\&KDSUMT 4 XDOLINEL TXDNRQV]6XP P DUT

Exercises / Section 6.1 (page 203)

- 6ROHHUKHJ LDHQSXUHTXDOCNELHIXDNRQV

- 6ROYHWHHJ LYHDTXDODWFLHTXDNRQVE IMKHP HKRGIRIIDFURUQJI

 $(x=\square)$ Z IOMWHRENAFWODQ'

(Problems solved in class

Exercises / Section 6.2 (page 208)

- 6ROHHHFKHIXDNRQE IFRP SOHQJ CWHVXXDH
Problem \# 3 $x^{\square}+\square x-\square \square=0$
Problem \# $13 \square x^{\square}-\square x+\square=\square$
Problem \# $21 \square x^{0}-x-\square=\square$
Problem \# 23 $0 x^{\square}+x+\square=\square$
Problem \# $29 \square x^{\square}+\square x-\square=\square$
Problem \# $37 x^{0}-b x+\square=\square$
Problem \# 39] $a x^{0}+\square x-\square=\square$

Exercises / Section 6.3 (page 213-214)

- 6ROYHHFFKHIXDNRQE TUHTXDOCNEURUP X(D)

Problem \# $5 \quad \square x^{\square}=\square x-\square \quad$ Problem \# $17 \quad \square x^{\square}+\square x+\square=\square \quad$ Problem \# $23 \quad \square x^{\square}+\square=\square$

Problem \# 51 6ROYHUKHJ LYHपIHIXDNRQIIRUI
$\frac{\square}{x+\square}+\frac{\square}{x}=\frac{\square}{\square \square}$
Problem \# $53 \frac{\square}{x}+\frac{\square}{x-\square}=\frac{\square}{\square}$

Exercises / Section 6.4 (page 217-218)

 IFFII) IQGMKHEDHIDQGKHJ KW

Problem \# 17 In city traffic, a car travels $15 \mathrm{mi} / \mathrm{hr}$ faster than a bicycle. The car can travel 50 mi in 3 hours less time than the bicycle. Find the rate of each.
Problem \# 19 A rectangular enclosure is to be fenced along four sides and divided in to two parts by a fence parallel to one of the side (see figure). If 170 ft of fence are available and the total area is $1200 \mathrm{ft}^{2}$, what are the dimensions? (There are two possible solutions.)

Problem \# 21 The cost of carpeting an office at $10 \$ / f t^{2}$ was $1500 \$$. If the length exceeds the width by $5 f t$, what are the dimensions of the office?

Problem \# 23 An engineer wants to buy $\$ 240$ worth of stock. One stock costs $\$ 10$ more per share than another, if she decides to buy the cheaper stock, she can afford four more shares. How many shares of the more expensive stock can she buy?
(Problems solved in class \# 5, 17, 23)
HW: Problem \# 7, \# 13, \# 19, \# 21

Solved Examples

Example \# 1

The area of a rectangle is $23.6 \mathrm{~cm}^{2}$ and its with is 3.1 cm shorter than its length. Determine the dimensions of the rectangle, correct to 3 significant figures.

Solution:

Let the length of the rectangle be $x \mathrm{~cm}$. Then the width be $(x-3.1) \mathrm{cm}$

$$
\text { Area }=\text { length } \times \text { width }, \quad x(x-3.1)=23.6 \Rightarrow x^{2}-3.1 x-23.6=0
$$

Using quadratic formula: $x=6.65 \mathrm{~cm}$ or $x=-3.55 \mathrm{~cm}$
Negative solution neglected because length can not be negative. $\therefore x=6.65 \mathrm{~cm}$ and width $=x-3.1=6.65-3.1=3.55 \mathrm{~cm}$.
The dimensions of the rectangle are: 6.65 cm by 3.55 cm .
Example \# 2
Two resistors when connected in series have a total resistance of 40Ω. When connected in parallel their total resistance is 8.4Ω. If one of the resistors has a resistance of $R_{x} \Omega$
(a) Show that $R_{x}^{2}-40 R_{x}+336=0$
(b) Calculate the resistance of each (12Ω and 28Ω)

Solution:

Let resistors be R_{x} and R_{y},
When in series, $R_{x}+R_{y}=40$
and when in parallel, $\frac{1}{R_{x}}+\frac{1}{R_{y}}=\frac{1}{8.4} \Rightarrow \frac{R_{x}+R_{y}}{R_{x} R_{y}}=\frac{1}{8.4}$, using equation (1), $\Rightarrow \frac{40}{R_{x} R_{y}}=\frac{1}{8.4} \Rightarrow \frac{336}{R_{x}}=R_{y}$
Substituting R_{y} in equation (1), $R_{x}+\frac{336}{R_{x}}=40 \Rightarrow \frac{R_{x}^{2}+336}{R_{x}}=40 \Rightarrow R_{x}^{2}-40 R_{x}+336=0$
(b) Using quadratic formula

