, a rotation, and a change of scale
Show that the same is true of two parabolas in E2. Hznt: Suppose that the to
given parabolas are translated and rotated so that their equations become
y = k1x2 and y = k2x2, where ki and k2 are positive constants. Show that if in
the first equation we change scale by replacing x and y by Ax and Ay, we obtain
y = (Akl)x2

20 Let k be a positive constant. For each positive number a, let F(a) be
the y coordinate of the center of the circle tangent to the graph of y = kx2 at
the points for which x = a and x = -a. Find F(a) and lim F(a). Ans.:

ka2 + 1/2k and 1/2k.
21 Let k be a positive constant. For each positive number a, let (G(a),

H(a)) be the center of the circle which is tangent to the graph of y = kx2 at the
point (a,ka2) and which contains (or passes through) the origin. Show that

and

G(a) = 2 ka2 + Zk H(a) = -k2a3

lim G(a) = 1/2k, lim H(a) = 0.

22 Sketch a graph of the parabola having the equation y = x2 and then
sketch several circles which have centers on the positive y axis and are tangent to
the x axis at the origin. Observe that sufficiently big circles in this family inter-
sect the parabola at points different from the origin and that small circles leave
us in doubt. Supposing that k > 0, investigate this matter for the parabola
having the equation y = kx2. fins.: The circle with center at (O,a) and radius
a intersects the parabola only at the origin (and is elsewhere above or "inside"
the parabola) if and only if a S 1/2k. Thus the biggest one of these circles
which lies completely on or inside the parabola has radius equal to the distance
from the focus to the directrix of the parabola.

23 Study the set S which contains a point P(x,y) if and only if the point is

Figure 6.195
equidistant from the x axis and the circle with center at
the origin and radius a. Solution: This problem is interest-
ing because S contains some points inside the circle as
well as some points on and some points outside the circle;
see Figure 6.195. Whether a point P(x,y) lies inside or
on or outside the circle, it will be in the set S iff (if and
only if)

(1) I x2 + y2 - al = Iyi



and hence if

(2)

If (2) holds, then

(3)

and hence either

(4)

or

(5)
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Vx2 +y2 = a ± y.

x2 + y2 = a2 2ay + y2

2ay- 2+2a

ax'-
2

_
2a

It can be shown that if (4) or (5) holds, then (1) holds. It follows that S is the
sum (or union) of two parabolas of which one has the equation (4) and the other
has the equation (5). Each parabola has its focus at the origin, and the directrices
are the tangents to the circle that are parallel to the x axis. The parabolas
intersect the x axis where the circle does.

24 With or without the aid of results of preceding problems, let P be a given
parabola and verify the following facts which show students of mechanical draw-
ing how to locate the axis, vertex, focus, and directrix of P. The mid-points M,
and M2 of two parallel chords C, and C2 of P determine a line L, parallel to the
axis of P. The axis L of P is the perpendicular bisector of the line segment joining
points where a line perpendicular to L, intersects P. In case L, is not the axis of
P, the mid-points Mi and M2 of chords Cx and C2 perpendicular to C, and C2
determine another line Li parallel to L. Let L, and Li intersect the parabola at
P, and Pl. Then the line T, (or Ti) through P, (or P'1) parallel to C, (or Ci) is
tangent to P at P, (or Pl). Moreover T, and Ti are perpendicular, and their
intersection is on the directrix of the parabola. Finally, the line segment joining
P, and Pi is a focal chord of the parabola so this segment intersects L at the focus.
Remark: Anyone who spends a substantial part of his lifetime working with
parabolas can learn very much about them.

6.2 Geometry of cones and conics Throughout this chapter, a cone
is always a complete right circular conical surface consisting of two parts,
or nappes, as in Figure 6.21. We assume that0 < a < Ir/2
and that the lines on the cone all make the same angle a
with the axis of the cone. For the present, we simplify
our discussion by supposing that the axis of the cone is
vertical, and hence that each plane perpendicular to the
axis is horizontal. A conic (or conic section) is the set of
points in which a plane in intersects the cone. In case in
contains the vertex Y, the resulting conic is either a single
point or a single line or a pair of intersecting lines. In
case in is perpendicular to the axis of the cone and does
not contain the vertex, the conic is a circle. Our interest
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in this chapter lies in conics of less simple natures. These turn out to be
parabolas and ellipses, each of which intersects only one nappe of the
cone, and hyperbolas, each of which intersects both nappes of the cone.

Figure 6.22

Without yet knowing what will be
learned, we look at Figure 6.22, which
is one of the most remarkable figures
of elementary geometry. This is a
flat nonperspective figure which must
be constructed and studied rather
carefully before it can be fully under-
stood. The vertical line in the plane
of the paper is the axis of a cone with
vertex Y and vertex angle a. The line
making the acute angle 0 with the axis
represents more than a line. It is
supposed to lie in the plane of the
paper, and it represents a plane it
which makes the angle S with the axis
of the cone and which intersects the
cone in a conic K. We can, if we wish
to do so, think of the plane 7r as being
an xy plane in which the x axis is
pointed toward our eyes, and every-

thing in this plane seems to lie on one line. The graph of each pointP on
the conic K, whether P lies on the part of the cone in front of the plane of
the paper or on the part behind the paper, is on the line. Our first
significant step is to fit a sphere into the cone, the sphere being just big
enough to be tangent to the plane ir. The circle in the figure represents
this sphere, which is tangent to the cone at the points of a circle which
lies in the horizontal plane lrl and which is tangent to the plane 7r at
the point F.

It can now be revealed that discoveries will be made; in fact we shall
show that F is a focus of the conic K. Because irl is horizontal and 7r is
not, these planes intersect in a line L which is represented by a single
point in the flat figure. We shall show that L is a directrix of the conic K.
To start learning something about the conic K, let P be a point on K
and draw the line segment PD which lies in it and is perpendicular to L
at the point D on L. The line PY lies on the cone and is tangent to the
sphere at a point A in r1. The line PF lies in 7r and is tangent to the sphere
at F. Therefore IPFI = IPA1 because the two vectors have their tails
at the same point P and are tangent to the sphere at their tips. If we
let d be the distance from P to the plane art, then d = API cos a because
the vector AP makes the angle a with vertical lines. Also d = I DPI cos 0
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because the vector DP makes the angle S with vertical lines. Equating
the two expressions for d gives the formula

I API cos a = DPI cos Q.

This and the fact that IPFI = IPDI give the fundamental formula

(6.23)
IPFI _ cos P IPDI

= eIPDI
cos a

where the constant e defined by the formula

(6.231)
cos 0e = ,
cos a

is called the eccentricity of the conic. The point F and the line L are
respectively a focus and a directrix of the conic. It is clear from Figure
6.22 that, whenever a and S are given acute angles, we can make the dis-
tance from F to L have any positive value p we please by taking it at the
appropriate distance from V. The equation (6.23) is called an intrinsic
equation of the conic, that is, an equation that depends only upon the
conic itself and not upon the coordinates of a particular "external"
coordinate system.

In case 0 = a, the conic is called a parabola. In this case, (6.231)
shows that e = 1 and that the formula (6.23) reduces to the simpler
formula IFFI = IPDI. Thus we have, as was promised in Section 1.4,
proved that a parabola is the set of points P (in a plane) equidistant from
a fixed point (the focus F) and a fixed line (the directrix L).

In case a < $ < 7r/2, the conic is called an ellipse. In this case

(6.24) IPFI = eIPDI

where the eccentricity is a constant e for which 0 < e < 1. As we can see
from Figure 6.22, an ellipse is an oval (or oval curve) that lies entirely
on one nappe of the cone. Ellipses will be studied in greater detail in
Section 6.3.

In case 0 < R < a, the conic is called a hyperbola. In this case

(6.241) IPFI = eIPDI,

where the eccentricity is a constant e for which e > 1. As we can see from
Figure 6.22, a hyperbola consists of two branches (or parts) one of which
is contained in each nappe of the cone. Hyperbolas will be studied in
greater detail in Section 6.4.

The above information enables us to find the equation of a nontrivial
conic K (parabola, ellipse, or hyperbola) which lies in an xy plane when we
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P(x y) know the eccentricity e, the coordinates
(x1jy1) of a locus F, and the equation

F(x,,y,) 'IX + By + C = 0 of a directrix L. While
different values of e yield conics of different

Ax+By+C=o' shapes, the schematic Figure 6.25 may be
Figure 6.25 helpful. The formula JPF1 = e;PDJ is equiv-

alent to the formula IFPI2 = e2IPDI2, and
use of formulas for distances from points to points and from points to
lines (see Theorem 1.48) enables us to put this in the form

(6.251) (x - x1)2 + (y - y1)2 = A2 + B2 (Ax + By + C)2.

While the equation (6.251) has its virtues, we can obtain a more inform-
ative equation by choosing the x,y coordinate system in such a way that

the focus F lies on the x axis and the
directrix is perpendicular to the x axis.
With the intention of so determining x1
that the resulting equation will have its
simplest form, we suppose that the focusF

x=z1-p F(x,,O) X has coordinates (x1jO) and that the direc-
Figure 6.26 trix lies a given positive distance p to the

left of the focus (as in Figure 6.26) so
that the equation of the directrix is x = x1 - p. The intrinsic equation
IFF12 = e2IPD12 then gives the coordinate equation

(x - x1)2 + y2 = e2[x - (x1 - p)]2
or

(6.261) (1 - e2)x2 + 2[e2(x1 - p) - x1]x + y2 = e2(x1 - p)2 - xi.

We can now begin to see how the nature of the equation depends upon the
eccentricity e. In case e = 1, so that the conic is a parabola, (6.261)
reduces to

(6.262) x = 2p y2 + x1 - P).

This equation has its simplest form when x1 = p/2. The simplest equa-
tion has the form x = ky2 which (except that the roles of x and y were
interchanged to simplify matters) was studied in Section 6.1.

We now face the task of simplifying (6.261) for cases in which 0 < e < I
or e > 1 and the conic is an ellipse or a hyperbola. As is easy to guess,
the greatest simplification results from so choosing x1 that the coefficient
of x is 0. Therefore, we let x1 be determined by the equivalent equations

(6.27 e2 x1 - -e2p -p
( p)-x1=0, x1=1-

e22

x1-p=1- e2.
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Putting this value of xl in (6.261) gives the equation

(6.271) (1 - e2)x2 + y2 =
e2p2

-e2

This equation of the conic is a good source of information, but we obtain
a better source by putting the equation in the "standard form." To do
this neatly and correctly, we sacrifice some paper to put (6.271) in the
form

(1 - e2)x2 y2 e2p2

+1 1 1-7
divide the numerator and denominator of the first term by (1 - e2) to
obtain

x2 y2 e2p2

1 + 1 1-e
1 - e2

and then divide both members of this equation by the right member to
obtain an equation which is put in the form

2

(6.272)
x

e2p2 +
y

e2p2 = 1, (ellipse)

(1 - e2)2 1 - e2

when 0 < e < 1, and in the form

(6.273) e2p2 - e p2 = 1, (hyperbola)

(e2 - 1)2 e2 - 1

when e > 1. Everything is so arranged that the denominators in (6.272)
and (6.273) are positive.

Unless we think a bit about sections of cones, we cannot fully appreci-
ate the significance of these formulas. It is sometimes said that any
reasonably sane person should feel quite sure that an ellipse is an egg-
shaped oval which has a "small end" at the part of the ellipse nearest the
vertex of the cone and which has a "big end" at the part of the ellipse
farthest from the vertex of the cone. However, (6.272) shows very
clearly that the x and y axes are axes of symmetry of the ellipse and that
the origin is a center (center of symmetry) of the ellipse. Thus (6.272)
reveals the astonishing fact that the ellipse has a center and that the two
"ends" of the ellipse are alike (or congruent). Similarly, suppose a
particular hyperbola H intersects one nappe of a cone at some points
near the vertex of the cone but intersects the other nappe only at points
very far from the vertex of the cone. It would seem to be incredible that
the two branches of this hyperbola should be alike, but they are alike.
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The formula (6.273) shows that the x and y axes are axes of symmetry of
the hyperbola and that the origin is a center (center of symmetry) of the
hyperbola. This proves that the two branches of the hyperbola are
congruent.

There are two reasons for putting the above equations in the simpler
standard forms

(6.28)
z 2 z z

X
y2 x- y

a2
-f-

b2 az bz

where a and b are positive constants. In the first place the denominators
in (6.272) and (6.273) are clumsy things to write, and in the second place
equations of the form (6.28) often arise in problems where a and b are not
children of eccentricities. Comparing (6.272) and (6.273) with (6.28)
shows that a and b are determined in terms of e and p by the formulas

(6.281) a=11-e21' b=Vlep
11-e 21

On the other hand, the formulas

z

(6.282) 1x11 =
1 1

e pe21 = ae = distance from center to focus

(6.283) 1x1 - pl =
11

p
921 e

= distance from center to directrix

(6.284) ae = a2 --b2 for ellipse, ae = 1/a2 + b2 for hyperbola

serve to determine other quantities in terms of a and b. The first two of
these formulas are obtained very quickly by comparing the formulas for
x1 and x1 - p in (6.27) with the formula for a in (6.281). To obtain
(6.284), we can square the members of (6.281) and combine the results to
obtain b2/a2 = 11 - eel and then treat separately the cases in which
0 < e < 1 and e>1. Observe that 0 <b <a when 0 < e < 1 and
also I < e < but that b > a when e > V2-. Graphs of ellipses and
hyperbolas, and schemes for remembering essential parts of the above
formulas, will appear in later sections.

Problems 6.29
1 Copy Figure 6.25 and the equation (6.251) of the conic K and look at

them. Then show that the equation of K can be put in the form

12,42 l 2e2AB e2B2 l(1) (1 - i2 + B2/ x
z _

112 + B2 (1 11z } B=/ y
=

t2 C e2BC l e2C2
Yi)
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This equation is ponderous and nobody should ever dream of remembering it,
but it is useful.

2 With the aid of the result of Problem 1, show that the coefficient of xy
in the equation of a conic K is zero if and only if each directrix of K is parallel
to one of the coordinate axes.

3 With the aid of the result of Problem 1, show that if the coefficients of
x2 and y2 in the equation of a conic K are both 0, then e = - and 42 = B2.
Show that when e = - and B = 11, the equation reduces to

(2)

C)Y=_2 i y1- C2
rl 2 2112

Show that when e = - and B = -A, the equation reduces to

(3)

C) C) C2 X2 + Y2
xy

x1 X11

X-
YI-rl 5 2,42 2

The graphs of these equations are hyperbolas because e = \ > 1.
4 With the aid of Problem 3, show that if e = N/"2-, B = .4, x1 = -C/A,

and yl = -C/A, then the equation of the conic K is

(4)
C2

XY =

Show also that if e = -\/2, B = -11, x1 = -C/!1, and y1 = C/fl, then the equa-
tion of the conic K is

(5)
C2

xY = - 212.

Our equations are now much simpler.
5 Let k > 0. Observe that formula (4) of Problem 4 reduces to xy = k

when 4 = 1 and C = - . This shows that xy = k is the equation of the
conic having a focus at the point ( 25), having a directrix with the
equation

(6) x -I- y - = 0,

and having eccentricity e = N/2_. Remark: Relatively few persons have enough
courage to undertake to sketch or otherwise describe a cone in Es which intersects
the xy plane in the graph of the equation xy = k and then use methods of syn-
thetic geometry (geometry which, unlike analytic geometry, never uses algebra
and other brands of mathematical analysis) to obtain information about the foci
and directrices of the conic. However, the results of this problem enable us to
put this information in very simple terms. Supposing that k > 0, we start with
a good clean x, y coordinate system and show how to locate the foci and directrices
of the hyperbola having the equation xy = k. The point V(NII, 1/k) clearly
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lies on the hyperbola, and we start by
Y locating it in Figure 6.291. We then

Ll
M

enter the wholesale sketching business

3 and sketch the line M containing 0 and
r ---- - - 7f F1( 2k, 2k) F, the circle C with center at 0 which con-
I

C j) tains Y, and the square S whose sides are
tangent to C at the points where C inter-
sects the coordinate axes. The points/ x Fl( 2k, 2k) andF2(- 2k, - 2k)

I where the square S meets the line M are
Ix+y= the foci of the hyperbola. The line L,

joining the points where the circle and
/ F2 square meet the positive x and y axes is

Figure 6.291 one directrix of the hyperbola. The line
L2 joining the points where the circle and

square meet the negative x and y axes is the other directrix of the hyperbola.
Finally, we complete Figure 6.291 by sketching the hyperbola. As we know, the
coordinate axes are asymptotes of the hyperbola The origin is the center (the
center of symmetry) of the hyperbola. The line M is a line of symmetry; it is
called the transverse axis of the hyperbola. The line through 0 perpendicular to
M is another line of symmetry; it is called the conjugate axis of the hyperbola.
The particular hyperbola we have been studying is called a rectangular hyperbola
because its asymptotes are at right angles to each other.

6 Information theory teaches that results like those of Problem 5, which
depend upon considerable calculation, should be checked when it is relatively
easy to do so. Letting F be the point /2k), letting L be the line having
the equation x + y - = 0, letting D be the foot of the perpendicular from
P to L, and letting e = -V/2-, simplify the intrinsic equation IFP12 = e2JDPI2 to
obtain the coordinate equation xy = k. Remark: We are seldom required to
find the distance from a point to a line which is not parallel to a coordinate axis,
and it is helpful to be able to find Theorem 1.48, which enables us to obtain the
result very quickly.

7 Find the set of numbers k such that there exists at least one point (x,y)
whose coordinates satisfy the equation y = kx and the equation

(a) xt + y2 = 1 (b) xy = 1 (c) xy = -1
x2 y2 x2 y2

(d) 9+4=1 (e) 9-4=1
In each case, sketch a figure which shows the geometric significance of the result.

8 Tell why a circle is not an ellipse. Remark: The answer must be based
upon definitions and not upon intuitions of the untutored.

9 When .1 0 0 and B > 0, the graph of the equation

y==e1x2+B
is a central conic (circle or ellipse or hyperbola but not a parabola or a degenerate
conic) having its center at the origin. Show that if m and b are constants such
that the line having the equation

y=mx+b
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intersects the conic at two points, then the mid-point of the chord of the conic
joining these points has coordinates (x,y), where

_ m 2+2(A-m2)x-b2(A-m2)' y - b
IM'

2(!1 -m2)

Use this result to show that, for each fixed m, the set D of mid-points of chords
having slope m lies on a line through the center of the conic. Remark: This set
D, which is always a line segment when the conic is a circle or an ellipse and is
sometimes a whole line when the conic is a hyperbola, is called a diameter of the
conic.

10 Let m be a positive constant. A surface S contains the origin, and when
y 6 0, it contains the circle which lies in a plane parallel to the xz plane and has
a diameter coinciding with the line segment joining the two points (O,y,O) and
(0,y,2my) in the yz plane. Sketch a figure showing S and show that the equation
of S is

x2 + (z - -y)2 = m2y2.

Remark: One who wishes to rise above minimum requirements may show that
(i) S is a quadric surface, (ii) S is a cone and hence is a quadric cone, (iii) S is
not a right circular cone. One who wishes to rise to still greater heights may
try to decide whether we know enough to determine whether the cone has an
axis and, if so, whether sections made by planes perpendicular to this axis are
ellipses.

6.3 Ellipses Remarkable geometric properties of ellipses can be
extracted from Figure 6.31. This
figure, like Figure 6.22, shows a
cone having a vertical axis. The
axis lies in the plane of the paper.
The plane 7r intersects the cone in
an ellipse E of which the two points
(vertices, in fact) Yl and Y2 lie in
the plane of the paper. The smaller
circle represents a sphere which is
tangent to the cone at the points of
a circle which determines the plane
7r1 and is tangent to a atFl. As we
saw in Section 6.2, al and ir inter-
sect in a line LI and, moreover, Fl is
a focus and Ll is a directrix of the
ellipse E. The larger circle repre-
sents a sphere which is tangent to
the cone at the points of a circle
which determines the plane 72 and

Figure 6.31

is tangent to it at F2. The planes 7r2 and ,r intersect in a line L2, and the
same procedure which was applied to F, and L, shows that F2 is another
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focus and L2 is another directrix of the ellipse E. Thus E has two foci
and two directrices.

We can look at Figure 6.31 and make some informal observations that
we shall not (and perhaps cannot) make precise. If Y, and Y2 are nearly
equidistant from Y, then the ellipse is nearly circular, the foci are close
together and nearly midway between Y, and Y2, and the eccentricity e is,
as (6.231) shows, nearly zero. If we keep Y, where it is and replace Y2 by
a point many miles up on the cone, then the eccentricity will be near 1,
the ellipse will be relatively flat, and the part of the ellipse within a few
miles of Y, would look so much like a part of a parabola that very careful
inspection of this part would be required to enable us to tell whether the
conic is an ellipse or a parabola or a hyperbola.

Our next step is to use Figure 6.31 to obtain the famous string property

(6.32) I F,PI + IF2PI = I Y1Y2I

of the ellipse E, which shows that the sum of the distances from the foci
of an ellipse to a point P on the ellipse has the same constant value for all
points P on the ellipse. Let P be Y, or Y2 or any other point on the
ellipse. The line VP lies on the cone and is tangent to the lower and upper
spheres at points 111 and 12. Then, as was pointed out in Section 6.2,
IPF,I = IPY1I because the two vectors have their tails at the same point
and are tangent to a sphere at their tips. Also, IFF2I = IP42I for the
same reason, the upper sphere now being involved. Therefore,

(6.33) IF,PI + IF2PI = I111PI + IP22I = I1?,Y2I.

Wherever the point P may be on the cone, the number
I
is the con-

stant slant height of the segment of the cone that lies between the parallel
planes 9r, and 72i in fact if d is the distance between 7r, and ir2, then
I1r,1r2I = d/cos a, where a is the angle at the vertex of the cone. The
points Y,, F,, F2, and Y2 all lie on the line in which 7r intersects the plane
of the paper. The results of setting P = Y,, and then P = Y2, in (6.33)
give

(6.331) IF1YiI + IF2Y1I =
d

cos a
IF7Y2I + IF;Y2I =

d

cos a

and with the aid of Figure 6.31 we can put this in the form

(6.332) 2IT,FjI + IF,-F21 = IF,F2I + 21T2 2I =

This gives the remarkable fact that

(6.333) IY,F1I = IF2Y21

d

cos a
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With the aid of Figure 6.31 and these formulas, we find that

(6.334) IY1F,I + IF1F2I + IF2Y2I

= 2IYrFLI + 177F-,.l =
d

= 1Z421 -
cos a

From this and (6.33) we obtain the string property (6.32). One reason
for interest in the string property of ellipses lies in the fact that it provides
a mechanical method for drawing ellipses. Let a string of length 2a have
its ends pinned to two points Fl and F2 on a sheet of paper. Using a pencil
point to stretch the string into two straight segments, we can move the
pencil so that its point draws an ellipse having foci at Fl and F2 as the
string slides over the pencil point.

Figure 6.34 shows an ellipse which was drawn with the aid of the string
property, and it also shows some numerical dimensions which display

Figure 6.34

information from the paragraph containing (6.281). Even though the
equation of the ellipse of the figure has already been derived, it is worth-
while to know about the operations involved in using the intrinsic string
property IFiPI + IF2PI = 2a to derive the equation. Letting F,(-ae,0)
and F2(ae,0) be located on the x axis with the origin midway between them
as in Figure 6.34, we use the string property to obtain the uninformative
equation

(6.35) (x + ae)2 + y2 + 1/(x - ae)- + y2 = 2a,
which should be simplified. If we square the members of this equation,
the product of the two square roots will complicate our calculations. It
is better to transpose one of the square roots (we select the second) and
square and simplify the result to obtain(x-\,I-ex.
Squaring and simplifying this gives

(1 - e2)x2 + y2 = a2(1 - e2),
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and dividing by the right side gives the standard form

(6.36) a2 +
b2

= 1,

where b2 = a2(1 - e2) or

(6.37) at = a2 - b2.

Cones and conics

It is of interest to see that memorization of only a few details enables us
to find the graph, foci, and directrices of the graph of (6.36) when a and b
are given constants, say a = 5 and b = 2. Putting y = 0 shows that
points (a,0) and (-a,0) lie on the graph. The line segment joining these
points is the major axis of the graph. Putting x = 0 shows that the
points (0,b) and (0,-b) lie on the graph. The line joining these points
is the minor axis of the graph. The graph is an ellipse through these four
points. The foci always lie on the major axis. With or without the aid

of the string property of the ellipse,
Y we can remember that the foci lie on
(o,b) the major axis and on the circle of

Figure 6.38

radius a having its center at an end of
the minor axis. Then Figure 6.38,
which is a simpler version of Figure
6.34, shows that the distance from the
center of the ellipse to the foci can be
calculated by the Pythagorastheorem.
The distance is a2 - b2, and if we
will remember that this is at, then we

can calculate e. Finally, we can calculate the distance from the center to
the directrices if we remember that this distance is ale. The numbers
at and ale are the key numbers.

Problems 6.39
1 For each of the following pairs of values of a and b, sketch the ellipse

having the equation
x2

}

y2

as b,- = 1,

find the eccentricity, find the foci (give coordinates), and find the directrices
(give equations). Try to cultivate the ability to use the Pythagoras theorem and
key numbers without use of books or notes. Check the numerical results by use
of the fact that the distance p from a focus to its directrix must satisfy the equa-
tion e2p2 = b5(1 - e2).

(a) a=5,b=2 (b) a=3,b=1 (c) a=5,b=4
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2 The equation
xz 2

22+3z=1

differs from equations of ellipses having their foci on the x axis because the
denominator under xz is not greater than the denominator under yz. Never-
theless, plot the four points on the graph obtained by setting x = 0 and then
y = 0, and then sketch the graph. Observe that everything is like the preceding
problem except that the roles of x and y are interchanged. Then proceed to
find the eccentricity, foci, and directrices. Repeat the process when 2 and 3
are respectively replaced by

(a) 2 and 5 (b) 1 and 5 (c) 3 and 5

3 We have known for a long time that the graph of the equation

(x-h)z+(y-k)z=az
is a circle having its center at the point (h,k). With this hint, sketch graphs of
the equations

(a) (x
52

1)z+(y 22)2=1 (b) (x-1)2 (y-2)z=1
2 22

+ 52

Observe that, in these cases, distances from centers to foci are not coordinates
of foci; suitable adjustments must be made. Remark: A good clean start is
made by setting y = 2 and calculating x - 1 and then x.

4 Find the equations of the ellipses (if any) which have foci at the points
(-2,0) and (2,0) and which pass through the point (1,1).

5 Find the equation of the ellipse which has its center at the point (2,3),
which has axes parallel to the coordinate axes, and which is tangent to the coordi-
nate axes. Sketch a reasonably good figure.

6 The foci of a particular ellipse lie midway between the center and vertices.
Find the eccentricity. Supposing that the major axis has length 2a, find the
length of the minor axis and the distance from the center to the directrices.
Sketch a reasonably good figure.

7 Except for minor perturbations, the orbit of the earth is an ellipse having
the sun at a focus. The least and the
greatest distances from the earth to the
sun have the ratio H. Find the ec-
centricity of the approximate orbit.
An r.: Wig.

P 18 A i b i"''yiFi l P6 3s n egure et 1(xl,yl). 91,
a point on the ellipse having the stand-
ard equation

xR 2

az+b =1.
Supposing that Pi is not one of the
points where the ellipse intersects the

Figure 6.391
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coordinate axes, find the equation of the line T1 tangent to the ellipse at
P1. Ins.:

XIX

a2
+ UZ = 1.

9 Find the coordinates of the points where the tangent T1 of Problem 8

intersects the coordinate axes. Ins.:

\xl' O)' (0")
10 Find the coordinates of the points where the tangent Ti of Problem 8

intersects the lines through the foci perpendicular to the major axis. llns.:

(-ae,
yl + eal)), \ae' y, \1

11 Find the coordinates of the points where the tangent Ti of Problem 8

intersects the directrices of the ellipse. Ins..:

(( 11
(-e' \yl\1+aee'yl\1 ae

12 Let the line T1 tangent to an ellipse at P, intersect a directrix at Q, and
let F be the focus corresponding to the directrix. With the aid of Problem 11
and the fact that b2 = a2(l - e2), prove that the line FQ, is perpendicular to the
line FP1. Remark: This result has some quite surprising consequences. If the
focus F, directrix D, and one single point Pj(xl,yl) of an ellipse are marked in a
plane, we can give a simple rule for drawing the line T which is tangent to the

Figure 6.392

undrawn ellipse at Pi. In case P1 is on the
line through F perpendicular to D, the
tangent T1 is the line through P1 parallel to
D. Otherwise, the tangent T1 is the line
containing P1 and the point Q, where the
line through F perpendicular to the line FP1
intersects the directrix. This result implies
that if P1 and P2 are points at the end of a

P1(xi,yl

'1 focal chord (a chord containing a focus), then
the tangents at P1 and P2 intersect at the point
Q, on the directrix where the line through the
focus perpendicular to the line P1P2 meets the
directrix. Figure 6.392, in which a part of
the ellipse is drawn, illustrates this elegant
geometric fact.

13 Figure 6.392 illustrates another in-
teresting geometric fact. Then line OP1

and the line through F perpendicular to the tangent Ti at P1 intersect at a point
11 on the directrix. Prove the fact by proving that each line intersects the direc-

trix at the point I (ae, ayex1)i.
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14 Figure 6.393 illustrates the fact that the line Y1P1 from a vertex Y1 to
a point P1 on an ellipse is parallel to the line OE from the center of the ellipse to
the point E where the tangent at P1 intersects the tangent at the other vertex Y2.

xl
Show that the coordinates of E are (a, b912

(1 - a )) and prove the fact.

Figure 6.393 Figure 6.394

15 Figure 6.394 shows a part of the ellipse having, as usual, the standard
equation

(1)

in which 0 < b < a. Let G be the point in the first quadrant where the ellipse
is intersected by the line through the focusFparallel to the directrix. Prove that,
as the figure shows, the coordinates of G are (ae, b2/a). Remark: The result can
he obtained by use of the fact that the y coordinate of G is the product of a and
the distance (ale - ae) from G to the directrix. It can also be obtained by put-
ting x = ae in (1). In each case, it is necessary to use the relation b'- = a2(1 - e2).

16 Using the notation and results of Problem 15, show that the equation of
the tangent to the ellipse at G is ex + y = a. Remark: This shows that the
tangent intersects the y axis at the point (a,0) and intersects the x axis where
the directrix does. These results are illustrated in Figure 6.394. The circle
which has its center at the center of the ellipse and contains the vertices is called
the major circle of the ellipse. Thus the tangent at G intersects the major axis
where the directrix does and intersects the minor axis where the major circle does.
This is one of many elegant geometric theorems that have fascinated men for
centuries.

17 Supposing that P(x,y) is a point on the ellipse having the standard equa-
tion (6.36) which we should now know, use the information in Figure 6.38 (which
we should remember) and the distance formula to show that

lFIPl = a2+ a2-b2x
'a

a

a2 - 1/a2_-_b 2 x
FzPl =

Then seek a way in which formulas involving eccentricity can be used to obtain
the same result. Note that IF1PI + IF2PI is what it should be.
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18 Study Figure 6.395 and discover the procedure by which the encircled
points are determined, and then use the procedure to obtain another encircled

Figure 6.395

point. Prove that the set of points obtained
by this procedure lie on an ellipse. Solution:
If the inner and outer circles have radiuses
(this time we use English; the Latin is radii)
a and b, and if a line is drawn through the
origin making the angle 0 with the positive x
axis, then the coordinates (x,y) of the resulting
encircled point are

(1) x=acos6, y=bsin0.

From these equations we obtain

(2)
X2 2

a -- b: = cost 0 + sine 8 = 1,

so the point (x,y) lies on an ellipse.
19 Let 0 < b < a and let w > 0. Let a particle move in a plane in such a

way that, at each time t, the vector running from the origin of an x, y coordinate
system to it is

r = (a cos wt)i + (b sin wt)j.

Show that its path is an ellipse. Show that it is always accelerated toward the
origin and that the magnitude of the acceleration is

w2 -%Ifb-2+ (a2 - b2) cos2 wt.

Hint: To get started, let x = a cos wt, y = b sin wt, and observe the result of
some dividing and squaring and adding.

20 A point P moves around an ellipse having foci

(1) a2 --b2, 0), F2(,-,442 - b2, 0)

in such a way that the vector r running from the origin to P at time t is

(2) r = (a cos t)i + (b sin t)j.

Show that the vector

(3) v = -(a sin t)i + (b cos t)j

is a forward tangent to the ellipse at P. Show that

(4) FkP=(acost+A a2-b2)i+bsintj,
where A = 1 when k = 1 and A = -1 when k = 2, and then show that

(5) 17kP12 = a2 + 2aX a2 - b2 cos t + X2(a2 - b2) cos2 t

and hence

(6) fFkPI = a + A a2 --b*- cos t.
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Show that

(7)

Show that

(8)

IvI = b2 + (a2 - b2) sin2 t.

-X a --b2 sin t[a + X a2 - b2 cos t].

Letting )k be the angle which the vector FP makes with the forward tangent v
at P, show with the aid of (6), (7), and (8) that

TIP--v _ -X a - b2 sin t
(9) cos k -

IFkPIIvI 1/b2 + (a2 - b2) sin2 t

Show that y = b sin t and that multiplying the numerator and denominator of
the last member of (9) by b gives the formula

(10) cos ok =
-X a2 - b2 y

1/b* + (a2 - b2)y2
Remark: These remarkable formulas yield the famous reflection property of
ellipses. Since X = 1 when k = 1 and X = -1 when k = 2, the numbers
cos 41 and cos y52 in (10) differ only in sign. This implies that the vectors
F P and F2P make supplementary angles with the forward tangent v to the ellipse
at P and hence that the lines F1P and F2P make equal angles with the normal to
the ellipse at P. This implies that if light or something else goes in a line from
F2 and is reflected from the ellipse in such a way that the angle 9, of reflection
is equal to the angle B, of incidence, then its path leads to F2. Moreover, because
of the string property of the ellipse, radiation leaving F1 at the same time but in
different directions will arrive simul-
taneously (or in phase) at F2-

21 The reflection property of ellipses
is a consequence of another interesting
geometric property of ellipses. Let the
line T of Figure 6.396 be tangent at P
to the ellipse having foci at F1 and F2.
Let H1 and H2 be the reflections in T
of F1 and F2; this means that T is the
perpendicular bisector of the line
segments F1H1 and F2H2. Then, as
indicated by the figure, the line seg-
ments F1H2 and F2H1 intersect at P.
To prove this fact, let 4 be any point
on T different from P and let B be the

Figure 6.396

point at which the line segment F1A intersects the ellipse. Then (why ?)

(1) IF-,BI + IBFzi < IF1JI + I4F2I

so (why?)

(2) IF1PI + IPFzi < IF1AI + I F I
and (why?)

(3) IF1PI + IPH I < IF -,,41 + 1,4H21.
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Hence (why?) P must lie on the line F1H2. Similarly (why?) P must lie on the
line F22H2. This proves that the lines F1H2 and F2H1 intersect at P. Therefore
(why?) the angles F1PG1 and F2PG2 are equal.

22 This problem involves a nested family of curves containing many ellipses
and one circle. Let a be a given positive number. For each positive number b,
the graph of the equation

2 2

a2+ b2

is an ellipse (or a circle) which intersects the x axis at the points (-a,0) and
(a,0). It is easy to generate interest in these graphs by sketching some of them.
When 0 < xi < a, the line having the equation x = x1 intersects each of these
graphs at two points. Prove that the tangents to these graphs at these points
all intersect at a point on the x axis. Solution: Using the result of Problem 8
(or working out the result again) shows that each tangent intersects the x axis
at the point (a2/x1, 0) which does not depend upon b.

23 For each 9 for which 0 < 8 < r/2 and 6 T r/4, the graph of the equation

x2
Y2

sine 0 cost 0 - 1

is an ellipse. Sketch several of these graphs.
24 The members of a family of confocal ellipses have foci at the points

(-1,0) and (1,0). Sketch good approximations to six of them. Suggestion:
Do not work too long on an easy problem. Select a point (0,b) and make Figure
6.38 tell you what the a in (a,0) must be.

25 Supposing that an ellipse E is given, tell how our little sister can use her
new drawing equipment to locate the center, the axes, and the foci of E. Hints:
The mid-points of parallel chords of E lie on a line through the center C of E.
It is easy to choose r such that the circle of radius r having center at C intersects
the ellipse in four points.

26 A rod of length L has a red end, a blue end, and a pink dot P at distance
q from the red end. Suppose that 0 < q < L. Show that if the red end is on
the x axis and the blue end is on the y axis, then (except when q = 4) P must lie
on an ellipse. 11ns.: The equation of the ellipse is

2 y2

27 Let F be a point which is inside a circle C but is not the center of C. A

Figure 6.397 little preliminary sketching shows that the set S of points
equidistant from C and F looks much like an ellipse
having a focus at F. What are the facts? Solution: As
in Figure 6.397, let F, be the center of the circle and let
F2 be the point F. The condition that P be equidistant
from C and F2 can be put in the form

(1) r - ZPI = API
where r is the radius of the circle. Before undertaking
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to express this result in terms of coordinates, we can suddenly realize that it
is almost familiar. If we put it in the form

IF1Pj + JF,PI = r,

we see an expression of the string property of an ellipse. Therefore, S is an
ellipse having foci at the center of the circle and the given point F.

28 Sketch a figure like Figure 6.31 in which the distance from Y to Y2 is
about 10 or 20 times the distance from F to V1. Try to decide whether the
center of the ellipse is on the axis of the cone.

29 Remark: Figure 6.31 presents an interesting problem in plane geometry.
When two lines through V and a line 7r are given, we can use a ruler and compass
to construct the circles of the figure. We can then wonder whether we can give
a simple proof that I V1F, I = 1F2721 without use of the cone and planes and spheres
that were employed in the proof in the text. Perhaps consideration of this
problem will increase our respect for the methods that were employed.

6.4 Hyperbolas Geometric properties of hyperbolas can be extracted
from Figure 6.41, which, like some
preceding ones, shows a cone hav-
ing a vertical axis. The axis lies in
the plane of the paper. The plane
x intersects the cone in a hyperbola
H of which the two points V, and
Y2 (vertices, in fact) lie in the plane
of the paper. The upper circle re-
presents a sphere, in the upper
nappe of the cone, which is tangent
to the cone at the points of a circle
which determines the plane 7r1 and
is tangent to in atF1. As we saw in
Section 6.2, irl and ir intersect in a
line L1 and, moreover, Fl is a focus
and Lx is a directrix of the hyper-
bola H. The lower circle repre-
sents a sphere, in the lower nappe of

Figure 6.41

the cone, which is tangent to the cone at the points of a circle which
determines the plane 7r2 and is tangent to it at F2. The planes 72 and N
intersect in a line L2, and the same procedure which was applied toF, and
Ll shows that F2 is another focus and L2 is another directrix of the hyper-
bola H. Thus H has two foci and two directrices.

Hyperbolas have a string property which involves the diference (not
sum) of the distances IF1PI and IF2PI from foci to points on the hyperbolas.
Let P be Vi or any other point on the upper branch of H. The line VP
lies on the cone and is tangent to the lower and upper spheres at points
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A2 and A1. With the aid of Figure 6.41 and familiar facts about vectors
tangent to spheres at their tips, we see that

(6.42) IF2PI - IF1PI = IA2PI - IV1PI = IA2A1I.
Wherever the point P may be on the upper branch of H, the number
I72ZI is the constant sum of the slant heights of two conical segments
having their vertex at Y and their bases in the planes lrl and 72; in fact if
d is the distance between the planes 7r1 and 1r2, then IA2A1I = d/cos a,
where a is the angle at the vertex of the cone. In particular, letting
P = IV, shows that

IF21/1I - I Y1FI = 1 21I
and hence

(6.421) IF2Y2I + IY2V1I - IY1F1I = IT-42I.

In case P lies on the lower branch of H, we can reverse the roles of the
subscripts 1 and 2 to obtain the formulas

IF1PI - IF2I = IA1A21, IF1Y2I - IF2Y2I = 121,421
and

(6.422) IF1V1I + I Y2Y1I - I Tj'2I = I A122I.

Adding the formulas (6.421) and (6.422) shows that 2I72yl1 =
and hence that the first of the formulas

(6.423) ITYli = IY2YlI, IF2Y2I = IF1J

is valid. The second formula is a consequence of the first and (6.421).
All this implies the string property of the hyperbola having foci at F1 and
F2 and vertices at Yl and V2. If P is on the hyperbola, then

(6.43) IFIPI - IF2PI = I IV2I,

the plus sign being required when P is on one branch and the minus sign
being required when P is on the other branch.

Figure 6.44 shows a hyperbola and also some numerical dimensions

Figure 6.44

b 72
b 1

ea

e
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which display information from the paragraph containing (6.281). Even
though the equation of the hyperbola of the figure has already been
derived, we become acquainted with useful ideas by using the intrinsic
string property

(6.45) IF1FI - IF2PI = ±2a

to derive the equation. Letting F1(-ae,0) and Fz(ae,0) be located on the
x axis with the origin midway between them as in Figure 6.44, we use the
string property to obtain the equation

1/(x + ae)z + y2 - (x - ae)2 + y2 = ±2a.
Transposing the second term, squaring, and simplifying give

± (x - ae)2 + y2 = a - ex.
Squaring and simplifying this give

(e2 - 1)x2 - y2 = a2(e2 - 1),
and dividing by the right side gives the standard form

x2 y2

46)(6 = 1. a2 ,b2

where b2 = a2(e2 - 1), or

(6.47) ae= az+.bz,

As was the case for ellipses, it is of interest to see that memorization of
only a few details enables us to find the graph, foci, directrices, and asymp-
totes of (6.46) when a and b are given constants. Putting y = 0 shows
that the points Vi(-a,0) and V2(a,0) lie on the graph. The line through
these points is the principal axis of the hyperbola, and the foci lie on it.
Putting x = 0 shows that the hyper-
bola contains no points on the y axis,
but we mark the points (0,b) and (0, -b)
anyway. The line through these points
is the conjugate axis of the hyperbola.
The next steps are to draw the box
having horizontal and vertical sides
containing the four points and then
draw the diagonals of the box. These

Figure 6.48

diagonals are, as we showed in Problem 7 of Section 3.3 and shall quickly
show again, asymptotes of the hyperbola. A reasonable approximation
to the hyperbola can now be sketched very quickly; it is tangent to the
box at the two vertices we have found, and a pencil point which traces a
part of the hyperbola becomes steadily closer to the asymptote as it
recedes from a vertex. For the part of the hyperbola in the first quad-
rant, this result comes from the fact that

(6.481)
a2

a a a x x2 - a2
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and for other quadrants we use symmetry. We can use the Pythagoras
theorem to calculate the distance from the center to a focus if we remem-
ber Figure 6.48, a simplified version of Figure 6.44, which shows that if we
fix one point of a compass at the origin, then the circle through the corners
of the box meets the principal axis at the foci. If we remember that this
distance is ae (as it also is for ellipses), then we can calculate the eccen-
tricity e. Finally, if we remember that the distance from the center to a
directrix is ale (as it also is for ellipses), we can calculate this distance.
The numbers ae and ale are still the key numbers.

Problems 6.49
1 For each of the following pairs of values of a and b, sketch the hyperbola

having the equation
xz ys

a2
b2-1,

find the eccentricity, find the foci (give coordinates), find the directrices (give
equations), and find the asymptotes (give equations). Try to cultivate the
ability to use the Pythagoras theorem and key numbers without use of books or
notes. Check numerical results by use of the fact that the distance p from a
focus to its directrix must satisfy the equation e2p2 = b2(e2 - 1).

(a) a=5,b=2 (b) a=2,b=5 (c) a=b=1
2 The equation

y2 x222-32=1

differs from equations of hyperbolas having their principal axes and foci on the
x axis because the roles of x and y are interchanged. Nevertheless, plot the
points on the graph obtained by setting x = 0 and then y = 0 and then draw the
helpful box and sketch the hyperbola. Then proceed to find the eccentricity,
foci, directrices, and asymptotes. Repeat the process when 2 and 3 are respec-
tively replaced by

(a) 2 and 5 (b) 5 and 2 (c) 1 and 1

Remark: The graphs of the equations
s s 2 2X2

b2a21
are hyperbolas having the same helpful box and the same asymptotes. Each
hyperbola is said to be the conjugate of the other.

3 Sketch graphs of the equations

(a) (x
521) - (Y 222)

= 1 (b) 222)2 - (x
521)2

= 1

Remark: Good clean starts are made by setting y = 2 or x = 1 and remembering
that squares of our numbers (which are always real numbers) are never negative.
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4 The two vertices and one focus of a hyperbola are given. Describe a pro-
cedure by which it is possible to draw the asymptotes without using equations.

5 For basic studies of hyperbolas, we place the hyperbolas upon coordinate
systems in such a way that their equations have the standard form

x2 y2

62
T2 = 1.

Supposing P,(x,,yi) is, as in Figure 6.491, a point on the hyperbola that is not a

Figure 6.491

vertex, find the equation of the line T, tangent to the hyperbola at Pl. Ans.:

xix YiY
= 1.a2 - b2

6 Find the coordinates of the points at which the tangent T, of Problem
5 intersects the coordinate axes. Ins.:

Cx,, o), (o, - y,}

7 Find the coordinates of the points where the tangent T, of Problem 5
intersects the lines through the foci perpendicular to the x axis. fins.:

(-ae, - Yi C1 +
eai//'

(ae, y, Cl eat)

8 Find the coordinates of the points where the tangent T, of Problem 5

intersects the directrices of the hyperbola. .4ns.:

12a h2

' Yi C1 + ae/)' Ce' Y1 (1 ae/lC e

9 Let the line T, tangent to a hyperbola at P, intersect the directrix at Q,
and let F be the focus corresponding to the directrix. With the aid of Problem 8
and the fact that b2 = a2(e2 - 1), prove that the line FQ, is perpendicular to the
line FP1.
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10 Sketch a figure somewhat like Figure 6.491 and observe that L1

from a focus F perpendicular to the line T1 tangent to the hyperbola at P, and
the line OP1 from the center of the world to P, seem to intersect at a point on the
directrix. Prove that each of these lines does intersect the directrix at the point
(a/e, ayl/exi)

11 Figure 6.492 illustrates the fact that the line 71P1 from a vertex of a
hyperbola to a point P1 on the hyperbola is parallel to the line OE from the center

Figure 6.492

of the hyperbola to the point E where the tangent T, at P, intersects the tangent
z

at the other vertex. Show that the coordinates of E are (a,
91

( I - 1)) and

prove the fact.
12 Figure 6.493 shows a part of the hyperbola having, as usual, the standard

Figure 6.493

13 Using the notation and results of
Problem 12, show that the equation of
the tangent to the hyperbola at G is
ex - y = a. Remark: This shows that
the tangent to the hyperbola at G inter-
sects the x axis (the transverse axis of the
hyperbola) where a directrix does and

intersects the y axis (the conjugate axis of the hyperbola) at a point on the circle
which has its center at the center of the hyperbola and includes the vertices of
the hyperbola.

14 Let Pj(xl,y,) be a point on a hyperbola having the standard equation
x2/a2 - y2/b2 = 1. Find the coordinates of the points at which the tangent T1 to

equation

(1)
xz - y2

a2 T2=1.

Let G be the point in the first quadrant
where the hyperbola is intersected by the
line through the focus F parallel to the
directrix. Prove that, as the figure
shows, the coordinates of G are (ae, b2/a).
Remark: A relation among a, b, and e is

F(-,0) X needed.
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the hyperbola at Pl intersects the asymptotes of the hyperbola. fins.: The inter-
sections with the asymptotes y = (b/a)x and y = - (b/a)x are respectively

a2b ab2 ll a2b -ab2
Cbxl - ay,' bxl - ay,/' Cbxl + ay,' bx, -I- ayi/

Remark: Since (bxi - ay,)(bx, + ay,) = b2xi - a2yi = a2b2, the denominators
are all positive or all negative.

15 Prove that if a line T, is tangent to a hyperbola at P,, then P, lies midway
between the points at which T, intersects the asymptotes of the hyperbola.

16 Find the area of the triangular region bounded by the tangent T, and the
asymptotes of the hyperbola of Problem 5. Ins.: ab.

17 Substantial information about the geometry of the hyperbola having the
standard equation

(1)
x2 y2

a2 b2

is concealed in Figure 6.494. The figure shows the auxiliary rectangle whose
vertices lie on the asymptotes, and also the asymptotes. As we know, the circle

Figure 6.494

with center at 0 and radius a2 + b2 intersects the x axis at the foci. The
smaller circles have radii a and b. The line RS is tangent to the circle of radius
b at the point (b,0) where this circle intersects the positive x axis. Upon the
basic part of the figure which has been described, we can heap more construction.
Let OT be a ray (or half-line) from the origin which makes with the positive x
axis an angle 0 for which 0 < 0 < a/2. Let fl be the point where the ray OT
intersects the circle having radius a, and let Q be the point where the tangent to
the circle at .4 intersects the x axis. Let B be the point where the ray OT inter-
sects the line RS. The point P(x,y) where the horizontal line through B intersects
the vertical line through Q lies on the hyperbola because

x = IOQI = sec 4i =
1

,
y _ IRB- = tan sin 4,

a 15:11 cos 4, b IORI cos 45

and hence
x2 y2

= sect 4, - tan2 4, =
1 -sing - 1.

a2 b2 cost 0
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Aristotle told Alexander the Great that there is no royal road to geometry,
but it is quite easy to see what we have done and it is even quite easy to see some
of the implications of what we have done. We have proved the theorem given
above in italics. We have described a simple ruler-and-compass procedure for
construction of points P on the hyperbola. We can use the construction to
produce 4 or even 40 points on the hyperbola, but we cannot thus produce all
of the points on the hyperbola and "construct the hyperbola." Our result
enables us to write the vector r from the origin 0 to a point P on the hyperbola
in the form

r = a sec: q5i+btan 0j,

but i is an "eccentric angle" which is not the angle between r and i. Persons
having inherent interest in geometry may, as an extramural excursion, consider
the special case in which the ray OT is the part of the asymptote in the first
quadrant. Considerable geometry is associated with the fact that, in this case,
the point Q is the focus F. To emphasize the fact that consideration of these
things need not be tedious, we observe that if tan (A = b/a, then cos _
a/ a2 -+b2, so lOQI = a2 + b2 and hence Q must be F.

18 A glance at Figure 6.494 suggests that the directrices may be the lines
determined by the points at which the asymptotes intersect the circle containing
the vertices. Prove that it is so.

19 Find the distance from a focus to a directrix of a hyperbola having the
standard equation x2/a2 - y2/b2 = 1. Ans.: b2/ a2 -{- b2.

20 Let a hyperbola have the standard equation x2/a2 - y2/b2 = 1. Let F
be the focus and let D be the directrix in the right half-plane. Let P1(x,,yl)
be a point on the hyperbola in the right half-plane. Show that

ON = ex, - a.

Let A' be the point in which the directrix D is intersected by the line through
P, parallel to an asymptote. Show that

I2PI = ex, - a.

21 The functions in the right members of the formulas

e° - e-e et+e e
sinh t = 2 cosh t = 2

are used often enough to justify introductions of special names and symbols for
them. They are called hyperbolic functions, and the h in sinh i and cosh t tells
us that the functions are hyperbolic sines and hyperbolic cosines. Show that
if x = a cosh t and y = b sinh t, then

x2y2
a= - b= =

1.

This shows that if a particle P moves in the xy plane in such a way that, for each
t, the vector r running from the origin to P is

r = (a cosh kt)i + (b sinh kt)j,
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then P traverses a branch of a hyperbola. Calculate the acceleration a and
show that a = k2r.

22 Copy Figure 6.48 and let a particle P move along the right branch of the
hyperbola in such a way that the vector r running from the origin to P is, at each
time t,

(1)

Show that the vector

(2)

r = (a cosh t)i + (b sinh t)j.

V = (a sinh t)i + (b cosh t)j

is a forward tangent to the hyperbola at P. Use the figure to show that, where
Xk=+1when k=land Xk=-1when k=2,

(3) FaP = (a cosh t + a2 + b2) i + (b sinh t)j

and then, with the aid of the simple fact that 1 + sinh2 t = cosh2 t, show that

(4) IFkPj = a2 + b2 cosh t + Xa.

Letting 4k be the angle which the vector FkP makes with the forward tangent

v at P, show that
FkP v

(5) IvI cos 'k =
I

F,kPI = /a2 + b2 sinh t

and hence that

(6) cos Ok =
V b

/ +
+ b2 y

4 + (a2 + b2)y2

Remark: The formula (6) shows that ¢1 = 02. This means that the lines drawn
from the foci to a point P on a hyperbola make equal angles with the tangent to
the hyperbola at P.

23 An ellipse and a hyperbola are confocal, that is, have the same foci.
Prove that they are orthogonal where they intersect.
Remark: One way to prove the result is to use the fact
that if F1 and F2 are the foci and P is a point of intersec-
tion of the ellipse and hyperbola, then the vectors F1P and
F2P make equal angles with the tangent to the hyperbola
at P and also make equal angles with the normal to the
ellipse at P. The miniature Figure 6.495 can help us
remember the fact.

24 The members of a family of confocal hyperbolas
have their foci at the points Fl(-1,0) and F2(1,O).

Figure 6.495

Sketch good approximations to graphs of six of them. Suggestion: Do not work
too long on an easy problem. Make a figure which tells you where the corners of
the handy boxes must be, and then sketch hyperbolas at the rate of two per
minute. Remark: There is a reason for knowing about these things. If the x axis
is an impenetrable barrier except for an opening on the interval -16 x < 1, your
curves are paths followed by particles of a liquid or gas (or perhaps by football
spectators) that stream through the gap.
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25 Let 0 < b < a. Prove that when X < b2, the ellipse having the equation

2 y2

a2-X b2-X

has its foci at the points (± b2, 0). Prove that, when b2 < A < a2, the
hyperbola having the same equation has the same foci.

26 Let H be a given hyperbola. Describe an elementary geometric procedure
for locating the center, the axes, and the asymptotes of H. Hints: Take clues
from the hints of Problem 25 of Problems 6.39. Then use the fact that if the
equation of H has the standard form, then y = ±b when x is the length of a

diagonal of a square of which the sides have length a.
27 We have seen string mechanisms for construc-

tion of parabolas and ellipses, and we need not slight
hyperbolas. Let a red string run from a knot K so
that it passes below a tack Fl to an end tied to a pencil
point at P as in Figure 6.496. Let a white string run
from the same knot K so that it passes below the tack

3 ` F, and then under a tack F2 to an end tied at P. Show

Figure 6.496 that if P is held in such a way that both strings are
kept taut, then P will trace a part of a branch of a

hyperbola as the knot K is pulled away from F,. Hint: Justify and use the fact
that if the red and white strings have lengths R and IV, then

IT,KI = R - W - IFiF2I - IFVI
at all times.

28 Sound travels with speed s, and a bullet travels with speed b from a gun
at (-h,0) to a target at (h,0) in an xy plane. Where in the plane can the boom
of the gun and the ping of the target be heard simultaneously? Ins.: At points
(x,y) for which

/(x + h)2 + Y2 1/(x - h)2 + y2 2h
J s + b

or

-\/(X + h)2 + Y2 = 1/(x - h)2 + y2 + 2qh

where q = s/b and hence q = 1/M where M is the Mach number of the bullet.
In case M < 1 and q > 1, there are no such points because the length of one side
of a triangle cannot exceed the sum of the lengths of the other two sides. In
case M = 1 and q = 1, the required points are those for which y = 0 and x > h.
In case M > 1 (so the speed of the bullet is supersonic) and q < 1, the required
points lie on the right-hand branch of the hyperbola having the equation

x2 2

q2h2
h2(1 - q2) = 1.

29 We have seen that if S, is the set of points equidistant from a line and a
circle having its center on the line, then S, is the sum or union of two parabolas.
We have also seen that if S2 is the set of points equidistant from a circle and a
point inside the circle which is not the center of the circle, then S2 is one ellipse.
Complete the story by showing that if Ss is the set of points equidistant from a
circle and a point outside the circle, then S3 is half (one branch) of a hyperbola.
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30 Let the angle A10A2 of Figure 6.497 be a
given angle between 0 and a. Everyone start-
ing study of calculus must know that it is very
easy to give a ruler-and-compass construction of
the arc A1A2 of a circle having its center at 0
and of the line OX which bisects the angle A10A2.
We may be too busy with other affairs to learn
how the result can be proved, but we should

know that it has been rl d t bh pess ove o eenevert
impossible to give a ruler-and-compass construc-
tion of points P1 and P2 such that the lines OP1

Figure 6.497

and OP2 trisect the given angle. Pappus of Alexandria, who flourished about A.D.
300, trisected the angle by means of hyperbolas. Let H1 be the branch near Al of
the hyperbola having eccentricity 2 for which Al is a focus and OX is a directrix,
and let P, be the point at which H1 intersects the circular arc A1A2. A branch
H2 of a similar hyperbola having a focus at A2 intersects the circular arc at P2.
The definition of eccentricity and the symmetry imply that

I71P11 = 21PiDI = IP1P21 = 21DP2I = IP2A21

Thus the three chords A1P1, P1P2, P2A2 have equal lengths, and it follows that
the two lines OP, and OP2 trisect the given angle A10A2. In modern mathe-
matics, it is important to know why the Pappus construction does not provide a
ruler-and-compass construction of P1 and P2. It is possible to produce hordes
of points on the hyperbolas with rulers and compasses, but it is impossible to
produce all of them. In particular, it is impossible to prescribe rules for ruler-
and-compass construction of the particular points where the hyperbolas intersect
the circular arc. This matter will again be brought to our attention in Problems
10.19.

31 Let P1(x1,y1) be a point on the rectangular hyperbola having the equation

(1) x2-y2 =a2.
In terms of x1 and yl, find the coordinates of the point (x,y) at which the tangent
to the hyperbola at P1 intersects the line through the origin perpendicular to this
tangent. Finally, find an equation which x and y must satisfy by eliminating
x1 and yl from your equations and the equation xi - yi = a2. Ans.: The first
two of the required equations are

(2)
a2x1 aryl

x = -
xi +' yi y

xi +' yi
We can square and add, and then square and subtract, to obtain

(3) x . 2 + y2 = a4 , X
a6

X1 + yi (.,2
+' y1)2

It is then easy to obtain the final answer
(4) (x2 + y2)2 = a2(x2 - y2).

Remark: The graph of (4) is called the lemniscate of Bernoulli. In Problem 5
of Section 10.1 we shall find that its polar coordinate equation is p2 = a2 cos 20.
Its graph appears in Figure 10.171.
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32 This long problem should be very easy. The problem is to read about
graphs of equations of the form

(1) 11x2+By2+Cx+Dy+E=0
and to verify correctness of each assertion that is not completely obvious. In
case .4B > 0, completion of squares enables us to put the equation in the form

(2) -4(x - xo)2 + B(y - yo)2 = K,
where A and B have the same sign, and the graph is an ellipse or a circle or a
single point or the empty set. In case .4B < 0, the equation (1) can be put in
the form (2), where .4 and B have opposite signs, and the graph is either a hyper-
bola (when K 0) or a pair of intersecting lines (when K = 0). In case .4 =
B = 0, the graph is a line or the empty set (in case C = D = 0 and E FA 0) or
the whole plane (in case C = D = E = 0). So far we have covered all situations
except those in which one of -4 and B is zero and the other is not. The case in
which .4 = 0 and B 0 0 being analogous, we suppose henceforth that .4 0
and B = 0 and that (1) has been reduced to

x2 + Cix + D1y + E1 = 0.
In case D1 0 0, completion of a square gives the equation y - yo = K(x - xo)2
and the graph is a parabola. In case D, = 0, the graph consists of two vertical
lines or a single vertical line or the empty set. The results may be summarized.
Depending upon the values of -4, B, C, D, E, the graph of (1) may be a conic
(an ellipse, a hyperbola, a parabola, a circle; two intersecting lines, a single line,
or a single point) and it may be a set which is not a conic (two distinct parallel
lines, a plane, or the empty set). Still more information is available. The
equation (1) is said to have elliptic type when AB > 0 even though there are
cases in which the graphs are circles or points or empty sets. Similarly, (1) is
said to have hyperbolic type when AB < 0 and to have parabolic type when -4
and B are not both 0 but AB = 0.

33 Let B and B be nonzero constants not both negative. The graph of the
equation

(1) .4x2+Bye-1
is then a central conic K (a circle or ellipse or hyperbola) having its center at the
origin 0. When Pi(xi,yj) is a point different from the origin, the equation

(2) Axlx + Byiy = 1

is the equation of a line L1 which is called the polar line (with respect to the conic
K) of the point P1. Moreover, the point P1 is called the polar point of the line
L1. These polar points and lines are very important in some parts of mathe-

matics, and we can start learning about them.

Figure 6.498 If the point P1 lies on the conic K, then L1, the
polar line of Pi, is the line tangent to K at P1.

Q1 When P1 is not on K, matters are much more
interesting. Suppose first that P1 lies "out-

L1 P(x1,y1) side" the conic K so that there exist two points
R, Q, and R1 on K such that the tangents to K at

Q, and R1 contain P1. Then, as Figure 6.498
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can help us remember, the polar line of P, is the line L, containing the two points Q,
and R,. A standard simple proof of this result is as amazing as the result. If the
coordinates of the point Q, on K are (x2,y2), then the equation of the tangent to
K at Qi is

(3) .4x2x + By2y = 1.

The fact that Pi(xl,yl) lies on this line implies that

(4) Ax2x, + By2y, = 1.

This implies that (2) holds when x = x2 and y = y2 and hence that Q, lies on the
line L,. When we have scrutinized this sleight of hand closely enough to under-
stand it, we can see that the same argu-
ment proves that R, is on Ll. Thus we P,

iven eometric inter retationve th g pga s o
the polar line L, of P, for the case in which
P, lies on K and for the case in which P lies p L,
outside K. Our next geometric inter-
pretation of the polar line L, of P, is equal-
ly applicable to the case in which P, lies
outside the conic (Figure 6.499), the case
in which P, lies on the conic (Figure
6.4991), and the case in which P, lies

Figure 6.499

inside the conic (Figure 6.4992). Let L be a line through P, which intersects the
conic at two points Pz(x2,y2) and Pa(xs,ya). The tangents to the conic at P2 and
Ps have the equations

(5) .4x2x + By2y = 1
(6) .4x3x + By3y = 1.

Except for the special line L which contains the center 0, these tangents intersect

Figure 6.4991 Figure 6.4992

at the point P(x,y) for which the two equations (5) and (6) are both satisfied.
Since P, lies on the line L containing P2 and Pa, there exists a constant A such that

(7) x, = x2 + X(xa - x2) = (1 - X)x2 + Axs
(8) y, = y2 + X(ya - ys) = (1 - X)ys + Xya.
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Multiplying (5) and (6) by (1 - X) and X, respectively, and adding give the
relation

(9) .4x1x + Byiy = 1,

which shows that the intersection of the tangents lies on the polar line L1 having
the equation (2). This is a remarkable geometric fact. Different lines through
P1 yield hordes of pairs of tangents, and all of the intersections lie on the same

polar line L1. We shall not undertake
to prove the fact, illustrated by Figure
6.4993, that pairs of chords as well as pairs
of tangents intersect on the polar line L1.

p When the lines L and L' through P, in-
3

tersect the conic at four known points
L1 P2, Ps, P2, P3 as in the figure, the chords

Figure 6.4993

P2P3 and P3P3 intersect at one point on L,,
the chords P2P'3 and P3P2 intersect at
another point on L1, and, moreover, these
two intersections determine Li. Thus
(unless parallelism causes trouble) we can
start with just four points on a conic and

use them to determine a point P1 and its polar line L1. This "four-point con-
struction" is remarkable because the four points on the conic do not determine the
conic. If we are given a fifth point E on the conic (such that no three of the five
are collinear) then the conic is determined and we can produce the dotted lines of
the figure to construct a sixth point E'. Appropriate use of polar points and
polar lines provides methods for construction of more points. We are not
expected to learn much about these matters in our elementary course, but we can
be aware of the fact that many persons continue study of geometry to learn more

6.5 Translation and rotation of axes To start learning about
advantages gained by introducing supplementary coordinate systems, we

the graph of the equation

x2 -{- y2 - 10x - 8y -}- 32 = 0,

we complete squares and write the equa-
tion in the form

x (6.51) (x-5)2+(y-4)2=9.
h isI i il h hh e grapt s t en eas y seen t at tFigure 6.52

a circle with center at (5,4) and radius 3,
and we can sketch the graph in Figure 6.52 without onerous calculations.
If in the equation (6.51) we set

look at an example so simple that the sup-
plementary coordinate system is not

P(x',y') needed. When we want to learn about

(6.511) x' = x - 5, y'=y-4
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or, equivalently,

(6.512) x=x'+5,
the equation takes the simpler form

y = y' + 4,

(6.513) x'2 + y'2 = 9.

If we think of x' and y' as being coordinates (the prime or primed coor-
dinates), then (6.513) looks like the equation of a circle having its center
at the origin of the new prime coordinate system of Figure 6.52. It is
customary to say that we "translate axes" when, as in Figure 6.52, we
introduce a supplementary coordinate system that can be obtained from
the original one by translations, that is, by slidings free from rotations.
It sometimes happens that, in more complicated situations, introduction
of a supplementary coordinate system helps us to determine the nature
and position of the graph of a given equation.

We now begin consideration of the graph of the equation Q = 0, where

(6.53) Q = Axe + 2Bxy + Cy2 + 2Dx + 2Ey + F,

it being supposed that A, B, C, D, B, F are given constants for which
A, B, C are not all 0. In case B = 0, the following results can be obtained
more quickly by completing squares. In any case, we undertake to
determine constants h and k such that the substitution x = x' + h,
y = y' + k will yield a simpler expression for Q. Substitution gives

(6.531) Q = Ix" + 2Bx'y' + Cy'2 + 2D'x' + 2E'y' + F'

where D' = Ah + Bk + D
E' =Bh+Ck+E
F = Bh2 + 2Bhk + Ck2 + 2Dh + 2Ek + F.

In case B2 - AC 0 0, we can simplify the expression for Q in (6.531) by
determining h and k so that D' = E' = 0. Except in the special case
in which F = 0 when h and k are so determined that D' = E' = 0, the
equation Q = 0 resulting from making D' = E' = 0 is not easily graphed
unless A = C = 0 or B = 0. Hence, at least in the study of Q when
B s 0, the results that lie ahead are much more important than those
obtained by translation of axes. For those who may become interested
in such things, it may be remarked that the quadratic form 0 in

(6.54) Q = Axx + Bxy + Dxz
+ Byx + Cyy + Eyz
+Dzx+Ezy+Fzz

reduces to (6.53) when z = 1 and that there are places in pure and
applied mathematics where these things are important. To attack
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Figure 6.551

Cones and conics

(6.54), we would use the formulas (2.67)
(with xo = yo = zo = 0) from Section 2.6
instead of the simpler formulas of the next
paragraph.

It is customary to say that we "rotate axes"
when, as in Figure 6.551, we introduce a sup-
plementary coordinate system that can be
obtained from the original one by rotation

about a line through the origin perpendicular to the plane of the given
coordinate system. Without going back to review formulas from Section
2.6, we shall use Figure 6.551 to derive the formulas

(6.55)
x= x' cosh -y' sin 0,
y = x' sin a +y' cos 0,

x' = x cos 6 + y sin 6
y'= -x sin0+ycos0

that relate the original and prime coordinates of a point P when the prime
coordinate system is obtained by rotating the original axes through the

angle B. The primitive formulas

x, cos 4, =sin.0, x=cos(4+6),
r r r r

sin (¢ + 0)

and the formulas for cosines and sines of sums give

x=rcos(4+6) =rcos4cos0-rsin0sin0=x'cos6-y'sin6
y = r sin (4' + B) = r cos 0 sin 0 + r sin 4, cos 0 = x' sin 0 +y' cos 0.

This gives the first set of formulas (6.55). The second set can be obtained
by solving the first set for x' and y', or by making appropriate observa-
tions about the result of replacing 0 by -0.

Before attacking more ponderous expressions, we observe that the first
formulas in (6.55) show that if 0 = xy, then

(6.552) Q = (x' cos a - y' sin 0) (x' sin 6 + y' cos 0)
= (x'2 - y'2) sin 0 cos 6 + x'y'(cos2 0 - sin 2 6)

= 4(x'2 - y'2) sin 20 + x'y' cos 20.

We can eliminate the x'y' term by making cos 26 = 0 and hence by setting
20 = it/2 and 0 = ,r/4 (or 45°). This gives Q = 4(x'2 - y'2). The
graph in the xy plane of the equation xy = 1 is the same as the graph in
the prime coordinate system of the equation

(6.553)
(-X12 12

/2-)2 2)2
= 1.

Thus the graph of the equation y = 1/x is now thoroughly inducted into
the hyperbolic fraternity.

As in (6.53), let

(6.56) Q = 4x2 + 2Bxy + Cy2 + 2Dx + 2Ey + F
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and suppose that .4, B, C are not all zero. Rotating the x, y axes through
the angle 0 gives new coordinates x', y', and using (6.55) shows that, in
the new coordinates,

(6.561) Q = 4'x'2 + 2B'x'y' + C'y'2 + 2D'x' + 2E'y' + F

where A' = .4 cost 0 + 2B sin 0 cos 0 + C sine 6
B' = (C - 4) sin 0 cos 0 + B(cos2 0 - sine 0)
C' = -4 sin2 0 - 2B sin 0 cos B + C cos2 0
D' =Dcos0+Bsin0
E' = -Dsin0+Ecos0.

Considerable information can be extracted from the above formulas
without the aid of noncranial electronics. For each B, we obtain the first
of the formulas

(6.562) A'+C' =-4 + C, =B2-SIC
by adding the expressions for A' and C'. To prove the second formula,
we can write an expression for the left side, cancel the terms that cancel,
and obtain the result with the aid of the identity

cos4 0 + 2 cost 0 sin2 0 + sin4 0 = (cos' 0 + sin2 0)2 = 1.

Because of (6.562), the quantities fl + C and B2 - 4C are said to be
invariant under rotation of axes.

The basic importance of the formulas for A', B', C', D', E' lies in the
fact that they show us how to determine 0 and the coefficients in (6.561)
so that B' is zero and the objectionable term is missing. When we write
the formula for B' in the form

B' =-(C-A) sin 20 + B cos 20,
we can see that it is easy to find a unique angle 0 for which 0 <_ 0 < x/2
and B' = 0. In case C = A, we set 0 = 1r/2. In case C .4, we choose
20 such that 0 < 26 < 7r and

(6.563) tan 20 - A2B
C

Without repeating the formulas for the prime coefficients and the method
by which 0 is found, we put our main result in the following theorem.

Theorem 6.57 Each 0 of the form

(6.571) Q = Axe + 2Bxy + Cy2 + 2Dx + 2Ey + F

can be put in the form

(6.572) Q = A'x'2 + C'y'2 + 2D'x + 2E'y + F

by suitable choice of an angle 8 for which 0 < 0 < a/2.
When we are asked about the graph of Q = 0, we can calculate the

coefficients in (6.572) and then (completing squares when necessary) use
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(6.572) to get the information. It is of interest to observe that we can
get information about Q without making these calculations. Even when
we do not know the numerical values of 14' and C', we know that

(6.573) B2 - f4C = -14'C'

when B' = 0 because B2 - AC is invariant under rotation of axes.In
case B2 - AC < 0, we must have A'C' > 0, and (6.572) shows that the
equation Q = 0 has elliptic type. In case B2 - AC = 0, we must have
A4'C' = 0 and the equation Q = 0 has parabolic type. In case B2 -
AC > 0, we must have A'C < 0 and the equation Q = 0 has hyperbolic
type. Sometimes it is necessary to know the fact, which was given in
Problem 32 of Section 6.4, that graphs of equations of elliptic type are
not always ellipses; they may be circles or points or empty sets. The
number (2B)2 - 4AC or 4(B2 - A4C) is called the discriminant of Q, and
its sign is the same as the sign of B2 - SIC. Hence we can put the above
results in a form that is easier to remember and use.

Theorem 6.58 The equation Q = 0 (and, in fact, Q itself) is elliptic
or parabolic or hyperbolic according as its discriminant is negative or zero
or positive.

Finally, we should know something about ways of using (6.563) to
calculate the coefficients A', B', C, D', E'. It is possible to write formulas
giving sin B and cos 0 in terms of A, B, C, but these formulas are so unat-

Figure 6.581

tractive that we shun them. Applied mathe-
maticians do not need lessons from this book to
obtain approximations to answers by finding 20
from a table or slide rule and then finding B by
gaily dividing by 2. When exact results must
be obtained, we draw a figure more or less
similar to Figure 6.581 and use elementary ideas
to obtain cos 20. When 0 _<- 9 < 7r/2, cos 0

and sin 0 must be nonnegative and their values can be calculated from
the formulas

(6.582) cos 0= 1 + 2
-cos 26, sin B= 41 - 2

s 20

This gives the information needed for locating the prime axes and cal-
culating the prime coefficients.

Problems 6.59
1 Sketch x, y axes having origin 0 and, in the same figure, sketch primed

(or new) parallel axes with origin 0' having unprimed coordinates (2,3). Using
the primed axes, sketch the parabola having the equation y' = x'2. Find the
primed coordinates of the points 11 and B where the parabola intersects the lines
having the primed equations x' = -2 and x' = 2. Find the primed coordinates
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of the focus F and the primed equation of the directrix D of the parabola. Finally,
find unprimed equations and coordinates of the parabola and of A, B, F, and D.

2 Write the equation

(1)

in the form

(2)

Then substitute

(3)

(x + 2)2

+ (y
2

3)2

=1
z

4x2+By2+Cx+Dy+E=0.

x=x'+h, y=y'+k
into the result and so determine h and k that the coefficients of x' and y' will be
zero. Show that the new equation can then be put in the form

x'2 y'2
(4) 12 + 22 = 1.

Finally, sketch properly related unprimed and primed axes and sketch the graph
of (4).

3 Show how a primed coordinate system can be introduced to simplify the
process of obtaining basic information about the hyperbola having the equation

(x-3)2_(y-1)2=1.
32 12

Sketch a figure showing both sets of axes and the hyperbola.
4 Translate axes to remove the first-degree terms from the equation

xy - 2x + 3y - 4 = 0.
Remark: This gibberish means something. Let x = x' + h, y = y' + k and
determine h and k in such a way that the coefficients of x' and y' in the new equa-
tion will be 0. Ans.: h = -3, k = 2, x'y' = -2.

5 Translate axes to simplify the equation

x2+xy+y=3.
Ans.: Putting x = x' + h and y = y' + k, we find that the first-degree terms
disappear (have zero coefficients) when h = -1, k = 2, and that the simplified
equation is x'2 + x'y' = 2.

Figure 6.591C6 onstruct and solve more problems
similar to the preceding two, but keep the
equations simple. We do not have time to
do chores that computers should do.

7 A rough graph of the equation

(1) y=x+z
is easily drawn. A miniature version appears
in Figure 6.591. Since (1) can be put in the
form

(2) x2-xy+1 =0,

x
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the graph must be a conic. While it is possible to foresee some of the results of
putting (2) into standard form by "rotation of axes," we examine the details of
the process. Show that substituting

(3) x=x'cos0-y'sin0, y= x' sin 0 + y' cos 0
into (2) gives an equation in x' and y' for which the coefficient of x'y' will be zero
when tan 20 = -1 and hence

(4) 20= 4, 0=3g, cos20=1+c2 s20-V-12-

1 -cos2B -1
sine B = 2 - 2 /

Continue the work to show that the equation in x' and y' can be put in the form

x'2 y'2
(5) 2-\/2- +2 2N/2-

-2=1.

Note that the result agrees very well with Figure 6.591. The distance from the
center of the hyperbola to its vertices is -2V2-. It is possible to use (5)
to obtain more information in primed coordinates and to express this information
in terms of the original coordinates, but all of these operations consume consid-
erable time.

8 Obtain preliminary information about the graph of the equation

x(x+y)=1
by solving for y (or for x) and making a rough sketch. Then obtain more precise
information by rotation of axes.

9 Apply the procedure of Problem 8 to the equation

x2 + xY + y2 = 1.

10 Make and solve more problems similar to Problems 8 and 9, but keep
the equations simple. We still do not have time to do chores that computers
should do.

11 When a and b are positive, the equation

a2x2 + b2y2 - a'--b2 = 0

has elliptic type. For what values of k does the equation

a2x2 + kxy + b2y2 - a2b2 = 0

have elliptic type? Parabolic type? Hyperbolic type? Hint: The discriminant
is kt - 4a2b2, and we are put on the right track when we notice that this is nega-
tive and our equation is elliptic when k = 0.

12 When a and b are positive, the equation

a2x2 - b2y2 - a2b2 = 0

has hyperbolic type. For what values of k does the equation

a2x2 + kxy - b5y2 - a2b2 = 0
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have hyperbolic type? Parabolic type? Elliptic type? Hint: Get on the right
track.

13 We should know something about the possibility of obtaining information
about the graph of the equation

14x2+2Bxy+Cy2+F=O

by solving for x or y by use of the quadratic formula. Other cases being similar
or much easier, suppose that C > 0, B 0 0, and F 5,6 0. Show that a point P
lies on the graph iff (iff means if and only if) its coordinates satisfy the equation

y
-Bx ± (B2

C
- AC)x2 - CF

=

Show that if B2 - 14C > 0, then the points (x,y) for which jxi is sufficiently
great and

X
zFl-± (BZ-SIC)-Y B

J

must lie on the graph, and tell why the graph cannot be an ellipse. Show that
if B2 - .IC < 0, the graph cannot be a hyperbola.

14 Sketch a graph of the equation

y=x+ x2

by sketching graphs of yl = x and y2 = 1 - x2 and adding ordinates (that is,
values of y). Give some precise information about the graph.

15 It is sometimes said that the graph of the equation

x + y3i = a%,

where a is a positive constant, is a parabola. Is this true? Ans.: No, but the
graph is a part of a parabola.

16 A wheel of radius a rolls, without slipping and with angular speed w, on
the top side of the x axis of an xy plane. At time t = 0, the center is above the
origin, and a pink spot P which rotates with the wheel lies b units below the center
of the wheel. Show that if an x', y' coordinate system, with origin at 0, travels
with the wheel but keeps its unit vectors i' and j' in the directions of i and j,
then

O'P = -b sin wti - b cos wtj.

Show that, because the wheel rolls without slipping,

00' = awti + aj.

Show that the vector r running from 0 to P is

r = (awt - b sin wt)i + (a - b cos wt)j.
Show that

v = (aw - bw cos wt)i + (bw sin wt)j
a = bw2(sin wti + cos wtj).
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Remark: Moving coordinate systems and vectors provide the simplest way of
obtaining neat and correct answers to problems more or less like this one. The
paths traced by the pink spots P are cycloids. For future reference, we note that
if b = a, so that P is on the rolling circle and the cycloid is an ordinary cycloid,
and if we let 0 be the angle wt through which the wheel has rotated at time t,
then the coordinates of P are

x=a(O-sin 0) y=a(l-cos0).
Figure 6.592 exhibits the ordinary cycloid having these equations. The unusual

Figure 6.592

cycloids are sometimes called curt ate cycloids or prolate cycloids, and are sometimes
called trochoids.

17 Find equations of epicycloids, that is, paths traced by points on spokes
(or extended spokes) of circular wheels which roll, without slipping, outside a
fixed circular wheel. Outline of solution: As in Figure 6.593, let the fixed circle
have radius a and have its center at the origin of an x, y coordinate system.
Let the rolling circle have radius b and have center 0' which travels with it, and
let cot (not restricted to the interval 0 5 cot < 2a) be the angle which 00' makes

Figure 6.593

with the x axis at time t so that

(1) 00' = (a + b)(cos coti + sin cotj).

We suppose that co > 0, so the spokes in
the moving wheel rotate in a positive
direction. Let the point P which traces
the epicycloid be the point for which
O'P = ci when t = 0, and let S be the
spoke of the moving wheel which (ex-
tended if necessary) contains P. The
angle ¢ (psi) through which the spoke S
has turned at time t is the sum of two

angles: (i) the angle 0 through which it would turn if its wheel rolled the distance
awl along a straight line and (ii) the angle cot through which it would turn if it slid
without rolling on the fixed circle. We find that awt = bB, so 0 = (a/b)wt,

(2) a

b
b wt,
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and

(3) O'P = c I
cos

a b b
wti + sin a b b wtj 1

at time t. From (1) and (3) we obtain

(4) r = (a b) cos wt -f c cos +
b wt i[

ab

+[(a+b)sinwt +csinabbwt,j

for the displacement vector of the point P on the epicycloid at time t. An ordi-
nary epicycloid is obtained by setting c = -b so P starts at the initial point of
tangency of the two circles. Remark: For the case in which c = -b and b = a,
we obtain the epicycloid of one cusp having the equation

(5) r = a[2 cos wt - cos 2wt]i + a[2 sin wt - sin 2wt]j.

Using the trigonometric identities

(6) cos 20=cos20-sin20=2cos20-1, sin 20=2sin0cos0
enables us to put (5) in the form

(7) r - ai = 2a(1 - cos cot) (cos cod + sin wtj)

from which we see that

(8) Ir - all = 2a(1 - cos cot).

Letting p denote the distance from the point (a,0) to the point P on our epicycloid
and setting ¢ = wt puts (8) in the form

(9) p = 2a(1 - cos 0).

The polar coordinate graph of (9) is a cardioid.Thus we have discovered that
an epicycloid with one cusp is a cardioid, and we have started learning about
epicyclic gears. That the Greek prefixes epi and hypo mean outside (or above)
and inside (or below) can be remembered by those who have hypodermics put
under their skins.

18 Find equations of hypocycloids, that is, paths traced by points on spokes
(or extended spokes) of circular wheels which roll, without slipping, inside a
fixed larger circular wheel. Outline of solution: This problem is much like Prob-
lem 17. To get the answer from (4) of Problem 17, replace b by -b because
IOO'I = a - b. For hypocycloids the spokes of the inner wheels run backwards.
The equation giving displacement vectors of points on hypocycloids is

(1) r = [ (a - b) cos wt + c cos
a

b
b

wt, is

+[(a-b)sinwt-csina t] j.

An ordinary hypocycloid is obtained by setting c = b so P starts at the initial point
of tangency of the two circles. A graph appears in Figure 7.291. Remark: For
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the case in which c = b and b = a/4, we obtain the hypocycloid of four
having the equation

(2) r =
4

[3 cos q5 + cos 3q]i
+

4
[3 sin q5 - sin 3q5]j

or

(3) r = a[cos3 wti + sins wtj]

or

(4)
x35 + y% = a3i.

CUSPS

19 Persons interested in machinery should determine the path traced by a
cog on the inner wheel of a hypocyclic gear when the radius of the inner wheel is
just half the radius of the outer wheel.

20 A rod of length 2a, always in the xy plane, is whirling about its center with
angular speed w and, at the same time, is so thrown that its center has coordinates
(It, Bt - CO) at time t. Supposing that a red spot on the stick started at the
point (O,a) at time t = 0, find its position and velocity and acceleration at later
times. Try to solve the problem without use of the following outline. If
unsuccessful, look hastily at the outline to get some ideas and then try to solve
the problem with the outline out of sight. Outline of solution: Use vectors and
a moving coordinate system. Let an x, y coordinate system with unit vectors
i and j be drawn and remain fixed (that is, always in the same place). Let an
x', y' coordinate system have origin 0' at (17t, Bt - Ct2) at time t, and let its unit
vectors i' and j' have the directions of i and j so that, in the world of the moving
coordinate system, the stick is doing nothing but rotate about 0'. Letting r
be the vector running from 0 to P, we have

r=00'+O'P
= (alt + a cos wt)i + (Bt - Ct2 + a sin wt)j

so

and

v=(tl-awsin wt)i+(B-2Ct+awcoswt)j

a = (-awl cos wt)i + (-2C - awl sin wt)j.

21 Let a and b be positive constants, and let G be the graph in the x', y' plane
of the first of the equations

- a

Find two positive constants A and v such that G will be the graph of the second
equation in the x, y plane, the primed and unprimed coordinates being related
by the formulas x' = Ax and y' = Xy. Jnr.: X = (ira2/b) 4, o = (1/41ra2b)3'.

6.6 Quadric surfaces This brief section, which contains no terminal
list of problems, can be omitted, but it can be read even by students who
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are not required to read it. As is easy to see by considering such special
examples as

(6.61) x2+y2+z2+1=0, x2+y2+z2=0, x2+y2=0,

the graph in E3 of an equation of the form

(6.62) 4x2 + Bye + Cz2 + Dxy + Eyz + Fzx + Gx + Hy
+Iz+J=0

can be the empty set or a point or a line. In case 11, B, C, D, E, F are not
all zero and the graph is a surface, the surface is called a quadric surface.
Examples of the form

(6.621) Axe + Bye + Cxy + D = 0,

where 14, B, C are not all 0, show that some quadric surfaces are cylinders
which may be planes or pairs of planes. Our interest in this section lies
in quadric surfaces that are not cylinders.

As we study quadric surfaces, it will be helpful to have some results of
Section 2.6 in mind. A line which does not lie completely on a quadric
surface can intersect the quadric surface in at most two points. Each
plane section of a quadric surface must be the empty set or a single point
or a single line or two lines or a circle or a parabola or an ellipse or a
hyperbola. From this we can conclude that each nonempty bounded
plane section of a quadric surface must be either a point or a circle or an
ellipse.

When the equation (6.62) of a quadric surface is given, it is possible to
introduce a new coordinate system in such a way that the equation in the
new coordinates has one or another of several standard forms. There are
places, even in applied mathematics, where it is necessary to know pro-
cedures for putting given equations into standard forms, but the pro-
cedures are much too complicated for coverage in elementary courses.
In this course we can be content with a little information about the
standard forms and their graphs. In what follows, it is always assumed
that a, b, c are given positive constants. The standard forms are
selected in such a way that, insofar as is possible, the coordinate planes
are planes of symmetry and the curves in which the surface intersects
planes parallel to the coordinate planes are easily described and sketched

The graph of the equation

(6.63)
x2 y2

z2
a2+b+CZ=1l

is an ellipsoid except when a = b = c and the graph is a sphere. Putting
z = k shows that the ellipsoid intersects the plane having the equation
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z = k in a set which is the empty set if jkI > c, a point if Ikl = c, and an
ellipse (or circle if a = b) if Ikl < c. Very similar remarks apply to the
planes having the equations x = k and y = k. It is easiest to sketch the
intersections (or sections) for which k = 0, but full information about
other sections parallel to the coordinate planes is easily obtained. For
example, when Jkl < c, we can put z = k in (6.63), transpose the term
involving c2, and then divide by the new right side to obtain

x2 y2

a2 ( 1 - k b2 (1 - k2 )

In case a b, this shows that the graph intersects the plane having the
equation z = k in an ellipse which has its center on the z axis and which
intersects the planes having the equations x = 0 and y = 0 at the points

2(o,±b.J1_k,k), (±atJ1_,0,k).
In case a = b, the section is a circle. Unshaded and shaded graphs appear
in Figures 6.631 and 6.632. In case a = c and b is greater than a and c,

Figure 6.631 Figure 6.632

the graph is a prolate spheroid more or less like a cucumber. In case
a = b and c is less than a and b, the graph is an oblate spheroid more or
less like the earth (which is depressed at the poles and bulges at the
equator) or like a pancake. It is possible to use material from Section 2.6
and Chapter 6 to show that each plane section of an ellipsoid must be an
empty set or a single point or a circle or an ellipse.

The graph of the equation

(6.64) a2 + b2

is a hyperboloid of one sheet. It intersects the plane having the equation
z = k in an ellipse (or circle if a = b). It intersects the plane having the
equation y = k in a hyperbola when Jkl 0 b and in a pair of lines when
Jkl = b. It intersects the plane having the equation x = k in a hyperbola
when Jkl 0 a and in a pair of lines when Jkl = a. Unshaded and shaded
graphs appear in Figures 6.641 and 6.642.
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Figure 6.641

The graph of the equation

(6.65) a2 --b2-z2=-1 or

Figure 6.642

x2 y2 z2-a2-b2+c2=1

is a hyperboloid of two sheets. It intersects the plane having the equation
Figure 6.651 z = k in the empty set when Ikj < c, in a point

when Iki = c, and in an ellipse (or circle) when
jkt > c. It intersects the planes having the
equations y = k and x = k in hyperbolas.
Unshaded and shaded graphs appear in Fig-
ures 6.651 and 6.652.

Figure 6.652
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The graph of the equation
x2 V2

16.66) a2 b2 = z

is an elliptic paraboloid. It intersects the plane having the equation
z = k in the empty set when k < 0, in a point when k = 0, and in an
ellipse (or circle) when k > 0. It intersects the planes having the
equations x = k and y = k in parabolas. Unshaded and shaded graphs
appear in Figures 6.661 and 6.662.

Figure 6.661

The graph of the equation

(6.67)
y2 x2

b2
a2 z

Figure 6.662

is a hyperbolic paraboloid. It intersects the plane having the equation
z = k in a hyperbola when k < 0, in a pair of lines when k = 0, and in a
hyperbola when k > 0. It intersects the planes having the equations
x = k and y = k in parabolas. Unshaded and shaded graphs appear in
Figures 6.671 and 6.672. Hyperbolic paraboloids are the simplest

Figure 6.671 Figure 6.672
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examples of surfaces known as saddle surfaces. The origin is a saddle
point, and a huge surprise awaits embryonic mathematical physicists who
suppose that only cowboys are interested in them.

Finally, we should not forget the cones. When A and B are nonzero
constants not both negative, the graph of the equation

(6.68) Ax2 + Bye = z2

is a nondegenerate quadric cone It is a cone because the point
(Xx,Xy,Xz) lies on the graph whenever X is a number and the point (x,y,z)
lies on the graph. It intersects the plane having the equation z = k in a
point (the vertex of the cone) if k = 0 and in a central conic (circle.
ellipse, or hyperbola) having its center on the z axis if k 0 0. Instead of
exhibiting graphs and photographs of quadric cones, we conclude with a
remark. Since we know that hyperbolas have asymptotes, we need not
be surprised to learn that hyperboloids can have asymptotic cones. The
cone having the equation

(6.69)
x2 y2 x2

a2+b2
-

c2

is the common asymptotic cone of the two hyperboloids having the equa-
tions (6.64) and (6.65).

While some of us will meet ellipsoids and other quadric surfaces after
completing this course, we need not invest our time in consideration of
more or less routine problems involving special quadric surfaces. We
have earned the right to think about a little (or big?) problem that can be
of interest to those who slice onions and other things. Let S be a set in
E3 which contains more than one point. Suppose that, for each plane ir,
the intersection of S and rr is a circle or a set consisting of just one point or
the empty set. Do our hypotheses imply that S must be a sphere?
If it is easy to make an incorrect guess and if the problem is difficult, so be
it. If there is just one easy way to solve the problem and only one person
in a million can discover the way, so be it. An anecdote illustrates the
fact that we are sometimes provided opportunities to do our own thinking
and investigating. In a lecture to advanced students at Cambridge,
G. H. Hardy stated that the answer to a particular question is obvious.
Becoming dubious about his assertion, Hardy asked his students to excuse
him while he sat down to think about the matter. Five minutes later,
Hardy arose to report that the answer is obvious and to continue his
lecture.



Curves,
r] lengths,

and curvatures

7.1 Curves and lengths One of the main purposes of this chapter
may seem at first sight to be quite modest. We want to show that the

length L of the circular arc of Figure 7.11, in which dBCD
is a rectangle and the arc is tangent to CD at D, satisfies
the inequality

(7.12) F,1B1 5 L < i C! + (DI.
Before we ask our little sister to solve the problem, we

A' 'D should ask ourselves a question that shows us that the
Figure 7.11 problem is not completely simple. What is a circular arc,

and how do we know that it determines a number that can
be called its length? It is clear that we need some definitions before we
can do anything.
408
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For an accurate treatment of matters relating to lengths of curves, we
need more information about things that are sometimes called curves
and are sometimes called oriented curves. A bumblebee can give us
preliminary ideas by starting at 4, flying to a rose at B, flying on to
another rose at C, flying back over the same route to B, and then flying
to D and on to E as in Figure 7.13. His
total path is a curve, and we get the idea A

that a curve is not determined by a point
set. We cannot know what the curve is
until we know the order in which points on
the curve were visited. For example, if
the bumblebee flies from E back to 4 by

Figure 7.13

traversing his route in reverse, his path is a new curve which can be called
the negative of the original one. While the matter has psychological
rather than logical importance to us now, we can feel quite confident that
if the bumblebee makes a flight over the interval t1 < t < t2, and if we
introduce an x, y, z coordinate system, then at each time in the interval
he is surely someplace and that if we denote his coordinates by x(t),
y(t), z(t), then these coordinate functions are continuous functions of t.
Of course, the curve does not uniquely determine the coordinate functions
because the bumblebee can fly his course at different speeds, but any one
set of appropriate coordinate functions does determine the intrinsic
curve. The above brief discussion of curves leaves many unanswered
questions. It will have served its purpose if it provides a hazy feeling
that the following definition uses words in a reasonable way.

Definition 7.14 If x, y, z are continuous functions of t over an interval,
then the ordered set of points

(7.141) P(t) = P(x(t), Y(t), z(t))

for which t lies in the interval, and for which P(t') is said to precede P(t") if
t' < t", is a curve (or oriented curve) C.

Professional creators of complicated curves can give an example of a
curve in E3 that is clever enough to "pass through" each point in a given
cube or even in the whole E3. Such curves are space-filling curves. It
must not be presumed that all curves are complicated things, however.
For example, when z(t) = 0 for each t, the curve lies in the xy plane and
we omit the z(t) when no confusion can result. We always have the
possibility of setting x(t) = t and replacing t by x. This shows that if f
is continuous over a < x <_ b, then the set of points (x, f(x)) on the graph
of y = f(x) becomes a curve when we so order the points that (x1, f(xi))
precedes (x2, f (X2)) when a < x1 < x2 < b. Unless an explicit statement
to the contrary is made, it is presumed that the points are ordered in this
way whenever the graph of y = f(x) is called a curve. Finally, such
things as circles, ellipses, rectangles, and triangles become curves as soon



410 Curves, lengths, and curvatures

as we think of them as being traversed once in the positive (counter-
clockwise) or negative (clockwise) direction.

Supposing that C is a given curve for which the interval appearing in
Definition 7.14 is a closed interval a < t < b, we proceed to define (when
it exists) a number ICI which is called the length of C. Let P be a parti-
tion of the interval by partition points to, t1j , to for which

(7.15) a=to<tl<t2< <tn_1<tn=b.

For each k = 0, 1, 2, , n, let Pk be the point on C for which t = tk.

Figure 7.151

The number SP defined by
k-1 to P2 and so on to P. is said to be inscribed in C.
Pk polygon (or broken line) running from Po to P1

Figure 7.151 is a schematic figure that may be
helpful, but it is much too simple to show how
much care is needed to guarantee that the points
are not scrambled in an inappropriate way. The

n

SP = E IPk_IPkI
k=1

is the sum of the lengths of the sides of the inscribed polygon. Let S
be the set of numbers Sp obtained by making partitions P of the interval
a <_ t <_ b. In case there is no number M such that Sp < M whenever
SP is in S, it is said that C does not have length or that C does not have
finite length or that C has infinite length or that Cl I= o o. In case there
is a number M such that SP < M whenever SP is in S, then Theorem 5.46
guarantees existence of a least number ICI such that Sp < ICI whenever
SP is in S. This number ICI is then, by definition, the length f of C.

For future reference we state without proof the following theorem which
involves notation we have been using.

Theorem 7.16 The curve C has finite length ICI if and only if

n

ICI = Jim I, IPk_1PkI.
IPI-'O k-1

We now use the definition of length to prove the following theorem
which gives, as a corollary, the desired result involving Figure 7.11.

Theorem 7.17 Let f be continuous and monotone increasing (or mono-
tone decreasing) over a < x <_ b. Let C be the graph of y = f(x) so oriented

t In old books particularly, a curve C having finite length is sometimes said to be recti-
fiable; the ancient idea is that if C is a string we could pull on the ends and straighten it out
to get a straight string of finite length. We can all know enough about logic to know that
if C is not a string, then little credence is placed upon consequences of the false assumption
that C is a string.
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that (x1, f (xi)) precedes (X2, f (X2)) when x1 < x2. Then C has finite length
;CI and

(7.171) If(b) - f(a)l < Cl I< lb - al + If(b) - f(a)I
To prove this, let P be a partition of the interval a < x < b, and, for

each k, let Pk = (xk, f(xk)). Let Axk = xk - xk-i and let

AYk = f(xk) - f(xk-1)

Then

(7.172) IPk1PkI = Oxk + AYx.

But

(7.173) DYk < L1xk2 + AYk2 < l xkt2 + 21Axk IYkl + l Ykl2

(IAxkl +
Therefore,

(7.174) l'Ykl < IPk-iPkl < Ioxkl + IoYki.

But the numbers Oxk are all positive and the numbers DYk are all negative
(or all positive), and hence (why?) addition gives

(7.175) If(b) - f(a)I < IPk-lPxl < lb - at + If(b) -f(a)1.
k-1

Since this inequality holds for each partition P, the curve C has finite
length ICI. Moreover, the least upper bound of the central sums cannot
exceed the particular upper bound in (7.175), and no upper bound can
be less than If(b) - f (a) I. This proves Theorem 7.17.

We have been studying lengths of curves, that is,
lengths of ordered sets of points of special types. There
are other (and different) theories involving lengths of
unordered sets S in E3 and E2 and Ei. We need not be
authorities on these matters, but we should have at least

Figure 7.18

a vague idea that, in elementary mathematics, the part of the set S of
Figure 7.18 that lies "between" 11 and B has length L if there is a "natural
ordering" of the points of the part that yields a curve C having length L.

Problems 7.19
1 Tell how the length ICI of a curve C is defined.
2 Show that if a curve C having finite length runs from .4, through t12 to

-43i then .42 separates the curve into two parts each having finite length. It is
not quite so easy to show that "the whole is equal to the sum of its parts," but
it can be done. In particular, the length of a simple polygon is the sum of the
lengths of its straight segments.
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3 Show that the projection on the xy plane of a curve in Es is a curve in E2.
4 Discover continuous functions x and y such that as t increases over the

interval 0 5 t S 4, the point (x(t), y(t)) goes once in the positive direction
around the square having vertices at the points (0,0), (0,1), (1,1), and (0,1).
Hint: Write the equations which tell where a pencil point will be at time t if it
traverses the square with unit speed. One ans.: x(t) = t and y(t) = 0 when
0<t<1;x(t)=l and y(t)=t-1when 15t<=2;x(t)=3-tand y(t)=1
when 2:5t53;x(t)=0and y(t)=4-twhen 35t<-4.

5 Let L, be the length of the central path from f1 to B in Figure 7.191 and
let L2 be the length of the upper path. Find L2 - Ll. Ans.: (7r - 2)h.

Figure 7.191 Figure 7.192

6 Supposing that the inner and outer circles of Figure 7.192 have radii e
and R, find the length of the curve which begins and ends at -4.

7 Draw a square and from each corner draw a line segment toward the
center but reaching only halfway to the center. Then insert arrows to specify
a curve which forms the boundary of the inner region. Find the length of the
curve.

8 This problem requires us to think about and calculate the lengths L, and
L2 of two of the paths by which an insect might crawl from the bottom B to the

Figure 7.193

B

top T of the three-dimensional ring or anchor ring or
torus of Figure 7.193. The first path, of length L1,
is a semicircle of radius b + a which lies on the outer
circumference of the torus. The second path, of
length L2, consists of a semicircle of radius a, and
then a semicircle of radius b - a which lies on the
inner circumference of the torus, and finally another
semicircle of a radius a. Try to guess which of the
paths is shorter and then calculate L, and L2. Ans.:

L, _ ir(a -I- b), L2 = ira + ir(b - a) -I- ira,

so the two paths have equal lengths. Remark: If a
curve G lies in a set S and joins two points P, and

P2 of S, and if the length of G is less than or equal to the length of each other
curve C in S which joins P, and P2 then G is called a geodesic in S. As is easily
imagined, the study of geodesics on a torus is an honorable part of an interesting
subject.

9 Creators of interesting tales for children say that, before the time when
Columbus sailed across the ocean wet, everybody thought that the earth was
flat. It has in fact been widely known for more than two thousand years that
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the earth is much like a spherical ball, but is not a spherical ball because moun-
tains and valleys are quite noticeable around the Mediterranean sea and some
other places. To show that a little information about lengths of arcs can have
quite astonishing consequences, we look at the method said to have been used
by the industrious Eratosthenes (c. 275 a.c. to c. 195 a.c.) to find what the radius
(a number) of the earth would be if the earth were sandpapered to the shape of a
spherical ball. Figure 7.194 shows 0, the center of the earth,
and a circular arc 11B on the surface of the polished earth.
The dotted vertical lines represent rays of light coming from
the sun, and these rays are so nearly parallel that approxi- A
mations can be based on a figure in which the rays are parallel
to the line 011. Thus an observer at B finds that the sun is
at his zenith. At B a pole BC of height h is erected in such
a way that an observer at B thinks it is vertical, that is, the
points 0, B, C lie on the same line. In addition to h, two
other lengths are obtained. In the first place, we find the
length a of the circular arc DC which has its center at B (the 0
base of the pole BC) and which has a shadow that just covers Figure 7.194
the pole. In the second place, the length b of the arc 11B is
obtained by more or less reliable surveyors. Let r be the radius of the earth.
Since parallelism of the light rays implies that the angles DBC and ,40B are equal,
say to 0, we obtain the equation

a b

h r

from the fact that each of the ratios is equal to 0. From this equation, r is easily
calculated. It is not to be presumed that Eratosthenes spoke English and knew
about miles, meters, and radians, but it is said that his calculations produced
estimates of the radius and circumference of the earth that are almost as good as
the estimates (radius 4000 miles, circumference 25,000 miles) that are ordinarily
used for rough calculations. The fact that reliability of computed results depends
upon accurate surveying is precisely the reason why two men named Mason
and Dixon were commissioned to do some accurate surveying.

10 This problem, like some others, does not have a number for an answer.
It requires us to think about connections between graphs and curves, and to
learn some geometric terminology. The graph of a polynomial of degree n,
that is, the graph of an equation of the form

(1) y = ao + a1x + a2x2 + ... + a,,xn,

in which an 7-1 0, used to be (and occasionally still is) called a parabola of degree n.
For example, a line is a parabola of degree 1 and a cubic is a parabola of degree 3.
While this terminology is almost extinct, the graph of the equation

(2) y2 = x3

still is called a sem.icubical parabola, the old idea being that, when we solve for y,
we get an exponent which is not an integer but is half of 3. According to this
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terminology, the semicubical parabola is a graph (not
necessarily a curve) which is the point set shown in Figure
7.195. The graph has two branches, one being the upper
branch consisting of points for which y = x34-, and the
other being the lower branch consisting of points for
which y = -x' x. Each of these branches contains the
origin.

When the points on the upper branch are ordered in
such a way that P(xi,yi) precedes P(x2,y2) when x, < x2,

-i} the branch becomes a curve Cl in the first quadrant
having an end (or end point) at the origin. Similarly,
when the points on the lower branch are ordered in such

Figure 7.195 a way that P(x,,y,) precedes P(x2,y2) when x, < x2. this
branch becomes another curve C2 having an end at the

origin. With these orderings, the graph consists of the points on the two curves C,
and C2, the orderings being indicated by the arrows of Figure 7.195 which lie between
the curves and the positive x axis. When x > 0, the curve C, has a tangent at the
point (x,x34) which has slope T634, and the curve C2 has a tangent at the point
(x,-x'6) which has slope -W4. We can observe that Ci has a forward tangent
at the origin whose slope is 0 and that C2 has a forward tangent at the origin whose
slope is 0. Although we have definitions involving tangents to graphs of equa-
tions of the form y = f(x) and have definitions involving tangents to curves, we
have no definitions which we can apply to decide whether the x axis is tangent
to the semicubical parabola at the origin. In accordance with terminology
other applications of which are not explained here, we say that the semicubical
parabola has a cusp at the origin.

11 Prove that the curve C consisting of points P for which

(1) OP = t2i + t3j

coincides with the semicubical parabola having the equation y2 = x3. Sketch
a new graph of the semicubical parabola and insert arrows which show how the
points on the semicubical parabola are ordered to produce the single curve C.
Put (1) in the equivalent form

(2) r = t21 + t3j

and, supposing that a particle moves along C in such a way that its displacement
vector at time t is r, find its velocity and acceleration at time t. See what hap-
pens when you try to write the equation of the line tangent to C at the point
occupied by the particle at time t = 0.

12 The folium of Descartes is the graph of the parametric equations

(1)
3at 3at2

X 1+t3, y=+a
The vector r running from the origin to the point P(x,y) on the folium is

1 12(2) r = 3a 1 + t3 i + 1 .+ to j ],
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there being one such point for each t for which t -1. One who has consid-
erable time to study the functions defined by (1) and to make some calculations
can discover the manner in which P wanders as t increases. As t increases over
the interval - oo < t < -1, P runs over the curve C1 extending from the origin
(but not including the origin) down into the fourth quadrant. As t increases
over the interval -1 < t < w, P traverses
the curve C2 which comes from the third y
quadrant to the origin and then runs around
the loop toward the origin but does not
again contain the origin. This problem t> -11 Y X
requires that we obtain some more informa-

without working so hard. Show thattion
if (1) holds, then y = tx and

-a x
(3) x3 + y3 = 3axy.

if hh 3 ld(at ) oShow t s and y = tx, then (1)
holds. Thus (3) is an equation of the I \\
folium. If P(x,y) is a point on the folium,
then (3) shows that P(y,x) is also on the
folium. Therefore, the line having the
equation y = x is an axis of symmetry

Figure 7.196

of the folium. This suggests that we introduce the X, Y axes of Figure 7.196
which bear unit vectors I and J. Use the formulas

(4) i= (I-J), i= (I+J)

with (2) to obtain the new equation5r t t(1-t) l() r=- 1-t+t2I+ 1+t8 J

of the folium. Treating (5) as an equation of the form r = X1 + YJ, show that

X= 3a t dX= 3a 1t2
1 t+ t2' dt (1 -t+t2)2

and use the result to find the minimum and maximum values of X and obtain
more information about the folium.

13 Let f be continuous over the interval 0 S x 5 1 and let C be the set of
points (x, f(x)) so ordered that (x1, f(x1)) precedes (x2i f(x2)) if x1 < x2. We
may feel that C must have finite length, and we investigate the matter. Theorem
7.17 shows that C must have finite length if f is piecewise monotone, but we cannot
be so sure when C is not piecewise monotone. When p and q are positive integers,
the function sing x4 [or the function g for which g(x) = sing x4] is not piecewise
monotone over the infinite interval x > 1 and the function sing (1/x4) is not
piecewise monotone over the interval 0 < x < 1. Functions f for which f(0) = 0
and

f(x) = x' singQ
x
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are, when r > 0, continuous but not piecewise monotone over 0 5 x < 1. Sup-

posing that p = q = r = 2, show that 0 S f(x) 5 1 and f is differentiable as
well as continuous over 0 <= x << 1. It can be proved that C does not have

Y=

R2 V_TNI
1

finite length.
14 It is worthwhile to cultivate the

ability to understand and even to con-
struct simple examples of curves that
have properties of various sorts. Figure
7.197 shows a part of the graph C of a

g t -i function f, defined over 0 < x :!5; 1, for
Figure 7.197 which f'(x) exists when 0 < x <= 1 and,

moreover, f(x) = f'(x) = 0 when x = 0,
1'1'11

'ff , '1, g, . We do not bother to give formulas expressing f(x) in terms of,

x, being content to describe the graph C. The rectangles have their upper left
corners on the graph of the equation y = x2. The part C1 of the graph in the
rectangle R1 over the interval 5 x 5 1 consists of four monotone parts. Show

that I < IC1I =< 2. We now turn our attention to the rectangle R2 which lies
above the interval 4 < x < and has height (IC) 2. In this rectangle we construct
another part C2 of C, this part consisting of 42 monotone parts so that 1 5 M1
2. Tell how to continue the construction so that the total resulting curve C
will not have finite length.

15 Let x(t) and y(t) be continuous over a 5 t < b so that the set of points
P(t) for which P(t) = (x(t), y(t)) and a < t < b, so ordered that P(t1) precedes
P(t2) when ti < t2, constitutes a curve C in the xy plane. The curve C is said to
be a closed curve if P(a) = P(b), that is, if the curve ends where it starts. Give
some examples of closed curves and some examples of curves that are not closed.

16 A set A in the xy plane is said to be connected if to each pair P1 and P2
of points in I there corresponds a curve C of the type described in Problem 15
such that P(a) = P1, P(b) = P2, and each point of C is a point of A. Let r
(capital gamma) be the circle with center at Po and radius r. Prove that the
set .41 of points P for which IP0Pl < r (this set being the interior of I') is a con-
nected set. Prove that the set A2 of points P for which I P0PI > r (this being the
exterior of r) is a connected set. Prove finally that if a set A3 contains a point
P1 for which 1P0P0P1I < r and a point P2 for which IPoP2I > r but contains no point
of the circle r, then .4s is not a connected set. Proof of last part: Suppose, intend-
ing to establish a contradiction, that the set A$ is connected. Then there is a
curve C, determined by continuous functions x(t) and y(t) as in Problem 15, such
that P(a) = P1, P(b) = P2, and each point of C is a point of -4a. Let

f(t) _ IPoP(t)I = (xo - x(t))2 + (yo - y(t))
so that f(t) is the distance from Po to P(t). Then f(a) < r and f(b) > r. Since
f is a continuous function, it follows from the intermediate-value theorem
(Theorem 5.48) that there is a number t* for which a < t* < b and f(t*) = T.
The point P(t*) is a point of the circle r, so P(t*) is not in /13 and we have the
required contradiction. Remark: The geometrical nature of a circle in a plane
is so simple that basic facts involving its interior and exterior are easily described
and easily proved. The remaining problems of this list involve more general
situations.
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17 Sketch some figures to obtain preliminary ideas about matters relating to
the following definition. Let S be a given nonempty set in the xy plane and let
P' be a point of S. Let S' be the set of points P" in S that can be connected to
P' by curves lying in S. This means that P" is a point of S' if and only if there
exist functions x(t) and y(t) continuous over an interval a 5 t S b such that
P(x(a), y(a)) is P', P(x(b), y(b)) is P", and P(x(t), y(t)) is a point in S whenever
a < t 5 b. The set S' is a connected set because if P, and P2 lie in S', then
Pi and P2 can be connected to P' by curves C, and C2 lying in S' and these two
curses can be combined to give a single curve C connecting P, to P2 and lying in
S'. This set S' is the maximal connected subset of S that contains P' or, briefly, the
component of S that contains P'.

18 The curve C of Problem 15 is said to have a multiple point at the point Q
if there exist two numbers t, and t2 such that a <_ ti < t2 < b (or a < tl < to 5 b)
and the two points P(ti) and P(t2) coincide with Q. The curve is said to be simple
(free from multiple points) if it has no multiple points. Give some examples of
closed curves that have multiple points and some examples of simple closed
curves.

19 The French mathematician Camille Jordan (1838-1922) was the first
person to give serious attention to the difficult question whether each simple
closed plane curve "separates the plane" into exactly two nonempty components
one of which constitutes the outside of the curve and the other of which con-
stitutes the inside. Such curves are called Jordan curves. The following
theorem is known as the Jordan curve theorem.

Theorem If C is a simple closed plane curve (or Jordan curve), then the set S of
points of the plane which are not points of C contains exactly two (no more and no
fewer) nonempty components S, and S2.

The author now owes his readers an explanation. It never has been and need
not be expected that students of elementary calculus know anything about the
Jordan curve theorem. Nevertheless, the author insists that each student should
have opportunities to pick up ideas about mathematics. We can know that the
Jordan curve theorem is so difficult that Jordan never succeeded in proving it
and that we must learn more mathematics before we can undertake to under-
stand proofs that have been given or to construct new proofs. We can know
that many persons who never generated much interest in additions of fractions
become intensely interested in problems involving sets and curves.

7.2 Lengths and integrals Let x, y, and z be given functions having
continuous derivatives over the closed interval a _<_ t :_!9 b. Let

(7.21) P(t) = P(x(t), y(t), z(t))

so that, for each t, P(t) is the point having coordinates displayed in (7.21).
Let r(t) denote the vector running from the origin to P(t) so that, for
each t,

(7.22) r(t) = x(t)i + y(t)j + z(t)k.

We propose to set up an integral for the length ICI of the curve C traversed
by P(t), or by the tip of the vector r(t), as t increases from a to b. It
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could be supposed that our main interest is in lengths of curves and that
we should get our result as quickly as possible, but this is not true.
Integrals are very important things, and we proceed slowly to learn as
much as we can about them.

Our first step is to make a partition P of the interval a _<_ t <_ b having
partition points to, to, , ' . , t and to sketch schematic figures showing
the partition and points Pk-1 = P(tk-1) and Pk = P(tk) on C. We then
tell ourselves that if API, the norm of the partition, is small then IPk_1pk'
should be a good approximation to the length of the part of C between
PA_i and PA, so 2;';PL_1PkI should be a good approximation to ICI and hence
it should be true that

(7.23) ICI = lim ZIPk-1PkI

We have employed the fundamental ideas about length given in Section
7.1. The next step is to put the right member into a more useful form.
While introduction of the abbreviations may be unwise when acres of
paper and blackboard space are available, we simplify our formulas by
setting

Otk = tk - tk-1, Oxk = X(tk) - x(tk-1), AYk = Y(tk) - Y(tk-1),
A2k = z(tk) - Z(tk-1).

Then (7.23) gives

(7.231) ICI = Jim Axk Ay, + AZk

We can make this look much more like a limit of Riemann sums by
introducing factors i tk in numerators and denominators to obtain

(7.232) ICI = llm L]xk2 +
.yk/2 +

CAZk/2ltk.

4 l Atk Otk

The possibility of making further progress is provided by the hypothesis
that x, y, and z have continuous derivatives.

We should be realistic and realize that there are different ways to
proceed. We can cheerfully adopt the view that, however we choose
t* in the kth subinterval of our partition, the kth term in (7.232) should
be closely approximated by f(t,*) Otk, where

(7.233) f(t) = [x'(t)]2 + [Y (t)]2 + [z'(t)]2.

Thus we can expect that

(7.234) ICI = lim lf(tk) Atk.

Since our hypothesis guarantees that f is continuous and hence integrable,
the Riemann sums do have a limit and we are led to the formula

(7.24) ICI =
ffb -,1[X1(t)j2 + [Y'(t)l2 + [z'(t)]2 dt.
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This is, in fact, a correct and very satisfying formula which treats all
coordinates alike and enables us to calculate lengths of curves that wind
around through E3. In case C lies in the xy plane, everything is the same
except that z(t) = z'(t) = 0 and the formula is thereby simplified. In
applications, it often happens that x(t) = t and the formula is written
in one or anotherr of the forms

(7.241) SCI =
J

b 1 + [y'(t)l2 + [ (t)]2 dt
a

_ f b
1 [[y'(x)12 + [z'(x)]2 d.r

fb a
= 2 2

1 -I- () + () dx
and, for plane curves, we have z = 0. It is not easy to be sure that the
"cheerful derivation" of (7.24) is slovenly. A person can claim that he
will not use the definition of length given in Section 7.1, that he is interested
only in curves C for which x'(t), y'(t), and z'(t) are continuous, and that
all of the work that he has done merely motivates his definition whereby
JCJ is defined by (7.24). His position is tenable and, so long as he stays
in his own garden, it is even reasonable. In fact, many quantities in
pure and applied mathematics are defined by integrals, and sometimes
the definitions are so well motivated that readers (and even writers) fail
to recognize the fundamental fact that it is utterly impossible to prove
correctness of a formula for something that has not been defined.

We start again with the formula

()2
(7.25) ICI = lim + + Az

Atk,
(Eik_) k2

()2

which is (7.232) brought up where we can see it, but this time our situa-
tion is different. We suppose that JCJ is defined by (7.25), and we want
to prove that the right side is an integral. For present purposes, the work
of the preceding paragraph would be slovenly because nothing was proved.
We could try to fix everything by trying to prove that there is a tkti* such
that, with the notation of the preceding paragraph, the kth term of
(7.232) is exactly equal to f (tR*,) Atk. We do not try this, however, because
of the fear that the process would involve only uninformative hard work.
Instead, we start by applying the mean-value theorem (Theorem 5.52)
to (7.25). Since x' is continuous, there must be a tk for which tk-1 <
tk < tk and

(7.251) L\xk = X(tk) - x(tk-1) = x (t*).
Atk tk - tk-1 k

Similar formulas involving y and z end with y'(tk *) and z'(tk***), there
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being no reason for hope that the three numbers tk *, and t*** are
the same. Thus

(7.252) JCJ = lim E [(tk )l2 + [y'(tk *)]2 + [z'(t,E**)]2 At,.

This looks much like a Riemann sum formed for the function f having
values

(7.253) f(t) = [x'(t)12 + [y'(0]2 + [z'(t)]2,

and there is no difficulty in the important special case in which x(t)
and z(t) = 0 for each t. Except in special cases, we must consider con-
sequences of the fact that tk, t)**, and tk*** may be different. Since
difficulties of this nature (and they were real difficulties in the old days)
are usually associated with the name of Duhamel (1797-1872), we can
call this a Duhamel difficulty. To treat all coordinates alike and to be
precise about this matter, we let Tk be the center of the interval tk_1 <
t < tk. We can then put (7.252) in the form

(7.254) ICI = lim j, [f(Tk) + 5A:] Mtk,
JPI-.0 k=1

where

(7.255) Sk = [x (tk )]2 + [y'(tk *)]2 + [Z'(tk**)]2

[x'(Tk)12 + [y'(Tk)]2 + [Z'(Tk)]2.
To prove the desired result

(7.26) JCJ = f bf(t) dt = f b [XI(t)12 + [y'(t)]2 + [z'(t)]2 dt,
a a

it is therefore sufficient (and also necessary) to prove that

(7.261) lim Sk Qtk = 0.
IPI-.o k=1

It is easy to originate the correct idea that the numbers tk, tk**, and t***
are all near Tk, that continuity of the functions x', y', z' implies that the
two terms on the right side of (7.255) are nearly equal, that the numbers
Sk are all near 0, and hence that the sum in (7.261) is near 0, whenever the
norm JP1 of P is small. The easy way to make this precise is to use the
fact that the first term in the right member of (7.255) is a continuous
function of three variables. Using only functions of one variable, we
can let 0 < E < e and choose a number S > 0 such that the numbers
a, ,e, and y defined by

(7.262) [x'(u)]2 - [x'(a)]2 = a, [y'(u)]2 - [y'(v)]2 = fl,
[z'(u)]2 - [z'(v)]2 = 'Y
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all have absolute values less than e' when I u - oil < S. When JP1 < S,
the right member of (7.255) then has the form

(7.263) Sk = VA k ± h - flk,

where the quantities under the radicals are nonnegative and 0 < h _<_ 36'.
It follows that 141 < 3e' and hence

n n

(7.264) Sk Atk I < NI-3-W At, = 3E (b - a) < e
k=1 k=1

provided e' is so chosen that the last inequality holds. This proves
(7.261) and hence (7.26).

In order to introduce coordinates on curves, we suppose that x, y, and
z are functions having continuous derivatives over an open interval

a < t < b and that C is the curve traversed
by the point P(t) having coordinates (x(t), s=7 s=8
y(t), z(t)) as t increases. To avoid difficul-
ties, we suppose that the curve is simple;
this means that P(ti) P(t2) when tl 0 t2
so that P(t) cannot be in the same place at s

S=6

two different times. Let to be fixed such
that a < to < b. Then, as in Figure 7.27,
we can assign coordinates to points on C by
letting s be the length of the curve running
from P(to) to P(t) when to < t < b and

Figure 7.27

letting -s be the length of the curve running from P(t) to P(to) when
a < t 5 to. Then, whenever a < t < b, the coordinate s(t) of P at time t is

(7.28) s(t) = fot [x (r)]2 + [y'(r)}2 + [z (r)}" dr.

In this formula r (tau, the Greek t) is used as a dummy variable of integra-
tion. Since our hypothesis implies that the integrand is continuous,
Theorem 4.35 enables us to differentiate with respect to t to obtain the
formula

(7.281) s'(t) = [x'(t)]2_[y1(t)j1 + [z'(t)]2,

which is often written in the form

(7.282)
at =

Cax\ 2

+ dt )2 +
(dd

2

This is related to the formulas we get when we set

(7.283) r = x(t)i + y(t)j + z(t)k
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and calculate the velocity v and the speed (vI from the formulas

(7.284) v = x'(t)i + y'(t)j + z'(t)k

and

(7.285) IvI = [x (t)]'` + [y'(t)]2 -]- [z'(t)]2.

Since the right members of (7.282) and (7.285) are the same, this shows
that, in appropriate circumstances, the speed determined so quickly by
taking the absolute value of the velocity is the same as the "speed of the
particle in its path" determined by use of coordinates on the path.

Problems 7.29
1 Find the length of the part of the helix

x=acost, y=asint, z=kt
traversed by a particle at P(x,y,z) as t increases from 0 to 27r.

2 Using the first standard equation in
2 2

a2-}-b2=1, x=acos6, y=bsin6,

where 0 < b < a, set up an integral for the length of the part of the ellipse lying
in the first quadrant. Then use the parametric equations to set up another
integral for the same length

Ins.: f a
aa2

-kx dx, a f 'r" 1 - k2 cos2 8 do,

where k2 = (a2 - b2)/a2. These are elliptic integrals, and others more or less
like them are also called elliptic integrals. There is no easy way to obtain their
exact numerical values.

3 Set up an integral for the length L of the curve traced by the point P

having coordinates
x=a6-bsin0, y=a-bcos0

as 0 increases from 0 to 2n, and show that the result can be put in the form

L = (a + b) f02,
I1

(a +bb)2 cos2
9

d8.

When b 0 a, this is an elliptic integral. When b = a, the graph is, as Problem
16 of Section 6.5 shows, an ordinary cycloid. Sketch a figure and explain a
simple geometric argument which shows that, when b = a and the approximations
x = 3 and 72 = 10 are used, 52 a < L < 10a. Finally, show that L = 8a.

4 Find the length of the part of the curve having the equations
+ 2

x=2ta, y=t 2 ' z= 2t
which lies between the points (0,-I,1) and (2,-1,$), fins.: L = Z[1931 - 1].
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5 When 0 < b < a and a circle (or cog wheel) of radius b rolls without
slipping inside a circle of radius a as in Figure 7.291, the path traced by a point
on the small rolling circle is a hypocycloid (inside-cycloid) that appeared in one
of Problems 6.59 and that even small dic-
tionaries describe. It can be shown that
when the center of the small circle has
passed over an angle 0 (that could be wt),
the point initially at (a,0) has coordinates

a-bx=(a-b)cos0+bcos
b

0

y=(a-b)sin0-bsinab b0.

With the aid of Figure 7.291 find the
Figure 7.291

amount by which 0 must increase as P traverses one arch of the cycloid from the
big circle back to the big circle. Then find the length of one arch of the cycloid.
tins.: 8b(a - b)/a.

6 It is a remarkable fact that when b = a/4, so that the hypocycloid of the
preceding problem has four cusps, the equations can be put in the form

x =
4

(3 cos 0 + cos 30) = a cos' 0

y=4(3sin0-sin30)=asin30
so that

x34 + y35 = a% .

Using this formula, find the length of the part of the hypocycloid in the first
quadrant. .4ns.: 3a12.

7 Let f and g have continuous derivatives over a <_ u < b. Let C be the
curve which the pointP(f(u), g(u)) traverses in an xy plane as u increases from
a to b. Let C be regarded as a wire having linear density S so that a piece of C
of length L has mass SL. Let p be a nonnegative integer and let xo be a constant.
Set up an integral for the pth moment of the wire about the line having the
equation x = x0.

8 With or without assistance from the preceding problem, set up an integral
for the pth moment about a diameter of a circular wire having linear density S.

9 Centroids of triangles, rectangles, and regular polygons coincide with the
centroids of the regions that they bound.
Draw some polygons for which there is violent
departure from coincidence.

10 Figure 7.292 is intended to steer our
thoughts toward a wire or cord concentrated
on a curve C and to make us realize that we
have not yet calculated the gravitational
force F upon a particle P* of mass m at
P(x,y,z) that is produced by the wire. Set
up an integral for F. Outline of solution:
Since x, y, z have been preempted, we take

Figure 7.292
Z

Y
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the curve C to be the ordered set of points P(t) = P(u,v,w) for which u, v, w
are functions of t having continuous derivatives and

(1) OP = u(i)i + v(t)j + w(t)k (a 5 t 5 b),

and suppose that the linear density (mass per unit length) of C at P(t) is S(t),
where S is a continuous function of t. Letting Q be a partition of the interval
a < t 5 b with partition points tk and supposing that tk_i S It S tk, we take the
number S(tk*) JPk_1PkI as an approximation to the mass of an element of the
wire. The force t1Fk which this element produces upon the particle P* of mass
m at P(x,y,z) should have approximate magnitude

Gm3(tk*) IPk_lPx1
(2)

I PP(tk) I2

Introducing vectors and coordinates gives the approximation

uk 2 AVk 2 11 wk 2
(3) AF, = GmS(tk)

(L1Ot)

+ (Ot) + (fit

(

[u(tk) - x]i + [e(tk) - y]j + [w(tk) - z)]k
l[u(tk) - x]2 + [a(tk) - y]2 + [w(tk) - R.]2}3fe At.

The limit of the sum of these things should be F, and we are led to the definition

(4) F = Gm Lb S(t) [u'(t)]2 + [e'(t)]2 + [w'(t)]2
[u(t) - x]i + [v(t) - y]j + [w(t) - z]k

{[u(t) - x]2 + [9(t) -' y]2 + [w(t) - z]2} dt.

This is our result. In case the wire coincides with a circle of radius a in the yz
plane having its center at the origin, we can set u(t) = 0, o(t) = a cos t, w(t) _
a sin t and put (4) in the form

2* -xi+[acost-y]j+[asint-z]k
(5) F =Gma fo S(t) {x2 ± [a cos t - y]2 + [a sin t - z]2}3 dt.

In caseP* is on the axis of the wire so that y = z = 0, this takes the much simpler
form

2* -xi + a cos tj + a sin tk
(6) F =Gma fo S(t) (x2 + a2)H A

In case the wire is a uniform wire so that, for some constant So we have S(t) = So
for each t, the coefficients of j and k are zero because

(7)
o

2ar
cos t dt =

02r
sin t dt = 0

(or, as is usually said, "because of symmetry") and (6) reduces to

(8)
F - - GmMx

(x2 + a2)

where M = 22rabo, the total mass of the wire. Remark: With slight differences
in notation, (8) was used extensively in some of the Problems 4.79.
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11 Let units of measurement be so employed that the potential at Po(xo,yo,zo)
due to a particle of mass m concentrated at a point P(x,y,z) is m/IPoF . Let
x, y, z have continuous derivatives over a < u 5 b, and let P(x,y,z) traverse a
curve C as u increases from a to b. Let C have linear density 3. Let Po(xo,yo,zo)
be a point not on C. Remembering that potentials are scalars, and remembering
or learning quickly that the potential due to a collection of particles is equal to the
sum of the potentials due to the individual particles, set up an integral which is
equal to the potential at Po due to C.

12 Set up an integral equal to the moment of inertia (second moment)
about the z axis of the curve C of the preceding problem.

13 When a particle has fallen (or slid without friction) from height G(b) to
a lower height G(u), its speed is 2g[G(b) - G(u)], where g is the acceleration of
gravity. We all know that if we travel a short distance with a constant speed,
we get the time required for the trip by dividing the distance by the speed.
With this basic information, we are prepared to attack a problem. Let F and
G be functions having positive continuous derivatives over 0 =< u 5 b and let
the point P(F(u), G(u)) traverse a curve C from the origin to a point B in the
first quadrant of an xy plane as u increases from 0 to b. Sketch a schematic
figure showing the curve C. Set up an integral which gives the time T required
for a particle starting from rest at B to slide without friction down the curve C
to the origin.

14 The reflecting surface of a headlight is a part of a paraboloid, of depth
4 inches and diameter 12 inches, obtained by rotating a part of a parabola about
its axis. Find its area. Solution: This is not an easy problem, since a basic
difficulty lurks in the fact that areas of such surfaces have not been defined.
We start by so determining k that the parabola having the equation y = kx2
contains (or passes through) the point

(6,4). This gives y = $x2 for the equa-
tion of the generating parabola. With ---------------
the possibility of setting a = 0, b = 6,

y

and f(x) = gx2, we suppose that f has I &xk
a continuous derivative over an interval
a < x < b. Let S be the surface gen-
erated by rotating, about the y axis, the
part of the graph G of y = f (x) for which
a 5 x < b. Expecting to use some intui-
tive ideas about areas, we make a parti-
tion P of the interval a < x :5 b and

xk x

Figure 7.293

consider one particular subinterval xk_1 < x < X. As an approximation to
the length Lk of the segment Gk of the graph G containing points x for which
xk_1 S x 5 xk, we may use the number

2

(1) V xk +
ay!

= 1

+ 'Nxk
= 1 'f U (xk )12 k,

where Axk = xk - xk-1, Ayk = f(xk) - f(xk-1), and xk is a number for which
xk_1 < xk < xk. Figure 7.293 is helpful. Even though areas are not yet defined.
we can have a feeling that when the segment Ck is rotated about the y axis, its
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points all travel approximately the same distance 2axk and that the segment
generates a surface essentially like a ribbon having width Lk and length 27rxk.
This leads us to the intuitive idea that one term in the sum

(2) ISI = lim 2;2ir 1 [[f'(xk)]2 xk t.xk

should, when the norm fPf of P is small, be a good approximation to the area of the
part of S generated by one segment of the graph G. The next step is to adopt the
tentative intuitive conclusion that the sum is a good approximation to the total
area JSI of S when the norm of P is small or, in other words, that (2) should be
valid. Our theory of Riemann sums and integrals assures us that if (2) is true,
then

(3) BSI = 21r fab 1 + [f'(x)]2 x dx.

If we have sufficient confidence in our calculations (it would, of course, be fatal
to use an incorrect formula for the circumference of a circle of radius xk) and in
our intuitive ideas, we can install the formula (3) as one (not the) definition of
area of surfaces of revolution. It does not make sense to claim that this definition
is "correct," but experience shows that it is useful and this is all that we can
expect from definitions. For the case in which f(x) = kx2, a = 0, and b = r,
(3) reduces to

ISI = 2a for (1 + 4k2x2)' x dx =
6k2

[(1 + 4k2r2)h 1].

When k and r = 6, this reduces to BSI = 491r.
15 We invest a little time to look at some curve integrals that are called line

integrals by those who adhere to the notion
that curves are lines. Let functions x(t), y(t),
z(t), the point P(t), the vector r(t), the curve
C, the partition P of a 5 t < b, and the num-
bers Otk, /xk, ayk, Ozk be defined as in the part
of this section preceding (7.231). Let a vector
function F having scalar components fI, f2, fa
be defined and continuous over a part of Es

y

z that contains the curve C. We consider F to

Figure 7.294 be a force which operates upon a particle at
P(t) as the particle moves from P(a) to P(b).

The schematic Figure 7.294 may be helpful. With the idea that the work done
by F as the particle moves from P(tk_I) to P(tk) is closely approximated by

(1)

when the norm of the partition P is small, we can define the total work W done
by F by the formula

(2) W = lim 2;F(xk,yk,zk)I.rk-
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The right member of (2) is an example of a curve integral, and it is denoted by
the symbol in

(3) W = fC

F(r) is the vector function of the vector r defined by

(4)
F(r) = F(x,y,z)

in which x, y, z are the numbers for which r = xi + yj + A. The right member
of (3) is read "the integral over C of F(r) dot dr," the fundamental idea being
that it is the curve C that is partitioned to produce the approximating sums.
To learn something about this curve integral, we can use the formulas

(5) F(x,Y,z) = fi(x,Y,z)i + f2(x,y,z)j + f3(x,y,z)k

(6) 6'k = 1'kl + Ayk1 + tlzkk

to put (2) in the form

(7) W - Ilm J [fl(x(tk), Y(tk), ZOO) AX! +f2(x(tk), Y(tk), z(tk)) Atk

+ f3(x(tk), Y(tk), z(tk)) Dak j t.tk.

A proof very similar to the one centering around (7.255) enables us to show that

(8) W = fabfi(x(t), y(t), z(t))x'(t) dt + fabf2(x(t), y(t), z(t))y'(t) dt

+ f b f3(x(t), y(t), z(t))z'(t) dt.f
This is a formula from which W can be calculated or approximated. Since we
are not electronic computers, we do not (at least at the present time) make cal-
culations, but we do point out that the integrals in (8) are abbreviated to those
in the formula

(9) W =
JC

[fi(x,Y,z) dx + f2(x,y,z) dy + fs(x,Y,z) dz].

The integrals in (9) are scalar curve integrals. Whenever we want to know
what these things mean and how they can be evaluated, we should have the wits
to check back to see what they abbreviate. While it may be possible to over-
emphasize the importance of the matter, we can observe that if we set

(10) F(r) = fi(x,Y,z)i + fs(x,y,z)j + f3(x,Y,z)k

and make the pretense that dr is a vector for which

(11) dr=dxi+dyj+dzk
and

(12) fj(x,y,z) dx + f2(x,y,z) dy + fs(x,y,z) dz,

then we can substitute (12) into (3) to obtain (9). Of course, it should be thor-
oughly understood that we have done nothing but explain symbols. This would
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be a stupid waste of time if it were not for the fact the symbols are useful. They
appear even in quite elementary physics and engineering, and mathematicians
have a responsibility to tell what they mean.

7.3 Center and radius of curvature Courses and textbooks in
"differential geometry" provide information about matters relating to
curvature of curves that lie in E3. In this section, we give most of our
attention to curves that lie in an xy plane. Our approach to the subject
sacrifices brevity to place emphasis upon elementary geometric ideas
that can be of interest to everyone and are needed by engineers and others
who study the bending of beams.

Let x and y, or x(t) and y(t), have continuous second derivatives over
some open interval a < t < b in which t and t + At are always supposed
to lie. Let P(t) denote the point with coordinates (x(t), y(t)) and let
r(t) be the vector running from the origin to P(t) so that

(7.311) r(t) = x(t)i + y(t)j
(7.312) v(t) = x'(t)i + y'(t)j
(7.313) a(t) = x"(t)i + y"(t)j.

Let C be the curve traversed by P(t) and the tip of r(t) as t increases, so
that v(t) is tangent to C at P(t) when v(t) 5zl- 0. Henceforth we consider
only values of t for which

i j k
(7.32) v(t) x a(t) = x'(t) y(t) 0 = [x'(t)y"(t) - x"(t)y'(t)lk 0 0.

x"(t) y"(t) 0

Since Iv x al = lvi lal Isin Bl, this means that v and a are nonzero vectors
which do not lie on parallel lines. This and the first of the formulas

v(t + At) - v(t) = a(t), v(t + At) - v(t)
Fg- 0

W-0
(7.321) lm'

At
v(t)x

At

implies existence of a S > 0 such that the second holds when 0 < lAti < S.
Since V(t) X v(t) = 0, we conclude that v(t) x v(t + At) 5,4- 0 and hence

Figure 7.33
C Supposing that 0 < l,tl < S, we

that the tangents v(t) and v(t + At) do
not lie on parallel lines when 0 < lotl < S.

construct Figure 7.33 and look at it.
Since the tangents v(t) and v(t + At)

(XY) to r at P(t) and P(,, + At) do not lieP(t+ot)=
( y(t+ot)) on parallel lines, the normals to Cat

these points must intersect at a point
Q ,,I) having coordinates t (xi) and

P(t)=P(At)1 y(t))
71 (eta). If C is a circle, then the
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most elementary of elementary geometry tells us that the points
obtained for different values of At would all lie at the center (X,Y)
of the circle. This is no time to be devoid of ideas. We can have at
least a vague feeling that, even when our curve C is not a circle, a small
section of C in a neighborhood of P(t) should be so much like a circle
that there should be a point (X,Y) such that is near (X,Y) whenever
At is small. If all this happens, we should give the point (X,Y) a name
and find formulas for X and Y. All this does happen. The point is
called the center of curvature of C at P(t). We shall find formu'as for
X and Y and for the distance from (X,Y) to P(t). This distance is called
the radius of curvature p (rho) of C at P(t). The circle with center at
(X,Y) and radius p is called the circle of curvature of C at P(t).

The coordinates and n are determined by the system of equations

[ - x(t)]x'(t) + [n - y(t)]y'(t) = 0
[ - x(t + At)]x'(t + At) + [n - y(t + At)]y'(t + At) = 0.

The left member of the first equation is the scalar product of the vector
v(t) tangent to C at P(t) and the vector running from P(t) to %,J), and
the equation expresses the fact that the two vectors are orthogonal.
Similarly, the second equation expresses the fact that (g,n) lies on the
normal to C at P(t + At). Replacing the quantities in brackets in the
second equation by

[ - x(t) - x(t + At) + x(t)] and In - y(t) - y(t + At) + y(t)]
and transposing a part of the result enables us to put the two equations
in the form

(7.341) [ - x(t)]x'(t) + [n - y(t)]y'(t) = 0
(7.342) [ - x(t)]x'(t + At) + [n - y(t)ly'(t + At) = Q,

where we have simplified matters by letting Q denote the quantity

(7.343) Q = [x(t + At) - x(t)]x'(t + At) + [y(t + At) - y(t)]y'(t + At).

To eliminate n from the two equations (7.341) and (7.342), we multiply
the first by y'(t + At) and the second by -y(t) and add to obtain the
first of the formulas

(7.35) D[ - x(t)] = -Qy'(t), D[n - y(t)] = Qx'(t),

where D is the determinant

D = x (t)y'(t + At) - x'(t + At)y'(t)

which can be put in the form

(7.351) D = x'(t)[y'(t + At) - y'(t)l - [x'(t + At) - x'(t)ly'(t)
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A similar procedure, in which the multipliers -x'(t + At) and x'(t) are
used, gives the second of the formulas (7.35). Formulas for and n
are now obtained from (7.35) by dividing and transposing. As we shall
see, formulas for X and Y are obtained by dividing (7.35) by At and taking
limits as At, 0. Since (7.343) and (7.351) show that

[x'(t)]2 + [Y'(t)]2

lim - = x'(t)y"(t) - x"(t)y'(t),
At

lim 0
nt--0Ot

D

we find from (7.35) that

(7.361) X - x(t) =
l i o [ - x(t)]

[x'(t)]2 + [Y'(t)]2
Y, (t)x'(t)y"(t) - x"(t)y'(t)

A(7.362) Y - y(t) = lim [7] - Y(t)] [XI(t)12 + [y'(t)]2 x (t)x'(t)Y"(t) - x"(t)y'(t) .

Transposing the terms x(t) and y(t) gives formulas

[x'(t)]2 + [y'(t)]2 ,(7.363) X = x(t) - x'(t)y"(t) - x"(t)Y'(t) Y (t)

[XI(t)12 + [y'(t)]2(7.364) Y = Y(t) + x'(t)y"(t) - x"(t)Y'(t) x (t)

for the coordinates (X,Y) of the center of curvature of C at the point
(x(t), y(t)), but these new formulas are sometimes less useful than their
parents. The definition of radius of curvature p implies that

and hence

(7.37)

p = [X - x(t)]2 + [Y - y(t)12

1[x(t)]2+ [y'(t)]2]H
P = Ix'(t)y"(t) - x"(t)y'(01

In case x(t) = t so x'(t) = 1 and x"(t) = 0, it is customary to replace t
by x and write

(7.371)
r

= + [Y'x)]2'` = l 1 + (

IY (x)I Idyl
dx2

To steer our thoughts toward another problem involving curvature,
we consider the rate of change of direction of an automobile which trav-
erses a level road that winds around swamps and between mountains.
At each time t the rate depends upon the speed of the automobile and
upon another number which is called the curvature of the road at the
position of the automobile. To be more precise about this matter, let
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x and y be functions oft having two derivatives each over some interval
and let C be the curve traversed by the point P(t), having coordinates
x(t), y(t), as t increases over the interval. We suppose that there is no
t for which x'(t) and y'(t) are both 0. Our results will be obtained with
the aid of the three familiar vectors

(7.381) r(t) = x(t)i + y(t)j
(7.382) v(t) = x'(t)i + Y'(t)j
(7.383) a(t) = x"(t)i -I- y"(t)j

The vector v(t) having its tail at P(t) is the forward tangent to C at P(t).
With each t we wish to associate an angle 0(t) that determines the direc-
tion of v(t), and this is a matter that must not be treated carelessly.
To restrict q5(t) to an interval like -ir < q5 <_ ir, so that 0 would be dis-
continuous when the vector rotates from northwest to southwest, would
defeat our purpose. To formulate general principles by which -0(t) can
be calculated may be beyond our capabilities. Let us then avoid possi-
ble unforeseen topological difficulties by restricting attention to curves C
for which it is clearly possible to determine q5(t) by the following proce-
dure. Let to be a particular t in the interval considered and let 0(to) be
the angle for which -ir < 0(to) 5 it and q5(to) is the ordinary trigono-
metric angle having its initial side on the positive x axis and its terminal
side on the vector through the origin parallel to v(to). Then, as t increases
(or decreases) from to, let ¢(t) vary with the vector v(t) in such a way that
0 is continuous. Some curves are less complicated than that shown in
Figure 7.384, and some are more complicated. Supposing that ¢(t) is

ON)

Figure 7.384

satisfactorily determined, we can put the formula (7.382) for v(t) in the
form

(7.385) Iv(t)I[cos 0(t)i + sin 0(t)j] = v(t),

where

(7.3851) x'(t) = Iv(t)Icos ¢(t), y'(t) = Iv(t)Isin 4(t)

and

(7.3852) Iv(t)I = {[x'(t)]2 + [y'(t)]2)/ 0.
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Since we want a formula for 0'(t), it is reasonable to differentiate (7.385)
with respect tot and to try to use the result. We divide by jv(t)I and
then differentiate to obtain

I v(t) I a(t) - v(t) dt Iv(t) I

(7.386) [- sin 4(t)i + cos O(t)j]O'(t) = Iv(t)12

The coefficient of O'(t) is the unit vector n for which

(7.3861) n = [- sin 0(t)i + cos O(t)j] _
-y'(tI i + x'(t)j

V(t)1

Since 0, we can equate the scalar products of n and the mem-
bers of (7.386) to obtain

(t) =
[x"(t)i + y"(t)j].[-y'(t)i + x'(t)jl

Iv(t)12 lo(t)12

and hence

(7.387)
x,(t)y,"(t) - x"(t)y'(t).

(t) _ [x'(t)12 + [y'(t)]2

For some applications of (7.387), we can set x(t) = t so that x'(t) = 1
and x"(t) = 0. In such cases, we can replace t by x to obtain

(7.3871) (x)
Y" (x)

1 + [y (x)12

In this, and in any other case in which x'(t) s 0, we can eliminate prac-
tically all of the work of this section by writing

(7.3872) tan ¢ = y,(t)
X, (t)(t)

with or without the aid of (7.3851) and then differentiating with respect
to t to obtain (7.387).

Returning to (7.387), we note that 0'(t), which might be measured in
radians per minute, gives the time rate of change of ¢ with respect to t.
In case the point P(t) traverses C with unit speed, which might be 1
kilometer per minute, 0'(t) becomes also a number of radians per unit
distance measured along C, and this is called the curvature K or K(t) of
C at P(t). To give curvature an additional leg upon which to stand, we
introduce upon C a coordinate system like that in Figure 7.27 with the
stipulation that the coordinate s of P(t) increases as t increases. The
curvature of C at P(t) can then be defined by the formula

(7.388) K = K(t) = ds-
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Since do/ds = b'(t)/s'(t) = ¢'(t)/jv(t)I, the formulas (7.387) and (7.3852)
yield the formula

389) K = x'(t)y"(t) - x"(t)y'(t)
(7.

[[x (t)]2 + [y'(t)]21

from which the curvature of C at P(t) can be calculated without reference
to other formulas. Perhaps we should take notice of the fact that a curve
C is an ordered set of points, and that we can misunderstand (7.389)
when we forget this fact. In particular, the sign in (7.389) will be wrong
if we put the coordinate system on C backwards so that s decreases as t
increases.

We conclude with a fundamental observation. As formulas (7.37)
and (7.389) show, the radius of curvature p and the absolute value SKI of
the curvature K are reciprocals wherever we have defined both of them.

Problems 7.39
1 By use of the equations

x = acost, y = a sin t,

show that the curvature of the curve C consisting of a circle of radius a traced in
the positive direction is identically 1/a. Then by use of the equations

x = a cos t, y = -a sin t,

show that the curvature of the curve r (capital gamma) consisting of a circle
of radius a traced in the negative direction is identically -1/a.

2 Hindsight can be very good. Look at (7.388). Then run with constant
speed and in the positive direction around a circle of radius a and observe that
0 increases at a constant rate. Then reverse the direction of the run and observe
that 0 decreases at the same constant rate.

3 Determine the radius of curvature of (that is, at points of) the parabola
having the equation y = kx2. Find the minimum radius of curvature. Sketch
a graph for the case in which k = 1 and determine whether the answer seems to
be correct.

4 Show that the normals to the graph of y = x2 at the points (0,0) and (0.01,
0.0001) intersect at the point (0, 0.5001). Show that this intersection is at dis-
tance 0.0001 from the center of curvature of the graph at the point (0,0).

5 A glance at the graph of y = log x suggests that the absolute value of the
curvature is greatest and that the radius of curvature is least when x is somewhere
between and 2. Find the x for which the radius of curvature attains its mini-
mum value. Ans.: V-212 = 0.707.

6 When a point P(x,y) moves along an arc or curve C having equations
x = x(t), y = y(t) that satisfy appropriate conditions, the center (X,Y) of curva-
ture moves along an arc that is called the evolute of C. The formulas (7.363) and
(7.364), which we should be able to use but need not remember, show how X
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and Y depend upon t. Supposing P moves along the graph of y = kx2 in such a
way that x = t and y = kt2, show that the equations of the evolute are

X = -4k2t3, Y =
Zk

+ 3kt2.

7 This problem involves a little story. A string is wound in a clockwise
direction around a circular spool of radius a with an end at the point (a,0).
When the string is unwound, being kept stretched during the process, the end
of the string traces the spiral curve C shown in Figure 7.391. When aO units

Figure 7.391

of string have been unwound, this part of the string is tangent to the spool at
the point Q(X,Y) for which

X = a cos 8, Y= a sin 0

and the end of the string is at the point P(x,y) for which

x=x(8) =acos8+aOsin9
y = y(O) = a sin 0-aOcos6.

It can be observed that Q moves around the circle just as rapidly as the distance
from Q to P increases. It is not unreasonable to guess (or at least to consider the
possibility) that the center and radius of curvature of C at P are Q and aO. On
the other hand, a skeptic can be uncertain whether QP is perpendicular to the
tangent to C at P. The situation demands clarification. Start with the equa-
tions of C and find the center and radius of curvature of C at P. Ans.: (X,Y)
and a6. Remark: The curve C is called the involute of the spool. The spool
is the evolute of its involute.

8 Determine the radius of curvature of the "standard ellipse"
x y2

a2-}
b2=1 or x=acos0, y=bsin6

by use of the first "standard equation" and then by use of the latter parametric
equations.

9 Using the parametric equations of Problem 8, find the evolute of the
standard ellipse.
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10 As an alternative to (or in addition to) Problem 8, find the radius of curva-
ture of the "standard hyperbola."

11 A glance at the hypocycloid having the equations

x= acos3t, y= asin' t
indicates that the radius of curvature p should be a maximum at points (x,y)
for which IxI = Iyi and a minimum at points for which xy = 0. Can we believe
our eyes? f4ns.: No, because p has no minimum. When t 5x6 n-7r/2, calculations

give p = 2 sin 2t1. Thus p is a maximum when 2t = n + 17 or t =

\2 + D Tr and hence when Isin tI = Icos ti or IxI = Iyl. We see that p - *0 as

-a 0, but the curvature at the cusps is undefined.
12 When a flexible cord or chain (the Latin word for chain is catena) is sus-

pended from its ends in a parallel force field, it hangs in a curve (or point set)
called a catenary. Differential equations textbooks show that a rectangular
coordinate system can be chosen in such a way that the equation of the catenary
is

y =
2

a
(exla + e -la).

Find the radius of curvature of this catenary at the point (x,y). 11ns.: y2/a.
13 Find the radius of curvature of the cycloid having the equation

x=a(O-cosB), y=a(l-cos8).
14 Find the evolute of the cycloid of Problem 13.
15 Persons who picnic beside lakes several miles long can wonder whether

poor visibility instead of curvature of the earth is responsible for invisibility
of distant boats and shores. This problem involving curvature can be solved
very simply. Figure 7.392 shows the center of a spherical earth at C on the

Figure 7.392

positive y axis, the x axis being tangent to the surface of the earth at 0. The
line from C to Q(x,0) intersects the surface of the earth at P. The number I PQI
is the height Is of an object which is visible from the point 0 on the earth x miles
away. The simple calculation

x2
(1) h= R2--x2-R= R2+x2+R
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shows that the approximate formula

(2) 2R

Curves, lengths, and curvatures

gives good results when x is small in comparison to R. It is a quite remarkable
fact that if h and R are measured in miles and if the height H of the object is
measured in feet so that H = 5280h, then we can put R = 3960 in (2) and multi-
ply by 5280 to obtain

H=-2x2.

Putting H = 6 shows that only the hair on the top of the head of a man 6 feet
tall is visible from a point on the earth 3 miles away. Putting x = 30 gives
H = 600 and shows that less than the top half of the Empire State Building
can be seen by persons on a ship 30 miles away.

16 It is sometimes useful to have formulas obtainable from (7.361) and
(7.362). Letting N [where the N can make us think of a normal to C at P(t)] be
the vector running from P(t) to the center (X,Y) of curvature, we see that

IXI(t)]2 + [y'(t)12 [-Y'(t)i + x'(t)j]-(1) N = x'(t)y"(t) - x"(t)Y'(t)

Let b (where the b can make us think of binormal or "second normal") be the
unit vector in the direction of v(t) X a(t) so that, as (7.32) shows, b is the coordi-
nate vector k in our work. Then, with the aid of (7.32) and the fact that
1, we can put (1) in the intrinsic form

(2) N =
v(t) v(t)

b(t) X v(t)[v(t) X a(t)]-b(t)

in which coordinates do not appear. The formula (2) is valid when C is a curve
in E3 for which x,y,z are functions having continuous second derivatives and

r(t) = x(t)i + y(t)j + z(t)k
v(t) = x'(t)i + y'(t)j + z'(t)k
a(t) = x"(t)i + y"(t)j + z"(t)k

whenever t is such that v(t) x a(t) 3-1 0. We shall not prove this, but remark
that the point analogous to the point (t,q) of Figure 7.33 is the intersection
of three planes and that (X,Y,Z) is the limit as At --+ 0 of

17 It is possible to obtain very informative formulas by considering the
motion of a particle which moves along a plane curve C, endowed with coordinates
as in Figure 7.27, in such a way that s increases as t increases. We assume
existence and continuity of all the derivatives we want to use, and we assume that
dx/dt > 0. Let t be the unit forward tangent vector to C at time t so that

(1) t = cos 4i + sin dij,

where ¢ is, as in the discussion of Figure 7.384, an angle giving the direction of t
at time t. Show that differentiating (1) gives

(2)
A

= [- sin ¢i + cos Oj] - _ n d- ds _ ds
Kn,dt dt ds dt Wt
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where n is the unit normal obtained by rotating t clockwise through the angle
a/2, ds/dt is the speed of the particle, and K is the curvature dO/ds of C. Show
that writing the formula v = IvIt in the form

(3)

and differentiating give

_ ds
V Wt t

2

(4) a = at = ate t + as at
and that use of (2) then gives

(5) a -
atit+(dt)2Kn.

Remark: This elegant formula gives the normal (or transverse) and tangential
scalar components of the acceleration in terms of the speed and rate of change of
the speed of the particle. The simplest applications involve the case in which the
particle moves along the curve with constant speed v so that ds/dt = a. and
d2s/dt2 = 0 at each time. In this case, (5) reduces to the simple but important
formula
(6) a = v2Kn.

If K = 0, then a = 0. If K 0 0, then a has magnitude a21 K1 or a2/p (where p
is the radius of curvature) and is directed toward the center of curvature. Use of
(6) and the formula F = ma gives the force required to propel a particle of mass m
along a curve C with constant speed v.

18 Let C be a simple closed convex curve which could, for example, be a
famous "triangular roller" composed of the three vertices of an equilateral tri-
angle together with three circular arcs of which each has its center at one vertex
and contains the other two vertices. Let R be a rod (or line segment) whose
length L is small enough to permit the rod to be "slid around" C in such a way
that its two ends both remain on C. It is easy to presume, as has sometimes
been done in "proofs" of the "Holditch theorem," that each point P on R must
traverse a simple closed convex curve Cr as R slides around C. Persons having
a compass, a straightedge like the edge of a sheet of paper upon which marks
can be placed, and some spare time at their disposal can sketch interesting
figures. Surprises await those who let C be a triangular roller, let the length L
of the rod R be equal to or only a bit less than the distance between two vertices
of the equilateral triangle, and let P be the mid-point of L.



8 Trigonometric
functions

8.1 Trigonometric functions and their derivatives We are study-
ing and perhaps even learning mathematics, and it may be amusing and
perhaps even useful to see how an unscientific but highly critical justice
of a Supreme Court might be introduced to angles and trigonometry.
We would teach him enough about numbers, E2j continuous functions,
and curves to make him realize that if we start with positive numbers a
and h for which 0 < h < a, then the ordered set of points (x, a2 - x2)
for which h x S a, the point for which x = x2 preceding the point
for which x = xiL when a <- xl < x2 < h, is a curve. Our curve lies on
the circle with center at the origin and radius a, and we simplify (or
complicate) matters by calling our curve "the arc, of the circle with
center at the origin and radius a, which runs in the positive direction
from the point (a,0) to the point Q having coordinates (h, a2 --h2)"
or, for temporary purposes, simply "the arc." To help us remember the
meanings of our symbols, we can start constructing Figure 8.11 and
amplify it as we proceed. Next we must teach our pupil a theory of
4as
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rd tth hil han p ove oeng m t at the arc
IV

Q(h 2 ha _ )
h Il h hiwengt chas a we may denote by s.

Knowing that our quantities depend
upon h and a, we can define a number 8
by the formula

- v1 h A(a.O) xs len th of ag rc(812) 8 = _ -
a radius Figure 8.11

If we multiply each of a and h by the same positive constant X (lambda),
we get a new radius and a new arc, but the ratio s/a remains the same.
To prove this, we must prove that the length of the new arc is the product
of X and the length of the original arc. Our theory of length enables us
to do this because, by drawing radial lines from the origin, we can see
that each polygon inscribed in the new arc determines (and is determined)
by a polygon inscribed in the original arc and that the lengths of the
straight segments of the polygons all differ by the same factor X. All
this shows that we get the same B when we take another pair of values of
a and h for which the point (h, a2 - h) lies on the same half-line extend-
ing from 0 through Q. Now we can again simplify (or complicate)
matters by considering the number 8 to be "a measure of the amount of
rotation required to bring a line from the position 04 to the position
OQ" or "a measure of the opening between the lines 04 and OQ." Per-
haps to remind us where the number 9 came from, or perhaps to indicate
something of which 0 is to be considered a measure, we complete Figure
8.11 by inserting the 9 together with the curved arrow which shows the
direction of our arc. It is the fashion to call 8 an angle, but it should be
permanently remembered that 0, like 5, is a number. The facts that we
sometimes use 0 to measure an amount of rotation and use 5 to measure
a number of fingers do not imply that 8 is a rotation and that 5 is a fist-
ful of fingers, but we can nevertheless understand and even use the more
or less convenient terminologies involving "angles" that have become a
part of nonscientific as well as scientific attempts to convey information.
If all this indicates that trigonometry is a subject much too difficult for
inclusion in trigonometry textbooks, we do have one consolation. The
hard work is done and the rest is easy.

Our theory of curves is sufficiently general to allow us to extend the
above account of positive (that is, counterclockwise) arcs and angles to
cover situations in which the arc is longer and Q lies in the second or
third or fourth quadrant. Moreover, the arc can be so long that we
must encircle the origin more than once to traverse it, and the number
(or angle) 0 is still defined by the same formula (8.12). In case the
arc starts at A and is oriented in the negative (or clockwise) direction,
everything is the same except that the directions of the arrows are
reversed, a negative sign is prefixed to the middle and last members of
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(8.12), and the number 0 is negative. Even though we could pretend to
be appalled by the idea that numbers have sides, we bow to conventions

Figure 8.13

and agree that the way to find the six fundamental
trigonometric functions of a given angle 0 is to con-
struct "the terminal side of B" as in Figure 8.13, pick
a point P(x,y) on this terminal side, let r be the dis-
tance (positive, of course) from 0 to P, and use the
numbers x, y, r in the usual way.

It is our purpose to present formulas for deriva-
tives of trigonometric functions with derivations to

which no logical objections can be raised. We could undertake
to use the formula .1 = rry0r2 for the area of a circular sector of
radius r which has central angle 0, but it would be immediately
recognized that this formula has not been proved. Even if it be conceded
that we know that the area of a whole circular disk of radius r is rr2, it
is only the docile acceptance of a crafty fraud that would allow us to
"see at once" that the sector "obviously" has area JBr2 because the area
of the sector divided by the area of the circle is "obviously" 0/2r. Noth-
ing is obvious. Even a hazy understanding of the theory of area is
enough to show that nothing can be proved without making substantial
use of precise definitions and completeness of the real-number system
or, what amounts to the same thing, consequences of these things. Since
we do not now wish to be responsible for furnishing a complete treatment
of areas of sectors, we shall base our work on the inequality (7.12). This
inequality, the truth of which should seem thoroughly reasonable to a
person at B who has the choice of walking two paths to D, has a virtue.
It has been proved.

It was indicated in Problem 12 at the end of Section 3.2 that we will be
able to derive the formulas for derivatives of trigonometric functions
when we have proved the two formulas

(8.14) lim
sin 0 = 1, lim

1 - cos B = 0
6--0 0 e_ o 0

Like a man who has drilled a hole and filled it with blasting powder to
split a rock, we are ready to produce results. Figure 7.11 can be put
Figure 8.141 into a coordinate system as in Figure

8.141, and we suppose that 0 < 0 < r/2.
In terms of the notation of this figure,
the inequality (7.12) becomes

y<.c y+(r-x).
Dividing by r gives

(8.142) sin 0 <_ 0 < sin 0 + (1 - cos 0).
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Since 1 - cos 0 > 0 and 1 + cos 0 > 1 and sin 8 < 0, the last term can
be overestimated by the inequality

(8.143) 0 < (1 - cos 0) < (1 - cos o)(1 + cos 0)

= 1 - cost 0 = sin2 0 < 0 sin 0.

Hence we can replace the last term in (8.142) by 0 sin 0 and divide by
sin 0 to obtain the first and hence the second of the significant inequalities

(8.144) 1
_sin0<1+0,

11 <sin0<1

Dividing (8.143) by 0 and using (8.142) gives

(8.145) 0<1-Bos0<sin 0<0.

The above inequalities have been proved to hold when 0 < 0 < 7r/2.
Since 101 = 0 when 0 > 0, (8.144) and (8.145) imply that the inequalities

(8.146)

+

sin 0<1-cos0<iei
1 101

I0I

hold when 0 < 0 < 7/2. Since the members of these inequalities are not
changed when we replace 0 by -0, we conclude that they hold when
181 < 7r/2 and 0 5 0. The desired formulas (8.14) follow from this and
the sandwich theorem.

To derive the formulas for derivatives of sines and cosines, we use the
formulas

sin (x + Ax) = sin x cos Ax + cos x sin Ax
cos (x + Ax) = cos x cos Ox - sin x sin Ax

to obtain

sin (x + Ax) - sin x = - sin x(1 - cos Ax) + cos x sin Ax
cos (x + Ax) - cos x = - cos x (1 - cos Ax) - sin x sin Ax.

After dividing by Ax, taking limits as Ax -* 0 of the resulting difference
quotients gives, with the aid of (8.14), the fundamental formulas

(8.15) d sin x = cos x,
d cos x = - sin x.
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These formulas, which we have used many times, have at long last been
proved. For values of x for which the functions are defined, we obtain

(8.151) dx tan x =
dx cos x

(8.152) dxcotx = dxs sx
(8.153) dx sec x =

dx cos x

(8.154) dx csc x =
dx -sin x

cost x + sin2 x = sect x
cost x

- cos' x - sin2 x
sin2 x

sin x

= - csc x

= sec x tan x
cost x
- cos x

sin2 x
= - csc x cot X.

The graphs of sin x and cos x are so important that we reproduce Fig-
ure 1.58 in Figure 8.16 and give further attention to the procedure by

Figure 8.16

which reasonably accurate graphs are quickly sketched with or without
use of graph paper. The trick is to sketch guide lines I unit above and
1 unit below the x axis, to hop 3 units and a bit more to the right of the
origin to mark r, to make another such hop to mark 21r, and then sketch
reasonably good copies of the figure. Each graph has slope l or -1 where
it crosses an axis, and noticeable contradictions of this fact should not
appear. In the problems at the end of the next section, we shall obtain
formulas from which sin 8 and cos 0 can, for a given 0, be calculated as
accurately as we wish. Meanwhile, we can be interested in Figure 8.17,
which enables us to obtain reasonable estimates of sin 8 and cos 0 when
0 < 0 < r/2. The circle has radius 1, and the radial lines make angles
0.1, 0.2, , 1.5 with the positive x axis. For example, the rough
approximations

sin 0.35
=0.14=0.34,

cos 0.35
=094=0.94,

034tan 0.35 = 0.94 = 0.36

can be read from the figure.
With the aid of information about derivatives, it is easy to see that

the graph of the function t for which t(x) = tan x has the form shown in
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Figure 8.171

Figure 8.171. For each integer n, the interval Ix - n71 < 7/2 contains
an exact copy of the graph in the interval jxI < 7r/2. The lines

x=n7r±27r

are all vertical asymptotes of the graph, and tan (nlr ± a/2) is undefined.
We should now be quite familiar with the fact that each formula for

a derivative has a chain extension. The following list contains the chain
extensions of formulas for derivatives of the six trigonometric functions
and three additional formulas. All of these must be learned.

dx sin u = cos u
dx
du d

dx
cot u

d du d
dx

cos u = - sin u
dx dx

sec u

z, tan u = sect u
dx
du d

dx
csc u

d
TX

u'' = nun-1

dx' dx
e° = eu dx'

Problems 8.19

- csc2
du

u
dx

du
sec u tan n

TX

du
- csc u cot u

dx

1 dud
YX-

log u = u dx

1 With all graphs and tables out of sight, make the pretense that it has been
forgotten whether the derivative with respect to x of sin x is sin x or - sin x or
cos x or - cos x. Sketch graphs of sin x and cos x and make these graphs give
the correct answer.

2 Explain how you should modify the procedure for sketching the graph of
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y = sin x to obtain a procedure for sketching the graph of y = 3 sin x, and sketch
the graph.

3 Equate the derivatives of the two members of the identity in the left
column and show that obvious simplifications give the identity in the right column
when

(a) sin 2x = 2 sin x cos x cos 2x = cost x - sine x
(b) cos 2x = cos2 x - sin2 x sin 2x = 2 sin x cos x
(c) sin2 x + cos' x= 1 0 = 0
(d) sin (x + 4,)
= sin x cos 0 + cos x sin 4,

cos (x + 4>)
= cos x cos 4, - sin x sin ¢

(e) cos (x + 4,)
= cos x cos 4> - sin x sin 4>

sin (x + ¢)

= sin x cos 4) + cos x sin 40

(f) cos'x=1+2s2x 2sinxcosx=sin2x

(g) sin' x 1 - cos 2x
= 2 2 sin x cos x = sin 2x

(h) sin X+1 = cos x cos (x + ?} = -sin x
(i) exez = e2z

(j) log x' = 2 log x

4 Supposing that 0 S x < ir/2, let f(x) = tan x and show that

f' (x) = sec' x

f"(x) = 2 sec' x tan zcl
f"'(x) = 2 sec' x+ 4 sec' x tan' x,

and obtain the next derivative. Show that each derivative of higher order will
also be a sum of terms of the form .4 sec-" x tang x, where 14, p, q are non-
negative integers, and hence that fi')(x) >-- 0 for each it and x.

5 Supposing that 0 < x < a/2, calculate the first three derivatives of sec x.
Show that these and all derivatives of higher order are nonnegative.

6 Again supposing that 0 < x < it/2, calculate some derivatives of \/tan x
and try to decide whether they are all nonnegative.

7 Prove the formula

sing d0= sec0-tang+0+cf l + sin 8

by differentiating the right side.
8 The length L of the longest beam that can be taken in a horizontal position

Figure 8.191 around the comer of Figure 8.191 is the length L of the
shortest line segment placed like the one in the figure.
Find L. Ans.: L = (a%* + b%i)3i. Remark: Putting the
equation in the form a'% + h% = L% can make us
wonder why (a,b) should, for a fixed L, be a point on a
hypocycloid.
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9 Find the length L of the shortest ladder that can A
reach from level ground to a high wall when it must go over
a fence which is a feet high and b feet from the wall.
stns.: L = (aO + b3')34.

10 A heavy body is suspended from a rope, as in Figure
8.192, that runs up from the body to a pulley at B and
thence (a wonderful word) over two stationary pulleys at
A and B on the same horizontal level and back to B, where

%/

Figure 8.192

the pulley is tied to the other end of the rope. How should old man gravity
select the 0 of the figure in order to gratify his desire to bring the heavy body to
its lowest possible position? Ans.: cos 0 = and 0 = a/3 or 0 = 60°.

11 If !P.1 is the length of a regular polygon of n sides which is inscribed in a
circle of radius a, prove that jP,,1 = tan sin (ir/n) and hence that lim 1P = lira.

12 Supposing that 14 and B are constants not both 0 and that

y(x)=A'sin x+Bcosx,
calculate y(x) = y"(x) and show that

y"(x) _ -y(x)
In terms of the graph of y(x), tell precisely what it means to say that y"(x) < 0
when y(x) > 0 and y"(x) > 0 when y(x) < 0. Sketch graphs and verify your
conclusion when 11 = 0 and when B = 0. It is now required that we learn a
little trick that happens to be very important. Plot the point having coordi-
nates (A,B) and, as in Figure 8.193, let 4) be an angle having its terminal side on
the line running from the origin to the point. Let C = 112 + B2 and observe
that

so

and hence

11 = C cos 0 and B= C sin 0

y(x) = C(sin x cos ¢ + cos x sin ¢)

y(x) = C sin (x + 4,).

Finally, it is required that we learn some technical terminology by which this result
can be remembered. Functions of the form E sin (wt + 0) and E cos (cot + 0)
are called sinusoids (things like sines) of angular frequency co. Since x can be wt,
we have proved that the sum of two sinusoids having the same frequency co is also
a sinusoid having frequency w.

13 It is very easy to show that if k, d, B are constants for which k > 0 and
if

(1)

then

(2)

y = 11 sin kt + B cos kt

d2
dt2+k2y =0.

All we need to do is differentiate (1) twice and look at the result. The theory
of differential equations contains theorems which imply that if y is a function
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for which (2) holds, then there must be constants I and B for which (1) holds. The
latter and more difficult result is often needed by students who have not yet
made reliable contacts with differential equations. Our solution of the more
difficult problem will be postponed until we have solved the easy problem by a
new method which involves only reversible steps. Starting with the formulas

(3)

r y = .4 sin kt + B cos kt
jay7t =Akcoskt - Bksinkt,

we eliminate B, and then eliminate Z, from these equations to obtain

(4)

cos kt d1 + (k sin kt)y = A

d y

sin kt
dt

- (k cos kt)y = -Bk.

Therefore,

dt
[cos ki dt + (k in kt)y] = 0

(5)
d

dt
[sin kt dt - (k cos kt)y] = 0

or

(6)

cos kt d2y -
dt2
2d

k sin kt
dy

+ k sin kt
dy

+ (k2 cos kt)y = 0dt dt
d d

r

t2 +sin kt d
yy - k cos ktk cos kt + (k2 sin kt)y = 0dt dt

(7)
cos kt

[zdt

+ key ] = 0

sin kt [dt + key] = 0.

Since there is not for which cos kt and sin kt are both 0, we conclude that

(8)
dd t + key = 0.

We are now ready to prove the more difficult result. Suppose that y is a given
function for which (8) holds. Then we can multiply by cos kt and sin kt to
obtain (7) and hence (6) and hence (5). Since the derivatives of the quantities
in brackets are zero, these quantities must be constants which we can call A
and -Bk to obtain (4). Solving the equations (4) for y and dy/dt gives (3)
and our problem is solved.

14 It is very easy to show that if k, A, B are constants for which k > 0 and if

(1) y = dew + Be *%

then

(2) ''-key =0.
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Do this. Then adapt the method of the preceding problem to show that if y
is a function for which (2) holds, then there must be constants A and B for which
(1) holds.

15 Prove that if y and u are functions of t having second derivatives and if

y = e-hour

then

d2y

dt + 2h da + k2y = e hr [ dt +
(k2

16 A right circular cylinder (like a tomato can from which the top and bottom
have been removed) has height h and base radius a. We examine the idea that
good approximations to the area of this surface are obtained by triangulating it
and calculating the sum of the areas of the triangles. The surface is partitioned
into m strips each having height h/m like the
one shown in Figure 8.194. On the top and
bottom circular boundaries of each strip, we
place the vertices of 2n isosceles triangles con-
gruent to the triangle ABC of the figure. The
side r1B of the triangle subtends the angle 27r/n
at the center 0 of the top circle. Of the 2n
triangles in the top strip, n have two vertices
on the top circle and the other n have two
vertices on the lower circle. The total number
of triangles congruent to the triangle ABC is
2mn. The first factor in the product

(1) (a sin n J
/ )2

+ (a - a cos n
)2

is half the length of the base AB of the triangle.
The last factor is the altitude, being the length

Figure 8.194

of the hypotenuse of a triangle one leg of which runs from C to the right angle
on the upper circle and the other leg of which runs (in the direction of 0) from the
right angle to the base AB. The sum Smn of the areas of all of the triangles is
the product of (1) and 2mn. Therefore,

When m and n are both large, the quotients having sin (lr/n) in their numerators
are near 1 and we have the approximation

(3) Smn ^' 2irah +
(2-j-) / 2

h n2
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In case m = n, and in other cases where

lim m=0,
m,n-.ro W2

lim S,nn = 27rah,
m,n- m

the right member being the number usually considered to be the correct area of
the cylinder. In case m = n2, we obtain

(6) lira Smn = 21rah 1
+ (222a)2

1Je

the right member being a number which is not usually considered to be the correct
area of the cylinder. Other remarks can be made. The above calculations were
made by a German mathematician Schwarz, and they constitute the Schwarz
paradox. The paradox shows that the triangulation idea provides a precarious
basis for definitions of area of curved surfaces. The theory of these areas is
extremely complicated.

17 It is sometimes useful as well as interesting to have information about the
things we see. A polynomial P in x and y is the sum of a finite set of terms of the
form cxtyk, where c is a constant and j and k are nonnegative integers. The poly-
nomial has degree n if j + k = n for at least one term in the sum having a non-
zero coefficient and j + k S n for each term in the sum having a nonzero coeffi-
cient. A polynomial in which the coefficients are all zero is said to be trivial;
it does not have a degree. Thus the polynomials having values

(1) x' + xy + y' - 34, (x2 - y2 - 1)(x2 + y2 - 4)

both have degree 4. A nontrivial polynomial is irreducible if it is not the product
of two polynomials of lower degree. An algebraic equation of degree n is an equa-
tion of the form P(x,y) = 0, where P is a nontrivial polynomial of degree n in x
and y. The graph of an algebraic equation is an algebraic graph. A function f
of one variable x is said to be an algebraic function if there is a nontrivial poly-
nomial P(x,y) such that

(2) P(x, f(x)) = 0

for each x in the domain of f. Since each nontrivial polynomial in x and y can
be put in the form

(3) Qo(x) + Qi(x)y + Q2(x)y2 + . . + Q,(x)y°,

where Qo, Q1, - , Q, are polynomials in x at least one of which is nontrivial,
it follows that a function f is an algebraic function if and only if there exist poly-
nomials Qo, Qi, , Q. in x such that Q. is nontrivial and

(4) Qo(x) + Qi(x)f(x) + Q2(x)[f(x)J2 + ... + QR(x)Lf(x)Jn = 0

for each x in the domain of f.Functions that are not algebraic functions are
said to be transcendental functions, the old idea being that polynomials lie at the
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foundation of human experience and that things not closely related to polynomials
are more ethereal. This matter can be of interest to us now because, even in
quite elementary mathematics, the trigonometric functions are called trans-
cendental functions. For example, the assertion that sin x is transcendental
means that there do not exist polynomials Qo, Ql, , Q. in x such that Q"
is nontrivial and (4) is true for each x when f(x) = sin x. Let us now think
briefly about real numbers. A number x is said to be an algebraic number if there
exist integers ko, k1, k2, . , k" not all zero such that

ko+kix+k2x2-{- ... +kx"=0.

Thus a number x is algebraic if it is a zero of a nontrivial polynomial in x having
integer coefficients. A number x which is not an algebraic number is said to be
a transcendental number. The numbers it and e are transcendental. Nobody
can prove these things unless he devotes very much time and energy to the opera-
tion, but nobody requires us to be so busy digging ditches that we never look at
the stars. We can know that there exist theories of algebraic functions and
algebraic numbers and that these theories invite the attention of persons who
have completed studies of analytic geometry and calculus.

8.2 Trigonometric integrands Before introducing chain extensions
and other modifications of the formulas, we systematically work out
formulas for integrals of the six trigonometric functions. Even though
the last three or four have minor importance, we must learn about them
to be respectable. The first two are

(8.21) f sin x dx = - cos x + c, f cos x dx = sin x + c.

They are immediate consequences of the formulas for derivatives of
sines and cosines, since the formula

ff(x) dx = F(x) + c

is valid over an interval if and only if F'(x) = f(x) over the interval.
It is necessary to keep negative signs in their places when we differentiate
and integrate sines and cosines, and it happens that a foolish little trick
enables us to permanently remember how the signs go. We can men-
tally write

(8.22) 5 derivative integral
sine cosine

in their natural orders and remember that "like things give plus," so
differentiating sines and integrating cosines give plus signs, but that
"unlike things give minus," so differentiating cosines and integrating
sines give minus signs.

If an interval contains one of the points nir ± 7r/2, there can be no F
such that f tan x dx = F(x) + c over that interval. When x is confined
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to an interval containing none of these points, we can use the funda-
mental formula

f [u(x)]-'u'(x) dx = log lu(x)I + c

to obtain

(8.23) tan x dx = -
J

1 (- sin x) dx log 1cos xj -r- c
cos x

=logjsecx1+c.

In most applications of this formula, jxj < it/2, so cos x > 0 and the
absolute-value signs can be omitted. For cot x, a miniature graph of
which appears in Figure 8.232, we suppose that x is confined to an inter-
val containing none of the points x = nar and obtain

(8.231)
J

cot x dx =
J

1 cos x dx = log sin xj + c.
sin x

In most applications of this formula, 0 < x < 7r, so sin x > 0 and the
absolute-value signs can be omitted.

Figure 8.232

y

Figure 8.233

x

y

0

Figure 8.234

A sketch of the graph of y = sec x is most easily obtained by sketching
a graph of y = cos x and estimating reciprocals. As the graph in Figure
8.233 indicates, sec x is undefined when x is an odd integer multiple of
it/2. When we integrate sec x over an interval, we must suppose that
the interval contains none of these points. We can then obtain the
formula

(8.235) fS!_5dx
= fsecx--I tan x (sect x + sec x tan x) dx

= log (sec x + tan xj + c

provided we happen to know that the result is obtained by multiplying
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the numerator and denominator of (sec x)/1 by the implausible factor
sec x + tan x. We dispose of csc x as rapidly as possible by writing

(8.236)
J csc x dx f csc x } cot x (-csc2 x - csc x cot x) dx

log Icsc x + cot XI + C.

When 0 < x < it as in Figure 8.234, we can omit the absolute-value
signs. The chain extensions of the six formulas are placed in a table at
the end of this section where they are most available for reference. The
formulas

(8.24) 1
sin ax dx a

J
sin ax a dx = - 1 cos ax + c

(8.241) f cos ax dx = a f cos ax a dx = a sin ax + c,

which hold when a 0, are by far the most important applications of
the chain extensions.

We now consider some of the more or less important integrals that can
be evaluated in terms of elementary functions. Adding and subtracting
the two elementary formulas

(8.25) cost 0 + sin2 8 = 1
(8.251) cost B - sin2 0 = cos 20

gives the two formulas

(8.252) cost 0 =
1+cos20

2 -,
1 - cos 20

sin2 0 =
2

that are so useful that we should either learn them or be able to work them
out very quickly. Moreover, these formulas should come to mind when
we are asked to evaluate the first integrals in the formulas

(8.253) fcos2axdx = f 1 + s 2ax
dx

= 2 [x+_fcos2ax(2a)dx]

=2Lx+-

sin2 ax
s

dx

f cos2ax(2a)dx]

=2rx-1 sin 2ax,+c.
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Students are frequently called upon to realize that the formula

/1 + cos 2x 2 1 + 2 cos 2x + cost 2x
cos4 x = (cost x)2 = ( 2 = 4

is useful when the left member must be integrated, and to know what to
do to complete the problem.

The integral in

(8.26) I = f sin nix cos nx dx

looks forbidding until it is discovered or remembered that a useful
formula for the integrand can be obtained by adding the formulas

sin (8+0)=sin8cos4'+cos0sin4'
sin (8-0) =sin8cos¢-cos8sinc'.

Thus
[sin (mx + nx) + sin (mx - nx)J = sin mx cos nx11

and

(8.261) I = 2(m + n)
f [sin (m + n)xJ(m + n) dx

+ 1 [sin (m - n)x] (m - n) dx2(m-n)

= 2(m + n) cos (m + n)x - 2(m
1

n)
cos (m - n)x + c

except when m = n or m = - n. Similarly, the integrals

(8.262) f sin mx sin nx dx, f cos mx cos nx dx

can be evaluated by use of formulas obtained by adding and subtracting
the formulas

cos
(8 + cos cos 95 - sin 8 sin 0.

Sometimes integrals can be evaluated by making quite direct use of
the power formula and other integration formulas. For example,

(8.'63) f siriE. uxc-s-sx..4

when a ,E 0 and p s -1. Sometimes we need some ingenuity. For
example, the integral

(8.264) f sin' x cos' x dx
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is rendered manageable by replacing the factor cos3 x by the last member
of the formula

cos3 x = cost x cos x = (1 - sine x) cos x.

The integral in

(8.265) fe-ax sin x dx = - fe00°x(- sin x) dx = -e-ex + c

is evaluated by making the adjustment and compensation necessary to
put it in the form feu(x>u'(x) dx, and opportunities to make such adjust-
ments and compensations should always be observed.

There are reasons why some of the integrals we have evaluated may
be said to be so important that everyone should know how to evaluate
them. There is an old and perhaps honorable tradition that requires
students of the calculus to spend huge amounts of time cultivating "the
technique" of "formal integration." The fact that we live in an age of
electronic computers makes it much more important to learn fundamental
theory than to acquire skill in formal integration. For this reason, the
author requests that teachers join him in avoiding all but the simplest
formal integration problems that are not likely to be encountered by
undergraduates in courses other than calculus courses. "The student"
who has not read dozens of calculus books and does not know what we
are talking about is invited to look at the shiny example

(8.27) I = f sin x tan -x(1+ cos x) dx

of an integral that we shall not expect him to evaluate quickly. A

person who has constructed this problem can easily feel very sure that

the only sensible attack upon the problem lies in setting

(8.271) u(x) = 1 + (cos x);

so, when 0 < x < ir/2,

(8.272) u'(x) _ -(cos x)4(- sin x)
sine x

sin x tan x
cos x

and hence

(8.273) I = -2
J

[u(x)]3f[u'(x)] dx

_ -2 [u(X]I+c= --[l+ cox]V+c.
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Instead of inviting attention to problems of this nature, we present prob-
lems more likely to promote scientific competence.

Table 8.28

Jsinududx= -cosu+c

f tanudxdx=logIsecul+c

f secudxdx=log Isecu+tanul+c

f
dduxdx

n+1+c'f
uddu

Jcosudxdx=sinu+c

J cot u du dx = log sin ul + c

I csc is du dx = log Icsc u - cot ul + c
x

du
+ c, f eu d dr = eu } c.

dx

Problems 8.29

1 Make all of the calculations necessary to show that

(a)

(c)

(e)

(g)

o
sin x dx = 2I

b
lim J sin wx dx = 0

a

1 r
lim

J
sin2 wt dt =

x dx = log 2

(b)

fox"
cos x dx = 1

x

?/2.
(h) fo tan x dx

(d) lim f cos wx dx = 0

(f) lim
1- fo wt dt =

-m x o

x

= 00

2 Recall that, when is is a differentiable function of x and is 0 0,

(1)
dx

log Jul u dx'

the absolute-value signs, which are superfluous when u > 0, need not bother us.
Supposing that x is not an odd multiple of a/2 and that

f(x) = log sec x + tan xl, g(x) = log I tan 0 + 4) I,

show that f' (x) = sec x and g'(x) = sec x.

Remark: This proves that the two formulas

A4)

f see x dx = log sec x + tan xl + Cl

f secxdx=logItan(2+7rf see x dx = log I tan 0 )I+s

are both correct. Some integral tables contain both of them. These things
imply that, over each interval containing no odd multiple of 7r/2, f(x) - g(x)
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must be a constant, but they do not imply that this constant must be zero. The
identity

x 1+tan2 cost+sin2cos2+sin2
tan + - _

C2 4 1 - tan cos sin cos + sin2 2 2 2 2

1 + 2sin2cos2 _ 1+sinx
x x cos x sec x + tan x

cost
2

- sine
2

clarifies the matter.
3 Prove that if x is not an even multiple of r/2 and

f(x) = log csc x - cot x1, g(x) = log tan 2 ,

then f' (x) = csc x and g'(x) = csc x. Remark: This proves that the two formulas

f csc x dx = log Icsc x - cot xj + c, f csc x dx = log

are both correct.
4 When a steady (or constant) current I (measured in amperes) flows

through a wire (or resistor) having resistance R (measured in ohms), the quantity
Q (measured in watthours, or thousandths of kilowatthours) of energy converted
into heat in At hours is calculated from the formula

(1) Q = 11R At.

With this basic information, show that if 1(t) is integrable (Riemann) over the
time interval t1 < t S t2, then the quantity Q(tl,t2) of energy converged into heat
between times t1 and t2 is (or should be)

(2) Q(tl,t2) = R f, [I(t)J2 dt.

Suppose now that 1(t) is the sinusoidal (or alternating) current determined by

(3) 1(t) = lo sin (wt + 0),

where Io is a constant "maximum current," w is a constant "angular frequency,"
and 0 is a "phase angle." Show that, in this case,

2

(4) Q(t142) = t2
_
2

tl I2oR - I R
[sin (2wt2 + 20) - sin (2wt1 + 20)].

The last term is 0 whenever 2wt2 - 2wt1 is an integer multiple of 2a, and in every
case the absolute value of the last term cannot exceed RIo/2w. In all ordinary
applications of this formula, t2 - t1 is so large in comparison to 1/w that the last
term in (4) is insignificant. In such cases, (4) is always replaced by

(5) Q(tl,t2) - 3IR(12 - tl).
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Putting (5) in the form

Trigonometric functions

(6) Q(tl,t2) = (I ) R(t2 - tl)

shows that a sinusoidal current having maximum value Io produces heat (or
dissipates energy) just as rapidly as a steady current of magnitude Io/Vi. For
this reason, the number to/N/2- is called the effective value of the sinusoidal current.
For ordinary house current having "effective voltage" 120 volts, the maximum
(or peak) voltage is not 120 volts but is 120 volts.

5 Let, when L is a positive number and n = 1, 2, 3,

2
bn(x) = L sin narLx,

4'o(x) #n(x) =
VL

Cos L

Show that the first of the formulas

f0L
0m(x)4(x) dx = 0,

IOL
[4n(x.)]2 dx = 1

holds when m and is are different positive integers and that the second holds
when is = 1, 2, 3, . Show that the first of the formulas

IOL -I .(x)4' (x) dx = 0, f L [,Pn(x)j2 dx = 1

holds when m and is are different nonnegative integers and that the second holds
when is = 0, 1, 2, . Show that

1
L 1-cosna

a '' dx = nar
(n - 1, 2, 3, ).

Show that, when m, is = 1, 2, 3, ,

f L 1 - cos (m + n)ar 1 - cos (m - n)ar
dx ° (m + n)7r + (m - n)ir

where the last term is to be omitted when m = is. Remark: While students in
calculus courses have not yet heard about the matter, the above formulas are of
great interest in the theory of orthonormal sets and Fourier series of the trigo-
nometric variety. Our calculations and a little theory produce the interesting
formulas

7 arx 1 3irx 1 Sari
= sin L + sin L + sin L + (0 < x < L)

72+1+++ ar2=1+1+++
8 32 52 72 6 22 32 42

and many others.
6 A problem in Section 8.4 will tell us about the formula

p-4-1l
rox/a

sin' 0 cosy 0 dO = 2
p + qlJ

2
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which is correct whenever p > -1 and q > -1. As usual, 0! = 1, 1! = 1,
2! = 1.2, 3! = 1.2.3, 41 = 1.2.3.4, etcetera. The values of x! when x is not an
integer are more esoteric, but x! > 0 when x > -1. Put p = q = 0 and dis-
cover that (--cT)! = a. Show that the formula is correct when p = q = 1.
put p = q = 2 and discover that ()! = V/2. Put p = 2x - 1 and q = 1
and use the result to prove that x! is the product of x and (x - 1)!.

7 With an assist from (8.144), which shows that

r
f01 (1 + 6)2

dO < f01 (sin0)2 dO < f 1 1 do,

the middle integral being a Riemann-Cauchy integral because the integrand is
undefined when 0 = 0, show that

i 1 sin B 2
f0 ( 9

) d851.

Then prove the first of the inequalities

6)2sin B 2 sin
0<_ fl°° (sin ) do51, V< f0 w ( ) d8<2

and use it to obtain the second.
8 Let a and b be constants for which a = 0 and b = 1 or a = 1 and b = 0

and let x > 0. Show that

-15acosx+bsin xS1.
Replace x by t and integrate over the interval 0 <= t x to obtain

-xS asinx-b(cosx-1) Sx.
Replace x by t and integrate over the interval 0 5 t =< x to obtain

- X2 -a(cos x - 1) - b(sin x - x) 2
Repeat the process to obtain

323
a 4

x-x+3i)<4i
2 4 6

-Si5a(sinx-x+3$-b(cosx--+Zi-4!)S!
Repeat the process two more times. With or without more attention to details,

jump to the conclusion that
xs

x6 x7
x2n+i 1x1 2n+3sinx- x31+ j i+ 1I 2n 3

x2
x4 xe

x2n
l

IxI1n+2

Icosx-(1-i+4i-6i{ ... h(2n))I<(2n+2)1
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for each n = 1, 2, 3, . It is true (and is easy to surmise) that, for each x,
JxIn/n! --> 0 as n -> co. Therefore,

x3 x5 x7

x2 x4 x6cosx=1-2!+,i-6i+

9 The formulas at the end of the preceding problem have been proved to
be correct when x > 0. Use this fact to prove that the formulas are also correct
when x <--_ 0. Hint: Look first at the case in which x = 0. Then use the facts
that sin (-x) = - sin x and cos (-x) = cos x.

10 Have a good look at the formulas at the end of Problem 8 and start learning
them by obtaining some of the following results correct to four or more decimal
places.

sin 0.01 = 0.00999 9833
sin 0.02 = 0.01999 8667
sin 0.10 = 0.09983 3417
sin 0.20 = 0.19866 9331
sin 1.00 = 0.84147 0985
sin 1.10 = 0.89120 7360

cos 0.01 = 0.99995 0000
cos 0.02 = 0.99980 0007
cos 0.10 = 0.995C0 4165
cos 0.20 = 0.98006 6587
cos 1.00 = 0.54030 2306
cos 1.10 = 0.45359 6121

11 Digest the following idea. We have a desk calculator and National
Bureau of Standards Tables giving the values

sin 0.2345 = 0.23235 6699
cos 0.2345 = 0.97263 0641

If we want to find sin 0.23456 789 correct to eight decimal places, we can use
the identity

sin (x + 0.2345) = sin x cos 0.2345 + cos x sin 0.2345,

where x = 0.00006789. The values of sin x and cos x can easily be found correct
to 10 decimal places from the formulas at the end of Problem 8.

8.3 Inverse trigonometric functions Before coming to the an-
nounced subject of this section, we think about a general situation appli-
cations of which appear in many branches of mathematics. Suppose
we have an operator or transformer or mapper or function f that carries
or transforms or maps each element x of a set D (the domain of f) into
an element y of a set R (the range of f). In some cases the transformer
transforms two or more different elements of -D into the same element
of R. For example, if f is one of the six trigonometric functions and
f (x) exists, then f (x + 2a) = f (x) and hence more than one element of
the domain is carried into the same element f(x) of the range. When
problems involving domains and ranges are involved, it is very often
possible to eliminate confusion by singling out for special attention a
subset Dl of D such that to each y in R there corresponds exactly one x
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in D1 for which f(x) = y. Then we can introduce a function fl, which
is different from f because it has a different domain, for whichfi(x) = f(x)
when x is in Di and for which fi(x) is undefined when x is not in D1. This
function f, is called the restriction of f to D1. We now have a general
situation that may be easier to visualize than its applications to trigono-
metric functions. The schematic Figure 8.31 shows the domain and

Domain Range
D,off1 f Roffi

Y

Range Domain
of fi ' fl of fi l

0 D1 x x+Ax x

Figure 8.31 Figure 8.32

range of fi, and the upper arc from x to y can make us think of a path
along which fi might carry x to the y which is fi(x). The function fi
sets up a one-to-one (or schlicht) correspondence between D1 and R,
that is, to each x in D1 corresponds exactly one y in R for which f(x) = y
and to each y in R corresponds exactly one x in D1 for which Ax) = y.
The function with domain R and range Di which carries each y in R
into the x in D1 for which fi(x) = y is called the inverse off, and is denoted
by As indicated by the figure, A-1 undoes what f, does. If fi(x) = y,
then x Moreover, fi1 (f1(x)) = x when x is in D and

MANY)) = y
when y is in R.

Figure 8.32 shows the graph of a particular function f to which the
following theorem applies.

Theorem 8.33 If f is continuous over an interval D1 in El and if f has a
derivative for which f'(x) > 0 at each inner point x of D1 [or f'(x) < 0 at
each inner point x of D1] then the restriction fi of f to D1 has a range R
which is an interval and has also an inverse f,-' which is differentiable at
each inner point y of R. Moreover, the first of the formulas

(8.331) A _"(Y) - f'1(fil(Y))'
dx 1

dY - dy
dx

is valid when y is an inner point of R.
It seems to be possible to put the first formula of (8.331) in the second

form without sacrifice of meaning. To prove the theorem, we use the
hypotheses to conclude that fi is increasing (or decreasing) over Di and
that (because of the intermediate-value theorem) R is an interval. Hence

Y+Iy
Y
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fl has an inverse defined over R. Since we must prove that fl' is differ-
entiable, we introduce difference quotients for fi'. Supposing that y
and y + Ay belong to the domain R of f,-', we define x and x + Ax by
the formulas x = fi'(y) and x + Ox = fi'(y + Ay) and obtain y = fi(x),
y + Ay = fi(x + .x). Since fl has a positive (or negative) derivative,
we conclude that Ox 54 0 when [1y 0 and that Ax 0 as Ay --p 0.
Therefore,

(8.332) lim f i'(Y + AY) - f- 11(y) = lim Ax

AY-0 AY ou-.0f (x + Ox) - fl(x)

- AUmofl(xi + Ax) - fl(x) fi(x) fi(fll(Y))
Ox

This proves Theorem 8.33. Of course it is possible to abbreviate the
calculations by writing

(8.333)
dx = lim - = 1 = 1 ,

dy °y-'0 AY lim D dy
A.,_0 Ax dx

but this one line is not, by itself, the equivalent of a theorem and proof
which present conditions under which the formula is correct.

Our general discussion of inverse functions and Theorem 8.33 will now
be used to guide us to six functions that are called inverse trigonometric
functions even though they are in fact inverses of restrictions of trigono-
metric functions. It will turn out that the six functions will all have
values between 0 and it/2, and that all of the information implied by
Figures 8.341, 8.342, and 8.343 will be correct, provided 0 < x < 1 in

2-i

Figure 8.341 Figure 8.342 Figure 8.343

Figure 8.341, x > 0 in Figure 8.342, and x > 1 in Figure 8.343. The
first figure shows, for example, that

Xsin (sin-1 x) = x, tan (sin-' x) =
1 __X 2

when 0 < x < 1. These triangles can sometimes provide helpful infor-
mation even when the functions appear in problems involving the mis-
fortunes of gamblers who bet on horse races.

To begin, let f be the 'trigonometric function for which f (x) = sin x,
the domain D being the infinite interval - oo < x < -o and the range
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R being the closed interval -1 <- y 5 1. When we are called upon to
select a domain D, to which we can apply Theorem 8.33, the graph of
y = sin x can remind us of known properties of its derivative which show
us that if we are going to be able to apply Theorem 8.33, we must let
D, be the interval -7r/2 < x < a/2 or some other interval lying n7r
(n an integer) units to the right or left of it. Making the simplest choice,
we let fi be the function, defined only when -a/2 5 x <- 7r/2, for which
f,(x) = sin x. The inverse of fl is called the inverse sine. If y = fi(x),
so that y = sin x and -,7r/2 < x <- 7r/2 and -1 5 y < 1, we write
x = sin-' y. The graph of x = sin-' y coincides with the part of the
graph of y = sin x for which -,r/2 < x < Ir/2, and the graph is shown in
Figure 8.351. When we interchange x and y, which amounts to replacing

Figure 8.351 Figure 8.352

each point (x,y) by its "image" (y,x) in the line y = x, we find that the
graph of the equation y = sin-' x is the same as the part of the graph
of x = sin y for which -a/2 < y < 7r/2 and that the graph is shown in
Figure 8.352. When -1 < x < 1 and y = sin-' x, we have sin y = x,
-7r/2 < y < a/2, and cos y > 0. Since Theorem 8.33, with x and y
interchanged, implies that dy/dx exists, we can use the chain rule to
obtain cos y(dy/dx) = 1 and hence

(8.353) dx sin-' x = dx cos 1 z 1y 1-sin y 1-xs
While we could not be expected to guess the result in this formula, we
can look at Figure 8.352 and see that it seems to be a very reasonable
answer. One who feels that inverse sines and their derivatives could
never be useful should be informed at once that (8.353) gives the formula

(8.354) 11
1 - x2

dx = sin-' x + c (Ixj < 1)

which is useful because the integral appears in important problems.
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The inverse cosine is the inverse of the function fl, with domain 0 5
x < it and range -1 < x <_ 1, for which fi(x) = cos x. Graphs of
x = cos i y, of y = cos-I x, and of the relevant parts of y = cos x and
x = cos y appear in Figures 8.355 and 8.356. When -1 < x < 1 and

Figure 8.355

y = cos-I x, then cos y = x, 0 < y < r, and sin y > 0. Again Theorem
8.33 implies that dy/dx exists, so (-sin y) (dy/dx) = 1 and

(8.357)
dx

cos-I x = dy
_ sinl -1 =

-1
Y 1 - cos2 y 1 - X2

This gives the integration formula

(8.358) 11 dx = -cos-I x -I- c (IxI < 1)xf2

which, because sin-' x + cos I x = 7r/2, does not contradict (8.354).

=tan-1 x
As Figure 8.171 may suggest, the in-

Y i h i f h fverse tangentz= taa v s t e nverse o t e unc-
2 -------- tion fl, with domain -7r/2 < x < 7r/2

and range - oo < x < oo, for which
x fi(x) = tan x. The graph of y = tan-' x,

--- - h h ' h
1 2 W is is t e same as a part (sometimes

Figure 8.36 called the principal part) of the graph of
x = tan y, is shown in Figure 8.36. The

domain of the inverse tangent is the entire set of numbers, and if
y = tan-' x, then tan y = x and sec2 y(dy/dx) = 1, so

(8.361) tan-' x = ddx
x sec y 1 -I- tangy = 1 + x2

This gives the important formula

(8.362)
J

1-}1-xsdx=tan-Ix+ c.
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The inverse cotangent is the inverse of the function fl, with domain
0 < x < 7r and range - oo < y < oo. A graph of y = cot-1 x is shown
in Figure 8.37. The domain of the inverse cotangent is the entire set of

Figure 8.37

real numbers and if y = cot-1 x, then cot y = x and - csc2 y(dy/dx) = 1,
so

(8.371) d cot-1 x = dy = -1 = -1 _ -1
dx dx csc2 y 1 + cot2 y 1 + x2'

As Figure 8.233 indicates, the graph of y = sec x presents a difficulty
that has not previously appeared. It is impossible to select an interval
D, of values of x such that sec x is defined and continuous over D, and
each y in the range of sec x is attained for some x in D1. The best we
can do is let D, be the interval 0 S x <-- 7r with the center point x = 7r/2
omitted. The inverse secant is then
the inverse of the function f1 with ly y=sec-lx
domain D, for which fl(x) = sec x. IT

The graph of y = sec-1 x, which ]P

x=secy

coincides with a part of the graph of ; 2

x = sec y, is shown in Figure 8.38. -1 1 x

If x > 1 or x < -1 and y = see-' x, Figure 8.38
then sec y = x, 0 < y < 7r, y o 7r/2,
and sec y tan y > 0. Again Theorem 8.33 implies that dy/dx exists, so

secytanydXI
and

(8.381) dx sec-1 x = dx = sec yltan y sec yIljtan yj
1 1

sec yJ sec2 -y- 1 IxI x2 - 1
This gives the formula

(8.382) r 1 dx = sec71 x + c,
.l IxI x2 - 1

which is valid when x > 1 and also when x < -1.
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The graph of y = csc x presents the same difficulty that the graph of
y = sec x presented. The best we can do is let D, be the interval

-7r/2 < x < a/2 with the center point
' Y=CsC_1 X x = 0 omitted. The inverse cosecant

X=cscy is then the inverse of the function fi
-1 with domain D, for which fi(x) = cscx.

1F x The graph of y = csc-1 x, which coin-
cides with a part of the graph of

Figure 8.383 x = csc y, is shown in Figure 8.383.
If x > 1 or x < -1 and y = csc-1 x,

then csc y = x, -7r/2 < y < a/2, y 0, and hence csc y cot y > 0.
Again Theorem 8.33 implies that dy/dx exists, so

- csc y cot y dy

and

(8.384) d csc-1 x =
dy -1 -1

dx dx csc y cot y Icsc yl Icot yJ

Icsc yI csc2 y - 1 JxJ x2 - 1

Problems 8.39

(1)

(2)

1 Supposing that a > 0 and b2 < 4ac, show how the first of the formulas

f 1-}-usdutan-' u+c, f a2+u2du=titan'U+Ca

1 dx = 2 tan-' tax + b
cf axe + bx + c V 4 - . - b' 74=ac==-_h=1::ac - b2

can be used to obtain the other two. Remark: Everyone should know how the
last of these formulas and many similar ones are presented in standard integral
tables. Let a > 0 and let

X = axe + bx + c, q = b2 - 4ac.

Then (2) takes the form

1 2 2ax + b
(3) f X dx = -v/- tan 1 + c

when q < 0 and hence -q > 0. The derivation of (3) is based upon the identity

_ f b r ( b l (c _ b2 l1(4) X-a[x2
I ax+ac] =a[\x2+ax+4

b2

a2/+a 4a2 /J

= a C\x + 2a/2 + l 4 2a b2\21 = a L\x + 2a/2 + `"/ZJ
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which involves completing a square. It may be time to renew the idea that
normal persons who have forgotten (or never remembered) needed integral
formulas either work them out to satisfy their vanities and preserve their
mathematical powers or stoop to hunting them in a book containing a table of
integrals.

2 Show that
v 1

o y2 + x2
dx = 4y

when y > 0 and that
(° v 1 log a
Ji lie y2 + xs dx} dy =

a
4

when a > 0.
3 Supposing that -1 < x < 1 and

(1) T (x) = 2' " cos (n cos ' x),

find formulas for T',(x) and T;; (x). Then multiply TT(x) by n2, multiply 2 (x)
by -x, multiply T, (x) by (1 - xs), and add the results to discover that

(2) (1 -x2)dx2-xLy+n2y =0

when y = T.W. Remark: This problem involves much more than meets the
eye. When n is a positive integer, T. is the Tchebycheff polynomial of degree
n and (2) is the Tchebycheff differential equation of order n. One who wishes
a simple and brief discussion of these astonishing things can find it in the author's
textbook "Differential Equations," 2d ed, McGraw-Hill Book Company, Inc.,
New York, 1960.

4 Supposing that -1 < x < 1 and u = (sin-' x)', calculate the first two
derivatives of u and show that

(1 - x2)
d'u

- x
ddu

= 2.

5 The eye of a man is at a point E that is, as in Figure 8.391, x feet from a
vertical wall bearing a picture the bottom and top of which are a and b feet above

Figure 8.391

eye level. The angle 0 which the picture subtends at the eye is surely small
when x is small and when x is large. Derive the formulas

0 =tan 1 b - tan-' a, dO (b - a)(ab - x2)
x x dx

-
(a2 x2) (b2 + x2)
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and show that 0 is a maximum when x = ab. Remark: Addicts of elementary
plane geometry can be pleased to see that the x which maximizes 0 can be found
in another way. As in Figure 8.392 let C be a circle which passes through the

a+b
2

top and bottom of the picture and intersects the eye-level line L at two points
El and Ez. The angles which the picture subtends at E, and Ez are equal. Of
all such circles C that intersect L, the smallest one that produces the greatest 6
is the circle Co for which El and Ez coincide, so Co is tangent to L. The radius
of Co is (b + a)/2, and use of an appropriate right triangle shows that the dis-
tance from the wall to the center and to the critical point of tangency of Co is

(b+\'--(b-a\z
`` 2 fJ 2 J or ab.

6 Supposing that a > 0 and jaxI < 1, prove the formula

tan-' x tan-' a =tan 1 a
1

+ x
- ax

by showing that the two members of the equation are equal when x = 0 and
have equal derivatives when JaxI < 1.

7 With or without undertaking to prove the fundamental fact that cot-1 x =
tan-' (1/x) when x > 0, suppose that x -' 0 and fill in the omitted steps in the
calculation '

d d 1 -1
dx cot-' x =

dx
tan i

z
= = 1 + xz.

8 With or without undertaking to prove the fundamental fact that sec-' x =
cos ' (1/x) when IxI > 1, suppose that IxI > 1 and fill in the omitted steps in
the calculation

d d 1 1

dx sec -I x = dx cos' x
= ..

X x z- 1

Hint: Do not forget the chain rule and the fact that x2 = IxI IxI.
9 With the aid of Figure 8.343 we can see that the formula

x2-1
(1) sec -I x = sin-'

x

is valid at least when x > 1. Differentiate the two members of (1) and determine
the set of numbers x for which the derivatives are equal.



8.3 Inverse trigonometric junctions 467

10 Letting N be a positive integer (which we shall not call "arbitrary"),
manufacture and solve N problems of the nature of the preceding one.

11 Prove that

x2
dx = 2fol 1 + x2 dx = 4' Jo0 1 -I-

1

12 Remark: We should not be so busy that we never have time to look at our
formulas and see that we can learn things from them. Supposing for simplicity
that x > 0, we can look at the formula

(1) tan1x=
1

0
1+t2dt

and realize that each member is equal to the area of the shaded region in Figure
8.393. Any information we can obtain about tan-' x or the area or the integral

therefore provides information about all three. While there are much more
complicated ways of getting the information, we can quickly learn some sig-
nificant facts by starting with the formula

1 ton+2
(2) 1 + t2 = 1 - t2 + t4 - t6 .+ +- 14n -

1 + 12

which can be obtained by long division and can be checked by multiplication
by (1 + 0). Integrating this over the interval 0 < t 5 x gives the formula

x3 x6 x7 x4n+1

(3) tan-' x = x -
3

+
5
-

7
-{- ... -{- 4n {- 1 - R,(x),

where
f x ton+2

(4) R, (x) = J 1
dt.

o -t2
Suppose now that 0 5 x 5 1. Then 1 5 1 + t2 5 2 and therefore

x t4n+2 x
(5) fo 2 dt 5 Rt(x) 5 fo t4n+2 dt

so

(6)

x4n+3 x4n+3

2(4n + 3)
<

Rn(x) 5 4n + 3

This gives us an excellent estimate of R,,(x) which implies the more crude estimate

(7) 0 5 Rn(x) 5 14n -l- 3



468 Trigonometric functions

This and the sandwich theorem imply that 0 as n and the defini.
tion involving (5.622) shows that

(8) tan'x =x-x3+-3- 5-x7 I x.9-x.ll
7 9 11

when 0 < x < 1. Changing the sign of x changes the signs of both sides and
shows that the formula is correct when -1 < x 5 1. Putting x = 1 gives the
famous Leibniz formula

(9)
7r

I4=1-3+5-7+9-11

which is of particular interest to those who have not previously seen a formula
from which it could be calculated. Putting x = 1 in (6) shows that we must
take many terms of the series (8) to obtain a sum agreeing with 7r/4 to three or
four decimal places, and we say that the series "converges slowly." The series
in (8) converges more rapidly when x is nearer 0. We are not now in the comput-
ing business, but it is easy to verify that

(10) 4=tan'i+tan13'

by taking tangents of both sides, and to use (8) to show that ir is roughly 3.14.
The formula of Machin (1680-1751)

(11) 4 = 4 tan-' 1 - tan' 1391

which is not so easily proved, is used by professional computers.
13 Find whether the function f for which f(x) = x + sin x has an inverse

and, if so, whether the inverse is differentiable.
14 Let B be an interval of values of x; it could be the interval x > 0, and it

could be the interval -1 5 x < 1. Let D be the operator or transformer or
differentiator which, when applied to a function f which is defined and differenti-
able over E, produces the function 0 for which 4(x) = f(x) when x is jn E.
The domain A of D is then the set of functions f that are defined and differentiable
over B, and the range R of D is the set of functions q6 that are defined over E
and are derivatives of functions differentiable over E. Show that D does not
possess an inverse.

15 Let E be the interval -1 < x < 1. Let D, be the restriction of the oper-
ator D of the preceding problem to the domain 0, consisting of functions f
defined over E for which f (O) = 0 and f exists and is continuous over E. Show
that D3 has an inverse.

16 Let E be the interval -1 < x < 1. Let I, be the operator or transformer
or integrator which, when applied to a function g which is continuous over E,
produces the function G for which

G(x) = fox g(t) dt

when x is in E. Describe the domain and range of I, and show that I, has an
inverse.
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17 Try to understand and even prove the statement that each of the operators
Dl and Il (of the two preceding problems) is the inverse of the other.

8.4 Integration by trigonometric and other substitutions We
begin with a statement of the fact that there is an elementary function
F whose derivative with respect to x is a2 - x2. Letting F denote
one such function, we try to learn about F by writing

(8.41) F(x) = f a2 - x2 dx

and searching for an idea. Once upon a time somebody discovered that if
we substitute x = a sin 0, then the integrand will become a2 - a2 sin2 6
or a2 cos2 0, and this is a cos 0 if a cos 0 > 0. Thus a trigonometric
substitution removes the radical and leaves ±a cos 6, but we can still
be unsure of the meaning of f cos 0 dx. Hence we must pause to make
an observation.

The chain rule of Theorem 3.65 tells us that if

(8.42) F'(x) = f(x)

and if u is a differentiable function whose range lies in the domain of F,
then

(8.421) dtF(u(t)) = F'(u(t))u'(t)

= f(u(t))u'(t).

This gives the following important substitution theorem which shows
how to replace x by u(t) in integrals.

Theorem 8.43 If

(8.431) F(x) = f f (x) dx

andsif u is a differentiable function whose range lies in the domain of f, then

(8.432) F(u(t)) = ff(u(t))u'(t) dt.

This theorem is used so often that it is worthwhile to be able to get
from the right side of (8.431) to the right side of (8.432) in a purely
formal way without thinking about the way in which the theorem was
proved and the meanings of the formulas. We replace the old integrand
f(x) by the new integrand f(u(t))u'(t) and the old dx by the new dt.
This seems like a simple ritual, but the factor u'(t) might be forgotten
when problems are being solved. It seems to be safer and easier to think
of f(x) being replaced by f(u(t)) and dx being replaced by u'(t) dt. If
we follow historical precedents, we become carried away by our own
enthusiasm and try to eliminate all possibility of overlooking the factor
u'(t) by creating the fiction that dx is a number (a bunch of bananas
would serve the same purpose) and u'(t) dt is the same thing. There is
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a sense in which this whole business is utterly silly, but it really is a
convenience to imagine that dx, u'(t), and dt are three numbers for which

dx = u(t) dt. When x = u(t), we can differentiate to get
dx

= u'(t),

and the pretense that dx is the quotient of two numbers then enables us

to multiply by dt to get the formula dx = u'(t) dt that tells us to replace
dx by u(t) dt. It is possible to try to say more about these matters but,
for present purposes, the important thing is that we do not forget the
factor u'(t).

Since it is not always convenient to introduce a new symbol, such as
u, for the function which carries t into x, we restate the theorem in the
following form which can be ignored by those who prefer the first version.

Theorem 8.433 If
(8.434) F(x) = f f (x) dx

and if x is a differentiable function whose range lies in the domain of f,
then

(8.435) F(x(t)) = f f(x(t))x'(t) dt

or

(8.436) F(x(t)) = ff(x(t)) dt

(8.437) F(x) = ff(x) dx.

We give further attention to changes of variables in integrals by prov-
ing the following very useful variant of Theorem 8.433 which involves
Riemann integrals.

Theorem 8.44 If f is continuous over the interval a < x 5 b and if is
is a function which has a continuous derivative and is such that u(t) increases
from a to b as t increases (or decreases) from a to 0, then

(8.441)
fab

f(x) dx = f 8
f(x(t))x'(t) dt.

To prove this theorem, let F be a function whose derivative is f so that
f f (x) dx = F(x) + c and

(8.442) fab f(x) dx = F(x)]a = F(b) - F(a).

The chain formula for derivatives then implies that

(8.443) fa
f(x(t))u'(t) dt = F(u(t)) ]a = F(u(f4)) - F(u(a)).
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The required conclusion (8.441) then follows from the fact that a and #
are chosen such that u(a) = a and u(/3) = b. Careful attention must
be given to the manner in which the new limits of integration are deter-
mined. When we set x = u(t), we must determine a such that x is a
when t is a and we must determine 0 such that x is b when t = g.

We are now ready to attack (8.41) and, since this is the first time we
have made a substitution (or changed the variable) in an integral, we
proceed with great caution. Supposing that a > 0 and that -a 5 x 5
a, we set

(8.45) F(x) = f a2 --x 2 dx

and let x = a sin 0, where -7r/2 :_50 < a/2. Figure 8.451 always helps

x

-Q--.z

Figure 8.451

us to see what we are doing on occasions like this. Since dx/do = a cos 0,
we obtain

(8.452) F(a sin 0) = f a2 -cos' 0 a cos o do.

But cos 0 > 0 when -Ir/2 5 0 5 7r/2, so
r 2

(8.453) F(a sin 0) = a2
J

cos2 0 do = 2 f (1 + cos 20) do

a=
2

[o+ sin 20] + c

_ 4[a2o + a2 sin 0 cos o] + c.

Since each x in the range -1 < x 5 1 is obtained for a 0 in the interval
-a/2 < 0 < 7r/2, we can use Figure 8.451 and the fact that cos 0 > 0
to return to the original variable x so that

(8.454) F(x) [as sin-' + x a2 - x2J + C.
a

This gives the formula

[ l
(8.455) = 4 Lag Sir ,71

a
x -I- x a2 - x2J -}- c.

We are not always so careful about all of the details, and we do not always
get correct answers either. There is a reason why we can sometimes be
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careless about quadrants in which angles lie. There is a "theory of
analytic functions" that guarantees that, in many situations, a formula
which is correct when angles lie in the first quadrant will be correct
wherever we want to use it.

When we wish to make a substitution to evaluate the integral in

(8.46) I = f
a

1

2

dx,'--
we can clarify our work and save writing the integral by denoting it by
I, or by Il or J if we wish to distinguish it from other integrals. We
can then put x = a sin 0 and allow the variables to shift for themselves
while we write

(8.461) I= f 1 a cos 8 de = f 1 de
a2

cos,
e

x=0+c=sin'-+ C.
a

We have evaluated an integral that previously appeared in (8.354).
The identity 1 - cos2 8 = sine 0 provides the reason why the substi-

tution x = a sin a eliminated the square roots from the integrands of the
above integrals. The identities

(8.47) sec2 0 - 1 = tan2 e, tang 0 + 1 = sect 0,

which are obtainable from the one involving sines and cosines by dividing
by cos2 9, are less familiar but are nevertheless important when we want
to use them. Their uses are illustrated below.

To evaluate the integral in

(8.471) J - f(x2+a2)5'x,

we look at it and generate the idea that we should try setting x = a tan 9.
Then x' = a sec2 8, so

(8.472) J = f (a2 sec2 e)
a sec2 a d8 =

a2 f sec
d8

=1 rcos0d8=1sin0+c= x -+ -ca2 J a2 a2 x2 + a2

the last step being assisted by a figure showing 8, a, and x in the right
way.

To evaluate the integral in

1(8.473) f (X2
a2),%

dx,
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we look at it and generate the idea that we should try setting x = a sec 8.
Then x' = a sec 0 tan B, so

(8.474)

- 1 ('sec0d8 fJ=
1 J (sin 8)-2 cos 8 d8
a2

a sec 0 tan B doJ 1 -
J (a2 t 1

8

_ 1 (sin 8)-i
a'- -1 + c

x

a2
+ C.a2 x2 -

It is not implied that we know in advance that the integrand should be
written in terms of sines and cosines, but trying this possibility and seeing
that the power formula can be applied is all a part of the game.

Our last problem has a lengthy solution. We can bravely start to

evaluate the integral in

(8.48) J2=j x2-a2dx
by setting x = a sec 8. Then x' = a sec 0 tan 0 and

J2 = f a2 tan2 0 a sec 0 tan 8 do
so

(8.481) J2 = a2f tang 8 sec 0 do.

It happens that this integral is an elementary function, but there is no
simple direct way of discovering the facts. Authors and teachers, as
well as students, can work for hours on this problem unless they remember
how to solve it or (and this much better) have a guiding principle. The
principle is the following. If we want to learn something about an
integral and other methods fail to be helpful, we try integration by parts.
By this we mean that we try to determine two functions u and v of the
variable of integration in such a way that the integral we are studying
will be the left member of the formula

(8.482) fu(8)v'(8) d8 = u(8)v(8) - fv(8)u'(6) d8

and, moreover, the "parts" on the right side enable us to make progress
with our problem. Assuming that u and v have continuous derivatives
over intervals where we use the formula, differentiation shows that the
formula is correct. The trick is to use it effectively. Naturally, we
want the functions u, v, u', v' to be as simple as possible, and it is quite
easy to discover that the best way to convert J2 into the left member of
(8.482) is to set

(8.483) { 1'( ) =
aa' tan 0,

2 sec 0, vv(0) = sec
8.tan 8
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It is always a good idea to display u and v' in one line and u' and v in a
lower line and to know that the formula (8.482) for integration by parts
says that the integral of the product of the top two is equal to the product
of u and v minus the integral of the product of the bottom two.f Thus

(8.484) Jz = a2 sec 0 tan 0 - a2f sec' 9 do.

The last integral seems to be quite as recalcitrant as J2, and this really
is true because

a2f sec' 0 dO = a2f sect 8 sec 0 dO = a2f [1 + tan2 0] sec 0 d9
= a2f sec o do + a2f tan2 0 sec 0 d8

= a2 log (sec o + tan 0) + c + J2

Instead of developing faint hearts by throwing everything into a waste-
basket, we substitute our last result into (8.484) and get

(8.485) J2 = a2 sec titan o - a2log (sec o + tan o) - c - J2

If we can now suddenly remember that we are trying to find J2, we can
transpose the term -J2 (or add J2 to both sides of our equation if trans-
posing is onerous) and divide by 2 to obtain

(8.486) J2 = .5a2 sec a tan 0 - ..a2 log (sec 0 + tan 0) + c,

where the new constant c, like the old -c/2, can be any constant. With
the aid of a figure showing how 0, a, and x are related, we obtain

/'
(8.487) J2= J x2-VT x2-a2

1
X -I- x2 - a2-a2 log + c.

a

If we wish, we can write the logarithm of the quotient as a difference of
logarithms and combine the constant part with the c to obtain the formula

(8.488) J2 = f x2 - a2 dx = jx x2 - a2
- ka2 log (x + V'rx2 - a2) + c,

in which c has another value. The answers in (8.487) and (8.488) look
different, but they are both correct. The last one may seem simpler,
but the first one gives c = 0 if J2 = 0 when x = a.

We should recognize the fact that all or nearly all of the integration
formulas in the text and problems of this section appear in books of
tables. We should hear more than once that books of tables are often
used as labor-saving devices, but that many persons like to derive the
formulas they use to preserve and improve their mathematical acumen.

t These matters are very important, and it is required that we think about them more
than once. Our concentrated attack upon integration by parts appears in Section 9.5.
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Problems 8.49
1 By making an appropriate figure and trigonometric substitution, fill in all

of the missing details which show that

(a) r x21- a2 dx = r sec 9 dB = log (x -f x2 - a2) + c

(b) !( a2 x2 dx = a f sec 8 d9

=flog a+x +c logo+x+c
(JxI <a)a a2-,x2 2a a-x

(c) f
x2 a2

dx =
Q

f csc 8 dB

1
l x+ a 1 x- a

+ C
a

log
x2 --a 2

+
2a

leg
x + a

(d) f (a2 - x2)3 dx = a° f cos' 0 dO

2 When x > 0, the identity

(1)
1 + 1 = z2 1 - x2 + 1

x x x 1 + X2

shows that

(2) f 1 + 1 dx = f (1 +
x x 1+x2

(x > a)

The first integral on the right is easily evaluated, and the second can be simplified
by a trigonometric substitution. Use these ideas to derive the formula

(3) f rl ± .2 dx = 1 x2 + log x - log (1 + 1 -+x2) + c.

3 Sketch graphs of y = ex and y = log x in a single figure and note that each
is the mirror image of the other in the line y = x. Observe that the arc C, on
the graph of y = ex which joins two points (p,,q,) and (p2,Q2) on the graph of
y = ex is congruent to the arc C2 on the graph of y = log x which joins the two
points (q,,p,) and (g2,p2) on the graph of y = log x. LettingL denote the length
of C, and C2, show that

(1)
L = f p:

1 e2x dx = f 'D' V+ 1 dx.
P, 'D, x2

This gives the formula
(2)

J
1 + eit dt =

I.
`y' 1 + 1 dx.

P

1

i en2 x2

To show that errors and misprints have not led us to an incorrect formula, show
that the substitution i = log x converts the first integral in (2) into the second
integral in (2).
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4 In Problem 2 of Problems 4.39, we called attention to the important non-
elementary beta integral formula

(1)

f0 l
x2l(1 - x)q dx p!q!(p+q+1)!

which is correct when the integral is a Riemann integral and p and q are non-
negative; we can now report that it is correct when the integral is a Riemann-
Cauchy integral and p and q exceed -1. Show that putting x = sin2 0, where
0 5 0 5 a/2 when 0 < x 5 1, yields the formula

(2)
=/z 1''nti 0 'gtl a dBif p!g!

n coso s = 2 (p + q + 1

Be sure to observe the fact that the limits of integration are correctly determined;
setting x = 0 in formulas involving x is equivalent to setting 0 = 0 in formulas
involving 0, and setting x = I in formulas involving x is equivalent to setting
0 = 7/2 in formulas involving 8. Finally, replace 0 by x and let 2p + 1 = a,
2q + I = 13 to obtain the formula

(3)

a-1
1/2

sins x cosA x dx =
2 > ( 2 )

f 'o (a+13 \

which is valid when a and 0 exceed -1. Remark: If we happen to know that
(--f)! _ , we can conclude from (3) that

(4) fo /2 sin" x dx = I2 ``

al\I 2/!
5 Replace x by y2 in the first formula of the preceding problem and then

replace y by x to obtain the formula

i x1 p!q!
2p+'(1 - x2)q

o
dx=2(p+q+1)

Tell why the limits of integration are correct.
6 When we proved the formulas for derivatives of trigonometric functions,

we were unwilling to base the proofs upon the formula R = -'r26 for the area of
a sector of a circle having central angle 8 and radius r. Supposing that 0 <
0 < 7/2, this problem requires that the formula be proved. With the aid of an
appropriate figure, show that

.Q= forf(x)dx
where

f(x) = x tan 0 (0<x5rcos0)
f(x) = r' - xz (r cos 9 5 x <- r).

Then find 4 with the aid of the formula (8.455) which has been proved.
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7 It is easy to evaluate the integral

Kl = fx sin x dx
with the aid of the formula

fu(x)v'(x) dx = u(x)v(x) - fv(x)u'(x) dx

for integration by parts. Do it by filling in the first and then the second row
of the formulas

u(x) = v'(x) _
u'(x) = v(x) =

in the most useful way. Check the result by differentiation.
8 Do not forget our guiding principle. If you have an idea other than inte-

gration by parts for evaluating the integral

K2 = fx2 sin x dx,

write the author a letter. Otherwise, develop a strong heart by solving the
problem by integration by parts.

9 When we get good basic ideas we can understand and sometimes even
originate modifications of them. If Mr. Watson asks us to evaluate the integral

L
r 1

= J x-f-1-f-1dx'

we could eliminate the radical by setting x = tang 0, but the result is unlovely.
We can try to simplify matters by making a substitution x = u(t) so cleverly
devised that x -j- 1 = t. The denominator will then be simply t + 1 and the
other details may be of such a nature that we can find L. Show that

L=2 x 1-2log( x-+I -1)+c.
Hint: The simple identity

t t+1-1 1

_7+_1_-f- 1 t -}- 1

enables us to integrate the first member in a hurry.

8.5 Integration by substituting z = tan j This section provides
useful experience in changing variables by treating a particular substitu-
tion which is sometimes useful, but the section can be omitted without
damaging understanding of the remainder of the book.

We begin by deriving formulas which enable us to use the substitution

(or change of variable) z = tan
2

to convert integrals of quotients of

polynomials in sin 0, cos 0, tan 0, cot 0, sec 0, and csc 0 into integrals
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of quotients of polynomials in z. We suppose that -7r < 0 < 7r,
that -n/2 < 0/2 < a/2, and define z in terms of B by the formula

(8.51) z = tan 2

Differentiation gives
2

dB
Z sect 2 2

//
(1 + tang 0= 2 z,

and hence

(8.52) do = 1 + z2 dz.

Basic trigonometric identities and (8.51) give

2 tan
B B 2z

(8.531) sing=2sin2cos2= -1+52'
sect

2

(8.532) cos 0 = cost 2 - sin2 2 = 2 cos' 2 - 1

2 2 1 - z2-1=1+52-1=1+z2
sect 10

and, except when 0 is it/2 or -ir/2,

2 tan 2
2z

(8.533) tan 0 = =
1 - tang 2 1 - z2

so

In fact, Figures 8.541 and 8.542 enable us to write the six trigonometric
functions of 8/2 and 0 in terms of z. Thus each of sin 0, cos 0, tan 0,

1

Figure 8.541

1-z2

Figure 8.542

cot 0, sec 0, csc 0, and dB/dz is a quotient of polynomials in z. It follows
from this that if P and Q are polynomials in the six trigonometric func-
tions of x, then

f PQ11
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where Pl and Ql are polynomials in z. Several examples appear in the
problems at the end of this section.

Except in special cases, evaluating integrals of the form

I aozm + aizm-i + . . . + am_lz + am
dxboz" + biz's-1 + ... + bn

is very tedious business. When n < 2, and in a few special additional
cases, answers can be found in tables of integrals. Some information
about the matter will appear in Section 9.4 of this book.

Problems 8.59

1 By use of the substitution z = tan 2, show that

(a) J sin B dB = f l dz =log N + c =log I tan 01
+ c

(b) r 1
=

r 2 r1-z+1+z
J cos 0 de l 1 z2 A = 1 (1 - z) (1 + z) A

= J ( 1 + l
1 z) dz = log

1+tan2
+c

1 -tang
1 2

(c) ,J a+b sin BdeJ az2+2bz+adz

(a) fa+bsin8+ccosOd9f (a-c)z2+2bz+(a+c)dx

sing+cosB z(1 -z2)(1+2z-z2)dz
(e) ) tan B + cot B

dB = 4 f (1 + z2)4

2z 2

(f) 1 --
z2+c=sin0 +c= f cos0dO=2 f (1+z2)2dz

(g) log i + Z2 + c = log sec B + c = f tan 0 d9 = 4 f
1

z
z4

A

(h) log a+ 1 +zz2) + c = log (a + b sin B) + c
b cos 6

J a+bsin0
- 2b 1 - z2 dzf (az2 + 2bz + a) (1 + z2)

sin 6 4z

(2) f 1 + sin g d9 = f + z2)(1 + z)2 A

(;) f cos 0 f 1 - z2
1+cos Bde - 1+z2dz

1+z2 z2dz=2tan' tanL -tang+cf 2



9
Exponential and
logarithmic functions

9.1 Exponentials and logarithms At least a modicum of basic
information about exponentials is possessed by everyone who looks at
Chapter 9 of a calculus book. Everyone knows that 3" = 3.3.3.3 and
334 _ N/T Such formulas as

as` c ab = (/)5,

in which it is supposed that a > 0, are familiar. Remark 20 which
appears among the problems at the end of this section provides basic
theory of a= for the case in which a > 0 and the exponent x is a rational
number, that is, x = P/Q, where P and Q are integers for which Q ,E 0.
There is a reason why this theory is often neglected. It is too difficult
for elementary algebra books because it requires use of the intermediate
value theorem and hence requires knowledge of completeness of the real-
number system. It is too simple for calculus books because it is mostly
elementary algebra. The mathematical theory of exponents, like the
480
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physical theory of hydrogen, is neither so brief nor unimportant that it
is unworthy of several hours of study.

We start here with a given number a, the base of our exponential func-
tion ax, for which a > 1. We suppose that ax has been defined for rational
numbers x and that, if x and y are rational numbers for which x = P/Q,
then

(9.11) axav = ax+l, (ax)/ = axv, ax = (aP)uQ = (a1'Q)P.

For the purpose of learning about mathematics in general and about
the exponential function ax in particular, we
make a direct frontal attack upon the problem

I y
of learning more about ax when x is rational.
We then use this information as a basis for def- y=ax
inition and study of ax when x is real. Our xrational 0

first step is to calculate ax for several values of
x and to start making a graph of y = ax as in 0

Figure 9.12. We mark only the points whose 0
coordinates we have calculated and overcome
the primitive urge to draw a "smooth curve"

ethrough these points. We have experimental o

evidence that 0 < ax < ax+h when x and h are 0

rational and h > 0, and this matter should 0
00001

be investigated. When x = P/Q, a1"Q is the -2 -1 0 1 2 x

positive number r for which rQ = a and Figure 9.12
ax = (a1"Q)P = rP > 0, so ax > 0. It turns out
that we can obtain a huge amount of information from the identity

(9.13) ax+h - ax = (a'' - 1)az.

For a modest beginning we suppose that h = p/q, where p and q are
positive integers, and show that ah > 1. When f(x) = x4, we see that
f(1) = 1 and that f(x) is continuous and increasing when x > 0. Since
a > 1, the one and only number x1 for which f(xi) = a must exceed 1.
Thus xl = a and a119 = x1, where x1 > 1, and hence ah = xi > 1. Thus,
when h > 0, the right member of (9.13) is the product of two positive
numbers and hence is positive. This implies the following theorem.

Theorem 9.14 If x and h are rational and h > 0, then

(9.141) 0 < ax < ax+h.

This means that, as a function of the "rational variable" x, the function
having values ax is positive and increasing. Proof of this fundamental
fact represents a triumph of mind over matter, but one triumph is not
enough and we must continue. Tables and slide rules and brute-force
calculations with pencils produce experimental evidence in support of the
following theorem.
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Theorem 9.15 .ds a function of the "rational variable" x, the function
having values ax is continuous over - o < x < -.

We shall prove this theorem with the aid of (9.13) and an estimate of
the troublesome factor (ah - 1) that is, from our present point of view

and from some others, quite amazing.
xo h 2h 3 i Let h be a positive rational number for

which h 1 and let n be the greatest
Figure 9.151 integer for which nh 5 1. If we wish,

we can draw Figure 9.151 and put a
part of the graph of y = ax over it to help us see what we are doing. The
equality

(9.152) (ah - 1)a(k-1)h = akh - a(k-1)h

holds when k 1, 2, 3, , n and summing over these values of k gives
the formula

rT+ ny

) (akh - a(k-1)h)(9.153) (ah - 1) L G
a(k-1)h a

k-1 k-1

= (ah - a°) + (ash - ah) + (ash - a2h)+ . + (anh - a(n-1)h)
=anh-a°=anh-1 <a-1

which has, in its middle line, a sum which is called a telescopic sum because
it "telescopes" to anh - a°. More critical examination of the sum in
brackets will appear later. Meanwhile, we observe that if we denote
the sum by S, then each term in the sum is 1 or more, so S >= n. But
nh > -J, so n > 1/2h and S > 1/2h. Replacing S in (9.153) by the
smaller number 1/2h gives the inequality

(ah-1)2h<a-1.

Therefore,

(9.154) ah-1<2(a-1)h (0<h<1).
This and (9.13) show that the formula

(9.155) av Fh - ax < 2(a - 1)hax

is valid when x and h are rational and 0 < h < 1. This result and the
fact that ax is increasing give the following theorem.

Theorem 9.16 If r1 and r2 are rational numbers for which

Ire-r1l =h51
and if M is a rational number for which r1 < M and r2 < M, then

la" - aril 5 2(a - 1)jr2 - r1jaM.

This is a stronger version of Theorem 9.15 which implies Theorem 9.15.
Our information about the values of ar for rational numbers r is now
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very substantial, and we proceed to use it to define and study ax when x
is real. Let x be a real number which is not necessarily rational. In
case x is rational, the fact that ar is an increasing function of the rational
variable r implies that

(9.17) ax = l.u.b. ar,
r5z

where the right side is the least upper bound of the set of numbers ar
for which r is rational and r 5 x. In case x is irrational, we define the
number ax by this same formula (9.17). To use this definition, we need
only a very little information about least upper bounds of sets of num-
bers. We need only the elementary fact that if each number in a set S,
is also a number in a set S2, then the least upper bound of the first set
must be less than or equal to the least upper bound of the second set.
Suppose xi, and x2 are given real numbers for which xl < x2 and we choose
two rational numbers rl and r2 such that

xl <Ii<r2 <X2.
Then, since art < ar2,

ax'=1.u.b.ar<1.u.b.ar=ar'<all =l.u.b.ar<_l.u.b.ar=all,
r5zi r5ri r<rx r5z2

and this proves that ax is an increasing function of x. If 0 < & < M,
we can choose a positive integer n such that an > M and a-, < &.
This and the fact that ax is positive and increasing imply that az -- 0
as x -+ - w and ax --* oo as x -> c*. To prove that ax is continuous
(and in fact uniformly continuous) over the interval x < M, we can
employ Theorem 9.16. Let e > 0. We can then choose a & > 0 such
that jar, - ar'I < e whenever ri < M, r2 < M, and Ir2 - ril < &.
Whenever Xi and x2 are real numbers for which xi < M, X2 < M, and
IX2 - x11 < &, we can sandwich x, and x2 between rational numbers

ri and r2 for which rl < M, 72 < M, and jr2 - ril < &. The fact that
ax is increasing then implies that lax, - ax'I < jar' - ar2l < E.

To complete our study of the basic theory of ax when x is real, we must

prove the formulas

(9.18) axav = ax-w, (ax)y = axv.

Since ax is continuous, we can let rl, r2, . and si, s2, . be sequences
of rational numbers converging to x and y so that

axav = (lim a*^)(lim a"") = lim
n-t n- m

= lim a,-+O- = ax*"
fl-.+02

and the first formula is proved. To prove the second formula, we vary
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the procedure by letting r, s, t, and u be rational numbers for which r
x5sandt<y<=u. Then

aT <_ az < a8 and (aT), (ax)v (all)u,
so

art = (ax)v S a°u.

Taking limits as rt -+ xy and su -* xy gives axu <_ (ax)v S axe and shows
that (ax)v = axv.

Our basic theory of exponents enables us to give the basic theory of
logarithms in a few lines. With the aid of the intermediate-value
theorem, we see that to each positive number x there corresponds exactly
one number y such that ay = x. This number y, an exponent, is called
the logarithm with base a of x and is denoted by logo x, so that the formulas

(9.181) ay = x, y = log. X, a'°B°x = x

are equivalent. The logarithmic function is the inverse of the expo-

Y

Figure 9.182

x

nential function, and its graph is shown in Figure 9.182. The funda-
mental formulas

(9.183) log. xy = log. x + log. y, log. xv = y log. x

are proved by setting u = log. x, v = log,, y, x = au, and y = a'°, so that

xy = auav = au-M
and

log.xy = u+e = log. x+log.y.

Moreover, xv = (au)y = auv, so

log. xv = uy = y log. X.

When a, b, and x are positive numbers for which a > 1 and b > 1,
we can equate the logarithms with base b of the members of the identity
x = al-0 to obtain the first of the formulas

(9.184) logo x = (log. x)(logb a), 1 = (loga b) (109b a),
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and putting x = b in the first gives the second. Putting b = e and a = 10
gives the formula

(9.185) log x = (loglo x)(log 10) = loglo x
logio e

which, together with the estimates

(9.186) log 10 = 2.30258 50929 94045 68402
(9.187) log10 e = 0.43429 44819 03251 82765,

enables us to find log x with the aid of a table of values of logio x. These
formulas are shunned when a log-log slide rule is available and gives
satisfactory accuracy and when a satisfactory table of values of log x
is available. When decimal representations of numbers are used in cal-
culations, it is often necessary to know that each positive number y is
representable in the form

(9.188) y = 10'ax,

where n is an integer and 1 S x < 10, and that
(9.189) log. Y = n log. 10 + log. X.

This formula enables us to find log. y with the aid of a table giving values
of lo& x when 1 < x 5 10. The formula works whenever a > 1. It is
simplest when a = 10 and log. 10 = 1; in this case it log. 10 is an integer
(the characteristic of the logarithm) and rules for finding it are sometimes
peddled without revelation of the fact that they are identical with the
rules for finding the exponents in the representations

416.3 = 102 4.16
0.00004163 = 10-14.16

4.163 = 100 4.163.

Our derivations of formulas for derivatives and integrals of logarithms
and exponentials will come in the next section. Meanwhile, we close
this introductory section with some historical remarks. The first pub-
lished table of logarithms, the "Mirifici Logarithmorum Canonis "
by John Napier (1550-1617), appeared in 1614. The rare-book collection
of the University of Illinois contains this book and an astonishing col-
lection of old tables. To indicate that these books and their titles are
nontrivial, we cite the full title of the 1631 edition of the book of Napier.f

f Napier, John, "Logarithmicall Arithmetike, or tables of logarithmes for absolute
numbers from an unite to 100000; as also for sines, tangentes and secantes for every
minute of a quadrant: with a plaine description of their use in arithmetike, geometric,
geographic, astronomic, navigation, etc. These numbers were first invented by the most
excellent Iohn Neper, Baron of Marchiston, and the same were transformed, and the
foundation and use of them illustrated with his approbation by Henry Briggs, Sir Henry
Savils Professor of geometric in the Universite of Oxford. The uses whereof were v.ritten
in Latin by the author himselfe, and since his death published in English by diverse of his
friends according to his mind, for the benefit of such as understand not the Latin tongue,"
London, 1631, 819 pp.
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For more than 300 years, logarithms with base 10 were systematically
and extensively used to make arithmetical calculations. Respectable
scientists of the present and future must know about them, but sub-
stantially all of the chores formerly done with the aid of tables Of 1093.0 X
are now done with slide rules and mechanical and electronic calculators
and computers of assorted shapes and sizes. It seems that the first
published table of logarithms with base e appeared in a 1618 edition of
the Napier tables, and that John Speidell used e as a base of exponentials
in a book published in 1620. Much of the present usefulness of a is
based upon work of Euler (1707-1783). Except for collectors of rare
books, tables of ex, ex, and log x are now vastly more valuable than
tables of logio x.

Problems 9.19
1 Find the values of a, x, and y that satisfy the equations

(a) 2z = 32, a6 = 32, 25 = y
(b) x = loge 32, 5 = log. 32, 5 = 1092 y
(c) 74 = y, 7x = 2401, a4 = 2401
(d) 4 = log? y, x = 1097 2401, 4 = log. 2401
(e) a$1000,103= y,1Ox=1000
(f) 3 = log. 1000, 3 = loglo y, x = loglo 1000

2 Practice the art of starting with the first of the equations

y = ax, log y = x log a = (log a)x, y = ekx,

taking logarithms (with base e) to obtain the second equation, and then using the
definition of logarithms to obtain the third equation where k = log a.

3 Practice the art of starting with the formula y = a= and writing

y = ax = (ek)x = ekx

where k is the exponent which we must put upon e to get a and hence k = log a.
4 Using the method of Problem 2 or the method of Problem 3, show that

(a) xx = e' 1- (x > 0)

(b) (1 +x)1Ix = ezlOg(I +X)
log (I +x)- log I

(c) f(x)o(x) = eo(o)1ogI(x) (f(x) > 0)

5 Show that akx = ekgx when k2 = k1 log a.
6 Sketch graphs of the equations y = 2x and y = loge x on the same sheet

of graph paper. Tell why the line having the equation y = x is (or is not) a
line of symmetry of the set consisting of the two graphs. Sketch a line which
appears to be tangent to the graph of y = 2z at the point (0,1), estimate the
coordinates of the point where this line meets the line having the equation y = x,
and use the results to obtain an estimate of the slope of the tangent. Finally,
modify the procedure to obtain an estimate of the slope of the line tangent to
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the graph of y = loge x at the point (1,0). Remark: This is not a dull problem,
because moderately careful work produces very good results. To check one of
the results, let f (x) = 2' so f (x) = ex l°g 2 so f' (x) = e° log 2(log 2) and f'(0) _
log 2 = 0.693 .

7 Apply the procedure of Problem 6 to the equations y = 3' and y = logs x.
Try to find a way to use a table or slide rule to check the numerical results.

8 Many persons with scientific interests have (and should have) log-log
slide rules and should know or learn how to set them to obtain values of as when
2 < a < 3 and -1 < x <= 1. These persons can quickly produce a good graph
of y = (2.5)° over the interval -1 5 x < 1 and use it to obtain a good estimate
of the slope at the point (0,1). Repeating the process for y = (2.7S)° and using
ideas involving interpolation lead to quite good approximations to a base e for
which the graph of y = e° has slope 1 at the point (0,1). This base e is the famous

9 Tell why
fo1

2z dx and fo1 3' dx exist. Then sketch appropriate graphs

and use them to obtain rough estimates of the values of these integrals. Finally,
check the estimates with the aid of the formula

1 1I lax dx = f e' log a dx = 1 e' log a 1
0 o log a Jo

1 (e loga - 1) = a- 1
log a

1)
log a

Tell why foI 100° dx could not be 0.05 and could not be 500.

Discover reasons why we could suspect that

J a'dt<1 2a°

when a > 1 and x > 0.
12 Sketch graphs of the equations

(a) y = 2-1/z% (b) y

Remark: More detailed information about the graph of the equation y = il/='

will appear later.
13 In Problem 4 of Section 12.6, we shall discover that if z > 0, then

(1) log z! = log 2a + (z + 'ff') log z - z + E(z),

where E(z) is a number for which

1 1 1 1 1

(2) 12z 36071
E(z) < 12z 360z3 1260z6

Show that (1) can be put in the form

(3)

and hence that

(4)

log z! =log 2za+logz'-z-I-E(z)

z! = 2zlr z°e-'ez(s).
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Remark: The formulas (1) and (3) and (4) are examples of Stirling formulas for
log at and z!.

14 This problem requires that we capture the ideas used to obtain the number

y = e0.41631 690216

correct to 10 decimal places, it being assumed that a table giving e6.4163 correct
to 15 places and a desk calculator are available. The first step is to recognize
that y = AB, where -4 = ex, B = eh, x = 0.4163, and h = 0.00001 690216.
The number t4 is copied from the table correct to 12 or 15 places. The number
B is readily calculated to 12 or 15 places with the aid of the formula

hf2

which we shall learn about in a problem at the end of the next section. After
a few buttons have been pressed, the calculator will give the product y = AB
in a hurry.

15 This problem requires that we capture the ideas used to obtain the number

z = log 4.16316 90216

correct to 10 decimal places, it being assumed that a table giving log 4.1631 cor-
rect to 15 places and a desk calculator are available. The first step is to recognize
that

z = log 4.1631 + log
4.16316 90216

4.1631

and hence that z = I + B, where 14 = log x, B = log (1 + h), x = 4.1613, and

h _ 0.00006 90216
4.1631

The number -4 is copied from the table correct to 12 or 15 places. The number B
is readily calculated to 12 or 15 places with the aid of the formula

log (l + h) = h -
h2

+ 33 - 4 + .. .

The sum 14 + B can be obtained with a pencil, but it is safer to use the calculator.
16 Supposing that a desk calculator is available to perform additions, sub-

tractions, multiplications, and divisions, describe the steps by which the numbers

(a) 2=, (b) irr, (c) ex, (d) Ir6, (e) -,Vl-r

can be calculated correct to 12 decimal places. Hint: Take logarithms with
base e so that tables of values of e- and log x can be used. Partial ans.: Let w = a*
and obtain the formula log w = C, where C = AB, -4 = a, and B = log 7r.
Find a table giving 7r correct to 15D (that is, 15 decimal places). Then use the
method of Problem 15 to find B correct to 1SD. Then multiply to find C.
Then w = ec. Let C = n + x, where n is an integer and 0 5 x < 1, sow =
e"ez. Find e by multiplication or from a table. Find ez by the method of
Problem 14. Finally, multiply to get w.



9.1 Exponentials and logarithms 489

17 Persons who start fires with matches can be interested in the fact that
fires can be started by rubbing sticks together. We shall soon learn modern
ways of calculating approximations to exponentials and logarithms, but we can
be interested in seeing that more primitive methods will work. Supposing that
a and x are positive numbers given in decimal form, and that 0 < x < 1, we
outline an old, old procedure for finding decimal approximations to ax that was
used when all computations were made by hand and when letters A, B, C,
of the alphabet were used in place of xo, x,, x2, . To get started, let yo =
0, zo = 1, and observe that the inequalities

(1) yn_x5zn, : - 5ay" :-5
hold when n = 0. Supposing that n = 1, calculate x, and then all from the
formulas

(2)
yn-1 + zn_i

xn = 2 axn = `axn-1,

and let y,. and zn be two of the three numbers y,-i, x,,, zn_, chosen in such a way
that the inequalities (1) hold when n = 1. Repeating the process with n = 2
gives (2) and then (1) when n = 2, and the process can be continued. Since
zn = yn + 1/2n, we can be sure that our estimates of ax will be good when n is
large. To find

('/2 +
-/3)"-I

correct to 32 decimal places by this method (or by any other method) would be
quite a chore for an inexperienced person, but persons who run modern computers
can enjoy making such computations. Primitive methods often work better
than fancier methods of limited applicability.

18 Persons possessing slide rules may wish to study them while reading
something that tells why they work. The C and D scales contain numbers from
1 to 10 and, when it is supposed that these scales have unit length (this unit is
usually about 10 inches), the number x lies logo x units from the left end. To
find the product X of two positive numbers A and B, we put them in the forms
A = 10-a and B = 1011b where m and n are integers and 1 < a < 10, 1 < b < 10
and use the fact that X = l0m+nx where x = ab. Noting that

(1) logo x = logo a + logo b,

we run along the D scale a distance loglo a to the number a and then, after setting
1 on the C scale opposite a, run along the C scale a distance logo b to the number b.
We have then gone the distance logos x from the left end of the D scale and hence
can read x on the D scale.

19 Persons possessing log-log slide rules may wish to see why and how the
esoteric LL scales are made. Suppose we wish to find the number y for which
y = b4 when b and q are given. We note that

(1)

and

loge y = q loge b

(2) logio loge y = logo loge b + logo q.
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The LL3 scale contains numbers from e to about 22,000. The distance from the
left end of the LL3 scale to a number y is loglo log, y. If we run a distance log10
log, b on the LL3 scale to hit b and then, with the aid of the C scale, run an addi-
tional distance loglo q, we go a total distance logio log, y and hence can read y on
the LL3 scale. We can be comforted by discovery that log-log slide rules give
the simple formulas 34 = 81 and 42.5 = 32 as well as others that are not so easily
verified. It is often particularly useful to know that if points b and f lie opposite
each other on the LL3 and D scales, then

(3) logio log, b = logio f

so log, b = f and b = ef. Thus natural exponentials and logarithms are easily
read, and the good approximations e3 = 20, log 20 = 3 are always available to
show us which way to read the scales. With the aid of this and similar informa-
tion about other scales, it is possible to both understand and use slide rules.

20 This is the promised development of the theory of ax for the case in which
x is rational. Let a be a positive number. It is the base of the exponential
function ax which we are about to define when x is an integer, then when x is the
reciprocal of a nonzero integer, and then when x is a rational number which is not
necessarily an integer. If n is a nonnegative integer, we define an and a-" by
the formulas

(1)
1

an = 1'a'a'a'a a, a-" =
1 a.a.a . . . a'

where in each case 1 is multiplied by a exactly n times. If n = 0, no multiplica-
tions are involved and ao = 1. Clearly, a' = a, a -I = 1/a, a2 = a-2 =

etcetera, and a-" = 1/a" or a-na" = ao = 1. Counting numbers of times
by which 1 is multiplied or divided by a enables us to show that the laws of
exponents

(2) azav = aiv, (az)v = axv

hold whenever x and y are nonnegative integers and then whenever x and y are
integers. Let n be a nonzero integer and let f(x) = x" when x > 0. Then
f'(x) = nx' ', so f is continuous and increasing when n > 0 and is continuous and
decreasing when n < 0. Moreover, f(x) -- 0 as x - 0 and f(x) --+ oo as x -> 00
when n > 0, and f(x) --> oo as x -* 0 and f(x) -). 0 as x oo when n < 0. In
each case these facts and the intermediate-value theorem 5.48 imply that there
is exactly one positive number h for which hn = a. We then define ailn by the
first of the formulas

(3) On = h, a = hn, (al/n)" = a, (an) 11n = a,

remember that the first formula is equivalent to the second, and observe that the
last two formulas are correct. Supposing that X, p, and q are integers for which
Aq 0 0, we acquire ability to manipulate these things by proving the formula

(4) (a>' )11aq = (aP)llq = (ailq)" = (ail),q)XP

To prove this, let H be defined by ail'e = H, so that a = H'`q = (Hx)Q and
alle = H. Thus (4) will be true if

(5) ((H19))1P)1/aq = ((Hq)P)11q = (Hx)P = H°.
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But (H''Q)XP = (H),P)xQ and (HxQ)P = (H>P)Q, and it follows that each member of
(5) is HxP. Thus (5) is true and this proves (4). Just as the rational number r
defined by r = -4$ is representable in the forms

63 (7)(-9) -9
r -28 - (7)(4)

_
-4-'

so also each rational number r given in the form r = P/Q, where P and Q are
integers, is uniquely representable in the form p/q, where P = Ap, Q = Xq, and
A, p, and q are integers for which q > 0 and the integers IpI and q are relatively
prime, that is, have no common positive integer factor different from 1. This
fact and (4) show that when P and Q are integers for which Q 0, we can define
aP/Q by the first of the formulas

(6) aP/Q = (aP)1/Q = (al/Q)P
a

with assurance that the whole formula is correct and that the formula remains
correct when we multiply or divide both P and Q by the same integer X provided
A 0 when we divide. This completes the definition of ax when x is rational.
To prove that the laws (2) hold when x and y are rational, we can let x = p/n
and y = q/n, where p, q, n are integers and n > 0, to obtain

axay = (aP/n)(a4/n) = (a11n)P(al/n)Q = (alln)P+Q = a(P+4)ln = ax+y
and

so

((ax)y)n2 = ((\01n14)1/nln2 = (((aP)1/n)Q)n = (((a")Q)lln)n = aP4

(ax),l = (aPs)1/n2 = aPQln2 = axy.

9.2 Derivatives and integrals of exponentials and logarithms
Let a > 1. Looking forward to a derivation of a formula for the deriva-
tive of the function f for which f(x) = ax, we use h instead of Ax, write

(9.21)

and observe that

ax+h - ax = (all - 1) az,

d = ax+h -ax ah-1
(9.22)

dx
ax ho

h
h-0 h

J ax

provided the limits exist. If we succeed in proving that, for some con-
stant A which may depend upon a, the first of the formulas

(9.221) lim
ah

h
1

ah
= A,

hlli m
h 1= A

is valid, then the second will also be valid because
ah -

1
h -

1 1
h h -

1lim = lim a = lim lim a '' a
a

= h_ hhh-.0- h h-+0+ -h h-O+

and we will be able to conclude that

=A

(9.222)
TX

ax = Aax.
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To investigate the factor ah - 1, we employ the method which we used to
prove Theorem 9.15 when we knew practically nothing about exponentials.
Let h be a number, now not necessarily rational, for which 0 < h < 1 and
let n be the greatest integer for which nh <- 1. The equality

(9.23) (ah - 1)a(k-1)h = akh - ack-1>h

still holds when k = 1, 2, 3, , n, and summing over these values of
k gives, as in (9.153),

n++1

(9.231) (ah - 1) C 4 a(k-1)hl = anh - 1
k=

and hence

(9.232)
ah-1 _ anh- 1

h n

I atk-1)hh
k=1

The numerator of the right side converges to a - 1 as h ---> 0. If to the
denominator of the right side we add the negligible term anh(1 - nh),
the new sum will be a Riemann sum, with partition points

0<h<2h<3h< . <nh<1
in the interval 0 <_ x < 1, which converges to the positive number

f01
ax dx as h, the norm of the partition, approaches 0. Because it is

sometimes extremely helpful to be able to recognize Riemann sums when
they appear in somewhat disguised forms, we give careful attention to
the details. If we set f(x) = ax, set xk = kh when 0 < k 5 n, set
xn+1 = 1, set xk* = xk when 1 k 5 n + 1, set Oxk = h when 1 < k <- n,
and set Ax.+1 = 1 - nh, then the new sum becomes the Riemann sum

n+1

(9.233) 1 f(xk) Lxk
k=1

and as h, the norm of the partition, approaches 0 the Riemann sum
approaches fol f(x) dx, that is fol ax dx. Therefore,

(9.24)
limah - = a - 1 = A,

h-o h f axdx
0

where A is the constant defined by the last equality. It is possible to
squeeze information from this formula, but we obtain a formula giving
a simpler relation between a and A before actually showing that there is
one and only one number a for which A = 1.

We have obtained the first of the formulas

(9.25)
TX

ax = Aax, dx logo x =x
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Since a0 has a positive derivative, Theorem 8.33 implies that its inverse
log,, x, defined over the infinite interval x > 0, is differentiable. Hence
we can differentiate the first of the formulas

(9.251) alog. x = x, Aa'°gax z log.x = 1

with the aid of the chain rule to obtain the second and hence obtain the
second formula in (9.25). Conversely, if the second formula in (9.25)
is known to hold, then differentiation of the members of the formula
log. ax = x gives the first formula in (9.25). Since logo 1 = 0, replacing
x by t in the second of the equivalent formulas (9.25) and integrating
over the interval from 1 to x gives the formula

(9.252) Alog. x=flo 1dt.
tt

Since loga a = 1, putting x = a gives the formula

(9.253) A=
f
(aIdt

which clarifies the relation between a and A.
Exponential functions and their derivatives and integrals occur so

often that the constant A in the above formulas would, if allowed to
survive, be an insufferable nuisance. Hence we can relish the proof that
we can choose a to make A = 1. If we let f(x) denote the right member
of (9.252), then f is continuous and increasing over the whole interval
x>0,f(1)=0,and

r4

(9.254) f (4) = J t dt > + + 4 > 1.
1 t

There is therefore exactly one positive number e for which 1 < e < 4
and the constant A in (9.253) and preceding formulas is I when a = e.
Thus all of the above formulas are correct when a = e and A = 1.
In particular, we have proofs of the basic formulas

(9.26)
d

ex - ex, dx log x =
1

Y

and hence also of their companions

(9.261)
J

ex dx = ex + c, fi
dx=logx+X

Setting a = e and A = 1 in (9.24) and (9.253) gives the formulas

exdx=e-1,(9.262)
fo fi

1dx=1,
X
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correct to 5 or 10 decimal places

Exponential and logarithmic functions

which we can now obtain very easily
by evaluating the integrals. Each
of these formulas actually deter-
mines e, and the second one says
that e is so determined that the area
-4 of the region shaded in Figure
9.263 is 1. Many other formulas
involving e will appear later, and one
of them will enable us to calculate e

with surprisingly little effort. Mean-
while, we can remark that many persons remember the 16D (16-decimal,
but only 15 after the decimal point) approximation to e by mentally
grouping digits in the form

(9.264) e = 2.7 1828 1828 45 90 45

so we can visualize the repeated 1828 followed by 45 and twice 45
and 45.

The number e is the natural base of exponentials and logarithms.
Other bases sometimes appear. The base 10 is used when we give a
number n and say that "there are 10^ atoms in the universe," but not
even Eddington suggested that this should be differentiated with respect
to n. We never differentiate or integrate a is e. If, as never
or rarely happens outside misguided examinations in calculus, we are
called upon to differentiate or integrate a1:1 where a e, we write

(9.265) ak1z = ekta

and take logarithms with base e to obtain kix log a = k2x and hence
k2 = kl log a. We then work with ek'z instead of aI. z.

Our theory of exponentials and logarithms enables us to provide the
promised proof of the power formula which, for convenience of reference,
we put in a theorem.

Theorem 9.27 If n is a constant, integer or not, then

d xn = nxn-1

when x>0.
To prove this theorem, let y = xn and take logarithms to obtain

log y = n log x. Since log y is differentiable, we can, because y = eb0 y,

conclude that y itself is differentiable and can use the chain rule to obtain
(1/y)dy/dx = n/x so dy/dx = nx". This proves Theorem 9.27. We
are now able to prove the last of the basic limit theorems, Theorem 3.288,
which we now restate.
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Theorem 9.271 If p is a constant positive exponent, then the first of
the formulas

(9.272) lim xP = aP, lim xP = aP

holds when a > 0 and the second holds when a 0.
To prove this theorem, let p be a given positive constant and let f

be the function for which f(x) = xP when x > 0. That f is continuous
at a when a > 0 is a consequence of the fact (see Theorem 9.27) that
f' (a) exists when a > 0. This proves that the formulas (9.272) are valid
when a > 0. Since OP = 0, it remains to be proved that

(9.273) lim xP = 0.
®-.o+

With the aid of the facts that

(9.274) lim log x = - oo,
x-.O+

this follows from the equality

(9.275)

lim eh = 0,
h-.-.

xP = eP lo; x.

We conclude with some remarks that lead to a formula which has not
appeared in our work but which nevertheless has much more than his-
torical interest. If we know the basic properties of logarithms, we can
let L be the function for which L(x) = log x when x > 0 and obtain the
formula

(9 28)
L(x + h) - L(x) = log (x + h) - log x = 1 log 1 -f-

h
h h h x

lx=xhlog 1+x xlogl+
/h

x/
which is of interest from more than one point of view. If we can show,
without reference to our previous results, that there is a number e for
which

h
(9.281) lim 1 + h

h = e,
h- o

xx

then we can adopt this new number e for the base of our logarithms and
use (9.281) and the fact that L is continuous and L(e) = 1 to obtain
another proof of the formula L'(x) = 1/x. This formula then provides
a back-handed proof of the formula deex/dx = ex. The difficulty in this
view of (9.28) lies in the fact that "direct" proofs of existence of the
limit in (9.281) are neither brief nor quickly comprehended. A proof
is given at the end of the problems of this section. We now look again
at (9.28) and realize that we have proved that L'(x) = 1/x and hence
that the members of (9.28) must converge to 1/x as h -+ 0. Since L
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is a continuous increasing function for which L(e) = 1, the formula
(9.281) must be correct. Thus we have an "indirect" proof of (9.281).
Replacing x and h by their reciprocals shows that (9.281) implies the
more interesting formulas

\ \
(9.282) lim (1 + x )hI5

= e, lim (1 + x )h = ez.
Ihhm h IhI-

/
\ h/

The most famous of these formulas, obtained by setting x = 1 and con-
sidering h to be a positive integer, is

(9.283) lim 1 +
I )n- = e.

n-. m n

Since 1 + 1/n > 1, the result in (9.283) furnishes a very interesting
compromise between the exponent n whose growth tends to make the
quantity large and the term 1/n whose decrease tends to make the
quantity near 1.

Problems 9.29
1 When we know some calculus, we can quickly dispose of problems that

were troublesome. Show that the functions having values eZ and log x are
increasing.

2 With the aid of information yielded by first and second derivatives, sketch
a graph of y = ex and the tangent to the graph at the point (0,1).

3 With the aid of information yielded by first and second derivatives, sketch
a graph of y = log x and the tangent to the graph at the point (1,0).

4 Let y = xe Z. Show that

y'(x) x)e Z. -iX
Show that y'(1) = 0, y'(x) > 0 when x < 1, and y'(x) < 0 when x > 1. Show
that

y"(x) = (x - 2)e Z.
Determine when the slope of the graph is increasing and when it is decreasing.
Use your information to sketch the graph.

5 Show that

(a) e-' = -2xe ' b - e'Z = eaiaZ cos x

(e)

dx
el' = er+- (d) dx e-' = abet-+-, z

6 Show that

d 2logx d 1(a)
dx

(log x)2
x

(b) log log x = x log x

(c) log sin x = cot x (d) log (1 + x') = 1 + x2
7 Textbooks in differential equations provide substantial information about

some of the situations in which a "population" or something else depends upon
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t (time) in such a way that its rate of change with respect tot is proportional to
it. There are in fact many situations in which it is assumed that y is a function
oft such that, for some constant k,

(1) dy kdt= y
at each time t. We have thought about this matter before, and we shall think
about it again. The pedestrian way to start to extract information from (1)
is to divide by y. Without assuming that y 0 0, show (with complete attention
to each detail) that if (1) is true, then we can transpose ky and muliply by ekt
to obtain the first of the formulas

(2)
d e kty = 0, e kty = A, y = 4ek'

and then the remaining ones in which A is a constant. Continue the work to
show that if y satisfies (1) and the boundary condition

(3)

then

y = yo when t=0,

(4) y = yoekt.

Remark: This problem provides a major reason why exponential functions are
important. In many cases, y decreases with passage of time and k is negative.
In such cases there is a positive number T such that

(5)
vyoekt = ypek(t+T)

for each t. This number T, which is called the half-life of y, is the number of
units of time required for half of y to fade away. From (5) we find that - = ekr
or ekT = 2 or -kT = log 2 or

(6)
log 2 0.69315T = - k k

This formula can be used to determine the half-life T when we know k, and it
can be used to determine k when we know the half-life.

8 Supposing that 0 =< x 5 A, observe that

(1) 05ex 5eA.
Replace x by t and integrate over the interval from 0 to x to obtain

(2) 0<=ex-1<=eAx.

Replace x by t and integrate over the interval from 0 to x to obtain

(3)

z
0ex-1 -x5eA2i-

Repeat the process to obtain

(4)

(5)

x2 x$05 ex-1-x-Zi:e''31
xs x3 x4

0 ex -1-x-i T-1=eA4i
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With or without more attention to details, jump to the conclusion that, for each
n= 1, 2, 3, ... ,

n xk xn+1 Jn+1
(6) O S e= - I -k! < e" (n + l)! <

eA (n + 1)!k=O

While this may not be a suitable time to worry about the details, we can be sure
that if 4 = 400, then the quantity

,4n+1 14 .4 14 A A .4 A .4
(n+1)!- 1 2 3 4 5 n-1 nn+l

will be large when n is about J. The quantity will nevertheless be near 0 when
n is sufficiently great. Therefore,

n

(7) ex = lim I = i + x + xz + x3 + x4 + ... .
n-iw k-0 2! 3! 41

While (7) is more spectacular than (6), it is not always as useful. Show that
putting x = B = 1 in (6) gives the formula

11(8)
(n 3+ 151*

Verify that
1=1.
1 = 1.

1/2! = 0.5
1/3! = 0.16666 66666

1/4! = 0.04166 66666

1/5! = 0.00833 33333

1/6! = 0.00138 88888

and that the next term is obtained by dividing by 7. Continue the work to
obtain a decimal approximation to e that is correct to 6D (5 decimal places after
the decimal point).

9 Supposing that x < 0, observe that

(1) OSel51.
Replace x by i and integrate over the interval from x to 0 to obtain

(2) 051-e=5-x.
Replace x by i and integrate over the interval from x to 0 to obtain

?z

(3) 05e 1 -x5
Repeat the process to obtain

(4)

(5)

051+x+2a=<3
xz xa x4

O T!,
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Note that considerations very similar to those in Problem 8 establish validity
of the formula

(6) e2 =
Jim

fin'
x = 1 + x + xX2 X3 X

-{ x -I- 4 -I- . . .n-,kO2. 3i . 4.

when x < 0. For some purposes, (4) and (5) and their extensions are more useful
than (6).

10 Have another look at the formula

e2=1+x-}-2i-I-3 +4i+

and remember it. Then write the formula and use it to obtain an approximation
to e3 which agrees with the idea that (e½)2 = e.

11 Prove one of the inequalities

e2 > 1 + x, log (1 + x) <- x, log x 5 x - 1

and show that each implies the other two. Hint: If no better idea appears,
find the minimum value of e2 - 1 - x.

12 Prove that if x > 0 and k is a positive integer, then

0<et<(k ixk=(k zl)l

Use this result to show that

13

(1)

(2)

lim
x k

= 0.

We can become accustomed to the formulas

1 -to=1+t+t2+ ... +t"-11-t
1 1 t = +t+t2+ ... +tn-1+1

if we see them often enough. Prove that if -1 5 x < 1, then integration from
0 to x gives the formula

2 3 n

(3) log l-x=x++3+..+n+Rn
where

(4) R. = f oy 1 to t dt.

In case 0 5 x < 1, show that

(5)
foxltnxdt=(n+1)(1-x)<(n+1)(1-x)

and in case -1 5 x < 0, show that

(6) JRn[ =lL 1-tdtl5l fxot^dtI=nx+1-n+I
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Hence prove that

(7)

Exponential and logarithmic functions

log11x=x+2+3+3+...

when -1 S x < 1 and that

(8) log2=1+ +3-1 ...
Show that replacing x by (-x) in (7) gives the formula

3 4 .. .(9) log(1+x) =x- 2 +3
_X+

and that addition gives the formula

(10) log 1 + x = 2 x + 3 + S + 7 { .. .l

which holds when (xi < I. Use (10) and a little imagination to obtain the
formula

(11) log2=2(3+33+535+ . .l

from which we could, with the aid of a calculator or computer, calculate log 2
correct to many decimal places. Some persons need approximations as good as
that in

(12) log 2 = 0.69314 71805 59945 30941.

If we want log 10, we could get log 8 by multiplying (12) by 3 and then add the
result to log (V) which can be calculated from the formula

(13) log

8
= 2(4+393+595+7.9'+

in which the series converges quite rapidly. The result is

(14) log 10 = 2.30258 50929 94045 68402.

To get log 3, we could let x = l in (9), but this series converges rather slowly. It
is much better to calculate log 9 and then log 3 from (14) and the formula

(15) log
10

9 = 2 (
1

19 +
1

5 195 +3.193 +
1

This gives

(16) log 3 = 1.09861 22886 68109 69140.

14 Elementary combinations of the logarithms of 2, 3, and 10 give the loga-
rithms of 2, 3, 4, 5, 6, 8, 9, 10, but 7 is missing. Show how the proximity of
49 to SO enables us to calculate log 7 with the aid of a series that converges
rapidly.

15 This book does not recommend learning a formula for dy/dx when y =
f(x)D(2), where f and g are given functions. If (as frequently happens in good
old-fashioned mathematics examinations) we are required to produce the deriva-
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tive, we can begin by being irked by the fact that the base is not e. There are
two superficially different ways to put the given equation in a form to which
basic rules are applicable. Taking logarithms (with base e) gives

(1) log Y = g(x) log f(x)

and, with or without using (1), we can put the equation in the form

(2) y = ea(x> log 1(z).

When (1) is used, we differentiate to obtain

(3)
1

y dx = g(x) fix)f'(x) + g,(X) log f(x)

and, with the aid of the fact that y = f(x)o(x>,

(4) dx f(x) [ f(x) + g ,(X) logf(x)].

When (2) is used, we differentiate to obtain

(5) dx = ef(x) log 0(x) [f(x)
g 1

g'(x) + f'(x) log g(x) ]

and then use (2) to obtain the result (4). With the above formulas out of sight,
use one of the above ideas to obtain a formula for dy/dx when

Y=xx

(b) y = (1 + x)'Ix

(c) y = (sin x)°ln x

(d) y = (sin x)tsn x

(e) y = xlog x

(f)Y=ab=

(g) Y = x",

flns.: dz = xx(1 + log x)

dy x - (1 + x) log (I + x)
lIns.:

dx
= (1 + x)llx x-(1 + x)

flns.: dx = cos x(1 + log sin x)(sin x)-in

Ins.: dx = (1 + sec2 x log sin x) (sin

Ans.: dx = 2x1og z-1 log x

As.: dy
= abobz log b log a

1Qns.:dx=xbbx log x[ logb+xl 1
-

16 One who is interested in solving a puzzle with an interesting answer may
undertake to determine the nature of the graph of the equation y = xz. One
who has never thought about the orders of magnitudes of the numbers (0.01)0 01
and (j)3h may even be surprised by the results.

17 If the result has not already been obtained, let y = xx and show that

y"(x) = xx(1 + log x)2 + xx-> > 0.

Tell what this says about the graph of y = xx.
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18 Derive the formula

f ez +1 dx=x-log(ex+1)+c

with the aid of the identity

I ez+1 -ex es
ex+1 = eZ+I = I ez+I

19 Letting F(O) = 0 and F(x) = e-11" when x 0 0, show that the formula

{1) F(k)(x) = Pk() e-11z2
X 3k

holds when x 0 0, k = 1, and Po(x) = 2. Supposing that (1) is valid when k is
a given positive integer n and P, (x) is a particular polynomial in x, differentiate
(1) to obtain a formula which shows that (1) holds when k = n + 1 and

(2) (2 - 3nx2)Pn(x) - x3P',(x),

so that P,+i is a polynomial in x. This shows (the principle involved being called
mathematical induction) that (1) holds for each k, Pk being a polynomial in x.

20 Prove that if P and Q are polynomials in x for which Q(x) is not always
zero, then

(1) lim P(x) a '1_' = 0.
z-.o Q(x)

Solution: We can determine constants such that bQ 0 0, qis an integer, and

(2)
__ aQ + a,x + + amxm() Q(x) bo + bix + + x°

It therefore suffices to prove that

(3) lim jxjge 'I_' = 0,
x-4o

or, as we see by setting t = 1/x2,

(4) lim t-e/2e ' = 0.1-.

But when t > 1 and k is a positive integer for which -q/2 < k,

(5) t-at2et+ < tke ' =
j k

e'

Our conclusion is therefore a consequence of the formula

tk(6) Iim = 0
t--, m et

which is proved in Problem 12.
21 Let F be the function for which f(0) = 0 and

(1) F(x) = e-11=:

when x ; 0. With the aid of results of the two preceding problems, prove that
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F and each of the derivatives F(l), n = 1, 2, 3, , is continuous over the
whole infinite interval - ao < x < oo and, moreover,
(2) Fn) (0) = 0 (n = 1, 2, 3, ...).
Remark: This is one of the famous functions of mathematical analysis. Note
that we have no formulas into which we can put x = 0 to obtain the numbers
F(n)(0). After we have learned that F(k)(0) = 0 when k = n, we must use the
definition

F(n+1) (0) = lim
Fcn) (x) - Fcn) (0)

X-0 x

to learn that F(k)(0) = 0 when k = n + 1.
22 Supposing that a,, a2, a3, are positive numbers, that n is an integer

for which n > 1, that x > 0, and that

ai+a2+ +an-i+x

aja2 . an_ix

prove that fn(x) is a minimum when and only when

(2) x = a1 + a2 + + a,,_1
n

Hint: Use the fact that fn(x) is a minimum when log fn(x) is a minimum. Show
that

(3) Id log fn(x)
_ n-1 a,+a2+ ... +an-,

nx(ai + a2 + ... + an-1 + x) Lx - n - 1 1

Remark: Our result shows that

(4) fn
a, + a2 + ... + an-1)

< fn an)n

and that equality holds only when an is the arithmetic mean (or ordinary average)
of the numbers a1, a2, , a,,_l. Interest in this matter can start to develop
when we observe that

a1+a2+ +an
n

n n

a1a2 an

and hence that fn(an) is the ratio of the arithmetic mean of the numbers a1, a2,
, an to the geometric mean of the same numbers. By using (1) to obtain

an expression for the left member of the formula

a, + a2 + + an-1 cn-i>tn

(6)
a1+a2+ + an_1n-1

fn n (ala2 . .

[fn-1(an-1)lcn-1)In

and applying some quite elementary algebraic operations to simplify the result,
we can derive the formula. From (6) and (4) we obtain the formula

(7) [fn-1(an-1)]n-1 C ln(an)l.
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Since fi(al) = 1, this gives the remarkable parade` of inequalities

(8) 1 G
Cal

+ Qn\ 2

G
Cal

+ a2 + a3\1

(al

+ a2 + a3 +

G\ 2 /J\ 3 /J 4 /
a,a2

3
ala2a3 alaoa3aq

The denominator in these quotients cannot exceed the numerators, and therefore

(9)

,, .. . a d al + a2 + +a.
1 2 ,,

(n = 1,2,3, ..),

The simple corollary (9) of the more spectacular result (8) is a statement of a
very famous theorem which says that if a1, a2, , an, are positive numbers,
then their geometric mean is less than or equal to their arithmetic mean. Our work
enables us to show that equality holds only when the numbers a1, a2, ' ' , an are
equal. Many proofs of this theorem are known, and it is quite appropriate to
become interested in the matter by looking at the special case

(10) 27ala2as < (a, + a2 + a3)3

and seeking ways to prove it. Sometimes scientists say that boys work with
equalities and men work with inequalities.

23 For those who are interested in the matter, we present a direct proof that
lz

(1) lim f(x) = e when f(x) _ (1 + -/ .
I=I X

When n is a positive integer, putting a = 1 and b = 1/n in the binomial formula

(2) (a + b)n = anb° + van-1bl + n(n2- 1) an-2b2

+ n(n - 13 (n - 2) an-3P + ... + n(n - 1) (n
- 2) . . . 2.1 a°b"

gives

(3) 11)+3!(i
)n)

+ (1 /\1 )(1 )+
+ )

Hence

(4) f(n)51+1+2i+3 +...+ni

2 22 2n

It follows from Theorem 5.65 that the series in

(5) e

converges to a number which we can call e and that (5) holds. If m > n, then
replacing n by m in (3) shows that f(m) consists of (m + 1) terms of which the
first (n + 1) equal or exceed those in the right member of (3) and the remaining
m - n terms are positive. Hence f(m) > f(n) when m > n. As we can see
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by putting s, = f(n) in Theorem 5.651, this and (5) imply existence of a number
L for which

(6) lim f (n) = L < e.
n- .

To prove that L = e, we can use (3) and (5) to obtain

1-f I 1 (1 -n/+3!\1 n/\1 2)-I-.

N (1 - n) n) .. . (1 -
n f(n) < e

when n > N. Letting n --+ oo gives

(7) + 1 -1- 2i + -1- ... . r L < e,

and letting N--> w shows that L = e. Supposing now that x > 2 and that x
is not necessarily an integer, we can let n be the greatest integer in x so that
n S x < n + 1. Then it is easily seen that

(8) (1 + n
-1 1) < f(x) < (1 +

n)R+i

The first and last members of this inequality converge to e as n -> because
they are respectively equal to

(9)
(1+n+1)n+i(1-i

n+1)_', 1+n(1 +n1)
and the second factors converge to 1 as n -> oo. Therefore, f(x) -> e as x -> oo.
Proof of the part of (1) involving negative values ofxis provided by the calculation

10 li -x = lim ( x2 = li m (1 - 11 + I( ) m ))(
1 -f- 1 ) = rl = eli 1 + 1 x-1li 1 1 z .m ( ) (m ( )+- =X_. ` x-1 X_. x-1 x-1

9.3 Hyperbolic functions We begin with a peek at some formulas
that are very useful in more advanced mathematics and will appear again
in Section 12.4. The formula

(9.31) eZ = 1 + z -I- 2 + 3 + 4 -I- ... ,

which has been proved to be valid when z is a real number, is used to
define e$ when z is a complex number of the form z = x + iy, where x
and y are real and i is the so-called imaginary unit for which i2 = -1.
Since i2 = -1, is = -%, i4 = 1, i5 = i, , it can be shown that

(9.311) el-Zi-F4h-6i+...1

..l+ i (z - zs zs '7
31 T-1 71!
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and hence that

(9.312) eu = cos z + i sin z
(9.313) e u = cos z - i sin z.

Adding and subtracting give

(9.314)
eiz + e-iz ei. - e"

2i2
sin z =

These are Euler (1707-1783) formulas. They are widely used, particu-
larly in electrical engineering, to replace calculations involving sines,
cosines, and their positive powers by simpler calculations involving expo-
nential,. We do not need to understand these matters now, but we can
at least acquire a vague feeling that trigonometric functions are related
to exponential functions by formulas very similar to those which relate
hyperbolic functions to exponential functions. In any case, we can know
that there is a reason why formulas involving hyperbolic functions are
so similar to formulas involving trigonometric functions. Modern
scientists know that their ancestors complicated many problems by
habitually using trigonometric and hyperbolic functions in situations in
which results are obtained much more neatly and quickly by use of
exponentials. Thus hyperbolic functions are introduced to students
with the hope that they will (insofar as they can control their own
activities) use the functions only for purposes for which they are useful.

We now return to our usual situation in which all numbers are real.
The hyperbolic sine, hyperbolic cosine, and other hyperbolic functions are
defined by the first of the following equations, and calculation of the
derivatives gives practice in differentiation.

z
(9.32) sinh x = ex - e-

2 , dx sinh x = cosh x

(9.321) cosh x = ex

2
e

dx
cosh x = sinh x

(9.322) tank x = ez + e_z,
d tank x = sech2 x

(9.323) coth x = ex + e-, d coth x = - csch2 x

(9.324) sech x =
ex

+ es, d sech x = - sech x tank x

(9.325) csch x = 2 e-y,
d csch x = - csch x coth x

These and many other formulas are very similar to trigonometric for-
mulas, but differences in signs must be noted. As is the case for trigo-
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nometric functions, the first and last are reciprocals, the next to the first
and the next to the last are reciprocals, and the middle two are reciprocals.
With the aid of the fact that exe-x = 1, we can square cosh x and sinh x
and obtain the first of the formulas

(9.33) cosh2 x - sinh2 x = 1
(9.331) tanh2 x + sech2 x = 1

(9.332) coth2 x - csch2 x = 1.

To obtain the second (or third) formula, we can divide by cosh2 x (or
by sinh2 x) and transpose some terms. Graphs of the first three hyper-
bolic functions are shown in Figures 9.34 and 9.341, and the others are
easily drawn.

-2 -

-1

1'

y=tank x

X

Figure 9.34 Figure 9.341

To work out formulas for the inverses of the first hyperbolic functions,
we let

e : e

(9.35) x=cosh t=e 2e-, y=sinht=e 2e

and observe that cosh t is increasing over the interval t > 0 and sinh t
is increasing over the whole infinite interval. The equations (9.35) can
be put in the forms

(9.351) ell - 2xe= + 1 = 0, ell - 2ye° - 1 = 0.

These equations are quadratic in a°, and solving for e° gives

(9.352) ee = x + x2 - 1, et = y + \/-y2+ 1,

it being necessary to choose the positive sign in each case because et
is positive and increasing as x and y increase. Taking logarithms and
changing y to x gives the first items in the first two of the following for-
mulas. Similar methods and differentiation give the remaining items.
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(9.36) sinh-1 x = log (x + x'- T-1)' d sinh-1 x = 1
dx 1 +x2

1
(9.361) cosh-1 x = log (x + dz cosh-1 x = 7X:2=-7

(x > 1)

(9.362) tanh-1 x = . log 1 + x,
d

tank-1 x = 11 -x dx 1 -x2
OxI < 1)

(9.363) coth-1 x = i log
x + d

coth-1 x = -1x-1 dx x2-1

(9.364)

(9.365)

(lxI > 1)
1 + 1 z- x d -1sech-1 x = log , sech-1 x =

x dx x 1 -x2
(0<x<1)

csch-1 x = log 1 + 1
-+X 2

d csch-1 x = -1,
x dx x 1 +x2

(x > 0)

Because of the growing tendency to use exponentials to eliminate
calculations involving hyperbolic functions and even trigonometric func-
tions, it seems unwise to devote more time to the formal aspects of the
subject. It is, however, of interest to know how hyperbolic functions
are related to hyperbolas. Setting

t -t t - t

(9.37) x=cosh t=e e -t y=sinht=e 2e2

we see that x > 0 and x2 - y2 = 1, so P(x,y) lies on the branch of the
rectangular hyperbola shown in Figure 9.371. A reasonable way to try

Figure 9.371 Figure 9.372
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to discover the role of the parameter t is to let r be the vector running from
the origin to a particle which occupies the position (x(t),y(r)) at time t.
Then

(9.381) r = cosh ti + sinh tj

and differentiation gives the velocity and acceleration

(9.382) V = sinh tj + cosh tj
(9.383) a = cosh ti + sinh tj.

Thus a = r, so the particle is accelerated directly away from the origin,
and the magnitude of the acceleration is proportional to (actually equal
to) the first power of the distance. It is then known from classical
physics that the particle must (as it does) move on a conic. Moreover,
because the force is a central force which is always directed away from
or toward the origin, the angular momentum of the particle must be
constant and the vector from 0 to P must sweep over regions of equal
area in equal time intervals. With (or perhaps even without) the aid
of principles of physics that tell us to examine areas, we can calculate
the area of the shaded region of Figure 9.371 and show that the area is
cosh-1 x and hence is t. The problems show how the details can be
handled. Thus the geometrical similarity between trigonometric func-
tions (which used to be called circular functions) and hyperbolic functions
(which still are called hyperbolic functions) is exposed. Trigonometric
functions of t are "functions of the sector of area t of the unit circle shown
in Figure 9.372." Hyperbolic functions of t are "functions of the sector
of area t of the unit hyperbola shown in Figure 9.371." Those who have
not peered into ancient mathematical tomes and are more accustomed
to "sines of angles" than to "sines of arcs" and "sines of sectors" should
quietly observe that the sector of the unit circle of Figure 9.372 has
area t when the arc from 14 to P has length t and hence when the angle
110P "contains" t radians. Among other things, this little excursion
into history explains the antics of those who write arcsin x in place of
sin-' x and talk about "the arc whose sine is x."

Problems 9.39
1 Verify the six formulas for derivatives of hyperbolic functions.
2 Verify the six formulas for derivatives of inverse hyperbolic functions.
3 Textbooks on differential equations show that if a flexible homogeneous

cable or chain is suspended from its two ends and sags under the influence of a
parallel force field (an idealized gravitational field) then the cable or chain must
occupy a part of the graph of the equation

(1) Y = Zk (e' + e-') =
k

cosh kx,
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provided that the positive constant k and the coordinate system are suitably
determined. Because of this fact and the fact that the Latin word for chain is
catenus, the graph of (1) appearing in Figure 9.391 is called a catenary. Supposing

Figure 9.391

that a > 0, find the length L of the part of this catenary that hangs over the
1

interval 0 5 x =< a. 4ns.: L = k sinh ka.

4 Compare the graphs of y = sech x and y = 1/(1 + x2).
5 Starting with the formula

t= log (x+ x2-1),
show that x = cosh t.

6 Prove the formula

f x2-1 dx = x x2 - 1- i cosh-' x + c

with the aid of (8.488) and use it to show that

cosh-1 xo = 2 [xo xo - 1 -
fixu

x2 - 1 dx].

Use this to show that cosh-' xo is the area of the shaded region of Figure 9.371
when x = xo.

7 Evaluate the integral of the preceding problem with the aid of a hyper-
bolic function substitution.

8 Show that
e= = cosh x + sinh x

e z = cosh x - sinh x.

Show that if there exist constants c, and c2 for which

(1) f(t) = cle(a+b)e + c2e(a-b)t,

then there also exist constants C, and C2 for which

(2) At) = ea'[C, cosh bt + C2 sinh hi].

Use (1) to calculate formulas for f'(t), f"(t), f"'(t), and f(4) (t). Use (2) to cal-
culate f'(t) and f"(t) and observe that the hyperbolic functions are being nuisances.
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9 Supposing that a and b are constants for which b'- a'-, obtain the formula

f ea° cosh ht dt = eat(b sinh bt - a cosh bt)
b2-a2 +c

by integrating by parts twice. For the case where b2 = a2 see the next problem.
10 Considering separately the three cases in which b2 74 a2, b = a, and b =

-a, evaluate the integral
f [e(a+b)e + e(a-b) 1J dt

and put the answers in terms of hyperbolic functions.
11 Determine whether

(a) lim fix to dt x t-1 dt
a-.-1 1

(b) lim fox eal cosh bt di = fox ea0 cosh at dt
b- a

9.4 Partial fractions Let

(9.411) f(x) =x2-2x+1+x 2 1+x'+1+x2I
.

Use of basic integration formulas then gives

(9.412) (x2+1)

+tan-' x+c.
Adding the terms in the right member of (9.411) gives

(9.413) f(x) =
xb - 3x4 + 4x3 - x2 + 3x

x3-x2+x-1
and shows us that the integral

(9.414) f xs - 3x4 + 4x3 - x22 + 3x
dxJ xs-x2+x-1

is equal to the right member of (9.412). Interest in this business starts
to develop when we wonder how we would evaluate the integral (9.414)
if it were handed to us without the preceding formulas. The answer to
this question is quite straightforward. We learn and use a procedure
by which the preceding formulas can be worked out.

The first step is to look at (9.414). The integrand is a quotient of
polynomials in x, and the degree of the numerator is not less than the
degree of the denominator. In such cases we employ division (or long
division) to obtain a polynomial and a new quotient in which the degree
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of the numerator is less than that of the denominator. Letting f(x) be
defined by (9.413), we divide to obtain

(9.42) f (x) = x2 - 2x -I- 1 -I- x
3x

2 + x3 - 2

Our difficulties will have been surmounted when we succeed in expressing
the last quotient (or fraction) in (9.42) as a sum of simpler quotients (or
fractions) that are called partial fractions. This brings us to the key
problem of this section, namely, the problem of representing a given
proper rational function (that is, a quotient of polynomials in which the
degree of the numerator is less than that of the denominator) in terms of
partial fractions. This key problem is important outside as well as inside
the calculus. The problem is treated in some algebra books, but students
normally make their first acquaintance with the problem in calculus
books.

To begin discovery of the partial fractions whose sum is a given proper
rational fraction, we must factor the given denominator and use these
factors to determine the nature of the partial fractions. Electronic
computers are often used to factor denominators, but factoring of the
denominator of the quotient in (9.42) is quite easy if we happen to notice
that

xs - x2 + x - 1 = (x - 1)x2 + (x - 1) = (x - 1)(x2 + 1).

Thus the quotient in (9.42) is the left member of the equality

3x2+1 __ 11 Bx+C
(9.43)

(x - 1) (x2 T 1) x - 1 + x2 + 1

While we are entitled to be quite mystified by the fact until the matter
has been investigated, it is possible to determine three constants .1, B, C
such that (9.43) is true for each x for which the denominators are all
different from zero. In fact, we can clear the denominators from (9.43)
and determine the constants so that the formula

(9.431) 3x2 + 1 = 1(x2 + 1) + (Bx + C)(x - 1)

is true for each x. One way to prove this and to find the constants is to
put (9.431) in the form

3x2 + 1 = (fl + B)x2 + (-B + C)x + (4 - C)
and to observe that this is surely an identity in x if

A+B=3, -B+C=O, Z-C=1
and hence (as we show by solving these equations) if

(9.432) Z = 2, B = 1, C = 1.
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There is, however, an easier way to find 11, B, C directly from (9.431).
Putting x = 1 in (9.431) shows immediately that 4 = A(2) and hence
that 4=2. Putting x = 0 shows that 1 = A - C or 1 =2-C,
so C = 1. Finally, putting x = 2 shows that 13 = 2.5 + (2B + 1),
so B = 1. Substituting from (9.432) into (9.43) gives

(9.433)
3x2 + 1 - 2 x + 1

( X X 2

Since this is the last quotient in (9.42), we obtain (9.411). Thus we
have succeeded in writing the given quotient in (9.413) as the sum of a
polynomial and partial fractions.

Some problems are easier than the one we have solved, and some are
more difficult. When we wish to integrate the left member of

2x+6 .4 B
(9.44)

(x - 1)(x + 1) x - 1 + -x+ 1'

we determine -4 and B so that (9.44) and

(9.441) 2x + 6 = A(x + 1) + B(x - 1)

hold. Putting x = 1 shows that -4 = 4, and putting x = -1 shows
that B = -2. Thus

2x+6 4 _ 2
(x - 1)(x + 1) x - 1 x + 1'

and integration gives

f2?+dx = 4log x-1- 2log-1 'x l 11 + c.

The result can, for better or for worse, be put in the form

f
2x + 6dx = log (x 1)2 + c.

The problems at the end of this section provide additional clues to
methods by which quotients are expressed in terms of partial fractions.
Problem 11 proposes study of basic theory, and persons interested in
more than the simplest mechanical aspects of our subject can do this
studying at any time and perhaps even more than once.

Problems 9.49
1 Show that, when p 0 q and a> 0,

(1) f 1 dx = 1 loglx- pl+c.
a(x - p)(x - q) a(p - q) x - q
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Remark: We should not be too busy to see how this formula leads to another
that also appears in tables of integrals. Let

(2) X=ax2+bx+c,

where a, b, c are constants for which a > 0 and b2 - 4ac > 0. Observe that

(3) X = a (x - p) (x - q),

where p and q are the values of x for which X = 0, so that

-b - yba cs 1 bc
(4) p= 2a q 2a p-q -" a

Substituting in (1) gives the formula

5 1 dx = 1 log
tax + b - b2 - 4ac +r c.

() J X b2-4ac l2ax+b+ 02-4ac

We should know that additional tricks produce additional formulas that appear
in tables of integrals. When a > 0, integrating the first and last members of
the identity

(6)
x 1 (2ax+b) -b _ 1 tax+b b 1

ax2+bx+c 2a ax2+bx+c 2aax2+bx+c 2aax2+bx+c

gives the integral formula

dx.(7) I X dx
2a

log 1XI 2 ff X

When X is defined by (2) and b2 - 4ac s 0 and n 0 1, differentiation and sim-
plification give

(8)
d tax + b = - 2a(2n - 3) - (n - 1)(b2 - 4ac)
dx Xa-1 X.-1 Xn

and hence

r 1 2ax + b _ 2a(2n - 3)
.

1

(9) J Xn
dx = - (n - 1)(b2 - 4ac)Xn-1 (n - 1)(b22 - 4ac) J

X; ;=i, dx.

The formulas (7) and (9) are examples of reduction formulas that sometimes
enable us to express given integrals in terms of other integrals that are more
easily evaluated. Persons who like everything in mathematics can easily become
interested in (9) and similar formulas that appear in books of tables. But the
formulas are rarely used (most people never use them), and with only a twinge
of regret we decline to invest our good time in consideration of examples more or
less like f (x2 - 5x - 1)-' dx.
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2 Supposing that p, q, r are three different constants, determine A, B, C
such that

1 1 B + C
(x-p)(x-q)(x-r) x - p x -q x-r

and use the result to obtain the integral with respect to x of the left member.
Ans.:

(pq)(p-r)loglx-pI +(q-1p) (q-r)logIx-qj

+( p)(1

r-q) logy - rj+c.r -
3 Supposing that p q, determine 11, B, C such that

1 __ R + B + C
(x - p)2(x - q) x - p (x - p)2 x - q

and use the result to obtain the integral with respect to x of the left member.
Ins.:

1
1 1 + 1 2logIx-qj +c.(q-p) q - px - p U=-p-)

4 Obtain the answer to Problem 3 by starting with the tricky calculation

1 _ 1 q-p _ 1 (x-p)-(x-q)
(x - p)2(x - q) q - p (x - p)2(x - q) q - p (x - p)2(x - q)

1 1 _ 1 1
q - p L (x-p)(x -q) (x-p)2

5 Assuming that p, q, and r are different constants, find the partial fraction
expansions of the following quotients and check your answers.

x3 1

(a) x2 - 4 (b) x(x2 - 4)
x(c)

(,A
x

(x - 1) (x - 2) (x - p)(x - q)

x
(e) (x - 1) (x

x
2) (x - 3) (f) (x - p) (x q) (x - r)

(g)
(x - 1)(x

x2

2)(x - 3) (h) (x - p)(x

x?

q)(x - r)

(2) (x - 1) (x - 2)2
(9)

(x - p)(x - q)2

6 Show that

7 Show that

(1)

1 dt=log2-2It t(1 + t)2

1 m (x2+1)(x2+4)dx=6
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Remark: Determination of constants 11, B, C, D for which

1 Bx+B Cx+D
(x2+1)(x2+4) x2+1 + x2+4

or

(2) 1 = (Ax+B)(x2+4)+(Cx+D)(x2+1)

can be made in various ways. Particularly efficient work can be done by those
fortunate persons who know about the algebra of complex numbers, includ-
ing the "imaginary unit" i for which i2 = -1. Putting x = i in (2) gives
1 = (Ai + B)(3), so 11 = 0 and B = . Putting x = 2i in (2) gives 1 =
(2Ci + D)(-3), so C = 0 and D = - . Hence

1 1 1 1 1

(x2+1)(x2+4) =3x2+1 -3x2+4'

a result that is easily checked.
8 Obtain the partial fraction expansion of the left member of the formula

.. .x3 _[(x+p) -p]3 _ (x + p)3 - 3p(x + p)2 +
(x+P)5 (x+p)s (x+p)b

by taking advantage of the broad hint in the formula.
9 We should not be too busy to see how Euler determined the constants in

x2 B C Dx+E
(1)

(1 - x)3(1 + x2) (1 - x)3 + (1 - x)2 + 1 __X + 1 + x2

in his great textbook "Introductio in Analysin Infinitorum," Lausannae, 1748,
volume 1, page 31. Clear of fractions to obtain

(2) x2 =11(1 + x2) + B(1 - x)(1 + x2)
+C(1 -x)2(1+x2)+(Dx+E)(1 -x)3.

Put x = I to obtain A = -. Subtract (1 + x2) from both members of (2)
and divide by (1 - x) to obtain

(3) -fix - = B(1 + x2) + C(1 - x)(1 + x2) + (Dx + E)(1 - x)2.

Put x = 1 to obtain B = -_1. Add (1 + x2) and divide by (1 - x) to obtain

(4) -Tx = C(1 + x2) + (Dx + E)(1 - x).

Put x = 1 to obtain C = --. Add I(l + x2) and divide by (1 - x) to obtain(5)wx=Dx+E,
and hence D -;,E_

10 One who wishes to think about a partial fraction problem in arithmetic
(or theory of numbers) may seek integers 11 and B for which

11 11 B
15= 3 +5
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11 Partial fraction expansions have their principal applications in electrical
engineering and elsewhere where complex numbers (numbers of the form a + ib,
where a and b are real and i is the imaginary unit for which i2 = -1) are system-
atically used. When complex numbers are used, it is not necessary to bother
with factors (like x2 + 1 and x2 + x + 1) that cannot be factored into real
linear factors. Theory and applications can be based upon a version of the
fundamental theorem of algebra which says that if

(1)
P(x) = aoxn + alxn-1 + ... + an-1x + an,

where n is a positive integer and ao ; 0, then there exist k different numbers
x3, x2, . , xk (which are not necessarily real) and k exponents p1, p2i
pk (which are positive integers) such that

(2) p1+p2+ +pk=n

and

(3) P(x) = ao(x - x1)"(x - x2)P2 . . . (x - xk)Pk.

This theorem is a simple corollary of general theorems that appear in the theory
of functions of a complex variable. Less sophisticated but more complicated
proofs can be given. The numbers x1, x2, , xk are said to be zeros of the
polynomial of multiplicities p1, p2, - ' - , P. It can be proved that if Q is a
polynomial of degree less than that of P, then Q(x)/P(x) is representable in the
form

Q(x) _ Al., 41,2 41,3 41,P1
( ) P(x) (x - xl) + (x - x1)2 + (x - x1)3 + + (x - xl)PI

42,1 42.2 42,3 42,Pi
(x - x2) (x - x2)2 + (x - x2)3 + + (x - x2)P!

+
4,1

+
4.2

+
4,3

+ + 4k.k
(x - xk) (x - xk)2 (x - xk)3 (x - ,xk)Pk

where the pi constants 141,1, 41.2, ' , - ,41,P, "go with the powers of the factor
(x - xl)," the P2 constants 42,1, 42,2, ... , 42.P, "go with the powers of the
factor (x - x2)," etcetera. Supply and demand do not generate heavy traffic
in proofs of this partial fraction theorem, but we can pause to look at the three
potent identities

(5)

(6)

and

(7)

x R(x) (x - a) + a R(x)
x - a S(x) x - a S(x)

1 R(x) 1 (x - a) - (x - b) R(x)
(x - a) (x - b) S(x) b - a (x - a)(x - b) S(x)

x R(x) 1 b(x - a) - a(x - b) R(x)
(x-a)(x-b)S(x) -h-a (x-a)(x-b) S(x)
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in which it is supposed that a and b are real or complex numbers for which b tea.
For example, use of (7) gives

(8)

x6 x x4

- x1)(x - x2)2(x - xa)a (x - xl)(x - x2) (x - x2)(x - x3)3
I X2(X - xl) - x1(x - x2) x4

X2 - x1 (x - xl)(x - x2) (x - x2)(x - x3)3
1 x, xl x4

x2 - x1 Lx - x2 x - xli (x - x2)(x - x3)3
X2 X4 xl X4

x2 - xl (x - x,)2(x - x33) x2 - x1 (x - xl)(x - x2)(x - xa)i

Even when Q(x) and R(x) are values of functions that are not polynomials, (5),
(6), and (7) enable us to express quotients as sums of simpler quotients. It is
quite easy to see that the partial fraction theorem can be proved by repeated
applications of (5), (6), and (7). Moreover, it is sometimes better to use (5)
and (6) and (7) than to use other methods for obtaining partial fraction expan-
sions. Textbooks in algebra show that if the coefficients ao, al, . , a in
(1) are real, then the zeros of the polynomial "come in conjugate pairs." This
means that if p + iq is a zero for which p and q are real and q 0 0, then p - iq
is another zero. On account of this fact the right side of (4) can, when P is real,
be represented as a sum of terms of the forms

(9)
B D Gx

(x - C)m' (x2 + Ex + F)m' (x2 + .Ex + F)m'

where m is a positive integer and the coefficients in the denominators are all
real. The quadratic denominators are all real. The quadratic denominators
arise because if Hl and H2 are constants, then there exist other constants Ha and
H4 for which

(10)
Hl Hz _ Ha + H4x

x-(p+iq) x- (p - iq) x2-2px+pt +g2

In most practical applications of this material, the numbers pi, p2, ... , pk
defined above are all 1 and (3) and (4) reduce to the much simpler formulas

(11) P(x) = ao(x - xl)(x - x2) ... (x - x,,)

(12)
Q(x) A2 11,EAl
P(x) x-xlx-x2+ ... +x - x+

Except when P(x) has only real zeros, we must use complex numbers to achieve
simplicity.

9.5 Integration by parts In this book, and elsewhere in the scientific
world, we frequently encounter situations where effective use can be
made of the formula for integration by parts. Assuming that u and v
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are functions having continuous derivatives over intervals appearing in
our work, the formula which can be put in the forms

dxuv =
udx+vdx,

d(uv) = udv+vdu

dv duv du
u

d x

_
dx - v dx' udv = d(uv) -vdu

implies the formula which can be put in they forms

(9.51) J udv dx = uv - J v dx dx, f u dv = uv - J v du

(9.52) J u(x)v(x) dx = u(x)v(x) -
J

v(x)u'(x) dx

which involve the notations of Leibniz and Newton. We can prefer
to use (9.52) when meanings of symbols are being explained and to use
(9.51) when problems are being solved and the abbreviated notation
expedites our work without confusing us.

We have already seen some of the reasons why the formula (9.51) or
(9.52) for integration by parts is useful. As was pointed out following
(8.483), efficient use of the formula is made by writing

(9.53) u = u(x), dv = v'(x) dx
(9.54) du = u(x) dx, v = fv'(x) dx = v(x),

where u(x) and v'(x) are chosen in such a way that the product u(x)v'(x)
is the integrand in the integral we wish to study. The integral of the
product of the things in (9.53) is then the product of the things on the
main diagonal minus the integral of the product of the things in (9.54).

The formula for integration by parts has so many applications that it
is quite hopeless to undertake to tell when and how it is useful. In
many (but not all) situations, the formula is useful when u and v' are
chosen in such a way that fv'(x) dx is an elementhry integral and the
integral fv(x)u'(x) dx is simpler than the integral fu(x)v(x) dx. Our
examples and problems will provide some ideas and information. Mean-
while, our guiding principle merits repetition. If we want to learn some-
thing about an integral and other methods fail to be helpful, we try
integration by parts. Before turning to examples, we make a final
observation. In order to apply the formula (9.52) for integration by
parts, we need just one pair of functions u and v for which u(x)v'(x) is a
given integrand. It is therefore not necessary to insert an added con-
stant ci of integration when we write a function v whose derivative is v'.
One who wishes to do so may see what happens when we replace v = -e-
by v = -e-x + ci in the following example. There are relatively few
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situations in which matters are simplified by inserting a cl which is
different from 0.

Letting

(9.55) I1 = f xe y dx,

we set
u=x, dv=eydx

du=1dx, v = fetdx= e-
and conclude that

I1 = -xe z + f e y dx = -xe z - e y + c.

The same idea is useful when n is a positive integer and

(9.56)

Setting

I = f xne z dx.

u=xn, dv=eydx
du = nxn-1 dx, v = fey dx = -e-y

gives the reduction formula

I _ - xne y + n f xn-1e y dx

which expresses In in terms of I._,. In particular,

f x2e-y dx = -x2e y - 2xe y - 2e- + c.

If n is a positive integer and

(9.57)

setting

J. = fxn sin x dx,

u = xn, de = sinxdx
du = nxn-1 dx, v = f sin x dx = - cos x

gives the formula

J. = -xn cos x + n f xn-1 cos x dx.

If n = 1, the last integral is easily evaluated. In case n > 1, we can
integrate by parts again. Setting

it = xn-1, de = cos x dx
du = (n - 1)xn-2 dx, v = f cos x dx = sin x

gives

J. = -xn cos x + nxn-1 sin x - n(n - 1) f xn-2 sin x dx.

In particular,

fx2sinxdx= -x2cosx+2xsinx+2cosx+c.
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We could feel that integration by parts would not enable us to simplify
f log x dx, but we can set

u=logx, dv=ldx
du=1dx, v=xx

to obtain

f logxdx=xlogx - f1dx=xlogx-x+c.
This result is easily checked by differentiation.

Problems 9.59
1 Derive the following formulas by one or more integrations by parts

((a) f xea: dx =
x - 1

(a az) a°x + c

x2 x2(b) f x log x dx = 2 log x- 4+ c
xn+l 1

(c) f x" log x dx =
;T_+_1

(log x - n + 1) -{- c

2 2x 2(d) f x2eaa dx = (-X - 2 + a3) eaz + c' a a2

(e) f xsec2xdx=xtanx+logcosx+c

(f) f (log x)n dx = x(log x)n - n f (log x)n-1 dx

(g) f
(x

+ 1), dx = z1+1 log (x -} i) + c

(h) f sin-' xdx =xsin'x-1 1 -x2+c

(i) f tan' x dx = x tan' x - log (1 + x2) + c

2 Setting u = iP, dv = (1 - t)4 dt, derive the formula

fol i (1 - t)4 dt =
q + 1

fo1 t-1(1 - t)4+1 dt.

Observe the fact that the result agrees with the beta integral formula

i
fo tP(1 - t)4 dt

p !q!

= (p + q + 1)1

and the formula r! = r[(r - 1)!]. Remark: In Problems 18 and 19 of Problems
13.49, we shall introduce the Euler gamma integral formula

z! = fo0 t=e t dt (z > -1)

and show how it is used to derive the Euler beta integral formula.
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3 Derive the formula

fx" cos x dx = x" sin x + X"-1 cos x - n(n - I) fx"-2 cos x dx.

Use this formula to find fx2 cos x dx, and check the result by differentiation.
This formula and those of the next two problems are reduction formulas. In
some cases, useful results are obtained by making repeated application of them.

4 Letting
I(p,q) = f sin' x cosq x dx,

where p and q are constants for which p -1 and p + q P- 0, show that

I(p
q)

sin'+1 x cost"'' x + q =1
s i n x cosq-2 x dxp+1 p+1J

and

sinp+, x cosq-1 x q - 1I(p,q) = p+ q p+
q

f sinp xcosq-2 x dx.

Hint: Start by writing u = cosq-' x, dv = sin' x cos x dx.
5 Letting

W(p,q) = f sin' x cosq x dx,

where p and q are constants for which q , -1 and p + q ; 0, show that

W(p,q) = -
and

-q+1 q+1sin 1 x+q+1 11
f sinp-2x cos9+2xdx

sin-1 x cosq+' x p
W(p,q) p + q + p + q f sin'-' x cosq x dx.

Hint: Start by writing u = sin'-' x, dv = cosq x sin x dx.
6 Supposing that p is an integer for which p 2, show how a result of the

preceding problem can be used to obtain the formula

(1) I
_ 1

x
o

sin'-' x d.,

Supposing that n is a positive integer, show how repeated applications of (1)
give the famous Wallis (1616-1703) formulas

'/' 2n-1 2n-3 5 3 1 wr
(2)

o
sin2" x dx =

2n 2n - 2 -I 6 4 2 2
;/2 2n 2n-2
v

642
(3) sin2n+' x dx = 2n+l 2n-10 7 5 3

Observe that

(4) 2n(2n - 2) . . 6-4-2 = 2"n!
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and show that multiplying the numerators and denominators of the right mem-
bers of (2) and (3) by the left member of (4) gives the formulas

2n/2 i d 2fr(5) ns x x = 22nIn !o 2
r/2 22nn!n!

sin2n+1 x dx =
1

(6) o (2n)! 2n -

One reason for interest in these things lies in the fact that the number

(2n)!
22' n!nl

is the probability of finding exactly n heads and exactly n tails when 2n coins are
tossed. Remark: We embark on a little excursion to see that these formulas
have startling consequences. When 0 < x < 2r/2, we have 0 < sin x < 1, so

(7) 0 < sin2n+l x < sin2n x < sin2n-1 x < 1

and hence
,r/2 r/2 x/2

(8) 0< fo sin2n+1 x dx < fo in2n x dx < f0 sin2n-1 x dx.

Putting p = 2n + 1 in (1) gives the formula

(9) f
a/2 1 /2

fo sin2n+1 x dx.
o

sin2n-1 x dx = (1 + 2n/
r

It follows from (8) and (9) that there is a number Bn for which 0 < 0n < 1 and

(10) for/2 sin 2n x dx = (1 + 2-n)
for/2

sin2n+i x dx.

:Multiplying the members of (5) and (6) gives

(11) Lfor/2 sin2n x dx I
L

r for/2 sin2n+1 x dx =
4i1(1+2n!

Multiplying the members of (10) and (11) leads to the formula

/2 1 - V
(12)

for

sin2n x dx = 1
Bn

- 2n -}- 12

Substituting this in (5) gives the formula

(2n)! 1 - 0n 1
(13) 22nnln! =

1 - 2n + 1

Since 0 < On < 1, the first factor in the right member is near 1 when n is large
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and is quite near 1 even when n is as small as 4 or 3. Thus, even when n is quite
small, the number 1/\ is a very good approximation to the probability of
finding exactly n heads and exactly n tails when 2n coins are tossed. This
astonishing result has very significant consequences, and persons who comprehend
it may say that mathematics was never so beautiful before, and mathematics
really is the Queen of the Sciences.

7 Derive the formula

(1) I ersx sin bx dx =
e°x(a sinabxl-bb cos bx) +

in the following way. Set

to obtain

(2)

Then set

to obtain

(3)

u=ell, dv=sinbxdx

a
J

ell sin bx dx = - e

b
s x

+ b f e0x cos bx dx.

u = sin bx, de = ell dx

1
e°x sin bx - b j

e °, sin bx dx = J ell cos bx dx.a a

Then combine (2) and (3) to obtain (1). Now derive (1) in the following way.
Let I denote the left members of (1), (2), and (3). Set

u = eax, de = cos bx dx
to put (2) in the form

(4)
ell cos bx + a eax sin bx - a I

b bL b b J

Then solve (4) for I and obtain (1).
8 Derive the formula

f ell cos bx dx = e°x(b sin bx + 2 cos bx) +
c

..9 Sketch graphs of y = ex and y = log x in the same figure. Let Rl be
the region consisting of points (x,y) for which x < 0 and 0 < y 5 Cr. This
unbounded region Rl is said to be bounded by (or to have boundaries) the x axis,
the y axis, and the graph of y = ex. Let R2 be the region consisting of points
(x,y) for which x = 0 and y 5 0 together with points (x,y) for which 0 < x 5 1
and log x 5 y 5 0. This region R2 is said to be bounded by the x axis, the y
axis, and the graph of y = log x. Observe that R, and R2 are congruent regions.
Use the fact that Rl and R2 possess areas IR1J and JR21 for which

Ad = lim f h e x dx, JR21 = lim fhI (- log x) dx

to show that IRIJ = IR2I = 1.
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10 Evaluate the integral in

f x3

I J
1+xsdx

in two different ways, and make the results agree. First, use the identity

x3 x(l + x2 - 1) x
1+x2 -x 1+x2-1+x2 1+x2

Second, integrate by parts with

u = x2, de = x(1 + x2)-1,J dx.

11 With the aid of the substitution (or change of variable) = t,

show that
fa

x2 dx = 2
'

(a - t2)2t2 dt = Trga .
o fo

Show that the first integral can be evaluated by integration by parts.
12 Derive the formulas

f in e-0/2 dt = x lez'12 - I t-2e :'12 dt
x xf e-"/2 dt = xlex212 - x3ex'12 + 3 t-4e 1=1'- dt.
x x

Remark: Formulas of this nature give useful information, the integrals on the
right being small in comparison to those on the left when x exceeds 2 or 3 or 4.

13 Many problems in pure and applied mathematics involve "best fit" or
"best approximation" in some sense or other. We can start picking up ideas by
observing that if X is near 1 and

(1) f(x) =cosx,g(x) =(1 - a2)

then the graphs of f(x) and Xg(x) over the interval -a/2 < x < 7r/2 look much
alike. The graph of Xg(x) is the best fit in the sense of least squares to the graph of
f (x) when X is chosen such that

(2)
f Ax/2 [f(x) - Xg(x)]2 dx

is a minimum. Show that (2) will be a minimum when
(3)

a
row/2

[g(x)]2 dx = f07/2f(x)g(x) dx

and hence when X = 310/?r3 = 0.967546. Remark: Sketching graphs of f (x)
and g(x) on a rather large scale indicates that g(x) > f(x) when 0 < x < 7r/2.
In fact, we can put

(4) F(x) = g(x) - f (x)

and show that F(0) = F(ir/2) = 0, F is increasing over the part of the interval
0 < x < r/2 for which sin x > (8/ir2)x, and F is decreasing over the remaining
part of the interval.



10
Polar, cylindrical,
and spherical
coordinates

10.1 Geometry of coordinate systems We begin with a glimpse of a
(or the) major reason why polar coordinates should be studied. In
many problems involving functions defined over all or portions of E3,
there is a line L which is particularly significant. This line L may, for
example, be an axis of symmetry or a wire carrying an electric current
or charge. When we want to use coordinates, we can let the line L
be the z axis of a rectangular x, y, z coordinate system as in Figure 10.11.
When we are interested in the cylinder consisting of points at a particu-
lar distance po from the z axis, we can correctly describe this set as
being the set of points having rectangular coordinates x, y, z for which
x2 + y2 = po. It is, however, much simpler to take the distance p from
the z axis to a point P to be one of the coordinates of P so that the equa-
tion of the cylinder is simply p = po. This one coordinate p is, however,
526
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not enough to determine the position of a point P. It turns out to be
convenient to determine the position of P by use of p, the angle 0, and
the rectangular coordinate z of Figure 10.11. The three numbers p,
0, z are called cylindrical coordinates of P.

z

z

-Q P'(P,O, z)
z

Y

y

Figure 10.11 Figure 10.12

In many other problems involving functions defined over all or por-
tions of E3, there is a point Po (instead of a line L) which is particularly
significant. This point Po may, for example, be the center of a spherical
or nonspherical earth or may be a point at which an electric charge is
supposed to be concentrated. When we want to use coordinates, we
can let Po be the origin 0 of a rectangular x, y, z coordinate system as in
Figure 10.12. When we are interested in the sphere consisting of points
at a particular distance ro from the origin, we can correctly describe this
set as being the set of points having rectangular coordinates x, y, z for
which x2 + y2 + z2 = ro. It is, however, much simpler to take the
distance r from the origin to a point P to be one of the coordinates of P
so that the equation of the sphere is simply r = ro. This one coordinate
r is, however, not enough to determine the position of a point P. It
turns out to be convenient to determine the position of P by use of r,
the angle 0, and the angle 0 of Figure 10.12. The three numbers r, 01
0 are called spherical coordinates of P.

We really should write P,(x,y,z), P,(p,O,z), and Pa(r,0,0) to denote,
respectively, the points having rectangular coordinates x, y, z, cylindrical
coordinates p, 0, z, and spherical coordinates r, q5, 0. The coordinates
x, y, z, p, 0, r, 0 are numbers, and it is precarious to confuse relations among
coordinates and functions of these coordinates by allowing P(0.7,0.6,0.5)
and ((0.7,0.6,0.5) to have ambiguous meanings. The subscripts are
included in Figures 10.11 and 10.12 because they should be included.
To be reasonable about this matter, we can allow P(a,b,c) to be the point
having cylindrical coordinates a, b, c while we are solving a problem or
constructing a theory in which cylindrical coordinates and no other
coordinates appear. We eliminate confusion, however, by agreeing that,
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except in special situations where there is an explicit agreement to the
contrary, P(a,b,c) is always the point having rectangular coordinates
a, b, c.

In ordinary useful applications of the cylindrical coordinates of Figure
10.11, it is always supposed that p > 0 and it is sometimes supposed
that p > 0 and -7r < , < a. Sometimes the latter restriction on 0 is
removed so that q can vary continuously as a particle having cylindrical
coordinates (p,4,,z) makes excursions around the z axis. In those situa-
tions in which it is supposed that p > 0 or p >_ 0, the graph in cylindrical
coordinates of the equation 0 = 4o is a half-plane (not a whole plane)
having an edge on the z axis. In those situations in which 0 is unre-
stricted, a point P does not determine its cylindrical coordinates because
the two points

P, (p, 0 + 2na, z), P,(p, P, z)

are identical when n is an integer. In ordinary useful applications of
spherical coordinates, it is always supposed that r > 0 and is sometimes
supposed that r > 0, 0 5 0 <--_ ir, and --7r < 0 - ir. In ordinary geo-
graphical terms the coordinate 0, which is 0 when P,(r,0,0) is at the north
pole and is 7r/2 when P,(r,qS,8) is on the equator and is a when P,(r,0,0)
is at the south pole, determines the latitude of P,(r,0,0). The coordinate
cp determines the longitude.

Partly because the endeavor helps us to understand cylindrical and
spherical coordinates, we turn to the study of polar coordinates of points
in a plane. The basic idea behind the concept of polar coordinates is
both simple and attractive. Suppose we are located at a point 0, an
origin or pole, in a plane and we wish to give explicit instructions telling
how to make a pilgrimage to a point P in the same plane. We begin by

Figure 10.13

constructing a half-line OA with an end at 0 as in
Figure 10.13 and calling this half-line the initial line
from which angles are to be measured. In case P is
not the origin, instructions for reaching P are now
easily given. Start at the origin looking in the direc-
tion of the initial line, turn in the positive (counter-
clockwise) direction through the angle 0 until facing P,

and then travel the appropriate distance p from 0 to P. We could (and
sometimes do) end the matter here and say that p and 0 are the polar
coordinates of P,(p,¢), the point having polar coordinates p and 0.
Sometimes we restrict 0 to the domain -,r < .0 < 9r and end the matter
in another way. While recognition of the fact is sometimes irksome, it is
nevertheless true that if n is an integer which may be negative as well
as positive or zero and if we turn through the angle 2n7r + 0, then we
will be facing toward P and can travel the distance p to reach P. When
we take this possibility into account, we find that, for each n = 0, ± 1,
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±2, , the numbers p, 4, + 2na constitute a set of polar coordinates
of P. We could (and sometimes do) end the matter here. It is not
always easy to know when we are being wise, but we can recognize one
more possibility. After turning through the angle 0 + a or 4, - it or
0 + (2n + 1)ir, where n is an integer, we will be facing away from P
and we can reach P by going backwards a distance p. When we take
this last possibility into account, we find that, for each n = 0, ± 1, ±2,
. , the numbers (-p, 0 + a + 2nlr) constitute a set of polar coordi-
nates of P. When polar coordinates of this variety are permitted to
appear in our work, we abandon the idea that p is a distance and take p
to be a coordinate that can be negative. Thus when p < 0, the point
PP(p,4) having polar coordinates p, 0 is the same as the point Pp(I pl,
0 + tr) having the more normal polar coordinates Ipl, 4) + ir. We still
have to consider the polar coordinates of P when P is the origin 0. It
turns out to be best to agree that, for each num-
ber 4,, the numbers 0 and 4, are polar coordinates
of the origin.t

Let polar and rectangular coordinate systems be
superimposed in such a way that, as in Figure 10.14,
the initial line of the former coincides with the non-
negative x axis of the latter. When P is a point
different from 0, it is easy to obtain formulas

Figure 10.14

relating the rectangular coordinates (x,y) of P and each set (p,4)) of polar
coordinates of P for which p > 0. The definitions

-cos-x, sin
yk--

P P

of the trigonometric functions give the formulas

(10.141) x=pcos0, y=psin0
which uniquely determine x and y in terms of p and 0. On the other
hand, the formulas

(10.142) p = x -+y2, cos q5 =
x sin 0 = y

x2 + y2 x2 + y2

uniquely determine p in terms of x and y and uniquely determine an
angle 0o such that -a < 0o < it and 0 must have the form 0o + 2nr,
where n is an integer. In case p > 0 and -a/2 < 0 < a/2, the last

t In this chapter, the coordinates p, 0, r, 0 have the classical significance they usually
have in mathematical physics and elsewhere when Legendre polynomials and such things
appear. Some textbooks use r and 0 for polar coordinates and, with a shift in meaning of
coordinates, use r, 0, ¢ for spherical coordinates as we do. Sometimes p is used for a spheri-
cal coordinate. Persons who stray from one book or one classroom to another do not always
appreciate modifications of classical notation, but they are rarely if ever seriously injured.
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two of the formulas can be replaced by the single formula 4) = tan-' ylx.
These formulas enable us to make substitutions which transform formulas
involving coordinates of one brand into formulas involving coordinates
of the other brand.

The remainder of the text of this section is devoted to development of
the art of sketching polar coordinate graphs of given equations for which
it is more or less appropriate to operate without restricting p to non-
negative values and without restricting 95 to an interval such as the
interval -r < 4 < r. In this situation, the relation between polar
graphs and equations is complicated by the fact that each point has an
infinite set of polar coordinates and we need a definition. The polar
coordinate graph of an equation of the form f(p,o) = 0 is the set S con-
sisting of points P each of which has at least one set (p,4)) of polar coordi-
nates for which f(p,o) = 0. The polar graph of the equation p = -1
is then the unit circle C with center at the origin because PP(-1,4)) is,
for each 4), the same as the point P,,(1, 0 + r). The polar graphs of the

Figure 10.143

two equations p = -1 and p = 1 therefore coincide,
even though there is clearly no single pair (p,4)) of
numbers for which the two equations are simultane-
ously satisfied. Figure 10.143 can promote under-
standing of this matter. When we allow p to be
negative, the polar graph of the equation 0 = 0 is
more than the initial half-line of the polar coordinate
system; it is the entire line upon which the initial
half-line lies.

Supposing that a is a given positive constant, we undertake to deter-
mine the nature of the polar graph of the equation

(10.15) p = a sin 20

without laboriously locating many points. Observing that IpI < a
always and Jpl = a sometimes, we draw the circle of radius a with center
at the origin to help us. Our knowledge of the sine tells us that sin 20
increases from 0 to 1 and p increases from 0 to a as 20 increases from 0
to 7/2 and hence as 0 increases from 0 to v/4. This information enables
us to sketch the first part of the first leaf, or loop, of Figure 10.151.
Similarly, p decreases from a to 0 as 24) increases from r/2 to r and hence
as 0 increases from r/4 to r/2. Now we complete the first leaf. Con-
tinuing to decrease, p decreases from 0 to -a as 20 increases from r to
3r/2 and hence as 0 increases from r/2 to 37/4. During this operation,
The terminal side of the angle ¢ is in the second quadrant and negativeness
of p throws the graph into the fourth quadrant to give the first half of
the second leaf. Then p increases from -a to 0 as 20 increases from
3r/2 to 2r and hence as 0 increases from 3r/4 to r. This gives the
second half of the second leaf. Continuing its increase, p increases from



10.1 Geometry of coordinate systems 531

0 to a as 20 increases from 2Tr to 57r/2 and hence as ¢ increases from 7r to
Sir/4. This gives the first half of the third leaf. Three more increases
in 20 and .0 complete the third and fourth leaves as .0 increases to 2ir.
Increasing 4, beyond 2ir yields more curve but no more graph, since the
graph is retraced. The full graph is shown in Figure 10.151. In the
good old days, perhaps before clover was invented and when roses were
primitive, someone called this graph the rose with four leaves.

Figure 10.151

The polar graph of the equation

(10.16) p=a(l+cos0)

Figure 10.152

is obtained much more easily. As 0 increases from 0 to 7r and then to
27r, p decreases from 2a to 0 and then increases to 2a. This graph, which
is called a cardioid, is shown in Figure 10.152.

Let a be a positive constant. When 0 < 0 < 7r/2, it follows from
elementary geometry and trigonometry that the point P having polar
coordinates (p,¢) for which

(10.161) p=acos4
lies on the circle of Figure 10.162. Consideration of other angles shows
that the circle is the complete graph (which, of course,

Figure 10.162means the graph) of the equation.
Pd kA bi f l h erta e tot o en we unnove ty appears w

sketch a graph of the equation a

1
0(in 2Z = 2 cos ¢. 0P a 6

As 20 increases from -7r/2 to 0 and then to 7r/2, and
hence as ¢ increases from -ir/4 to 0 and then to
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Figure 10.171

7/4, a2 cos 20 increases from 0 to a2
and then decreases to 0. This infor-
mation enables us to sketch the two
loops of Figure 10.171, p being posi-
tive on one loop and negative on the
other. As 20 increases from 7/2 to
37/2, and hence as 0 increases from

7/4 to 37/4, cos 20 is negative and no values of p are obtained. Further
investigation shows that the graph already drawn is complete. It is
called a lemniscate.

When a > 0, the polar graph of the equation p = a0 is called a spiral
of .4rchimedes. This graph is shown in Fig. 10.181, the part for which

Figure 10.181 Figure 10.182

0 < 0 being dotted. When spirals are being graphed, and at some
other times, the approximations 7 = 3.1416, 7/2 = 1.5708, 7/4 = 0.7854,
and similar others are used. It is very often necessary to know rela-
tions akin to the relations 27 radians = 360°, jr radians = 180°, 7/2
radians = 90°, and 7/4 radians = 45°. It is sometimes useful to know
that 1 radian is 180/7 degrees or about 57 degrees, but degrees and min-
utes and seconds play minor roles in our work. The polar graph of the
equation p = eaO is an exponential spiral which is commonly called a
logarithmic spiral. The graph is shown in Figure 10.182. When a > 0,
the dotted part for which 0 < 0 spirals inward around the origin.

Problems 10.19
1 With the aid of Figure 10.11, show that the formulas giving the rectangular

coordinates x, y, z of a point in terms of the cylindrical coordinates p, 0, z of the
same point are

x=pcos0, y=psinz=z.

Polar, cylindrical, and spherical coordinates
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2 With the aid of Figure 10.12, show that the formulas giving the cylindrical
coordinates p, 0, z of a point in terms of the spherical coordinates r, 0, 0 of the
same point are

p=rsin6, .0 _ .0, z=rcos0.
3 With the aid of Problems 1 and 2, show that the formulas giving the

rectangular coordinates of a point in terms of the spherical coordinates of the
same point are

x=rcos0sin0, y=rsin0sin0, z=rcos0.
4 Transform the following equations from rectangular to polar coordinates

(a) x2 + y2 = a2 f4ns.: p = a
(b) x = a fins.: p cos ¢ = a
(c) (cos a)x + (sin a)y = a 4ns.: p cos (c& - a) = a
(d) xy = 1 fins.: p2 sin 24 = 2
(e) x2 - Y2 = a2 4ns.: p2 cos 20 = a2

5 In Problem 31 of Section 6.4, we said that the rectangular graph of the
equation

(x2 + Y2)2 = a2(x2 - Y2)

is a lemniscate. Show that the polar equation is p2 = a2 cos 2¢. The graph
appears in Figure 10.171.

6 Lemniscates have a simple geometric property. Let b be a positive num-
ber and let F, and F2 be the points (sometimes called foci) having the rectangular
coordinates (-b,0) and (b,0). Let S be the set of points P for which

(1) IF,PIIF2PI = b2.

Show that the rectangular equation of S can be put in the form

(2) (x2 + Y2)2 = 2b2(x2 - y2)

and hence that S is a lemniscate. Show, in one of the various possible ways, that
the polar equation of this lemniscate is

(3) p2 = 2b2 cos 2¢.

7 Transform the following equations from polar to rectangular coordinates.

(a) p = 3
(b) p2= a2 sin 2¢
(c) p= acos4>
(d) p = 2a(1 - cos 0)

8 Show that when

f1ns.:x2+y2=9
1ns.: (x2 + y2)2 = 2a2xy

flns:: x2 + y2 = ax
4ns.: (x2 + y2 + 2ax)2 = 4a2(x2 + Y2)

p = 2a cos 0,

the point with polar coordinates (p,4,) runs once in the positive direction around

a curve C as ¢ increases from -a/2 to a/2. Show, in one way or another or in

more than one way, that C is the circle of radius a having its center at the point

with rectangular coordinates (a,0)
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9 Sketch polar graphs of the equations

(a)p=3+2cos¢ (b)p=3+4cos4>
(c) p = a sec ¢ (d) p = tan 95

(e) p = a sin 30 (f) p = a sin 3

(g) P = 1/4>,(4> > 0) (h) P = 1/(1 + 4,2),(4> > 0)

10 Sketch rectangular graphs of y = cos x, y = cos x, and y = cost x in
one figure, and then sketch polar graphs of p = cos (k, p = cos ¢, and p =
cost 0 in another figure. Partial solution: Good polar graphs of p = cos di and
p = cos 0 and the right-hand half of the graph of p = cost ¢ are shown in
Figure 10.191.

90° 80° 70°

_90° _80° _70°

Figure 10.191

11 Sketch rectangular graphs of x2 + y2 = 1 and x2 + y2 = 25 in one figure
and then sketch polar graphs of p2 + 02 = 1 and p2 + 02 = 25 in another figure.

12 In case pI > 0 and p2 > 0, a straightforward application of the law of
cosines gives the formula

d2 = Pi + ps - 2PIP2 cos (02 - 01)

for the square of the distance d between points having polar coordinates (pl,4>i)
and (p2,42). Show that the formula is also valid when p, S 0 or P2 5 0 or both.

13 This is a rather heroic problem that requires careful and accurate applica-
tions of rules for differentiation and attention to algebraic details. No vectors
or figures or tricks of any kind are to be used; just differentiate and substitute.
Using the formulas

x(t) = p(t) cos 4>(t), y(t) = p(t) sin ¢(t)
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and the formula (7.389) for curvature in rectangular coordinates, show that if
p and ¢ are functions having two continuous derivatives and if the point P(t)
having polar coordinates p(t), 4(t) traverses the curve C as t increases, then the
curvature K of C at P(t) is

K = [p(t)12[4)'(t)l3 + P(t)P'(t)4)"(t) - P(t)P"(t)4)'(t) + 2[P'(t)]24)'(t)
{[P(t)4)'(t)l2 + [P'(t)]2}3i2

provided the denominator is not zero.
14 Show that letting ¢(t) = t and replacing t by 0 in the last formula of the

preceding problem gives the much simpler formula

K = [P(4))12 + 2[p'(4))]2 - P(O)P"(O)
{ [P(4))12 + [P'(4))]2} 41

for the curvature of the graph of the polar equation p = p(4)) oriented in the
direction of increasing ¢.

15 The two equations

(1)

(2)

x2 -+Y2 + IxI + IYI = a
x2+y2+x+y = a,

in which a is a given positive constant, have respective graphs G, and G2. Show
that the polar coordinate equations of these
graphs are IY I i

1

3()
and

(4)
or

aP 1 + Isin q5I + Icos q6I

P 1+sin0+cos4)

=
a

P 1+1/2sin
(4)-{ 4)

with p > 0. Obtain more or less complete
information about G, and G2-

16 The cissoid of Diodes is the set of
points P(x,y) obtained in the following way.
Let a > 0. As in Figure 10.192, let C be the
circle with center at (a,0) having radius a.
Let 0 < x < 2a. Let Q, and Q2 be points on
the upper part of C having x coordinates x
and 2a - x. Then P(x,y) is the intersection
of the line OQ2 and the vertical line through
QI. Letting ¢ be the angle which OQ2
makes with the x axis and with the line QZQ,, we see that
and, when x 3-4- a,

Y=

Figure 10.192

a when x = a

(1) tan0=y= =y - a2- (x- a)2
x IQZQ,I 2(x - a)
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This gives

(2)

and squaring gives

(3)

(2a - x)y = x x(2a - x),

The graph of this equation, including points for which x = a, x = 0, and y < 0,
is the cissoid. We now come to the polar coordinate problem. With the aid of
the fact that Q2 has polar coordinates (pi,g5) for which pi = 2a cos 0, try to use
Figure 10.192 to derive the polar equation of the cissoid. If unsuccessful, use
(2) and formulas which give x and y in terms of p and 0. Ans.:

(4) p = 2a sin 0 tan ¢.
Remark: Diodes employed the cissoid to "duplicate a cube," the problem being
to start with some line segment of length x (the length of an edge of a particular
cube) and construct a segment of length - x (the length of the edge of a cube
having double the volume of the original one). The line L through the points
(a,2a) and (2a,0) has the equation (2a - x) = y/2 and intersects the cissoid at
a point (x,y) for which y' = 2x' and hence y = x. What Diodes really
wanted to do was duplicate a cube by ruler-and-compass construction. This
has been proved to be impossible. It is possible to construct the line L with a
ruler and compass, and it is possible to construct points on the cissoid one by
one with a ruler and compass. The reason why Diodes failed to accomplish
his purpose should be explained. Life is too short to enable us to produce ruler-
and-compass constructions of all of the points on the cissoid, and there is no way
to prescribe rules for a ruler-and-compass construction of the particular point
where L intersects the cissoid.

17 The conchoids of Nicomedes provide a method (but not a ruler-and-com-
pass method, because no such method exists) for trisecting angles. Let p and q
be given positive numbers. Let 0 (the pole of the conchoid) be the origin and
let L (the directrix of the conchoid) be the line having the rectangular equation
x = p and the polar equation p cos 0 = p or p = p sec 0 as in Figure 10.193.
The conchoid consists of two parts or branches. When -7r/2 < 0 < it/2, the
line OM of the figure meets the line L at the point M and meets the far branch
(the branch most remote from the pole) at a point P whose distance from M is
q and whose distance from the origin is p sec q5 + q. The polar equation of the
far branch is therefore

(1) p=psec 4,+q.
The same line OM meets the near branch (the branch nearer to the pole) at a
point P' whose distance from M is q and whose polar equation is

(2) p=psecg5-q-
The equation

(3) p=psec4'±q
or the equation

(4) (p - p sec 4')2 = q2
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is the polar equation of the conchoid The graph consisting of the two solid
branches nearest the line L is a conchoid for which q < p. The dotted graph
consisting of the two outer branches is a conchoid for which q > p. It can be
observed that finding the polar equation of the conchoid was no problem; the
equation came as the conchoid was being defined. Now comes the problem.
By direct use of Figure 10.193 or, alternatively, by using (4) and transformation

Figure 10.193 Figure 10.194

formulas, find the rectangular equation of the conchoid which applies to the
primed coordinate system for which the x' and y' axes are the x axis and the
line having the equation x = p. llns.:

(5) x'2y'2 = (q2 - x'2)(x' + P.

Remark: Conchoids are interesting examples of graphs of quartic equations, that
is, equations of the form f(x,y) = g(x,y), where f and g are polynomials in x and
y one of which has degree 4 and the other of which has degree not exceeding 4.
To trisect the given angle 140P of Figure 10.194 with the aid of a conchoid, let
M be the point at which the line OP intersects the line L, and let a = IOMI.
Let C be the far branch of the particular conchoid for which q = 2a. Let P1
be the point at which the horizontal line through M intersects C and let M1 be
the point at which the line OP1 intersects the line L so that 1M1P11 = 2a. To
begin our attack upon angles, let 0 be the angle ROP1 and let 8 be the angle
P1OP, so that the given angle f10P is 0 + 0. Applying the law of sines to the
triangle OMP1 gives the first of the equations

a 1MP1I a 2a cos di

sin sin 0 sin ¢ sin 8

and the second follows because 1-HP-11 2a cos 0. Thus

sin 0=2sin 4cos0=sin 241,
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so 0 = 20 and the given angle AOP is 3q5. Thus the line OP1 trisects the given
angle. It is possible to use ruler-and-compass constructions to locate many
points on the conchoid C, but it is impossible to give explicit instructions for
producing the particular point P, needed for trisection of the given angle.

18 Let 0 be a point on a circle of diameter a, and let b be a positive number.
A set S of points P (a limacon of Pascal) is determined in the following way.
If L is a line through 0 and if Q is either the second point in which L intersects
the circle or is 0 itself if L is tangent to the circle, then S contains the two points
on L at distance b from Q. Sketch some figures and investigate these limacons.
Remark: With suitable coordinates, the equation can be put in the forms

p=acos0±b, p=acos0+b, p=b-acos0.
The fact that cos (0 + 7r) cos 0 is important.

19 Let a and b be positive constants. Let F, and F2 be two points having
polar coordinates (a,2r) and (a,0 and rectangular coordinates (-a,0) and (a,0).
The set S of points for which IF,PI JF2PI = b2 is called an oval of Cassini. Investi-
gate these ovals. Remark: If b >> a (read "if b is much greater than a"), then
S is closely approximated by a large circle. If b = a, then S is a "figure eight"
which is, in fact, a lemniscate; see Problem 6. If b <<a (read "if b is much smaller
than a"), then S consists of two small ovals that are closely approximated by
small circles.

10.2 Polar curves, tangents, and lengths As our discussion of
coordinate systems may have indicated, polar coordinates can be par-

Figure 10.21

ticularly useful in situations where dis-
tances from an origin are particularly
significant. It turns out that the polar
equation of a conic is exceptionally neat
and attractive when we put the conic in
the "standard position." As in Figure
10.21, let the focus and directrix of a conic
K having eccentricity e be placed upon a
polar coordinate system in such a way that
a focus is at the origin and the directrix is
perpendicular to the initial line and inter-

sects the extended initial line at the point having polar coordinates
(p,2r). The intrinsic equation of the conic K, which first appeared in
our work in (6.23), is then

(10.22) IPPI = eIPDI.

While it can be presumed that we know something about conics and
can proceed without the result, it is nevertheless interesting to use the
intermediate-value theorem to prove that if 7r/2 < Iq5ol 5 a, then
there is exactly one point Po with polar coordinates (pogo) for which
IFP0I = elDoPoI. In any case, we consider only values of p for which
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p > 0, so there can be no possible objection to use of Figure 10.21.
intrinsic equation (10.22) then gives

The

When cos ¢ < 1/e, we can solve for p to obtain the important "standard
form" equation

(10.23) p = ep1-ecos4,-
To illustrate the fact that polar equations are used as sources of infor-

mation, we proceed to study (10.23). When e < 1, the condition
cos j < 1/e is satisfied for each 0 and the polar graph of (10.23) is an
ellipse. In this case the point P with polar coordinates (p,4,) runs
repeatedly around the ellipse in the positive direction as 4, increases over
intervals of length 2,r. In case e = 1, the condition cos 0 < 1 means
that 4, is not an integer mutiple of 2a, and the polar graph of (10.23) is a
parabola. In this case P,,(p,4), the point having polar coordinates p
and 0, runs in the positive direction along arcs of the parabola as 0
increases over subintervals of the interval 0 < 0 < 2a. In case e > 1,
the restriction cos 0 < 1/e is more severe, and the polar graph of (10.23)
is one branch of a hyperbola. In this case, we confine 0 to the interval
¢o < 0 < 27r - 4o, where 4o is the first-quadrant angle for which
cos ¢o = 1/e. The point P,(p,4)) runs over arcs of the hyperbola as ¢
increases over subintervals of the interval 4,o < 0 < 27r - 4,o. Because
particles moving along one branch of a hyperbola do not suddenly jump
to another branch, and for other reasons, we are usually content to work
with only one branch of a hyperbola. We are, therefore, usually not
interested in the fact that if q5 is an angle for which I4I < 4)o so that
e cos 0 > 1, then the formula (10.23) determines a negative number p
and the point P,(p,o) lies on the other branch of the hyperbola. As
Figure 10.21 indicates, each conic K intersects the axis of K at a vertex
Y between the focus and directrix. Putting ¢ = xr in (10.23) shows that
the distance from F to V is ep/(1 + e). In case e = 1, this reduces, as
it should, to p/2. In case e 0 1, another vertex V' is obtained by setting
0 = 0. The polar coordinates of Y' are ep/(1 - e) and 0. In case
e < 1, our formulas give

(10.24) IPP'i=IYFI+IFP'I+e- -lepe2epe.
z

The center of the conic lies midway between the vertices, and it is a
straightforward matter to continue this investigation to obtain additional
information.

In connection with a conic or other curve C having a manageable polar
equation, it is of interest to have information about the tangent to C



540 Polar, cylindrical, and spherical coordinates

at a point P on it and, in particular, to have information about the angle
¢ (psi) between this tangent and the vector running from the origin to
P. The most informative way to attack these and related questions is
by use of vectors; in fact it is not improbable that, in the long run, experi-
ence gained by working with vectors may be more valuable than informa-
tion about ¢. We may start with a curve having the polar equation
p = f(o), where f is supposed to have a continuous derivative. We
may suppose that a particle P moves along C in such a way that its
polar coordinates at time t are f(o(t)) and q5(t). When this is so, we
can set p(t) = f(¢(t)) and say that P has polar coordinates p(t) and 0(t)
at time t. We now free ourselves from the supposition that p was a
function of 4, in the first place, and we consider the general situation in
which a particle P has polar coordinates p(t) and 0(t) at time t. When-
ever we wish to do so, we can reduce our work to the special case simply
by setting 4(t) = t, but it is very much worthwhile to handle the more
general situation. Moreover, we can still further increase the appli-
cability of our work by studying a still more general situation.

One who needs the medicine can free himself from the notion that
matters have become mysterious by supposing that P is a bumblebee or
electron that is buzzing around in E3 in such a way that its cylindrical
coordinates at time t are p(t), q5(t), z(t). One who wishes to consider
only polar coordinates can put z(t) = 0 at all times. The rectangular
coordinates x(t), y(t), z(t) are determined in terms of the cylindrical
coordinates by the formulas

(10.25) x(t) = p(t) cos o(t), y(t) = p(t) sin 0(t), z(t) = z(t).

Thus, in terms of the standard unit vectors i, j, k, the vector r(t) run-
ning from the origin to P at time t is

(10.26) r(t) = p(t)[cos ¢(t)i + sin ¢(t)j] + z(t)k.

In all of the following work, we suppose that t is confined to an interval
over which p, -0, and z are functions having continuous derivatives.
Let C be the curve (or arc) traversed by P as t increases over this interval.
Differentiating (10.26) gives the formula

(10.261) v(t) = p'(t)[cos O(t)i + sin -0(t)j]
+ p(t)0'(t)[- sin ¢(t)i + cos c5(t)j] + z'(t)k

for the vector v(t) which is the velocity of P at time t and is also the
forward tangent to C at P. This can be put in the form

(10.262) v(t) = p'(t)ur(t) + p(t)0'(t)u2(t) + z'(t)k

where

(10.263)
uI(t) = cos 0(t)i + sin O(t)j

I u2(t) = - sin -O(t)i + cos 0(t)j.
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The vector ul(t) is the unit vector in the direction of the projection of
the vector r(t) upon the xy plane. The vector u2(t) is easily seen to be
another unit vector, and it is orthogonal to both ul(t) and k because

0, 0.

Moreover, as we see by introducing vector products,

uI(t) x u2(t) =
i j k

cos 4,(t) sin q(t) 0

- sin 4.(t) cos 0(t) 0

= k,

so the three vectors ul(t), u2(t), k, in this order, constitute a right-
handed orthonormal system of vectors. Figure 10.27 shows these things

x

Figure 10.27

for the special case in which C, and hence the vector r(t), lies in the xy
plane of the paper and the unit vector k therefore extends vertically
upward from the plane of the paper. Use of the right-hand finger and
thumb rule shows that Figure 10.27 would be wrong if the direction of

the vector u2(t) were reversed, and this shows that our excursion into
E3 helps us to see how things are oriented in the plane.

Thus, (10.261) and (10.262) are remarkably simple and informative
formulas which display the scalar and vector components of v(t), the
velocity vector or the forward tangent vector, in terms of the three
orthonormal vectors ui(t), u2(t), and k. The orthonormality of these
vectors enables us to use (10.26) and (10.261) to obtain the formulas

(10.271)

(10.272) Io(t)I = [P'(t)]2 + [P(t)q5'(t)]2 + [z'(t)]2
(10.273) P(t)P(t) + z(t)z'(t).

The angle ¢ between the vectors r(t) and v(t) can, when Ir(t)I 0 0 and
Jv(t)I 0 0, be calculated from the basic formula

(10.274) Ir(t)I Iv(t)I cos ¢.
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For the case in which z(t) is identically zero and p(t) > 0, this gives the
formula

(10.275) cos ¢ = P'(t)

IP'(t)J= + IP(t)O'(t)J2

In case p(t) > 0, 4'(t) > 0, and p'(t) s. 0, this enables us to prove the
first formula in

p(t)4'(t) tan
do p

(10.276) tan ¢ =
P' (t)

' ' = p
dp

= dp

In appropriate circumstances, the second formula follows from the first.
In accordance with conclusions reached at the end of Section 7.2, we

can put (10.272) in the form

(10.277) [P'(t)]2 + [P(t)41(t)J2 + [z'(t)]2.

where s(t) is the coordinate at time t which is obtained by measuring
distance along the curve C. When z'(t) = 0 for each t and 0(t) = t so
4'(t) = 1, this is often put in the form

(10.278)
ds Vp2+ (dpy.
To-

'0

Matters relating to lengths of curves are of sufficient interest to
justify close scrutiny of the following theorem.

Theorem 10.28 If p and 0 are functions having continuous derivatives
over a < t <_ b, then the integral in the formula

(10.281) L = f b

[P'(t)l2 + [P(t)0'(t)I2 dt
a

is the length of the curve C consisting of the ordered set of points P having
polar coordinates (p(t), 0(t)) for which a <_ t <_ b.

The simplest proof of this theorem is obtained by setting

(10.282) x(t) = p(t) cos 4(t), y(t) = p(t) sin 4(t), z(t) = 0

in the formula (7.26) which was thoroughly discussed and proved in
Section 7.2. The formulas

(10.283) x'(i) -p(t) sin cos O(t)p'(t)
(10.284) y'(t) = p(t) cos ¢(t)4'(t) + sin 0(t)p'(t)



10.2 Polar curves, tangents, and lengths 543

enable us to convert (7.26) into (10.281). For the special case in which
0(t) = t and ¢'(t) = 1, it is standard practice to put (10.281) in the form

(10.285) L = fa p
jp2 + (Tdp 2

do

in which the variable of integration is (k

and//the

limits of integration are
called a and 0 (instead of a and b) because a and 0 "look more like angles."

It is worthwhile to know a little trick by which the above formulas
involving polar coordinates can be remembered. We can look at Figure
10.286 which shows, among other things, an arc of length As joining two

Figure 10.286

points P and Q which have polar coordinates p, 0 and p + Op, 95 + 04.
We can feel that the outer part of the figure resembles a rectangle enough
to enable us to write the approximate formulas

(10.287) As = p2 0¢2 + Opt, cos ¢ = OP
P2 0O2 + Qp2

tan 4' =

and expect that correct results should be obtained by dividing by At
or by A¢ and taking limits. We can know that this optimism does not
prove formulas, but it can help us to recall the formulas when we have
forgotten them. When we wish to calculate the length L of the curve
having the polar equation p = f(4') with a < 0 < 0, we can, when f is
continuous, sketch a figure more or less like Figure 10.286 and use the
optimistic calculation

(10.288) L = lim As = lim J p2 XO2 -+ Apt

= lim p2 + fi() d¢

to lead us to the correct formula (10.285).
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Problems 10.29
1 Obtain the standard polar equation of the conic K and use it to sketch

the major and minor (or conjugate) axis of K when the eccentricity e and dis-
tance p from the focus to the directrix are

(a) a=-g,p=6 (b) e=2,p=3
2 Make a hasty sketch of the cardioid having the polar equation

p=1+cos4>.

Show that tan -(I + cos 4>)/sin 4> = - cot -4>. Calculate tan P when
0 = 7r/2 and when 0 = it and make any repairs in your figure that this informa-
tion may require.

3 Find the length of the cardioid of the preceding problem. Ans.: 8.
4 There is something unique about angles at which radial lines from the

origin intersect the exponential spiral having the polar equation p = e°o. What
is it? Ant.: The angles are all equal.

5 As ¢ increases from 0, the point Pr(p,4>) on the polar graph of p = e-0
spirals around the origin. Since it is about 3 and e3 is about 20, the point P
spirals toward the origin so rapidly that the length of the whole path may be not
much greater than the distance from the starting point to the origin. What are
the facts? Ant.: To try to preserve good ideas and perhaps create more, put the
matter this way: If 0 starts at time t = 0 and increases at a constant rate, the
point P must keep moving forever, but its speed decreases so rapidly that the
total distance traveled is always less than and only approaches as t -> oo
and ¢ -> oo. It makes sense to say that the total length of the path is 1/2.

6 Let C be the polar graph of p = f((P), where f(0) = 1, f(27r) = 2, and f is
continuous and monotone increasing over the interval 0 < 4 5 2ir. Try to
decide whether it is easy or difficult or impossible to prove that C must have
finite length.

7 The curve C of the preceding problem lies between the polar graphs of the
equations p = 1 and p = 2. Try to decide whether it is easy or difficult or
impossible to prove that the length of C lies between the lengths of the inner and
outer circles.

8 Let the displacement vector of a particle P at time t be

(1) r(t) = p(t)[cos 4>(t)i + sin 4>(t)j],

where it is supposed that p and 0 have two derivatives. Forgetting formulas
which we have derived but remembering rules for differentiating products, derive
the velocity and acceleration formulas

(2) v(t) = p'(t)[cos 4>(t)i + sin 0(t)j] + p(t)4>'(t)[- sin ¢(t)i + cos .0(t)j]
(3) a(t) _ [p"(t) - p(t)(4>'(t))2][cos 4>(t)i + sin 4>(t)j]

+ [p(t)4>"(t) + 2p'(t)4>'(t)][- sin 4>(t)i + cos 4,(t)jl.

Observe anew that the two vectors

(4) [cos 4>(t)i + sin 4>(t)j], [- sin 0(t)i + cos 0(t)j]
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are orthonormal vectors because they are unit vectors and their scalar (or dot)
product is zero. Henceforth we consider only time intervals over which p(t) > 0.
When motion of the particle P is being considered, the first vector in (4) is said
to be radial because it has the direction of the "radius vector" from the origin
to P, and the second vector is transverse because it is orthogonal to the radius
vector. Thus the right member of (3) displays, in order, the radial and the
transverse vector components of the acceleration of P. This acceleration is said
to be radial (the kind produced by a "central force field" having its center at
the origin) when its transverse component is zero, that is,

(5) P(t)O"(t) + 2p'(t)4,'(t) = 0.

This is another one of those derivative equations that is called a differential
equation and from which information can be extracted. Since p(t) > 0, the
left member of (5) is zero if and only if the product of it and p(t) is zero, that is,

(6) [P(t)]20"(i) + 2P(t)P'(t)O'(t) = 0.

The virtue of (6) lies in the fact that it can be put in the form

(7) dt {{P(t)]20'(t)) = 0,

and this fact should be carefully checked. The virtue of (7) lies in the fact that
it holds over an interval of values oft if and only if there is a constant c such that

(8) .{PUT 1(t) = c
for each t in the interval. The physical significance of (8) will be revealed in
Section 10.3; it is an important fact that (8) holds if and only if the radius vector
from the origin to the particle P sweeps over regions of equal area in time intervals
of equal lengths.

9 A circular race track has cylindrical equations p = a and z = 0, and it
has rectangular equations x2 + y2 = a2 and z = 0. A wheel of radius b rolls,
without slipping, around the track. The center of the wheel is always above the
track, it travels with constant speed, and it makes a circuit of the track in T
minutes. At time t = 0 the center of the wheel is going in the direction of the
positive y axis, and a pink tack P in the tire on the wheel is at the point having
rectangular coordinates (a,0,0). Letting r,(t) denote the vector running from
the origin 0 to the center Q of the wheel at time t, show that

(1) rl(t) = a(cos2Tti-+ - sin2Ttj) +bk.

Letting x(t), y(t), z(t) denote the rectangular coordinates of the pink tack P at
time t, show that

2aat
(2) z(t) = b (1 - cos bT ).

Using the fact that the line PQ (a spoke of the wheel) is perpendicular to the
horizontal line from Q to the z axis, obtain the formula

(3) x(t) cos T + y(t) sin 2T = a
2
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which may help us determine x(t) and y(t). Using the fact that the distance
from P to Q is always b (the radius of the wheel), obtain the formula

t girt 2
(4) [x(t) - a cos 2Yrr,

]2

+ [y(t) - a sin
7

] = b2 sin 2
2irat
FT-

Show that

(5) [x(t)]2 + [y(t)]2 = a2 + b2 Sin2 b7at

With or without assistance from these formulas, derive the formulas

2
x(t) = a cos Tt + b sin Tt sin bTt

y(t) = a sin 2Tt - b cos
2Tt sin -y-

z(t) = b - b cos 27rat

bT

and use them to find the velocity and acceleration of P when t = 0. Remark:
Mechanisms involving rolling wheels (or gears) appear in machinery in various
ways, and we have the preliminary idea that we can start studying these things.

10 Let a be a positive number. The point P lies on a line through the origin
which intersects the line having the rectangular equation x = a at a point Q,
and IPQI is equal to the distance from Q to the x axis. The set of such points P
is a strophoid. Find the polar equation of the strophoid. -4ns.:

p2 cos 0 - 2ap + a2 cos 0 = 0.

11 Supposing that a > 0, prove that the line having the rectangular equation
y = a is an asymptote of the hyperbolic spiral having the polar equation p4) = a.

12 Supposing that a > 0, prove that the x axis is an asymptote of the lituus
having the polar equation p2¢ = a2.

13 Show that transforming the first of the equations

(1) p= 4a cos 0- a sec 0, x4+xy2+ay2-3ax2=0
from polar to rectangular equations gives the second. Remark: The graph of
these equations is a trisectrix of Maclaurin. It is possible to use a formula for
tan 30 to show that if 0 is the origin, if Q is the point (2a, 0), if P is a point on the
trisectrix in the first quadrant, if 6 is the angle in the interval 0 < 0 < ir which
the line OQ makes with the positive x axis, and if ¢ is the acute angle which OP
makes with the positive x axis, then 6 = 30. Thus the trisectrix provides a
method (but not a ruler-and-compass method) for trisecting angles. Particu-
larly when 0 < 0 < 7r/2, the number p in (1) has an elegant geometric interpreta-
tion. It is JOBI - 10-41 where 14 and B are the points where a line through 0
meets the line having the rectangular equation x = a and the circle of radius
2a having center Q.

14 The innocent graph of the equation

1
Y=1,+x2
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is called the witch of Agnesi because Maria Gaetena Agnesi (1718-1799) discovered
a spooky ruler-and-compass method for constructing points on it. Let C be
the circle of diameter 1 with center at (0, 4). Let The a point on the line tangent
to the circle at the point (0, 1), and let Q be the point, different from the origin 0,
at which the line OT intersects the circle. Show that the vertical line through T
and the horizontal line through Q intersect at a point on the witch.

10.3 Areas and integrals involving polar coordinates Problems
involving "areas in polar coordinates" can be formulated in different
ways. To begin, we suppose that f is a nonnegative integrable function
of 0 over some interval a 5 0 < 0 for which 0 < a + 27r. Let S be
the set of points having polar coordinates p, 0 for which a < 0 S 0
and 0 < p =< f(c). In case f is continuous, S may be described as the
set S bounded by the polar graphs of the equations 0 = a, 0 = 0, and

Figure 10.31

p = f(O). The schematic Figure 10.31 should not be misleading. To
find the area ISI of S, we make a partition of the interval a < 0 < 0
into subintervals of which a representative one of length Dq5k contains
a particular 0k . When there is a necessity for being precise about this
matter, we set OqSk = Ok - 4k-i and choose qsk such that 4k-i < 0k
Ok. The area of the subset of S containing points for which 4,4-i 5 0 5
Ok can now be approximated by the area -[f(.0*)]2 ilk of the sector of
radius f(4k) having central angle Acyk. When we are hurried, we need
not make the usual remarks about the way in which the approximation
depends upon the choice of 0k, but in any case we should know why we
are using the area of the sector instead of its perimeter. An application
of fundamental ideas about estimating, summing, and taking limits to
set up integrals then gives

(10.32) ISj = lim I . [f(4k )]2 Q4)k = J 1 s [f(0)12 d4,,

where the integral is a Riemann integral. When we are not required
to write detailed explanations of the reasons for doing what we do, we
replace (10.32) by the simpler calculation

(10.33) ISI = lim I ..[f(0)J2 0(A = 1 f ' [f(4,)]2 do
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in which the subscripts and star superscripts do not appear. In applica-
tions, we often write p or p(o) in place of f(o).

To add variety to our acquaintance with problems, we define two
numbers II and 12 by the formulas

(10.34) I1 = f to [p(t)J2,p'(t) dt, IZ = 1 f ,_ [p(t)121 0'(t) I dt

and ask how II and 12 may be interpreted in terms of polar coordinates
and areas when t1 < t2. In order that the integrands and integrals exist,
it is necessary that p and 0 be functions for which p(t), 0(t), and 0'(t)
exist when t1 < 1 < t2, and we simplify matters by supposing that p,
¢, and 0' are all continuous over t1 5 t < t2. As t increases over the
interval t1 <_ t 5 t2, the point P(t) having polar coordinates (p(t), 0(t))
traces a curve (or an oriented curve) C from P(t1) to P(t2) that could look
like that shown in Figure 10.35 or like that shown in Figure 10.36.

r(t1) = r(t2)

Figure 10.35

A I
Figure 10.36

Of course, there are other possibilities, and we exclude more elaborate
ones by supposing that the interval ti _< t t2 can be separated into a
finite set of subintervals such that, over each subinterval, 0 is either
monotone increasing or monotone decreasing. Let P be a partition of
the interval t1 5 t __<_ t2 such that, in each subinterval, 0(t) is either
monotone increasing or monotone decreasing. Let tk* be chosen in the
kth subinterval in such a way that

(10.37) b(tk) - 0(tk-1) = O'(tk)(tk - tk-1) = 0'(tk) Otk,

and build the Riemann sum

(10.38) Atk

which approximates I. A particular term in this sum is an approxima-
tion to the area of the region swept over by the vector from 0 to P(t)
as t increases from tk_1 to tk provided 0(tk) > t(tk_1), that is, provided
the vector rotates in the positive direction. Similarly, the term is an
approximation to the negative of the area if the vector rotates in the
negative direction. Thus II is the sum of areas of regions swept over
in the positive direction and the negative of areas of regions swept over
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in the negative direction. We never have negative areas, but we can
subtract areas because areas are numbers. In case the path of P(t) is
the closed curve C of Figure 10.36, I is the area of the region bounded by
C. If the path of P(t) is the curve obtained by reversing the direction
of the arrows in Figure 10.36, then I, is the negative of the area of the
region enclosed by the curve. Except in cases where the vector from
0 to P(t) always rotates in the same direction, the number 12 in (10.34)
is usually less interesting than I,. It is the sum of the areas of all of the
regions swept over by the rotating vector.

Problems 10.39
1 Find the area of the region bounded by the cardioid having the polar

equation
p = a(l + cos 0).

l1ns.: 3aa2/2.
2 Using the polar equation p = 2a cos 0 of a circle of radius a, and noting

that a particle with polar coordinates (p,4) traverses the circle once as q5 increases
from --7r/2 to it/2, work out the familiar formula for the area of the circular
disk bounded by the circle.

3 The graph of the polar equation p2 = a2 cos 20 is the lemniscate shown
in Figure 10.171. Find the area of the bipartite set which it bounds .4ns.: a2.

4 Find the area of the region bounded by the graph of p = cos o. 14ns.: 1.
5 Supposing that a > 1 and that n is a positive integer, find the area of the

region bounded by the polar graph of the equation

p = a+cosno.
.Ins.: 7ra2 + it/2.

6 Use integration to find the area 111 of the smaller region which the line with
rectangular equation y = x slices from the interior of the circle having the polar
equation p = 2a cos 0. Then calculate 11, from the fact that the interior of
the circle is the union of the interior of an inscribed square and four slices each
having area A,. Make the results agree.

7 Sketch a polar graph of the equations

p=4+cost, 10 =2sint

and make a rough estimate of the area of the region enclosed by the graph. Then
calculate the area.

8 Set up an integral for the area -4 of the region bounded by the ellipse
having the standard polar equation

ep
P= 1 - e cos 0

and show that the result can be put in the form

- 1 (pp2
Jo (e''-cos4,)2d
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9 It is much easier to learn to play a violin than to acquire competence to
give basic definitions and theorems involving areas of patches of curved surfaces.
Some problems are so simple, however, that elementary methods yield answers
that are universally considered to be correct. As Figure 10.391 suggests, a

Figure 10.391

hemisphere (or hemispherical surface) of radius a is generated by rotating a
quadrant of radius a about the y axis. To find the area .4 of this hemisphere,
we make a partition of the interval 0 5 0 < 7r/2. Rotating the segment of
length a A,i about the y axis gives a part of the hemisphere that can be roughly
described as a ribbon of width a A¢ and length 2ar, where r is a cos 0 The
process for setting up and evaluating integrals then gives

14= lim 12,ra2 cos q5 A0 = 2ira2
Iox'2

cos 0 d¢ = 2ira2.

These preliminaries can be ended with the remark that the area of the hemi-
sphere ought to be about double the area of the equatorial circular disk and that
the world is so simple that the factor is exactly 2. Now comes the problem.
Supposing that 0 < c < c + h <= a, find the area of the zone generated by
rotating (about the y axis) the part of the arc between the lines having the equa-
tions y = c and y = c + h.

10 Supposing that r(t) and 0(t) have continuous derivatives and that

x(t) = r(t) cos 0(t), y(t) = r(t) sin 4(t),

calculate x'(t) and y'(t) and show that

{x(t)y'(t) - y(t)z(t)

11 Making use of the method involving (10.38), put appropriate hypotheses
on functions x(t) and y(t) and discover geometric interpretations of the integrals

r`:
x(t)y'(t) dt,

t2

y(t)x'(t) dt.

12 Show that if a particle P moves on the conic having the polar coordinate
equation

(1) P(t) = 1 - c os q5(t)
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in such a way that 0 is a function of t having two derivatives, then the displace-
ment -vector and velocity of P are

(2) r(t) =

(3) v(t) =

a
1 - e cos fi(t) [cos 0(t)i + sin 0(t)j]

-ea4'(t) sin q5(t)
[1 - e cos 0(t)12 [cos 0(t)i sin ¢(t)j]

+ aO'(t)
sin 4'(t)i + cos O(t)j].1 - e cos q5(t)

For the case in s hich

(4) '[p(t)]201(t) = C,

so that the radius vector from 0 to P sweeps over equal areas in time intervals
having equal lengths, show that

(5) 0'(t) = [p(t)]2 = a2 [1 - e cos 0(t)]2

(6) v(t) _ - Zee sin 0(t)[cos q5(t)i + sin 4(t)j]

+ a [1 - e cos 4(t)][- sin 4(t)i + cos 4(t)j]
z

(7) a(t) _ - a [p(t)]2
[cos ¢(t)i + sin q5(t)j].

Remark: This shows that if a particle P moves along a conic in such a way that
the radius vector from the focus to P sweeps over equal areas in time intervals
having equal lengths, then the particle is always accelerated toward the focus
and the magnitude of the acceleration is inversely proportional to the square
of the distance from the focus to the particle. Kepler discovered that, except
for minor perturbations, the planets move in ellipses with the sun at a focus
and that the "equal areas" property holds. As we did in this problem, Newton
used these laws to derive his famous inverse square law of gravitation.

13 Let S be a bounded convex set in the xy plane and let the origin 0 be an
inner point of S. (Basic definitions are given in a remark at the end of Problems
5.19.) Prove that to each q5 there corresponds exactly one positive number
/(0) such that the point P having polar coordinates (f(45), 0) lies on the boundary
B of S. Solution: Choose positive numbers S and R such that the circular disk
with center at 0 and radius 26 is a subset of S and S is a subset of the circular
disk with center at 0 and radius R. Let 0 be a given angle. Let f(4,) be the
least upper bound of numbers po such that S contains each point having polar
coordinates (p,4) for which 0 < p < po. Then 2S S f(4,) 5 R. Let P be the
point having polar coordinates (f(4,), ¢) and, as in Figure 10.392, let Q' and QZ
be the points of tangency of the lines through P tangent to the circle of radius
S having its center at the origin. With the possible exception of the point P
itself, each point of the line segment OP is a point of S. Since Ql and Q. are also
points of S and since S is convex, it follows that each point inside the triangle
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Q1PQ2 is a point of S. No interior point Q of the shaded sector of Figure 10.392
can be a point of S. Otherwise, the point P, being an inner point of the inside
of the triangle Q1QQ2, would be a point of S and so would also each point of some

Figure 10.392

circular disk having its center at P. There would then be a number po greater
than f (B) for which S contains each point having polar coordinates (p,o) for which
0 5 p 5 po, and this is impossible. We now know that each point inside the
circle with center at the origin and radius S is a point of S, that each point inside
the triangle Q1PQ2 is a point of S, and that each point Q interior to the shaded
sector is not a point of S. It follows from this that f (¢) is the one and only
positive number such that the point P having polar coordinates (f (q5), 0) is a
point on the boundary B of S Remark: Without going into details we observe
that this proof provides supplementary information that enables us to relate
f(O + h) to f(O) It can be shown that f is continuous and hence that the
boundary B becomes a simple closed curve C when its points are so ordered that
the point having polar coordinates (f(01), 01) precedes the point having polar
coordinates (f(¢2), 02) when 0 =< (P1 < 02 5 2a. The objection that curves
were defined in terms of rectangular coordinates is overcome by the observation
that if f is continuous, then so also are the functions g1 and g2 defined by

x=g1(0)=f(4)cos¢
y = g2(4) = f(O) sin ¢.

It can be proved that the curve C has finite length L.



11
Partial
derivatives

11.1 Elementary partial derivatives Leaving consideration of more
complicated situations to later sections, we confine attention in this sec-
tion to examples and problems in which the fundamental ideas can be
stated quite simply and it is relatively easy to be completely sure of the
meanings of all of the symbols that are used. We begin with an example.
Suppose a copper rod occupies the interval x, _<_ x S x2 of an x axis and
that we are interested in the temperature u (measured in degrees centi-
grade) at points of the rod at various times t. To be precise about the
matter, we may suppose that the "space coordinate" x is measured in
centimeters with x = 0 at some "space origin" and that the "time
coordinate" t is measured in seconds with t = 0 at some "time origin"
which could be the time at which some particular stop watch was started.
In some problems, it is not presumed that x and i are positive. For
present purposes, we suppose that to each pair of numbers x and t for
which xi S x _< X2 and t > 0 there corresponds exactly one number it
which we may denote byf(x,t) or by u(x,t) and which is the temperature

ssa
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at the "space-time place" having "space-time coordinates" x and t.
Thus the temperature u is a function of the two "variables" x and t.
We are now in a realm where ideas of major importance can appear all
over the place. Some students who are now dubious about the possi-
bility of doing anything useful or interesting with these functons will,
in two or three years, have substantial information about the possibility
of starting with positive numbers a and L and a given function g and then
determining a positive integer n and constants A1, A2, . , A, such
that the particular function u defined by

n j kT
(11.11) u(x,t) _ 41F L= sin T xk-1

will be a good approximation to g(x) when t = 0. In any case, (11.11)
exhibits important examples (one for each choice of n and A1j X12, ,

A) of functions u to which our work applies.
We continue study of our example in which temperature u (measured

in degrees) is a function of x (measured in centimeters) and t (measured
in seconds). If we wish to study the temperature of the rod at some
particular time to, we can set t = to and, without bothering to be fussy

about the distinction between afunc-
u

u(x to)
tion and values of the function, con-
sider u(x,to) to be a function of x
alone. If the graph of u(x,to) versus

x1 x2 x x happens to be that shown in Figure
Figure 11.12 11.12, we can look at the graph to see

where the temperature is increasing,
but it would not be too easy to determine the rate of change of u with
respect to x. To do this and get a number of degrees per centimeter, we
would want to differentiate u(x,to) with respect to x. Thus we are led to a
very important idea. When u is a function of x and some other variables
(in our case, just one other variable), it may make sense to assign fixed
values to all of the variables except x and differentiate the result with
respect to x. In particular, the idea does make sense when we know what
these other variables are and, in addition, we know that the resulting func-
tion of x is a differentiable function of x. When we know what we are
doing (this is a conservative statement providing for the possibility that
we may sometimes be puzzled by situations in thermodynamics) the result-
ing derivative is called the partial derivative of u with respect to x. While
there are other and more informative symbols for partial derivatives, the
simplest and most ingenious one is 8u/Ox. The "curly dees" in this
symbol are unusual Greek deltas, and the symbol is usually read "par-
tial of u with respect to x."

We are already in a position to understand statements and make cal-
culations. Partial derivatives are important things that abound in
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books and on blackboards and in notebooks and on scratch pads. Wher-
ever we find aw/aq, we automatically know that w is a function of q
and some other variables, we know that fixed values have been assigned
to all variables except q, and we know that aw/aq stands for the result
of differentiating the resulting function of q with respect to q. If w
is measured in gees and q is measured in haws, then aw/aq is measured
in gees per haw. When we see the formula

(11.13) u = x2 + y2 + e°x sin by or u(x,y) = x2 + y2 + e°S sin by,

we can compute partial derivatives with respect to x by supposing that
all variables except x are assigned fixed values, so that they are to be
regarded as constants when we differentiate with respect to x to obtain

(11.131) ax = 2x + ae°x sin by or u,(x,y) = 2x + ae°y sin by.

The second one of these formulas involves the standard subscript nota-
tion for partial derivatives. Similarly,

(11.132) e = 2y + be' cos by or 2y + be°= cos by.

It should now be apparent that calculating these partial derivatives is
equivalent to evaluating the limits in

(11.14) uz(x,Y) = eo u(x + Ox, Y) - u(x,Y)l
Lx

uv(x'Y) = lim u(x, y + AY) - u(x,Y)
AY-0 Ay

Taking the partial derivatives with respect to x of the members of

(11.131) and (11.132) gives

(11.141)
azu

= 2 + a2e°S sin by or u=z(x,y) = 2 + a"e°Z sin by

and

(11.142)
axzay

= abe- cos by or ud=(x,y) = abet cos by.

Taking partial derivatives with respect to y of the members of (11.131)

and (11.132) gives
z

(11.143) as ax = abe6z cos by or abe°= cos by

and
492U

z z 2 - b2(e°= sin by.11.144) aye = 2 - b ea sin by or u (x,y) =

In the above formulas, we have used the formulas
z

(11.145) ay (ax = ay ax (uz),(x,Y)
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which serve a dual purpose: they provide abbreviations for the expressions
on the left sides, and they provide meanings for the abbreviations on the
right sides. It could be supposed that we should insert a comma between
the subscripts x and y to write ur,v in place of u,z,,, but it is customary to
consider the commas to be superfluous.

The result of setting x = y = 0 in (11.131) is

(11.146) au = 0 or uz(0,0) = 0,

and this shows that the "curly dee" notation for partial derivatives is,
after all, a miserably poor purveyor of information. When we see the
first formula in (11.146), there is nothing to tell us that u depends upon
exactly two variables x and y and that 0 is the result of setting x = y = 0
in au/ax. When we keep the curly dees, it is often necessary to put
(11.146) in the form

(11.147) au I = 0, uz(0,0) = 0
ax (o,o)

so the first formula, like the second, can really mean something. As this
one example may suggest, the curly dees really should be banished from
the universe because they have the habit of giving incomplete and some-
times misleading information. There can be no doubt, however, that
they are so pretty and give information so quickly that they will con-
tinue to survive and be used.

Relatively simple fundamental calculations yield formulas in which
the first two or the second two of the quantities

(11.15)
aau aau

ay ax' ax ay' u-,-,,(x,Y), U,,-(x,Y)

both appear and will cancel out if we can be sure that they are equal.
Taking a partial derivative with respect to x is, like putting on our shoes,
a procedure that is called an operation. Taking a partial derivative with
respect to y is, like putting on our socks, another operation. The ques-
tion whether the mixed derivatives in (11.15) are equal is therefore the
question whether two operations commute, that is, whether the result of
performing the two operations in tandem (that is, one after the other)
is independent of the order in which the operations are performed.
Correct ideas about the problem involving shoes and socks can be
obtained by experimentation. The remainder of the text of this section
is devoted to the problem involving partial derivatives. We begin with
some definitions in which n can be I or 2 or 3 or 416 and the variables
are usually denoted by x, y or x, y, z instead of xl, X2, , x when there
are only two or three of them.



11.1 Elementary partial derivatives 557

Definition 11.16 14 function f of n variables x1, x2, , x is said
to have the limit L as x1, x2j , x approaches al, a2, , an and we
write

lim f (xl,x2, ,xn) = L
xi,x2,

if to each e > 0 there corresponds a S > 0 such that

If(X1,X2,
. . . x,) - LI < e

whenever

0 < (xl - ai)2 + (x2 - a2)2 + . . . + (xn - an)2 < S.
Definition 11.17 A function f of n variables x1, x2, , x is said

to be continuous at a,, a2, , an if

lim f(xl)x2j ,xn) = f(a1)a2, .. an)-
x,.24, ... x-4ai,a2, ... ,an

We are now prepared to state a fundamental theorem which guarantees
equality of f,, and fxy whenever these and some other derivatives exist
and are continuous; the fact that the theorem gives additional informa-
tion is interesting but less important.

Theorem 11.18 If u(x,y), u,,(x,y), uy(x,y), and uxy(x,y) all exist and
are continuous over some circular disk consisting of points (xl,yl) for which
(xl - x)2 + (yl - y)2 < S, then exists and

(11.181) uyx(x,Y) = uz (x,Y)

Proof of this theorem is quite tricky because it requires two applica-
tions of the mean-value theorem 5.52, and the first of these applications
must be made in a particular special way to produce the required result.
We shun the curly dees and use the subscript notation so we can know
what we are doing. To approach the derivative uyx(x,y) about which
we must learn, we observe that the derivatives in

(11.182) uy(x,y) = lim u(x, y + Ay) - u(x,y)
Ay- o AY

(11.183) uy(x + Ax, y) = lim
u(x + Ax, Y + Ay) - u(x + Ax, y)

Ay- o AY

exist when IOxl is sufficiently small. We must prove that the limit in

(11.184) uyx(x,y) = lim
uy(x + Ox, y) - uv(x)y)

AX-0 Ax

exists and is uxy(x,y). Substituting for the terms in the numerator of
the right member gives

(11.185)
u(x+Ox, y±Dy)-u(x+tx, y)-u(x, y-1- y)+u(x,Y)uyx(x,y) = lim lim

Ax-+o oy-aO Ox Dy



558 Partial derivatives

Supposing for the moment that y and y + Ay remain fixed like good
numbers usually do, we define a function q, by the formula

(11.186) ¢(t) = u(t, Y + Dy) - u(t,Y).

The numerator N of the ponderous quotient in (11.185) is then found to
be the second member of the formula

(11.187) N=O(x+Ax)-i(x)=O'()Ox
= [um( , Y +'ay) - u.t(,Y)] Ax,

and an application of the mean-value theorem and (11.186) then gives
the rest of the formula in which is a number between x and x + Ax.
Substituting the last member of (11.187) for the numerator in (11.185)
gives

(11.188) ut,Z(x,y) = lim lim u=(, Y + AY) - u=( ,Y)
nz--*o AY-0 AY

Since uz(,t) is a differentiable function of t over the interval from y to
y + Ay, another application of the mean-value theorem gives

(11.189) uyx(x,y) = lira lim u2y(,n),
Lx-.o ny--.O

where n lies between y and y + Ay. Matters are complicated by the
fact that both i and 7l can depend upon Ay, and the next step is a delicate
one that demands careful attention in a rigorous course in advanced
calculus. The fact that the limit in the left member of the formula

(11.1891) lim us U 'n) = uxy(*,y)
av- o

exists and the fact that u=y is continuous imply that there is a number
for which Ix - i;*j < lixi and the formula holds. Since usy is contin-
uous, this and (11.189) give

(11.1892) uyz(x,y) = lim u=y(i*,y) = uxy(x,Y).

Thus the limits exist and have the required value. It is not expected
that the above proof of Theorem 11.18 will be "learned" in this course,
but we need not be blissfully unaware of the facts that the theorem is
important and that we could learn very much about partial derivatives
and limits if we would (as is often done in advanced calculus) invest
enough time to make a thorough study of the proof.

Two observations can be made. In the first place, it is easy to insert
an extra variable z in Theorem 11.18 and its proof to obtain the formula
(11.1893) u:y(x,Y,z) = uys(x,Y,z)

when the appropriate functions and derivatives are continuous. In the
second place, continuity of appropriate functions and derivatives allows
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us to make any change we please in order of differentiation when u is
differentiated more than once with respect to variables upon which it
depends.

Problems 11.19
I Let

f(x,y) = x2 + y2

and observe that f.(x,y) = 2x. Then perform every single step required to
show in the most tedious possible way that

lim f(x + AX, y) - f(x,y) - 2x.
AX-0 Ax

Then think about the whole business.
2 If

show that
u(x,y,z) = x2 + 2y2 + 3z2,

u.(x,y,z) = 2x uy(x,y,z) = 4y * u.(x,y,z) = 6z
us(1,1,1) = 2, uy(1,1,1) = 4, u,(1,1,1) = 6.

3 Supposing that p > 0 and

P2 = x2 + y2, = tan-' y
X

find the first partial derivatives of p and 45 with respect to x and y and then use
the formulas x = p cos q5, y = p sin 0 to put the results in the form

ap ap ao sin ¢ a4, cos 0TX = cos 4, ay = sin 0, ax = -
P

, ay = P

4 Obtain the simplest possible expression for

a2u a2u

axe + ays

when

4u=x2-y2 (b) u=3x2y-y=
(c) u = log (x2 + y2) (d) u = ex cos y

(e) u=xsiny (f) u=tan-, y
x

(g) u = log (x - a)2 + (y - b)2
_ns.: With one exception, each answer is 0. Remark: The equation

191U 2

axe + aye - 0

and those that appear in the following problems are called partial differential
equations. It is never too early to start learning that the above equation is the
Laplace equation. A function u is said to be harmonic over a region if it satisfies
the Laplace equation and is continuous and has continuous partial derivatives
at each point of the region. Problem 12 gives an example of a function which
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satisfies the Laplace equation over the entire plane but is, nevertheless, not
harmonic over regions containing the origin.

5 Prove that
au au

(1) xax+y ay =0

when u = y/x, when u = log (y/x), and when u = sin (y/x). Continue opera-
tions to prove that if f is

s

a differentiable function of one variable, then

Vx'f x/ =f, (z) x2' af OX) =f'
`(/

\XD k

and (1) still holds.
6 Prove that the wave equation

u
a2

azu z

axz
=

ate
is satisfied when

(a) u = (x + at)3 (b) u = (x - at)'
(c) u = es+at (d) u = sin (x - at)
(e) u = f(x + at) (.f) u = g(x - at),

it being supposed that f and g are twice-differentiable functions.
7 Show that the function defined by (11.11) satisfies the heat equation

a2 a2uax2
au

at

8 Show that each of the following functions satisfies the equation written
opposite it:

(a) u=ax+by xaz -{- yau=u
Y

(b) u = sin (x sin y) cos y ax - sin yy = 0
a2u a2u a2u

(c) u
(x - x5)2 + (y - yo)2 + (z - zo)2 ax2 + ay2 -F azz = 0

(3U au au
(d) u=(x-Y)(Y-z)(z-x)

a
x+ay+az-0

9 To simplify matters, we suppose that each function appearing in our work
is continuous and has continuous partial derivatives of first and second orders.
We begin acquaintance with the idea that if F or F(x,y,z) is a scalar function,
then the vector function VF defined by

(1) DF=al+ayi +azk
is called the gradient of F. If V is a vector function defined by

(2) V(x,y,z) = P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k,

then the scalar function defined by

(3)
aP + 8Q + OR
ax ay az
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is called the divergence of V. Finally, the vector function V X V defined by

i j k

(4)

V X V =

a a
ax ay az
P Q R

is called the curl of V. The expanded form of (4) is

(5)
aR _ aQl aP ORll (Q _ aPVX V =Cay az/1+Caz ^ax/1+\ax ay)k.

The inverted delta is called "del," and we shall hear more about the formula

(6) V=a i+a,j+a k.
Meanwhile, use the definitions to show that

(7)
F

}
82F

V- (VF) =
a2 a2F
axe

aye az2

i

a

j

a

k
a

(8) V X (VF) = ax ay az = 0.
OF

ax

OF

ay

a1

az

10 Start with the formulas

V=ad ayj+k
F(x,y,z) = x2 + y2 + z2
V(x,y,z) = xi + yj + zk

and calculate all of the following things that are meaningful:

(a) VF (b) V X F
(d) VV (e) V V

X
V (V X V) (1)

11 Letting u be the thoroughly reasonable function having the value yp sin 2¢
or p sin ¢ cos 0 at the point having polar coordinates p and ¢, show that, in
rectangular coordinates,

1 00 0 ,422 + 2 0)( ) ) =U( , , u(x,Y) _ (x2 + y2)3s
5 -(x y .

Show that
au y$ au x2

(2) '
_

7422 (x2 + Y2 0 0)TX (x2 + y.)% ay )+ y(x

Show that

(3) lira uz(O,y) = 1, lim u:(O,y) _ -1-
V-O+ u-+0-

Show that u=(x,0) = 0 for each x and that uy(O,y) = 0 for each y.
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12 The function u for which u(0,0) = 0 and

2xy
(1) u(x,Y) = (x2 + y2)2

can be considered more than once. Show that

Partial derivatives

(2) usz(x,y) = 24xy (x22+ y2)4 uyy(x,y) = 24xv (z2 + y2)4

and hence

a2u a2u
(3) axe + aye = u==(x,Y) + uvv(x,y) = 0

when x2 + y2 54 0. Show that (3) holds when x = y = 0. Show that

(4) lim u (x,z) = oo.
x-.O

13 Formulas more or less like

(1) F(x) = f bf(x,y) dy

often appear in pure and applied mathematics. We suppose that, for each x
in some interval, the integral in the right member of (1) exists and is a number
F(x). More advanced courses set forth conditions under which F'(x) exists and
can be obtained by "differentiating with respect to x under the integral sign"
so that

(2) F'(x) = Jab [' fx(x,Y)] dy.

When this procedure is correct, we can combine (1) and (2) to obtain the formula

(3) dx fab f(x,y) dy = fab
L

' f(x,y)] dy.

Verify that (3) is correct when

(a) a = 0, b = 1, f(x,y) = x + y
(b) a = 0, b = 1, f(x,y) = x2 + y2

(c) a = 1, b = 2, f(x,y) = sin xy
x

11.2 Increments, chain rule, and gradients Throughout this sec-
tion, we suppose that u is a function of three variables x, y, z and we restrict
attention to a region R in E3 over which u is continuous and has con-
tinuous partial derivatives u, u,,, and uZ. In many examples the region
R is the whole E3, but this is not necessarily so. Whenever a useful
purpose is served, we can regard u(x,y,z) as being the temperature or
pressure or potential or density or humidity at the point P(x,y,z). While
u(x,y,z) cannot be a vector, it can be the scalar component in some par-
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ticular direction of a vector. In any case, it should be recognized that
our function can be of interest to men as well as to boys. Everything
we do will depend upon the fundamental fact that there is an astonish-
ingly effective way of estimating the number Au, defined by

(11.21) Au = u(x + Ax, y + Ay, Z + AZ) - u(x,Y,z),

which represents the difference (or increment) between the values of u
at two places. The basic trick is to divide and conquer the huge dis-
crepancy between the natures of the two terms in the right member of
(11.21) by subtracting and adding terms to obtain the telescopic sum in

(11.22) Au = u(x + Ax, y + Ay, z + Az) -u(x,y+Ay,z+Az)
+u(x,Y+AY,z+Az) -u(x,Y,z+AZ)
+ U (X' Y, Z + AZ) - u (x,Y,z)

Defining a function 0(t) by the formula

(11.221) 4(t) = u(t, Y + Ay, Z + AZ)

enables us to apply the mean-value theorem to the difference in the
first line, and similar functions apply to the other two. Thus we obtain
Au = u.,(x*, Y + AY, z + AZ) Ax + uy(x, Y*, Z + AZ) Ay + u=(x,Y,z*) Az,
where x* lies between x and x + Ax, y* lies between y and y + Ay, and
z* lies between z and z + Az. Our hypothesis that the derivatives are
continuous allows us to put this in the form

(11.222)
Au = [i& (x,y,z) + El] Ax + [uv(x,Y,z) + E2) Ay + [u,(x,Y,z) + E3) Az

where el, E2, e3 are quantities which approach zero as Ax, Ay, Az approach
zero. This formula can be put in the form

(11.223) Au = [+ei]Lix+ Cu + E2 Ay + CZ + E3J AZ.
Y

It is quite possible to rub out the epsilons, replace deltas by dees, write
the formula

(11.224) du = az dx + ay dy + az dz,

and then undertake to explain the antics. At least for. the present we
adopt different tactics.

Let three functions x, y, z be defined and differentiable over some interval
T of values of t, and let the point P(t) having coordinates x(t), y(t), z(t)
trace a curve C in R as t increases over T. Let

(11.225) w(t) = u(x(t), y(t), z(t)).
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Looking forward to derivation of a formula (the chain formula) for w'(t)
we write

Thus

where

w(t + At) = u(x(t + At), y(t + At), z(t + At)).

w(t + At) = u(x(t) + Ax, Y(t) + AY, Z(t) + Oz),

Ax = x(t + At) - x(t), AY = Y(t + At) - y(t), As = z(t + At) - z(t).

Applying (11.222) then gives

w(t + At) - w(t) = [t{=(x(t), y(t), z(t)) + Ei][x(t + At) - x(t)]
+ [uv(x(t), y(t), z(t)) + e21[y(t + At) - Y(t)]
+ [tts(x(t), Y(t), z(t)) + e3][z(t -}- At) - z(t)],

where el, e2, e3 are quantities which approach zero as At approaches zero.
Dividing by At and taking limits as At approaches zero gives the chain
formula (11.232). The following theorem sets forth conditions under
which the chain formula is correct.

Theorem 11.23 (chain rule) If u is continuous and has continuous
partial derivatives us, u,,, u, over a region R in E3, and if

(11.231) w(t) = u(x(t), y(t), z(t)),

where x, y, z are differentiable functions oft over some interval T, and if the
point P(t) having coordinates x(t), y(t), z(t) traverses a curve C in R as t
increases over T, then w is differentiable over T and

(11.232) w'(t) = u,,(x(t), y(t), z(t))x'(t)
+ u,(x(t), y(t), z(t))y'(t)
+ u2(x(t), y(t), z(t))z'(t)

when t is in T.

In case [x'(t)]2 + [y'(t)]2 + [z'(t)]2 = 1 so thatP(t) moves along C with
unit speed, the number w'(t) is called the directional derivative of u in the
direction of the forward tangent to C at P. For this and other reasons,
some of which will appear later, the chain formula (11.232) is extremely
important. We temporarily suspend production of mathematics to
ponder consequences of the rude fact that it takes a long time to write
the formulas (11.231) and (11.232). We can wonder how much we can
abbreviate these formulas without abbreviating the life out of them and
without creating confusion that wastes more of our time than the abbre-
viations save. We can write (11.231) in the form

(11.233) u = u(x,y,z)

and carry in our minds the idea that the left side stands for the value of
a function of t and so also does the right side but, on the right side, u is
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linked to t by the intermediate variables x, y, z which are functions of t.
We can then abbreviate (11.232) to

du au dx audy au dz(11.234)
dt - ax dt + ay St + -Oz dt

It turns out that, in practice, the version (11.234) of the chain formula
is often very convenient. For example, if

u = x2 + y2 + z2, x = sin t, y = et, Z = t2,
then

du
= 2x cos t + 2ye° + 4ztat

and it is, in fact, not always necessary or even desirable to express the
right side entirely in terms of t. The abbreviations are not always so
agreeable, however. In case the parameter t is x itself, we must employ
considerable fortitude to comprehend the sentence containing (11.233)
and the formula

(11.235)
du _ au +audy+au dz
dx ax ay dx az dx

It is awkward and perhaps even undesirable to be required to think of u
depending upon x in two different ways. It is easier to let

and to write
w(x) = u(x, y(x), z(x))

dw _ au dx au dy au A
dx axdx+aydx+azdx

and then observe that dx/dx = 1. While Theorem 11.23 is the fully
meaningful theorem to which we can refer when meanings of symbols
must be carefully set forth, we give a restatement of the theorem in
terms of the simpler curly dee notation.

Theorem 11.24 (chain rule, second version) If u is continuous and
has continuous partial derivatives au/ax, au/ay, au/az over a region R in
Ea, and if

(11.241) u = u(x,y,z),

where x, y, z are differentiable functions of t over some interval T, and if the
point P having coordinate (x,y,z) traverses a curve C in R as t increases
over T, then is is differentiable over T and

du _ au d x audy au dz
(11.242)

dt ax YT + ay 77 + az dt

It is not often that we have an opportunity to make an observation
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as valuable as the one that the right member of (11.242) is the scalar
product of two vectors. Thus

(11.25)
du = ( i + au + au k).(dx i + d y + d% k).
dt ax ay az J at dt dt J

The remarkable feature of this product is the fact that, for each t, the
first vector depends only upon the first partial derivatives of u at the
point P(x,y,z) and the second vector is (when it is not 0) simply a forward
tangent to C at P.

Information is ready to gush from (11.25), and we make progress by
learning about the first vector which is called the gradient of u at P and
is denoted by Vu so that

(11.26) Vu = ax i + ay j + az k.

The symbol V, an inverted delta, is read "del" and Vu is read "del u."
We must always remember that Vu is a vector. For many purposes, it
is very helpful to consider V itself to be an operator,

(11.261) V = ax l + as i + az k,

which can be applied to a scalar function u having continuous partial
derivatives to produce the gradient vector Vu. In case Vu = 0, this is
the whole story and there is nothing more to be learned. Henceforth
we suppose that Vu 0. Let the last vector in (11.25) be a unit vector v
so that du/dt is the directional derivative of u at P in the direction of v.
Then

(11.262) dt = Ivul cos 0,

where JVul is the length of the gradient Vu and 0 is the angle between the
vectors Vu and v. Since -1 <= cos 0 < 1 and cos 0 = 1, it follows that
the direction of Vu is the direction in which the directional derivative of u
at P attains its maximum value and that the length of Vu is this maximum.
This is the fundamental intrinsic property of the gradient of u at P.
Since cos -r = -1, the direction opposite to that of Vu is the direction
in which the directional derivative of u at P attains its minimum value,
and -IVul is the minimum. Some applications are easy to understand.
If u is temperature and Mr. Walker is at a place that is too cold to suit
him, he will walk in the direction of the gradient of u, and the length of
the gradient will tell him the rate (in degrees per meter, for example)
at which his position becomes more comfortable.

Since cos r/2 = 0, directional derivatives in directions orthogonal to
the gradient Vu will be 0, and this can make us think about level surfaces



11.2 Increments, chain rule, and gradients 567

(isothermal surfaces or equipotential surfaces, for example) upon which
u has a particular constant value. If Po(xo,yo,zo) and some sphere with
center at Po lie in our region R, then our hypotheses (including the
hypothesis that Vu ; 0 at Po) imply that there is a surface S consisting
of points P(x,y,z) for which u(x,y,z) = u(xo,yo,zo). Let C be a curve
which lies on S and passes through Po and has the vector v for its forward
tangent at Po. Supposing that a point moving along this curve has
coordinates x(t), y(t), z(t), we have

(11.27) ' u(x(t), Y(t), z(t)) = u(x0, Yo, zo)

and hence du/dt = 0. Therefore, (Vu).v = 0. Thus Vu is orthogonal
to each line which passes through Po and which is tangent to a curve on
S. As Figure 11.271 may suggest, this is just
what we mean when we say that Vu is a normal
to the surface S at the point Po. Therefore,
we can find the normal to the surface S having

V '0 Yu(zyz)=cthe equation u(x z) = c at a i t P,,y) po n o on
S, by finding the gradient of u at Po. To find
the plane tangent to S at Po is easy; it is the
plane through Po orthogonal to the gradient. Figure 11.271

A review of matters relating to equations of
lines and tangent planes may be in order. If the gradient of u at a point
Po(xo,yo,zo) is

Eli+Bj-}-Ck,

then the equations of the line through Po upon which this gradient lies are

(11.28) x - x- Y - Yo_Z - zo
A B C

and the equation of the plane through Po normal to the gradient is

(11.281) A(x - xo) + B(y - yo) + C(z - zn) = 0.

The equations (11.28) are correct because they say that the scalar com-
ponents of the vector from Po(xo,yo,zo) to P(x,y,z) are proportional to the
scalar components of the gradient. The equation (11.281) is correct
because it says that the vector from Po(xo,yo,zo) to P(x,y,z) is orthogonal
to the gradient.

Problems 11.29
1 This problem requires us to think about some ways in which the formulas

(11.21) to (11.25) can be used to solve problems. Suppose f is a given function
having continuous partial derivatives. Suppose we want f(x,y,z) but we cal-
culate f(xo,yo,zo) because it is easier to calculate f(xo,yo,zo) or because x, y, z are
unknown and xo, yo, zo are the numbers we got when we measured them. How
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can we estimate the error resulting from using f(xo,yo,zo) instead of f(x,y,z)?
11ns.: Put

x=xo, Y=Yo, z=zo, Ax=x - xo, AY=Y - Yo, Az=z - zo

in formulas from (11.21) to (11.223). Remark: Very often we do not want to
hunt up books and copy formulas from them. See the next problem.

2 Remember the following modus operandi because it is useful when properly
used. As an approximation to the number Du defined by

(1) Au = u(x + dx, y + dy, z + dz) - u(x,y,z)

use the number du defined by

au au au
(2)

du=axdx+aydy+azdz.

Remember that (2) can, in appropriate circumstances, be obtained by differ-
entiating with respect tot by the chain rule (Theorem 11.24) and multiplying
by dt. Note the similarity between this modus operandi and the one involving
(3.96)

3 Supposing that y = p sin 0, derive the formula

Idyl =< Ip cos 01 Id4)I + Isin 4)I Idpl

which gives information about the error in y resulting from use of erroneous values
of p and 4).

4 Supposing that y = p cos 4), where p and 0 are functions of t, find a
formula for dy/dt in two different ways. First use partial derivatives and the
chain rule. Then use ordinary (not partial) derivatives and the rule for differ-
entiating products of functions of t. Make the results agree.

5 Formulate and solve another problem more or less like the preceding one.
6 Supposing that .1, B, C are constants for which .42 + B2 + C2 = 1, find

the directional derivative of the function (or potential function)

(1) Y =
1

'V (x - x1)2 + (y - Y1)2 + (z - zj)2

at the point (xo,yo,zo) in the direction of the vector

(2) D = 1i + Bj + Ck

by two different (or superficially different) methods. In the first place, put

(3) x = xo + -41, y = yo + Bt, z = zo + Ct

in (1) and find dY/dt by differentiating with respect to t without use of partial
derivatives. Then put t = 0. In the second place, show that

OP= - (x-x1)i.+/(-y-yl)j+(z-z1)k
[(x - xl)" + (y - Y02 + (z - z1)2],>

and calculate the scalar product Then put x = xo, y = Yo, z = zo.
Make the results agree. Remark: It is worthwhile to observe that, by introducing
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summation signs, we can easily extend all of these calculations to cover more
complex situations in which it is a positive integer and

n
/,mk

Y
k=1 (x - xk)2 + (y - yk)2 + (Z - Zk)2

There are times when it is not unreasonable to start with a special situation in
which n > 3 and make quite extensive calculations to learn about directional
derivatives, gradients, and equipotential surfaces. An equipotential surface is a
surface consisting of points (x,y,z) such that, for some constant c, Y(x,y,z) = c.

7 Let the temperature it at the point (x,y) in an xy plane be defined by

u=r- sin v.
Modify the procedure of Problem 6 to obtain, by two methods, the directional
derivative of u at (xo,yo) in the direction of the unit vector

(cos a)i + (sin a)j.
Make the results agree.

8 Supposing that

show that
u = Ix + By + Cz,

Vu = .4i + Bj + Ck.

Use this result to show that the equation of the plane tangent to the graph of

the equation
/Ix+By+Cz=D

at a point Po(xo,yo,zo) on the graph is

11(x-xo)+B(y-yo)+C(z-zo) =0
or

9 Supposing that
,4x + By + Cz = D.

x2 L v2 -- z2
"= a2+b2 `'

Vu = axi+ b',j + zk.

Use this result to show that the equation of the plane tangent to the graph of the

equation

(3) x,2,+1y 2+Z2
a- b2 c

at the point (xo,yo,zo) on the graph is

(4) ZQ°°(x-xo)+o°(y-yo)+ -°(z-zo)=0
or

xa2+ b +`oti =1.

Remark: In case a = b = c, the graph of (3) is a sphere. Otherwise, the graph

is an ellipsoid; see Figure 6.631 and the accompanying discussion.
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10 When
u = x2 + Y2 - z2,

the graph of the equation u = 0 is a cone having its vertex at the origin. If
Po(xo,yo,zo) is a point on the cone which is not the origin, show that the equation
of the plane tangent to the cone at Po is

zox + YoY - zoz = 0.

Note that the gradient at the origin is 0 and that we have no information about
planes (if any) that are tangent to a cone at its vertex.

11 The graph of the equation

(1) z YZ x2

b2 a2

is a hyperbolic paraboloid or saddle surface more or less like that shown in Figure
6.672. The sections in planes parallel to the xz and yz planes are parabolas
while other sections are hyperbolas. Letting

x2 y2i P,

find the gradient of u at the point Po(xo,yo,zo) on the graph of (1) and show that
the equation of the plane tangent to the graph at Po is

(3) x0x - yoY -f- z + Z0 = 0.
a2 b2 2

12 Letting u be the left member of the equation

(1) auxx + a12xy + a13xz + bi(x + x) + a21Yx + a22YY + a2syz + b2(Y + y)
+ aalzx + as2zy + asazz + bs(z + z) = c,

where a21 = a12, a31 = ais, and a82 = a23, show that

(2) Vu = 2[a11x + a12y + aiaz + b1]i + 2[a21x + a22y + a2az + b2]7

+ 2[aslx + as2Y + assz + b3]k.

Supposing that the graph of (1) is a quadric surface S containing a pointPo(xo,yo,zo)
at which Vu 0 0, write the equation of the plane tangent to S at Po. Put the
equation in the form obtained from (1) by the following ritual. Wherever the prod -
uct or sum of two variables appears, award a subscript to the first factor or term.

13 Prove that each plane tangent to the surface having the equation

x3i + yi4 + z% = a%

intersects the coordinate axes in points that are projections upon these axes of a
point on the sphere having the equation

x2+y2+z2 = a2.
14 Find the gradient of the function F for which

F(x,y,z) = xyz - 1,

find equations of the line normal to the surface having the equation

xyz=1
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at the point (xo,yo,zo), and find the equation of the plane tangent to the latter
surface at the latter point. /Ins.:

VF = yzi + azj + 1 vk
x - x_Y - Yo z- zo

Yozo
-

xozo xoYo

YOZO(X - xo) + xozo(y - Yo) + xoYo(z - zo) = 0.

15 Prove that if the plane 7r is tangent to the graph of the equation xyz = a',
then Tr and the three coordinate planes are the boundaries of a tetrahedron
having volume 9a'/2.

16 Prove that if u, uzj ity, and u= are continuous over a spherical ball having
its center at Po(xo,yo,zo), then u cannot have even a local minimum or a local
maximum at PO unless

u=(xo,Yo,zo) = uy(xo,yo,zo) = u=(xo,Y0.zo) = 0.

Hint: Tell what can be done when the gradient at Po is not 0. If necessary, look
at (11.262).

17 Using the result of Problem 16, show that if

x+Y+zu +x2+Y2+z2
attains a maximum at P(xo,yo,zo), then xo = yo = zo. With this assistance, find
the place where u is maximum and show that the maximum value of u is //2.

18 Remark: This is a remark for those who wish to see that gradients can be
used to introduce a fundamental idea that is often used to solve more difficult
problems. Suppose we are required to find numbers
x, y, z for which f (x,y,z) is a minimum or maximum when
x, y, z are required to satisfy a supplementary condition
of the form u(x,y,z) = c. To catch the idea, we suppose
that

f(x,Y,z) = x2 + Y2 + z2

and that the graph of u = c is a surface more or less like
that shown in Figure 11.291. It is easy to guess that if
a maximum or a minimum occurs at P(x,y,z), then
the gradients of f and u at P must have the same or

Figure 11.291

opposite directions and hence that there must be a constant X such that

Vf+AVu=0
or

(1) 0(f+Au) =0.-
We now make a profound observation. Finding values of x, y, z, and A for which
(1) holds is equivalent to finding values of x, y, z, and A for which the first partial
derivatives of the function w define by

(2) w(x,Y,z) = f(x,Y,z) + A(u(x,Y,z) - cl

are 0. All this leads us to an idea that can sound very strange and which might
be quite useless if it were not for the fact that it is the very useful idea that the
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Lagrange multiplier X should be used in the following way. When we want to
find numbers x, y, z for which f (x,y,z) takes extreme values when x, y, z satisfy the
supplementary condition u(x,y,z) = c, we seek numbers x, y, z, X for which the
function w defined by (2) takes extreme values. We illustrate use of Lagrange
multipliers by using them to obtain information about a thoroughly important
problem. Letting

u = auxx + a12xy + a13xz
+ a21yx + a22Yy + a23yz
+ aalzx + a32zy + a33zz,

where all = a12, a31 = a13, and a32 = a23, we seek points on the quadric surface
having the equation u = c which lie at least and (if they exist) greatest distances
from the origin. In this and similar problems, we systematically use the idea
that distances have extreme values when their squares do. To make answers
come out in the forms that are familiar when this problem is attacked by other
methods, we modify (2) by writing -A-1 in place of X and define w by the formula

w = x2 + y2 + z2 - A-l[u(x,y,z) - c].

Equating the first-order partial derivatives to 0 gives the equations

T = 2x - 2A71(aux + a12y + a13z) = 0
8x
aw _
8v - 2y - 2A-1(a21x + ally + a23Z) = 0

8w
= 2z - 2X-1(a31x + a32y + a33z) = 0az

(all - X)x + a12 y + a13 z = 0
421 x + (a22 - X)y + a23 z = 0
a31 x + a32 y + (a33 - A)z = 0

which are necessary for extrema. When c 54 0, these equations and the equation
y satisfied by (x,y,z) unlessu = c cannot be simultaneous l

all - A a12 a13

a21 a22 - A a23

a31 a32 aa3 - A
=0.

In many important cases, values of A satisfying this equation can be found
(usually only approximately) and the problem can be finished.

19 To become acquainted with Lagrange multipliers by solving easy prob-
lems, find extrema of the first function when the second equation is required to
be satisfied:

(a) x2 + Y2 + z2 ax+by+cz+d=0
(b) x2+y2 y =x2-4

2 Z2(c)x+y+z a2+b2+2=1
Solution of part (b): Let

w =x2+y2+A(y -x2+4).
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The extrema (if any) occur when x, y, X are such that

aw
ax = 2x - 2A = 0

Ow
ay =2y+X=0

and
y=x2-4.

These relations imply that X = 1, y = - , x = ± N/3.5, and x2 + y2 = 3.75.
20 Formulas more or less like

(1) w= fuf(x,Y)dY

often appear in pure and applied mathematics. It is supposed that u and v are
functions of x and that, for each x in some interval, the integral in the right mem-
ber exists and is a number w. More advanced courses set forth conditions under
which dw/dx can be obtained from the chain formula

(2) dw = aw dv aw du + aw
dx av dx T. dx ax

When appropriate conditions are satisfied, applications of the fundamental
theorem of the calculus give

(3) ae ff(x,y) dy = f(x,v)
(n

au f f(x,y) dy = - au f U f(x,y) dy = -f(x,u)-

When (see the last of Problems 11.19) we can differentiate under the integral
sign, we get

(4) ax = fua ( X
f(x,y) dy.

Substituting in (2) then gives the formula

r
(5) dx fu f(x,y) dy = f(x,v) ax - f(x,u) dx + fur

aJ Y) dy.

Verify that (5) is correct when

(a) u = x, v = 2x,f(x,y) = x + y
(b) u = x, v = 2x, f(x,y) =x2+y2
(c) u=x,v=a+x,f(x,y) =1/y
(d) u = x2, v = x3, f(x,y) _ (x + y)e-v
(e) u=x,v=x2,f(x,y) =logy

21 It can be observed that our proof of the chain rule for functions of more
than one variable is more straightforward than our proof of the chain rule (Theo-
rem 3.65) for functions'of one variable. Can this phenomenon be explained?
.4nr.: Yes. When we proved Theorem 3.65, we did not know about the mean-
value theorem and, moreover, the mean-value theorem was inapplicable because
we did not have the hypothesis that the derivatives exist over intervals and are
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continuous. When we proved Theorem 11.23, we knew about the mean-value
theorem and had enough hypotheses to enable us to apply it.

22 This problem provides preliminary information about a way in which
surfaces can be determined and studied. The circle in the xy plane having its
center at the origin and radius a has the simple rectangular equation x2 + y2 =
a2. We have seen, however, that it is often convenient to use the parametric
equations

(1) x = a cos it, y=asinu
and to recognize that, when r is the sector running from the origin to P(x,y),
we have

(2) r = (a cos u)1 + (a sin u)j

and the tip of r runs once in the positive direction around the circle as u increases
over the interval 0 < it 5 27r. This remark, in which u has been used where we
ordinarily use 0 or 0, is designed to lead us gently to the idea that if ff, f2, f3 are
suitable functions of two parameters u and v, then the vector r defined by

(3) r = f,(u,v)i +f2(u,v)j + f3(u,v)k
will be the vector running from the origin to the point P(x,y,z) on a surface S
for which x = fl(u,a), y = f2(u,a), z = f3(u,a). For example, when we use
spherical coordinates r, 0, 6 as in Section 10.1, the equation of the sphere S
having its center at the origin and radius a has the spherical equation r = a.
The formulas of Problem 3 of Section 10.1 then show that the point P on S
having spherical coordinates r, 0, 0 has rectangular coordinates x, y, z, where

(4) x = a cos 0 sin 0, y = a sin 4> sin 0, z = a cos B.

Except that the parameters are called 0 and 0 instead of u and v, we obtain a
special case of (3) by setting

(5) r = a(cos 0 sin 01 + sin 0 sin Oj + cos 8k),

and (5) is a two-parameter parametric equation of the sphere S a part of which
is shown in Figure 11.292. When 0 < Co < 7r
and 0 = 90, (5) is the parametric equation
of a circle Cp(O0), a geographic parallel, on
S which the tip of r traces as ¢ increases from
-7r to 7r. When -7r < ¢1o 7r and 0 = 4>0i

a=90y [a / i \ .-A (5) is the parametric equation of the semi-

Figure 11.292

circle CM(¢0), a geographic meridian, which
the tip of r traces as B increases from 0 to
7r. We make only a few calculations to illus-
trate the utility of these things. When
0 < 0 < 7r, the foward tangent tl to Cr(00)
at the point PO for which 0 = 4>o and 0 = Oo
is obtained by putting 0 = Bo in (5), differ-

entiating with respect to ¢, and putting 95 = 4)0 in the result. Thus,
(6) tj = a(- sin 4o sin 00i + cos 4)0 sin O j).

Similarly, when -7 < 4o < 7r, the forward tangent t2 to Cat(¢o) at the point
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Po is obtained by putting sf = 00 in (5), differentiating with respect to 0, and
putting 0 = Bo in the result. Thus,

(7) t2 = a(cos Oo cos Ooi + sin Oo cos Ooj - sin 0ok).

While the north and south poles of a sphere are as good as any other points on
the sphere, it often happens that methods involving spherical coordinates refuse
to give information about them. When 0 < 00 < r, the two vectors tj and t2
are nonzero nonparallel tangents to S at the point Po, and with the aid of the
fact that S has a tangent plane and a normal at Po we conclude that the vector
product of t2 and to must be a normal to S at Po. Letting N = t2 X ti, we find
that N = a2 sin Oro, where ro is the vector running from the origin to Po. This
shows that ro is normal to Sat Po. In working out this elementary fact we have
shown how, in at least one case, (3) can be used to obtain information about the
surface which it represents.

23 As in (5) of the preceding problem, let r have its tail at the origin and let

r = a(cos 0 sin Oi + sin 0 sin Oj + cos Ok).

Let 0 and 0 be differential functions of t so the tip of r traverses a curve C on
the sphere S as t increases. Find r'(t). 11ns.:

r'(t) = aO'(t)[cos (k cos 0i + sin 0 cos Oj - sin Ok]
+ ao'(t) sin 0[- sin q5i + cos Oil.

24 Let r have its tail at the origin and let

(1) r = (b + a cos 0) cos 4i + (b + a cos 0) sin c&j + a sin Bk.

Let 0 and 0 be differentiable functions of t so that, as we can see with the aid of
Problem 22 at the end of Section 2.2, the tip of r traverses a curve C on a torus
T as t increases. Show that

(2) r'(t) = a0'(t)[- sin 0 cos cbi - sin 0 sin Oj + cos Ok]
+ (b + a cos 0),'(t)[- sin ¢i + cos q5j].

Show that the two vectors in brackets are orthogonal. Work out the formula

n = cos 0 cos 01 + sin 0 cos Oj + sin Ok

for the unit normal to the torus.
25 This problem illustrates the fact that there are situations in which the

elegant and useful chain formula

(1) dt u(x,Y) = v (x,Y)
dx

+ uy(x,Y)
dt

cannot be applied with impunity. Let

(2) u(0,0) = 0, u(x,Y) =
x2 T2y2

(x2 + Y= s 0).

Let a and b be nonzero constants and let x = at and y = bt. Show that, when
t = 0, the left member of (1) is ab2/(a2 + b2) and hence is not 0 while the right
member is 0. Remark: Because (1) is invalid, Theorem 11.24 implies that uz
and uy cannot be continuous at the origin.
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11.3 Formulas involving partial derivatives This section and its
problems require us to learn more about partial derivatives and some
formulas that have important applications. The first part of the section
is a rather dismal discussion of unlovely terminology designed to promote
understanding of curly dee abbreviations. To begin, let f be a function
of two "secondary variables" x and y, and let gl and g2 be functions of a
single "primary variable" a. Then, in appropriate circumstances, we
can set x = gl(a), y = g2(a), and define a function F of the single pri-
mary variable a by the formula

(11.31) F(a) = f(x,Y) = f(gl(a), g2(-))-
In this and all similar situations in this section, we suppose that the
arguments of functions of one "variable" are confined to intervals over
which the functions are differentiable and that the arguments of functions
of more than one "variable" are confined to regions over which the func-
tions have continuous partial derivatives of first order. Differentiating
(11.31) with the aid of the chain rule then gives a result that can be
written in ways that look very different. Using notation of one brand gives

F'(a) = f=(gl(a), g2(a))gi(a) + f,,(gi(a), g2(a))g2(a)-

This can be put in the form

(11.321) F'(a) = f=(x,Y)gi(a) + fv(x,y)g2(a)

and we are responsible for remembering that the secondary variables
are linked to the primary variable by the formulas x = gl(a), y = g2(a)-
Next, we can put this in the form

(11.322) F'(«)=axda+ayd«

Finally, as we usually do when the numbers in (11.31) represent tempera-
ture or something having recognizable significance, we denote the mem-
bers of (11.31) by a single appropriately chosen letter, say u, and write

(11.33) du au dx + au dv
da

_
ax da ay da

The abbreviated formula (11.33) is now expected to tell us that u is
linked to a primary variable a by the secondary varables x and y that
are identified by the fact that au/ax and au/ay appear in the formula.
This formula makes sense and enables us to make calculations when, for
example, we have the formulas u = x2 + y, x = cos a, y = sin a.

One application of this material is worthy of mention. Suppose that
a function F(x,y) of two "secondary variables" and a constant c are given
and that y(x) is a function of the "primary variable" x such that

(11.34) F(x,y) = c
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when y = y(x). In this case, x is both a "primary variable" and a
"secondary variable." Differentiating with respect to the "primary
variable" x then gives the formula

11.341 aF aF dy
( ) ax +ay 7---
from which dy/dx can be calculated when aF/dy 0. This is a fact
involving "implicit functions," the idea being that (11.34) is not a formula
that gives an explicit formula for y in terms of x, but (11.34), and per-
haps some further restrictions, may nevertheless imply that y must be
the unique member or one of the members of a class of differentiable
functions. The real significance of (11.341) lies in the fact that it often
enables us to obtain a useful formula for dy/dx without undertaking
the sometimes difficult or impossible task of "solving" (11.34) to obtain
a useful formula for Y. Problem 7 at the end of this section gives sub-
stantial information about this matter.

A satisfactory development of our subject
must call attention to the fact that the symbol
au/ax in (11.33) loses its unambiguous meaning
when it is taken out of its context and we are
not sure that the "independent variables" are x
and y. To prove this, we construct Figure
11.35, in which P is supposed to be a point in
the first quadrant. With each such point P, we
may associate the circle through P with center
at the origin and let A be the area of the disk

Figure 11.35

bounded by this circle. If we consider x and y to be the independent
variables that determine P, we obtain the first and then the second of
the formulas

a`Q = 2ax.(11.351) (x2 + y2), ax

If we consider x and p to be the independent variables, then

(11.352) A = 7rp2
M = 0.
TX_

If we consider x and 0 to be the independent variables, then

(11.353)
-2 a A 1_...

= 7r cost p, ax = cost (A.

Since the symbol all/ax has different values in different contexts, the
symbol must be discarded or embellished when there is no clear specifica-
tion of the identities of the independent variables. The first of the
symbols

ail l aA

LO,ax ax v=o
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can tell us that J is a function of the independent variables x and y,
the "fixed variables" being displayed at the bottom of the vertical line.
The second symbol can tell us that the independent variables are x and
y and that the partial derivative with respect to x is to be evaluated
at the place for which x = y = 0. No sane person will bother with the
embellishments in a very long calculation in which au/ax and au/ay
must be written many times and their meanings are perfectly clear, but
the embellishments are available when they are needed.

Without introducing hordes of symbols for functions, we look briefly
at applications of the chain rule in situations in which u is a function of
x, y, z and, in addition, x, y, z are functions of a, i3, y. The assumption
following (11.31) applies here, and accordingly u is also a function of
a, $, y. While such agreements are usually made without explicit men-
tion, we solemnly proclaim that whenever the partial derivative with
respect to a Roman coordinate x or y or z (or a Greek coordinate a or

or y) appears, the thing being differentiated must be a function of those
coordinates and the other coordinates of the same nationality are the
"fixed variables." If we keep # and y so rigidly fixed that it is unneces-
sary to take this fact into account in our notation, then u is a function
of x, y, z and x, y, z are functions of a and the version of the chain rule in
Theorem 11.24 enables us to write

du au dx au dy au dz
da-8xda+ayda+azda

When we use partial derivative notation to convey the information that
and y are fixed, we obtain the first of the formulas

au au ax au ay au'az
as axaa+ayda+azaa
au au ax au ay au 19Z(11.36) a_=axa1+aya0+azas
au _ au ax au ay au az
ay ax ay + ay ay + az ay'

and the next two are obtained by similar processes. If, as usually hap-
pens in applications, we confine attention to regions over which the equa-
tions giving x, y, z in terms of a, #,,y can be solved to give a, 0,,y in terms
of x, y, z then the same procedure gives the equations

au au as au ao au ay
axaaax+a1ax+ayax
au au as au ao au ay(11.37)
ay as ay + as ay +

_
ay ay

au au as au aft au ay
az aaaz+aoaz+ayax,
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Teachers and textbooks providing instruction in more advanced mathe-
matics like to presume that their disciples know enough about functions
and partial derivatives to be able to write the equations (11.36) and
(11.37). We are not, at the present time, required to comprehend the
various reasons why these equations are important, but we can make an
observation. In case the first of the conditions

(11.38)

ax ay Ozl

as as as ;
ax ay az

as as as I
0 0,

ax ay az

a7 a7 a7

a« a a7
ax ax ax

jaa as a7

jay ay ay
a« as a7
az az az

3.6 0,

is satisfied, the system (11.36) of equations can be solved to obtain
formulas expressing au/ax, au/ay, au/az in terms of au/aa, au/a3,
au/a7. Similarly, if the second condition in (11.38) is satisfied, then
the system (11.37) of equations can be solved to obtain formulas express-
ing au/aa, au/a(3, au/a7 in terms of au/ax, au/ay, au/az. The determi-
nants in (11.38) are called functional determinants or Jacobi determinants
or Jacobians, and those who are destined to encounter them later may
become thankful for this preliminary glimpse of them. Those accus-
tomed to use of matrices prefer to see the systems (11.36) and (11.37)
of equations written in the forms

au ax ay az

as as as as

au ax ay az

ea as as ap

an ax ay az

a7 a7 a7 a7

au au as 00 a7
ax ax ax ax ax

au au as a, a7

ay ay ay ay ay

au au as afl a7

az az az az az

au

as

au

as

au

ay

This permits use of the algebra of matrices to which an introduction was
given at the end of Section 2.5.

In the following problems, it is assumed that each of the given func-
tions has all of the derivatives and partial derivatives we want to use
and that these derivatives are continuous.

Problems 11.39
1 Assume that x, y, z are functions of a, 0, 7 such that

fi(x,Y.z,aA7) = 0 f2(x,Y,z,a,$,7) = 0 f3(x,Y,z,aA7) = 0.

Write the equations obtained by taking partial derivatives with respect to a

and then find the condition under which these equations uniquely determine
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ax/0a, ay/aa, az/aa in terms of partial derivatives of fi, f2, fa. Partial ans.:
The first equation can be put in the form

aft ax af, ay of l az _ - af,
ax as + ay as + az as as

and the required condition is
af, afI afl
ar ay az
aft alt aft
ax ay az

afa afa af3

ax ay az

00.

2 Supposing that x and y are differentiable functions of a and 0 for which

2x2 + 3y - 2a2 - 30 = 0
x2 + 2y3 - a - 2$2 = 0,

calculate ax,/aa and ay/aa. Ins.:

ax __ 8ay2 - 1
as 8xy2 - 2x'

ay 2 - 4a
as 12y2 - 3

3 Supposing that p > 0 and that p and 0 are functions of x and y for which

pcoscb=x, psin0=y,
differentiate with respect to x and then with respect to y to obtain

TX
cos 4) - p sin 4) a = 1,

axsin4)+pcos0 =0,

and solve for the derivatives to obtain

cos4)-psin4)-=0
ey 49Y

49Psin4)+pcos4)- =1

ap = h, ap =sin a4) _ _ in 4 a¢ = cos
ax

cos 0'
ay ax p ay p

4 Copy the formulas at the conclusion of Problem 3 and use them in appro-
priate places in the process of deriving the following formulas that are used to
make transformations from rectangular to polar and cylindrical coordinates.
Supposing that is is a function of x and y and that x and y are functions of p and
¢ for which

(1) x=pcos0, y=psin0,
show that

(2)

(3)

au au ap au ao
ax apax+COax
au au ap au a4)
ay spay+a4ay
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au au au sin 4,T __

ap cos 0 -
a4, P

On au au cos
aY

=
aP

sin }

To P

Then show that the formulas

axe =
Ca49

p (az)] ax + [aO CaxJJ ax
49 a

ay2 =Cap ayay + TO CaYU aye

can be put in the forms

(6)
a2u

= a2u cost 4, - 2
a2u sin ¢ cos 4,

axe ape aP a P
+ au sins t + a2u sins + 2 au sin 0 cos 4,

ap p P2 To p2

(7) a2u =
192U

sins -I- 2 a2u sin ¢ cos 4,
aY2

a p2 ap ao P

+ au cost + a2u cost _ 2 au sin ¢ cos 4,
ap p a4,2 p2 To p2

Show finally that

(8)

and hence

(9)

a2u a2u a2u 1 On 1 a2u
axe

+ 0y2
= apt + p oP

+ pt 84,2

a2u a2u a2u 492U 1 au 1 a2u a2u

axe+8y2+az2 =apt+Pap+p'a2+az2

For use in the next remark, we note also the formula

(10)
l au l au + cos 4, au
y aY P aP p2 sin ¢ 90

which comes from (5) and (1).
5 This remark can be very helpful to those who will study brands of physics

and engineering in which the Laplace equation, the heat equation, and the wave
equation appear. While the operation might be tedious and need not be per-
formed, we could copy all of Problem 4 with x, y, p, and 0 respectively replaced
by z, p, r, and 0. This shows us that if u is a function of z and p and if

z=rcos0, p = r sin 0,

(3)

a2u a2u atu 1 au
+

I a2u
az2 + apt are + r Or r2 002

lau__lau
+

cos0 au
0p ap r ar T O *
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These formulas and the simple formula

(4)
1 a2u 1 a2u
p2

a4)_

r2 sin2 34)2

enable us to transform important expressions from cylindrical coordinates p, 4, z
to spherical coordinates r, ¢, B. To put fundamental consequences of our results
in the compact form which is very often used, we define V2u (read del squared u),
the Laplacian of u, by the first of the formulas

a2u a2u a2u
(5) 02u - ax2 + ay2 + az2

a2u I all 1 a2u a2u
(6) 211 = a p2 +

P
a p + p2 a02 +

az2

a2u 2 au I a2u cos 0 au 1 a2u

(7)
02u

= art + r ar + r2 a6_ + r2 sin 6 TO + r2 sin2 9

Then (5) gives V2u in terms of rectangular coordinates x, y, z. As Problem 4
showed, (6) gives V2u in terms of the cylindrical coordinates p, ¢, z of Figure
10.11. As we see by adding (2), (3), and (4), the formula (7) gives V2u in terms
of the spherical coordinates r, 4), 0 of Figure 10.12.

6 The results of Problems 3, 4, and 5 are important. Instead of proposing
that similar but less important problems be solved, the author suggests that
these problems be solved again and again.

7 This long problem involves a theorem which is called an implicit function
theorem. The equation

(1) x3+xy+y3-31=0,
which happens to be satisfied when x = 3 and y = 1, provides an introduction
to the subject. If we know that y is a differentiable function of x for which (1)
holds, then we can differentiate with respect to x to obtain

(2) 3x2+xdx+y+3y2dx =0

or

(3) (3x2 + y) + (x + 3y2) dx = 0

and hence

(4)

dy _ 3x2 + y
dx x + 3y2

provided x + 3y2 0 0. We can be pleased by our abilities to calculate deriva-
tives of differentiable functions, but we can also be irked and frustrated when we
realize that we do not know whether there is a differentiable function f for which

(5) x3 + xf(x) + [f(x)]3 - 31 = 0.

With the aid of partial derivatives, we can obtain very satisfying information
about hordes of problems of which the one considered above is a special case.
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(6) Implicit function theorem Let G be a given function of two variables
x and y such that G(xo,yo) = 0 and, moreover, the function G and its two partial
derivatives G. and G are continuous and G((x,y) 0 over some rectangular region
R1 having its center at the point (xo,yo). Then, for some positive number h, there
is one and only one function f, defined and differentiable over the interval xo - h <
x < xo + h, for which f(xo) = yo and

(7) G(x,f(x)) =0 (xo - h < x<xo+h).

Moreover, when xo - h < x < xo + h and f(x) = y, f'(x) and dv can be obtained

by differentiating (7) or

(8)

to obtain

(9)

or

(10)

and solving to obtain

G(x,y) = 0

G.T(x, f(x)) + Gv(x, f(x))f'(x) = 0

aG aG dy _
ax+aydx_0

f, (x)
G=(x, f(x))
Gu(x, f(x))

or

(12)

aG
dy ax
dx aG

ay

Before proving the theorem, we observe that it provides very solid information
about the graph of the equation G(x,y) = 0; the graph must contain a curve C
which contains the point Po(xo,yo), and this curve C has a tangent at the point
(xo,yo) which has slope f'(xo). As sometimes happens in other cases, our proof
of the theorem reveals some facts that are not stated in the conclusion of the
theorem. To prove the theorem, we suppose that 0; in case Gr,(xo,yo)
< 0, the proof is similar. Then the hypothesis that 0 over R1 and the
intermediate-value theorem imply that G5,(x,y) > 0 over R1. Choose numbers
yl and y2 such that yl < yo < Y2 and R1 contains the line segment consisting of
points (xo,y) for which y1 < y < y2, Since Gl,(xo,y) > 0 when y, S y :-!9 y2, it
follows that G(xo,y) is an increasing function of y over the interval yl - y < y2,
But G(xo,yo) = 0, and therefore

(13) G(xo,yl) < 0 < G(xo,y2)

Since G is continuous, we can choose a positive number h such that the rectangu-
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lar region R of Figure 11.391 is a subset of the given rectangular region RI and,
moreover,

(14) G(x,yi) < 0 (xo - h < x < xo + h)

(15) G(x,y2) > 0 (xo - h < x < xo + h).

The negative and positive signs in Figure 11.391 serve to remind us that G(x,y) <
0 at points (x,y) on the lower edge of R and that G(x,y) > 0 at points (x,y) on

the upper edge of R. We are now pre-

(xo-h,y2) (X0' Y2) (xo+h,yz) pared to obtain results. Let xo - h <
x < xo + h. Since G0(x,y) > 0 when
y, S y 5 y2, we conclude that G(x,y) is

(x0 -h,Y1)

Figure 11.391

(xo, Yi) (xo+h,y,)

increasing over the interval y, S y S Y.
Since G(x,yi) < 0 and G(x,y2) > 0, we
conclude, with the aid of the intermedi-
ate-value theorem, that there is one
and only one number f (x) for which
yi < f(x) < y2 and G(x, f(x)) = 0.

Our proof is now about half done; we
have found our f but we need information about f'(x). To start getting this
information, suppose that xo - h < x < xo + h and xo - h < x + Ax < xo + h.
Then

(16) G(x, f(x)) = 0, G(x + Ax, f(x + Ax)) = 0

and consequently

(17) [G (x + Ax, f(x + Ax)) - G(x, f(x + Ax))]
+ [G(x, f(x + Ax)) - G(x, f(x))] = 0.

Applying the mean-value theorem (Theorem 5.52) to these differences shows that
there exists a number between x and x + Ax and a number 71 between f(x)
and f (x + Ax) such that

(18) G:(, f (x + Ax)) Ax +G.,(x,r7)[f(x + Ax) - Ax)] = 0

and hence

(19)
f(x+Ax) -f(x) _ _G,(,f(x+Ax))

Ax G,, (x,,?)

Since G. and G are, by hypothesis, continuous at the point (x, f(x)), the desired
result (11) will follow from this if we show that f is continuous at x, that is,

(20) lim f(x + Ax) = f(x).

To prove (20), let a be a positive number for which f (x) + e and f (x) - e lie
between yl and y2. Since G(x, f(x)) = 0 and G,,(x,y) is an increasing function
of y, we find that

G(x,f(x) - e) <0 <G(x,f(x)+e).
Since G is continuous, we can choose a positive number 8 such that

G(x + Ax, f (X) - e) < 0 < G(x -1- Ax, f (X) + e)
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whenever jOxj < S. Since G(x + Ax, y) is an increasing function of y and
G(x + Lx, f(x + Ax)) = 0, it follows that

f(x) - E < f(x + Ax) < f(x) + E

whenever jdxj < S. This establishes (20) and our theorem is proved. Since f
is continuous over the interval xo - h < x < xo + h, the graph of y = f (X)
over this interval is a curve C. Moreover, our proof shows that this curve C is
the only part of the graph of the equation F(x,y) = 0 which lies inside the rec-
tangular region R shown in Figure 11.391.

8 This is another long problem. State and prove a theorem, similar to that
of the preceding problem, in which it is assumed that G=(x,y) 0 0 and the con-
clusion involves a function 0 for which G(¢ (y), y) = 0.

9 Prove that if G is a function of x and y such that G, G., and G are every-
where continuous, and if (xo,yo) is a point on the graph r of the equation G(x,y) =
0 for which G.(xo,yo) and Gy(xo,yo) are not both 0, then the point (xo,yo) is a
"simple point" on the graph. Remark: This is a theorem in geometry. The
conclusion means that if R is a rectangular (or circular) region which has its
center at (xo,yo) and which has a sufficiently small diameter, then the points of
F that lie in R can be ordered in such a way that they constitute a simple curve
or a Jordan arc; see the last two of Problems 7.19. The theorem implies that
multiple points and isolated points of r can occur only at places where G. and
G are both zero.

10 For each of the equations

(a) xy = 0 (b) x2 + y2 = 0
(c) Y2 -- x3 = 0 (d) y2 - x2(x2 - 1) = 0

(e) y2 - x2(x2 + 1) = 0

the preceding problem allows the possibility that the origin may be an isolated
point or a multiple point. What are the facts:
11 Let

u = [(x - 1)2 + (y - 1)2]x2 + y2 + 3]

and observe that the graph in the xy plane of the equation u = 0 contains only
one point P1. Observe that this result and Problem 9 imply that the two first-
order partial derivatives of u at P1 must be zero. Calculate these derivatives and
show that it is so.

12 Let f be a vector-to-scalar function for which f(r) is a number (or scalar)
whenever r is a vector in the domain of f. We do not need a coordinate system to
define a number D(f, r, u) by the formula

f (r + h) - f(r)
(1) D(f, r, u) = lo

h

whenever r and u are vectors such that the limit exists. In case u is a unit
vector, (1) provides an intrinsic definition of the derivative off at r in the direction
of u. To start acquaintance with this matter, introduce a coordinate system
and notation such that

(2) r = xi + A + zk, f (r) = f (x, y, z)
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and hencef(r + hu) = f(x + hul, y + hue, z + hu3) when u = uli + u2j + uk.
Then, assuming that f has continuous partial derivatives, prove that

(3) D(f, r, u) =

Observe that the scalar components of the vectors r, u, and Of depend upon the
coordinating system which was chosen, but that r, u, D(f, r, u) and Vf do not.
Remark: The intrinsic definition (1) is particularly convenient when "general"
or "abstract" theories are being developed. In fact some parts of modern
mathematics involve "vectors" that are "abstract elements" of "abstract spaces"
for which appropriate axioms are valid. Some elegant theories are developed
without use of coordinate systems. At the other extreme, some elementary
developments of vectors in E3 are tied so rigidly to a single sublime coordinate
system that vectors are identified with ordered sets of numbers (the scalar com-
ponents of the vectors). One virtue of (1) lies in the fact that it can be used
when f is a vector-to-vector function of which the domain and range are both sets
of vectors. Nobody ever learns all about all of these things on a windy Wednes-
day, but people who keep studying mathematics do keep picking up ideas.
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12.1 Definitions and basic theorems Even though we have already
had experiences with series, we start ab initio to develop the subject.
An array of numbers and plus signs of the form

(12.11) ul+us+u3+
is called a simple infinite series or simply a series. The numbers si, s2,
s3, . . . defined by sl = u1, s2 = u1 + U2, S3 = ul + u2 + u3, and,
in general,

n
(12.12) s = E uk (n = 1, 2, 3, ...),

k=1

constitute the sequence of partial sums of the series. If it happens that

(12.121) lim S. = s,
n--

then the series is said to be convergent and is said to converge to s. If the
limit does not exist, the series is said to be divergent. A series which
converges to s is not the number s, just as a hand that contains 5 fingers

587
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is not the number 5. Nevertheless, we find it very convenient to abbre-
viate the statement that the series converges to s by writing one or the
other of

(12.13) s = u1 + U2 + u3 + S = Z U.
k=i

The significance of this matter is usually not fully comprehended by
unfortunate people who have not digested the contents of Problems
6 and 7 of Problems 5.69. For present purposes, it is important to
recognize that the equality signs in (12.13) do not have meanings like
those of the equality signs in ordinary arithmetic and algebra, and that
we cannot get s by "adding up" all of the terms of the series. Passage
of time may possibly bring extinction to the habit of calling s the sum
of the series. The trouble is that the habit makes the theory of series
seem too easy for quick-witted superficial people, and, at the same time,
seem too mysterious and difficult for everyone else. Keeping the impor-
tance of (12.121) constantly in mind enables us to make rapid progress
with the elementary theory of series.

There are numerous reasons why the geometric series

(12.131) a+ar+ar2+ar3+
is important in advanced as well as elementary mathematics. We
should always be well aware of the fact that if s is the sum of n terms
of this series, then, when r 1,

(12.132) r2 + +r"-1)=a11 -r
If Ird < 1, then lim rn = 0, so lim s = a/(1 - r) and hence

(12.133) 1 a r = a + ar + ar2 + ar3 +

If Irl >- 1, the series diverges.
The series

(12.134) 1-1+1-1+1-1+1-1+

(1111 < 1).

in which the terms are alternately +1 and -1, has partial sums

(12.135) 1, 0, 1, 0, 1, 0, 1, 0, .

which are alternately 1 and 0, and we start cultivating a good habit by
plotting the points s, = 1, S2 = 0, s3 = 1, s4 = 0, . as in Figure
12.136. There is clearly no s such that lim s = s, and therefore the

Figure 12.136---01
S2.S4,S6..

l
Sg, S3. SS...
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series is divergent. A little thought about this matter can lead us to the
idea that a series Muk cannot be convergent unless un - 0 as n -* x . To
prove that the idea is correct, suppose Euk converges to s. Then sn ---* s
and sn_1-). s as n -> x and, since un = sn - sn_1, it follows that u 0

as n -- x . Several ideas can be obtained by investigating the series

(12.137) 2+ 3+4+4+I+- 51 _ +
5 5

and its sequence of partial sums. The nth term of the series approaches
0 as n --> -. As we plot the points sl, S2, S3, ss, ' ' , we find ourselves
hopping to and fro between 0 and 1. The sequence of partial sums is
bounded, but the series is not convergent. The possibility of learning
about convergence of series will be enhanced if we obtain a full apprecia-
tion of the way in which the following fundamental theorem is proved.

Theorem 12.14 If

(12.141) s = ul+u2+u3+
and

(12.142) t = vl + v2 + v3 +

and if a and b are constants, then

(12.143) as + bt = (aul + bv1) + (au2 + bv2) + (aua + bv3) +

To prove this theorem let, for each n = 1, 2, 3, . ,

X. = 211+ Z62+ . . . +un, to = v1+V2+ . . . +5n

Rules of arithmetic (or possibly algebra) allow us to multiply by a and b,

respectively, and add the results to obtain

asn + bin = (au1 + bv1) + (au2 + bv2) + ... + (aun + bvn).

Thus asn + bin is the sum of n terms of the series in (12.143), and to
prove (12.143), it is necessary to prove that

(12.144) lim (asn + btn) = as + bt.
n-.-

It is now very easy to see how to finish the proof. The hypothesis
(12.141) means that the first of the formulas

(12.145) urn s,, lim to = t
n-pmn-.

holds, and the hypothesis (12.142) means that the second holds. Finally
(12.145) implies (12.144) and the proof is finished. The above theorem
and the next two lie at the foundation of the theory of series.
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Theorem 12.15 If Euk is a series of nonnegative terms, so that uk > 0
for each k, and if the sequence sl, s2, of partial sums is bounded, so
that, for some constant M,

(12.151) S. = U1 + u2 + + un < M (n = 1, 2, 3, ),

then y,uk converges.
This theorem was proved in Section 5.6, but the theorem is so important

that we think about it some more. The hypothesis that u, ? 0, u2 > 0,
713 >_ 0, implies that s1 = ul > 0, s2 n S1 + u2 ? sl, s3 = s2 +
u3 >- s2, and, in fact, that

(12.152) 0<sl<s2<s3< ... <_sn<M
for each n = 1, 2, 3, . . Since the set E consisting of the numbers
s1, s2j s3, is nonempty and has an upper bound, it must, according
to Theorem 5.46, have a least upper bound which we can call s. Then
s,, < s for each n. Let e > 0. There must be an index N for which
sx > s - E, since otherwise s - E would be an upper bound of the set of
numbers sl, S2, s3, . and s would not be the least upper bound. It
follows from (12.152) that

(12.153) _ :! 9:_! 9 (n>N),
and hence that lim sn = s. Therefore Mun converges to s and Theorem
12.15 is proved. In case the terms of a series Euk are all positive and
s < M for each n, the figure obtained by plotting the partial sums s1,
S2, s3, ' . , the upper bound M, and the number s to which Muk con-
verges must look essentially like Figure 12.154. On the other hand, if

0 51 S2 S3 S4 S M

Figure 12.154

2uk is a series of nonnegative terms for which the sequence of partial
sums is not bounded, then s.---> co as n--+ x and the series diverges.
For series of nonnegative terms, and for such series only, it is convenient
to use the first of the formulas

zuk < 00, Euk = 00

to abbreviate the statement that the series is convergent and to use the
second of the formulas to abbreviate the statement that the series is
divergent. In particular, a series Euk is said to converge absolutely, or
to be absolutely convergent, if Mjukl < -o.

Before stating the next theorem, we look at the two series

ao-+alx-+aax2+asx3+ ... 1 +x+x2 +x3+ . .
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in which it is supposed that x is a positive number and ao, a,, a2,
are numbers, not necessarily positive, for which Iakl 5 1 for each k =
0, 1, 2, . Employing the admirable terminology of the following
definition, we can see that the first of the two series is dominated by the
second.

Definition 12.16 The series UI + U2 + u3 + is said to be
dominated by the series M1 + M2 + M3 + if Iuxl < Mk for each
k = 1, 2, .

Observe that the terms of a dominating series must be nonnegative;
the inequality lukl 5 Mx, can never be satisfied unless Mk > 0. The
following theorem is known as the comparison test for convergent series;
it tells us that we can be sure that a given series is convergent if we can
find a convergent series that dominates it.

Theorem 12.17 (comparison test) If the series ul + u2 + U3 +
is dominated by a convergent series M, + M2 + M3 + , then the
dominated series must be convergent and, moreover, must be absolutely
convergent.

This theorem assures us, in slightly different words, that a given series
must be convergent if we can find a series of bigger fellows that is con-
vergent. For the case in which the terms are nonnegative, it assures us
that a given series must be divergent if we can find a series of smaller
fellows that is divergent. Our proof of the theorem depends upon use
of two series Epk and Eqk, with terms defined by

(12.171)
nkl + Uk l ukI - Uk

l ) Pk = 2 f qk = 2

that are useful for other purposes. Observe that pk = uk when Uk >= 0,
that Pk = 0 when uk 5 0, and that

05pk5IukI5Mk
in each case. Observe also that qk = 0 when uk ? 0, that qk = -uk
when uk 5 0, and that

05gk5lukl5Mk

in each case. Observe finally that adding and subtracting the formulas
in (12.171) gives

11,(12.172) uk = PA- qk, Iukl = Pk + qk.

Letting M be the number to which the series EMk of nonnegative terms
converges, we see that

PI+P2+ ...+ pn S MI+M2+ ... +M 5 M
gl+g2+ ... +qsMl+M2+ ... +M<M.
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It follows from Theorem 12.15 that the series 2;pk and Eqk are both con-
vergent. It then follows from Theorem 12.14 that the series E(pk - qk)
and E(pk + qk) are both convergent and hence that the series 2;Uk and
2jukI are both convergent. This completes the proof of Theorem 12.17.

Let Zuk be a series that converges absolutely so that the series Z'Iukl is
convergent. Since the series Zuk is dominated by 1juk!, an application
of Theorem 12.17 (the comparison test) gives the following nontrivial
theorem.

Theorem 12.18 If a series converges absolutely, then it converges.
From the point of view of ordinary elementary mathematics, abso-

lutely convergent series are the ones most easily manipulated. Series
that converge but do not converge absolutely are quite respectable but
can be troublesome. In this course, we learn relatively little about
divergent series and (except for a brief excursion in Problems 5.69) we
never assign values to them. From our present point of view, the asser-
tion "auk = oc " does not mean that the series has a value; it means that
the terms are nonnegative and that the series has partial sums sl, s2, s3,

for which lim s = -.

Problems 12.19
1 Tell the meaning of the statement

0=0+0+0+0+
and prove the statement.

2 Using the approximations

log 2 = 0.693, 7r/4 = 0.785, e = 2.71, e'1 = 0.37,

draw the interval 0 < x _<_ 1 on a rather large scale and mark the points whose
coordinates are the partial sums st, s2, of the series in the formula

(a) 0 =0+0+0+0+0+ -

(b) 1 = + -r - r g -i- 'JIV +
(c) log 2 = 1 +$ 1 +$ +(d) r/4= 1 -+a+W rr+
(e) a-2z +3 +I+Si-} 6i+ +

(I) e=1-11+21_3!+4,_5,+

3 Sketch figures indicating the natures of the partial sums of the series

(b) 1-2+3-4+5-6+7-8+
(c) 1+0+2+0+3+0+4+0+
(d) 1-1+2-2+3-3+4-4+
(c) (1 -1)+(2-2)+(3-3)+(4-4)+ .. .
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4 Considering separately the cases in which x = 0, 0 < x < 1, and -1 <
x < 0, use one or the other or both of the formulas

+i
1

-xn

= 1+x+x2+ +xn, =x
1+x+x2+x3+1-x 1-

to determine the nature of the sequence of partial sums of the geometric series.
5 Prove that if lakl =< 1 for each k, then the series

ao + aix + a2x2 + a3x3 + .. .

converges when Ixl < 1. Hint: Use a dominating series.
6 The preceding problem is important and must be thoroughly understood.

Tell what is meant by the statement that the series

(1) ao+alx+azx2+a3x3+
is dominated by the series

(2) 1+1x1+1x12+1x13+ .. .

Tell why the series (2) converges when lxi < 1. Give a full statement of the
comparison test for convergence of series. Remark: We should hear very often
that (1) is called a power series, that the numbers ao, a,, a2, . . . are called
constants, and that the number x is called a variable. We should not, however,
allow the terminology to interfere with our understanding of Problem S.

7 Prove that if 11 and p are positive constants for which

then the series
laki < 4pk

ao + aix + a2x2 + a3x3 + .. .

converges when lxl < 1/p. Solution: In the stated circumstances lakxkI =
11lpxlk and the series is dominated by the convergent series in

1
1 - Ipxl = 11 + A'1 px1 + 111 pxl2 + 111 pxl3 + . .. .

8 Prove that if the series

CO
+ Clx + C2x2 + C3x3 +

converges when x = xo, then it also converges when lxi < lxol. Solution: This
problem is much like the preceding one. The hypothesis implies that lim ckxo

= 0 and hence that there is a constant M for which

Ickxol < M (k = 0, 1, 2,
If lxl < lxol, then

1

l ckxi < MI x/xol k (k = 0, 1, 2, ...)

and the series is dominated by a convergent geometric series.
9 Show that

I = 112 + 213 +
34

+
4.5

+ 516 + .. .
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by showing that if s" is the sum of n (that is, the first n) terms of the series, then

s"=(1- +( +( -4)-I-

+`n n I d 1

Note that the middle sum is a telescopic sum.
10 With the aid of a comparison of the two series

42+ 1 +6z+ I +8z+ ... 34+ 5+56+67+78+ .. .

prove the first of the formulas

z

1 < l + ++s=fi, _7r

k1 k° k1 k2 6

The second formula is a simple consequence of basic theory of series known as
Fourier series. The result we have obtained is significant because 1r2 is about

z

10 and 6 is about 4 or y6-0g.

11 The first of the series in

1 1 1 1 1 1 1
q-13+3.5+5.7+79+... and 1=1-22 i -!-.3 13-4 4.5 -

converges because it is dominated by the second and the second is convergent.
Show that 0 < q < 1 and, if possible, find q.

12 Prove that if ak > 0 and 2;ak < oo, then Eak < 00.
13 This is a preliminary skirmish with the harmonic series

(1) 1 + -F s -f- .+ + -F fi -1- g -I-
$ ... .

This series is divergent because its terms and partial sums are greater than or
equal to those of the divergent series

(2)
V1

of positive terms. Let H(1), H(2), H(3), ... denote the partial sums of the
harmonic series and, with the aid of (2), show that H(2°) = 1, H(21)
H(22) > $, H(21) > "ff, and, in general,

H(2") > (n + 2)/2.

14 Note that the series in

s-123 + 34+345+456+567+ .. .
is dominated by the series in
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and hence must be convergent. Try to find simple reasons why $ < s < .

If more time is available, show that s = T. Remark: Proof that s = can be
based upon the identity

1 _ 1 1(p+1)-(p-1)
(p - 1)P(p + 1) p(p2 - 1) - 2 p(p2 - 1)

2L(p 11)p p(p+1)
15 With the possibility of using consequences of the facts that

+ ++ + ... _ ,
1 1 1 1

1.22.3+34+4F5+ =1,
l+x+x2+x3+ ... = 1

1 - x (lxI < U.

when these things are helpful, tell whether and why the following series are con-
vergent or divergent:

(a)+12 4+8+16+...

(b) 1+22+42+32+162+ .. .

02 12 22 32 42
(e) 1222 + 22:32 + 32-42 + 4252 + 52:62 +

(d) 1 + +0+ 1 +. .+

(e) i+3+W+ +$+
(f)

(3) 102 + 213 + 324 + 435 +
5
+

(h) 1+33+33+:3 + 33+
1 1 1 1 1

1+12+1+22+1+32+1+42+1+52+
log 2 log 3 log 4 log 5 log 6(.1) 2 + 3 + 4 + 5 + 6 +
sin x sin 2x sin 3x sin 4x sin 5x

(k) 12 + 22 + 32
+

42
+

52
+

Hint: The comparison test is important. Seek a convergent series that dominates
your series (so you will know your series is convergent) or seek a divergent series
which your series dominates (so you will know that your series cannot be con-
vergent and must be divergent).
16 Prove that

to

2 1 1Ukflkl < 11412 + I Iakl2
k-1 ks1 k-1
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whenever the series on the right are convergent. Solution: The inequality

0 (Iukl - I I) = IZ[kI - 21,,k1 I^xI + IVkI2
implies that

2lukl IVkI < IukI2 + Iv*12
and hence

n n n

2 Inkl lokl I ukl + U + V,
k-1 k=1 k=1

where U and V are the numbers to which !IuqI2 and jIo1I2 converge. The resulc
follows.

17 Imagine that a coin is tossed repeatedly and that we let 1k = 1 if the kth
toss produces a head and let xk = 0 if the kth toss produces a tail. Tell why
the series in

must be convergent to a number x for which 0 <= x < 1. Show that

1
x1 41+x^ +x3 S+

2 21 22 23

and

2x,-1 2x2-1 2x3-11
x 2 + 22 + 23 +

24
+

Remark: This problem can steer our thoughts toward the Rademacher functions
ri(t), r2(t), for which

r12t) +T'22)+X22)+ . . .

when 0 5 t 5 1. Figures 12.191, 12.192, and 12.193 exhibit graphs of the first

1

Y

I

0

Figure 12.191 Figure 12.192 Figure 12.193

three Rademacher functions. These things are important in the theory of
probability and elsewhere.

18 Look briefly at the following outline of a proof that e is irrational and then,
with the textbook out of sight, write a proof in which more details are given. If
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we suppose that e = in/n, where in and n are integers, we can suppose that
n > 0 and put x = 1 in the formula

ex } {
22

T-! :j! +
to obtain

m=1+1+Zi 13i+ {'ni+(n+1)'+(n-} 2)i+

and then multiply by ii! to obtain the formula

1 1 1M=N + n-I-1+(n+1)(n-h2)+(n+I)(n+2)(n+3)+

where M and N are integers. Thus the quantity Q defined by

_ 1 1 1

Q n+1 +(n+1)(n+2)+(n+1)(n-h2)(n+3)+

is the difference of two integers and must therefore be an integer. But

n-{-1 < Q<n++(n+l)2+(n+l)3+ 12

so Q cannot be an integer.
19 Give a reasonable definition setting forth conditions under which a given

series
p1+V2+ V3+ . . .

of vectors in E3 is said to be convergent. Show that the series will be convergent
if the series

Iv,I + IV21 + Iv31 +
is convergent.

20 This problem involves rearrangements of series of nonnegative terms.
Let uk ? 0 for each k and let

S = nl + U2 + U3 + U4 + . . . -

Let m1, m2i m3, . be a sequence of positive integers, not necessarily in their
natural order, in which each positive integer appears exactly once. Prove that

.r = 'U-1 + Ums + Ums + Um4 +
Hint: Let

to = U.1+Urn,+ +Ur,,.

Show that t 5 r and that if e > 0, then t > s - e whenever n is sufficiently
great.

21 This problem has a preamble. To pour acid upon the idea that each
rearrangement of the series

(1) 1-+g-a+a-8+T-a+ .
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must converge to log 2, we enter the construction business. Let Qi, Q2, Qa,
be a sequence of numbers. Let u(1), u(2), , u(ni) be, in order, the first
positive term of (1) together with just as many of the following positive terms as
are necessary to obtain a cumulated sum s(ni) which exceeds Qi. Let u(n, + 1),
u(ni + 2), , u(n2) be the first negative term of (1) together with just as
many of the following negative terms as are necesary to obtain a cumulated
sum s(n2) less than Q2. Let u(n2 + 1), u(-n2 + 2), . , u(ns) be the first
unused positive term of (1) together with just as many of the following positive
terms as are necessary to obtain a cumulated sum s(n3) which exceeds Q. Let
ulna + 1), ulna + 2), .. , u(n4) be the first unused negative term of (1)
together with just as many of the following negative terms as are necessary to
obtain a cumulated sum s(n4) less than Q4, and then continue the process. Now
comes the problem. Give precise information about the series u(1) + u(2) +
u(3) + and its sequence s(1), s(2), s(3), of partial sums when, for each
nonnegative integer m,

(a) Q. = 416, (b) Q. = Q, /(cc) Q. = 10-
(d) Qm = -10m (e) Q. = (-1) (f)m Q. = (-10)-

22 Show that the first of the formulas

log2=1 + + +-17-s +1-ra+r1- I 19 +log2 =0+ +0- +0+1+0-1 +0+1+0 -If+
flog2=1 +0 {-I- --{

{ O+'lr - T + '+0 +sr - Wls+log 2=1+s +a+T+1+rr-g+31-s+1 -a +
implies the remaining ones. What, if any, new ideas appear in this problem?

23 Let 0 < X < 1. Suppose that a steel ball dropped from height Is hits
a steel plate ./h/16 seconds later and immediately (without wasting time com-
pressing and then expanding to reverse its direction) starts to rebound to height
Ah to begin a similar bounce. Suppose that the ball continues to bounce in this
way. Find the total distance D traveled by the bouncing ball. Find also the
total time T, discovering that the small bounces occur so rapidly that the ball
does not bounce forever. .4ns.:

D = h T= 1+1-a 4 1-
24 A sequence xi, x2, xs, . is called a Cauchy sequence if

(1) lim (x, - x,,) = 0,
m,n- -

that is, if to each positive number e there corresponds a number P such that

(2) jxm - xnJ < e (m,n > P).

It is easy to prove that each convergent sequence is a Cauchy sequence. Suppose

(3) lim x = L.
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Let e > 0. Choose an index P such that

(4) Ixn - LI < e/2 (n > P)
Then, when both m and n exceed P,

(5) Ixm - x,I = I (x, - L) - (x,, - L) I < Ixm - LI + Ixn - LI
<e/2+e/2=e,

and the conclusion follows. It is also true that each Cauchy sequence is convergent
Proofs of this fact are much more difficult because they must, in one way or
another, use completeness of the real-number system to produce the number to
which the sequence converges. One lively proof starts with the choice of an
increasing sequence Pi, P2, of integers such that, for each k = 1, 2, 3, . ,

(6) IXm - XnI < 2 *n > Pk).
Then

1

(7) I XPt+i - XPjj < 2k
(k = 1, 2, 3, ...).

It follows from the comparison test for convergence of series that the series

(8) XPt + (XP, - xP) + (XP7 - XP') + (XP4 - xP,) + . . .

is convergent, say to L. Since the sum of n terms of this series is xp,,, it follows
that

(9) lim xP = L.

This shows that a subsequence of the given sequence converges to L. To prove
that the whole sequence converges to L, let e > 0. Choose a positive number N
such that

(10) Ixn - x,I < e/2

and

(11) Ixp - LI < e/2

(m,n > N)

(n > N).

Then, when n > N, we can use the above inequalities and the fact that P. _!: n
to obtain

(12) Ixn - LI = I (x. - XP,.) + (xP,. - L)I
5 Ixn - xP I + Ixp,. - LI < e/2 + e/2 = e,

and our result is established.

12.2 Ratio test and integral test This section contains more
theorems about convergence of series. These theorems, like hammers
and saws and other tools in carpenter shops, have their usefulnesses and
we can cultivate abilities to make effective use of appropriate ones at
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appropriate times. We begin by fumbling with the question whether
the series

(12.21)

converges when x = 0.99. We set U. = n2xn and obtain the first and
then the second of the formulas

un = n2(1 - 1--610 ')",

Since (1 - 1/n)n --* 1/e as n ---> cc, it is easy to reach the correct con-
clusion that uloo is of the order of magnitude of 10,000/e and that there
are several values of n for which un > 1000. This can make us suspect
that the series is not convergent, but it is still possible that the series may
converge to some relatively large number of the order of 106 or 1012.
Appreciation of usefulness of the ratio test can now be gained by noticing
that the simple calculation

(12.22) lim
n-->m

lim
n-. m

lim
n-

(n + 1)2xn+1

n2xn

1+ 1
n IxI = IxI

12x + 22x2 + 32x3 + 42x4 + 52x6 + .. .

uloo = 10,000(1 - 1L)100.

shows that the series (12.21) converges when IxI < 1 and hence when
x = 0.99.

Theorem 12.23 (ratio test) Let ul + u2 + 713 + be a series
of nonzero terms and suppose that

(12.231) lim
n- m

uu
1

P

In case p < 1, the series 'u,, is absolutely convergent and lim un = 0.n-.
In case p > 1, the series diverges and lim Iunl = oo,

To prove the first part of the theorem, choose a number r for which
p < r < 1. There is then an index N such that

(12.232)
I

'U-+1 I < (n? N).

Giving n successively the values N, N + 1, N + 2, - yields the
formulas

IuN+1I < JuNI r
I uN+2I < IuN+,I r < iuNlr2

IuN+31 < IuN+2I r < I uNI r3

IUN+41 < I uN+3I r < JuNI r4
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etcetera. Thus the series

UN + uN+1 + uN+2 + UN+3 +

is dominated by the convergent series

IUNI + IuNlr + IUNIr2 + IUNlra +
and the conclusion follows. To prove the second part of the theorem,
choose a number R for which 1 < R < p. There is then an index N such
that I un,+1/unl > R when n ? N and hence

(12.233) I uN+PI > I UNI R' (p = 0, 1, 2, .. .).
Since UN 0 0 and R > 1, this shows that lung -> co as n - and com-
pletes the proof of Theorem 12.23.

The remainder of the text of this section involves a connection between
series and integrals which is both interesting and important. Every-
thing that we do can be easily understood and permanently remembered

Y
Y=f(x)

1

U'

2 3

3

M

n-1

n un-1

n+1 x
Figure 12.24

with the aid of Figure 12.24. We suppose that the terms of a series auk
and the values of a function f are related by the formula

uk = f(k) (k = 1,2,3, ...),
that f is positive and continuous and decreasing over the interval x ? 1,
and that f(x) --+ 0 as x-+ oc. The left member of the formula

(12.241) k11 uk = f 1nf(x) dx + IT, + IT2I + I T,I

+ ... + ITr_iI + un

is then the sum of the areas of the rectangles of heights u1, u2, , un
that stand upon the unit intervals with left (or left-hand) end points
at 1, 2, 3, , n. The first term of the right member is the area of the
region bounded by the graphs of the equations x = 1, x = n, y = 0, and
y = f(x). For each k, ITkI is the area of the triangular patch Tk bounded
by the graphs of x = k, x = k + 1, y = f(x), and y = Uk. Elementary
bookkeeping shows that the members of (12.241) are equal. The easiest
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way to appraise the sum of the areas of the triangular patches is to put
duplicates of these patches in the rectangle having opposite vertices at
the origin and the point (l,ui). Setting

,4n=IT1I+IT2I+ +ITn-iI,

we see that 0 < 142 < 143 < . < 4 < it,. There is therefore a
number C such that

0 < lim [IT,I+IT2I+ +ITn_iIl =C<ul.
n-.w

Putting C. = A + is,, gives the following theorem.
Theorem 12.25 (integral test) If f is positive and continuous and

decreasing over the interval x > 1, if f(x) -+ 0 as x -). -, and if uk = f(k)
for each k = 1, 2, 3, , then the sequence C1, C2, C3, of constants
defined by

n

z1
uk = fif(x) dx + C

is convergent and 0 < Cn < u, and there is a constant C for which

0< limC,=C<
n-m

This theorem clearly implies the following theorem, which is known
as the integral test for convergence of series.

Theorem 12.251 (integral test) If f is positive and continuous and
decreasing over the interval x > 1, if f (x) -* 0 as x --> -, and if Uk = f (k)

for each k = 1, 2, 3, , then Zuk < if and only if f' f(x) dx < -.
It can be shown that C, >= C2 ? C3 - - , and this result is some-

times useful. The most important application of Theorem 12.25 involves
the case in which f(x) = 1/x, Euk is the harmonic series, and the constants
C. and C are called y,, and y (gamma). This application gives

(12.26)
n

1 = log n + 'Yn,

where the constant y for which

(12.261) y = lim yn = 0.57721 56649 01532 86061
n- -

is called the Euler constant. This constant y is, after 7r and e, the most
important mathematical constant not appearing in elementary arithmetic.

Putting f(x) = 1/x", where s > 1, gives

(12.271) ,1 ka = s
1

1 [1 - nl lJ + C,(s),
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where 0 < C.(s) < 1. Letting n oc and using the definition

(12.272) (s) _ kk=1

of the Riemann zeta function g(s) gives the nontrivial formula

(12.273) c(s) _ I1 k, = s 1 1 + C(s),

where 0 < C(s) < 1. The above results and the results obtained in the
problems at the end of this section imply that

(12.281) I 1 < 00
k1 ke

(s > 1)

(12.282) 1 = w
kmlP

(s < 1)

(12 283) +
1 < `c (s > 1).

k- k(logk)°2

284)(12 1 (s 5 1). k2 k(log k)'
.

These series are often used with the comparison test to determine whether
other given series are convergent.

Problems 12.29

1 Use the ratio test to show that the series in

(a) es = 1 ++X2+38+44+

x2 x4 x8(b) cosx=l-21 T-!-6!+
x3 xa x7

(c)
Sj

- y +

converge for each x, and that the geometric series in

(d) 1 1 x=1-}-x+x2+xa+...

converges when jxj < 1 and diverges when IxI > I.
2 Use the ratio test to show that the series

1!x+2!x2+3x3+4!x4+ . .

diverges for each x for which x 0 0.
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3 Prove that if s is a constant, then the series

lax + 28x2 + 38x3 + 48x4 + . . .

converges when lxl < 1 and diverges when IxI > 1.
4 When x = 1, the ratio test does not tell whether the series of the preceding

problem is convergent. Using this hint, give an example of a divergent series
fun for which

(1) lim un+i+I = 1,
n-4 m un

and then give an example of a convergent series for which (1) holds.
5 The nth term u" of the series

(1 i)2 + (21)2 + (3')2 +

is (2n)!/(n!)2. Prove that

lim u+1 = lim (2n + 2)(2n + 1) --4
n_ m nn n-..o (n + 1)(n + 1)

and hence that the series is divergent.
6 What information does the ratio test give about convergence of the series

(1!)2 (21)2 (3!)2 (4!)2
2! 4F x2 } 6 x3 +

81
x4 + . . . ?

dns.: The series converges when IxI < 4 and diverges when (xI > 4. The ratio
test gives no information when x is 4 or -4.

7 Supposing that m 5A a, show that the series in

1 1 x-a (x-a)2 (x-a)3
x - m m- a (m-a)2 (m -a)3 (m - a)4

is a geometric series and that it converges to 1/(x - m) when Ix - al < Im - al.
8 Supposing again that m 34 a, show how the calculation

1 _ -1 _ -1 _ -1 1

X I n 1 - x-a
m - a

can be used to obtain the formula of the preceding problem when Ix - al <

Im - al. Hint: We must always know that the geometric series

1+r +r2+ra+ .. .

converges to 1/(1 - r) when Irl < 1, and we must sometimes be wise enough to
start with 1/(1 - r) and write the geometric series that converges to it when
Irl<1.
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9 Write a complete proof of the fact that the formula

x 1 1 1 9 92 93
x2-9

_
x

1
9

=x+x3+xs+z7+

605

is valid when IxI > 3. Obtain a similar expansion of x/(x2 + 1).
10 For each n = 1, 2, 3, . let d(n) be the number of positive integer

divisors of it, including 1 and it, so that d(1) = 1, d(2) = 2, d(3) = 2, d(4) = 3,
d(5) = 2, d(6) = 4, etcetera. Tell why the ratio test does not provide a useful
source of information about convergence of the series

d(1)x + d(2)x2 + d(3)x3 + d(4)x4 +

Tell why d(n) ? 1 and the series diverges when x > 1. Tell why 1 S d(n) 5 n
and the series converges when 0 5 x < 1. Hint: The series x + 2x2 + 3x3 +
4x4 + . .. is convergent when IxI < 1.

11 Give two or more examples of convergent series ul + u2 + u3 + of
positive terms for which lim does not exist. 11ns.: The series

n-*

2 + 0 2+22 + lO2 + 23 + 103 + 24 + 104
+

are simple examples.
12 Show that the series in

(1)
1 =ex+e 2z +e 3x+e4 z+ex -

1

is a geometric series that converges to the left member when x > 0. Use this
result to show that, when x > 0,

n
(2) X = lim I xe'kx.ex-1 n-1 k-1

Show that if the manipulations

(3)

n nx
1 dx =

J
Jim' xekx dx = lim ( xekx dx

o ex - 1 o n-- k1 o kal

are valid, then

(4) J
x

-ldx 2kIIk

Remark: We shall soon start hearing that the last series converges to ir2/6.
13 Supposing that n is a positive integer, sketch a graph of

1
(1) + X '
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and show that
n-1

(2)
j
o n2 + V > Jon n2 + x2 dx = n tan 1 n]o

Use this result to show that
n-1

(3)
2 2

= .
n=1 k=o n I k

Remark: This result is of interest in cosmology. Suppose a particular universe
contains an earth at the origin of a plane x, y coordinate system and contains a
star like our sun at each point (x,y) for which x and y are integers not both zero.
The rate (in appropriate units) at which the earth receives radiated energy from
the star at the point (n,k) is then

1

n2 + k2

provided the inverse square law is applicable These hypotheses and (3) imply
that the earth would receive energy at an infinite rate and hence would burn up
instantly. This result implies that either the stars cannot be so uniformly dis-
tributed or that (perhaps because other stars and interstellar material interfere
with transmission of energy) the inverse square law is inapplicable.

14 Supposing that 0 < s < 1, show that
jn'

1 a -
k=1 n1 - sl + C. (s),

where 0 < CG(s) <_ 1. Show that
n 11 -1 =2--2+C,,

k=1 ""
where 0 < C. <= 1. Check the last result when n = 1 and when n = 4.

15 Prove that, when n >= 2,
n 1 n-1 1

kI k log k (k + 1) log (k + 1)
= log log n - log log 2 + Cn,

where 0 < Cn <= 1/(2 log 2).
16 Prove that, when s > 1 and n > 2,

fin' 1 _ 1 1 1

k 2 k(log k)' -l [(log 2)'-' - (log n)"-I +

where 0 5 Cp(s) 5 1/2(log 2)', and that

k k(log k)' - s 1 1 (log 2)'-1 + C(s),

where 0 S C(s) 5 1/2(log 2)'.
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17 With the aid of an appropriate figure show that, when s > 3,

3+4,+... +nd< (- Idx= 11c
2 x s-12 2

and hence that

and

Z,<c(S)-1<21,

lim ('(s) = 1.

18 Sketch the graph of f(x) = x 36 over the interval 0 < x < 1 and observe
that, even though f is unbounded and therefore not Riemann integrable, it can
be suspected that

(1) lim
()_4 I

=
r

1 z 3` dx = 2,n n p

where the integral is a Cauchy extension of a Riemann integral. In any case,
use a result of Problem 14 to show that formula (1) is correct. Remark: One
who undertakes to prove (1) without use of Problem 14 does so at his own peril.

19 Suppose that f is nonnegative and continuous and increasing over the

interval x > 1 and that f(x) -> co as x --> co. Let

uk = f(k) (k = 1, 2, - ).
With the aid of a figure which is in some respects like Figure 12.24, show that to
each n there corresponds a number.4n such that 0 < In < I and

u1+U2+ . . . +un= flnf(x) dx+nn-!In(un - u1).

Applying this to the case in which f (x) = log x and

n n

I uk = I log k = log n!,
k=1 k=1

obtain the formula

and hence

logn! =nlogn-n+l+(1 - .4.) log -n,

n! = nnl nenl-A* = (n/e)"enl-A..

Remark: This elementary calculation gives an introduction to the important idea
that n! is of the order of magnitude of (n/e)n. It is easy to see with the aid of
a figure that 4n is a little greater than ff' and hence that n1-An is less than.
In Problem 4 of Section 12.6, we shall discover (among other things) that if n
is a positive integer, then

n! = 2-. r nne- 0.112%

where Bn is a number for which

1 30,2
< Bn < 1

30n2 + 105,4
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and hence 0 is quite close to 1 even when n = 1. The above formula for n!
is a Stirling formula, and it is very useful.

20 We are familiar with the fact that

(1)

fl,
1

dx = lim rh x-n dx = lim Jx1-P lh = 1
xP h-»1-p 1 p

when p > 1 and

(2) J 1 dx = lim f h - dx = lim log
x x h---1

Some questions and answers involving existence (or convergence) of Riemann-
Cauchy integrals are quite analogous to questions and answers involving infinite
series.

(3) Theorem Let f and g be Riemann integrable over each finite interval
a < x < h for which h > a and let

(4)

Then

(5)

0 < f (x) < g (x)

0 <
fam

f(x) dx < fag g(x) dx

when (5) is interpreted to mean that f f(x) dx < M whenever

is M, and that f g(x) dx = co if f f(x) dx = oo.
Proof of this theorem depends upon the fact that

fa

m
g(x) exists and

(6) 0 5 fah
f(x) dx <

fah
g(x) dx (h > a).

The functions in (6) are monotone increasing functions of h. In case f
'

g(x) dx

= M, the function f h g(x) dx has the least upper bound M. The function'f(x)
dx then has an upper bound M and hence must have a least upper

bound M1 for which M1 < M and

(7) f : f(x) dx = lim h f(z) dx = l.u.b. f h
f(x) dx = M1 <= f

'
g(x) dx.

a h-+. h2a a a

In case fag f(z) dx = oo, the function fah f(x) dx does not have an upper bound,

so fa g(x) dx cannot have an upper bound and hence f g(x) dx = co. This
a

proves the theorem. Supposing that p > 1 and that q is real, prove that

(log x)Q
dx < oo2 xP
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by choosing a number r for which 1 < r < p and showing that there is a con-
stant 14 for which

0<( = (log x)Q 1 5 1 1

xp xp-' x' - Xr

when x > 2. Prove that
f°° log x

3 x

21 Using results of the preceding problem when and if they are helpful, prove
that the first of the integrals

1

XP
fr xP

r m x' dx
o (1 x)4

dx, Ji (1 + x)a dx, Jo (1 + x)°

exists when p > -1 and fails to exist when p 5 -1. Prove that the second
integral exists when q - p > 1 and fails to exist when q - p < 1. For what
pairs of values of p and q does the third integral exist?

22 The first of the two integrals

(1) f¢mf(x) dx, fa f(x)I dx

is sometimes said to converge absolutely if the second one exists. Prove the fol-
lowing theorem.

(2) Theorem If f is Riemann integrable over each finite interval a < x <= h

for which h > a and if fa I f(x)j dx < w, then fa f(x) dx exists.

Solution: This theorem and its proof are very similar to Theorem 12.17 and
its proof. Let

p(x) = _[I f(x)I + f(x)), q(x) = [If(x)I - f(x)],

so that 0 < p(x) S Jf(x)I and 0 < q(x) <_ f(x)I. It then follows from the
theorem of Problem 20 that the limits in

lim foh p(x) dx = L1, lim Jo q(x) dx = L2
h- - h-, .

lim foh f(x) dx = 1im [ foh p(x) dx - Joh q(x) dx,
h- - h- -

23 Does existence of f 0I f f (x) I dx imply existence of f o- f (x) dx? -4,s.:

No. For example, f(x) might bees when x is rational and -e- when x is

irrational. In this case If(x)I = e-2 and
fo'

If(x)I dx = 1 but f is everywhere

discontinuous and there is no interval over which f is Riemann integrable.
24 Prove that if f and g are both Riemann integrable over each finite interval

a 5 x <- h for which h > a, and if

If(x)I < Ig(x)I (x > a)
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then existence of
1

aW lg(x)l dx implies existence of fag f(x) dx. Solution: The

theorem of Problem 20 implies that f If(x)l dx exists and the theorem of
a

Problem 22 then gives the required result.
25 Prove that if f is integrable over each finite interval and the first of the

integrals -
fo-

If(z)l dx,
fog

f(x) sin x dx,
fo,

f(x) cos x dx

exists, then the other two also exist. Solution: Since sin x and cos x are con-
tinuous, f(x) sin x and f(x) cos x are integrable over each finite interval. Since
also

If(x) sin xI < If(x)I, If(x) cos xI < lf(x)l,

the results follow from the results of the preceding problem.

12.3 Alternating series and Fourier series The following theorem
embodies the alternating series test for convergence of series.

Theorem 12.31 If the terms of a series Zuk are alternately positive and
negative and if their absolute values decrease and have the limit 0 so that

lull > IU21 > lu31 > ... , lim lu,, = 0,

then the series converges to a number s for which

(12.311)
n

s - I uk I < lun+l (n = 1,2,3, ...)
k=1

The inequality (12.311) tells us that if we use a particular partial sum
as an approximation to s, then the error will be less than the absolute
value of the first term of the series not included in the partial sum. This
information is very useful. To prove the theorem, we suppose that the
given series has the form

(12.312) a1 - a2 + as - a4 + as - a6 +
where a1 > a2 > as > . and ak -+ 0 as k ----> co . To locate the par-
tial sums s1, S2, shown in Figure 12.313, we start at the origin, go
to the right the distance a1 to reach s1j then go left the smaller distance
a2 to reach s2, then go right the still smaller distance as to reach s3j and

Figure 12.313

r=r
... S7 S6 S3 S1=a1
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so on. Because the quantities in parentheses are positive, the formulas

(12.314) S2k = (a, - a2) + (aa - a4) + + (a2k-1 - a2k)
(k = 1,2,

show that 0 < s2 < s4 < X6 < and the formulas

(12.315) S2k-1 = a1 - (a2 - as) - (a4 - a5) - - (a2k-2 - a2k-1)
(k = 1,2, )

show that a1 = s1 > Sa > Ss > S7 > . When it > k, these facts
and the formula

(12.316)

imply that

(12.317)

S2n+1 = S2n + a2,+1 > S2n

0 < S2k < S2n < S2,,+1 < S2k-1 < a1

as Figure 12.313 indicates. The bounded increasing sequence s2, S4,
S6, . and the bounded decreasing sequence sl, sa, ss, must have
limits and these limits must be equal, since S2n+1 = S2n + a2,+1 and
a2n+1 -> 0 as n - oo. Letting s be the value of these limits, we have

(12.318) lim sn = s.
n-p

In case n is even, we have sn < s < sn+1 and hence

0 <s - sn < sn+1 - sn= lan+11.

This formula and a similar one holding when it is odd give the conclusion
of Theorem 12.31.

The remainder of the text of this section gives a preview of fundamental
ideas about series that are called Fourier (1768-1830) series. While
snatches of the story can be understood by everyone, most of the results
are given without proof and it is necessary to study pure and applied
mathematics for a few years to obtain a full appreciation of the whole
story. Let L be a given positive number, and let functions 01, 2.
03, .

- be defined by

(12.32) Ok(x) = . rL sin x (k = 1,2,3, . - ).

Let E be the closed interval 0 < x S L. Because the little trick enables

us to obtain formulas that have many other applications, we write fE

instead of foL. It can then be shown that

(12.33) f, 10k(x)I2 dx = 1, f, 4,j(x)4k(x) dx = 0 (9 54 k).

On this account, we say that the functions 01, q52, 0a, . constitute
an orthonormal set over E. Now let f be a function which is defined over
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E and is such that the two integrals

(12.34) fE f(x) dx, fE if(x)I' dx

Series

both exist as Riemann integrals or as Cauchy extensions of Riemann
integrals. Supposing that n is a positive integer, we seek constants
c1, c2, . .. , c for which the integral in the left member of the formula

= x dx -
n

ak12.35) ckOk(x)'2 dx If(fE f() - fE >IZ I IZ(
k=1 k=1

n)1

I c., - a,, l2kI

will attain the least possible value. The first big step in the theory is
made by working out the formula (12.35) in which the constants a1, a2,

are the Fourier coefficients of f defined by the formulast

(12.36) ak = fE f(x)¢k(x) dx (k = 1,2, ).

The series

(12.361) aioi(x) + a202(x) + a303(x), .. .
in which the coefficients are defined by (12.36), is called the Fourier series
of f. It is very easy to see that the c's for which the right side (and
hence also the left side) of (12.35) is a minimum are those for which
Ck = ak. Putting Ck = ak in (12.35) gives the key formula

(12.362)
1E I f(x) - 1 ak0k(x) i2 dx = fE If(x)I2 dx - IakI2.

k=1 k=1

Since the left side of (12.35) cannot be negative, we obtain the first and
then the second of the inequalities

n `m

(12.363) IakI2 = fE If(x)I2 dx, IakI2 fE if(x)I2 dx.
k-1 k=1

The second inequality is called the Bessel (1784-1846) inequality. For
most purposes, the important orthonormal sets 01, 02, are those
for which the members of (12.362) converge to 0 as n - w so that

(12.364) lim fE f(x) - ' akcbk(x) I2 dx = 0,
k=1

IakI2 = fE If(x)I2dx.
k-1

t These formulas were known by Euler. Fourier contributed very little to the theory
of Fourier coefficients and Fourier series. The things bear his name, not because he
invented them, but because he advertised their formal usefulness in problems of mathe-
matical physics.
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Such sets are said to be complete. While proofs of such things are so
long and devious that nobody should expect to be able to originate them
in a few days, it can be proved that the set in (12.32) is complete. The
set 17r(12.365)

2 'r
r2 27r 3

1 I

L cos L x, cos x, L cos
L

x,

is also a complete orthonormal set over E when E is the interval 0 <-- x
L. The set

(12.366)
1 1 a 1 a 1 2a 1 21rcosLx, =sinLx, cos-

I x,Lsin L

is a complete orthonormal set over E when E is an interval of length 2L.
The world's mathematical storehouse contains many other useful com-
plete orthonormal sets, and the above formulas have many important
applications. Henceforth we suppose that q5i, 02, q53, is the trigo-
nometric orthonormal set appearing in (12.32) or (12.365) or (12.366)
and that f has period 2L so that f(x + 2L) = f(x) for each x. Even in
this case, fundamental problems involving validity of the formula

(12.37) f(x) = alol(x) + a202(x) + a4'03(x) + . . .

remain unsolved. It is, however, known that (12.37) is valid over
-- < x < - provided (i) f has period 2L, (ii) f is bounded and piece-
wise monotone over -L < x <- L, (iii)

(12.371) lim
f(x + h) + f(x - h) _ f(x),

h-*O 2

(iv) f is odd so thatf(-x) = -f(x) in case the orthonormal set is (12.32),
and (v) f is even so that f(-x) = f(x) in case the orthonormal set is
(12.365).

The most illuminating batch of applications of the above ideas involves
the Bernoulli functions Bo(x), B1(x), B2(x), that appeared in Sec-
tion 4.3, Problem 10, and in Section 5.3, Problem 19. These are the
functions of period 1 for which Bo(x) = 1,

(12.381) B'(x) = (n = 1,2,3, )
(12.382) foI B (x) dx = 0 (n = 1,2,3, )

except that (12.381) fails to hold when n is 1 or 2 and x is an integer.
In particular, Bi(x) is the saw-tooth function for which Bi(x) = 0 when
x is an integer and

(12.383) Bi(x) = x - [x] - ji
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when x is not an integer and [x] denotes the greatest integer less than or
equal to x. Problem 8 at the end of this section will show where the
first of the formulas

(12.384)

BL(x) - 2 sin 27rx +
2,r 1

B2(x)

B3(x)

B4(x)

Bs(x)

2 cos 2,rx +
(2,r)2 122

2 sin 2,rx +
(2,r)3 V

-2 cos 27rx +
(2,r)4 14

-2 sin 2,rx +
(2x)6 1s

sin 4irx + sin6 ax + sink nrx +

cos 47rx cos 6rx cos 8,rx
22

+
32

+
42

+

+si n4nrx + sin 36,rx + sin
43

co 4nrx + cos 36,r x + co s8,rx +

si n4,rx + sin36nrx + sin48nrx +

comes from. The remaining formulas come by successive integration;
it can be proved that the series for B2(x), B3(x), B4(x), can be dif-
ferentiated and integrated termwise [except that the series for B2(x) is
not termwise differentiable when x is an integer] and hence that the
fundamental formulas (12.381) and (12.382) hold. Since Section 4.3,
Problem 10, shows that

(12.385) B2(0) = B'
=

12' B4(0) 41 720'

putting x = 0 in the formulas for B2(x) and B4(x) gives

(12.386) (2) = I k2 = 6 , 3'(4) = 1i = 901 k 4

Balth Van der Pol used to claim that persons who know these formulas
are mathematicians and persons who do not are not.

Problems 12.39
1 Use Theorem 12.31 to show that each of the following series is convergent.

(a)
1 1 1 1

log 3 log 4 + log 5 log 6 +
1

-
1 1

(c) log log 20 log log 21 + log log 22 log log 23 +
1 _ 1 1 1 1 _

1+x2 2+x2+3+xa 4-}-x2+5+x2
log 3 log 4 log 5 log 6 log 73 - 4 .+ 5 - 6 +

7
- .. .
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2 Find, correct to four decimal places, the numbers to which the following
series are convergent.

1 2 3 4 5

(a) 10 102 + 103 104 + 105

12 22 32 42 52

(b) 10 102 + 103 104 + 105 -
.. .

3 Show that the series
2 3 4

for which the nth term is xn/(2n + 1), converges when -1 5 x < 1 and di\erges
when x < -1 and N%hen x > 1. Hznt: Some but not all of the information is
revealed by the ratio test.

4 With the aid of basic information about alternating series show that the
series in

(1)
15 = 1- 1

-I
1 - 1

-i1222 32T2 52-

converges to a number S for which 0 < S < 1. Then show that, correct to 5D
(5 decimal places),

S > 0.75000 S < 0.86111 S > 0 79861 S < 0.83861

Remark: One who wishes to invest a moment to pick up some ideas may start
with the esoteric but important formula

2

6 12 22 32 42 52 62

and obtain the formula

(3)
2

24-0+22+0+42+0+62+
Subtracting twice (3) from (2) then gives (1) with S = ar2/12. Subtracting
(3) from (2) gives the formula

2

(4) s = 12-1-32+s2+32+92+

which sparkles almost as brightly as (2).
5 Supposing that 0 < x < 1, use the formula

log(1+x)=x- x22 + x33 - x44 + ...
to show that

and

z 3

x-log(1+X)=x202 +4 5+
0 < x - log (1 + x) < 'x2.
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6 Supposing that x = r/4, give one or more reasons why the series

sin x sin 2x sin 3x sin 4x
+1 2 3 4

is not an alternating series to which Theorem 12.31 applies.
7 The function 4k being defined by (12.32), prove the formulas (12.33).
8 It is not expected that the theory of Fourier series and its formulas have

been learned, but it is expected that we can start solving problems when suitable
formulas and instructions are given. Write the formulas (12.32) for the case in
which L = I and show that the formula (12.36) for the Fourier coefficients
becomes

ak =
o

i
f (x) sin krx dx.

Letting f (x) be the Bernoulli function B, (x) so that f (x) = x - - when 0 < x < 1,
show that

ak =
oi

(x - ) sin krx dx.

Show that integration by parts gives

1l -1 I j 1ak = [(x - 2/ kr cos krxJO + f0 cos krx dx

-'/21+coskr - Nr2 1+(-1)k
kr 2 - k,r 2

so that ak = 0 when K is odd and ak = - -/kr when k is even. Observe
that the conditions in the sentence following (12.37) are satisfied and hence that
(12.37) must be valid. Then show that substituting in (12.37) gives the first
of the formulas (12.384).

9 Another particularly important example involves the square sine function
(or square wave function) defined by

Sin x = sgn sin x.

The graph of this function is shown in Figure 12.391. To find the trigonometric

Y

-z

Figure 12.391

Fourier series of the odd function Sin (rx/L) which has period 2L, use the ortho-
normal set (12.32) and, after observing that Sin (rx/L) = 1 when 0 < x < L,
calculate the Fourier coefficients of Sin (irx/L) from the formula

ak = f oL sin Lx dx.
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Then tell why (12.37) must be valid and substitute in it to obtain

ax 4 ax 1 3- I 5ax 1 laxSin L =7r[sin L +3sin
L +5sin-I-+7sin L +

Observe that this implies that

a ax 1 Sax 1 Sax 1 lax
sin

L
+

3
sin L + sin L + sin L +

when 0 < x < L and that putting x = L/2 gives the formula

a=1
4 -sf_5 v v

which we have seen before.
10 Engineers who are interested in fully rectified (or full-wave rectified)

alternating currents would want x replaced by wt in the formula

4 r1 cos 2x cos 4x cos 6x cos 8x 11sin x _ L2 - 1 3 - 3.5 - 5.7 - 7.9 - ...J'

but this shift is easily made. Work out the formula and observe that it is correct
when x = 0 because

2

= 113 315 + 517 + 719 + .. .

11 Sketch a graph of the even function f of period 2a for which f(x) = x when
0 =< x < a. Show that

f(x) = a - 4 (cos x + cos 3z cos 5x cos 7x
2 32

+ 52 + 72 +a

12 Use the formulas following (12.384) to show that, when n is a positive
integer,

B2^(0) = (-1)"+1 (27r)2

2n (2n)

and hence that B2,(0) is a small number like 1/621 when n is large. Use the
formula Bk = k! Bk(0) and the Stirling formula of Section 12.2, Problem 19, to
show that

2n

Ben = (-1)n+14 1/n7r (n S(2n)02^124n
7re

Remark: Even crude estimates show that JB2nj is very large when n is large.
Since re < 9, we have n/ire > 10 and JB2n1 > 102n when n > 90. Similarly,
JB2nI > 10002n when n ? 900.

13 Our work with Fourier series has involved Fourier analysis. We started
with given functions and found their Fourier series. While proofs of results lie
beyond the scope of this course, we take brief cognizance of a problem in Fourier
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synthesis. Let (ki, 02, 03, .. - be a set of functions orthonormal over a set E.
Let a,, a2, a3, be given coefficients for which 2jakI2 < -. Then, when
Lebesgue integrals are used, there is a function f for which the formulas

(1) fE l f(x)J2 dx <
Jim

f I f(x) - I ak4k(x) I2 dx = 0
n'_'°° k=1

are valid. Moreover the numbers a1i a2, as, are the Fourier coefficients
of f, that is,

(2) ak = fEf(x);r(x) dx (k = 1,2,3, ...)

In this formula we have recognized the fact that, in many important applications,
4,k(x) is a complex number and "¢k(x) bar" is the complex conjugate of 4,k(x).
It has not been asserted (and is in fact sometimes untrue) that the series in

(3) f(x) - a,951 (x) + a24,(x) + asq5s(x) + . . .

converges to f(x). However, as the second formula in (1) shows, the sum of the
first n terms of the series must be a good global approximation to f(x) whenever
n is large. Persons who study Lebesgue integration and Fourier series for a year
or two can learn all about these things.

14 Supposing that Ao, A,, B2, and B,, B2, are bounded sequences
of constants, let

(1) AX) _ !lo + I (Ak cos kx + Bk sin kx)
k-1

for those values of x (if any) for which the series is convergent. The series in
the right member of (1) is called a trigonometric series. Some profound studies
of the series in (1) depend upon use of the function F defined by

(2) F(x) = 'ffUox1 -
4k cos kx + Bk sin kx

k1 k2

the series being convergent for each x because it is dominated by a convergent
series of constants. Show that, when t 0,

(3)
F(x - 2t) - 2F(x) + F(x + 2t)

4t2

_ Jo + I [A cos kx + Bk sin kx] (sin kt 2
ktk-1

Remark: Riemann discovered this formula and used it to solve some difficult
problems. In more advanced mathematics, it is proved that the formula

sin kt 2li

=(4) l0
[uo + uk

(sin
) J u0 + uk

k=1 k=1
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is'. alid Ns henever the series on the right is convergent. From this it follows that

(5) lim F(x - t) - 2F(x) + F(x + t) = f(x)
two t2

for each x for which the series in (1) is convergent. We conclude with a brief
outline of the sophisticated steps by which this sophisticated result is used to
prove the following difficult theorem. If the series in (1) converges to 0 for each
x, then I = Bk = 0 for each k. The present hypotheses imply that F is con-
tinuous and that the left member of (5), the generalized second derivative of F
at x, is 0 for each x. These facts can be used to prove that F must be a linear
function, and further arguments involving (2) can be used to prove that F(r) = 0
for each x. Since F(0) = F(27r) = 0, use of (2) shows that 1Io = 0. Further
arguments involving (2) show that Ak = Bk = 0 for each k. The theorem is
called a uniqueness theorem because it implies that if f is a giNen function, then
there can be at most one collection of constants -40, 41, 4,, and B1, B-,,
for which the series in (1) converges to f(x) for each x. This means that if the
formulas (1) and

(6) f(x) = Co + (Ck cos kx + Dk sin kx)
k=1

are both valid for each x, then Ck = 1k and Dk = Bk for each k. Our brief
glimpse of the Riemann theory of trigonometric series can make us aware of the
fact that the uniqueness theorem for trigonometric series has been proved, and
the proof involves mathematical ideas that we have not yet assimilated. This
matter is important, because trigonometric series appear even in quite elementary
applied mathematics and we need some authoritative information to help us
appraise the revelations appearing in textbooks that give superficial treatments
of the subject.

12.4 Power series The series

(12.41) co + ci(x - a) + c2(x - a)2 + c3(x - a)3 +

in which a and co, e1, e2, .. are constants, is called a power series in
(x - a). The fundamental reason for importance of these things lies
in the fact that powers of (x - a) are relatively easy to calculate, to
differentiate, and to integrate. Some power series, like the series

(12.411) 0!+1!(x-a)+2!(x-a)2+3!(x-a)3+
converge only when x = a. Others, like those in the important formulas

(12.412) e==1+x+2i--3 +4 +

(12.413)

(12.414)

cosx= l -2i+4i-66+ .

6sinx=x-33+5-7i+ ,
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converge for each x. The geometric series in the formula

(12.415) 1 = 1 +x+x2+x3+1 - x

Series

is an example of a power series in (x - 0) which converges for at least
one x different from 0 and diverges for at least one x. With each power
series in (x - a) which converges for at least one x different from a
and diverges for at least one x, there is associated a positive number R,
called the radius of convergence of the power series, such that the series
converges absolutely for each x for which Ix - al < R and diverges for
each x for which Ix - al > R. As Figure 12.42 indicates, the interval
Ix - al < R is called the interval of convergence of the series.

Interval of convergence

a-R a a+R s

Figure 12.42

We now give, without proof, some very useful information about power
series. Those who are interested in proofs should study the theory of
functions of a complex variable. If the power series in (12.43) converges
when lx - al < r and if for each such x we let f(x) be the number to
which the series converges, then

(12.43) f(x) = co + ci(x - a) + C2(X - a)2 + ca(x - a)' + . .

The function f thus defined is continuous over the interval Ix - a! < r
and, moreover, has derivatives of all positive orders which "can be
obtained by termwise differentiation," that is, when Ix - a! < r,

(12.441) f'(x) = cl + 2C2(X - a) + 3c3(x - a)2 + 4c4(x - a)3 + .
(12.442) f"(x) = 1.2c2 + 2.3c3(x - a) + 3.4c4(x - a)2

+ 4.5c5(x - a)3 +
(12.443) f(a)(x) = 1.2.3ca + 2.3.4c4(x - a) + 3.4.5c5(x - a)2

+ 4.5.6c6(x - a)' +

(12.444) f(4) (X) = 1.2.3.4c4 + 2.3.4.5c5(x - a)

+ 3.4.5.6c6(x - a)2 +

and so on, so that for each n = 1, 2, 3,

(12.445) f(-)(x) = n!c + (n 1 1)! c.+, (x - a)

+ (n + 2)
cn+2(x - a)2 +

Termwise integration as well as termwise differentiation is permissible,
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that is,

(12.45)
f." a

x

cl(t - a) dt + J c_(t - a)2 dt
f.

z

co dt -}

a a

+ J c3(t - a)3 dt + .
a

= co(x - a) +- c1 (x
2

a) + c (x
3

a)

4

+ C3 x
4

a +-

When Ix - al < r. Moreover, we can multiply (12.43) by g(x) and,
provided g is Riemann integrable over the interval from a to x, integrate
termwise to obtain

(12.46) f axf(t)g(t) dt = fax cog(t) dt +
fax

ci(t - a)g(t) dt

+ fax c2(t - a)2g(t) dl +

Putting x = a in (12.43) and the formulas that follow it gives the
remarkable formulas

(12.47) f(a) = co, f'(a) = c1, f"(a) = 2!C3, f(3)(a) = 3!c3,
fca>(a) = 4!c4, .. .

Solving these equations for Co, c1, c2, and putting the results in
(12.43) gives the more remarkable formula

(12.48) f(x) = f(a) + f-a) (x - a) +t a) (x - a)2

+-----(x-a)3+ . .. .

These formulas show one of the ways in which the coefficients co, c3,
in a convergent power series can be determined in terms of the function
to which the series converges. The series in (12.48) is the Taylor series,
or Taylor expansion, off in powers of (x - a), and our work shows that
each convergent power series is the Taylor series of the function to which it
converges. In case a = 0, the Taylor series is sometimes called a Mac-
laurin series, but the practice has little justification and is being slowly
abandoned.

The following uniqueness theorem is used very often.
Theorem 12.481 If r > 0 and if the two power series Ebx(x - a)k and

ECk(x - a)k both converge to the same f(x) when Ix - al < r, so that

(12.482) f(x) = ho + bi(x - a) + b2(x - a)2 + Ox - a' < r)
(12.483) f(x) = co + c3(x - a) + c2(x - a)2 + Ox - al < r),

f (t) dt =

then bk = ck for each k.
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For example, the series in (12.412), (12.413), and (12.414) are the only
power series in x that converge to ex, cos x, and sin x. To prove this
theorem, we can start with (12.482) and show that bk = f(k)(a)/k! just
as we started with (12.43) and showed that Ck = f(k)(a)/k!.

Problems 12.49
1 Learn the formulas

x2 x3 x4(a) ex+x+22+33+,x+
3 5

(b) sinx=x3i+ 5 X7

x2 x4 x5(c) cosx=1-2i+4-6i+ '

X
+X+x2+x3+

Write the four formulas obtained by differentiating formulas (a) to (d).
2 Explain the steps by which the series

=1+t+t2+t3+1-t
and modifications of it can be used to obtain the formulas

(a) 1+x=1 -x+x2-x3+ ... (Ixl <1)

(b) log (1
+X)

= x - 2 +
33 - 4 + ... (Ixl < 1)

(c) 1 + x = 1 - x2 + x4 - x5 + ... (Ixl < 1)

x3 x5(d) tan-' x = x -
3

+ xT

S

-
7

+ . . (Ixl < 1)

(e) (1 x)2 = 1 + 2x + 3x2 + 4x3 + (ixl < 1)

(f) lim log (I + x) = 1' lim x - log (1 - x) = 1

X- O X x-.0 x2 2

f s
log (I + t)

(8)
o

t
dt=x-x2 +x3 -x4 + Qxl <1)223242

3 We can object to the general principle that problems should be solved in
inefficient ways, but nevertheless we can sometimes profitably sacrifice a few
square feet of paper to promote understanding of a subject. Assuming that the
series in

sin 2x = CO + C'x + c2x2 + C3x3 + C4X4 + . .

converges to sin 2x, find c0, c', c2, in the following way. Put x = 0 to
find ca. Differentiate once and put x = 0 to find c1. Differentiate once more
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and put x = 0 to find c2. Continue the process until c5 has been obtained.
Finally, see whether the result agrees (as it should) with the result of replacing x
by 2x in the basic formula

x3 x5 x7

4 Repeat the operation of Problem 3 to find the expansion of ebr in powers
of x, it being assumed that b > 0 and that there is a power series in x that con-
verges to ebz. Tell how your answer can be checked.

5 Assuming that there exist constants co, c1, c2, for which

f(x)

do enough differentiating and substituting to find the first few c's when

(a) f (x) _ (1 - x)-1, a = 0
(b) f(x) = x-1, a = 1
(c) f(x) = log (1 + x), a = 0
(d) f (x) = log x, a = 1

6 Without bothering to write derivatives of the right member of the formula

f(x) =co+cl(x-a)+c2(x-a)2+c3(x-a)3-+ . . .
,

suppose that the series converges to f(x) and find the first few of the c's with the
aid of the formula

f(x) = f(a) +
1

tLa)i (x - a) + f 2 a) (x - a) 2 + 3 ia) (x - a)3 + .. .

when

(a) f(x) = sin x, a = 0

(b) f (x) _ (1 - x)-1, a = 0
(c) f(x) _ (1 + x)3, a = 0
(d) f (x) = x3 - 2x2 + x - 1, a = 1

7 It is possible to apply the methods of the preceding problems to calculate
a few coefficients in cases where the complexities of formulas for f(")(x) increase
very rapidly as n increases. In some such cases, it is worthwhile to know the
numerical values of the first one or two or three nonzero coefficients. Verify
the first two nonzero coefficients in each of the formulas

(a) tan x =x+3x3+rsxs+Mx7+ yH-SX9 ... a
(XI <2!

(b) secx = 1 +3x2+Ax4+- 2ax6 +sil-x1 + . . . <2
(c) (1+x+x2)'=1+3x+XIx2+ ...

8 It can be proved that if the series in the first two formulas

(1) f(x) = ao + aIx + a2x2 + asx3 + a4x4 +
(2) g(x) = bo + bix + b2x2 + bax3 + b4x4 .+ .. .
(3) f(x)g(x) = co + c1x + c2X2 + cax3 + C4X4 + .. .
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converge to f(x) and g(x) when jxj < r, then the series in (3) will converge to
f(x)g(x) when ixi < r provided the constants co, ci, c2, - are determined by
the formulas

co = aobo

c, = aob, + aibo
c2 = aob2 + aibi + a2bo

c3 = aoba + aib2 + a2bi + aabo

etcetera. Observe that this is precisely the way we would write the product of
the right members of (1) and (2) if they were polynomials. To obtain a bit of
experience with these formulas, write the formulas to which (1), (2), and (3)
reduce when ak = bk = I for each k. Check your work by obtaining the third
formula from the first in another way.

9 Prove that if the series uo + u1 + u2 + - has partial sums so, s3, s2,
and if the series in

f(x) = u0 + ulx + u2x2 + u3x3 +

converges to f(x) when lxi < 1, then

f(x) _ (1 - X) (SO + slx + J2x2 + 13x3 +

when Jxj < 1. Hint: Use the information given at the start of the preceding
problem, putting bk = 1 for each k.

10 Write two more terms of each of the series

a

es=1-x+23+
1

1+x = 1 -x+x2 - x3+ .
-: 2

+x=1-2x+ 2

11 It can be proved that if the series in the first of the formulas

(1) f(x) = ao + aix + a2x2 + aax3 + a4xa + . . .

(2) 1
f(z )

=bo+bIx+b2x2+bax3+b4x4+

converges to f(x) when jxj < r1 and if ao 0 0, then there exist numbers r2, bo,
bi, b2, -

- - such that the series in (2) converges to 1/f(x) when jxi < r2. Since
the product of the left members of (1) and (2) has the power series expansion

1+0x+0x2+0x3+0x4 + . . ,

the coefficients bo, bi, b2, - can be calculated from the formulas

1 = aobo
0 = aoba + albo

0 = aob2 + aibi + a2bo
0 = aoba + aib2 + a2b1 + a3bo.
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Use this idea and the known power series expansion of cos x to obtain some of
the coefficients in the expansion

sec x = 1 +x2 + As x4 -I- WVxs -1 'g xs .h

12 We can be agreeably surprised by the simplicity of the operations which
determine the first three or four of the b's in the formulas

sin x x2 x4 xsx = 1
T!

+ i -
!
+ .. .

x
sin x

and yield the formula

= bo + b2x2 + b4x4 + b6x6 + .. .

1 x 7x3 31x5 127
cscx =x+6+360+15,120+604,800x7+

which is valid when 0 < IxI < 7.
13 Start with the power series expansion of e= and use it to obtain the formula

ezx 1 =
3+Si+ . . .

Find the formula obtained by equating the derit atives of the members of this
formula and putting x = 1 in the result. .4ns.:

1=21 {-3 4 +5 +

14 Determine the first six of the coefficients in the formula

11+x+x2 = ao+a1x+a2x2+aax3.+ .. .

Hint: Start by writing

1 = ao + a1x + a2x2 + asx3 + a4x4 +
+ asx + a1x2 + a2xa + a3x4 +

+ a0x2 + a1x3 + a,.x4 +

and obtaining the formulas in the first column

1=ao ao=1
0=ao+al a1=-1
0=ao+a1+a2 a2=0
0=a1+a2+as a3=1

which determine the answers in the second column.
15 Obtain the given coefficients and two more coefficients in the formula

1+x1 - x _- x2
=1+3x+4x2+7xa+ .. .
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Hint: Start by writing

1+2x
2 = ao + a1x + a2 + a3X3 +1-x-x

and

1 + 2x = ao + alx + a2x2 + a3x3 + aax4 +

-aox-aix2-aax3-a3x4-
-aox2-a1x3-aax4-

Then obtain the formulas in the first column

1 = ao
2=a1-ao
0 = a2- al -a0
0 = a3-a2-a1

Series

ao1
a13
a2 = 4

as = 7

which determine the answers in the second column.
16 The sequences

(1) 1, 1, 2, 3, 5, 8, 13, 21,
(2) 1, 3, 4, 7, 11, 18, 29, 47,

are examples of Fibonacci sequences, that is, sequences for which each element after
the first two is the sum of its two nearest predecessors. A little work with power
series reveals some surprising information about these famous sequences. Let
Fo, F1, F2, be a Fibonacci sequence. Letting g be defined by the first of
the formulas

(3) g(x) = Fo + Fix + Fax2 + Fax3 + 1.4x4 +
(4) xg(x) = Fox + F1x2 + Faxa + Fax4 +
(5) xsg(z) = Fox2 + Fix' + F2x4 +

tell how the next two are obtained. Subtract the last two formulas from the
first and use the result to show that

(6) g(x) =
Fo + (F1 - Fo)x
1 -x-x2

New and illuminating formulas are obtained by expressing g(x) as a sum of par-
tial fractions and expanding these fractions into power series. To simplify
writing, let

(7) J = 2- 1 = 0.618034, B = 2+ 1 = 1.618034.

Observe that r1B = 1. Show (the details are a bit onerous) that

(8)
1 B A-x-x2-[1-Bx+1

} fix]

and hence that, when IBxj < 1,

(9) 1 2 = 1 [Bnt1 + (-1)nAnt1]xn.1-x-x n=a5
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For the case in which Fo = Fl = 1 as in (1), the formulas (3) and (6) and (9)
show that

(10) F. = (Bn+l + (-1)n,1n+iI.

Show that, when n > 1,

F. B,+1 + (-1)nAn+' B + (-1)n1gn+1/Bn
(11) 7n-i Bn - (-1)n14n - 1 - (-1)n.4n;Bn

and hence that

(12) n1 = B =
+n Ftt 2

Remark: The function g in (3) is called the generating function of the sequence
Fo, Fl, F2, . The things which we have done are of interest in many branches
of mathematics and can be extended in many ways.

17 Suggest a few ways in which the expansion

2x2 3 4 7 8
sine x = ! - 24i I- 6!

6 6 - 281 } .. .

can be obtained. Remark: Perhaps the simplest way involves the identities

sine x = cos 2x = - (1
(2x)2 + (2x); (2x)8 + .. .l.

2! 4! 6!

18 Supposing that x > 1, obtain the formula

1tan-' x=2 x+3x3 5xb
7x7+- .. .

in two different ways. First, use the formula tan-' x = 7r/2 - tan-' (1/x) and
then use a modification of part (d) of Problem 2. Secondly, start with the
identity

((

ll2 3

t2= t 1+ = t[1 _ t + G)
+...1+

P
JJ

and integrate over the interval t ? x.
19 We often use the fact that the elementary expression for the left member

of the formula

f xu'du=logx+(s+1)(logx)2+(s+1)2(logx)3
(1)

l 1! 2! 3!

+ (s + 1)3(log x)' +
4!

in which x > 0, has one form when s 76 -1 and has another form when s
Prove that (1) is correct for each s. Hint: For the case in which s 0 -1,
evaluate the integral and expand the result into a series with the aid of the fact
that x-+' = e('+1) log z. Treat the case in which s = -1 separately.
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20 Without pretending to give a reasonable introduction to complex numbers,
we take a hasty look at some remarkable formulas that involve these numbers.
Let i, the so-called imaginary unit, be a number for which i2 = -1. It is possi-
ble to set forth rules for operating with complex numbers of the form x + iy,
where x and y are real. For example, if z = x + iy, then

z` = (x + iy)2 = x2 + 2ixy + i2y2 = (x2 - y22) + 2ixy.

A complex number x + iy for which x and y are real and y = 0 is identified
with the real number x, so the set of real numbers is a subset of the set of complex
numbers. The series in the right members of the formulas

21 T! T! 3-1 +
2 4 6

(2) cosz=l -2i+zl-i-6i+
zs zb z7

(3) sinz=z-3i+si-Zj+
are power series in z. With the agreement that a sequence xi + iyi, x2 + iy2i

of complex numbers converges to L, + iL2 if lim x = L, and lim y = L2,

it is possible to construct a theory of series of complex numbers. It can then be
shown that, for each z, the series in (1), (2), and (3) converge to complex num-
bers which are real only in special cases and which can be denoted by ez, cos z,
and sin z even when they are not real. Thus ez, cos z, and sin z are defined for
each complex z and the formulas (1), (2), (3) are valid for each z. If w is a com-
plex number, which may be real but is not necessarily so, we can put z = iw
in (1) to obtain

(4)

etw=1+0+(1 +0+ lw4 +0+...

+0+iw+0+3 ?+ 0+(25? + .. .

Since i2 = -1, is = -i, i' = 1, ib = i, ib = -1, , this formula can be
put in the form

( 4 6 3 b 7

Since (2) and (3) show that the series in parentheses converge to cos w and sin w,
we obtain the first of the four Euler formulas

(6) ei'° = cos w + i sin w
(7) e1'° =cosw-isinw

(8)

ei,° + ei,° eiD - e-iw
icos w = 2 s n w =

2i

Since (2) and (3) show that cos (-w) = cos w and sin (-w) sin w, we
can replace w by -w in (6) to obtain (7). Adding and subtracting (6) and (7)
enables us to solve for cos w and sin w to obtain (8). Thus we have proved the
four Euler formulas. These formulas are sometimes said to be the most remark-
able formulas in mathematics. They have very many important applications,
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and it is worthwhile to be able to start with a clean sheet of paper and write all
of the formulas needed to derive them.

21 If lanlltn < RI for each sufficiently great n, prove that Eax" converges
when ixi < 1/RI. Solution: When lanli"n < R1, we find that

lanll1nlxl < IxRil, Ia"x"I < IxR,I".

The hypothesis that ix! < 1/R, implies that ixR,i < 1, so ZixRii" < oo and con-
vergence of Eanxn follows from the comparison test.

22 If R2 > 0 and lanilt" k R2 for an infinite set of values of n, prove that
Ea"x" diverges when jxI > 1/R2. Solution: When Ianll/" >_ R2, we find that

lanil/nixl = R2IxI, Ianx"i (R2ixi)".

The hypothesis that jxi > 1/R2 implies that R2ixI > 1. Hence la"x"i >_ 1 for
an infinite set of values of n. Thus it cannot be true that

lim anx" = 0,
n--

and therefore Xanx" must be divergent.
23 Prove the following famous theorem, which is known as the Abel power

series theorem. If the series in

(1) s=ao+a,.+a2+aa+...
converges to s, then the series in

(2) f(r) = ao + air + a2r2 + aara +
converges when 0 < r < 1 and

(3) lim f(r) = s.
r-41-

Solution: Let s, = ao + a, + + an, so that

(4) lim S. = s.
n-. w

There must be a constant M such that Iaki <- M and Iskl <_ M for each k. When
Iri < 1, the series in (2) and the series in

(5) f(r) = so + (Si - so)r + (s2 - si)r2 + (S3 - S2)ra +

are therefore both convergent and they both converge to the same numberf(r)
because so = ao, s, - so = ai, s2 - s, = al, . Because the separate series
are both convergent, it follows from (5) that

(6) f(r) _ (So + SIT + S2r2 + .
. -) - (0 + sor + sir' +. . . .)

and hence that

(7) f(T) _ (1 - T) (SO + SIT + .c2T2 + . .).

But

(8) s = (1 - r)(s + Sr + sr2 + ...)

and hence

(9) f(T) - s = (1 - r) L.l (sk - s)T.
k-0
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Let e > 0. Choose an integer N such that Isk - s4 < e/2 when n > N
N

let C = I Isk - s4. Then, when 0 < r < 1,
k=0

(10) Jf (r) - sl < (1 - r)C + (1 - r) I SiI- sl rk
k=N+1

< (1 - r)C + (1 - r) rk

<(1-r)C+
k=N+1

and

If we choose S such that (1 - r)C < e/2 when 1 - S < r < 1, we will have

(11) If(r)-sI<e (1-S<r<1).
This gives (3) and the theorem is proved.

24 Tell why the Abel theorem of the preceding problem implies that

m
(x22+3242+...1=1_22+3242+

and hence that part (g) of Problem 2 implies that

('1 log (t i t) dt = 1 - 22 + 32 - 42 + .. .
0

25 Some of the most honorable parts of mathematics involve connections
between the Riemann zeta function and prime numbers. Deriving a basic
formula is a good exercise for us. Let pi, P2, p8, denote in order the prime
numbers 2, 3, 5, 7, 11, 13, . . Euclid proved that the set of primes is infinite.
We use the fundamental theorem of arithmetic which says that if is is an integer
for which n > I and if pk is the greatest prime factor of is, then is is uniquely
representable in the form

n = pla,p2a:... pka,,

where the exponents X1, a2, , Xk are nonnegative integers. For example,
504 = 21325171. Show that, when k is a positive integer and s > 1,

1)(

1 - 2

(2) 1 +3,"+9,+27,+

(3) I1
1 - 5

(4) i 1 + + + +'1 - - pk Pk Pa

pk
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Making wholesale use of the rule of Problem 8 for multiplication of series, show
that

(5)
1 1 1 °° * 1

1- 1 1-
1 1- 1

n_1 n

Pt P2 Pk

where the star on the sigma means that some of the terms for which is >
are omitted from the series. Prove the formula

(6) * 1 1 snet na< =S()
n=1 n=1 n=1

71a

and use it to prove that

(7)

Pk

lim 1 1 1 1 1 1 ... 1 1= (s)"°1--1--1-- 1--
Ps P2 Pa Pk

Use (5) to obtain the inequality

(8) Pi pi pk >
A P82-1 pk-1- Ca n.

n=1

and show that taking the limit as s -> 1 + gives the inequality

(9) p1 P2 Pk y + log- 1 P2 - 1 pk - 1 = S Pk

where y is the Euler constant. Show that neglecting the 'y and taking logarithms
gives

(10) 1 log (1 + 1 > log log p,,.
k1 Pk -

Show that x > log (1 + x) when x > 0 and hence that

jn'
1 > log log4 pk-1 Pri

and

(12) > 1 log log pn.
k1 Pk

Show finally that

(13) 1 + 2 + 3 + ... °o.

26 The theory of functions of a complex variable provides an elegant proof
of the fact that if

(1) f(x) = co + ci(x - a) + c2(x - a)2 + cs(x - a)2 +

when IxI < R, then

(2) f'(x) = c1 + 2c2(x - a) + 3cs(x - a)2 + .
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when jxj < R. Persons willing to go fishing even when no fish are caught can
try to prove the result with rudimentary equipment. To simplify writing,
let a = 0. Then, when txol < R and Ix( < R,

n

f(x) Ckxk = Jim I Ckxk,
k=0 n-- k=0

m n

f(xo) = ckxo = lim ckxo.
k=0 n-"O k=0

so

f(x') - f(xo) _
n

xlim ck(xx - xo)
n-+GO k=1

and

n
f(x) - f(xo) = lim C c1

+
ck(xk-' + xk-2xo + . . . + x0

X - xo n-- k=2
I

If we can prove that the limits exist, we can take limits as x approaches xo to
obtain

n

f'(xo) = lim lim 1c, + ck(xk-1 + xk-2xo + . .. + xo-1) .
x-.xo n-- - k=2

If we can prove that the same result is obtained by interchanging the order in
which limits are taken, we obtain

n

f'(xo) = lim lim I C1 + I Ck(xk-' + xk-2xo + + 40-1)
n-+m x--.x0 k-2

and hence
m

f'(xo) = lim Icl + kckxo-11 = kckxo-1.
n-- k=2 k=1

Our fishing expedition can be ended with the remark that we ran into questions
involving iterated limits and change of order of limits that swamped us.

12.5 Taylor formulas with remainders In Section 12.4, we started
with given convergent power series and found that these series are the
Taylor series of the functions to which they converge. In this section
we start with a given function f and study the general aspects and further
applications of a method we have previously employed in special cases
to obtain power series expansions of ex, cos x, and sin x. We suppose
that a and x are confined to an interval over which f has all of the con-
tinuous derivatives we want to use. Then

(12.51) f(x) = f(a) + fax f' (t) dt.
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Integrating by parts with

u=f'(t) dv=dt
du = f"(t) dt, v = - (x - t)

gives

or

f(x) = f(a) + [-f'(t)(x - t)la -+- I Zf"(t) (x 1 t)
dt

(12.52) f(x) = f(a) + la (x - a) +
J

f" (t) (x 1 t) dt.
aa

Another integration by parts with

u = f' (t) dv = (x 1 t) dt

du = f" (t) dt, v = - (x - t) 2
2!

gives

f(x) = f(a) (x - a) (x - a)2 + / z f( )(t) (x 2i t) dt.

One more integration by parts gives the result of putting n = 3 in the
formula

(12.53) f(x) = f(a) + -i-a) (x - a) + f-2 a) (x - a)2

(") a
+ . . . + f

n
(x - a)" + Rn(x),

where

t)^ dt,(12.54) Rn(x) = 1 f

and further integrations by parts give the results when n = 4, 5, 6, .

The formula (12.53) is a Taylor formula with remainder R,(x). The right
member of (12.54) is the integral form of the remainder. In some cases,
(12.54) and other remainder formulas can be used to determine values of
x for which

(12.55) lim R (x) = 0.
n-»

For such values of x the Taylor formula

(12.56) f(x) = f(a) (x - a) +f' (a) (x - a)2 +
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is valid. The right member of (12.56) is called the Taylor expansion of f
in powers of (x - a). Problem 5 gives an example of a function f whose
Taylor expansion in powers of x exists and converges for each x to a
number which differs from f(x) when x 5,5 0. For this and other reasons,
it is sometimes necessary to use (12.54) and other remainder formulas
to obtain numerical estimates of !Rn(x)I.

The fact that (x - t)n is either always positive or always negative
when t lies between a and x enables us to use (12.54) to obtain other
formulas for Rn(x) that are sometimes, but by no means always, more
easily used than (12.54) itself. The simplest and most widely used of
these formulas is obtained by the observation that the value of Rn(x)
lies between the numbers obtained by replacing the factor f(n+l)(t) by
its minimum and maximum values over the interval from a to x. Hence
the intermediate-value theorem implies existence of a number x* between
a and x such that

Rn(x) = 1 t)n dtn.
and hence

(12.51) Rn(x) =
f(n+l)(x*)

(x - a)n+l(n + 1)!

This is the Lagrange form of the remainder.
The binomial formula

(12.58) (1 + x)° = 1 + x + q(q - 1) x2 + q(q - 1) (q - 2) x3
2! 3!

+q(q-1)(q-2)(q-3)x4+q(q-1)(q-2)(q-3)(q-4)x6
4! 5!

in which the exponent q is not necessarily an integer and IxI < 1, is used
so often that many persons find it worthwhile to remember the rule by
which the coefficients can be written. To prove the formula, we let
f(x) = (1 + x)4 and calculate the derivatives

f'(x) = q(1 + x)4-1, f'(x) = q(q - 1)(1 + x)-z,f"(x) = q(q - 1)(q - 2)(1 + x)¢"3,
fcn)(x) = q(q - 1)(q - 2) ... (q - n + 1)(1 + x)4-n.

Since f(0) = 1, f'(0) = q, f"(0) = q(q - 1), , the series in (12.58)
is indeed the Taylor expansion of f in powers of x. To prove that the
series converges when IxI < 1, we can apply the ratio test, but to prove
that the series converges to (1 + x)Q, we must show that lim Rn(x) = 0.
While we could (without being completely unfashionable) find that the
Lagrange form of the remainder will work when 0 < x < 1 and that
another special form will work when -1 < x < 0, we shun these things
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and use the integral form (12.54) to obtain

(12.581) R..(x) = q(q - 1)(q - 2) . . . (q - n)
n!

fx

(1 + t)4-1 (---:)' A

The function 0 for which 4,(t) = (x - t)/(1 + tt) is monotone over the
interval from 0 to x and O(x) = 0, so j4(t)( must attain its maximum
over the interval from 0 to x when t = 0. This maximum is therefore
jxi. Hence

(12.582) IR,.(x)l < jq(q - 1)(q - 2) . (q - n)l

1xI" fox (1 + )q-1 dt

In case q is a nonnegative integer or x = 0, it is easy to see that

(12.583) lim R (x) = 0,

because Rn(x) = 0 for each sufficiently great n. When q is not a non-
negative integer and 0 < jxj < 1, an application of the ratio test gives
(12.583). This establishes the binomial formula (12.58) for the case
in which lxj < 1.

Problems 12.59
1 With the aid of Taylor formulas with remainders, obtain the expansions

off in powers of x - a when

(a) f (x) = ex, a = 0 (b) f (x) = e=, a = 1

(c) f(x) = sin x, a = 0 (d) f(x) = sin x, a =

(e) f(x) = cos x, a = 0 (f) f(x)=cosx,a=

2 Supposing that jxi < 1, write two more terms in each series appearing in
the calculations

sin-' x = fox 11-
t?

dt

i i s

(1-x)-3j=1+ (-x)+i
1-3=1r+ix+2.4xa+ .. .

1 1-3
t4+ +sin-' xOx [1+Zt2+2.4

sin-,x=x+213xs+.2145xs+214.657x7+ .. .



636

3 Write two more terms of each series appearing in the calculations

rr/2
1 dBK -

J 0 1/1 - k2 sin2 B

+ (-x) .+.

1
2-)

=1+Zx+2-4x2+ .. .

K foA/2[ 1+ 2k2sin26+2-4k4sin20+ .l d6

in which 0 < k < 1. Use of the formula

Series

Ix/2 1-3-5 (2p - 1)a
1,2,3,sin.p 0 dO = 2.4.6 (2p) 2

= ,2,3, ...)

then gives

111 *3' z 2-5 2

C1 +2
22

k2+22.42 k4+22.42.62k6+
. . .l.

4 Supposing that 0 < k < 1, let

E= r./21/1 -k2sin2BdO
Jo

and modify the work of the preceding problem to obtain

- 1 - 12.3 - 12.32.5 6-
E=

(1
22

k2

22.42

k'
22.42.62 k

It is not easy to know everything, and we may be unable to say whether our
formula for E is valid when k = 1. Show that if it is, then

1 12.3 12.32.5 12.32.52.7 2
22 + 22-4z + 22.42.62 22.42.62.82 + = 1 -

5 While this may not be an appropriate time to enter into details of proofs,
the function f for which f(0) = 0 and

f(x) = e u== (x 0)

has continuous derivatives of all orders over the whole infinite interval - m <
x < oo. Moreover, f«>(0) = 0 for each k = 1, 2, 3, . In this case the
Taylor formula (12.53) with a = 0 becomes

f(x) = 0+0+
The Taylor expansion of f in powers of x is therefore the series

0+0+0+ ...
which converges for each x but converges to f (x) only when x = 0.
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6 Little things like the formula

(1) f(1) = f(0) (1 - 0) + LEO) (1 - 0)2
f(n)(0) f(n+I)(1*

-Fl+ ... +
n(

(1 -0)n+(n+1)1(1 -0)n

and the capacitors that appear in electrical networks have surprising applications.
As we shall see, simple applications of (1) give Taylor formulas for functions of
"several variables," "several" meaning more than one. Extensions to functions
of more variables being easily made, we suppose that G is a function of two vari-
ables x and y. We suppose that (xo,yo) and (x,y) are interior points of some
convex region, a circular disk, for example, over which C is continuous and has
all of the continuous partial derivatives we want to use. Supposing finally that
0<t<_1,let
(2) f(t) = G(xo + t(x - x0), yo + t(y - yo)).

Then f(1) = G(x,y) and f (0) = G(xo,yo) and we can start production of the Taylor
formulas. Differentiating (2) with the aid of the chain rule of Theorem 11.23
gives

(3) f(t) = G=(xo + t(x - xo), yo + t(y - Yo))(x - xo)
+G,(xo + t(x - xo), yo + t(Y - yo))(Y - Yo).

We can use (1) with n = 0 and obtain the primitive but nevertheless useful

Taylor formula

(4) G(x,y) = G(xo,yo) +Gz(x*,Y*)(x - xo) + G,,(x*,Y*) (Y - Yo),

where

(5) x* = x0 + t*(x - xo), Y* = yo + t*(Y - YO).

To prepare for more elaborate Taylor formulas, we put t = 0 in (3) to obtain

(6) f'(0) = G.(xo,Yo)(x - xo) +Gv(xo,Yo)(Y - yo)

and differentiate (3) with the aid of the chain rule to obtain

(7) f"(t) = G::(xo + t(x - x0), yo + t(y - yo))(x - x0)2

+ G=v(xo + t(x - xo), yo + t(y - yo))(x - xo)(Y - yo)

+Gxv(xo + t(x - xo), Yo + t(Y - Yo))(Y - Yo)(x - xo)

+Gvv(xo + t(x - xo), yo + t(y - yo))(y - yo)2.

We now have the material required to use (1) with n = I. It is easy to continue
the procedure, but the expressions we write will become more and more pon-

derous unless we introduce simplifying notation. We begin by abbreviating

(3) to the form

(8) f' (t) = C (x - xo) ax + (Y _ Yo) yJ G

and observing that, on account of the equality of the mixed partial derivatives,
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(7) can be put in the form

G(9) fck)(t) = [(x - xo) a + (Y - yo) ay]

when k = 2. It turns out that Taylor formulas with remainders are obtained
by substituting (9) into (1), the partial derivatives being evaluated at (xo,yo)
when k 5 n and at (x*,y*) when k = n + 1.

7 LetG be a function having continuous partial derivatives of first and second
orders over a neighborhood of (xo,yo) in which (x,y) is supposed to lie. The
Taylor formula of Problem 6 which terminates with second derivatives then takes
the form

(1) G(x,Y) = G(xo,Yo) + G.(xo,Yo)(x - xo) + G.(xo,yo)(Y - Yo)
-1- '(G:=(x*,Y*)(x - xo)2 + 2Gzv(x*,Y*)(x - xo)(y - yo) +GYU(x*,Y*)(Y - Yo)2I,

where x* lies between xo and x and y* lies between yo and y except that x* = xo
when x = xo and y* = yo when y = yo. This formula is useful. For example,
it provides an easy way of estimating the difference between G(x,y) and G(xo,yo)
that is especially useful when Ix - xol and Iy - yol are so small that the last term
is negligible in comparison to the two preceding terms. In particular, (1) gives
us a chance to estimate the magnitude of the error involved when the number
dz defined by

(2) dz = G.(xo,Yo) (x - xo) + G, (xo,yo) (y - Yo)

is taken as an approximation to the number Az defined by

(3) As = G(x,y) - G(xo,yo)

It is quite possible to spend a few days solving problems involving these ideas,
and the investment of time might even be a reasonably good one. We invest a
few minutes to study extrema (local and global minima and maxima) of G. If
G(x,y) has an extremum at (xo,yo), then G(x,yo) must have an extremum at xo
and hence G,(xo,yo) = 0. Similarly, if G(x,y) has an extremum at (xo,yo), then
G(xo,y) must have an extremum at yo and hence G cannot
have an extremum at (xo,yo) unless

(4) G.(xo,yo) = G5(xo,Yo) = 0.

To investigate the question whether G has an extremum at a point (xo,yo) for
which (4) holds, we put (1) in the form

(5) G(x,y) - G(xo,yo) _ [(1 + El)h2 + 2(B + e2)hk + (C + Es)k2],

where

(6) -4 = G::(xo,yo), B = G:v(xo,Yo), C = Gvv(xo,Yo),

h = x - xo, k = y - yo, and the numbers el, C2i es depend upon h and k and are
small when jhI and Iki are small. In case .4 0 0 we can, when Jhj and Jkl are
small enough to make .4 + El s 0, put (5) in the form

(7) G(x,y) - G(xo,yo) = 2(1111-
El)

] ((A + El)h + (B + E2)k]2

1+ [(A' + E1)(C + ES) - (B + 2)2]k2}.
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In case AC - B2 > 0, the quantity in braces will be nonnegative whenever jhi
and Jkl are small enough to make

(8) (14 + EI)(C + E3) - (B + E2)2 > 0.

It follows that if (4) holds and

(9) Gxx(xo,yo) > 0, Gxx(xo,Yo)Gyy(xo,yo) - [Gx.y(xo,yo)]2 > 0,

then G must have a minimum at (xo,yo) because in this case .4 + El must have the
same sign as .4 and the right member of (7) must be nonnegative when jhj and
iki are sufficiently small. Similarly if (4) holds and

(10) Gxx(xo,Yo) < 0, Gxx(xo,Yo)Gyy(xo,Yo) - [Gxy(xo,Yo)]2 > 0,

then G must have a maximum at (xo,yo) because in this case the right member of
(7) must be nonpositive when jhj and Jki are sufficiently small. In case (4)
holds and 4C - B2 < 0, that is,

(11) G=x(xo,yo)G."(xo,Yo) - [Gxv(x0,Y0)J2 < 0,

the function G cannot have an extremum at (xo,yo). We omit proof of this fact,
and we also omit discussion of the way in which Taylor formulas having more
terms can (when the required derivatives exist) be used to discuss cases in which
.4C-B2=0.

8 Supposing that a 0 and b2 - 4ac 0 0, find the extrema of the function
G for which

(1) G(x,y) = axe + bxy + cy2.

Remark: When solving problems of this nature, it is usually safe to set

z = axe + bxy + cy2

and use the curly dee notation for partial derivatives. Outline of solution: The

system of equations ax = 0, az = 0 is satisfied only when x = y = 0. The
ay

formulas

(2)
8a2Z

x2 = 2a,
ax2 aye - Cay 8X = 4ac - b2

and the italicized statements of Problem 7 show that z has a minimum at (0,0)
if a > 0 and 4ac - b2 > 0, that z has a maximum at (0,0) if a < 0 and 4ac - bo
> 0, and that z has neither a maximum nor a minimum at (0,0) if 4ac - b"- < 0.
Remark: The examples

(3) z=x2+y2, z= -x2-y2, z=x2-Y2

illustrate the three phenomena. The examples

(4) z = 0, z = (2x - y)2

illustrate the cases excluded from this problem by the condition b2 - 4ac s 0.

9 Supposing that a 0 0, determine the points (x,y), if any, at which the
function G defined by

G(x,y) = x3 - 3axy + y3
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takes extreme values. 4ns.: The critical points where the first-order partial
derivatives both vanish are (0,0) and (a,a). At (0,0), G has neither a maximum
nor a minimum. At (a,a), G has a minimum if a > 0 and a maximum if a < 0
Moreover, G(a,a) = -a3.

10 Assuming that

G(x,y) = ao + bix + b,y + c1x2 + C2xy + C3y2
+ dix3 + d2x2y + d3xy' + d4x3 + e1x4 +

over some neighborhood of the origin, and that the series can be differentiated
term rise with respect to x and y as often as desired, determine enough coefficients
to verify three or four terms in the expansion

G(x,y) = G(0,0) + [Gx(0,0)x + Gv(0,0)y]

+ 2! [Gxx(0,0)x2 + 2Gxv(0,0)xy + Gvv(0,0)Y21

1
+ -! [Gxx:(0,0)x3 + 3G.xv(0,0)x'y + 3Gxvv(0,0)xy2 + Gvvv(0,0)Y3] + .. .

11 Suggest two or more ways to obtain the power series in x and y which
converges to ex+v and use each method to obtain a few of the terms.

12.6 Euler-Maclaurin summation formulasf As we shall see, we
need only one very simple idea to obtain some remarkably useful and
important formulas involving the Bernoulli functions and numbers.
While the index reveals locations of more information about Bernoulli
functions and numbers, we start with the facts that

(12.611) Bo(x) = 1
(12.612) Bn(x) = (n = 1,2,3, )

(12.613) foI dx = 0 (n = 1,2,3,
(12.614) Bn(x + 1) = (n = 0,1,2,

over the interval - < x < co, except that (12.612) fails to hold when
n is 1 or 2 and x is an integer. The function Bj(x) is the saw-tooth func-
tion having the graph shown in Figure 12.62. The Bernoulli numbers

Figure 12.62

f This section can be omitted. It is not claimed that the section is easy. It is not
claimed that the material can be thoroughly digested in a day or a week or a year. It is,
however, claimed that students of calculus should see a substantial and useful application
of calculus. Even though we build only more modest structures in examinations in this
course, we should see at least one cathedral.
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B. are defined by the formulas

(12.63) B = n!B (0) (n > 2)

and

(12.631) Bo=1,B1= Be 0,
Bs= ,B7=0,B3=- ,B9=0,Bio= ,

Without yet knowing what is going to happen, let p and q be integers
and let f be continuous and have all of the derivatives we want to use
over the interval p < x < q. Letting k be an integer for which p 5 k
< q, we start with the simple idea that

(12.64)
fk1 f(x) dx = fk1 f(x)Bo(x)

dx

and that we can modify the right side by integrating by parts with the
aid of (12.612). However, since B1(x) is discontinuous at k and k + 1,
we must be careful. Accordingly, we put (12.64) in the form

(12.65)
fk1 f(x) dx = lim f k+, ' f(x)Bo(x) dx.o+

Setting

gives

u = f(x) dv = Bo(x) dx
du = f'(x) dx, v = Bj(x)

(12.651)
rkk+l f(x) dx = lim jf(x)Bi(x)]k+f f

f
k+ 1-e

k+E f (x)Bi(x) dx

and hence

(12.652) f k+1 f(x) dx =
f (k) + f(k + 1) - k+1 f (x)Bi(x)

dx.f
k

Adding the members of (12.652) for integer values of k for which p <
k < q - 1 gives the more useful identity

(12.653) f 4f(x) dx = Q f(k) - f(p)
2

f(q) - ff'(x)B(x) dx.
p kp

Transposing gives the basic Euler-Maclaurin formula

(12.66) I f(k) = f 4f(x) dx {-f(p) 2
f(q) +

Jvgf'(x)BI(x) dx

k=p p
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which is used to estimate sums. More Euler-Maclaurin formulas

(12.661) f(k) = f f(x) dx + f(P)
2

f(q) +f (g) 12f'(P)
k=p p

- r f"(x)B2(x) dx,

(12.662) Zf(k) f 4f(x) dx -1- f(P)

2

f(g) + f'(q) 12f'(P)

p

+ f 'f "(x)B3(x) dx,
p

etcetera, are easily obtained by further integrations by parts. The
formula obtained after m integrations by parts is

f12
AX) dx +f(P) +f(q)(12.663) f(k) =kp 2

+ I [fli-1) (q) - f(t-I)(P) + (-1)m+1 fOf(m) (x ')Bm(x) dx.

This formula reduces to (12.66), (12.661), and (12.662) when in is 1, 2,
and 3. We must observe that B, = 0 when j is odd and j > 3; otherwise,
some of the signs in (12.663) would be wrong.

In some important applications, f(-)(x) -> 0 and as x -+ oo and the
integral in

(12.664) CD f(P) - I fu-')(P) B + (-1)m+, f
°°

f(m)(x)Bm(x) dx
=2 j p

exists when in is sufficiently great, say m >- mo > 1. In such cases,
we can define the constant Cp by the formula (12.664), the right member
being independent of m because integration by parts shows that it is
unchanged when m is replaced by m + 1. Subtracting (12.664) from
(12.663) gives the formula

(12.665) I f(k) = CP + f 4f(x) dx + f(2 q)

+
E

f f(m) (x)Bm(x) dx.

Solving this formula for Cp gives the formula

(12.666) Cp = f(k) - f 4f(x) dx -f(2)

(q)
B'

j-2
(-1)m 1 f(m)(x)Bm(x) dx,

4

which is sometimes used to calculate approximations to Cp.
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In many practical applications, the values of the integrals

(12.67) f 2 f (m) (x)Bm(x) dx, f,' f (m) (x)B,, (x) dx

are not known, but this makes no difference because their algebraic signs
can be determined and we discover that numbers we want to calculate
lie between known numbers that are extremely close together. For
example, the natures of B3(x) and Bs(x) are such that if f(3)(x) and f(5)(x)
are positive and decreasing, then the integrals in (12.67) are positive
when m = 3 and are negative when m = S.

The first problems at the end of this section give some of the simple
applications of the Euler-Maclaurin summation formulas. In Problem
4 we shall derive some very important Stirling formulas. In Problem 5
we shall give an elementary proof of the fact that if co, < W2 and

(12.68) Pn(W1,W2) =
1 1 n!

2" k! (n - k) 1
2

then

1(12.681) lim Pn(Wl,W2) = x11'2 dx.
n- w 2a

fe
,

This and related formulas are very important in probability and statistics.
Persons who have or will have interest in these matters are well advised
to complete this course and proceed to study an authoritative textbook
by Fellert which many people read just for the fun of it.

Problems 12.69
1 Show that putting p = 0, q = n, and f (x) = x2 in (12.662) gives the

formula
k2_n(n-h1)(2n+1)

7c-1 6

2 Supposing that s is a positive integer, show that putting p = 0, q = n,
m = s, and f(x) = x8 in (12.663) gives the formula

k8 =
?Z8+1

+
n8

+ s(s - 1) (s - 2) . . . (s - j + 2)ne-,+1 $i.

k-1 s + 1 2 =2

Remark: The result can be put in the neater form

1

I ks = ns + + 1 1 1'z$+l-,B,

k-1 s+110( 9 I
t William Feller, "An Introduction to Probability Theory and its Applications," John

Wiley & Sons, Inc., New York, 1957.

n a
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involving binomial coefficients. For example, putting s = 3 gives

n

k3 = n3 *[n4(1) + 4n3(-C + 6n2(+) + 4n(0)],
k=1

so

Putting s = 4 gives

so

n(n+1)(2n+1)(3t2+3n-1)
30

Some people spend huge amounts of time working out these formulas by other
methods.

3 Show that setting p = 1, q = n, f(x) = x-1, m = 3, and C1 = y in (12.665)
gives the formula

(1)

4 k3 = n2(n + 1)2

k1 4

n

0 = n4 + 3[ns + 5n4(- ) + 10n3(g) + 10n2(0) +
k=1

V - n(6n4 + 15n3 + iOn2 - 1)

k=1
30

Ik=logn+y+2n-12n2+6
k l

where y is the Euler constant. Show that setting p = 1, q = 10, f(x) = z 1,
and C1 = y in (12.666) gives the formula

B,-J10
X I

B,, x)dx.(2) y kIlk - log 10- + 4 10 m+17'2 1

Remark: Knowing that

log 10 = 2.30258 50929 94046

it is not difficult to push a pencil through the calculations by which (2) is used
with m = 10 to obtain the first 10 decimal places in

y = 0.57721 56649 01532 86061

When y is known, (1) enables us to make very close estimates of the sum of
10 or more terms of the harmonic series.

4 Supposing that z > -1, show that putting p = 1, q = n, and f(x)
log (z + x) in (12.663) gives, when m z 2,

n

(1) E log(z+k)=(z+n+y)log(z+n)-(z+-1T)log(z+1)-n+1
k-1

+ m
B,

L

1 - 1 +
I

n (m - 1)!Bm(x)
dx.

,1-z (9 - 1)1 (z - (z 1),-1 1 (z + x)"
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Remark: We proceed to show how this formula can be used to derive % ery impor-
tant formulas involving factorials. Putting z = 0 in (1) gives

(2) log n! _ (n + V) log n - n + 1

+
B,

)9 L 1 1
- 1 + j (m 1)!Bm(x)

dx,2 (J - 1 n - 1 x

One of the truly great mathematical discoveries is the fact that (2) can be
improved with the aid of the formula

(3) lim (2n)! / -
n.-.m 22'a(n!)2 - li

see Problems 9.59, Problem 6, equation (13). From (3) we obtain

(4) Jim {log (2n) ! + log - 2n log 2 - 2 log n! } = 0.
n-' m

In this formula we substitute the expression for log n! given in (2) and the expres-
sion for log (2n)! obtained by replacing n by 2n in (2). The result should not
overwhelm us, because we can overwhelm it. Many of the terms cancel out, the
remaining ones have limits, and (4) reduces to

(5) log -1+ B, - ( (m-1)!Bm(x)dx=0.
,=2(9-1).1 1

X.

Since

(6) ('n (m - 1)!Bm(x)
dx

1)!Bm(x)
dx

,J 1 xm 11 xm

1)!Bm(x)
dx

f 1)1Bm(x)
-fn x'" -JO (x+n)m'

adding the left side of (5) to the right side of (2) gives the remarkable Stirling
formula

(7) log n! = log '/2a + (n + 4) log n - n
m B, 1

I
(m - 1)!Bm(x)

+, 2 U - 1)9 n'-1-1 0 (n + x)m dx.

To produce a Stirling formula applying to factorials of noninteger numbers, we
suppose that z > -1 and use the definition

(S)
t = ninzlimz. -

ri . (z + 1) (z + 2) ... (z + n)'

which appeared in Section 3.3, Problem 11. This is equivalent to

(9)
n

log z! =
Jim

[log n! + z log n - E log (z + k)].
n--.- ka1
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In this formula we substitute the expression for log n! given in (7) and the expres-
sion for the last sum given in (1). With the aid of the fact that

(10) lim (z + n + Y')[log (z + n) - log n] = z,

we find that

(11) log z! = log V + (z +') log (z + 1) - (z + 1)
+ M

I Bi
1

j=2 (9 - 1)] (z + 1)i-i - J1

Co (m - 1)!Bm(x)
dx.

(Z+x)m

In case z > 0, we can add log (z + 1) to both sides of (11) and then replace z

by z - 1 to obtain the alternative formula

(12) log z! = log \/2ir + (z + I) log z - z
+ m Bi 1 Co (m - 1)!Bm(x)

5= (1 - 1)9 zl-1 - ./0 (Z + x)m

which reduces to (7) when z = n. The derivation of Stirling formulas is not
yet complete. To finish the task, we must study the theory of analytic functions
of a complex variable. It will then be possible to observe that the members of
(12) are analytic over the set consisting of complex numbers which are neither
0 nor negative. The principle of analytic extension then implies that the mem-
bers of (12) are equal for each z which is neither 0 nor negative. We conclude
with some remarks about (12). Let

Bi 1 (m - 1)!Bm(x)
(13) E(z) _ -12 & - 1)j zi1 o (z + x)m dx.

We can then put (12) in the forms

(14) log z! = log 2zu + log zz - z + E(z)

and

(15) z! = /2zxr zze =eacz>.

The formulas (12) and (14) are Stirling formulas for log z!, and (15) is the Stirling
formula for z!. In many applications, E(z) is so near 0 that it can be neglected.
Information about E(z) is obtained from (13). When n = 1, the first sum in the
right member of (13) contains no terms. Hence putting m = 1 in (13) gives

(16) E(z)
(Co Bo(x)

dx.o z+x
Putting m = 3 and 5 and 7 in (13) gives

(17)
B

dE(Z) = - I ), x12z )ao z x(

(18)
1 6B5(x)) _ 1E(

m

-z
12z 360z'-Io (z+x)5dx

(19)
(I 1 1 120B7(x)E()z dx,- 12z 360za + 1260z5 - o (z + x),
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and more formulas can be produced by giving greater values to m. While these
formulas have important applications to cases in which z is a complex number,
we confine our attention to the case in which z is real and z > 0. When p is a
positive integer, the function (z + x)_1' is then positive and decreasing over the
infinite interval x Z 0. Hence properties of the Bernoulli functions (those
revealed in a problem at the end of Section 5.3) enable us to show that the integrals
in (16), (17), (18), (19) are respectively negative, positive, negative, positive.
Hence

(20) E(z) > 0, E(z) <
122' E(z) > 122 36023'

and

(21) E(z) <
122 360-3 + 1260z5

Even when z is as small as 2 or 3, this gives remarkably precise information about
E(z). In very many applications of these things, z is a positive integer n and
(15) is put in the form

(22) n! = 2nr n"e-"een112n,

where 0 < On < 1 and 0n is near 1 whenever n is large. In fact, putting E(z)
E(n) = 0n/12n in (20) and (21) shows that

(23)
1 30n2

< 0n < 1
30n2 + 105n4

Thus On is quite close to 1 even when n = 1.
5 When n is a positive integer, we can put x = y = 1 in the binomial formula

(1) (x + y)n = kIo k (nn! k)!
xn-kyk

k40
(k) xn-kyk

to obtain the formula

(2)
4 -fn

k)=I.

To obtain more information about the terms in this sum, particularly when k
is roughly n/2, we start with the formula

(3) -n log 2 + log n! - log k! - log (n - k)!.log 2" (k)
=

The last three terms can be calculated from the Stirling formula

(4) log n! = log 2r + (n + i) log n - n + En

and the results of replacing is by k and by (n - k) in it. The error term En,
which can be approximated very closely with the aid of formula (13) of the
preceding problem, is about 1/12n even when is is quite small. Except when is
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and k are quite small, it is advisable to substitute in (3) and simplify the result
before making numerical calculations. Thus we can put (3) in the form

1 k)
(5) log 2n (k/ = log 2 - `k +

1

1) log
2k
n

-(n-k+1)log2(1 )+En.k,

where En,k = En - Ek - En_k Much progress in probability and statistics is
based upon the idea that when k is near n/2, we can represent it in the form

(6) k=2+xv,

where X is a number that depends upon k and n. When (6) holds, we find that

(7)
2k =1+2(1-n)=1-

and we can put (5) in the form

(8) log 2n (k) = log
nar

and hence

(9)

-(?+a-v/,-
+1)log(1+

-(2-A V1- +Y1) log 1
2X

log Zn (k) =log
n

2 1 log (1 4n /
-Ay7GLlog(1+2X-)-log(1 2

+E_,k.

Vn

Now let a be a positive number and suppose that k is close enough to n/2 to
make

(10) 2-a'<k2 +X /n52+aVn.
Then Jai < a and we will have

4X2
<

n

2X = <1
n

provided n is sufficiently great, say n > na. It can be shown that there is a
constant MI such that, when jx( < I,

(12)

(13) log (1 + x) - log (1 - x) = 2x + F2(x)lxIa,
log (1 - x) = -x + FI(x)Ix12

where JFI(x)l 9 MI and JF2(x)l MI. These facts and (9) yield the conclusion
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that there are constants M and Dnx such that IDnxj 5 M and

(14) log Zn (k/ = log In - 2X2 + Dnx

This shows that if (10) and (11) hold, then

(15) eMln e 2 ' <_ 1 (nl < euln' 2 e 2a s.na 2n\k) Vnr

Suppose now that xi and x2 are two numbers, not necessarily positiNe, for %hich
rl < x2 and suppose that a has been chosen such that Jxj < a and Jx2j < a
Let

(16) Pn(x1,x2) =

Since lira e -Min = I and lim eMln = 1, it follows from (15) that

(17)

n- -

lira P,(x,,xs) = lim
n-, n-,

. n

n- -

provided the limit on the right exists. In (17) and elsewhere, a star on a sigma
indicates that the range of summation is the same as that in (16). For present
purposes, let the number X in (6), (15), and (17) be denoted by X, , so that

k=Z+XxV .

Then )Ln.k - Xn.x_1 = 1//, and consequently

(18) 11
nIr G it

The right member of (18) is, except for negligible discrepancies at the ends of the
interval x, 5 x < X2, a Riemann sum which converges to the right member of
the formula

(19) lim* e-244- = r x: e2:=
dz.

n-. m v na 7C

Therefore, (19) holds. From (19), (17), and (16) we obtain the formula

(20) I
sLsaj+XSV/

J z,
` g:= dx.

2n ( k 4'r

In order to compare this result with other statistical results, we replace x, and
x2 by w,/2 and w2/2 in (20). Changing the variable of integration by setting
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x = t/2 then gives the formula

(21) lim Zn (k) = 1 f A
n-a=

2 4 2 n

Series

The right side of (21) can be evaluated sith the aid of tables giving values of

1
we'212dt

Jo

for various values of co.
6 Our educations are not quite complete until we have seen the formula by

which the power series expansion of tan x is expressed in terms of Bernoulli
numbers Letting Bo(x), B1(x), be the Bernoulli functions, we start by
deriving the formula

(1)
ze-

of - 1
_ ) Bn(x)tn,

n=u

which holds when 0 < x < 1 and 0 < Itl < 2r. To simplify matters, we can
suppose at first that 0 < jtj < 1. When y(x) denotes the right side of (1), we
can differentiate termwise to obtain

(2) Y'(x) _ Bn(x)t" = 4 B;,+1(x)t"+'
n=1 n=0

Therefore,

(3)

m m

= jj Bn(x)t"+' = t jj B"(x)tn = ty(x)
n-0 n-0

d [e z'y(x)t = e xt[y'(x) - ty(x)J = 0,

and it follows that for each t there is a constant c(t) for which

(4) a zty(t) = c(t) or y(t) = c(t)ezt.

Therefore,

(5) c(t)ez' = I Bn(x)tn
n =O

Integrating (5) over the interval 0 5 x < 1 and using (12.611) and (12.613) give
the first and then the second of the formulas

(6) c(t)
et

t
1

= 1, c(t) = t
1

Substituting in (5) then gives (1). Since B,(x) = x - I when 0 < x < 1, we
can subtract (x - $)t from both sides of (1) to obtain the formula

(7) 1 el + 2ex' - 1 - 2x(et - 1) = j* B"(x)tn
e'-1 n-0
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in which the star on the Z means that the term for which is = 1 is omitted from
the series. More advanced mathematics contains theorems which allo« us to
take termwise limits, as x approaches zero through positive values, of the mem-
bers of (7). This, the fact that

(8) lim B,(x) = B (0) - B.
x-.0 n!

when n 0 1, and the fact that B. = 0 when n is odd and is 0 1, give the formula

t el + B2 Bq B6 B2k6 t6 +
(9) 2 7 °

Bo + 2 t2 + 4 t4 +=1 ... = ko (2k)1 t2k

which is valid when 0 < Itl < 2x. Putting t = 2z in (9) gives the formula

e= + e 22kB2k yk
(10) z ex - e = ko (2k)! z

which is valid when 0 < IzI < ir. The theory of functions of a complex variable
provides reasons why (10) is valid when z is a complex number for which 0 <
IzI < ir, and we can put z = iO to obtain

(11) i8
es0 + e-,e 22kB2k

2k
e'B - e-'B ko

(2k)! (i0)

when 0 < 101 < a. Since ilk = (j2)k = (-1)k, use of the Euler formulas gi-'en
in Problem 20 of Problems 12.49 enables us to put (11) in the form

(12) 0 cot 0 = I (-1)k (ZB2i 02k
k=0

when 0 < IBI < 2r. Having established (12), we can show that

(13) 0 tan 0 = 6 cot 0 - 20 cot 26

when 0 < 101 < a/2 and use (12) to obtain our final formula

(14) tan 0 = i (-1)k-, 22k(22k (2k)!1)B2k a2k-i

A;=1

which is valid when 101 < it/2. The above formulas and modifications of them
appear in quite elementary tables, but we must always be prepared to observe
that some brief treatments of Bernoulli numbers use Bk to denote the number
B2k(0)/(2k)! which we have called B2k.
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Iterated and
multiple integrals

13.1 Iterated integrals When we differentiate a function f having
values f(x) and then iterate (or repeat) the process, we obtain functions
having values denoted by f'(x), f"(x), f"(x), . When we iterate
the process of integrating a function f over an interval from a to x, we
need more elaborate notation to express the results in terms of the given
function. To begin operations, we suppose that

(13.11) fi(x) = faxf(t) dt, f2(x) = faxft(t) dt,

fa(x) =
fa"'f2(t)

dt,

To express f2 in terms off, we can avoid snarls of various kinds by replac-
ing t by tl and then x by t to obtain

fl(t) = f f(tl) dti.
632
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Substituting this in the formula for f2(x) then gives

(13.12) .12(x) = fax (fatf(ti) dti) dt.

Replacing ti by t2 and then t by ti and x by t gives

a f(t2) dtZ) dtif2 (t) = f t ( at`

and substituting this into the formula for f3(x) gives

(13.13)
f3(x) = fax l ft (fats f(ts)

dt2) dtl} dt.

The integrals in (13.12) and (13.13) are examples of iterated integrals
and, for each n, we could write a formula for ff(x) which involves n of
these integrals.

In case f(x) = 1 for each x, we do not need the iterated integrals to
obtain formulas for fi(x), f2(x), ; we can use the formulas (13.11)
one after another to obtain

(13.14) fi(x) = x - a, f2(x) _ (x - a)f3(x)
_ (x - a)

2! 3!

f4(x) _ (x
41

a)4

We must, however, learn how iterated integrals are manipulated when
they appear in our work and cannot be avoided. The way in which
(13.12) was obtained tells us that to get f2(x) we should integrate first
with respect to ti to evaluate the integral in parentheses to obtain a
function of t which is integrated with respect to t to obtain f2(x). A
tempest in a teapot appears when we, like everyone else, adopt the view
that parentheses are nuisances and write (13.12) in the form

(13.15) f2(x) = f ax ftf(ti) dti dt

and insist that we must find f2(x) by integrating first with respect to ti,
the limits of integration being a and t, and integrating last with respect
to t from a to x. The difficulty lies in the fact that there is always the
possibility of constructing a theory of iterated integrals in such a way
that, for example,

(13.16) f ' f D F(x,y) dx dy

means the result of integrating first with respect to y from C to D (not
from A to B) and then integrating last with respect to x from A to B.
It is equally sensible to insist on one hand that we should "work outward
from the middle," so that fc goes with dx and f4 goes with dy, and toD
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insist on the other hand that we should "work from right to left," so

that fc goes with dy and JA goes with dx. Of course, we could lengthen

a long story by insisting that we should always keep the parentheses and
avoid the tempests and the stories, but this is impractical. While we
reserve the option of using parentheses whenever we wish to do so, we
ordinarily remove parentheses and ambiguities from iterated integrals
by writing the integrals in such a way that each integral sign except the
one on the right is immediately followed by the symbol showing the
variable of integration which has the limits of integration appearing on
the integral sign. Thus, for example,

(13.17)4 2d=f2d f
f2[3]::4

JI y=3
_ 37 2xdx = 37X2]--2 = 111J --_ 3

1 3 2 x31 _ 6
x2 2 x=4

(13.18)
2

1 dy
14

xy2 dx =
f2

dy [ 2 x=3

7 2

=2 1 y2dy

and

7y32 49
2 31- 6

(13.181) I x dt f' (t - u) du = f x dt r - (t 2 u)2]u=t
f L U-0

x
t2 di - 1 t3 t=x xs

0 3]t-0 6

Note that, in each case, the integral appearing on the right is evaluated
first. Note also that when we are in the process of integrating with
respect to a particular variable, all other variables are temporarily con-
sidered to be constants. Opportunities to become familiar with these
things are provided by the following problems.

Problems 13.19
1 Show that

(a) Jol dx fox (x2 + Y.) dy = $

(c) fol dx Jox
dY f - ds = g

(b) f ' di Jot (t^ + u") du =
n -{- 1

(n> -1)
(d)

U
dx

Jxx+1
e-- dy = 1 - e 1

2 By evaluating all of the integrals involved, show that

1 2 2 1 1 2 2 1
(a)

o
dx

o
x dy = Ja dy f0 xdx (b) Jo dx Jl x dy = Jl dy Jo xdx
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3 By evaluating all of the integrals involved, show that

Jot dz fozf(Y) dy = Jo` (t - y)f(y) dy

when

(a) p > -1 and f(Y) = Yp
(b) k > 0 and f (y) = e -4y
(e) w 0 and f(y) = sin wy

4 The formula
Jot

udv=uv]o-Jotvdu,

which abbreviates the formula

fo u(x)v'(x) dz = u(z)v(x)]x=0 - f of v(x)u'(x) d-,

for integration by parts, has unexpected applications. Assuming that f is con-
tinuous and

I f,,'d, foxf(Y) dY,

find the result of integrating by parts with

u(x) = foxf(y) dy v'(x) = 1

U, (x) = AX), v (x) _ - (t - x).

5 Calculate the two integrals I and j defined by

I - Jo° dx fox f(x,Y) dy,
j

= foa dy Jva f(x,Y)

and show that they are equal when

(a) p > -1, q > -1 and f(x,Y) = xpy4
(b) f(x,y) = ex+v

6 Show that, when n > -1,
i i 2,.+s _ 2

Jo dx f (x+Y)"dy = (n+1)(n+2)

7 Show that

8 Show that

ydy=Zlog2.f dxJlx-f
1

J
i i 1 _

0Do dxJo (x+Y)Zdy

dx

9 Supposing that 0 < p < 2 and p 0 1, show that

i i 1 2z" - 2
Jo dxJo (x+y)pdy (2-p)(1-p)
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10 Supposing that n > -2 and is 76 1, show that

1 x

f
- 1

dx fo (x I Y)" dY =
2n+1

o (n + , 1) (n + 2)

Investigate the case in which n = -1.
11 Show that

r1 2xy 3 r1 y

(a) Jo dx fx
x dy 4 (b) Jo dx J= x dy =

/1 dxr2zx log2 1 (lx i
(`) fo x Y

dy
= 2 (d) o dx f x y dy

12 Show that making one integration gives the formula

1 x 1 r11 1

2fo dx fo 1 - xydy = 2 f xlogl x2dx

which, so far as we know, has dubious validity because the last integrand is
meaningless when x = 0 and when x = 1. Show that

f 1

o 1 -xydy

has the value 0 when x = 0 and does not exist (or has the value + oo) when
x = 1. Then proceed to the next problem.

13 The integrals in

(1)
r1

x

2Jo dx f 1

dy0 1 -xy

cannot exist as iterated Riemann integrals because the integral in

(2) f(x) = fox 1 1 xy dy

does not exist as a Riemann integral when x = 1. However, when 0 5 x < 1,

(3) f(x) =
fox

(I + xY + x2y2 + x3y3 + - - -) dy

Cy +
xy2 'Y' "' b=x= 2 + 3 + 4 ,+. . ..]y=o

L x3 x6 x7+2+3 +4+...
To each positive integer is there corresponds a positive number S such that

(4)
f(x)x+23+3s+...+xn>(1++...

+n/-1
when 1 - S < x < I (why?) and hence (why?)

(5) lim f(x) = m.
x-+1-
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The integral in (1) will exist as a Riemann-Cauchy integral and will have the
value Y if

(6) V=Tlim 237(x+2+

lim
(r2+r4+r6

r8 F ..1
rz_ \1z 2z 32 42

With the aid of the basic fact that E(1/n2) = 7r2/6, prove that Y = a2/6. Hint:
Supposing that 0 < r < 1, let the last series in (6) converge to g(r) and begin

by showing that g(r) < 7r2/6. Then compare g(r) with 1/k2 - e/2
k=1

14 Prove that the formula
r

f b dx f df(x,Y) dy = f ab dx f d g(x,Y) dy + f b dx f d h(x,Y) dy

is valid provided (i) f(x,y) = g(x,y) + h(x,y) when a 5 x < b and c < y < d
and (ii) the integrals in the right member exist. Hint: Let

F(x) = J
d
f(x,Y) dy, G(x) = f d g(x,y) dy, H(x) = fed h(x,Y) dY

and use known facts about simple integrals.
15 Let

(1) F(x,y,z) = P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k,

where the functions are continuous over some spherical ball B with center at
(xo,yo,zo), be the force on a particle when the particle is at the point (x,y,z).
Show that the work Wj(x,y,z) done by the force in moving the particle along line
segments from (xo,yo,zo) to (xo,y,zo) and then to (xo,y,z) and finally to the point
(x,y,z) in the ball is

(2) Wi(x,y,z) = (
V

Q(xo,a,zo) dQ + LO R(xo,y,7) dY + f P(a,y,z) da
lo z

(3)
awl- - = P(x,y,z)

ax

Show that the work W2(x,y,z) done by the force in moving the particle along
line segments from (xo,yo,zo) to (x,yo,zo) and then to (x,yo,z) and then to (x,y,z) is

(4) W2(x,y,z) = f xz P(a,yo,zo) da + fZa R(x,yo,7) d7 + fao do

and that
as

22(5) = Q(x,y,z)

Show that the work W$(x,y,z) done by the force in moving the particle along line
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segments from (xo,yo,zo) to (x,yo,zo) and then to (x,y,zo) and then to (x,y,z) is

(6) Wa(x,y,z) = fzp P(«,Yo,zo) da +
1 YO

Q(x'a,zo) d,6 + L, R(x,y,y) dy

and that

(7)
ITS

= R(x,y,z)az

Remark: A force field is called conservative if the work done in moving a particle
around a closed curve is zero or (what amounts to the same thing) if the work
done in moving the particle from one point to another is the same for all paths
running from the first point to the second. If F is conservative, the functions
in (2), (4), and (6) are equal and we may set

(8) W(x,y,z) = Wi(x,Y,z) = W3(x,Ybz) = W3(x,Y,z)

Then (3), (5), and (7) give

(9)

so

(10)

aW aW aW
P = ' Q ay' Rxa az

Fawi.+awj+aWk=VW

and F is the gradient of W. If in addition, the particle being moved is a unit
mass in a gravitational field or a unit charge in an electric field, then W is called
a potential function, the potential at the point (x,y,z) being W(x,y,z) or W(x,y,z) +
C, where C is a constant. It is sometimes important to know that if P, Q, R are
the scalar components of a conservative vector function and if they have con-
tinuous partial derivatives of first order, then (9) implies that

aQ aP OR aP OR aQ
ax - ay' ax - az' ay - az'

More information about this matter appears in Problem 10 of Section 13.3.
16 Assuming that all of the integrals exist, tell why

f b dx fvz(s) dy ffi(s,L) Fi(x)Fs(x,Y)F3(x,Y,z) dz
a Ol(y) 13(z.Y)

b ,(xW) xz,Y)
= f F1(x) dx f F2(x,y) dy

1 (
f Fs(x,y,z) dz.

a "' / 1(x. Y)
17 Calculate

for the case in which

aaay faz ds fbyu(s,t) di

(a) p __>_ 0, q >= 0, u(s,t) = svt4
(b) u(s,t) = s + t
(c) u(s,t) = e sin t
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Ans.: In each case the answer is u(x,y), and it may be worthwhile to try to under-
stand why this should be so.

18 Try to understand the formulas

Ibv uv(x,t) dt = u(x,t) It
J_V

mb
= u(x,y) - u(x,b)

and

x J
a

ds
b

v
zt,,v(s>t) dt

x
ds zt s t

teb

[us(s,y) - u,(s,b)] ds = [u(s,1) - u(s,b)]
a aaa

= u(x,y) - u(a,y) - u(x,b) + u(a,b).

13.2 Iterated integrals and volumes In the study of iterated and
multiple integrals and their applications, we continually need unin-
herited skills and information that can be efficiently acquired by making
a calm and thorough examination of matters relating to Figure 13.21.

Figure 13.21

We start with the idea that the graphs of the two equations y = x/2 and
y = x2/4 intersect at the points (0,0) and (2,1). These graphs separate
the closed rectangular region R, consisting of points (x,y) for which
0 < x S 2, 0 =< y < 1, into three subsets S1, S2, S3. While it makes no
difference how disputes over ownership of boundaries are resolved, we
want them resolved in some way and we suppose that S2 contains each
of its boundary points. Thus S2 is the set of points (x,y) for which 0
x 5 2 and x2/4 < y S x/2. Then S1 is the set of points (x,y) for which
0 < x <_ 2 and 0 < y < x2/4, and S3 is the set of points (x,y) for which
0-<-x<2andx/2<y<=1.

While more recondite modifications of the construction are easily made,
we keep our example simple by supposing that A, B, C are three constants,
that f(x,y) = A when (x,y) is a point of Si, that f(x,y) = B when (x,y)
is a point of S2, and that f(x,y) = C when (x,y) is a point of S3. Subject
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to existence of the integrals involved, we investigate the number I
defined by

(13.22) I = 02 dx f of f(x,y) dy.

Our first step is to recognize that, for each fixed x in the interval 0 <_
x < 2, the integrand in the integral

(13.221)
f1

f(x,y) dy

has values that depend upon y. To make effective use of our informa-
tion, we mark a point x on the x axis between 0 and 2 and then draw a
line through this point parallel to the y axis. A part of this line is in
Sl where f(x,y) = -I, another part is in S2 where f(x,y = B, a third
part is in S3 where f(x,y) = C, and, moreover, the end points of these
parts depend upon the fixed x. We must understand our situation so
thoroughly that we see that

f(x,y) = A when 0 < y < x2/4,
f (x,y) = B when x2/4 S y S x/2,
f(x,y) = C when x/2 < y < 1,

and that

(13.222)

so

(13.223)

f of f (x,Y) dy = fox
1

A dy + f x,/2 B dy + fz/2 C dy

I f(x,y)dy=A + B (2!- 4)+C11-2

Substituting this in (13.22) gives

(13.224)

and hence

(13.225)

f2[x2(xx2)( _)]dx

I =1A+*B+C.
Supposing that A, B, C are nonnegative constants, we proceed to

show that the number I is the volume of the solid block H which stands
upon the rectangular base R of Figure 13.21 and has, at each point
(x,y) of R, height f(x,y). It is quite possible to imagine that the rec-
tangular set R of Figure 13.21 lies in a horizontal plane beneath our eyes
and that the block H has its base on R and extends upward toward our
eyes. If the operation is helpful, we should imagine that we are in an
airplane and are looking down upon a hotel built upon the set or site R;
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the parts covering Si, S2, S, have heights Z, B, C. We should know
that we can undertake to start with an x, y, z coordinate system oriented
in the usual way and to sketch a figure like Figure 13.23 showing the
block (or hotel) H.

Figure 13.23 Figure 13.24

To find the volume of the block H, we do not need a figure in which an
architect could take pride. It is sufficient to use the slab method which
was candidly presented and employed in Section 4.5. We make a parti-
tion P of the interval 0 < x < 2 into subintervals of lengths .x1, 0x2,

, Ax,, and let xk be a point in the kth subinterval so that xk_1
xk xk. For each k, the number

(13.241) fo'f(xk,y) dy

is the area of the intersection of the plane x = xk and the body H.
Depending upon the choice of xk, the number

(13.242) Dxk fo' f(xk,y) dy

is exactly equal to or is an approximation to the volume of the slab of
H between the planes x = xk_1 and x = xk. The sum in the formula

(13.243)
n

Y = lim Dxk f0' f(xk,y) dy
k=1

is then exactly equal to the volume P of H or is an approximation to V,
and in any case the limit as JP( --> 0 is V. Thus

(13.244) Y = I = fox dx f' f(x,y) dy
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and we have shown that, in the special cases being considered, our
iterated integral is the volume of the block H.

Our work involving Figure 13.21 is only half finished because we must
investigate the integral J defined by

(13.25) J = fol dy fa2f(x,y) dx

and must assimilate some new ideas. For each y in the interval 0 5
y < 1, the integrand in the integral

(13.251) foe f(x,y) dx

has values that depend upon x. As in Figure 13.21 we mark a point y
on the y axis between 0 and 1 and draw a line through this point parallel
to the x axis. A part of this line is in S3 where f(x,y) = C, another part
is in S2 where f(x,y) = B, a third part is in Si where f(x,y) = A4, and,
moreover, the end points of these parts depend upon the fixed y. We
must examine Figure 13.21 carefully enough to see that

f(x,y) = C when 0 < x < 2y,
f (x,y) = B when 2y < x < 2 -N/Y-1
f(x,y) = 1I when 2 < x S 2,

and that

(13.252)

so

(13.253)

fat f(x,y) dx = f7 C dx + J2y B dx + f2 A dx,

f 2f(x,y) dx = 214(1 - V) + 2B(- - y) + 2Cy.

Substituting this in (13.25) gives

J=2fol[4(1-/Y)+B(/3-y)+Cy]dy
and hence

(13.26) J=*14+*B+C.
Comparison of (13.225) and (13.26) shows that I and j are equal.

When 1I, B, C are nonnegative, I is the volume of the block H and it
follows that J must also be this volume. We need the experience gained
by using the slab method to prove that J, like I, is the volume of H so we
will have another and more informative proof that J = I. Let P be a
partition of the interval 0 < y < 1 into subintervals of lengths Ayl,
oy2, ... , Ay and let yk be a point in the kth subinterval such that
yx-1 < yk < yk. While we should acquire the ability to do our chores
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without benefit of elegant figures, we
can use Figure 13.27 to help us see
what we are doing.

For each k, the number

(13.271) foe f(x,yk) dx

is the area of the intersection of the
plane y = yk and the body H. De-
pending upon the choice of yk, the
number

(13.272) t yk fo f(x)yk) dx

is exactly equal to or is an approxima-
Figure 13.27

Lion to the volume of the slab of H between the planes y = yk_1 and
y = yk. The sum in the formula

(13.273) Y =
Jim

Il Ayk f 2 f(x,yk) dx
k=1

is then exactly equal to the volume V of H or is an approximation to Y,
and in any case the limit as IPI -4 0 is Y. Thus

(13.274) Y = J = fo1 dy fo2 f(x,1') dx.

For the special case being considered, equality of the last two members
of the formula

(13.275) Y = fox dx folf(x,y) dy = fol dy f 2f(x,y) dx

is a consequence of the fact that each member is equal to the volume Y
of a solid body H.

Some special applications of these ideas and formulas are particularly
worthy of notice. In case R = C = 0 and B > 0, the number V is the
volume of a body which rests upon the base S2 and (13.275) reduces to
the formula

(13.276) V =
J2

dx f : f (x,y) dy = fol dy f2y' f (x,y) dx.

In case 11 = B = C = 1, the solid H has unit height over the whole
rectangular set R and the volume of H must be the same as the area (R1
of R. We could therefore be sure that there would be a mistake in our
work if it were not true that the numbers I and J in (13.225) and (13.26)
reduce to 2 when A = B = C = 1. In case A = C = 0 and B = 1, the
numbers Y, I, and j reduce to the area IS21 of the set S2.

Among other things, the above example leads us to the following idea.
Suppose we want to find the volume Y of a solid body K which rests upon
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a set S which is a subset of the rectangular set R containing points (x,y)
for which a < x < b, c < y < d, the height of K at each point (x,y)
in S being f(x,y). We can undertake to solve the problem in the fol-
lowing way. Let f be extended in such a way that f(x,y) = 0 when
(x,y) is a point not in the set S. Then, unless the set S and the function
f are much more tortuous than those appearing in elementary nonpatho-
logical problems, two applications of the slab method for finding the
volume of V yield the formula

(13.28) Y =
fb

dx f df(x,y) dY = f
a

dy f bf(x,y) dx.

It is very important to be aware that, in all ordinary and many extra-
ordinary circumstances, the last two members of (13.28) are equal even
when f is a discontinuous function for which f(x,y) = 0 when the point
(x,y) is not in a particular set S in which we are interested. More
information about this matter will appear later.

Problems 13.29

1 Let

I f 4o
dx f_40 f (x,y) dy, J = f 440 dv .l 440 f(x,y) dx,

where f is continuous over the region R bounded by the graphs of the lines having
the equations y = -1, y = x, and x = 1 and f(x,y) = 0 when the point (x,y)
is not in R. Show that

I = fit dx f 21 f(x,y) dy, j = f 11 dy f vl f(x,y) dx.

Evaluate I and J and show that they are equal in case

(a) f(x,y) = 1 (b) f(x,y) = x (c) f(x,y) = y
(d) f(x,y) = x + y (e) f(x,y) = xy (f) f(x,y) = x2 + y2

when (x,y) is in R and f(x,y) = 0 when (x,y) is not in R.
2 For each of the formulas

(a) f dx f f(x,y) dy = f ' dx fox f(x,y) dy

(b) f dy f f(x,y) dx = 104 dy 'f(x,y) dx

(e) f d x f f(x,y) dy = fo4 dx f
xf(x,y)

dy

( d ) foa dx fo°f(x,y) d y = foa dx

f0

a=-x
f(x,Y) dy
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find a region R such that the formula is valid whenever f(x,y) is continuous over
R and f(x,y) = 0 when the point (x,y) is not in R.

3 Find a region R such that the formula

f ol dx f s2if(x,y) dy = Iol dy f 12f(x,Y) dx + f2 dy L1121(x,Y) dx

is valid when f is continuous over R. Evaluate all of the integrals and make the
results agree when

(a) f(x,Y) = 1 (b) f(x,y) = x (c) f(x,Y) = Y

(d) f(x,y) = x + Y (e) f(x,y) = xy (f) f(x,Y) = x2 + y2

4 A particular solid body K can be described as the set in Ea which rests
upon the base S in the xy plane bounded by the plane graphs of the equations
y = x/2 and y = x2/4 and has, at each point (x,y) in S, height x2 + y2. The
same body K can be described as the set in Es which is bounded by the graphs
(they are all surfaces) in Ea of the equations

y=x/2, y=x2/4, z=0, z=x2+y2.

This book tries to be too honest to pretend that it is easy to sketch a good figure
showing the body K. The book does insist, however, that we should have picked
up ideas enough to enable us to use iterated integrals in two different ways to
find the volume IKI of K. Do it. Remark: The answers should agree with
each other. Moreover, since the area of the base is g and the height varies from
0 to 5, the answers should be between
0 and 1.

5 As in Figure 13.291, let S be the
closed set of points in the rectangle
a< x < b, c S Y S d which is bounded
below and above by the graphs of
y = fl(x) and y = f2(x) and which is
bounded on the left and right by graphs
of x = ga(y) and x = g2(y) Let F
be a function which is continuous
over S and is such that F(x,y) = 0

a b z

Figure 13.291

when (x,y) is a point not in S Tell why the first integral in the formula

(1) L d F(x,y) dy = ff (()) F(x,y) dy

exists and is equal to the second one when a S x < b. Tell why the first integral

in the formula

(2)
fab

F(x,y) dx = faM) F(x,y) dx

exists and is equal to the second one when c < y < d Show that the formula

(3) f b dx f dF(x,y) dY = f d dy f bF(xy) dx
a c c a
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reduces to

(4)

Iterated and multiple integrals

f
b

dx
f (z) d Y)

f F(x,y) dy = f dy
pz

f F(x,y) dx.
a !3(z) c 0i(Y)

Finally, give geometric interpretations of the numbers in (4) when, for each point
(x,y) in S,

(a) F(x,y) = 1

(b) F(x,y) = xz + yz

6 By use of iterated integrals, find the volume Y of the solid bounded by
the three coordinate planes and the graph of the equation

x y z

Remark and ans.: The solid is a pyramid, and use of the fundamental fact that
the volume of a pyramid is one-third of the product of its height and the area of
its base gives F = wabc

7 Even when details are efficiently managed, it is not a short task to find
the volume V of the solid in the first octant bounded by the three coordinate
planes and the graph of the equation

\a/;F + \b)" +
It is, however, worthwhile to try to manage details efficiently and to earn the
satisfaction involved in showing that F = abc/90. It can be added that the
world is wide enough to accommodate and even need persons who run amok or
amuck and become strong enough to solve the problems obtained by replacing the
exponent by s and ' and

8 Prove that if the formula

(1) f ab dx f' (}(x,y) + B) dy = f d dy f ab [}(x,9') + B] dx

is valid for some constant B, then

(2)
fab

dx fdf(x',y) dy = 1 d dy f I f(x,y) dx.

Remark: In case f is a bounded function for which f(x,y) is sometimes positive
and sometimes negative, we can choose B such that f(x,y) + B is always positive.
In appropriate circumstances, we can prove (2) by proving the first formula
which involves only positive integrands.

9 Let a and x be confined to an interval over which a given function f is
continuous. Let fo(x) = f(x) and let

(1) fi(x') = fazf(t) dt, fz(x') = fazfl(t) dt, fa(x) = fazfz(t) dt

and so on so that, for each n = 1, 2, 3, ,

(2) f. (x) = fazfn(t) A



13.3 Double integrals 667

Since 0! = 1, the formula

(3)
r x (xM-) = a (n - 1)! f(t) dt

is certainly correct when n = 1. Assuming that (3) is correct for a particular
positive integer n, show that

(4) fn (u) = f.u (n(n
f(t) dt- 1)

and use (2) to obtain

(un- -t)n
1)
I

f(t) dt.(5) f+,+l(x) = fax du Lu (

Use (5) and Figure 13.292 to obtain

(6) f x
x

Figure 13.292

and then use (6) to obtain the result of replacing n by n + 1 in (3). Since (3)
is correct when n = 1, it must be correct when it = 2 and hence when it = 3 and
hence when it. = 4, and so on.

10 This section should not leave the impression that our ideas about Riemann
integrals can always be applied to Riemann-Cauchy integrals. It can happen
that

I = f . dx f . f(x,y) dy, j = f dy f f(x,y) dx

both exist but have unequal values. For example, let

f (x,y) = 1 when x >0, x - 1 <y<x,
f(x,y) = -1when x>0,x <y <x+1,
f (x,y) = 0 otherwise.

Show that, in this case, I = 0 and J = 1.

13.3 Double integrals Section 4.2 showed how we partition intervals
into subintervals to form Riemann sums and how we use these sums to
define Riemann integrals over one-dimensional intervals. Because the
idea is important in both pure and applied mathematics, we must learn
about the process by which a set S in a plane is partitioned into subsets
in order to enable us to form Riemann sums and define Riemann integrals
over S. To begin, let S be a set of points which may, for example, be
the set of points inside and on a circle or an outer boundary curve such as
that shown in Figure 13.31. The set S may be the set of points P which
are neither outside the outer boundary nor inside the inner boundary of
Figure 13.32. What we really require is that the set S have positive
area and that the points of S lie inside or on some rectangle R so that the
set S is bounded. In some applications the set S is regarded as a lamina
(thin plate) or as a plane section of a three-dimensional solid in which
we are interested. While we normally use coordinates (rectangular or
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polar, for example) to determine a point P of S, we do not at present
allow any one brand of coordinates to dominate our work. We suppose
that we have a bounded function f defined over S and use the symbol
f(P) to denote the value of f at P. For example, if S is a lamina, f(P)
could be the density (mass per unit area) atP or the product of the density
atP and the specific heat atP and the temperature atP. If S is a lamina
and we want to calculate its moment of inertia about a line L, f(P) could
be the product of the density at P and the square of the distance from
P to L. It is often helpful to think of I f (P) I as being the height at P of a
solid which stands upon the base S.

The first step in our approach to a Riemann sum is to make a partition
Q (the letter P has been preempted) of the set S into n subsets S1, S2,

, Sn. As Figures 13.31 and 13.32 indicate, the result of partitioning

Figure 13.31 Figure 13.32

a set S in E2 into smaller subsets is not as simple as the result of parti-
tioning an interval in E1 into subintervals. The only things we require
of the sets S1j S2, . , S. is that they be nonoverlapping, that their
union be S, and that each of them have positive area. It turns out that
the notational transition from Riemann sums to Riemann integrals will
be facilitated by denoting the areas of the sets S1, S2, -

. , S. by the
symbols AS,, AS2, ... , ASn. The meanings of our symbols should be
emphasized. For each k = 1, 2, , n, the symbol ASk does not stand
for a part of the set S; it stands for the area of a part of the set S. For
each k = 1, 2, - - , n, let Pk be a point in the set Sk. The number RS
(Riemann sum) defined by

n

(13.33) RS = I AN ASk
k=1

is then a Riemann sum formed for the function f and for the partition Q
of S.

In order to tell what we mean by the norm jQJ of the partition Q, it is
necessary to introduce a simple geometrical concept. The diameter of a
set is the least upper bound of distances between pairs of points of a set.
The norm JQJ of the partition Q of S into subsets S1, S2, . . , S. is the
greatest of the diameters of the sets S1, S2, , Sn. We are now ready
to define the Riemann integral of f over S, the definition being analogous
to that involving (4.23). If there is a number I such that to each E > 0
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there corresponds a S > 0 such that

(13.34)
nn

I- 1 f (Pk) Ask I<k
whenever the sum is a Riemann sum formed for the function f and for a
partition Q of S for which JQJ < S, then f is said to be Riemann integrable
over S and I is said to be the Riemann integral off over S. This integral
is usually denoted by the symbol

(13.35) f f, f(P) dS,

which displays the function f and the symbol S that represents the set
which was partitioned to obtain the approximating Riemann sums. The
integral is called a double integral because the set S is two-dimensional,
that is, a set in E2 having positive area. The two integral signs serve to
remind us that S is two-dimensional, but sometimes one of them is
omitted from the symbol. As was the case for simple (that is, one-
dimensional) integrals, it is a convenience (and sometimes also a source
of misunderstanding, confusion, and controversy) to drag in the nota-
tion of limits and write

(13.36) f f f (P) dS = lim Z f(Pk) OSk
IQI-O k=1

or

(13.37) f f, f(P) dS = lim I f(P) AS.

When we are interested in problems in which a function f defined over
a bounded set S is involved and rectangular coordinates are to be used,
we can produce substantial simplifications of our work by letting R be a
rectangular set which contains the set S and by extending the domain of
f by putting f(x,y) = 0 when (x,y) is a point of R which is not in S. The
following theorem then enables us to evaluate double integrals by evalu-
ating iterated integrals.

Theorem 13.38 If S is a subset of the rectangular region R consisting
of points (x,y) for which a < x <_ b and c S y < d, if f(x,y) = 0 when
(x,y) is a point in R but not in S, and if the four integrals

(13.381) I3 = ff, ff(x,y) dS, I2 = f f,, f(x,y) dR,

(13.382) Ia = fb dx fd f(x,Y) dY, I, = f d dy f ab f(x,Y) dx

all exist, then

(13.383) I1=I2=13=14,
that is, the four integrals are all equal.
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Proof of this theorem lies far beyond the scope of this course. Persons
who continue study of mathematical analysis until theories of Lebesgue
measure and Lebesgue integrals (including a theorem known as the Fubini
theorem) have been learned will find that validity of the theorem will be
an easy consequence of fundamental relations between Riemann and
Lebesgue integrals. For the present, we can be content with a hazy
understanding of the fundamental fact that the double integrals Ir and
12 will exist if f is bounded and the set D of discontinuities off has area
(two-dimensional Lebesgue measure) 0 and, moreover, the iterated
integrals 13 and 14 will also exist if it is also true that each horizontal line
and each vertical line intersects D in a set having length (one-dimensional
Lebesgue measure) 0. So far as elementary applications to elementary
problems are concerned, we can be sure that if the set S and the function f
are bounded, then the double integrals in (13.381) and the iterated
integrals in (13.382) must exist and must have the same value.

Symbols used for iterated integrals were discussed in Section 13.1.
In addition to the symbols used in this section for double integrals,
those appearing in the formula

(13.384) ffs f(x,y) dS = ffs f(x,y) dx dy = fs f(x,y) dx dy

are sometimes used when rectangular coordinates are involved.

Problems 13.39
1 Let S be the set in E2 bounded by the graphs of the equations

Y=x2, Y=x+2.
Supposing that f is continuous over S and that

f =ffs f(x,Y) dS,

sketch a figure which displays the set S and an appropriate rectangular region R
and then write complete and intelligible descriptions of the steps involved in
using Theorem 13.38 to obtain the formulas

J _ f21 dx fx=+2f(x,Y)
dy

and

- for dy f , f(x,Y) dx -I-
f,4 dyfv

VI-V
2 f(x,Y) dx.

2 Supposing that 0 < a < b and that f is continuous, determine a set S
in the xy plane such that

f a dy
fvv+b f(x,Y)

dx
=ffs

f(x,y) dS.
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Then show that

f f f (,,y) dS = J oa dx Joy f (x,Y) dY ab dx foa
f (,,,Y)

dY

a

+ fb dx fy_b f(x,y) dy.

3 Supposing that S is a bounded set having positive area, interpret and prove
the statement

ISI=ffs1dS.

Hint: Look at the definition of double integrals.
4 Supposing that f is continuous over S, use Theorem 13.38 and the method

of Problem 1 to obtain iterated integrals equal to

ffsf(x,y) dS

when S is the set in E2 bounded by the graphs of the equations

(a) y = x2, y = mx + b (m,b > 0)
(b) y=x,y=2x,x=1
(c) y=0,yx,y=3x-2
(d) y=xs,y=x(e) y=es,y0,x0,x=1
(f) y = x, y = sin x, x = 7r/2

5 Observe that sin (x + y) is continuous and nonnegative over the square
S in the xy plane having opposite vertices at the points (0,0) and (7r/2, it/2).
Evaluate

f fs sin (x + y) dx dy.

,4ns.: 2.
6 Evaluate

1

ffgl+x+ydxdy
when Q is the square having opposite vertices at the points (0,0) and (1,1).
Ans.: 3 log 3 - 4 log 2.

7 Supposing that 0 < a < b and 0 < p < q, evaluate

ffs eylx dS

when S is the region bounded by the lines having the equations x = a, x = b,
y = px, and y = qx. 11ns.: -ff(eQ - e')(b2 - a2).

8 Supposing that S is the square having opposite vertices at the points (0,0)

and (1,1), show that

If 1 df f 1 1
__ f]- log (1 - x) d.,(1) s 1 - xy x dy = o dx

0 1 - -'Y dy
o x
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provided the integrals exist. With the aid of series and termwise integration
(which can be justified), continue the work to obtain

rr z

(2) J J s l ---X y
dx dy = 1 kz = j

Remark: Persons who study more advanced mathematical analysis may encounter
the following elegant theorem. If S is a set in E,,, if S1 is a subset of S having
measure 0, if

(3) f(P) = uI(P) + uz(P) + ua(P) + .. .

when P is in S but not in S1, and if uk(P) > 0 for each k i% hen P is in S, then the
formula

(4) ff(P)dS= fu3(P)dS+ fuz(P)dS+ J ua(P)dS+ . ..

is valid provided the integrals exist as Riemann integrals or Riemann-Cauchy
integrals or Lebesgue integrals.

9 Obtain the result (2) of the preceding problem by termwise integration
(which can be justified) of the series in

1 =1+xy+xzyz+xaya+ . .

1 - xy

10 This long problem is for persons who wish to become good mathematicians
or physicists or engineers and who realize that the best ones start learning about
important things while they are young and then continue to learn more. Make
a large copy of Figure 13.291 showing the set S which is the set of points (x,y)
for which a 5 x < b and f, (x) < y 5 f2 (x) and is also the set of points (x,y)
for which c 5 y < d and gi(y) S x < g2(y). Let C be the curve consisting of the
boundary of S traversed once in the positive direction. Let F and G be continuous
over S and let

(1) I = ff5F(x,y) dS, J = ffsG(x,y) dS.

Show that
rd g2(y) b r12(x)

(2) I = J dy log(y) F(x,y) dx, J =
f

dx Jf,(x) G(x,y) dy

We enter a gate to an important scientific garden when we suppose that P and Q
are functions which are defined and have continuous first-order partial derivatives
over S and put

(3) F(x,y) = aQ = Q, (x,y), G(x,y) = 8y = PY(x,y)

Show that in this case

(4) I = f.
d

dy JDg(Y)
Q,(x,y) dx = Jr

Ld Q(g2(v), y) dy - f d Q(gl(y), y) dy
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Be sure to realize that this is correct because, for each fixed y, Q(x,y) is a function
of x whose derivative with respect to x is the integrand Qx(x,y). We must now
look at our figure. As y increases from c to d, the point with coordinates ($2(y), y)
traverses, in the positive direction, the part Cl of C which lies to the right of S.
It is a consequence of the definition of curve integrals given in Problem 15 of
Section 7.2 that

(5) 1d Q(g2(Y), Y) dY = fc.
Q(x,Y) dy,

the parameter now being y instead oft. The last term in (4) is more troublesome.
As y increases from c to d, the point with coordinates (g,(y), y) traverses, in the
negative direction, the part C2 of C which lies to the left of S. This reversal of
direction introduces a change in sign so that

(6) - fed Q(gl(y), y) dy = f Q(x,y) dy.

Show that combining these results gives the formula

(7)
ff, ax dS = fc Q dy.

Tell why
b s fs(x)

(8) f = fa dx fl(M) ) Pv(x,Y) dy = fab dx [P(x,Y)]
v°fl(x)

and

= L6P(x, f2(x)) dx - fbP(x, f, (x)) dx

- ffs ay dS = fcP dy.

Note that combining (7) and (8) gives the formula

(10) ffs (aQ - ay) dS = fC (P dx Q dy).

This formula appeared in the works of George Green (1793-1841), a pioneer in
applied mathematics who originated the term potential function, and the formula
is called a (or, sometimes, the), Green formula.

The Green formula and its extensions have very important applications, some
of which involve vectors. To be broad-minded about the matter, let

(11) V(x,y,z) = P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k,

where V is a vector function having scalar components P, Q, R that are con-
tinuous and have continuous partial derivatives over a part of E3 in which our
sets and curves are supposed to lie. The curl of the vector function Y is a vector
function which is written V X V, which is read "the curl of V" or "del cross V"
and is defined by the formula

(12) V x V =

I j k
a a a

ax ay az

P Q R
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in which the right member is a determinant. The expanded form of (12) is

(13) VXV=(ay-a.)i+(8 -ax)j+(a-aylk.
For the special case to which (10) applies, S is a patch of surface in the xy plane
and k is the unit normal to S which lies in the direction of the thumb on a right
hand when the fingers point in the direction in which C is oriented. If we denote
this unit normal by n, then in the special case (13) reduces to

(14) (V
TX ay

Therefore, the left member of (10) is, in the special case, the left member of the
formula

(15) f fs(V frV.dr.

Our next step is to show that the right of (10) is, in the special case, the right
member of (15). This is quite easy. Let functions x(t), y(t), z(t) be such that
the point P(t) having coordinates x(t), y(t), z(t) traverses C once in the positive
direction as t increases from tl to t2 and let

(16) r(t) = x(t)i + y(t)j + z(1)k.

For the case in which these functions have piecewise continuous derivatives, dif-
ferentiation gives

(17) r'(t) = x'(t)i + y'(t)j + z'(t)k.

Then

(18) Px'(t) + Qy'(t) + Rz'(t),

where V stands for V(x(t), y(t), z(t)), P stands for P(x(t), y(t), z(t)), and so on.
Hence

(19) Jti=V.r'(t) dt = f=i' [Px'(t) + Qy'(t) + Rz'(t)] dt

and these integrals are, by definitions of curve integrals, respectively equal to
those in the formula

(20) fC V.dr = fC (P dx + Q dy + R dz).

In the special cases where C lies in the xy plane, we have z(t) = 0 for each t, so
the right member of (10) is equal to the right members of (19) and (20) and hence
is equal to the left member of (20), which is the right member of (15).

The formula (15), that is,

(21) f fs (V X dS =

which reduces to the Green formula (10) when S and C lie in the xy plane, is
known as the Stokes formula. So far, (21) has been proved only when S is a
set in the xy plane which satisfies the heavy restriction given at the beginning
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of this problem. One example is sufficient to expose an interesting idea that
enables us to establish (21) for less simple sets S in the xy plane. To establish(21) for the set S of Figure 13.391, we split S into two subsets S, and S2 as in

6 S
CI LLA

'S2

Figure 13.391 Figure 13.392
Figure 13.392. Writing the formulas obtained by applying (21) to the simpler
sets S2 and S2 and adding the results shows that (21) is valid for S because the
curve integrals over the common boundary of SI and S2 come uith opposite
signs and cancel out of the sum. After having proved that (21) is valid for sets
of particular types that lie in the xy plane, the next step is to recognize that, when
C is a suitable plane curve, the right side of (21) has an intrinsic meaning which
is independent of coordinate systems. As can be suspected, this fact can be
used to show that the left member of (21) and the curl itself also have intrinsic
meanings. To be appropriately narrow-minded about this matter, let S be a
plane triangular set or plane circular disk in E3 which is bounded by an oriented
triangle or oriented circle C. Then (21) is valid because the simpler Green
formula shows that it is valid when the coordinate system is chosen such that
S lies in the xy plane. The method that was applied to the plane sets of Figures
13.391 and 13.392 can now be employed to prove that (21) holds when S is a
triangulated oriented surface in E3 consisting of a finite set of plane triangular
faces bounded by oriented triangles provided the topological structure and
orientations are such that if a side of a triangle
is a part of the boundaries of more than one
triangular face, then the side is a part of
boundaries of exactly two such faces and, as
in Figure 13.393, the side has opposite orienta-
tions in the two triangles that contain it.
While a full treatment of the matter lies
beyond the scope of this book, teachers of
courses in electricity and magnetism and aero-
dynamics (among others) require knowledge of
consequences of the idea that the Stokes for-

Figure 13.393

mula (21) is valid when S is a patch of surface in E3 that can be satisfactorily
approximated by a triangulated oriented surface of the type described above.

One of the important applications of the Green and Stokes formulas involves
conservative force fields. Let the vector V(x,y,z) in (11) be the force on a par-
ticle when the particle is at the point (x,y,z). The force field determined by the
vector function V is said to be conservative if the work done in moving the particle
around a closed curve C is 0 when C belongs to a class of curves which is not
always carefully defined but which certainly includes circles. If V is conserva-
tive over a region in E3, then the right member of (21) must therefore be 0 when
C is a circle in the region. Then the left member of (21) must be 0 when S is a
plane circular disk in the region and therefore (as can be proved) the hypothesis
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that V X V is continuous over the region implies that V X V = 0 over the
region. On the other hand, if V X V = 0, then the left member of (21) is clearly
0, so the right member must be 0 and V must be conservative This proves the
very useful nontrivial fact that if V and its scalar components P, Q, R are con-
tinuous and have continuous partial derivatives over a region in Ea, then V is
conservative over the region if and only if the formulas

aQ_aP OR aP aR_aQ
ax = ay' ax = az' ay - az

hold over the region.
11 There is much to be learned about the process of Problem 10 by which the

Stokes formula (21) is proved first for simpler surfaces composed of oriented
plane triangles suitably joined at their edges and then for curved surfaces that
can be satisfactorily approximated by the simpler surfaces Relatively few
people undertake to master all of the details, but everybody can see that some
quite delicate topological considerations are involved. Classical examples
involve ordinary bands and Mobius bands. When the ends of a strip of paper
a foot long and an inch wide are joined in the simplest way, the result is an
ordinary curved band that has two edges (a top and a bottom) and two sides
(an inside and an outside). It is easy to put a dozen diagonal creases in the
paper to obtain a band composed of a dozen plane triangular patches. Let S1
be the surface composed of the points on the outside of the latter band. It is
easy to orient the triangles as in the discussion of Figure 13.393 and to obtain
the Stokes formula for S1. To make a Mobius band, we start with another strip
of paper a foot long and an inch wide, but this time we put a twist (a half-turn)
in one of the ends before the two ends are joined. This strip can be creased to
obtain a band composed of plane triangles joined at their edges. It turns out
that the Mobius band has just one edge and just one side, there being no "side"
that is "an outside" that is different from "the inside." Inner secrets are
revealed to those who try to color only "the outside" of this band. Persons
interested in this matter may construct Mobius bands and study their properties.
It is quite easy to obtain the correct idea that topological considerations form an
essential part of rigorous (free from blunders) statements and proofs of theorems

setting forth conditions under which the
Figure 13.41 Stokes formula is valid.

Y

13.4 Rectangular coordinate ap-
plications of double and iterated
integrals This section illustrates
ideas that are often used when prob-
lems are being solved with the aid
of double and iterated integrals in-
volving rectangular coordinates. The
principal illustration involves a lamina
(or flat plate) which, as in Figure
13.41, lies in the xy plane and is
bounded by the graphs of the equa-
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tions y = 0, y = x2, and x = 1. We suppose that, at each point (x,y)
of the lamina, the lamina has areal density (or mass per unit area) S(x,y).
This means that to each e > 0 there corresponds a S > 0 such that

(13.42) S(x,Y) - OS I < e

whenever AS is the area of a part of the lamina containing the point
(x,y) and having diameter less than S and Am is the mass of the part.
In the simplest applications, there is a constant k, which may be 1, such
that S(x,y) = k whenever (x,y) is a point of the set S occupied by the
lamina; in this case the lamina is said to be homogeneous. While the
ideas can be applied in some other cases, we suppose that S is continuous.
Supposing that xo is a given number and that p is a given nonnegative
integer that is 0 or 1 or 2 in most applications, we undertake to learn the
techniques involved in setting up three different expressions for Mzm),,,
the pth moment of the lamina about the line x = xo.

To set up a double integral for M"" 21, we chop the rectangle of Figure
13.41 into subrectangles by lines parallel to the coordinate axes. A
particular subrectangle, such as the one shown in Figure 13.41, has area
Ax Ay. Supposing that the subrectangle lies entirely within the lamina,
we select a point (x,y) in the subrectangle and use the number S(x,y) Ax Ay
as an approximation to the mass of the part of the lamina within the
subrectangle. If this total mass were concentrated at the point (x,y), its
pth moment about the line x = xo would be

(13.43) (x - xo)PS(x,Y) Ax Ay.

We therefore use this number as an approximation to the pth moment
about the line x = xo of the part of the lamina in the one subrectangle.
The sum

(13.431) T'(x - xo)PS(x,y) Ax Ay,

which contains a term for each subrectangle in the lamina, should then
be a good approximation to the total pth moment of the entire lamina
whenever the diameters of the subrectangles are all small. This leads us
to the formula

(13.432) M x0 = lim E(x - xo)PS(x,y) Ax Ay,

the right side of which is taken to be the definition of the number M"'=
which we are seeking. In accordance with the theory of double integrals
involving (13.34) and Theorem 13.38, the right side of (13.432) is a
double integral which we can denote by one or the other of the symbols
in the formula

(13.433) Mza = f fs (x - xo)PS(x,y) dS = f fs (x - xo)93(x,y) dxdy.
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With the aid of Theorem 13.38 we can quickly express the above
double integral as an iterated integral in two different ways. It is,
however, worthwhile to learn to use a procedure which leads directly
to iterated integrals without making use of double integrals. As in the
preceding paragraph, we observe that Ax Ay is the area of a subrectangle
and use the number S(x,y) Ax Ay as an approximation to the mass of the
part of the lamina within the subrectangle. Again we note that if this
total mass were concentrated at the point (x,y), its pth moment about the
line x = xo would be

(13.44) (x - xo)DS(x,y) Ax Ay.

We then form the sum

(13.441) Ax I (x - xo)PS(x,y) Ay
x fixed

where the part "x fixed" of the symbol serves to inform us that the sum
contains only terms arising from those subrectangles which comprise a
vertical strip such as that shown in Figure 13.445. When the numbers
Ax and Ay are all small, the coefficient of Ax in (13.441) is a Riemann sum
which is a good approximation to the coefficient of Ax in the expression

(13.442) dx fax (x - xo)Pb(x,y) dy.

Using this as an approximation to the pth moment about the line x = xo
of the part of the lamina in one strip, we are led to expect that the sum in

(13.443) M(p)g = lim I 0x fox= (x - xo)PS(x,y) dy

will be good approximation to the required total moment when the num-
bers Ax are all small and hence that (13.443) should be a valid formula.
This gives
(13.444) M?9_'=, = f of dx fox (x - xo)pS(x,y) dy

because the sum in (13.443) is a Riemann sum which approximates the
integral in (13.444).

Figure 13.445 Figure 13.446
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A simple modification of the preceding paragraph gives an iterated
integral in which the first integration is with respect to x. Instead of(13.441), we form the sum

(13.45) Ay I (x - xo)PS(x,y) Ax,
v fixed

where the part "y fixed" of the symbol informs us that the sum contains
only terms arising from subrectangles which comprise a horizontal strip
such as that shown in Figure 13.446. When the numbers Ax and 9tiv
are all small, (13.45) and

(13.451) Ay
i

(x - xo)PS(x,y) dx

are good approximations to the pth moment about the line x = xo of the
part of the lamina in one strip, and we are led to the formula

(13.452) Mzp'z0 = lim Ay
f1j (x - xo)PS(x,y) dx

and hence to the formula

(13.453) MiP'y, =
fo'dy

f,,_ (x-xo)PS(x,y)dx

for the pth moment about the line x = xo of the whole lamina.
Several quite simple and obvious remarks can now be made. In order

to obtain derivations of formulas for M(P),,,, the pth moment of the lamina
about the line y = yo, it suffices to replace the factor (x - xo)P by the
factor (y - yo)P in the above derivations. In case p = 0, the factors
(x - xo)P and (y - yo)P are both equal to 1 and the numbers M=a),,
and M,')) are both equal to the mass M of the lamina. Thus

(13.454) M = f f, S(x,y) dx dy,

and we can replace this double integral by iterated integrals.
In case p = 1, the moments are first moments or moments of first order.

In case xo and yo are chosen such that MZ''s, = 0 and M,('.)., = 0, the
point (xo,yo) is called the centroid of the lamina. It is customary to let
x and y (x bar and y bar) denote the coordinates of the centroid. The
equations which determine x and y then become Ma)z = 0, My', = 0
or, as we see from (13.433) and the similar formula for Myl),,,,

(13.46) f fs (x - z)S(x,y) dx dy = 0, f f, (y - 3(x,y) dy = 0.

Since 9 and are constants that can be moved across integral signs, we
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can put these equations in the form

(13.461) x ffs S(x,y) dx dy = Ifs xS(x,y) dx dy,

y ffs S(x,y) dx dy = ffs yS(x,y) dx dy

or

IIs
xS(x,y) dx dy f f ys(x,y) dx dy

s
(13.462) x =

ffs S(x,y) dx dy A 3(x,y) dx dy

where the denominators are equal to the mass M of the lamina. It is
sometimes helpful to know that if, as in Figure 13.463, the line x = xo
is a line of symmetry of a homogeneous lamina, then lfI`2 = 0 and
hence x = xo In order to find the first moment MX('-', o of the lamina
about the y axis, it suffices to calculate the mass M of the lamina and

y

Figure 13.463

y

Figure 13.464

use the formula Mx = M.,('',. If, as in Figure 13.464, the lines x = xo
and y = yo are both lines of symmetry of a homogeneous lamina, then
x = xo and 5 = yo, so the centroid of the lamina is the point (xo,yo).

In case p = 2, the number M(p)g becomes

(13.47) M`2' =ffs (x - xo)25(x,y) dx dy,

the second moment or moment of inertia of the lamina about the line x = X.
When these things are being calculated and used in mechanics and else-
where, information concerning moments of inertia about parallel lines
(or axes) is very helpful. To obtain information of this nature, we let
x be the x coordinate of the centroid and use the simple identity

(x-xo)2 =[(x-x)+(x-x0)2
_ (x - g) l -F (x - xo) 2 -}- 2(9 - xo) (x - x)

to put (13.47) in the form

(13.471) M`2 = ffs (x - x)2S(x,y) dx dy + (x - xo)2 f f, S(x,y) dx dyZ_ZQ

+ 2(9 - xo) ffs (x - z)s(x,y) dx dy.

The first term in the right member is M`2' , the moment of inertia of the
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lamina about the line through the centroid parallel to the line x = X.
The second term is (x - xo)2M, where M is the mass of the lamina.
The third term is 0 because the integral is the first moment of a lamina
about a line through its centroid. Thus (13.471) reduces to the impor-
tant formula

(13.472) Ms? = Mx'= -F (z - xo)2M.

This gives the following parallel axis theorem.
Theorem 13.48 The moment of inertia of a lamina about a line is equal

to the sum of two terms, one being the moment of inertia of the lamina about
the parallel line through the centroid and the other being the product of the
mass M of the lamina and the square of the distance between the two lines

Up to the present time, we have considered
only moments of plane laminas about lines in y
the planes of the laminas. The second moment
or moment of inertia of a lamina about a line
L perpendicular to the plane of the lamina is

!
called the polar moment of inertia of the lamina

(xo.yo)

sabout the line L. As before, let the lamina
cover a set S in the xy plane and let L be the

Figure 13.481

line in E3 having the equations x = xo, y = yo. Letting AS or Ax Ay be
the area of a part of the set S which contains the point (x,y) and letting
S(x,y) denote the density of the lamina at the point (x,y), we use the number

(13.482) [(x - xo)2 + (Y - Yo)293(x,Y) Ax AY

as an approximation to the polar moment of inertia about L of the part
of the lamina. The polar moment of inertia about L of the whole lamina
may be denoted by the symbol MXO It is defined by the formula

(13.483) M=2)xo.vmva = Jim J[(x - xo)2 + (y - yo)2)3(x,Y) Ax Ay

or

//'(((13.484) M`2 f s [(x - xo)2 + (y - Yo)2ls(x,Y) dx dy.

Comparing this with the formula (13.47) for MIA and the corresponding
formula for My_ o gives the formula

(13.485) Mx2='xo'Y-YG =
M.(21o + Mv2>vo'

which says that the polar moment of inertia of the lamina about the
line x = xo, y = yo perpendicular to the lamina is equal to the sum of the
moments of inertia of the lamina about the two lines x = xo and y = yo
in the plane of the lamina. Finally, we note that the parallel axis
theorem, Theorem 13.48, holds for polar moments of inertia as well as
for moments of inertia about lines in the plane of a lamina.
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Problems 13.49
1 A rectangular lamina has opposite vertices at the origin and the point

(a,b), and has areal density (mass per unit area) S(x,y) at the point (x,y). Set
up an iterated integral for the pth moment of the lamina about the x axis. Then
evaluate the integral for the cases

(a) S(x,y) = 1 (b) S(x,y) = kx (c) S(x,y) = ky

Ans.: The required integral is

f oa dx fob YPS(x,Y) dy or fob dy fo YPS(x,Y) dx.

The required moments are respectively abP+1 ka' kahp+2

p+ 1' 2(p -+I), p + 2
2 Supposing that 0 < p < q, set up and evaluate an iterated integral for

the area .4 of the region in the first quadrant bounded by the graphs of the
equations y = xP and y = x4. Ans.:

I xp q - p
fl - fo dx f.9 dy (p + 1)(q + 1)

3 When 0 < p < q, the region in the first quadrant bounded by the graphs
of y = xP and y = x4 has area (q - p)/(p + 1)(q + 1). Find the coordinates
of the centroid of this region. 11ns.:

(p+l)(q+1) (p+1)(g+l)R , Y (2p + 1) (2q + 1)(p + 2)(q + 2)

4 Find the centroid of the region bounded by the x and y axes and the

graph of y= e=. fins.:x=1,y=TL
5 Find the centroid of the long golf tee obtained by rotating the region of

Problem 4 about the x axis. 4ns.: z = -ff, y' = 0, z = 0.
6 Find the centroid of the region in the strip 0 x r bounded by the x

axis and the graph of y = sin x. Ans.: x = yr/2, y = it/8.
7 Find the centroid of the region which lies in the interval 0 < x <= 2a

and is bounded by the graphs of the equations y = 0 and y = b sin Za As.:
aa,8 b.

8 A vertical face of a dam is bounded by the segment 0 < x < 2a of the x

axis and the graph of the equation y = -b sin Za The water level is at the top

of the dam, and the weight per cubic unit of the water is w. Find the magnitude
of the force on the dam. As.: wab2.

9 Find the centroid of the region in the first quadrant bounded by the coordi-
nate axes and the hypocycloid having the equation x% + y% = a3. 4ns.:

256a
x=y=315ir'
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10 Solve Problem 9 again, using the parametric equations

to obtain integrals involving i.
11 A lamina having density xy at the point P(x,y) lies in the first quadrant

and is bounded by the coordinate axes and the ellipse having the equation

xz 2

a2-+ -bz = 1.

Find its mass M and the coordinates of its centroid. An:.: .41 = a2b2 z =
aA., y = -rsb.

12 For the region R bounded by the positive x axis and the graphs of r =
xe : and x = a, find each at the following:

(a) The area of R Ans.: 1 - (a + 1)e a
(b) The volume of the solid obtained by rotating .R about the x axis

Ans.: -,r[1 - (1 + 2a + 2a2)e Za]
(c) The volume of the solid obtained by rotating R about the y axis

Ans.: 2a[2 - (2 + 2a + a2)e a]
(d) The first moment of R about the x axis Ans.: $[1 - (1 + 2a + 2a2)e26]
(e) The first moment of R about the y axis Ans.: 2 - (2 + 2a + a2)e
(f) The moment of inertia of R about the x axis

Ans.: r",r[2 - (2 + 6a + 9a2 + 9aa)e3"]
(g) The moment of inertia of R about the y axis

Ans.: 6 - (6 + 6a + 3a2 + aa)e°
(h) The polar moment of inertia of R about the line through the origin perpen-

dicular to the plane of R Ans.: Sum of answers to (f) and (g)

13 A triangular lamina has vertices at points PI(x1,yi), Pz(x2,y2), P3(xa,ya)
and has areal density (mass per unit area) S(x,y) at the point (x,y). Assuming
that the points are placed as in Figure 13.491 so that x1 < xa < x2 and y2 < yi <

Y

x = a cosy t, y = a sin3 t

P

0 xo x1 xa x2 x

Figure 13.491

ya, and letting ink denote the slope of the side opposite Pk so that

m1 = ys - y M2 =
ya - Yi ma = Y2-Yi,

xa - x2 xa - x1 x2 - x1

set up an iterated integral for the pth moment Msp>ZO of the lamina about the
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line x = xa. Ans.:

M(p)
xa

dx
yi+m2(x-xl)

x-xo ixi yi+m.a(x-xt)
X3 y,+m,(x-x,)

(x dy.x - x+ fSa dx yx+'ma(x-x2)

14 Develop computational skill by simplifying the answer to Problem 13
for the case in which S(x,y) = 1 and p = 0 so the answer is numerically equal to
the area of the lamina. Ans.:

[(x,y2 - x2Yi) - (xIy2 - xaYi) + (xzya - x3Y2)] or .

Yi 1

Y2 1

Y3 1

15 Figure 13.492 shows two parallel rods of lengths a and b. The rod on
the left has linear density (mass per unit length) 81(t) at distance t from its lower

(x - xo)PS(x,y) dy

xl

x2

x3

Y

b

a

pt

------------
u

01 _D X

Figure 13.492

end, and the rod on the right has linear density 62(u) at distance u from its lower
end. We undertake to learn about the total or resultant gravitational force F on
the left-hand rod that is produced by the right-hand rod. Assume that particles
of mass m I and m2 at points P, and P2 attract each other with a force of magnitude
Gm1m2/IP1P212, where G is a gravitational constant, and the actual force pulling
the particle at P, toward P2 is obtained by multiplying this magnitude by P,P2/
lP,P21, the unit vector which has its tail at Pl and points toward P2. Derive
the formula

51(t) At 62(U) Au
G

[D2 + (u - t)2] [Di + (u - t)J]

for the force which an element (or subset) of the rod on the right exerts upon an
element of the rod on the left. Then derive the formula

G51(t) At
b a2(u)[Di + Cu - t)9] dufo [D2 + (u - t)2]%

for the force which the whole rod on the right exerts upon the element of the rod
on the left. Then derive the formula

F = G f a Si(t) 'it f b 12(u)[Di + (U - t)j] du.
0 o [D2 + (u - t)2]%

16 Two identical slender rods having constant linear density S occupy the
intervals -a < x 5 -e and e < x S a of an x axis. It is supposed that 0 < e
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< a, and we can be interested in situations in which e is small. Set up an integral

for the gravitational force which the rod on the right exerts upon the rod on the

left.
17 Figure 13.493 shows rods of lengths a and b that have constant linear

density S, that lie on the x and y axes, and that are hinged at their ends at the

(0, b)

(0,y)

(x,0) (a,0) x

Figure 13.493

origin. A little segment of the horizontal rod in a neighborhood of (x,0) pro-
duces a little gravitational force u on a little segment of the vertical rod in a
neighborhood of (O,y). This little force u has a little scalar horizontal compo-
nent ux which produces a little torque (or first moment) yu= which tends to rotate
the vertical rod toward the horizontal one. There are hordes of little torques.
Set up an integral for the total torque.

18 Most people having serious interest in mathematics want to see and

perhaps study the nontrivial steps by which the important Euler gamma integral

formula

(1) Z! = foo t=ea dt (z > -1)

is derived from the definition of z! given in Problem 11 of Problems 3.39. We

start with the fact that, when z is not a negative integer, z! is defined by the

formulas
nine/

(2) z! = lim Fn(z), Fn\z)
_
- (z + 1) (z + 2) ... (z + n)

Expressing ((z + 1)(z + 2) . . (z + n))-i as a sum of partial fractions leads

to the formula

FF(z) = n=+i (-1)k (n k 1) j_+ -k+
1.

k=0

To put this in a form that can be simplified by use of the binomial formula, we

use the fact that

(3)

I fofu=+kdu=J0 u=ukdu

when z > -1 and k = 0, 1, 2, . . . .
Assuming henceforth that z > -1,

we find that

(4) FF(z) = n:+1 r 1 u= (n k 1) ln-k(-u)k du
0 k=0

and hence that

(5) FF(z) = ns+l f 01 us(1 - n)n-1 du.
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Changing the variable of integration by setting u = t/(n - 1) then gives
1 z+1 n-1 t n 1

(6) F-(2;) = (1 f
Jo

(1 - n - 1/ dt

when n > 1. Therefore

(7)

where

(g)

Z! = lim dt

I

-1

Gn(t) = tz (1 - n I/ (0<t5n-1)
and 0 when t > n. It can be shown that

J S I tze t 1.(9) lim G (t) = tze-1, JG(t)

While full exploration of the matter lies beyond the scope of elementary calculus,
(1) is a consequence of (7), (9), and the Lebesgue criterion of dominated con-
vergence for taking limits under integral signs. When m and s are numbers for
which s > m, we can put t = (s - nz)x in (1) to obtain the formula

e-"zxze'"s dx.(10)
z.

= 10,(s - m).'1

Particularly when it is recognized that (10) is valid even when m is complex, this
single formula (10) is the equivalent of a huge table of Laplace transforms and is
therefore very important.

19 We examine the formulas by which ideas of this chapter are used to start
with the Euler gamma integral formula

(1) at = fo0 tie e dt

of the preceding problem and derive the beta integral formula

(2) fo
tn(1- t)Q dt

p !q!- (p + q + 1)!

It is supposed that z, p, and q are complex numbers having real parts exceeding
-1. Use of (1) gives

(3) p!q! = f , xpe= dx f0`° ygey dy
0

where the right side is the product of two integrals. Writing this as an iterated
integral and putting y = u - x give

(4) p!q! = fog dx fog xpyse (rty) dy = f00 dx

fxo0
xp(u - x)9e " du

The Fubini theorem justifies change of order of integration to obtain the first
equality in

U m 1
(5) p!q! =

o
e-°' du fo xp(u - x)4 dx = f

o
up+4+1e du fo tp(1 - t)- dt

o
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and putting x = ut gives the second equality Therefore

(6) p!4! = (p + q + 1)! 101 tP(1 - t)4 dt

and (1) follows.

13.5 Integrals in polar coordinates In some cases a plane set S and a
function f defined over S are such that the double integral defined as in
(13.37) by

(13.51) f f S f(P) dS = lim I f(P) AS

can be advantageously expressed in terms of polar coordinates p and c_
For example, suppose that, as in Figure 13.52, S is the set of points

0=RA& (P,+110k+1

P=g2(0)
(P,,Ok+,) (p,o + 6¢)

Figure 13.52 Figure 13.53

AP

Figure 13.531

having polar coordinates p, 0 for which gl(4,) <- p S g2(4,) and a < 0 <
0, where gi and g2 are continuous functions for which 0 < gl(4,) S g2(¢)
when a S 0 < /3. Our first step is to partition S into subsets Si, S2,

, S by radial lines having the polar equations ¢ = 4,o, 0 = 01,
, 0 = yam, where a = ¢o < .01 < < 4,,,, = 9, and by circles

or circular arcs having the equations p = po, p = pi, , p = as
in Figure 13.52. A typical one of the subsets is a part of a sector having
corners at the points whose polar coordinates are shown in Figure 13.53.
We set Op, = p,+1 - p, and D4ik = Ok+l - 4,k and then simplify the things
we write by discarding all subscripts to obtain the polar coordinates
shown in Figure 13.531. The symbol AS then represents the area of the
shaded set in Figure 13.531. This shaded set is not a rectangle, because
the straight sides are not parallel, and the inner and outer sides are arcs of
circles which are not parallel line segments. It is, however, thoroughly rea-
sonable to have the opinion that, when p > 0 and Op and 0¢ are small,
the shaded set is "nearly" rectangular and that AS should be closely
approximated by the product of /p (the length of one of the straight
sides) and p 0¢ (the length of the inner curved side). This suggests that
we should be able to use p A4, Op as an approximation to AS. Much
more can be said about this approximation business, and there are dif-
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ferent ways of proving that, when p > 0,

(13.532) lim As = 1.
AP-+o, m-+o PD P A¢

It is, in fact, easy to work out an exact formula for AS, because AS is
the difference of the areas of two sectors having central angle L. The
larger sector has radius p + tp and the smaller sector has radius p, so

AS = 2(p + Ap)2 0o - jp2'o = 1(2p iP + (Op)') A0
and hence

(13.533) As = (p + 2P 1 LO AP.

This can be used to prove (13.532), and it can also give us another idea.
If we let p* = p + pp/2, then we obtain the exact formula

(13.534) AS = P* 0o AP.

One who wishes to do so may insist that the formula

(13.535) AS = p A0 Ap

is an exact formula obtained by setting Ep, = p,+i - p E¢k = 40k+l - ok,
P* = p, + '(P,+i - p,), and discarding all subscripts and stars. When we
put f(P) in the form f(p,¢), where p and q5 are polar coordinates, we are
therefore able to put (13.51) in the form

(13.54) Ifs f(p,o)p do dp = lim jf(P,db)P A0 A p.

Assuming that f is bounded over S and is sufficiently continuous to make
all of the integrals exist, we can use Theorem 13.38 to express this double
integral as an iterated integral. For example, when S is the set featured
in Figure 13.52, we observe that the point having polar coordinates
(p,o) lies in S when a --<_ o _<_ P and, for each such 0, gl(¢) _< p 5 g2(o),
so

(13.55) ffs f(p,o)p do dP = f " do f f(P,4)P dp.

Except in cases where S is a circular sector (which may be a whole circular
disk) or the difference of two circular sectors (which may be a whole
circular ring), it is usually not convenient to use formulas of the form

(13.551)
Ifs

f(p,o)p do dp =
fab

dp fh
P(a)

f(p,o)p do

in which the first integration is with respect to 0. The following three
examples serve to show how double and iterated integrals in polar coordi-
nates can be set up. It is not recommended that the formulas be
remembered; we reconstruct them whenever we want to use them.
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Examplel Let05a<#5,r,letf(4)>_Owhen a<¢_<S,letf
be Riemann integrable over the interval a < 0 < #, and let S be the
plane set of points having polar coordinates (p,4)) for which a < 0 < ft
and 0 < p < f(4)). In case f is continuous, S is the set bounded by the
polar graphs of the equations 0 = a, ¢ = S, and p = f(o). The problem
is to find the volume JBI of the solid body B that is "generated" by rotat-
ing the set S about the initial line (or x axis) of Figure 13.56. The first

Figure 13.56

step is to partition S into subsets by radial lines through the origin and
circular arcs having centers at the origin. Letting p and .0 denote the
polar coordinates of a point in a typical subset, we use the number p £p 04,
as an approximation to the area of the subset. When the subset is
rotated about the x axis, it generates a solid which may be thought of as a
ring or hoop or gasket having radius p sin 0 and length 2rp sin 0. The
number

or

2,rp2 sin 0 Op A4),

being the product of the length of the ring and the area of a cross section
of the ring, is then used as an approximation to the volume of the ring.
The sum in

(2rp sin 0) (p Op o4)),

x

(13.561) CBI = lim E2rp2 sin 4) Lp 04)

is then used as an approximation to the volume IBI of the body B, and
the limit is (without proof) taken to be the exact volume jBI. The
right member of (13.561) is a double integral. Expressing this as an
iterated integral gives

(13.562) (BI = fp
do

frcm
2rp2 sin 0 dp

or

JBI = 2 r
f
a sin .0 d4)

J0
p2 dp(13.563)

or

(13.564) Ill =
23 f [f(4)]3 sin -, do.
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It is particularly easy to evaluate this integral for the special case in
which there is a constant R for which R when a < ¢ <_ R. In
this case, S is a circular sector and

3

(13.565) JBI =
23 [cos a - cos S].

In case a = 0 and # = n, the solid body B is a complete spherical ball of
radius R and the right side reduces to the correct volume jrR3.

Example 2 Let a < 0 z-= a + 21r, let f(O) > 0 when a <_ 0 < 0, let f
be Riemann integrable over the interval a S 0 <_ i3, let S be the plane
set of points having polar coordinates (p,o) for which a S 4) S i and
0 < p < f (o), and let a lamina (or flat plate) cover S and have areal
density (mass per unit area) 5(p,¢) at the point (p,¢) of S. The problem
is to find the pth moment of the lamina about the y axis shown in Figure

0=0

Figure 13.57

13.57. As before, we use p £p L¢ as an approximation to the area of a
subset of S. The next step is to use

b(P,o)p Ep AO

as an approximation to the mass of a part of the lamina. Multiplying
this by xp or (p cos ¢)p, the pth power of the x coordinate of a point in
the part, gives an approximation to the pth moment about the line x = 0
of the part of the lamina. This leads to the formula

Mao = lim T"(p cos o)p&(p,¢)p AP z4

for the required pth moment. The right member is a double integral,
and expressing it as an iterated integral gives

cosp ¢ do
AO)

fo S(P,o)Pp+1 dp.

Example 3 We now require an integral for the polar moment of
inertia M`'of the lamina of Example 2 about the line L through the
origin perpendicular to the plane of the lamina. We use p LIp L4 as
an approximation to the area of a subset of the lamina and then use
S(p,c)p Lip 0o as an approximation to the mass of the subset. Multi-
plying this by p2, the square of the distance from the line L to the subset,
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gives the approximation

(13.58) S(P,0)P3 AP 0O

to the polar moment of the subset. This leads to the formulas

MZ Zo v_Vu = lim ES(pAP, AP 0o
and

M<2> a f(o)
X=o vow = d f0 6(P,o)P3 dp.

Problems 13.59
1 Set up an iterated integral in polar coordinates for the volume 1' of the

solid generated by rotating, about the y axis, the triangular set bounded by the
lines having the polar equations 0 = 0 and 0 = 0 (where 0 < S < 7r'2) and
the line having the rectangular equation x = k (where h > 0). Then evaluate
the integral and discover that Y = 23 ha tan 0 Remark: Correctness of the

answer can be verified by use of elementary geometry, because the solid is
obtainable by removing a part of a solid right circular cone from a segment of a
solid right circular cylinder.

2 Find the distance from the vertex to the centroid of a lamina having the
foim of a circular sector of radius R and central angle 2a when each of the fol-
lowing is true.

(a) The lamina is uniform. lgns : 3 siaa R

(b) The density is proportional to kth power of the distance from the vertex.

11ns.: k+2sinaRk+3 a
3 Using the equation p = 2a cos ¢, set up and evaluate an iterated integral

in polar coordinates for the moment of inertia to of a circular disk about a line
perpendicular to the disk and containing a point on the boundary of the disk.
.4ns..

I r x/2 2a cos ¢a= 2f v/2

d4 f0 p0dp= a4.

4 Using the equation p = a, set up an iterated integral in polar coordinates
for the moment of inertia Ia of a circular disk about the axis of the disk (the line
through the center of the disk perpendicular to the plane of the disk) when the
density of the disk at each point is the pth power of the distance from the point to
the diameter on the initial line (or x axis). 14ns.:

lo = 4 fo7/2 sin' o do foa p'+= dp.

Remark: With the aid of the formula
p-1 (q-1

fog/2

sin' x cosq x dx = 2
2

2C+ 42

1 1
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appearing among the problems of Section 8.4, and the fact that (-i)! _ /jr-
we can put the result in the form

IS =

(p-11!
4ap+4 w/2 2 / 7r a9t4 `` 2 )
p -}- 4 Jo sin' q5 dp = p + 4

02/ !
which is valid even when p is not an integer.

5 A circular disk has radius a and constant density 6. Find its moment of
inertia about each of the following:

(a) A diameter (line, not number) fins.:a4S
(b) A tangent in its plane Ins :a4S

6 Find the volume of the solid S obtained by rotating, about the x axis,
the region in the first quadrant bounded by the x axis and the graph of the polar
equation p = a cos q6. Outline of solution: The volume ISI of S is approximated
by the sum of "elementary" rings a sample one of which has cross-sectional area
Pk AN Aq'k and length 27rpk sin ¢k This leads to the formula

ISI = 2ir Joy /2 sin q5 do Ioa
eos 0

P2 dp.

AIns.: 4iras/15.

7 Supposing that the solid S of Problem 6 has constant density S, find the
gravitational force F which it exerts upon a particle m* of mass m concentrated
at the origin. Outline of solution: The sample elementary ring of the preceding
problem has mass Mk, where

Mk = 27r& sin 4kpk AOk APk

The force AFk which this ring exerts upon m* is the same as the i component of
the force exerted upon m* by a single particle of the same mass Mk concentrated
at the point having polar coordinates (pk,lk). Therefore,

AFk _ i
GmMk

cos
Pk

OA;.

This leads to the formula

r0aF = 2irGm&i fr12 sin 0 cos 0
cos m dp

The answer is F = --raGmSi. Remark: We embark on a little excursion to see
that the solid S of this problem and the preceding one is a most remarkable solid.
If a particle P of mass M is located at the point in our plane having polar coordi-
nates (p,o), or at a point which is obtained by rotating it part of the way around
the x axis, then the scalar component F. in the direction of the x axis which it
exerts upon m* is

F. = GmMM cos .

If P lies inside our solid S, then p < a _\/cos 0, so p2 < a2 cos ¢, so (cos cb)/p2 >
1/a2, so F. > GmM/a2. If P lies outside our solid S, then F. S 0 if 7r/2 _< jq5I <
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7r and p > a 1/cos 4> if 101 < it/2. It follows that if P lies outside our solid,
then Fz < GmM/a These results show that if we transfer material from the
inside to the outside of our solid, we decrease the force which pulls m* in the
direction of the positive x axis. This fact and the answer to Problem 6 give the
following interesting conclusion. Of all solids having volume 4aa3/15 and uni-
form density S, our solid S is the one and only solid which exerts, upon a particle
at the origin, the greatest force in the direction of the positive x axis. The force
Fs exerted upon m* by a spherical ball B which has the same volume and density
as S, and which has its center on the positive x axis and has the origin on its
surface, is the first of the vectors

FB = 25 -I,iraGm8i, Fs = 3aGmSi,
and the force exerted by our solid S is the second one. Thus we have a new
proof of the inequality 3 25 < 3. Tables say that

325=2.924018.

Spherical balls are not the best, but the best is only about 2.5 per cent better.
8 Partly because the result is thoroughly important in probability and

statistics and elsewhere, and partly because understandings of multiple and
iterated integrals should be developed, this problem requires learning a standard
method by which the formulas

(1) f o, a -' dx = 2, 1 f dx = 1

and
r1

(2) J
- e°> dx = 1, f xae z'12d' dx = Qs

are derived. Supposing that h > 0, we define F(h) by the first of the two equiva-
lent formulas

(3) F(h) = foh e -z' dx' F(h) = foh
e-" dy.

Then
r r

J = J0 dx Oh dy(4) [F(h)1Z = [ f h e-,2 dxI [ foh e dy
1

ffQ(h) e(z'+u') dx dy

where we have, in order, the product of two integrals, an iterated integral and,
finally, a double integral over the square region Q(h) of Figure 13.591. This

Figure 13.591
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turns out to be useful because the double integral can be compared with other
double integrals that are easily evaluated by use of polar coordinates. Let
D(h) be the quadrant of the circular disk consisting of points having polar coordi-
nates (p,¢) for which 0 5 p -< h and 0 S 0 < it/2 and let

(5) G(h) = fre(=2+v2) dx dy.
D(h)

Then, because the integrands are everywhere positive,

(6) G(h) 5 [F(h)]2 G(h \).
Writing (5) in terms of polar coordinates and evaluating the result by use of an
iterated integral gives

(7) G(h) = 1 JD(h) e-'*' p do dp f o, d( 0 e P'p dp

= fo /2 d4 [--fe °'];a0 =
4

[1 - e"'].

Since F(h) > 0, this and (6) give

(8) 2 -v/!-- e " :_5

f0h

' dx 2 1 - e W.

Taking the limit as h --> oo gives the first formula in (1), and the second formula
in (1) follows from the first. The first formula in (2) is obtained from the second
formula in (1) by a change of variable; the trick is to set x = t/V2_ or and then
replace t by x in the new integral. The second formula in (2) is obtained by
integrating by parts and using the first formula in (2). Remark: The formulas
obtained by replacing x by x - M in (2) are important. The function c defined
by

_ (Z-M)2
(9) I(x) _ e 2c

is the Gauss probability density function having mean (or average) M and standard
deviation or. In appropriate circumstances, the number

(10) fa
41(x) dx

a

is, when a < b, used for the probability that a number x (which could be the num-
ber of red corpuscles per cubic centimeter in your blood) lies between a and b.
The formula

M+.b M+ha - (z-M)' a
(11) f I(t) dt = f e 2`' dx = _ f ef't2 dt,

a M v`1r 0

which is proved by use of the substitution (x - M)/o- = t, facilitates calculations
of probabilities because the last member is tabulated as a function of X. Many
students of anthropology, medicine, education, agronomy, and other branches
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of agriculture are required to study analytic geometry and calculus so they can
start learning about these things.

13.6 Triple integrals; rectangular coordinates We have par-
titioned sets in El and E2 into subsets and used these partitions in the
process of setting up Riemann sums and Riemann integrals of functions.
One reason for the importance of what we have done lies in the fact that
the methods are easily extended to provide information about triple in-
tegrals of the form

(13.61) fffsf(P) dS

in which S is a set in three-dimensional space E3 in which it is sometimes
convenient to suppose that we exist.

Let S be a bounded set in E3 which may be a spherical ball (the set
consisting of the points inside and the points on a sphere) or any other
bounded set in E3 which has a positive volume ISI. As was the case
when we defined double integrals, we do not allow any one brand of
coordinates to dominate our work. We suppose that we have a bounded
function f defined over S and use the symbol f(P) to denote the value
of f atP. For example, f(P) could be the density (mass per unit volume)
at P or the product of the density at P and the specific heat at P and the
temperature at P. The first step in our approach to a Riemann sum is
to make a partition Q (again the letter P has been preempted) of the set
S into n subsets S1, S2, . , S,,. The only thing we require of the
sets Si, S2, ... , Sn is that they be nonoverlapping, that their union
be S, and that each one of them have positive volume. The notational
transition from Riemann sums to Riemann integrals is facilitated by
denoting the volumes of the sets S1, S2, , Sn by the symbols AS1,
AS 2j , AS.. Thus, for each k = 1, 2, , n, the symbol OSk does
not stand for a part of the set S; it stands for the volume of a part of S.
For each k = 1, 2, , n, let Pk be a point in the set Sk. The number
RS (Riemann sum) defined by

(13.62)
n

RS = I f (Pk) O Sk
ks1

is then a Riemann sum formed for the function f and for the partition
Q of S. The norm JQI of the partition Q is, as in previous cases, the
greatest of the diameters of the subsets. If there is a number I such that
to each e > 0 there corresponds a a > 0 such that

n

(13.621) II- 1 f(Pk)1SkI<e
k=1
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whenever the sum is a Riemann sum formed for the function f and for a
partition Q of S for which IQj < b, then f is said to be Riemann integrable
over S and I is said to be the Riemann integral off over S. The integral
is usually denoted by the symbol

(13.622) fffsf(P) dS.

The integral is called a triple integral, and the three integral signs serve
to remind us that S is a three-dimensional set, that is, a set in E3 having
positive volume. As in previous cases, it is a convenience (and sometimes
also a source of confusion) to introduce the notation of limits and write

(13.623)

n

fff f(P)dS= lim
1Q1- O k=1

f(Pk) tSk

or

(13.624) f f fs f(P) dS = lim j f(P) AS.

The following theorem, which is analogous to Theorem 13.38, is very
useful.

Theorem 13.63 If S is a subset of a region R consisting of points
(x,y,z) for which a, < x < a2, b1 < y < b2, c1 <_ z =< C2, if f(x,y,z) = 0
when (x,y,z) is a point in R but not in S, and if the eight integrals

11 = fffsf(x,y,z) dS,

is =

Is =

I, =

f a dx f b dy f I f(x,y,z) dz,
at bt et

fbb,
dy faa dx fct f(x,y,z) dz,

f ex

dz
a: dx f b,

f (x,y,z) dy,
bie, Jul

all exist, then

12 =
fffff(x,y,z) dS

14 = faa= dx fo, dz fbb= f (x,y,z) dy

16 = fbb dy f , dz faa' f(x,y,z) dx
Is

=
f" dz f b= dy J a f(x,y,z) dx

ct b, at

11=12=13=14=15=16=17=18,
that is, the eight integrals are all equal.

Remarks analogous to those following Theorem 13.38 apply here.
Proof of the theorem lies far beyond the scope of this course. We can
be content with a hazy understanding of the fact that the triple integrals
Il and 12 will exist if f is bounded and the set D of discontinuities of f
has volume (three-dimensional Lebesgue measure) 0. So far as ele-
mentary applications to elementary problems are concerned, we can be
sure that if the set S and the function f are bounded, then all of the integ-
rals appearing in the theorem must exist and must have the same value.

To develop a technique for setting up triple and iterated integrals,
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x=a1

x=a2

Y=gi(x)

z=f1(x>Y)

Y=g,(x)

Figure 13.64

we consider an example. As in Figure 13.64, let S be the set or solid
bounded by the surfaces having the equations z = fl(x,y), z = f2(x,y),
y = gl(x), y = g2(x), x = a1, and x = a2. We suppose that, at each
point (x,y,z) of the solid, the solid has density (mass per unit volume)
S(x,y,z). This means that to each e > 0 there corresponds a S > 0 such
that

(13.641) < eS(x,y,z)
1m

- 2T

whenever AS is the volume of a part of the solid containing the point
(x,y,z) and having diameter less than S, and Am is the mass of the part.
In case there is a constant k such that 6(x,y,z) = k whenever (x,y,z) is a
point of S, the solid is said to be homogeneous. While the ideas can be
applied in some other cases, we suppose that all of the functions which we
have introduced are continuous. Supposing that xo is a given number
and that p is a nonnegative integer that is 0 or 1 or 2 in most applications,
we set up integrals for M2p'xo, the pth moment of the solid about the plane
x = xo. Using rectangular coordinates, we slice S into subsets by planes
parallel to the coordinate planes. A typical subset, such as one shown
in Figure 13.64, has volume Ax Ay Az. Letting (x,y,z) be a point in the
subset, we use the number

(13.642) S(x,y,z) Ax Ay Az

(the product of mass per unit volume and volume) as an approximation
to the mass of the subset. If the total mass of the subset were concen-
trated at the point (x,y,z), its pth moment about the plane x = xo would
be

(13.643) (x - xo)PS(x,y,z) Ax Ay As.
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We therefore use this number as an approximation to the pth moment
of the subset. The sum

(13.644) Z(x - xo)PS(x,y,z) Ax Ay Az,

which contains a term for each subset, should then be a good approxima-
tion to the total pth moment of the whole solid whenever the diameters
of the subsets are all small. This leads us to the formula

(13.645) M = lim E(x - xo)'S(x,y,z) Ax Ay Az,

the right side of which is taken to be the definition of the number M=P'zp
which we are seeking. In accordance with the definition of triple integ-
rals, the right side of (13.645) is a triple integral which we can denote by
one or the other of the symbols in the formula

(13.646) Mz-'Z, = fffs (x - xo)PS(x,y,z) dS

= f f fs (x - xo)"5(x,y,z) dx dy dz.

With the aid of Theorem 13.63, we can undertake to express the triple
integral in terms of iterated integrals in various ways. It is, however,
worthwhile to learn to use a procedure which leads directly to iterated
integrals. As above, we build up the expression

(13.65) (x - xo)'S(x,y,z) Ax Ay Az

to serve as an approximation to the required moment of a single subset.
We then form the sum

(13.651) Ax Ay I (x - xo)'S(x,y,z) Az,
x,11 fixed

where the part "x, y, fixed" of the symbol serves to inform us that the
sum contains only terms arising from those subsets which comprise a
single vertical column such as that shown in Figure 13.64. Thus (13.651)
and the number

I:(x.v)
(13.652) dx Dy f

(x y)
(x - xo)'S(x,y,z) dz

are approximations to the required moment of one column. Next we
form the sum

(13.653) Ax I Ay (x -
x fixed

xo)'S(x,y,z) dz,
Ji(x,y)

where the part "x fixed" of the symbol serves to inform us that the sum
contains only terms arising from columns that comprise a slab running
from the cylinder on which y = yl(x) to the cylinder on which y = y2(x).
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Thus (13.653) and

(13.654) Ox
a:(x> dy

)PS x z A9,(x) 1,(.,v)
x - xo (,y, )

are approximations to the required moment of one slab. Finally,

(13.655) r oz(x)

dy
f,(x,v)

,(x (x - xo)DS(x,y,z) AOx Ja) ff,(x,y)

is an approximation to the required moment of the whole solid and
replacing this by its limit gives the formula

(13.656)
°2 J_(xn)M(P) = dx

f,(°,(x)

1x)
dy

fi(x.',)
(x - xo)p3(x,y,z) Aa, g

for the required pth moment of the solid about the plane x = xo.
Remarks very similar to those following (13.453) can now be made.

Formulas for the pth moments of the solid about the planes y = yo
and z = zo are obtained by replacing the factor (x - xo)P by the factors
(y - yo)P and (z - zo)P in the above derivations. In case p = 0, the
factors (x - xo)P, (y - yo)P, (z - zo)" are all 1 and the numbers M=JX

M(P'EO are all equal to the mass M of the solid. Thus

(13.66) M = fffs 6(x,y,z) dx dy dz,

and we can replace this triple integral by iterated integrals. Formulas
very similar to (13.46) show that the formulas M`(" = 0, 0,
M=i>r = 0 which determine the centroid (z,y,z) of S can be put in the
form

(13.67) x =
f f fs xS(x,y,z) dx dy A f f

fs
ya(x,y,z) dx dy dz

S(x,y,z) dx dy A

y

fffs S(x,y,z) dx dy A
NS

fffs zS(x,y,z) dx dy dz

fffs S(x,y,z) dx dy dz

where the denominators are equal to the mass of the solid.
For some purposes, the polar moment of inertia of a solid about a line

L is of importance. When the line L is the line having the equations
x = xo, y = yo, we may denote the polar moment of inertia about L
by the symbol or Ix-x,,,,J and work out the formula

(13.68) MX2)xo,7/yo = Ix=za,Y YD

= fffs
[(x - xo)2 + (y - yo)2JS(x,v,z) dx dy dz

which is analogous to (13.484). The formula

(13.681) M`x2'x,.,,_v0 = Mz2_'xO + Mv='o
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and the parallel axis theorem (Theorem 13.48) hold for solids as well as
for lamina.

Problems 13.69
1 Set up and evaluate a threefold iterated integral for the volume Y of the

solid tetrahedron bounded by the coordinate planes and the plane having the
equation

++
a

b c-1,

it being assumed that a, b, c are positive numbers. As.:

Y - f ax fbcl-?a/ f c1 z &

° b) dz = gabc.

2 Supposing that f is continuous over the tetrahedron T of the preceding
problem, set up a threefold iterated integral equal to the triple integral

fTf
(x,y,z) dx dy dz,

where, as is often done when rectangular coordinates are involved, dx dy dz is
written instead of dT. 11ns.: Same as answer to preceding problem except that
the integrand is f(x,y,z) instead of 1.

3 Set up a threefold iterated integral for the volume V of the solid in Ez
.bounded by the parabolic cylinders having the equations y = x2 and x = y2
and the planes having the equations z = 0 and x + y + z = 2. .dns.:

Y
= foI dx JO2-z-y A.

4 A homogeneous cube has density S and has edges of length a. Find its
moment of inertia about an edge. 41ns.: %8a5 or *Ma2, where M is the mass
of the cube.

5 A long solid circular cylinder S of radius b has its axis on the y axis of an
x, y, z coordinate system. A circular hole having radius a and having its axis
on the z axis is drilled. Supposing that 0 < a 5 b, set up an integral for the
volume Y of the part of S that is drilled away. 4ns.: Because of symmetry,
V is 8 times the volume of the part in the first octant and

Y=8 (dx dy
o

'dz.
JO JO

6 Let q be a nonnegative constant and let S be a spherical ball of radius R
whose density is proportional to the qth power of the distance from the center.
Taking the origin at the center of the ball, set up a triple integral for the polar
moment of inertia of the ball about the z axis. Simplify matters by using the
fact that the total moment is 8 times the moment of the part of the ball in the
first octant. Ans.:

t R R'-ii R'-z=-y=
8f dyfO Jo (xS+y2)(x2+y2+z2)s!2dz.
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Remark: Section 13.8 will enable us to avoid this and some other unpleasant
integrals.

7 The tetrahedron (or pyramid) bounded by the planes x = 0, y = 0,
z = 0, and

has density (mass per unit volume) S(x,y,z) at the point (x,y,z). Supposing
that a, b, c are positive constants and that p is a nonnegative constant, set up two
different iterated integrals for the pth moment of the solid about the plane
x = 0. f1ns.: One of the possibilities is

( l
1 a P rb\1 a/ r1 a b/Mix, 1
0

z J d J S(x,y,z) dz.
0 0

8 For the case in which S(x,y,z) = 1, so that the solid is homogeneous, show
that the last formula of Problem 7 can be put in the form

111x 0 ' f foa xp (1 - a)z dx.

At least when p = 0 and p = 1, show that

MX 1-0 = (p
+ 3)1 an+lbc = (p + 1) (p + 2) (p + 3)

a+lbt

Finally, show that x = a/4.
9 Let 0 < b a. A spherical ball of radius a has its center at the origin.

Set up a threefold iterated integral for the volume V of the part of the ball drilled
away when a bit of radius b drills a cylindrical hole centered on the line having the
equations x = 0, y = a - b. Symmetry may be used, and the integral need not
be evaluated. f1ns.:

Y= 4
a

d y
b=-b)1' dx rVJa'dz.

a-2b Y Jo J0

10 Show that when b = a, the answer to Problem 9 reduces, as it should, to

an integral for the volume of the whole spherical ball.
11 Assuming that the spherical ball of Problem 9 has density S(x,y,z) at

P(x,y,z), modify the integral of the preceding problem to obtain an integral for

the amount by which the drilling of the hole decreases the polar moment of inertia

about the z axis. f4ns.: Multiply the invisible 1 preceding dz by the factor

S(x,y,z)(x2 + y2).
12 Modify the answer to Problem 9 to obtain an integral for the volume of the

material drilled from the ball when the hole is centered on the line which meets

the y axis where the surface of the ball does.
13 Supposing that a > 0, evaluate

fffsl+x+Y+zdS,
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where S is the cube having four of its vertices at the points (0,0,0), (a,0,0),
(0,a,0), (0,0,a). .Ins.:

'(1 + 3a)2 log (1 + 3a) - 3(1 + 2a)2 log (1 + 2a) + (1 + a)2 log (1 + a).

14 Supposing that a, b, c are positii a numbers, evaluate

IJJ?sin {7r (a +b +c/1 dT'
where T is the tetrahedron having vertices at the points (0,0,0), (a,0,0), (0,b,0),
(0,0,c). .Ins.: (72 - 4)abc/2a3.

13.7 Triple integrals; cylindrical coordinates In some cases a
solid S (or set S in E3 having positive volume) and a function f defined
over S are such that the triple integral defined as in (13.624) by the
formula

(13.71) M, f (P) dS = lim I f (P) iS

can advantageously be expressed in terms of cylindrical coordinates p,
0, z. When we use cylindrical coordinates, the set S is partitioned into
subsets S1, S2, ' ' ' , S. by planes through the z axis having cylindrical
equations 0 _ 4o, 0 = 01, ' ' ' , 0 _ 0,, by circular cylinders having
cylindrical equations p = po, p = pi, ' . , p = p,,', and by planes parallel
to the xy plane having the cylindrical equations z = zo, z = z1, ,

z = z.,,. Figure 13.72 shows a typical subset containing a point having

Figure 13.72

cylindrical coordinates p, 0, z. This subset has height Oz and, as we
learned when studying polar coordinates, its base has area exactly or
approximately equal to p Ac Isp. Thus we use the formula
(13.73) AS = p AO Ap Oz
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to put (13.71) in the form

(13.74) fff3f(p,O,z)p do dp dz = lim I f(P,o,z)P Li4 Op Oz.

Assuming that f is bounded over S and that f is sufficiently continuous to
make all of the integrals exist, we can use Theorem 13.63 to express this
triple integral as an iterated integral. When limits of integration for
iterated integrals are being determined, information obtained by looking
at Figure 13.72 can be helpful. Adding subsets for which z varies (p
and 0 being fixed) yields a vertical column. Adding columns for which
p varies (0 being fixed) yields a whole or a part of a wedge which in some
cases looks like a conventional wedge of a cake or orange or lemon.
Adding the wedges obtained for appropriate values of f then gives the
entire solid S. Results of performing summations and integrations in
different orders are easily described. For example, adding subsets for
which 0 varies (a and p being fixed) yields all or part of a circular hoop
or ring, and there are two ways in which these hoops can be added to
yield more extensive parts of S.

Supposing that S is a right circular cylindrical solid bounded by the
graphs of the equations p = R, z = 0, and z = H and that the density
(mass per unit volume) at the point having cylindrical coordinates
(p,4,z) is 5(p,o,z), we set up an integral for the polar moment of inertia
M='o.Z=o of S about the x axis. For the volume AS of a subset of the

Figure 13.75

solid, which is shown in Figure 13.75, we use the formula

(13.76) AS = pLOLipAZ.

To get the mass AM of the subset, we multiply by the density (mass per

unit volume) 5(p,o,z) to obtain

(13.761) AM = 5(p,4,z)p Li4 Op Oz.

Then we must realize what we are trying to do and multiply this by

(13.762) z' + (p sin ¢)=,
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the square of the distance from the subset to the x axis, to obtain the
expression

(13.763) [z2 + p2 sin2 0j3(p,4,,%)p 042 AP Az

for the polar moment of the subset about the x axis. Adding these and
taking the limit of the sum gives

(13.764) My2 o,._o = fffs [z2 + p2 sin2 .0]3(p,o,z)p do dp dz.

This is, as it should be, the sum of the moments of inertia of S about the
two planes z = 0 and y = 0. The limits of integration being determined
with the aid of Figure 13.75, we can obtain the iterated integral formula

(13.77)
=fox

do
f0R

dp

foH
[z2 + p2 sin2 o]b(p,o,z)p dz.

In order to be able to evaluate this integral in decimal form, we must
know R, H, and S(p,o,z). For the special case in which q is a nonnegative
constant and S(p,c,z) = kpQ, we can evaluate the integrals in terms of
R, H, q, and k to obtain

(13.78) M=i'o,y_o = k [27r T q + 2 + aH q
+

4

The result for the case in which the cylinder is homogeneous is obtained
by setting q = 0.

Problems 13.79
1 Supposing that 0 < b < a, set up and evaluate a threefold iterated integral

in cylindrical coordinates for the volume F of the solid lying inside the sphere
and cylinder having the cylindrical equations p2 + z2 = a2 and p = b. Ans.:

F = 8 fOr/2
d¢

f b p dp fo dz = fr[a' - (a2 -

2 Supposing that 0 < b < a, set up and evaluate a threefold iterated integral
for the mass M of the solid lying inside the sphere but outside the cylinder having
the cylindrical equations p2 + z2 = a2 and p = b, it being assumed that the
density of the body at P(p,o,z) is jzj. Ans.:

M = 8 wl
d¢

(ba p dp fo a=-1
z dz = 2 (a2 - b2)2.

3 Set up and evaluate a threefold iterated integral in cylindrical coordinates
for the volume F of the solid bounded by the sphere and cylinder having the
cylindrical equations p2 + z2 = a2 and p = a cos 0. Bns.:

P - 4

1

/or/2 doJ /oa e-, p dp f0
_ pa

dz

=/2 r 2_

-uae f0 (1 - sine 4) do = 2 - j1-
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4 Assuming that the solid cone shown in the upper part of Figure 13.791
has density (mass per unit volume) 5(p,q5,z) at the point having cylindrical coordi-
nates (p,cb,z), set up an iterated integral for the moment of inertia of the cone

Figure 13.791

about the x axis. Then calculate the required moment for the case in which the
density is proportional to the qth power of the distance from the axis of the cone,
that is, S(p,¢,z) = kpa. dns.: The integral is the same as that in (13.77) except
that the lower limit of integration with respect to z is (H/R)p. The required
moment is

k[
(q + 2

5 Show how the preceding problem gives the conclusion that the moment
of inertia of a homogeneous conical solid, having density 3 and height H and
base radius R, about a line through the vertex perpendicular to the axis is
-AVR2H(4H2 + R2) 3.

6 A solid cylinder having constant density 6 is bounded by the cylinder
and planes having the equations p = a, z = 0, and z = h. Set up and evaluate
a threefold iterated integral in cylindrical coordinates for the moment of inertia
I of the solid about the x axis. fins.:

I = s f 27 do f p dp h (z2 + p2 sin2 4,) dz = aa2h& [ 3z + 4

7 A conical solid has height h, base radius a, and density kz, where k is a
constant and z is the distance from the base. Find the mass M of the solid
and the distance f from the base to the centroid. Ins.: M = a2h2k, x = 32-h.

8 A conical solid has height h, base radius a, and density kp, where k is a
constant and p is the distance from the axis. Find the mass W of the solid and
the distance z from the base to the centroid. flns.: M =a3hk, I = 3h.

9 A cup-shaped solid S is obtained by rotation about the z axis of a region
R in the yz plane bounded by the graphs of the equations

2a ir

z=x2, z=x2+1, z=10.

The density (mass per unit volume) of S at the point having cylindrical coordi-
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nates p, ,, z is 3(p,4,z). Set up a threefold iterated integral in polar coordinates
for the total mass M of the solid. Ans.:

M _ f2Ad rs
dp S z) dz +

r2x do / N/ 1-0 p dp 10 6(x

/0 o p P L
o a f o, dz.

10 As we near the end of our textbook, we can and should review and sum-
marize some of our ideas about integrals. This problem does not require us to
produce a specific numerical answer to a specific problem; it requires us to think
in general terms about methods by which such answers are produced. With the
understanding that the ideas have applications to more complicated situations
as well as to simpler ones, we consider the gravitational force F exerted upon a
particle of mass m at a point Q in E3 by a body B. This body B may be one-
dimensional, that is, it may be concentrated upon a one-dimensional set S which
may be a line segment or an arc of a curve having positive length. In this case
we suppose that the body has linear (or one-dimensional) density b(P) at the
point P in S. The body B may be two-dimensional, that is, it may be concen-
trated upon a two-dimensional set S which may be a circular disk or some other
region (on a plane or curved surface) which has positive area. In this case, we
suppose that the body has areal (or two-dimensional) density b(P) at the point
P in S. Finally, the body B may be an ordinary three-dimensional solid body,
that is, it may occupy a set S in E3 having positive volume. In this case we
suppose the body has ordinary (mass per unit volume) density S(P) at the point
P in S. We simplify and unify our discussion of these things by considering
length to be one-dimensional measure, area to be two-dimensional measure, and
volume to be three-dimensional measure. Thus we handle all of our examples
together by saying that we have a body B occupying an n-dimensional set S in
E3 having positive n-dimensional measure ISI and that the body has n-dimensional
density b(P) at the point P in S. The integer n may be 1 or 2 or 3. To start
the process of calculating F, we make a partition of the set S into q (note that n
has been preempted) measurable subsets S1, S2, - - , S. It would be thor-
oughly reasonable to denote the measures of these sets by IS1I, ISsI, - - - ,

IS5I, but we find it convenient to denote the measures by AS,, AS2, - - , AS,-
Thus, for each k, ASk is not a part of S; it is the measuret of a part of S. The

o which ASk is the measure. We use the number
AFFk S(Pk) OSk to approximate the mass of the part of the

Q body occupying the set S. For each k, we apply the
Figure 13.792 Newton inverse square law to obtain the force OFk

which a particle of mass S(Pk) ASk at Pk exerts upon
the particle of mass m at Q. Even small figures can be helpful, and we can
look at Figure 13.792. We find that

(1) AFk = Gm6(Pk) ASk QPk

IQPkI2 I QPk

f Perhaps we should recognize the fact that the very useful standard notation is a relic
of the good old days when it was not the fashion to recognize a difference between a set and
the measure of the set.

next step is to select a point Pk (or Pk) in Sk. Note
-OPk that Pk is not in ASk but that Pk is a point in the set

f
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where G is the, gravitational constant and the last factor is a unit vector in the
direction of QPk Making a slight modification of the right member of (1) and
adding give the right member of the formula

8(Px)QPx(2) RS = Gm I ASk,
k1 IQPxl3

Which is a Riemann sum (RS) formed for the vector function having the value

(3)
a (P) QP

l0i,
at the point P of our set S. When we are in a hurry, we use the idea that the
Riemann sum should be near the force F whenei er the norm of the partition is
small as a basis for introducing the definition

° S(Pk)QPx(4) F = lim Cm pSx.
k=1 lQPkl3

Since the limit of the Riemann sums is a Riemann integral, we write

(5) F = Gm f
S(P)QP

dS,
s 1013

the symbol on the right being an orthodox symbol for the integral. When we
wish our notation to be as informative as possible, we can use n integral signs
when S is n-dimensional. The fact that different notations are used at different
times need not disturb us, because in any particular application we can be
expected to know the dimensionality of the set we partition. We can, when we
are unhurried, be more precise about the meanings of (4) and (5). The integral
is, when it exists, the one and only vector F such that to each positive number e
there corresponds a positive number S such that

(6) F - Gm i S(PI)QP AS, <kI lQPkl3

whenever the Riemann sum is formed for a partition whose norm is less than S.
For some purposes, it is important to observe that (5) is an intrinsic formula
which does not depend upon any one particular coordinate system which may
be used to specify the positions of the points involved in the problem. For
other purposes, particularly when problems in elementary books are being solved,
it is necessary to introduce a coordinate system. The raison d'etre of different
coordinate systems lies in the fact that different ones are most useful in different
situations.

13.8 Triple integrals; spherical coordinates In some cases a solid S
(or a set S in Es having positive volume) and a function f defined over S
are such that the triple integral defined by the formula

(13.81) f f fsf(P)dS=limI f(P)AS
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can advantageously be expressed in terms of spherical coordinates r, 0, 8.
When we use spherical coordinates, the set S is partitioned into subsets
S1, S2, , S by spheres having spherical equations r = ro, r = r,,

r = r., by half-planes having spherical equations ¢ _ 00, 4 01,

¢ _ 0.,, and by half-cones having the spherical equations 0 = 00,
0 = 01j , 0 = Figure 13.82 shows a typical subset containing

Figure 13.82

a point having spherical coordinates (r,4,0). When r > 0 and the num-
bers Ar, Ag, A0 are all small, this subset closely approximates a rectangu-
lar parallelepiped one dimension of which is Ar, the difference of the radii
of two spheres. The inner (or outer) face perpendicular to the ray from
the origin to the point (r,4i,6) closely approximates a rectangle one side
of which has length r A0 (the length of the arc of a sector having radius
r and central angle A0) and the perpendicular sides of which have length
r sin 0 A¢ (the length of the arc of a sector having radius r sin 0 and cen-
tral angle A4). Thus the area of the face is approximately r2 sin 0 A¢ A0.
Thus we use the formula

(13.83) AS = r2 sin 0 A4) AO Ar

(which, depending upon the choice of r, 0, 0, is exactly or approximately
correct) to put (13.81) in the form

(13.84) f f fs f(r,4,0)r2 sin 0 d4) d0 dr = lim I f(r,0,¢)r2 sin 0 A4) A0 Ar.

Assuming that f is bounded over S and that f is sufficiently continuous
to make all of the integrals exist, we can use TheQrem 13.63 to express
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this triple integral as an iterated integral. When limits of integration
for iterated integrals are to be determined, information obtained by
looking at Figure 13.82 can be helpful. Adding subsets for which r
varies (0 and 0 being fixed) yields a spike or tapered column. Adding
spikes for which 0 varies (0 being fixed) yields a whole or a part of a wedge
which in some cases looks like a conventional wedge of an orange or
lemon or cake. Adding the wedges obtained for the appropriate values
of ¢ then gives the entire solid S. Articulate persons can describe results
of performing summations and integrations in other orders. For exam-
ple, adding subsets for which 0 varies (r and 0 being fixed) yields all or
a part of a circular hoop or ring, and there are two ways in which these
hoops can be added to yield more extensive parts of S.

Supposing that S is a spherical ball having center at the origin and
radius R and that the density (mass per unit volume) at the point having
spherical coordinates (r,c,0) is 6(r,0,6), we set up an integral for the polar
moment of inertia M 0,,,.0 of the ball about the z axis. For the volume
AS of a subset of the ball, we use the formula

(13.85) AS = r2 sin 0 A¢ A0 Ar

which, like the telephone number of a dentist, is sometimes needed but
is usually not permanently remembered. To get the mass AM of the
subset, we multiply by the density (mass per unit volume) 5(r,4,@) to
obtain

(13.86) AM = sin 0 A¢ AB Ar.

Then we must be wise and strong enough to multiply this by (r sin 0)2,
the square of the distance from the subset to the z axis, to obtain the
expression

(13.861) 8(r,cb,8)r' sing 0 A4 AB Ar

for the polar moment of the subset about the z axis. Adding these and
taking the limit of the sum gives

(13.87) My2'o,,,ao = f f fs 3(r,O,0)r' sins 0 do de dr.

Since S is an entire sphere with center at the origin and radius R,

(13.88) M-o,,,_o =
(o2"

d-O fox d8
fox

3(r,4,8)r' sins 0 dr.

Problems 13.89
1 Let S be a spherical ball of radius a. Supposing that the center of the

sphere is at the origin and that the density is &(r,4,O) at the point having spherical

coordinates (r,¢,8), set up an iterated integral for the mass M. Arrange the
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order of integration in such a way that the last integration is with respect to r
and simplify the result as much as possible for the special case in which the
density is a function of r alone, say 3(r,-O,0) = f(r). Ans.:

M =
f0a

dr f7 d6
fo2r S0)r2 sin 0 dq,, M = Oar roa r2f(r) dr.

2 Show how the last result of Problem 1 can be obtained by direct use of
spherical shells and without use of iterated integrals.

3 Solve the modification of Problem 1 in which S is a spherical shell bounded
by concentric spheres having radii ri and f2-

4 Let q be a nonnegative constant and let S be a spherical ball of radius a
whose density is proportional the qth power of the distance from the center.
Using the formula

r2 sin 0 A¢ AO Ar

for volume in spherical coordinates and taking the origin at the center of the ball,
set up and evaluate a triple integral for the polar moment of inertia of S about
the z axis. Rns.: The triple integral is obtained by setting S(r,4,0) = kra in

(13.88). The required moment is
81rkaQ+1

3(q+5)
5 Show how the preceding problem gives the conclusion that the moment

of inertia, about a diameter, of a spherical ball having radius a and uniform
density S is -rrasS.

6 A solid spherical ball of radius a has, at each point P, density equal to
the product of the distances from P to the origin and to the axis from which 0
is measured. Set up and evaluate a threefold iterated integral in spherical
coordinates for the mass M of the ball. Ans.:

M _ f02r
d4i far sins 0 d0

fa
r4 dr = i2as.

7 This problem involves lengths of curves. Suppose that, as time t increases
from a to b, a particle P moves along a curve C in such a way that its rectangular
coordinates x, y, z, its cylindrical coordinates p, q,, z, and its spherical coordinates
r, d, 0 are all functions oft having continuous derivatives. Start with the formula

(1) L =Jab \d )2 +
(4y)2

+ (z)' dt

giving the length L of the curve C as an integral involving rectangular coordinates.
Use the formulas

(2) x=pcos y=psinq, z = z

to obtain the formula

(
(3) L=f

ab
/p2

\d ) +( )Z Z+(at)dt

giving Las an integral involving cylindrical coordinates. Then use the formulas

(4) p=rsin0, 0=0, z=rcos0
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to obtain the formula

(5) L = f b.Jr2 sin2 0 (dl) 2 + r2 (dl)2 +
(dr)2

dta V dt at dt

giving L as an integral involving spherical coordinates.
8 Using ideas and formulas from the preceding problem, start with the

formula

(1) r=xi+yj+zk
for the vector running from the origin to P at time t. Show that
(2) r = r(cos (k sin Oi + sin if sinOj + cos Ok).

Show that the velocity at time t is

dr dO d¢
(3)

where

(4) ul = cos 95 sin 0i + sin 0 sin Oj + cos Ok
(5) U2 = cos / cos 6i + sin ¢ cos Oj - sin Ok
(6) us = - sin q5i + cos q5j

Prove that the vectors ul, u2, u3, in that order, constitute a right-handed ortho-
normal system. Show, finally, that

l(7) IoI = 1 v = r2 sin2 0 (d )2 + r2 (a2 + \dt
)2.

9 With the aid of hints that may be gleaned from the two preceding prob-
lems, tell the meanings of the things in the formula

ds d (dB`/2 dr2
dt = r2 sin2 0

(dt)2

+ r2 I - + Oat )

and give conditions under which the formula is valid.
10 This problem provides an opportunity to fill in details and gain an under-

standing of a method by which a great problem in cosmology is solved with the
aid of vectors and integrals that involve rectangular and spherical coordinates.
Figure 13.891 shows a spherical ball S of radius a having its center at the origin.

Figure 13.891
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It is supposed that the sphere has density 5(r,4,9) at the point P having spherical
coordinates (r,4),0). A particle of mass m is supposed to be concentrated at a
point fl which lies outside the ball and on the negative z axis, the rectangular
coordinates of 11 being (0,0, - D), where D > a. We are required to determine
and learn something about the gravitational force F upon the particle of mass m
that is produced by the ball. We start with a basic idea of Newton that lies at
the foundation of classical science. If particles of masses m and AM are located
at points A and P, then each particle pulls the other toward it with a force of
magnitude Gm AM/17P-12, where G is a universal gravitational constant whose
numerical value depends only upon the units of force and distance that are used.
The actual force upon the particle of mass m is obtained by multiplying this
magnitude by SIP/API, the unit vector which has its tail at .4 and is pointed
toward P. Letting OF denote this force, we have

(1) OF = Gm
14P 011.p13

We need a useful formula for the vector A'P. The rectangular coordinates
x, y, z, the cylindrical coordinates p, gyp, z, and the spherical coordinates r, 4,, B
of the point P are related by the formulas

x=pcos¢=rsin0cos4,
y=psin4,=rsin0sin4,
z=rcos0

which can be found in this and other books and can be derived from Figure
13.891. Since .l has rectangular coordinates 0, 0, -D, we find that

(2) f1P = r sin 0 cos ¢1 + r sin 0 sin 4)j + (D + r cos 8)k

and hence that

(3) I t1PI = (D2 + 2Dr cos 0 +

Using spherical coordinates, we employ the right member of the formula

(4) AM = 5(r,4),B)r2 sin 0 Or A¢ AO

to approximate the mass AM of a subset (or element) of the ball containing the
point P. Substituting in (1) gives the formula

(5) OF = Gm (D2 S(2D rcos s0 + r2)36
AP Or AO 09

in which the right side is an approximation to the force upon the particle of
mass m produced by one subset of the ball. In (5) and some of the following
formulas, AP is written instead of the right member of (2) to save time and paper.
Supposing that the density function 6 is a reasonably decent function, we employ
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partitions of the ball and principles of the integral calculus to obtain

(6) F = lim I i F

and

F = Gm NS
(DI

sin 0
(7) .l J's (D2 + 2Dr cos B + r2)9h

.4P dr do dB,

where the integral is a triple integral, S is the ball or the portion of £3 occupied
by the ball, and F is the total force on the particle of mass m. The formula

(8) F = Gm r a r2 dr r' sin 0 2.
() o o (D2 + 2Dr cos 0 + r2)% dB fo 5(r,0,8)7P do

shows one of the six ways in which F can be represented as an iterate integral.
The first phase of our work is done, and we proceed to see how (8) can be

simplified when the density 3(r,4),8) is independent of 0 so that S(r,4),0) _
Sl(r,8), where Sl is a function of r and 0 only. In this case the last integral in
(8) is

(9)
o

2r
61(r,8)[r sin 0 cos Oi + r sin 0 sin 4)j + (D + r cos 0)k] do.

With the aid of the fact that foe'

sin 4) d¢ = 0 and foe cos 0 do = 0, we see
that this reduces to

(10) 21r5j(r,6)(D + r cos 8)k

and hence that (8) reduces to

a 2i Si(r,8)(D + cos 0) sin 0
(11) F = 2irGmk f

o
r- dr f

o (D2 + 2Dr
r
cos 0 + r2)3h d8.

This shows that, when the density is independent of .0, the components of F
in the directions of the x and y axes are 0. Of course, wise scientists always claim
that this must be true "on account of symmetry."

Our final step is to make additional simplification of (11) for the case in which
the density is a function of r only, so that Sl(r,8) = 52(r) and the ball is said to
be radially homogeneous. One reason for interest in this case lies in the fact
that suns and planets and moons are closely approximated by radially homo-
geneous balls ui less rapid rotations about their axes produce nontrivial equatorial
bulges. When Sl(r,8) = 82(r), we can put (11) in the form

(12)

where

(13)

F = 21rGmk f oa r&2(r)f (r) dr

(D+rcos 8)rsin8
f(r) - fo (D2 + 2Dr cos 0 + r2)% dB.

The integral in (13) may seem to be quite impenetrable until its fundamental
weakness is discovered. If we set u = r cos 0, then (for each fixed r) du = -r
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sin 0 dO and, except for algebraic sign, the integrand becomes that in

(14) f (r) = f r D +
u

_2 + 2Du + r2)3 d.-,(D

When 0 = 0, we have u = r, and when 0 = ir, we have u = -r, and we see
that (14) is correct when we see that - f

rr
= f rr We can discover that

trading (14) for (13) was good business if we know or discover or are told that
(14) can be demolished by the substitution

z - z
v=D22+2Du+r2, u=v 2D

r

D+uv+2 z - r2
2D

du - 2D dv.

Since v = (D - r)22 when it = -r and v = (D + r)2 when it = r, this substitution
gives

1 (D+T)2 V + D2 - r2
(15) f(r) = 4D2 f(D-,)= v3, dv

1 ! (D+r)'-

4D2 (D-r)2 lv 3' +
(D2 - rz)v-9,]

dv.

Since 0 < r < D, this gives f(r) = 2r/D' Substitution in (12) then gives the
first equality in

(16) F = k
fo

a
4ar'--82(r) dr =

GmM k.

As was shown in the first problem in this list, the integral in (16) is the total
mass M of the sphere, and hence the second equality holds. The result embodied
in (16) is the following famous theorem. If S is a radically homogeneous spherical
ball, then the gravitational force which S exerts upon a particle outside S is equal to
the force resulting from the assumption that the total mass of S is concentrated at the
center of S. To help us understand the significance of this result, we should know
some history. It is said that Newton mistrusted his whole theory of gravitational
attraction (and therefore delayed publication of his theory for 20 years) until he
was able to prove the theorem.

11 If S is a radially homogeneous spherical shell, then the gravitational force
F which S exerts upon a particle inside S is 0. All scientists should know this
fact and some should, when a suitable occasion comes, earn the satisfaction of
discovering the modifications that must be made in the work of Problem 10 to
prove the fact. '

12 With the aid of results of Problems 10 and 11, suppose that the earth is a
homogeneous spherical ball and discuss the gravitational force upon a particle at
the bottom of a very deep well.



Appendix i -

Proofs of basic theorems
on limits

This appendix contains proofs of the basic theorems on limits which
were given without proof in Section 3.2. Persons having competence
in mathematical analysis must know these theorems and be able to give
their proofs as thoroughly and as expertly as competent violin and piano
players know and can play their scales. Individuals having nontrivial
mathematical ambitions must therefore study the material of this appen-
dix more than once. Most of the proofs depend upon the fundamental
fact that if x and y are numbers, then

(1) Ix + yl : Ixl + IyI, Ix - yI = IxI + Iyl
715
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The first basic theorem shows us that there can be at most one number L
for which lim f (x) = L.

Theorem A

(2) If lim f(x) = L1, lim f(x) = L2 then L2 = L1.
x- a x-a

Let e be a given positive number. Then e/2 is also a positive number
which we could call el. The first hypothesis of the theorem implies that
there is a positive constant S1, such that

(3) if(x) - L11 <

whenever x 0 a and Ix - at < S1. The second hypothesis implies that
there is a positive number S2 such that

(4) If(x) - L21 <

whenever x 0 a and Ix - al < S2. Let S be the lesser of Si and S.
Then, when x 34 a and Ix - al < 5, the two inequalities (3) and (4)
both hold and hence

(5) IL2 - L11 = I [f(x) - L1 - [f(x) - L2}I

f(x)-Lll+lf(x)-L21 <2+2=e.

If we suppose that IL2 - L11 0 0, then we could let e be the positive
number JIL2 - L1I and reach the false conclusions that IL2 - LI1 <
J1L2 - L11 and 1 < - and 2 < 1. Therefore, IL2 - L11 = 0 and hence
L2 = L1. This proves Theorem A. The last part of the proof involves
a principle that is very often used. If h is a number and if Ihj < e when-
ever e > 0, then It = 0.

Theorem B
If b isa constant, then

(6) limb = b.
x- a

This theorem tells us that if,f(x) = b, where b is a constant, then

(7) lim f (x) = b.
x-a

To prove the result, let e > 0. Since f(x) - b = 0 for each x, we can
let 3 = e and conclude that I f(x) - bI < e when x 0 a and Ix - at < S.
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Theorem C

(8) lim x = a.

This theorem tells us that if f(x) = x, then

(9) lim f(x) = a.

To prove the theorem, we observe that if e > 0 and we set a = e, then
Ix - al < c whenever 0 < Ix - al < S.

Theorem D
If c is a constant, then

(10) lim cf (x) = c lim f (x)
x-+a x-4a

provided the limit on the right exists.
To prove this theorem, let lim f(x) = L. In case c = 0, the result is

a consequence of the fact that both sides of (10) are 0. In case c 5,16 0,
let e > 0 and choose a positive number S such that

I f(x) - LI < I;I

when Ixi a and Ix - al < S. Then

(12) Icf(x) - c lim f(x) I < e

when x 0 a and Ix - al < S. This proves (10).

Theorem E
The formulas

(13) lim [f(x) + g(x)] = lim f(x) + lim g(x)
x-a z-+a

(14) lim [f(x)g(x)] = [lim f(x)][lim g(x)]
x-a Xya xya

f(x) __
urn

a
f(x)

(15) lma g(x) lim g(x)

are valid provided the limits on the right exist and, in the case of the last
formula, lim g(x) 0 0.

x--a

To prove these results, let

(16) lim f(x) = L, lim g(x) = M.
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Let a and ei and e2 be positive numbers.
S1 and S2 such that

Appendix 1

Choose positive numbers

(17) I f(x) - LI < ei (0 < Ix - aI < S1),
(18) Ig(x) - MI < e2 (0 < Ix - al < S2).

Let S be the lesser of S1 and S2. Then, when 0 < Ix - al < S, we have

(19) I [f(x) + g(x)1 - [L + M1I = I[f(x) - L] + [g(x) - MII
< If(x) -LI +Ig(x) - MI <el+f2.

If we set El = f2 = e/2, then (16) and (19) give

(20) I [f(x) + g(x)l - [lim f(x) + lim g(x)lI < E
x-.a x-+a

when 0 < Ix - at < S. This proves (13).
To prove (14), we bridge the gap between f(x)g(x) and LM by sub-

tracting and adding the term f(x)M and using (17) and (18) to obtain

(21) if(x)g(x) - LMI = I [f(x)g(x) - f(x)Ml + [f(x)M - LM]I
If(x)I Ig(x) - MI + If(x) - LI IMI

< (ILI + El)E2 + e1M

when 0 < Ix - at < S. If we choose el such that e1IMI < E/2 and after-
ward choose E2 such that (ILI + E1)e2 < E/2, then (21) gives

(22) If(x)g(x) - LMI < E (0 < Ix - at < S).

This proves (14). To prove (15), we begin by proving that

(23) 1a
g(x) M

when lim g(x) = M and M s 0. The more general result (15) will then
r-. a

follow from (14) and the fact that

[urn(24) lm lm [ f (x)1 1 = [lim f (x)1 I ].
,a g(x) [g(x)l x-.a x-'a g(x)

To prove (23), we suppose that M 0, that e2 has been chosen such that
0 < E2 < IMI/2, and that S has been chosen such that

(25) Ig(x) - MI < E2

whenever 0 < Ix - at < S. Then

(26) IMI = Ig(x) - M - g(x)I s Ig(x) - MI + Ig(x)I < e2 + Ig(x)I

and hence

(27) I8(x)I>IMI-E2>M-M=M
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whenever 0 < Ix - at < S. Therefore,

(28)
1 -.1 i _ M - g(x) < e2 2e2

g(x) MR ' g(x)M , = (M/2)M
__

M2

when 0 < Ix - at < S. If we choose e2 such that 2e2/M2 < e, we will
have

(29)
1

g(x) lim g(x) i < e
x-4a

whenever 0 < Ix - at < S. This proves (15) and completes the proof
of Theorem E.

Theorem F
If
(30)

then

(31)

and conversely.

lim f(x) = L
x-a

lira lf(x) - LI = 0
x-.a

The assertion (30) means that

1 I

to each positive number a there corre-
sponds a positive number S such that

(32) If(x) -LI <e
whenever 0 < Ix - at < S. The assertion (31) means that to each
positive number a there corresponds a positive number S such that

(33) I If(x) - LI - 01 < e

whenever 0 < Ix - at < S. Since the left members of (32) and (33)
are equal, each assertion implies the other.

Theorem G (sandwich theorem, or flyswatter theorem)
If, for some positive number p,

(34) g(x) < f(x) 5 h(x)

whena - p <x <aandwhena<x<a+p,andif
(35) lim g(x) = L, lim h(x) = L,

then

(36) lim f(x) = L.
x-+a

The primitive idea behind this theorem may be phrased as follows.
If two slices of bread (or two books) are near Minneapolis and if a slice
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of ham (or a fly) is between them, then the thing that is caught in the
middle must also be near Minneapolis. To prove this theorem, let
e > 0. Choose S such that 0 < b < p and the two inequalities

(37) L-e < g(x) <L+e, L-e <h(x) <L+e
hold when 0 < Ix - al < S. This and (34) give

(38) L - e < g(x) < f(x) S h(x) < L + e

and hence

(39) If(x) - Lj < e

when 0 < Ix - al < S. This proves Theorem G.
Theorem 3.288, the last one of the basic theorems of Section 3.2,

asserts that if p is a constant positive exponent and a >_ 0, then

lim x2 = a2.
x-a

Proof of this theorem is much more difficult and is given in Section 9.2
after the theory of exponentials and logarithms has been developed;
see Theorem 9.271.

We conclude this appendix with an indication of the extent to which
mathematical fashions have changed. In a calculus textbook published
in 1879 and cited in a footnote near the end of Chapter 3, W. E. Byerly
says he "embodies the results of my own experience in teaching the
calculus at Cornell and Harvard Universities." His preface claims that
one of the "peculiarities" of his book is "rigorous use of the Doctrine of
Limits as a foundation of the subject." His basic definition of limit
appears on page 3. "If a variable which changes its value according to
some law can be made to approach some fixed, constant value as nearly as
we please, but can never become equal to it, the constant is called the limit
of the variable under the circumstances in question." The "fundamental
proposition" in the theory of limits is given as a theorem on page 5:

THEOREM. If two variables are so related that as they change they keep always
equal to each other, and each approaches a limit, their limits are absolutely equal.

For two variables so related that they are always equal form but a single
varying value, as at any instant of their change they are by hypothesis absolutely
the same. A single varying value cannot be made to approach at the same time
two different constant values as nearly as we please; for, if it could, it could
eventually be made to assume a value between the two constants; and, after
that, in approaching one it would recede from the other.

This appendix is based upon the premise that such "definitions" and
"proofs" outlived their usefulness as their staunch defenders insisted
that it is easier to learn them than to learn definitions and proofs involv-
ing epsilons and deltas.
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Volumes

This appendix involves volumes of sets in E3. Its purpose is to show
that the theory of volumes is not simple. We shall reveal the fact that
there is something inherently contradictory in the combination of the
following four assumptions:

(A,) Each bounded set S in E3 has a volume.
(A2) If Sl and S2 are congruent bounded sets in E3, then Sl and S2

have equal volumes.
(A3) If a bounded set S in E3 is composed of two or three or four or five

separate and distinct subsets, then the volume of S is the sum of
the volumes of its subsets.

(A4) If S is a solid spherical shell having inner and outer radii for which
0 < rl < r2, then the volume of S is positive.

721
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Figure A.1 shows three spherical shells the inner and outer radii of
which are 1 and 2. A point P lies in one of these shells if its distance r

Green shell Red shell

Figure A.1

5 subsets \ 3 subsets
Yellow shell

% 2 subsets

from the center is such that 1 <_ r S 2. The shells are identical (or
congruent) except that the first one is green, the second one is red, and
the third one is yellow. It has been proved to be possible to separate
the green shell G into five separate and distinct parts or subsets G1j Gs,
G3, G4, G5, to separate the red shell R into three separate and distinct parts
or subsets R1, R2, R3, and to separate the yellow shell Y into two separate
and distinct parts or subsets Yl and Y2 in such a way that

R1 ' G1, R2 - G2, R3 G3, Y1 '" G4, Y2 G6

where the symbol "-" means "is congruent to." If we make the first
three assumptions listed above and use the symbol ISI to denote the
volume of a set S, we obtain

IGI = IG11 + IG21 + IG31 + IG41 + IG51
= IR1I+IR21+IR31+1111+1Y21
= IRI + IYI = IGI + IGI = 21G1.

This implies that IGI = 0 and contradicts the fourth assumption (A4).
Without undertaking to press very far into theories of volumes (these

theories being a part of the more comprehensive theory of additive set
functions in E3). we point out that it is possible to assign numbers (called
volumes) to some of the sets in E3 in such a way that the following state-
ments are true.

(B1) Some sets in E3, including solid spherical shells having inner and
outer radii for which 0 < rl < r2, have positive volumes.

(B2) If S is a set in E3 which has a volume, then each set in E3 which is
congruent to S has a volume which is equal to the volume of S.

(B3) If a set S in E3 is the union of a finite collection of separate and
distinct subsets each of which has a volume, then S has a volume
and the volume of S is the sum of the volumes of the subsets.

The example involving the colored shells proves the following funda-
mental fact. Whenever volumes are assigned to sets in E3 in such a way
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that (B,), (B2), and (B3) are valid, a contradiction arises from the assump-
tion that each bounded set in Ea has a volume. Thus there exist bounded
sets in E3 that do not have volumes. We are doing "rigorous mathe-
matics" when we give a definition of volume and prove that a given
spherical shell has a volume. We are still doing "rigorous mathematics"
when we make and use clear statements of provable facts but postpone
or omit the proofs. We are deep in the depths of intellectual degradation
when, without having a definition of volume, we hold aloft a brick or
spherical ball and convey (either explicitly or implicitly) the impression
that the thing "obviously" has a volume. We hit the bottom when
we say that the thing is a volume. Unless we tolerate the idea that
bad mathematics can be acceptable elementary calculus, we must avoid
these degradations. Perhaps we can attain a reasonable view of this
whole matter by recognizing the fact that modern set theory shakes the
foundations of nineteenth-century mathematics as vigorously as modern
atomic theory shakes the foundations of nineteenth-century physics and
chemistry and engineering. Some of us will learn more about these
matters than others, but we can all know that there is much to be learned.



The Greek Alphabet

Letters Names Letters Names Letters Names
A a alpha I L iota P p rho
B 0 beta K K kappa E or sigma
r y gamma A A lambda T r tau
o a delta M µ mu T v upsilon
E e epsilon N P nu 4' 0 phi
Z r zeta Z E xi X X chi

H n eta 0 0 omicron ' 4' psi
0 -0 theta II a pi n w omega

Index

Abel power series theorem, 629-630
Abel value of series, 340-341
Absolute convergence, 590-592
Absolute (global) maxima and

minima, 295
Absolute value, 3, 150, 152
Absolutely integrable, 609
Abstract vectors, 586
Acceleration, 179, 436-437, 544

of gravity, 45
radial, 437, 545
transverse, 437, 545

Algebra, of matrices, 94
modern, 352
of rational functions, 351
of vectors, 48-110

Algebraic equations, 448
Algebraic functions, 448
Algebraic graphs, 448
Algebraic numbers, 449
Alternating series, 610-611
Attitudinal lines, 20-23
Amplitude of sinusoid, 182
Anchor ring (see Torus)
Angles, 10, 16, 50-51, 67, 73, 439

Angular frequency, 39
Antiderivatives, 203
Any (troublesome word), 124
Approximation(s), 123

by differentials, 194-201, 568
to exponentials, 488
to integrals, 276-283
and limits, 122-144
to logarithms, 488
Newton method of, 318
to square roots, 8-9
successive, 8-9, 318

Arbitrary constant, 204
Arc(s) of circle, 438-439
Arc length (see Length)
Archimedes, 212, 224, 234
Archimedes integral, 349
Archimedes property, 5, 320, 352
Archimedes spiral, 532
Area, 92, 229-230, 235-244, 348

in polar coordinates, 547-550
of surface, 425, 447-448, 550

Aristotle, 386
Arithmetic means, 341-342, 503-

504

72t



Index 725

Arithmetico-geometric mean, 343
Astroid (see Hypocycloids, of four

cusps)
Asymptotes, 135

of hyperbolas, 381
Asymptotic cone, 407
Attraction (see Gravitational

attraction)
Average rate, 176
Average value (see glean value)
Average velocity, 178
Axes, 2, 10, 59

change of, in E2, 107, 392-402
in Es, 101

rotation of, 107, 394-402
of symmetry, 37
translation of, 392-394

Axioms, 9, 34, 313, 343-344

Bachelor's guide, 41
Bands of Mobius, 676
Base e (see Exponential base e)
Beam, strongest cut from log, 301

taken around corner, 444
Bending upward, downward, 305
Bernoulli functions, 231-233, 312,

613-614,640-651'
generating function of, 650-651

Bernoulli numbers, 232, 617, 641-
651

Bessel inequality, 612
Beta integral, 228, 456, 476, 521,

686-687
Binary bits, 340
Binomial coefficients, 139-140,

647-650
Binomial formula, 140, 634-635
Binomial series, 634-635
Binormal to curve, 436
Black box, 121
Boldface, 43, 49
Boom-and-bust processes, 322
Bouncing ball, 598

Bound (s), 212, 314-315, 323, 344,

Boundary, 293, 551
Boundary conditions, 208
Bounded function, 212
Bounded variation, 352-335
Bracket symbol, 227
Bumblebee flights, 150, 177-179,

409, 540
Burington tables, 206
Byerly calculus textbook of 1879,

201, 720

Calculus (slippery word), 224
Calories (of heat), 149, 200-201
Cams, 186
Canonical printer's error, 27
Cardioid, 531, 544, 549
Carpenter's number system, 343
Catenary, 435, 510
Cauchy sequences, 598-599
Cavalieri theorem, 283
Center, of curvature, 429

of gravity (see Centroids)
of symmetry, 37

Central conics, 368, 390-392
Central forces, 545
Centroids, 23, 54, 121, 261, 271,

273, 679-680, 699
Cesaro value of series, 342
Chain rule, 165-166, 564-565,

575, 578
Change, of coordinates, 101, 107,

349-402
of variables, 221-223, 469-479

Change of order, of differentiation,
557-559

of integration, 664, 669, 696
Characteristic of logarithm, 485
Circle(s), 25, 29

of curvature, 429
Circumcircle of triangle, 21-23
Cissoid (of Diocles), 256, 535-536



726 Index

Closed curve, 416 Convexity of curves, 305
Closed interval a < x S b, 5 Coordinates, on curve, 421
Commutative operations, 556 cylindrical, 527
Comparison test for convergence, on line, 2

591 in plane, 10
Complete orthonormal sets, 613 polar, 528-552
Completeness of real numbers, 313 rectangular, 10, 59
Completion of squares, 26 in space, 59, 101
Complex exponentials, 628, 651 spherical, 527
Complex numbers, 139, 505-506, Corn-popper function, 151-152,

516-517,628 220
Components, of plane sets, 417 Corners, 293

troublesome word, 61 Correlation, 77
of vectors, 61, 179 Cosine, power series for, 458

Composite functions, 165 Cosmology, 606, 711-714
Composite integers, 120 Coulomb law, 255
Computers, 121, 280, 282, 340, Countable collection, 216, 236

453, 458, 468, 486, 512 Critical values (derivative zero),
Concave,305 295

Conchoid of Nicomedes, 536 Cross products (see Vector
Cones, 64, 76, 361, 369, 570 products)

volume of solid, 245-246 Curl (of vector), 561, 673
Cones and conics, 361-407 Curly dees, 554
Confocal conics, 387 Curvature, 432-433
Confocal ellipses, 378 in polar coordinates, 535
Conics, 361-407, 539, 551 Curve(s), 150, 177-179, 408-437,

in polar coordinates, 539 540
Conjugate hyperbolas, 382 closed, 416
Connected set, 416 having finite length, 410
Connecting rod, 191 having infinite length, 416
Conservation of energy, 187 in polar coordinates, 538-552
Conservative force fields, 657- simple, 417

658, 675 on spheres, 184-185
Constants, 15 on torus, 186

of integration, 204 Curve integrals, 426-428, 673-676
Continuity, 144 independent of path, 658, 676

basic theorems on, 314-317, 326 Cusp, 414
over closed interval, 146 Cyclic advance of subscripts, 21
of functions of n variables, 557 Cycloids, 311, 399-400, 422, 435
uniform, 326 Cylinders, 83, 403
unilateral, 145 Cylindrical coordinates, 527, 532-

Convergence, of sequences, 335 533, 582, 703-707
of series, 336, 587 triple integrals in, 702-707

Convex sets, 293, 551 Cylindrical shell method, 246
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Darboux sums and integrals, 344-
353

Decimal system, 2, 321-322
Decimals "represent" numbers,

334-339
Decreasing function, 115, 294-313
Dedekind axiom, 313, 344
Dedekind partition, 313
Definite integrals, 252
Del (operator V), 561, 566
Delta (5) is distance, 6
Delta (Ax, Ay, Az, Ow), 116
Demand curves, 333-334
Density 3, 260, 268, 677, 697, 706
Density function, 260
Dependent vectors, 58
Derivative(s), 153

basic formulas for, 154-158, 165,
167

chain rule for, 166
change of order of, 556-559
definition of, 153
directional, 564, 566, 585
of elementary functions, 166
of exponentials, 165, 493
four-step rule for, 154
generalized, 323, 619
of higher order, 170, 179, 304-

313

of hyperbolic functions, 506-
509

integrals of, 333, 659
of integrals, 225, 234-235, 562,

573, 658
intermediate-value property of,

333
of inverse functions, 459-464
of logarithms, 165, 493
notations for, 153, 163-164
partial, 553-586
of powers, 157, 493
as rates, 176-193
as slopes, 168, 285
tables of, 165, 167, end papers

Derivative(s), of trigonometric
functions, 161, 165, 441-443

of vectors, 178
as velocities, 178

Desargues theorem, 110
Determinants, 87-97, 98
Diameter(s), of parabola, 359

of set, 668
Difference (Ax, Ay, Az, Arc). 116
Difference quotients, 153
Differentiable at x [f(x) exists],

153

Differentiable functions, 158, 324-
334

Differential(s), 193-201, 568
Differential equations, 208-210,

445-447, 465, 496-497, 545
partial, 559-560

Differentiation, technique for, 158
Direction angles, 68
Direction cosines, 68
Directional derivative, 564, 566,

5 85

Directrix of conic, 27, 363
Discontinuous derivatives, 350, 561
Discontinuous functions, 145-148,

216, 342
Discriminant of quadratic, 396
Disk, 36, 241
Displacement vector, 178
Distance, 3, 24, 34, 61, 69

from point to line, 28
from point to plane, 80
in polar coordinates, 534

Divergence of vector function, 561
Divergent series, 336, 587, 588,

603-604
Division by zero taboo, 4
Divisors of integers, 120, 605
Dizzy dancer function, 118, 132,

142, 151, 215
Domain and range, 113, 116, 121,

459
Dominated series, 591
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Doodle, 66
Dot product (see Scalar product)
Double integrals, 667-695
Duhamel difficulty, 420
Dummy variables, 213
Duplication of cube, 536
Dwight tables, 206
Dynamic concept of function, 112

Earth, curvature of, 435
orbit of, 373
radius of, 412-413

Eccentricity of conic, 363-366
Economics problems, 333-334
Eigenvalues of matrix, 96
Eigenvectors of matrix, 96
Elastic demand, 333-334
Elastic rod, 256
Electric current, 171, 181, 455
Electromotive force, 146
Elementary functions, 166, 277
Elimination of parameters, 287
Ellipses, 241, 363, 365, 369-379,

549, 683
Ellipsoids, 248, 403-404, 569
Elliptic disk, area of, 241
Elliptic integrals, 422, 636
Elliptic reflectors, 377
Elliptic type, 390, 396
Empty set, 26
Epicyclic gears, 401
Epicycloids, 400-401
Epsilon-delta assertions, 124, 126,

133-135, 214, 326, 669, 677,
685, 695, 697, 707

Equations, systems of, 90
Equilateral hyperbolas, 367-368
Equipotential surfaces, 567, 569
Eratosthenes, 413
Error(s), rounding, 281

(See also Approximations)
Error functions (see Gauss prob-

ability functions)

Index

Euler, Leonhard, 486, 516
Euler constant -y (gamma), 602,

644
Euler formulas, 506, 628, 651
Euler gamma integral, 521, 685
Euler integral for z!, 521, 685
Euler line of triangle, 23
Euler _Maclaurin formulas, 640-651
Even function, 118
Evolute of curve, 433
Existence of Riemann integrals,

215-216
Exponent(s), laws of, 481, 483
Exponential base e, 38, 126, 281,

493-505
expressed as limit, 495, 504--505
irrationality of, 596-597

Exponential function, 38, 481-525
calculation of, 488-489
derivative of, 493
elementary theory, 490-491
graph of, 38
series for, 231, 498-499, 505
table of, end papers

Exponential inequalities, 482
Exponential series, 231, 498, 505
Exponential (or logarithmic) spiral,

532, 544
Extension of partition, 345
Extrema (see Maxima and minima)

Factorial(s), 137, 138-140, 228,
456, 476, 487, 521-524, 607,
644-651,685-687

Factorial integral, 521, 685
Falling bodies, 42-46, 180-181, 210
Family of planes, 79
Feller, William, 643
Fibonacci sequences, 626-627
Finite, off-beat meanings, 323
Finite mathematics, 319, 344
Finite numbers, 144
Fishing expedition, 632
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"Fixed" point, 27
Flea assertions, 125, 132
Flexpoints, 304-311
Fluid pressure, 274-275
Flyspeck notation, 153
Focal chord of parabola, 359
Focal square of parabola, 355
Focus of conic, 27, 363
Folium of Descartes, 414
Forces are vectors, 43, 177
Four-point construction, 392
Four-step rule, 154
Fourier analysis, 617
Fourier coefficients, 612
Fourier series, 611-619
Fourier synthesis, 617-619
Frequency of sinusoid, 182
Fubini theorem, 670, 686
Function(s), 111-122

implicit, 172, 577
vector, 112

Fundamental theorem, of algebra,
517

of arithmetic, 630
of calculus, 225-226, 332-333

Gamma (Euler constant y), 602,
644

Gamma integral, 521, 685
Gas laws, 189, 199
Gauss approach to factorials, 139
Gauss probability functions, 253,

256, 262, 309-310, 402, 525,
643, 647-650, 693-694

Gegenbeispiel, 142
Generalized derivatives, 323, 619
Generating functions, 627, 650-651
Geodesics, 412
Geometric angle, 51
Geometric means, 503-504
Geometric series, 337-338, 588, 593
Geometry of cones and conics,

361-407

Global (least-square) approxima-
tion, 618

Global maxima and minima, 295
Gradient (vector), 560, 566, 568,

658
Graphs, 35, 66, 179

containing just one point, 293
in polar coordinates, 530

Gravitational attraction, 43, 74,
149, 263-269, 423-425, 551,
684-685, 692-693, 706-707,
711-714

Gravitational constants, 43, 74
Gravitational potential, 255
Greatest element of nonempty

finite set, 319
Greatest integer in x, 37, 141, 151,

320
Greatest lower bound (g.l.b.), 315
Green formula, 672-676
Guns-and-butter interpretation, 40

Half-life, 497
Hardy, G. H., 407
Harmonic functions, 559-560
Harmonic motion (see Sinusoids)
Harmonic series, 594, 644
Heads and tails, 522-523
Heat equation, 560
Heaviside function, 118, 147
Helix, 183, 422
Hermite polynomials, 173-174
Holditch theorem, 437
Homogeneous solids, 272, 697
Hooke law, 256
Hyperbolas, 363, 365, 379-392, 508

equilateral, 367-368
Hyperbolic functions, 386, 505-511
Hyperbolic paraboloid, 406-407,

5 70

Hyperbolic spiral, 546
Hyperbolic type, 390, 396
Hyperboloids, 404-405
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Hypocyclic gears, 184, 402
Hypocycloids, 401-402

of four cusps, 292, 402, 423, 435,
628-683

Identity matrix, 96
Implicit differentiation, 172, 176
Implicit functions, 172, 577

basic theorem on, 583-585
Improper integrals, 252
Income tax rates, 187
Increasing functions, 115, 294-313,

322, 328
Increments, 194, 562-563
Indefinite integrals, 202-212, 225
Independence of path, 658, 676
Independent vectors, 58
Indeterminate forms, 330-332
Induction (see Mathematical in-

duction)
Inequalities, 2-6, 35, 78, 441

elegant one, 504
exponential, 482
geometric mean <_ arithmetic

mean, 504
Schwarz, 78
triangle, 33
trigonometric, 441

Infinite decimals, 336-339
Infinite integrals (see Riemann-

Cauchy integrals)
Infinite series (see Series)
Infinitesimals, 144, 201, 250
Infinity, 134, 143-144, 592
Inflection (see Flexpoints)
Inner point, 293
Input (element of domain), 75,

114, 122
Instaneous rate (see Rates)
Integers, 5, 120, 319
Integrability, 216, 345-353, 609
Integral(s), 202

Archimedes, 349

Index

Integral(s), change of variable in,
221-223, 469-479

curve (or line), 426-428, 673-
676

derivatives of, 225, 573
of derivatives, 333, 659
double, 667-695
indefinite, 202-212, 225
iterated, 652-667
limits of, 350
modified Riemann, 223
multiple, 667-714
in polar coordinates, 687-695

Riemann, 214
Riemann-Cauchy, 250-256, 657,

667
Riemann-Stieltjes, 261, 276, 353
tables of, 205-206, end papers
of trigonometric functions, 205,

449-457
triple, 695-714

in cylindrical coordinates, 702-
707

in rectangular coordinates,

695-702

in spherical coordinates, 707-
714

of vector functions, 426
(See also Integration)

Integral test for convergence, 601-
603

Integrand, 203
Integration, formulas for, 205, end

papers
limits of, 214, 470
by partial fractions, 511-518
by parts, 210-211, 230, 328, 473,

477, 518-525, 633, 641, 655
by substitution, 469
by substitution z = tan (0/2),

477-479
technique for, 205-212
termwise, 620-621, 672
by trigonometric substitution,

471-474
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Integration, by use of tables,
206-207, 211-212, 465, 474,
514

(See also Integrals)

Interlc4ept form of equation of line,

Intermediate-value theorem, 316,
333

International Business Machine
Corporation (IBM), 47

Interval(s), 5
of convergence, 620

Intrinsic definitions, 48, 585-586
Intrinsic equation of conic, 363, 538
Invariants under rotation, 395
Inverse functions, 458-469

basic theorem for, 459
definition, 458-459
hyperbolic, 507-508
trigonometric, 461-464

Inverse sine, series for, 635
Inverse-square law, 74-75

(See also Gravitational attrac-
tion)

Inverse tangent, series for, 467
Involute of curve, 434
Irrational numbers, 8, 339, 596-

597
Irrationality, of e, 596-597

of square roots, 8
Irreducible polynomial, 448
Isometric transformer, 34
Isothermals, 567
Iterated integrals, 652-667
Iterated limits, 632

Jacobi determinants, 579
Jordan curve theorem, 417
Jump discontinuities, 133

Kepler (planetary motion), 551
Kinetic energy, 187, 257-259, 263

Lagrange form of remainder, 634
Lagrange multipliers, 572-573
Laguerre polynomials, 174
Lamina, 270, 667, 676
Laplace equation, 559, 562
Laplace transforms, 686
Laplacian V2u, 582

in cylindrical coordinates, 582
in rectangular coordinates, 582
in spherical coordinates, 582

Lattice points, 32, 152
Law of cosines, 112, 198
Law of mean (see Mean-value

theorem)
Leacock, Stephen, 124
Least integer in set of positive

integers, 320
Least squares, 300
Least upper bound (l.u.b.), 315
Lebesgue integrals, 618, 670, 672
Lebesgue measure, 215, 236, 244,

283, 670, 696, 706
Left-hand continuity, 145
Left-hand derivative, 162
Leibniz notation, 153, 164, 175
Leibniz series for r/4, 468
Lemniscate (of Bernoulli), 389,

532, 533, 538, 549
Length, of circle, 135

of circular arc, 408
of curve, 410
of interval, 5
in polar coordinates, 542
in rectangular coordinates, 417-

423

in spherical coordinates, 710-711
Level surfaces, 566
L'Hopital rules, 330-332
Limacon of Pascal, 538
Limit(s), 122-144

basic theorems on, 127-128,
715-720

for functions of n variables, 557
of integrals, 686
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Limit(s), of integration, 214, 470
of powers, 128, 495
of Riemann sums, 214, 669, 695,

707
of sequences, 335, 351
unilateral, 133-134

Line integrals (see Curve integrals)
Linear equations, 15
Linear transformer, 75
Lines, 11, 70
Lines of support, 285, 293-294
Linkage, 186
Lituus, 546
Local maxima and minima, 295,

305

Logarithm(s), 168, 484-501
calculation of, 488, 500

Logarithmic derivative, 199
Logarithmic function, 38

derivative of, 165, 493
graph of, 38
table of, end papers
theory of, 484-501

Logarithmic series, 500
Lower bound, 212
Lower integral (Darboux), 346
Lower sum (Darboux), 344
Loxodromes (rhumb curves), 185

Mach number, 388
Machin formula for T/4, 468
Maclaurin, 546, 621
Marginal cost and revenue, 334
Mass functions, 259-261
Mathematical induction, 320
Mathematics, queen of sciences,

524
Matrices, 87

algebra of, 94-97
multiplication of, 95

Matrix transformations, 96
Maxima and minima, 294-312

existence of, 315, 333

Index

Maxima and minima, for functions
of n variables, 571-573, 638-
639

Mean value of function, 261
Mean-value theorem, 324

extended, 328, 332
generalized, 329

Measure (Lebesgue), 215, 236,
244, 283, 670, 696, 706

Medians of triangle, 19, 24, 54
Merry-go-round problem, 193
Mid-point formulas, 5, 13, 53
Mid-triangle, 22
Minimum (see Maxima and

minima)
Minor of determinant, 87
Mobius bands, 676
Moment(s), 120, 260-262, 269-

275, 423, 677, 690, 697-700
Moments of inertia (see Moments)
Monotone functions, 294, 347, 410
Monotone sequences, 337
Motion, workaday definitions, 179-

180

Multiple integrals (see Double in-
tegrals; Iterated integrals;
Triple integrals)

Multiple point, 417
Multiplication of series, 623-627
Multiplicities of zeros, 517
Museum of SPC, 102

Napier tables, 485-486
Nappe of cone, 361
Natural logarithms (base e) (see

Logarithms)
Newton approximation to zeros,

318

Newton law of gravitation, 74,
254, 551, 711-714

(See also Gravitational attrac-
tion)

Newton notation, 153, 164
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Nine-point circle, 23
Nondifferentiable functions, 162
Nonintegrable function, 215
Nonmeasurable sets, 237, 721-723
Norm JPj of partition, 212, 668
Normal lines, 17, 78, 290
Normal to surface, 567
Normal vectors, 52, 78
Null set, 223
Number systems, 143-144
Numbering systems, 3, 47
Numerical integration (see Simpson

approximation to integral)
Numerical tables, end papers

Octant, 60
Odd function, 118
One-sided (see Unilateral limits)
Open interval a < x < b, 5
Operators, 96, 112, 114

commutative, 556
Orbit, of earth, 373

of planets, 551
Order, of differentiation, 556-559

of integration, 664, 669, 696
Ordered pairs, 113
Orientation of simplex, 97
Origin, 2, 10
Orthocenter, 20-23
Orthogonal vectors, 52, 60
Orthonormal sets of functions, 456,

611-613, 616-619
Orthonormal vectors, 60, 74
Osculating circle (see Circle, of

curvature)
Output (element of range), 75, 114,

122
Ovals of Cassini, 538

Pappus, trisection of angles, 389
Pappus theorem, 247

Parabolas, 27, 31, 40, 240, 354-361,
363, 399

Parabolic reflectors, 358
Parabolic type, 390, 396
Paraboloids, 62, 247, 406, 425
Parallel axis theorem, 681
Parallel lines, 16
Parallelogram law, 50
Parameters, 66, 72, 179, 574
Parametric equations, 66, 72, 179
Partial derivatives, 553-586
Partial differential equations, 559-

560
Partial fractions, 511-518
Partial sums of series, 335, 587
Particle concentrated at point, 75
Particle sliding on curve, 191, 425
Partition, Dedekind, 313

of interval, 212, 344, 410, 706
of sets in E2, 668, 706
of sets in E3, 695, 706

Partition number, 313
Pascal triangle (binomial coeffi-

cient), 140
Pendulum problem, 198-199
Percentage of error, 197
Periodic functions, 613
Perpendicular lines, 16, 76
Perspective triangles, 110
Perversity of inanimate matter,

229
Phase angle of sinusoid, 39
Pi (zr), decimal approximations, 2,

468
Picture, angles subtended by, 465-

466
Piecewise continuous, 348
Piecewise monotone, 347
Plane(s), 78-87
Plane geometry puzzlers, 110
Planimeter, 277
Point-direction equations of lines in

E3, 70
Point-slope equation of line, 12
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Polar coordinates, 528-552, 687-
695

graphs in, 530
integrals in, 687-695

Polar moment of inertia, 681
Polar points and lines, 390-392
Polynomials, 115, 148, 448, 517

Hermite, 173-174
Laguerre, 174
Tchebycheff, 465

Potential, 255, 425
Potential functions, 568, 658
Power series, 593, 619-640
Pressure (fluid), 274-275
Primary and secondary variables,

5 76

Prime numbers, 120, 143
series of reciprocals of, 630-631

Prismoidal formula, 283
Probability, 58, 300, 522-523, 596,

643, 647-650, 693-694

Feller book, 643
Profits, maximizing, 334
Projectiles, motion of, 183, 199, 210

spinning, 402
Projections, 59

Quadrants, 11
Quadratic forms, 393, 572
Quadratic formula, 160
Quadric cones, 407
Quadric sections, 403
Quadric surfaces, 102, 108, 402-

407, 570
Quartic equations, 537
Queer sets, 283, 721-723
Quotients, shilling and built-up,

26-27

Rademacher functions, 596
Radial acceleration, 437, 545
Radian (measure of angles), 50,

439

Index

Radical axis, 32
Radius, of convergence, 620

of curvature, 428-435
Random-walk problem, 58
Range and domain, 113, 116, 121,

459
Range of projectile, 183, 199
Rare books, 485-486
Rates, 176-193
Ratio test, 599-601
Rational functions, 116, 149, 351
Rational numbers, 5, 338, 343
Real numbers, 1
Rearrangements of series, 597-598
Rectangles, areas of, 235
Rectifiable curve, 410
Rectified sinusoids, 617
Reduction formulas, 514, 520,

522
Regular polygons and circles, 143
Related rates, 188-193
Relative (local) maxima and min-

ima, 295
Relative motion, 192-193
Repeated integrals (see Iterated

integrals)
Repeating decimals, 338
Resistors, 200
Restrictions of functions, 459
Resultant, 50
Riemann integrals, 214-250, 652-

723

as areas, 348
basic properties of, 224-227
existence of, 215-216, 345-353

Riemann sums, 212, 668, 695, 707
compared with Darboux sums,

345-349
Riemann theory of trigonometric

series, 618-619
Riemann zeta function, 603, 607,

614, 617, 630
Riemann-Cauchy integrals, 250-

256, 608-609, 657, 667
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Riemann-Stieltjes integrals, 261,
276, 353

Right-hand continuity, 145
Right-hand derivative, 162
Right-hand rule, 52
Right-handed system, 60, 66, 73, 99,

103
Rolle theorem, 324
Rollers, triangular, 437
Root test for series, 629
Rose of four leaves, 531
Rosser, John Barkley, 122
Rotation of axes, 107, 394-402
Rounding errors, 281
Ruler and compass constructions,

389,536-538,546
Rules of our game, 1

Saddle surfaces, 407
Sandwich theorem, 128, 719-720
Saw-tooth function, 37, 232, 613,

640
Scalar(s), 43, 49, 177
Scalar acceleration, 44, 180
Scalar (dot) product, 51, 67-77
Scalar triple product, 105
Scalar velocity, 43, 180
Schlicht functions, 459
Schwarz inequality, 78
Schwarz paradox, 448
Secant, series for, 623, 624
Second derivatives, geometric use

of, 304-312
Sector, area of, 440, 476
Semicubical parabola, 413-414
Senatorial secretaries, 300
Sequences, 335, 587, 598-599
Series, 334-342, 587-651

Abel value of, 340
absolutely convergent, 590-592
alternating, 610-611
binomial, 634-635
Cesiro value of, 342

Series, comparison test, 591
convergence value of, 336, 341,

587
converging to, Bernoulli func-

tions, 614
cosine, 458
exponential, 231, 498-499, 505
inverse tangent, 467
log (1 + x)-', 500
7r/4, 468, S00
sine, 458
tangent, 623, 651

definition of, 335, 587
divergent, 336, 587, 588, 603-604
dominated, 591
exponential, 231, 498-499, 505
Fourier, 611-619
geometric, 337-338, 588, 593
harmonic, 594, 644
integral test, 601-603
multiplication of, 623-627
partial sums of, 335, 587
power, 593, 619-640
ratio test, 599-601
rearrangements of, 597-598
root test, 629
2;k-2 = ir2/6, 594, 605, 614, 672
Taylor, 621, 633-636
terms of, 335, 588
termwise addition, 589
termwise differentiation, 620, 632
termwise integration, 620-621,

672
trigonometric, 618-619
uniform convergence, 342
of vectors, 597

Serpentine, 259
Set, bounded, 293
Shell game, 721-723
Signum function, 188, 132, 211, 244
Similarity of parabolas, 360
Simple closed curve, 417
Simple harmonic motion (see Sinus-

oids)
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Simple points, 585
Simplex, n-dimensional, 58
Simpson approximation to integral,

278-282
Sine(s), decimal approximations to,

458
power series for, 458

Sinusoids, 39, 182, 184, 442, 445,
455

rectified, 617
Skew lines, line normal to two, 77

transversals of three, 108
Slab method, 245
Slide rules, 489-490
Slopes, 11, 168, 285, 305

increasing and decreasing, 305
Snell formula (optics), 302
Social security numbers, 113
Solid having maximum gravita-

tional attraction, 693
Space (E3), 48-110
Span of vectors, 57
SPC, 102
Specific heat, 200-201
Speed, 177, 179, 436-437, 442
Speidell, John, 486
Sphere, 62, 550, 573-574

in conical glass, 303
Spherical ball, volume of, 246-247
Spherical coordinates, 527,533,59'2,

707-714
triple integrals in, 707-714

Spheroids, 249, 404
Spirals, of Archimedes, 532

exponential, 532, 544
hyperbolic, 546

Square roots, 4, 8
table of, end papers

Square-wave function, 616-617
Standard deviation a, 309, 694
Star characters (intermediate

points), 212-213
Statements, 35
Static concept of function,,f2

Index

Step functions, 217-219
Stirling formulas, 487-488, 608,

644-647
Stokes formula, 674
Stream curves, 387
String property of ellipse, 370
String unwound from spool, 434
Strophoid, 546
Subintervals, 212
Successive approximation, 9, 318
Successive elimination, 19
Sum (convergence value) of series,

336, 341, 587-588
Summation symbol E, 213
Sums of powers, 233, 331, 643, 644
Surface, 425, 574

area of, 425, 447-448, 550
normals to, 567
tangent planes of, 567
triangulation of, 447

Symbols and numbers, 244
Symmetry, 37

of conics, 365
Systems of equations, 90

Tables, Burington, 206
of derivatives, 165, 167, end

papers
Dwight, 206
of integrals, 205-206, end papers
numerical, end papers
use of, 206-207, 211-212, 465,

474, 514
Tangent lines, 168, 179, 284-294
Tangent planes, 567
Tangent (trigonometric), series for,

623, 651
Tangent vectors, 179, 286

in cylindrical coordinates, 540
in polar coordinates, 541

Tanks, economical proportions of,
298-299

Taxi fare function, L49
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Taylor formulas, 621, 632-640
with remainders, 632-640

Taylor series, 621, 633-634, 636
(See also Power series)

Tchebycheff polynomials, 465
Telescopic sum, 482, 594
Temperature of rod, 553-554
Terms, 335, 588
Termwise differentiation, 620, 632
Termwise integration, 620-621, 672
Tetrahedron, 54, 92, 105
Thread unwound from spool, 190
Topology, 66, 675-676
Torus, 65, 186, 247, 412, 575
Total variation, 352-353
Transcendental functions, 448
Transcendental numbers, 449
Transform, 34, 75, 122
Transformation, 122

of coordinates, 101
Transformers, 34, 75, 96, 112, 122

of vectors, 96, 97
Translation of axes, 392-393
Transpose of matrix, 109
Transversals of three skew lines,

108
Transverse acceleration, 437, 545
Trapezoidal formula, 278
Trends, 294-313
Triangle, area of, 92
Triangle inequality, 33
Triangular roller, 437
Triangulation of surfaces, 447
Trigonometric functions, 10, 38,

242, 43 8-4 79
definitions of, 10
derivatives of, 161, 165, 441-443
graphs of, 38, 442, 443, 450
integrals of, 205, 449-457
inverse, 461-464
table of values of, end papers

Trigonometric inequalities, 441
Trigonometric integrands, 449-457
Trigonometric series, 618-619

Triple integrals, 695-714
in cylindrical coordinates, 702-

707
in rectangular coordinates, 695-

702

in spherical coordinates, 707-714
Trisection of angles, 389, 536-538,

546
Trisectrix of Maclaurin, 546
Trochoids, 400

Uniform circular motion, 46, 182
Uniform continuity, 326
Uniform convergence, 342
Unilateral limits, 133-144
Uniqueness theorem, for power

series, 621
for trigonometric series, 619

Unit normal, 52
Unit vectors, 49, 52, 60, 68
Universal gravitational constant,

74
Upper bound, 212
Upper integral (Darboux), 346
Upper sum (Darboux), 344

V (for victory), 41
Vector(s), 41-47, 48-110

abstract, 586
algebra of, 48-110
components of, 61, 179
derivatives of, 178, 183, 540
independent, 58
integrals of, 210, 259
modern terminology, 177
series of, 597
span of, 57

Vector functions, 112, 150-151, 586
Vector (cross) products, 51, 97-107,

428, 541, 561
Velocities, 178, 190, 436-437, 540-

541
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Velocities, in spherical coordinates,
711

Volumes, 244-250
cylindrical shell method, 246
by iterated integrals, 659-667
by multiple integrals, 676-710
by slab method, 245
theory of, 244, 721-723

Wall Street Journal, 41
Wallis formulas, 522-523
Wave equation, 560
Weierstrass, Carl, 162
Wheel on race track, 545
Witch of Agnesi, 547

Index

Witch with broom, 291
Work, 253-255, 257-259, 426-428,

657-658

x axis, 2, 10, 59

Yogi and Mars, 289

Zeros, conjugate pairs of, 518
Of functions, 317
of polynomials, 162, 517

Zeta function of Riemann, 603, 607
614, 617, 630

Zeta series (see Zeta function)
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