King Saud University Department of Mathematics

244 First Midterm, March 2016

NAME:

Group Number/Instructor name:

ID:

- Duration of the exam: 90 minutes
- Simple calculators are allowed

Question	Grade
Q alos cion	
Ι	
1	
II	
III	
IV	
Total	

Question	1	2	3	4	5
Answer					

I) Choose the correct answer (write it on the table above):

1) If
$$A^3 - 2B^T = \begin{bmatrix} 18 & -2 \\ -6 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -5 & 3 \\ 1 & 0 \end{bmatrix}$, then the matrix A is

(A)
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
 (B) $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ (C) $A = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$ (D) None

2) If $A^T = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ and $p(x) = x^2 - x + 3$, then p(A) equals

$(\mathbf{A}) \left[\begin{array}{cc} 5 & 3 \\ 6 & 11 \end{array} \right]$	$(B) \left[\begin{array}{cc} 5 & 11 \\ 3 & 6 \end{array} \right]$	$(C) \left[\begin{array}{cc} 5 & 6\\ 3 & 11 \end{array} \right]$	(D) None
---	--	---	----------

3) The values of x and y for which the matrix $\begin{bmatrix} x^2 & 0 & x^2 - 4 \\ -1 & 3 & 2y - 6 \\ 1 & 7 & 2x - 5y \end{bmatrix}$ is lower triangular are

(A)
$$x = 2, y = 3$$
 (B) $x = \pm 2, y = 3$ (C) $x = \pm 2, y = \pm 3$ (D) None

4) For any $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, the solution of the system $\begin{cases} -x + 2y = b_1 \\ 2x + 6y = b_2 \end{cases}$ is

(A) a point	(B) a line	(C) a plane	(D) None
-------------	------------	-------------	----------

5) The trace of of the matrix
$$\begin{bmatrix} 2 & 0 & 3 \\ -1 & 4 & 0 \\ 0 & -3 & 1 \end{bmatrix}$$
 is

(A) (2,4,1) (B) 7 (C) 6 (D) None

- II) Determine whether the following is **True** or **False**.
 - (1) If A is a symmetric matrix, then A^2 is symmetric. () (2) The following system of equations is linear. () $\sqrt{3}x + 2y - \cos z = 0$ $\sqrt{3} - x + 2y + z = 1$ (3) If A and B are $n \times n$ matrices, then $(A + B)^2 - (A - B)^2 = 4AB.$
 - (4) If A is an upper triangular matrix, then the matrix $A A^T$ is diagonal. ()
 - (5) If A and B are square matrices of the same size, such that A + B is symmetric, then both A and B are symmetric. ()

(6) If
$$D^3 = \begin{bmatrix} 8 & 0 \\ 0 & -1 \end{bmatrix}$$
, then $D^2 = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$. (9)

III) Solve the linear system of equations

$$\begin{cases} x - y + 3z + 2w = 1\\ -2x + y + 5z + w = 2\\ -3x + 2y + 2z - w = 1\\ 4x - 4y + 7z + 18w = 9 \end{cases}$$

IV) Let
$$A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 2 & 3 & 1 \end{bmatrix}$$

a) Find A^{-1} .

b) Find the matrix *B*, if AB = C, where $C = \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ -2 & 0 \end{bmatrix}$.

Scrap paper. This page will not be graded.