

C++

Jesse Liberty
Bradley Jones

FIFTH EDITION

Teach Yourself

in21Days

800 East 96th Street, Indianapolis, Indiana, 46240 USA

00 0672327112_fm.qxd 11/19/04 12:52 PM Page i

Sams Teach Yourself C++ in 21 Days,
Fifth Edition
Copyright © 2005 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32711-2

Library of Congress Catalog Card Number: 2004096713

Printed in the United States of America

First Printing: December 2004

07 06 05 04 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales. For more information, please
contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

ASSOCIATE PUBLISHER

Michael Stephens

ACQUISITIONS EDITOR

Loretta Yates

DEVELOPMENT EDITOR

Songlin Qiu

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Seth Kerney

COPY EDITOR

Karen Annett

INDEXER

Erika Millen

PROOFREADER

Paula Lowell

TECHNICAL EDITORS

Mark Cashman
David V. Corbin

PUBLISHING COORDINATOR

Cindy Teeters

MULTIMEDIA DEVELOPER

Dan Scherf

BOOK DESIGNER

Gary Adair

PAGE LAYOUT

Eric S. Miller
Julie Parks

00 0672327112_fm.qxd 11/19/04 12:52 PM Page ii

Contents at a Glance
Introduction 1

Week 1 At a Glance 3

Day 1 Getting Started 5

2 The Anatomy of a C++ Program 25

3 Working with Variables and Constants 41

4 Creating Expressions and Statements 67

5 Organizing into Functions 99

6 Understanding Object-Oriented Programming 137

7 More on Program Flow 175

Week 1 In Review 209

Week 2 At a Glance 219

Day 8 Understanding Pointers 221

9 Exploiting References 255

10 Working with Advanced Functions 289

11 Object-Oriented Analysis and Design 329

12 Implementing Inheritance 371

13 Managing Arrays and Strings 407

14 Polymorphism 449

Week 2 In Review 491

Week 3 At a Glance 503

Day 15 Special Classes and Functions 505

16 Advanced Inheritance 537

17 Working with Streams 593

18 Creating and Using Namespaces 637

19 Templates 659

20 Handling Errors and Exceptions 715

21 What’s Next 751

00 0672327112_fm.qxd 11/19/04 12:52 PM Page iii

Week 3 In Review 791

Appendixes

Appendix A Working with Numbers: Binary and Hexadecimal 807

B C++ Keywords 817

C Operator Precedence 819

D Answers 821

E A Look at Linked Lists 875

Index 887

00 0672327112_fm.qxd 11/19/04 12:52 PM Page iv

Contents
Introduction 1

Who Should Read This Book ..1
Conventions Used in This Book ..1
Sample Code for This Book ..2

Week 1 At a Glance 3

A Note to C Programmers ..3
Where You Are Going..3

1 Getting Started 5

A Brief History of C++ ..5
The Need for Solving Problems ..7
Procedural, Structured, and Object-Oriented Programming8
Object-Oriented Programming (OOP) ..9
C++ and Object-Oriented Programming..9

How C++ Evolved ..11
Should I Learn C First? ..11
C++, Java, and C#..12
Microsoft’s Managed Extensions to C++..12
The ANSI Standard..12
Preparing to Program ..13
Your Development Environment ..14
The Process of Creating the Program..15

Creating an Object File with the Compiler ..15
Creating an Executable File with the Linker ..15

The Development Cycle ..16
HELLO.cpp—Your First C++ Program ..17
Getting Started with Your Compiler ..19

Building the Hello World Project ..19
Compile Errors ..20
Summary ..21
Q&A ..21
Workshop ..22

Quiz ..22
Exercises ..23

2 The Anatomy of a C++ Program 25

A Simple Program ..25
A Brief Look at cout ..28

00 0672327112_fm.qxd 11/19/04 12:52 PM Page v

Using the Standard Namespace ..30
Commenting Your Programs..32

Types of Comments..33
Using Comments ..33
A Final Word of Caution About Comments ..34

Functions..35
Using Functions..36
Methods Versus Functions..38

Summary ..38
Q&A ..38
Workshop ..39

Quiz ..39
Exercises ..39

3 Working with Variables and Constants 41

What Is a Variable? ..41
Storing Data in Memory ..42
Setting Aside Memory..42
Size of Integers ..43
signed and unsigned ..45
Fundamental Variable Types ..45

Defining a Variable ..47
Case Sensitivity ..48
Naming Conventions ..48
Keywords ..49

Creating More Than One Variable at a Time ..50
Assigning Values to Your Variables ..50
Creating Aliases with typedef ..52
When to Use short and When to Use long ..53

Wrapping Around an unsigned Integer..54
Wrapping Around a signed Integer..55

Working with Characters ..56
Characters and Numbers ..57
Special Printing Characters ..58

Constants..59
Literal Constants ..59
Symbolic Constants ..59

Enumerated Constants ..61
Summary ..63
Q&A ..64
Workshop ..65

Quiz ..65
Exercises ..66

vi Sams Teach Yourself C++ in 21 Days, Fifth Edition

00 0672327112_fm.qxd 11/19/04 12:52 PM Page vi

4 Creating Expressions and Statements 67

Starting with Statements ..68
Using Whitespace ..68
Blocks and Compound Statements ..68

Expressions ..69
Working with Operators ..70

Assignment Operators ..71
Mathematical Operators ..71

Combining the Assignment and Mathematical Operators73
Incrementing and Decrementing..74

Prefixing Versus Postfixing ..75
Understanding Operator Precedence ..77
Nesting Parentheses ..78
The Nature of Truth ..79

Evaluating with the Relational Operators ..79
The if Statement ..80

Indentation Styles ..83
The else Statement ..84
Advanced if Statements ..86

Using Braces in Nested if Statements ..88
Using the Logical Operators..91

The Logical AND Operator ..91
The Logical OR Operator ..91
The Logical NOT Operator ..92

Short Circuit Evaluation ..92
Relational Precedence..92
More About Truth and Falsehood..93
The Conditional (Ternary) Operator..94
Summary ..95
Q&A ..96
Workshop ..96

Quiz ..97
Exercises ..97

5 Organizing into Functions 99

What Is a Function? ..100
Return Values, Parameters, and Arguments ..100
Declaring and Defining Functions ..101

Function Prototypes..102
Defining the Function ..103

Execution of Functions ..105
Determining Variable Scope ..105

Local Variables ..105
Local Variables Within Blocks ..107

Contents vii

00 0672327112_fm.qxd 11/19/04 12:52 PM Page vii

Parameters Are Local Variables ..109
Global Variables..110
Global Variables: A Word of Caution ..112

Considerations for Creating Function Statements ..112
More About Function Arguments ..113
More About Return Values ..114
Default Parameters ..116
Overloading Functions ..118
Special Topics About Functions ..121

Inline Functions ..122
Recursion ..124

How Functions Work—A Peek Under the Hood ..129
Levels of Abstraction..129

Summary ..133
Q&A ..134
Workshop ..134

Quiz ..135
Exercises ..135

6 Understanding Object-Oriented Programming 137

Is C++ Object-Oriented? ..137
Creating New Types ..139
Introducing Classes and Members ..140

Declaring a Class..141
A Word on Naming Conventions ..141
Defining an Object ..142
Classes Versus Objects ..142

Accessing Class Members ..142
Assigning to Objects, Not to Classes ..143
If You Don’t Declare It, Your Class Won’t Have It ..143

Private Versus Public Access ..144
Making Member Data Private ..146

Implementing Class Methods ..150
Adding Constructors and Destructors..153

Getting a Default Constructor and Destructor ..153
Using the Default Constructor..154

Including const Member Functions ..157
Interface Versus Implementation ..158
Where to Put Class Declarations and Method Definitions..................................161
Inline Implementation..162
Classes with Other Classes as Member Data ..165
Exploring Structures ..169

viii Sams Teach Yourself C++ in 21 Days, Fifth Edition

00 0672327112_fm.qxd 11/19/04 12:52 PM Page viii

Summary ..170
Q&A ..171
Workshop ..172

Quiz ..172
Exercises ..173

7 More on Program Flow 175

Looping ..175
The Roots of Looping: goto ..176
Why goto Is Shunned ..176

Using while Loops ..177
Exploring More Complicated while Statements..179
Introducing continue and break ..180
Examining while (true) Loops..183

Implementing do...while Loops ..184
Using do...while ..186
Looping with the for Statement ..187

Advanced for Loops ..190
Empty for Loops..192
Nesting Loops ..193
Scoping in for Loops ..195

Summing Up Loops ..196
Controlling Flow with switch Statements ..198

Using a switch Statement with a Menu ..201
Summary ..205
Q&A ..205
Workshop ..206

Quiz ..206
Exercises ..206

Week 1 In Review 209

Week 2 At a Glance 219

Where You Are Going..219

8 Understanding Pointers 221

What Is a Pointer?..222
A Bit About Memory..222
Getting a Variable’s Memory Address..222
Storing a Variable’s Address in a Pointer ..224
Pointer Names ..224
Getting the Value from a Variable ..225
Dereferencing with the Indirection Operator ..226
Pointers, Addresses, and Variables ..227

Contents ix

00 0672327112_fm.qxd 11/19/04 12:52 PM Page ix

Manipulating Data by Using Pointers ..228
Examining the Address ..229

Why Would You Use Pointers?..232
The Stack and the Free Store (Heap) ..232

Allocating Space with the new Keyword ..234
Putting Memory Back: The delete Keyword ..235

Another Look at Memory Leaks ..237
Creating Objects on the Free Store..238
Deleting Objects from the Free Store..238
Accessing Data Members ..239
Creating Member Data on the Free Store..241
The this Pointer ..243
Stray, Wild, or Dangling Pointers..245
Using const Pointers ..248

const Pointers and const Member Functions..249
Using a const this Pointers..251

Summary ..251
Q&A ..252
Workshop ..252

Quiz ..252
Exercises ..253

9 Exploiting References 255

What Is a Reference? ..255
Using the Address-Of Operator (&) on References..257

Attempting to Reassign References (Not!) ..259
Referencing Objects ..260
Null Pointers and Null References ..262
Passing Function Arguments by Reference ..262

Making swap() Work with Pointers ..264
Implementing swap() with References ..265

Understanding Function Headers and Prototypes ..267
Returning Multiple Values ..268

Returning Values by Reference ..270
Passing by Reference for Efficiency..271

Passing a const Pointer ..274
References as an Alternative ..277

Knowing When to Use References Versus Pointers ..279
Mixing References and Pointers..280
Returning Out-of-Scope Object References ..281

Returning a Reference to an Object on the Heap ..283
Pointer, Pointer, Who Has the Pointer? ..285

x Sams Teach Yourself C++ in 21 Days, Fifth Edition

00 0672327112_fm.qxd 11/19/04 12:52 PM Page x

Summary ..286
Q&A ..286
Workshop ..287

Quiz ..287
Exercises ..287

10 Working with Advanced Functions 289

Overloaded Member Functions ..289
Using Default Values ..292
Choosing Between Default Values and Overloaded Functions294
The Default Constructor ..294
Overloading Constructors ..295
Initializing Objects ..297
The Copy Constructor..298
Operator Overloading ..302

Writing an Increment Function ..303
Overloading the Prefix Operator ..304
Returning Types in Overloaded Operator Functions......................................306
Returning Nameless Temporaries ..307
Using the this Pointer ..309
Overloading the Postfix Operator ..311
Difference Between Prefix and Postfix ..311
Overloading Binary Mathematical Operators ..313
Issues in Operator Overloading..316
Limitations on Operator Overloading ..316
What to Overload ..317
The Assignment Operator ..317

Handling Data Type Conversion..320
Conversion Operators ..323
Summary ..325
Q&A ..325
Workshop ..326

Quiz ..326
Exercises ..327

11 Object-Oriented Analysis and Design 329

Building Models ..329
Software Design: The Modeling Language ..330
Software Design: The Process ..331

Waterfall Versus Iterative Development ..332
The Process of Iterative Development ..333

Step 1: The Conceptualization Phase: Starting with The Vision335

Contents xi

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xi

Step 2: The Analysis Phase: Gathering Requirements ..336
Use Cases..336
Application Analysis ..347
Systems Analysis ..347
Planning Documents ..348
Visualizations..349
Artifacts ..349

Step 3: The Design Phase ..350
What Are the Classes?..350
Transformations..352
Other Transformations..353
Building the Static Model ..354
Dynamic Model ..363

Steps 4–6: Implementation, Testing, and Rollout?..366
Iterations ..367
Summary ..367
Q&A ..367
Workshop ..368

Quiz ..368
Exercises ..369

12 Implementing Inheritance 371

What Is Inheritance? ..371
Inheritance and Derivation ..372
The Animal Kingdom ..373
The Syntax of Derivation ..374

Private Versus Protected ..376
Inheritance with Constructors and Destructors ..378

Passing Arguments to Base Constructors ..381
Overriding Base Class Functions ..385

Hiding the Base Class Method ..387
Calling the Base Method ..389

Virtual Methods ..391
How Virtual Functions Work..395
Trying to Access Methods from a Base Class..396
Slicing ..397
Creating Virtual Destructors ..399
Virtual Copy Constructors..400
The Cost of Virtual Methods ..403

Summary ..403
Q&A ..404
Workshop ..405

xii Sams Teach Yourself C++ in 21 Days, Fifth Edition

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xii

Quiz ..405
Exercises ..405

13 Managing Arrays and Strings 407

What Is an Array? ..407
Accessing Array Elements..408
Writing Past the End of an Array ..410
Fence Post Errors..413
Initializing Arrays ..413
Declaring Arrays ..414

Using Arrays of Objects ..416
Declaring Multidimensional Arrays ..417
Initializing Multidimensional Arrays ..419

Building Arrays of Pointers ..421
A Look at Pointer Arithmetic—An Advanced Topic ..423
Declaring Arrays on the Free Store ..426

A Pointer to an Array Versus an Array of Pointers ..426
Pointers and Array Names..427
Deleting Arrays on the Free Store..429
Resizing Arrays at Runtime..429

char Arrays and Strings ..432
Using the strcpy() and strncpy() Methods ..435
String Classes ..436
Linked Lists and Other Structures ..444
Creating Array Classes ..444
Summary ..445
Q&A ..445
Workshop ..446

Quiz ..446
Exercises ..447

14 Polymorphism 449

Problems with Single Inheritance..449
Percolating Upward ..452
Casting Down ..453
Adding to Two Lists ..456

Multiple Inheritance ..456
The Parts of a Multiply Inherited Object ..460
Constructors in Multiply Inherited Objects..460
Ambiguity Resolution ..463
Inheriting from Shared Base Class ..464
Virtual Inheritance ..468
Problems with Multiple Inheritance ..472
Mixins and Capabilities Classes ..473

Contents xiii

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xiii

Abstract Data Types ..473
Pure Virtual Functions ..477
Implementing Pure Virtual Functions ..478
Complex Hierarchies of Abstraction ..482
Which Classes Are Abstract? ..486

Summary ..486
Q&A ..487
Workshop ..488

Quiz ..488
Exercises ..489

Week 2 In Review 491

Week 3 At a Glance 503

Where You Are Going..503

15 Special Classes and Functions 505

Sharing Data Among Objects of the Same Type: Static Member Data506
Using Static Member Functions ..511
Pointers to Functions ..514

Why Use Function Pointers?..517
Arrays of Pointers to Functions..521
Passing Pointers to Functions to Other Functions ..523
Using typedef with Pointers to Functions ..525

Pointers to Member Functions ..528
Arrays of Pointers to Member Functions ..531

Summary ..533
Q&A ..533
Workshop ..534

Quiz ..534
Exercises ..534

16 Advanced Inheritance 537

Aggregation..537
Accessing Members of the Aggregated Class..545
Controlling Access to Aggregated Members..545
Cost of Aggregation..546
Copying by Value ..549

Implementation in Terms of Inheritance Versus Aggregation/Delegation552
Using Delegation ..553

Private Inheritance ..562
Adding Friend Classes ..571
Friend Functions ..580

xiv Sams Teach Yourself C++ in 21 Days, Fifth Edition

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xiv

Friend Functions and Operator Overloading ..580
Overloading the Insertion Operator ..585
Summary ..589
Q&A ..590
Workshop ..591

Quiz ..591
Exercises ..591

17 Working with Streams 593

Overview of Streams ..593
Encapsulation of Data Flow ..594
Understanding Buffering ..594

Streams and Buffers ..597
Standard I/O Objects..597
Redirection of the Standard Streams ..598
Input Using cin..599

Inputting Strings ..600
String Problems ..601
The cin Return Value ..603

Other Member Functions of cin..604
Single Character Input..604
Getting Strings from Standard Input ..607
Using cin.ignore() ..610
Peeking at and Returning Characters: peek() and putback()611

Outputting with cout ..613
Flushing the Output ..613
Functions for Doing Output ..613
Manipulators, Flags, and Formatting Instructions ..615

Streams Versus the printf() Function..620
File Input and Output ..623
Using the ofstream ..624

Condition States..624
Opening Files for Input and Output ..624
Changing the Default Behavior of ofstream on Open626

Binary Versus Text Files ..629
Command-line Processing ..631
Summary ..634
Q&A ..635
Workshop ..636

Quiz ..636
Exercises ..636

Contents xv

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xv

18 Creating and Using Namespaces 637

Getting Started ..637
Resolving Functions and Classes by Name ..638

Visibility of Variables ..640
Linkage ..641
Static Global Variables ..642

Creating a Namespace ..643
Declaring and Defining Types..644
Defining Functions Outside a Namespace ..645
Adding New Members ..645
Nesting Namespaces ..646

Using a Namespace..646
The using Keyword ..648

The using Directive..648
The using Declaration..650

The Namespace Alias ..652
The Unnamed Namespace ..652
The Standard Namespace std..654
Summary ..655
Q&A ..656
Workshop ..656

Quiz ..656
Exercises ..657

19 Templates 659

What Are Templates? ..659
Building a Template Definition ..661

Using the Name ..664
Implementing the Template..665

Passing Instantiated Template Objects to Functions ..669
Templates and Friends ..670

Nontemplate Friend Classes and Functions ..670
General Template Friend Class or Function ..674

Using Template Items ..678
Using Specialized Functions ..683
Static Members and Templates ..689

The Standard Template Library ..693
Using Containers ..693
Understanding Sequence Containers..694
Understanding Associative Containers ..704
Working with the Algorithm Classes ..708

Summary ..711

xvi Sams Teach Yourself C++ in 21 Days, Fifth Edition

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xvi

Q&A ..712
Workshop ..713

Quiz ..713
Exercises ..713

20 Handling Errors and Exceptions 715

Bugs, Errors, Mistakes, and Code Rot ..716
Exceptional Circumstances ..717

The Idea Behind Exceptions..718
The Parts of Exception Handling ..719
Causing Your Own Exceptions ..722
Creating an Exception Class ..724

Placing try Blocks and catch Blocks ..728
How Catching Exceptions Work..728

Using More Than One catch Specification ..729
Exception Hierarchies ..732

Data in Exceptions and Naming Exception Objects ..735
Exceptions and Templates ..742
Exceptions Without Errors ..745
A Word About Code Rot..746
Bugs and Debugging..746

Breakpoints ..747
Watch Points ..747
Examining Memory..747
Assembler ..747

Summary ..748
Q&A ..748
Workshop ..749

Quiz ..749
Exercises ..750

21 What’s Next 751

The Preprocessor and the Compiler ..752
The #define Preprocessor Directive..752

Using #define for Constants..753
Using #define for Tests ..753
The #else Precompiler Command ..754

Inclusion and Inclusion Guards ..755
Macro Functions ..756

Why All the Parentheses? ..757
String Manipulation ..759

Stringizing ..759
Concatenation ..759

Contents xvii

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xvii

Predefined Macros ..760
The assert() Macro..761

Debugging with assert() ..762
Using assert() Versus Exceptions ..763
Side Effects ..763
Class Invariants ..764
Printing Interim Values ..769

Inline Functions ..771
Bit Twiddling ..773

Operator AND ..773
Operator OR ..774
Operator Exclusive OR ..774
The Complement Operator ..774
Setting Bits ..774
Clearing Bits ..774
Flipping Bits ..775
Bit Fields ..775

Programming Style ..779
Indenting ..779
Braces ..779
Long Lines and Function Length ..780
Structuring switch Statements ..780
Program Text ..780
Naming Identifiers..781
Spelling and Capitalization of Names..782
Comments ..782
Setting Up Access ..783
Class Definitions ..783
include Files ..784
Using assert() ..784
Making Items Constant with const..784

Next Steps in Your C++ Development ..784
Where to Get Help and Advice ..785
Related C++ Topics: Managed C++, C#, and Microsoft’s .NET785
Staying in Touch ..786

Summary ..786
Q&A ..787
Workshop ..788

Quiz ..788
Exercises ..789

Week 3 In Review 791

xviii Sams Teach Yourself C++ in 21 Days, Fifth Edition

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xviii

A Working with Numbers: Binary and Hexadecimal 807

Using Other Bases ..808
Converting to Different Bases ..809

Binary ..810
Why Base 2? ..811
Bits, Bytes, and Nybbles ..812
What’s a KB?..812
Binary Numbers..812

Hexadecimal ..813

B C++ Keywords 817

C Operator Precedence 819

D Answers 821

Day 1..821
Quiz ..821
Exercises ..822

Day 2..822
Quiz ..822
Exercises ..823

Day 3..824
Quiz ..824
Exercises ..825

Day 4..825
Quiz ..825
Exercises ..826

Day 5..826
Quiz ..826
Exercises ..827

Day 6..829
Quiz ..829
Exercises ..829

Day 7..832
Quiz ..832
Exercises ..832

Day 8..833
Quiz ..833
Exercises ..834

Day 9..835
Quiz ..835
Exercises ..835

Contents xix

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xix

Day 10..837
Quiz ..837
Exercises ..838

Day 11..842
Quiz ..842
Exercises ..842

Day 12..846
Quiz ..846
Exercises ..846

Day 13..847
Quiz ..847
Exercises ..847

Day 14..848
Quiz ..848
Exercises ..849

Day 15..850
Quiz ..850
Exercises ..850

Day 16..856
Quiz ..856
Exercises ..856

Day 17..859
Quiz ..859
Exercises ..860

Day 18..862
Quiz ..862
Exercises ..863

Day 19..863
Quiz ..863
Exercises ..864

Day 20..867
Quiz ..867
Exercises ..868

Day 21..873
Quiz ..873
Exercises ..874

E A Look at Linked Lists 875

The Component Parts of Your Linked List..876

Index 887

xx Sams Teach Yourself C++ in 21 Days, Fifth Edition

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xx

About the Authors
JESSE LIBERTY is the author of numerous books on software development, including
best-selling titles in C++ and .NET. He is the president of Liberty Associates, Inc.
(http://www.LibertyAssociates.com) where he provides custom programming, consulting,
and training.

BRADLEY JONES, Microsoft MVP, Visual C++, can be referred to as a webmaster, man-
ager, coding grunt, executive editor, and various other things. His time and focus are on a
number of software development sites and channels, including Developer.com,
CodeGuru.com, DevX, VBForums, Gamelan, and other Jupitermedia-owned sites. This
influence expands over sites delivering content to over 2.5 million unique developers a
month.

His expertise is in the area of the big “C”s—C, C++, and C#—however, his experience
includes development in PowerBuilder, VB, some Java, ASP, COBOL I/II, and various
other technologies too old to even mention now. He has also been a consultant, analyst,
project lead, associate publisher for major technical publishers, and author. His recent
authoring credits include Sams Teach Yourself the C# Language in 21 Days, a 6th edition
of Sams Teach Yourself C in 21 Days, and now this edition of Sams Teach Yourself C++
in 21 Days. He is also the cofounder and president of the Indianapolis .NET Developers
Association, which is a charter INETA group with membership of over 700. You can
often hear his ramblings on the CodeGuru.com or VBForums.com discussion forums,
and he also does the weekly CodeGuru newsletter that goes out to tens of thousands of
developers.

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xxi

Dedication
Jesse Liberty: This book is dedicated to the living memory of David Levine.

Bradley Jones: Dedicated to my wife and our future family.

Acknowledgments
JESSE LIBERTY: A fifth edition is another chance to acknowledge and to thank those
folks without whose support and help this book literally would have been impossible.
First among them remain Stacey, Robin, and Rachel Liberty.

I must also thank my editors at Sams for being professionals of the highest quality; and I
must especially acknowledge and thank Michael Stephens, Loretta Yates, Songlin Qiu,
Seth Kerney, and Karen Annett.

I would like to acknowledge the folks who taught me how to program: Skip Gilbrech and
David McCune, and those who taught me C++, including Stephen Zagieboylo. I would
like to thank the many readers who helped me find errors and typos in the earlier editions
of this book.

Finally, I’d like to thank Mrs. Kalish, who taught my sixth-grade class how to do binary
arithmetic in 1965, when neither she nor we knew why.

BRADLEY JONES: I would also like to thank Mark Cashman, David Corbin, Songlin Qiu,
and a number of readers from the previous editions.

In this fifth edition, we made an extra effort to ensure accuracy; we focused on honing
the content of this book for technical accuracy with an eye on the latest specifications for
the C++ language. Although we still might have missed something, chances are good
that we didn’t thanks to Mark and David and their close scrutiny of the technical details.

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xxii

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can email
or write me directly to let me know what you did or didn’t like about this book—as well
as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this
book. We do have a User Services group, however, where I will forward specific technical
questions related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com
Mail: Michael Stephens

Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our website
at www.samspublishing.com. Type the ISBN (excluding hyphens) or the title of a book
in the Search field to find the page you’re looking for.

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xxiii

00 0672327112_fm.qxd 11/19/04 12:52 PM Page xxiv

Introduction
This book is designed to help you teach yourself how to program with C++. No one can
learn a serious programming language in just three weeks, but each of the lessons in this
book has been designed so that you can read the entire lesson in just a few hours on a
single day.

In just 21 days, you’ll learn about such fundamentals as managing input and output,
loops and arrays, object-oriented programming, templates, and creating C++
applications—all in well-structured and easy-to-follow lessons. Lessons provide sample
listings—complete with sample output and an analysis of the code—to illustrate the top-
ics of the day.

To help you become more proficient, each lesson ends with a set of common questions
and answers, a quiz, and exercises. You can check your progress by examining the quiz
and exercise answers provided in Appendix D, “Answers.”

Who Should Read This Book
You don’t need any previous experience in programming to learn C++ with this book.
This book starts you from the beginning and teaches you both the language and the con-
cepts involved with programming C++. You’ll find the numerous examples of syntax and
detailed analysis of code an excellent guide as you begin your journey into this reward-
ing environment. Whether you are just beginning or already have some experience pro-
gramming, you will find that this book’s clear organization makes learning C++ fast and
easy.

Conventions Used in This Book

These boxes provide additional information related to material you just
read.

NOTE

These boxes highlight information that can make your C++ programming
more efficient and effective.

TIP

01 0672327112_intro.qxd 11/19/04 12:24 PM Page 1

2 Sams Teach Yourself C++ in 21 Days

This book uses various typefaces to help you distinguish C++ code from regular English.
Actual C++ code is typeset in a special monospace font. Placeholders—words or charac-
ters temporarily used to represent the real words or characters you would type in code—
are typeset in italic monospace. New or important terms are typeset in italic.

In the listings in this book, each real code line is numbered. If you see an unnumbered
line in a listing, you’ll know that the unnumbered line is really a continuation of the pre-
ceding numbered code line (some code lines are too long for the width of the book). In
this case, you should type the two lines as one; do not divide them.

Sample Code for This Book
The sample code described throughout this book and Appendix D, “Answers,” are avail-
able on the Sams website at http://www.samspublishing.com. Enter this book’s ISBN
(without the hyphens) in the Search box and click Search. When the book’s title is dis-
played, click the title to go to a page where you can download the code and Appendix D.

FAQ

What do FAQs do?

Answer: These Frequently Asked Questions provide greater insight into the use of the language
and clarify potential areas of confusion.

These boxes provide clear definitions of essential terms.

DO use the “Do/Don’t” boxes to find a
quick summary of a fundamental princi-
ple in a lesson.

DON’T overlook the useful information
offered in these boxes.

DO DON’T

These focus your attention on problems or side effects that can occur in spe-
cific situations.

CAUTION

01 0672327112_intro.qxd 11/19/04 12:24 PM Page 2

At a Glance
As you prepare for your first week of learning how to pro-
gram in C++, you will need a few things: a compiler, an edi-
tor, and this book. If you don’t have a C++ compiler and an
editor, you can still use this book, but you won’t get as much
out of it as you would if you were to do the exercises.

The best way to learn to program is by writing programs! At
the end of each day, you will find a workshop containing a
quiz and some exercises. Be certain to take the time to answer
all the questions, and to evaluate your work as objectively as
you can. The later lessons build on what you learn in the ear-
lier days, so be certain you fully understand the material
before moving on.

A Note to C Programmers
The material in the first five days will be familiar to you;
however, there are a few minor differences if you want to fol-
low the C++ standards. Be certain to skim the material and to
do the exercises, to ensure you are fully up to speed before
going on to Day 6, “Understanding Object-Oriented
Programming.”

Where You Are Going
The first week covers the material you need to get started
with programming in general, and with C++ in particular. On
Day 1, “Getting Started,” and Day 2, “The Anatomy of a C++
Program,” you will be introduced to the basic concepts of
programming and program flow. On Day 3, “Working with
Variables and Constants,” you will learn about variables and

WEEK 1 1

2

3

4

5

6

7

02 0672327112_w1_aag.qxd 11/19/04 12:25 PM Page 3

4 Week 1

constants and how to use data in your programs. On Day 4, “Creating Expressions and
Statements,” you will learn how programs branch based on the data provided and the
conditions encountered when the program is running. On Day 5, “Organizing into
Functions,” you will learn what functions are and how to use them, and on Day 6 you
will learn about classes and objects. On Day 7, “More on Program Flow,” you will learn
more about program flow, and by the end of the first week, you will be writing real
object-oriented programs.

02 0672327112_w1_aag.qxd 11/19/04 12:25 PM Page 4

DAY 1

WEEK 1

Getting Started
Welcome to Sams Teach Yourself C++ in 21 Days! Today, you will get started
on your way to becoming a proficient C++ programmer.

Today, you will learn

• Why C++ is a standard in software development

• The steps to develop a C++ program

• How to enter, compile, and link your first working C++ program

A Brief History of C++
Computer languages have undergone dramatic evolution since the first elec-
tronic computers were built to assist in artillery trajectory calculations during
World War II. Early on, programmers worked with the most primitive computer
instructions: machine language. These instructions were represented by long
strings of ones and zeros. Soon, assemblers were invented to map machine
instructions to human-readable and -manageable mnemonics, such as ADD
and MOV.

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 5

In time, higher-level languages evolved, such as BASIC and COBOL. These languages
let people work with something approximating words and sentences (referred to as
source code), such as Let I = 100. These instructions were then translated into machine
language by interpreters and compilers.

An interpreter translates and executes a program as it reads it, turning the program
instructions, or source code, directly into actions.

A compiler translates source code into an intermediary form. This step is called compil-
ing, and it produces an object file. The compiler then invokes a linker, which combines
the object file into an executable program.

Because interpreters read the source code as it is written and execute the code on the
spot, interpreters can be easier for the programmer to work with. Today, most interpreted
programs are referred to as scripts, and the interpreter itself is often called a “script
engine.”

Some languages, such as Visual Basic 6, call the interpreter the runtime library. Other
languages, such as the Visual Basic .NET and Java have another component, referred to
as a “Virtual Machine” (VM) or a runtime. The VM or runtime is also an interpreter.
However, it is not a source code interpreter that translates human-readable language into
computer-dependent machine code. Rather, it interprets and executes a compiled
computer-independent “virtual machine language” or intermediary language.

Compilers introduce the extra steps of compiling the source code (which is readable by
humans) into object code (which is readable by machines). This extra step might seem
inconvenient, but compiled programs run very fast because the time-consuming task of
translating the source code into machine language has already been done once, at com-
pile time. Because the translation is already done, it is not required when you execute the
program.

Another advantage of compiled languages such as C++ is that you can distribute the exe-
cutable program to people who don’t have the compiler. With an interpreted language,
you must have the interpreter to run the program.

C++ is typically a compiled language, though there are some C++ interpreters. Like
many compiled languages, C++ has a reputation for producing fast but powerful
programs.

In fact, for many years, the principal goal of computer programmers was to write short
pieces of code that would execute quickly. Programs needed to be small because memory
was expensive, and needed to be fast because processing power was also expensive. As
computers have become smaller, cheaper, and faster, and as the cost of memory has

6 Day 1

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 6

Getting Started 7

1
fallen, these priorities have changed. Today, the cost of a programmer’s time far out-
weighs the cost of most of the computers in use by businesses. Well-written, easy-to-
maintain code is at a premium. Easy to maintain means that as requirements change for
what the program needs to do, the program can be extended and enhanced without great
expense.

The word program is used in two ways: to describe individual instructions
(or source code) created by the programmer, and to describe an entire piece
of executable software. This distinction can cause enormous confusion, so
this book tries to distinguish between the source code, on one hand, and
the executable, on the other.

NOTE

The Need for Solving Problems
The problems programmers are asked to solve today are totally different from the prob-
lems they were solving twenty years ago. In the 1980s, programs were created to manage
and process large amounts of raw data. The people writing the code and the people using
the program were computer professionals. Today, computers are in use by far more peo-
ple, and most know very little about how computers and programs really work.
Computers are tools used by people who are more interested in solving their business
problems than struggling with the computer.

Ironically, as programs are made easier for this new audience to use, the programs them-
selves become far more sophisticated and complex. Gone are the days when users typed
in cryptic commands at esoteric prompts, only to see a stream of raw data. Today’s pro-
grams use sophisticated “user-friendly interfaces” involving multiple windows, menus,
dialog boxes, and the myriad of metaphors with which we’ve all become familiar.

With the development of the Web, computers entered a new era of market penetration;
more people are using computers than ever before, and their expectations are very high.
The ease at which people can use the Web has also increased the expectations. It is not
uncommon for people to expect that programs take advantage of the Web and what it has
to offer.

In the past few years, applications have expanded to different devices as well. No longer
is a desktop PC the only serious target for applications. Rather, mobile phones, personal
digital assistants (PDAs), Tablet PCs, and other devices are valid targets for modern
applications.

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 7

In the few years since the first edition of this book, programmers have responded to the
demands of users, and, thus, their programs have become larger and more complex. The
need for programming techniques to help manage this complexity has become manifest.

As programming requirements change, both languages and the techniques used for writ-
ing programs evolve to help programmers manage complexity. Although the complete
history is fascinating, this book only focuses briefly on the key part of this evolution: the
transformation from procedural programming to object-oriented programming.

Procedural, Structured, and Object-Oriented
Programming
Until recently, computer programs were thought of as a series of procedures that acted
upon data. A procedure, also called a function or a method, is a set of specific instruc-
tions executed one after the other. The data was quite separate from the procedures, and
the trick in programming was to keep track of which functions called which other func-
tions, and what data was changed. To make sense of this potentially confusing situation,
structured programming was created.

The principal idea behind structured programming is the idea of divide and conquer. A
computer program can be thought of as consisting of a set of tasks. Any task that is too
complex to be described simply is broken down into a set of smaller component tasks,
until the tasks are sufficiently small and self-contained enough that they are each easily
understood.

As an example, computing the average salary of every employee of a company is a rather
complex task. You can, however, break it down into the following subtasks:

1. Count how many employees you have.

2. Find out what each employee earns.

3. Total all the salaries.

4. Divide the total by the number of employees you have.

Totaling the salaries can be broken down into the following steps:

1. Get each employee’s record.

2. Access the salary.

3. Add the salary to the running total.

4. Get the next employee’s record.

8 Day 1

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 8

Getting Started 9

1
In turn, obtaining each employee’s record can be broken down into the following:

1. Open the file of employees.

2. Go to the correct record.

3. Read the data.

Structured programming remains an enormously successful approach for dealing with
complex problems. By the late 1980s, however, some of the deficiencies of structured
programming had become all too clear.

First, a natural desire is to think of data (employee records, for example) and what you
can do with that data (sort, edit, and so on) as a single idea. Unfortunately, structured
programs separate data structures from the functions that manipulate them, and there is
no natural way to group data with its associated functions within structured program-
ming. Structured programming is often called procedural programming because of its
focus on procedures (rather than on “objects”).

Second, programmers often found themselves needing to reuse functions. But functions
that worked with one type of data often could not be used with other types of data, limit-
ing the benefits gained.

Object-Oriented Programming (OOP)
Object-oriented programming responds to these programming requirements, providing
techniques for managing enormous complexity, achieving reuse of software components,
and coupling data with the tasks that manipulate that data.

The essence of object-oriented programming is to model “objects” (that is, things or con-
cepts) rather than “data.” The objects you model might be onscreen widgets, such as but-
tons and list boxes, or they might be real-world objects, such as customers, bicycles,
airplanes, cats, and water.

Objects have characteristics, also called properties or attributes, such as age, fast, spa-
cious, black, or wet. They also have capabilities, also called operations or functions, such
as purchase, accelerate, fly, purr, or bubble. It is the job of object-oriented programming
to represent these objects in the programming language.

C++ and Object-Oriented Programming
C++ fully supports object-oriented programming, including the three pillars of object-
oriented development: encapsulation, inheritance, and polymorphism.

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 9

Encapsulation
When an engineer needs to add a resistor to the device she is creating, she doesn’t typi-
cally build a new one from scratch. She walks over to a bin of resistors, examines the
colored bands that indicate the properties, and picks the one she needs. The resistor is a
“black box” as far as the engineer is concerned—she doesn’t much care how it does its
work, as long as it conforms to her specifications. She doesn’t need to look inside the
box to use it in her design.

The property of being a self-contained unit is called encapsulation. With encapsulation,
you can accomplish data hiding. Data hiding is the highly valued characteristic that an
object can be used without the user knowing or caring how it works internally. Just as
you can use a refrigerator without knowing how the compressor works, you can use a
well-designed object without knowing about its internal workings. Changes can be made
to those workings without affecting the operation of the program, as long as the specifi-
cations are met; just as the compressor in a refrigerator can be replaced with another one
of similar design.

Similarly, when the engineer uses the resistor, she need not know anything about the
internal state of the resistor. All the properties of the resistor are encapsulated in the
resistor object; they are not spread out through the circuitry. It is not necessary to under-
stand how the resistor works to use it effectively. Its workings are hidden inside the resis-
tor’s casing.

C++ supports encapsulation through the creation of user-defined types, called classes.
You’ll see how to create classes on Day 6, “Understanding Object-Oriented
Programming.” After being created, a well-defined class acts as a fully encapsulated
entity—it is used as a whole unit. The actual inner workings of the class can be hidden.
Users of a well-defined class do not need to know how the class works; they just need to
know how to use it.

Inheritance and Reuse
When the engineers at Acme Motors want to build a new car, they have two choices:
They can start from scratch, or they can modify an existing model. Perhaps their Star
model is nearly perfect, but they want to add a turbocharger and a six-speed transmis-
sion. The chief engineer prefers not to start from the ground up, but rather to say, “Let’s
build another Star, but let’s add these additional capabilities. We’ll call the new model a
Quasar.” A Quasar is a kind of Star, but a specialized one with new features. (According
to NASA, quasars are extremely luminous bodies that emit an astonishing amount of
energy.)

10 Day 1

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 10

Getting Started 11

1
C++ supports inheritance. With inheritance, you can declare a new type that is an exten-
sion of an existing type. This new subclass is said to derive from the existing type and is
sometimes called a derived type. If the Quasar is derived from the Star and, thus, inherits
all of the Star’s qualities, then the engineers can add to them or modify them as needed.
Inheritance and its application in C++ are discussed on Day 12, “Implementing
Inheritance,” and Day 16, “Advanced Inheritance.”

Polymorphism
A new Quasar might respond differently than a Star does when you press down on the
accelerator. The Quasar might engage fuel injection and a turbocharger, whereas the Star
simply lets gasoline into its carburetor. A user, however, does not have to know about
these differences. He can just “floor it,” and the right thing happens, depending on which
car he’s driving.

C++ supports the idea that different objects do “the right thing” through what is called
function polymorphism and class polymorphism. Poly means many, and morph means
form. Polymorphism refers to the same name taking many forms, and it is discussed on
Day 10, “Working with Advanced Functions,” and Day 14, “Polymorphism.”

How C++ Evolved
As object-oriented analysis, design, and programming began to catch on, Bjarne
Stroustrup took the most popular language for commercial software development, C, and
extended it to provide the features needed to facilitate object-oriented programming.

Although it is true that C++ is a superset of C and that virtually any legal C program is a
legal C++ program, the leap from C to C++ is very significant. C++ benefited from its
relationship to C for many years because C programmers could ease into their use of
C++. To really get the full benefit of C++, however, many programmers found they had
to unlearn much of what they knew and learn a new way of conceptualizing and solving
programming problems.

Should I Learn C First?
The question inevitably arises: “Because C++ is a superset of C, should you learn C
first?” Stroustrup and most other C++ programmers agree that not only is it unnecessary
to learn C first, it might be advantageous not to do so.

C programming is based on structured programming concepts; C++ is based on object-
oriented programming. If you learn C first, you’ll have to “unlearn” the bad habits fos-
tered by C.

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 11

This book does not assume you have any prior programming experience. If you are a C
programmer, however, the first few days of this book will largely be review. Starting on
Day 6, you will begin the real work of object-oriented software development.

C++, Java, and C#
C++ is one of the predominant languages for the development of commercial software.
In recent years, Java has challenged that dominance; however, many of the programmers
who left C++ for Java have recently begun to return. In any case, the two languages are
so similar that to learn one is to learn 90 percent of the other.

C# is a newer language developed by Microsoft for the .NET platform. C# uses essen-
tially the same syntax as C++, and although the languages are different in a few impor-
tant ways, learning C++ provides a majority of what you need to know about C#. Should
you later decide to learn C#, the work you do on C++ will be an excellent investment.

Microsoft’s Managed Extensions to C++
With .NET, Microsoft introduced Managed Extensions to C++ (“Managed C++”). This is
an extension of the C++ language to allow it to use Microsoft’s new platform and
libraries. More importantly, Managed C++ allows a C++ programmer to take advantage
of the advanced features of the .NET environment. Should you decide to develop specifi-
cally for the .NET platform, you will need to extend your knowledge of standard C++ to
include these extensions to the language.

The ANSI Standard
The Accredited Standards Committee, operating under the procedures of the American
National Standards Institute (ANSI), has created an international standard for C++.

The C++ Standard is also referred to as the ISO (International Organization for
Standardization) Standard, the NCITS (National Committee for Information Technology
Standards) Standard, the X3 (the old name for NCITS) Standard, and the ANSI/ISO
Standard. This book continues to refer to ANSI standard code because that is the more
commonly used term.

12 Day 1

ANSI is usually pronounced “antsy” with a silent “t.”NOTE

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 12

Getting Started 13

1
The ANSI standard is an attempt to ensure that C++ is portable—ensuring, for example,
that ANSI-standard-compliant code you write for Microsoft’s compiler will compile
without errors using a compiler from any other vendor. Further, because the code in this
book is ANSI compliant, it should compile without errors on a Macintosh, a Windows
box, or an Alpha.

For most students of C++, the ANSI standard is invisible. The most recent version of the
standard is ISO/IEC 14882-2003. The previous version, ISO/IEC 14882-1998, was stable
and all the major manufacturers support it. All of the code in this edition of this book has
been compared to the standard to ensure that it is compliant.

Keep in mind that not all compilers are fully compliant with the standard. In addition,
some areas of the standard have been left open to the compiler vendor, which cannot be
trusted to compile or operate in the same fashion when compiled with various brands of
compilers.

Because the Managed Extensions to C++ only apply to the .NET platform
and are not ANSI standard, they are not covered in this book.

NOTE

Preparing to Program
C++, perhaps more than other languages, demands that the programmer design the pro-
gram before writing it. Trivial problems, such as the ones discussed in the first few days
of this book, don’t require much design. Complex problems, however, such as the ones
professional programmers are challenged with every day, do require design, and the more
thorough the design, the more likely it is that the program will solve the problems it is
designed to solve, on time and on budget. A good design also makes for a program that
is relatively bug-free and easy to maintain. It has been estimated that fully 90 percent of
the cost of software is the combined cost of debugging and maintenance. To the extent
that good design can reduce those costs, it can have a significant impact on the bottom-
line cost of the project.

The first question you need to ask when preparing to design any program is, “What is the
problem I’m trying to solve?” Every program should have a clear, well-articulated goal,
and you’ll find that even the simplest programs in this book do so.

The second question every good programmer asks is, “Can this be accomplished without
resorting to writing custom software?” Reusing an old program, using pen and paper,
or buying software off the shelf is often a better solution to a problem than writing

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 13

something new. The programmer who can offer these alternatives will never suffer from
lack of work; finding less-expensive solutions to today’s problems always generates new
opportunities later.

Assuming you understand the problem and it requires writing a new program, you are
ready to begin your design.

The process of fully understanding the problem (analysis) and creating a plan for a
solution (design) is the necessary foundation for writing a world-class commercial
application.

Your Development Environment
This book makes the assumption that your compiler has a mode in which you can write
directly to a “console” (for instance, an MS-DOS/Command prompt or a shell window),
without worrying about a graphical environment, such as the ones in Windows or on the
Macintosh. Look for an option such as console or easy window or check your compiler’s
documentation.

Your compiler might be part of an Integrated Development Environment (IDE) or might
have its own built-in source code text editor, or you might be using a commercial text
editor or word processor that can produce text files. The important thing is that whatever
you write your program in, it must save simple, plain-text files, with no word processing
commands embedded in the text. Examples of safe editors include Windows Notepad,
the DOS Edit command, Brief, Epsilon, Emacs, and vi. Many commercial word proces-
sors, such as WordPerfect, Word, and dozens of others, also offer a method for saving
simple text files.

The files you create with your editor are called source files, and for C++ they typically
are named with the extension .cpp, .cp, or .c. This book names all the source code files
with the .cpp extension, but check your compiler for what it needs.

14 Day 1

Most C++ compilers don’t care what extension you give your source code,
but if you don’t specify otherwise, many use .cpp by default. Be careful,
however; some compilers treat .c files as C code and .cpp files as C++ code.
Again, please check your compiler’s documentation. In any event, it is easier
for other programmers who need to understand your programs if you con-
sistently use .cpp for C++ source code files.

NOTE

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 14

Getting Started 15

1

The Process of Creating the Program
The first step in creating a new program is to write the appropriate commands (state-
ments) into a source file. Although the source code in your file is somewhat cryptic, and
anyone who doesn’t know C++ will struggle to understand what it is for, it is still in
what we call human-readable form. Your source code file is not a program and it can’t be
executed, or run, as an executable program file can.

Creating an Object File with the Compiler
To turn your source code into a program, you use a compiler. How you invoke your com-
piler and how you tell it where to find your source code varies from compiler to com-
piler; check your documentation.

After your source code is compiled, an object file is produced. This file is often named
with the extension .obj or .o. This is still not an executable program, however. To turn
this into an executable program, you must run your linker.

Creating an Executable File with the Linker
C++ programs are typically created by linking one or more object files (.obj or .o files)
with one or more libraries. A library is a collection of linkable files that were supplied with
your compiler, that you purchased separately, or that you created and compiled. All C++
compilers come with a library of useful functions and classes that you can include in your
program. You’ll learn more about functions and classes in great detail in the next few days.

The steps to create an executable file are

1. Create a source code file with a .cpp extension.

2. Compile the source code into an object file with the .obj or .o extension.

3. Link your object file with any needed libraries to produce an executable program.

DO use a simple text editor to create
your source code, or use the built-in edi-
tor that comes with your compiler.

DO save your files with the .c, .cp, or
.cpp extension. The .cpp extension is
recommended.

DO check your documentation for
specifics about your compiler and linker
to ensure that you know how to compile
and link your programs.

DON’T use a word processor that saves
special formatting characters. If you do
use a word processor, save the file as
ASCII text.

DON’T use a .c extension if your com-
piler treats such files as C code instead of
C++ code.

DO DON’T

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 15

The Development Cycle
If every program worked the first time you tried it, this would be the complete develop-
ment cycle: Write the program, compile the source code, link the program, and run it.
Unfortunately, almost every program, no matter how trivial, can and will have errors.
Some errors cause the compile to fail, some cause the link to fail, and some show up
only when you run the program (these are often called “bugs”).

Whatever type of error you find, you must fix it, and that involves editing your source
code, recompiling and relinking, and then rerunning the program. This cycle is repre-
sented in Figure 1.1, which diagrams the steps in the development cycle.

16 Day 1

FIGURE 1.1
The steps in the
development of a
C++ program.

Start

Edit
Source
Code

Compile

Compile
Errors

Link

Link
Errors

?

Run
Program

Run-
Time
Errors

?

Yes

Yes

Yes

No

No

No

Done

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 16

Getting Started 17

1
HELLO.cpp—Your First C++ Program

Traditional programming books begin by writing the words “Hello World” to the screen,
or a variation on that statement. This time-honored tradition is carried on here.

Type the source code shown in Listing 1.1 directly into your editor, exactly as shown
(excluding the line numbering). After you are certain you have entered it correctly, save
the file, compile it, link it, and run it. If everything was done correctly, it prints the words
Hello World to your screen. Don’t worry too much about how it works; this is really just
to get you comfortable with the development cycle. Every aspect of this program is cov-
ered over the next couple of days.

The following listing contains line numbers on the left. These numbers are
for reference within the book. They should not be typed into your editor.
For example, on line 1 of Listing 1.1, you should enter:

#include <iostream>

CAUTION

LISTING 1.1 HELLO.cpp, the Hello World Program

1: #include <iostream>
2:
3: int main()
4: {
5: std::cout << “Hello World!\n”;
6: return 0;
7: }

Be certain you enter this exactly as shown. Pay careful attention to the punctuation. The
<< on line 5 is the redirection symbol, produced on most keyboards by holding the Shift
key and pressing the comma key twice. Between the letters std and cout on line 5 are
two colons (:). Lines 5 and 6 each end with semicolon (;).

Also check to ensure you are following your compiler directions properly. Most compil-
ers link automatically, but check your documentation to see whether you need to provide
a special option or execute a command to cause the link to occur.

If you receive errors, look over your code carefully and determine how it is different
from the preceding listing. If you see an error on line 1, such as cannot find file
iostream, you might need to check your compiler documentation for directions on set-
ting up your include path or environment variables.

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 17

If you receive an error that there is no prototype for main, add the line int main(); just
before line 3 (this is one of those pesky compiler variations). In that case, you need to
add this line before the beginning of the main function in every program in this book.
Most compilers don’t require this, but a few do. If yours does, your finished program
needs to look like this:

#include <iostream>
int main(); // most compilers don’t need this line
int main()
{

std::cout <<”Hello World!\n”;
return 0;

}

18 Day 1

It is difficult to read a program to yourself if you don’t know how to pro-
nounce the special characters and keywords. You read the first line “Pound
include (some say hash-include, others say sharp-include) eye-oh-stream.”
You read the fifth line “ess-tee-dee-see-out Hello World.”

NOTE

On a Windows system, try running HELLO.exe (or whatever the name of an executable is
on your operating system; for instance, on a Unix system, you run HELLO, because exe-
cutable programs do not have extensions in Unix). The program should write

Hello World!

directly to your screen. If so, congratulations! You’ve just entered, compiled, and run
your first C++ program. It might not look like much, but almost every professional C++
programmer started out with this exact program.

Some programmers using IDEs (such as Visual Studio or Borland C++ Builder) will find
that running the program flashes up a window that promptly disappears with no chance
to see what result the program produces. If this happens, add these lines to your source
code just prior to the “return” statement:

char response;
std::cin >> response;

These lines cause the program to pause until you type a character (you might also need
to press the Enter key). They ensure you have a chance to see the results of your test run.
If you need to do this for hello.cpp, you will probably need to do it for most of the pro-
grams in this book.

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 18

Getting Started 19

1

Getting Started with Your Compiler
This book is not compiler specific. This means that the programs in this book should
work with any ANSI-compliant C++ compiler on any platform (Windows, Macintosh,
Unix, Linux, and so on).

That said, the vast majority of programmers are working in the Windows environment,
and the vast majority of professional programmers use the Microsoft compilers. The
details of compiling and linking with every possible compiler is too much to show here;
however, we can show you how to get started with Microsoft Visual C++ 6, and that
ought to be similar enough to whatever compiler you are using to be a good head start.

Compilers differ, however, so be certain to check your documentation.

Building the Hello World Project
To create and test the Hello World program, follow these steps:

1. Start the compiler.

2. Choose File, New from the menus.

3. Choose Win32 Console Application and enter a project name, such as hello, and
click OK.

4. Choose An Empty Project from the menu of choices and click Finish. A dialog box
is displayed with new project information.

Using the Standard Libraries

If you have a very old compiler, the program shown previously will not work—the new
ANSI standard libraries will not be found. In that case, please change your program to
look like this:

1: #include <iostream.h>
2:
3: int main()
4: {
5: cout << “Hello World!\n”;
6: return 0;
7: }

Notice that the library name now ends in .h (dot-h) and that we no longer use std:: in
front of cout on line 5. This is the old, pre-ANSI style of header files. If your compiler
works with this and not with the earlier version, you have an antiquated compiler. Your
compiler will be fine for the early days of this book, but when you get to templates and
exceptions, your compiler might not work.

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 19

5. Click OK. You are taken back to the main editor window.

6. Choose File, New from the menus.

7. Choose C++ Source File and give it a name, such as hello. You enter this name
into the File Name text box.

8. Click OK. You are taken back to the main editor window.

9. Enter the code as indicated previously.

10. Choose Build, Build hello.exe from the menus.

11. Check that you have no build errors. You can find this information near the bottom
of the editor.

12. Run the program by pressing Ctrl+F5 or by selecting Build, Execute hello from the
menus.

13. Press the spacebar to end the program.

20 Day 1

FAQ

I can run the program but it flashes by so quickly I can’t read it. What is wrong?

Answer: Check your compiler documentation; there ought to be a way to cause your pro-
gram to pause after execution. With the Microsoft compilers, the trick is to use Ctrl+F5.

With any compiler, you can also add the following lines immediately before the return
statement (that is, between lines 5 and 6 in Listing 1.1):

char response;
std::cin >> response;

This causes the program to pause, waiting for you to enter a value. To end the program,
type any letter or number (for example, 1) and then press Enter (if necessary).

The meaning of std::cin and std::cout will be discussed in coming days; for now, just
use it as if it were a magical incantation.

Compile Errors
Compile-time errors can occur for any number of reasons. Usually, they are a result of a
typo or other inadvertent minor error. Good compilers not only tell you what you did
wrong, they point you to the exact place in your code where you made the mistake. The
great ones even suggest a remedy!

You can see this by intentionally putting an error into your program. If HELLO.cpp ran
smoothly, edit it now and remove the closing brace on line 7 of Listing 1.1. Your pro-
gram now looks like Listing 1.2.

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 20

Getting Started 21

1
LISTING 1.2 Demonstration of Compiler Error

1: #include <iostream>
2:
3: int main()
4: {
5: std::cout << “Hello World!\n”;
6: return 0;

Recompile your program and you should see an error that looks similar to the following:

Hello.cpp(7) : fatal error C1004: unexpected end of file found

This error tells you the file and line number of the problem and what the problem is
(although I admit it is somewhat cryptic). In this case, the compiler is telling you that it
ran out of source lines and hit the end of the source file without finding the closing
brace.

Sometimes, the error messages just get you to the general vicinity of the problem. If a
compiler could perfectly identify every problem, it would fix the code itself.

Summary
After reading today’s lesson, you should have a good understanding of how C++ evolved
and what problems it was designed to solve. You should feel confident that learning C++
is the right choice for anyone interested in programming. C++ provides the tools of
object-oriented programming and the performance of a systems-level language, which
makes C++ the development language of choice.

Today, you learned how to enter, compile, link, and run your first C++ program, and
what the normal development cycle is. You also learned a little of what object-oriented
programming is all about. You will return to these topics during the next three weeks.

Q&A
Q What is the difference between a text editor and a word processor?

A A text editor produces files with plain text in them. No formatting commands or
other special symbols are used that might be required by a particular word proces-
sor. Simple text editors do not have automatic word wrap, bold print, italic, and so
forth.

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 21

Q If my compiler has a built-in editor, must I use it?

A Almost all compilers will compile code produced by any text editor. The advan-
tages of using the built-in text editor, however, might include the capability to
quickly move back and forth between the edit and compile steps of the develop-
ment cycle. Sophisticated compilers include a fully integrated development
environment, enabling the programmer to access help files, edit, and compile the
code in place, and to resolve compile and link errors without ever leaving the
environment.

Q Can I ignore warning messages from my compiler?

A Compilers generally give warnings and errors. If there are errors, the program will
not be completely built. If there are just warnings, the compiler will generally go
ahead and still create the program.

Many books hedge on this question. The appropriate answer is: No! Get into the
habit, from day one, of treating warning messages as errors. C++ uses the compiler
to warn you when you are doing something you might not intend. Heed those
warnings and do what is required to make them go away. Some compilers even
have a setting that causes all warnings to be treated like errors, and thus stop the
program from building an executable.

Q What is compile time?

A Compile time is the time when you run your compiler, in contrast to link time
(when you run the linker) or runtime (when running the program). This is just pro-
grammer shorthand to identify the three times when errors usually surface.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson.

Quiz
1. What is the difference between an interpreter and a compiler?

2. How do you compile the source code with your compiler?

3. What does the linker do?

4. What are the steps in the normal development cycle?

22 Day 1

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 22

Getting Started 23

1
Exercises

1. Look at the following program and try to guess what it does without running it.
1: #include <iostream>
2: int main()
3: {
4: int x = 5;
5: int y = 7;
6: std::cout << endl;
7: std::cout << x + y << “ “ << x * y;
8: std::cout << end;
9: return 0;
10:}

2. Type in the program from Exercise 1, and then compile and link it. What does it
do? Does it do what you guessed?

3. Type in the following program and compile it. What error do you receive?
1: include <iostream>
2: int main()
3: {
4: std::cout << “Hello World \n”;
5: return 0;
6: }

4. Fix the error in the program in Exercise 3 and recompile, link, and run it. What
does it do?

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 23

03 0672327112_ch01.qxd 11/19/04 12:25 PM Page 24

DAY 2

WEEK 1

The Anatomy of a C++
Program

C++ programs consist of classes, functions, variables, and other component
parts. Most of this book is devoted to explaining these parts in depth, but to
get a sense of how a program fits together, you must see a complete working
program.

Today, you will learn

• The parts of a C++ program

• How the parts work together

• What a function is and what it does

A Simple Program
Even the simple program HELLO.cpp from Day 1, “Getting Started,” had many
interesting parts. This section reviews this program in more detail. Listing 2.1
reproduces the original version of HELLO.cpp for your convenience.

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 25

LISTING 2.1 HELLO.cpp Demonstrates the Parts of a C++ Program

1: #include <iostream>
2:
3: int main()
4: {
5: std::cout << “Hello World!\n”;
6: return 0;
7: }

Hello World!

On line 1, the file iostream is included into the current file.

Here’s how that works: The first character is the # symbol, which is a signal to a program
called the preprocessor. Each time you start your compiler, the preprocessor is run first.
The preprocessor reads through your source code, looking for lines that begin with the
pound symbol (#) and acts on those lines before the compiler runs. The preprocessor is
discussed in detail on Day 21, “What’s Next.”

The command #include is a preprocessor instruction that says, “What follows is a file-
name. Find that file, read it, and place it right here.” The angle brackets around the file-
name tell the preprocessor to look in all the usual places for this file. If your compiler is
set up correctly, the angle brackets cause the preprocessor to look for the file iostream
in the directory that holds all the include files for your compiler. The file iostream
(Input-Output-Stream) is used by cout, which assists with writing to the console. The
effect of line 1 is to include the file iostream into this program as if you had typed it in
yourself.

OUTPUT

26 Day 2

ANALYSIS

The preprocessor runs before your compiler each time the compiler is
invoked. The preprocessor translates any line that begins with a pound sym-
bol (#) into a special command, getting your code file ready for the compiler.

NOTE

Not all compilers are consistent in their support for #includes that omit the
file extension. If you get error messages, you might need to change the
include search path for your compiler, or add the extension to the #include.

NOTE

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 26

The Anatomy of a C++ Program 27

2

Line 3 begins the actual program with a function named main(). Every C++ program has
a main() function. A function is a block of code that performs one or more actions.
Usually, functions are invoked or called by other functions, but main() is special. When
your program starts, main() is called automatically.

main(), like all functions, must state what kind of value it returns. The return value type
for main() in HELLO.cpp is int, which means that this function returns an integer to the
operating system when it completes. In this case, it returns the integer value 0, as shown
on line 6. Returning a value to the operating system is a relatively unimportant and little
used feature, but the C++ standard does require that main() be declared as shown.

Some compilers let you declare main() to return void. This is no longer legal
C++, and you should not get into bad habits. Have main() return int, and
simply return 0 as the last line in main().

CAUTION

Some operating systems enable you to test the value returned by a program.
The convention is to return 0 to indicate that the program ended normally.

NOTE

All functions begin with an opening brace ({) and end with a closing brace (}). The
braces for the main() function are on lines 4 and 7. Everything between the opening and
closing braces is considered a part of the function.

The meat and potatoes of this program is on line 5.

The object cout is used to print a message to the screen. You’ll learn about objects in
general on Day 6, “Understanding Object-Oriented Programming,” and cout and its
related object cin in detail on Day 17, “Working with Streams.” These two objects, cin
and cout, are used in C++ to handle input (for example, from the keyboard) and output
(for example, to the console), respectively.

cout is an object provided by the standard library. A library is a collection of classes.
The standard library is the standard collection that comes with every ANSI-compliant
compiler.

You designate to the compiler that the cout object you want to use is part of the standard
library by using the namespace specifier std. Because you might have objects with the
same name from more than one vendor, C++ divides the world into “namespaces.” A
namespace is a way to say “when I say cout, I mean the cout that is part of the standard

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 27

namespace, not some other namespace.” You say that to the compiler by putting the char-
acters std followed by two colons before the cout. You’ll learn more about namespaces
in coming days.

Here’s how cout is used: Type the word cout, followed by the output redirection opera-
tor (<<). Whatever follows the output redirection operator is written to the console. If you
want a string of characters written, be certain to enclose them in double quotes (“), as
shown on line 5.

28 Day 2

You should note that the redirection operator is two “greater-than” signs
with no spaces between them.

NOTE

A text string is a series of printable characters.

The final two characters, \n, tell cout to put a new line after the words Hello World!
This special code is explained in detail when cout is discussed on Day 18, “Creating and
Using Namespaces.”

The main() function ends on line 7 with the closing brace.

A Brief Look at cout
On Day 17, you will see how to use cout to print data to the screen. For now, you can
use cout without fully understanding how it works. To print a value to the screen, write
the word cout, followed by the insertion operator (<<), which you create by typing the
less-than character (<) twice. Even though this is two characters, C++ treats it as one.

Follow the insertion character with your data. Listing 2.2 illustrates how this is used.
Type in the example exactly as written, except substitute your own name where you see
Jesse Liberty (unless your name is Jesse Liberty).

LISTING 2.2 Using cout

1: // Listing 2.2 using std::cout
2: #include <iostream>
3: int main()
4: {
5: std::cout << “Hello there.\n”;
6: std::cout << “Here is 5: “ << 5 << “\n”;
7: std::cout << “The manipulator std::endl “;
8: std::cout << “writes a new line to the screen.”;
9: std::cout << std::endl;

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 28

The Anatomy of a C++ Program 29

2

10: std::cout << “Here is a very big number:\t” << 70000;
11: std::cout << std::endl;
12: std::cout << “Here is the sum of 8 and 5:\t”;
13: std::cout << 8+5 << std::endl;
14: std::cout << “Here’s a fraction:\t\t”;
15: std::cout << (float) 5/8 << std::endl;
16: std::cout << “And a very very big number:\t”;
17: std::cout << (double) 7000 * 7000 << std::endl;
18: std::cout << “Don’t forget to replace Jesse Liberty “;
19: std::cout << “with your name...\n”;
20: std::cout << “Jesse Liberty is a C++ programmer!\n”;
21: return 0;
22: }

Hello there.
Here is 5: 5
The manipulator endl writes a new line to the screen.
Here is a very big number: 70000
Here is the sum of 8 and 5: 13
Here’s a fraction: 0.625
And a very very big number: 4.9e+007
Don’t forget to replace Jesse Liberty with your name...
Jesse Liberty is a C++ programmer!

OUTPUT

LISTING 2.2 continued

Some compilers have a bug that requires that you put parentheses around
the addition before passing it to cout. Thus, line 13 would change to

13: cout << (8+5) << std::endl;

CAUTION

On line 2, the statement #include <iostream> causes the iostream file to be
added to your source code. This is required if you use cout and its related

functions.

On line 5 is the simplest use of cout, printing a string or series of characters. The symbol
\n is a special formatting character. It tells cout to print a newline character to the
screen; it is pronounced “slash-n” or “new line.”

Three values are passed to cout on line 6, and each value is separated by the insertion
operator. The first value is the string “Here is 5: “. Note the space after the colon. The
space is part of the string. Next, the value 5 is passed to the insertion operator and then
the newline character (always in double quotes or single quotes) is passed. This causes
the line

Here is 5: 5

ANALYSIS

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 29

to be printed to the console. Because no newline character is present after the first
string, the next value is printed immediately afterward. This is called concatenating the
two values.

On line 7, an informative message is printed, and then the manipulator std::endl is
used. The purpose of endl is to write a new line to the console. (Other uses for endl are
discussed on Day 16, “Advanced Inheritance.”) Note that endl is also provided by the
standard library; thus, std:: is added in front of it just as std:: was added for cout.

30 Day 2

endl stands for end line and is end-ell rather than end-one. It is commonly
pronounced “end-ell.”

Use of endl is preferable to the use of ‘\n’, because endl is adapted to the
operating system in use, whereas ‘\n’ might not be the complete newline
character required on a particular OS or platform.

NOTE

On line 10, a new formatting character, \t, is introduced. This inserts a tab character and
is used on lines 10 to 16 to line up the output. Line 10 shows that not only integers, but
long integers as well, can be printed. Lines 13 and 14 demonstrate that cout will do sim-
ple addition. The value of 8+5 is passed to cout on line 14, but the value of 13 is printed.

On line 15, the value 5/8 is inserted into cout. The term (float) tells cout that you
want this value evaluated as a decimal equivalent, and so a fraction is printed. On line
17, the value 7000 * 7000 is given to cout, and the term (double) is used to tell cout
that this is a floating-point value. All this will be explained on Day 3, “Working with
Variables and Constants,” when data types are discussed.

On lines 18 and 20, you should have substituted your name for Jesse Liberty. If you
do this, the output should confirm that you are indeed a C++ programmer. It must be
true, because the computer said so!

Using the Standard Namespace
You’ll notice that the use of std:: in front of both cout and endl becomes rather dis-
tracting after a while. Although using the namespace designation is good form, it is
tedious to type. The ANSI standard allows two solutions to this minor problem.

The first is to tell the compiler, at the beginning of the code listing, that you’ll be using
the standard library cout and endl, as shown on lines 5 and 6 of Listing 2.3.

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 30

The Anatomy of a C++ Program 31

2

LISTING 2.3 Using the using Keyword

1: // Listing 2.3 - using the using keyword
2: #include <iostream>
3: int main()
4: {
5: using std::cout;
6: using std::endl;
7:
8: cout << “Hello there.\n”;
9: cout << “Here is 5: “ << 5 << “\n”;
10: cout << “The manipulator endl “;
11: cout << “writes a new line to the screen.”;
12: cout << endl;
13: cout << “Here is a very big number:\t” << 70000;
14: cout << endl;
15: cout << “Here is the sum of 8 and 5:\t”;
16: cout << 8+5 << endl;
17: cout << “Here’s a fraction:\t\t”;
18: cout << (float) 5/8 << endl;
19: cout << “And a very very big number:\t”;
20: cout << (double) 7000 * 7000 << endl;
21: cout << “Don’t forget to replace Jesse Liberty “;
22: cout << “with your name...\n”;
23: cout << “Jesse Liberty is a C++ programmer!\n”;
24: return 0;
25: }

Hello there.
Here is 5: 5
The manipulator endl writes a new line to the screen.
Here is a very big number: 70000
Here is the sum of 8 and 5: 13
Here’s a fraction: 0.625
And a very very big number: 4.9e+007
Don’t forget to replace Jesse Liberty with your name...
Jesse Liberty is a C++ programmer!

You will note that the output is identical to the previous listing. The only differ-
ence between Listing 2.3 and Listing 2.2 is that on lines 5 and 6, additional state-

ments inform the compiler that two objects from the standard library will be used. This is
done with the keyword using. After this has been done, you no longer need to qualify
the cout and endl objects.

The second way to avoid the inconvenience of writing std:: in front of cout and endl is
to simply tell the compiler that your listing will be using the entire standard namespace;
that is, any object not otherwise designated can be assumed to be from the standard

OUTPUT

ANALYSIS

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 31

namespace. In this case, rather than writing using std::cout;, you would simply write
using namespace std;, as shown in Listing 2.4.

LISTING 2.4 Using the namespace Keyword

1: // Listing 2.4 - using namespace std
2: #include <iostream>
3: int main()
4: {
5: using namespace std;
6:
7: cout << “Hello there.\n”;
8: cout << “Here is 5: “ << 5 << “\n”;
9: cout << “The manipulator endl “;
10: cout << “writes a new line to the screen.”;
11: cout << endl;
12: cout << “Here is a very big number:\t” << 70000;
13: cout << endl;
14: cout << “Here is the sum of 8 and 5:\t”;
15: cout << 8+5 << endl;
16: cout << “Here’s a fraction:\t\t”;
17: cout << (float) 5/8 << endl;
18: cout << “And a very very big number:\t”;
19: cout << (double) 7000 * 7000 << endl;
20: cout << “Don’t forget to replace Jesse Liberty “;
21: cout << “with your name...\n”;
22: cout << “Jesse Liberty is a C++ programmer!\n”;
23: return 0;
24: }

Again, the output is identical to the earlier versions of this program. The advan-
tage to writing using namespace std; is that you do not have to specifically

designate the objects you’re actually using (for example, cout and endl;). The disadvan-
tage is that you run the risk of inadvertently using objects from the wrong library.

Purists prefer to write std:: in front of each instance of cout or endl. The lazy prefer to
write using namespace std; and be done with it. In this book, most often the individual
items being used are declared, but from time to time each of the other styles are pre-
sented just for fun.

Commenting Your Programs
When you are writing a program, your intent is always clear and self-evident to you.
Funny thing, though—a month later, when you return to the program, it can be quite con-
fusing and unclear. No one is ever certain how the confusion creeps into a program, but it
nearly always does.

32 Day 2

ANALYSIS

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 32

The Anatomy of a C++ Program 33

2

To fight the onset of bafflement, and to help others understand your code, you need to
use comments. Comments are text that is ignored by the compiler, but that can inform
the reader of what you are doing at any particular point in your program.

Types of Comments
C++ comments come in two flavors: single-line comments and multiline comments.

Single-line comments are accomplished using a double slash (//) . The double slash tells
the compiler to ignore everything that follows, until the end of the line.

Multiline comments are started by using a forward slash followed by an asterisk (/*). This
“slash-star” comment mark tells the compiler to ignore everything that follows until it finds
a star-slash (*/) comment mark. These marks can be on the same line or they can have one
or more lines between them; however, every /* must be matched with a closing */.

Many C++ programmers use the double-slash, single-line comments most of the time
and reserve multiline comments for blocking out large blocks of a program. You can
include single-line comments within a block “commented out” by the multiline comment
marks; everything, including the double-slash comments, are ignored between the multi-
line comment marks.

The multiline comment style has been referred to as C-style because it was
introduced and used in the C programming language. The single-line com-
ments were originally a part of C++ and not a part of C; thus, they have
been referred to as C++-style. The current standards for both C and C++ now
include both styles of comments.

NOTE

Using Comments
Some people recommend writing comments at the top of each function, explaining what
the function does and what values it returns.

Functions should be named so that little ambiguity exists about what they do, and con-
fusing and obscure bits of code should be redesigned and rewritten so as to be self-
evident. Comments should not be used as an excuse for obscurity in your code.

This is not to suggest that comments ought never be used, only that they should not be
relied upon to clarify obscure code; instead, fix the code. In short, you should write your
code well, and use comments to supplement understanding.

Listing 2.5 demonstrates the use of comments, showing that they do not affect the pro-
cessing of the program or its output.

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 33

LISTING 2.5 HELP.cpp Demonstrates Comments

1: #include <iostream>
2:
3: int main()
4: {
5: using std::cout;
6:
7: /* this is a comment
8: and it extends until the closing
9: star-slash comment mark */
10: cout << “Hello World!\n”;
11: // this comment ends at the end of the line
12: cout << “That comment ended!\n”;
13:
14: // double-slash comments can be alone on a line
15: /* as can slash-star comments */
16: return 0;
17: }

Hello World!
That comment ended!

The comment on lines 7–9 is completely ignored by the compiler, as are the
comments on lines 11, 14, and 15. The comment on line 11 ended with the end

of the line. The comments on lines 7 and 15 required a closing comment mark.

OUTPUT

34 Day 2

ANALYSIS

There is a third style of comment that is supported by some C++ compilers.
These comments are referred to as document comments and are indicated
using three forward slashes (///). The compilers that support this style of
comment allow you to generate documentation about the program from
these comments. Because these are not currently a part of the C++ standard,
they are not covered here.

NOTE

A Final Word of Caution About Comments
Comments that state the obvious are less than useful. In fact, they can be counterproduc-
tive because the code might change and the programmer might neglect to update the
comment. What is obvious to one person might be obscure to another, however, so judg-
ment is required when adding comments.

The bottom line is that comments should not say what is happening, they should say why
it is happening.

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 34

The Anatomy of a C++ Program 35

2

Functions
Although main() is a function, it is an unusual one. To be useful, a function must be
called, or invoked, during the course of your program. main() is invoked by the operat-
ing system.

A program is executed line-by-line in the order it appears in your source code until a
function is reached. Then, the program branches off to execute the function. When the
function finishes, it returns control to the line of code immediately following the call to
the function.

A good analogy for this is sharpening your pencil. If you are drawing a picture and your
pencil point breaks, you might stop drawing, go sharpen the pencil, and then return to
what you were doing. When a program needs a service performed, it can call a function
to perform the service and then pick up where it left off when the function is finished
running. Listing 2.6 demonstrates this idea.

Functions are covered in more detail on Day 5, “Organizing into Functions.”
The types that can be returned from a function are covered in more detail
on Day 3, “Working with Variables and Constants.” The information pro-
vided today is to present you with an overview because functions will be
used in almost all of your C++ programs.

NOTE

LISTING 2.6 Demonstrating a Call to a Function

1: #include <iostream>
2:
3: // function Demonstration Function
4: // prints out a useful message
5: void DemonstrationFunction()
6: {
7: std::cout << “In Demonstration Function\n”;
8: }
9:
10: // function main - prints out a message, then
11: // calls DemonstrationFunction, then prints out
12: // a second message.
13: int main()
14: {
15: std::cout << “In main\n” ;
16: DemonstrationFunction();
17: std::cout << “Back in main\n”;
18: return 0;
19: }

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 35

In main
In Demonstration Function
Back in main

The function DemonstrationFunction() is defined on lines 6–8. When it is
called, it prints a message to the console screen and then returns.

Line 13 is the beginning of the actual program. On line 15, main() prints out a message
saying it is in main(). After printing the message, line 16 calls
DemonstrationFunction(). This call causes the flow of the program to go to
the DemonstrationFunction() function on line 5. Any commands in
DemonstrationFunction() are then executed. In this case, the entire function consists of
the code on line 7, which prints another message. When DemonstrationFunction()
completes (line 8), the program flow returns to from where it was called. In this case, the
program returns to line 17, where main() prints its final line.

Using Functions
Functions either return a value or they return void, meaning they do not return anything.
A function that adds two integers might return the sum, and thus would be defined to
return an integer value. A function that just prints a message has nothing to return and
would be declared to return void.

Functions consist of a header and a body. The header consists, in turn, of the return type,
the function name, and the parameters to that function. The parameters to a function
enable values to be passed into the function. Thus, if the function were to add two num-
bers, the numbers would be the parameters to the function. Here’s an example of a typi-
cal function header that declares a function named Sum that receives two integer values
(first and second) and also returns an integer value:

int Sum(int first, int second)

A parameter is a declaration of what type of value will be passed in; the actual value
passed in when the function is called is referred to as an argument. Many programmers
use the terms parameters and arguments as synonyms. Others are careful about the tech-
nical distinction. The distinction between these two terms is not critical to your program-
ming C++, so you shouldn’t worry if the words get interchanged.

The body of a function consists of an opening brace, zero or more statements, and a clos-
ing brace. The statements constitute the workings of the function.

A function might return a value using a return statement. The value returned must be of
the type declared in the function header. In addition, this statement causes the function to
exit. If you don’t put a return statement into your function, it automatically returns void

OUTPUT

36 Day 2

ANALYSIS

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 36

The Anatomy of a C++ Program 37

2

(nothing) at the end of the function. If a function is supposed to return a value but does
not contain a return statement, some compilers produce a warning or error message.

Listing 2.7 demonstrates a function that takes two integer parameters and returns an inte-
ger value. Don’t worry about the syntax or the specifics of how to work with integer val-
ues (for example, int first) for now; that is covered in detail on Day 3.

LISTING 2.7 FUNC.cpp Demonstrates a Simple Function

1: #include <iostream>
2: int Add (int first, int second)
3: {
4: std::cout << “In Add(), received “ << first << “ and

➥ “ << second << “\n”;
5: return (first + second);
6: }
7:
8: int main()
9: {
10: using std::cout;
11: using std::cin;
12:
13:
14: cout << “I’m in main()!\n”;
15: int a, b, c;
16: cout << “Enter two numbers: “;
17: cin >> a;
18: cin >> b;
19: cout << “\nCalling Add()\n”;
20: c=Add(a,b);
21: cout << “\nBack in main().\n”;
22: cout << “c was set to “ << c;
23: cout << “\nExiting...\n\n”;
24: return 0;
25: }

I’m in main()!
Enter two numbers: 3 5

Calling Add()
In Add(), received 3 and 5

Back in main().
c was set to 8
Exiting...

OUTPUT

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 37

The function Add() is defined on line 2. It takes two integer parameters and
returns an integer value. The program itself begins on line 8. The program

prompts the user for two numbers (line 16). The user types each number, separated by a
space, and then presses the Enter key. The numbers the user enters are placed in the vari-
ables a and b on lines 17 and 18. On line 20, the main() function passes the two num-
bers typed in by the user as arguments to the Add() function.

Processing branches to the Add() function, which starts on line 2. The values from a and
b are received as parameters first and second, respectively. These values are printed
and then added. The result of adding the two numbers is returned on line 5, at which
point the function returns to the function that called it—main(), in this case.

On lines 17 and 18, the cin object is used to obtain a number for the variables a and b.
Throughout the rest of the program, cout is used to write to the console. Variables and
other aspects of this program are explored in depth in the next few days.

Methods Versus Functions
A function by any other name is still just a function. It is worth noting here that different
programming languages and different programming methodologies might refer to func-
tions using a different term. One of the more common terms used is the term method.
Method is simply another term for functions that are part of a class.

Summary
The difficulty in learning a complex subject, such as programming, is that so much of
what you learn depends on everything else there is to learn. Today’s lesson introduced
the basic parts of a simple C++ program.

Q&A
Q What does #include do?

A This is a directive to the preprocessor, which runs when you call your compiler.
This specific directive causes the file in the “<>” named after the word #include
to be read in, as if it were typed in at that location in your source code.

Q What is the difference between // comments and /* style comments?

A The double-slash comments (//) “expire” at the end of the line. Slash-star (/*)
comments are in effect until a closing comment mark (*/). The double-slash com-
ments are also referred to as single-line comments, and the slash-star comments
are often referred to as multiline comments. Remember, not even the end of the

38 Day 2

ANALYSIS

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 38

The Anatomy of a C++ Program 39

2

function terminates a slash-star comment; you must put in the closing comment
mark, or you will receive a compile-time error.

Q What differentiates a good comment from a bad comment?

A A good comment tells the reader why this particular code is doing whatever it is
doing or explains what a section of code is about to do. A bad comment restates
what a particular line of code is doing. Lines of code should be written so that they
speak for themselves. A well-written line of code should tell you what it is doing
without needing a comment.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson.

Quiz
1. What is the difference between the compiler and the preprocessor?

2. Why is the function main() special?

3. What are the two types of comments, and how do they differ?

4. Can comments be nested?

5. Can comments be longer than one line?

Exercises
1. Write a program that writes “I love C++” to the console.

2. Write the smallest program that can be compiled, linked, and run.

3. BUG BUSTERS: Enter this program and compile it. Why does it fail? How can
you fix it?
1: #include <iostream>
2: main()
3: {
4: std::cout << Is there a bug here?”;
5: }

4. Fix the bug in Exercise 3 and recompile, link, and run it.

5. Modify Listing 2.7 to include a subtract function. Name this function Subtract()
and use it in the same way that the Add() function was called. You should also pass
the same values that were passed to the Add() function.

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 39

04 0672327112_ch02.qxd 11/19/04 12:25 PM Page 40

DAY 3

WEEK 1

Working with Variables
and Constants

Programs need a way to store the data they use or create so it can be used later
in the program’s execution. Variables and constants offer various ways to repre-
sent, store, and manipulate that data.

Today, you will learn

• How to declare and define variables and constants

• How to assign values to variables and manipulate those values

• How to write the value of a variable to the screen

What Is a Variable?
In C++, a variable is a place to store information. A variable is a location in
your computer’s memory in which you can store a value and from which you
can later retrieve that value.

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 41

Notice that variables are used for temporary storage. When you exit a program or turn
the computer off, the information in variables is lost. Permanent storage is a different
matter. Typically, the values from variables are permanently stored either to a database or
to a file on disk. Storing to a file on disk is discussed on Day 16, “Advanced
Inheritance.”

Storing Data in Memory
Your computer’s memory can be viewed as a series of cubbyholes. Each cubbyhole is
one of many, many such holes all lined up. Each cubbyhole—or memory location—is
numbered sequentially. These numbers are known as memory addresses. A variable
reserves one or more cubbyholes in which you can store a value.

Your variable’s name (for example, myVariable) is a label on one of these cubbyholes so
that you can find it easily without knowing its actual memory address. Figure 3.1 is a
schematic representation of this idea. As you can see from the figure, myVariable starts
at memory address 103. Depending on the size of myVariable, it can take up one or
more memory addresses.

42 Day 3

FIGURE 3.1
A schematic represen-
tation of memory.

myVariable

100 101 102 103 104 105 106

Variable Name

Address

RAM

RAM stands for random access memory. When you run your program, it is
loaded into RAM from the disk file. All variables are also created in RAM.
When programmers talk about memory, it is usually RAM to which they are
referring.

NOTE

Setting Aside Memory
When you define a variable in C++, you must tell the compiler what kind of variable it is
(this is usually referred to as the variable’s “type”): an integer, a floating-point number, a
character, and so forth. This information tells the compiler how much room to set aside
and what kind of value you want to store in your variable. It also allows the compiler to
warn you or produce an error message if you accidentally attempt to store a value of the

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 42

Working with Variables and Constants 43

3

wrong type in your variable (this characteristic of a programming language is called
“strong typing”).

Each cubbyhole is one byte in size. If the type of variable you create is four bytes in size,
it needs four bytes of memory, or four cubbyholes. The type of the variable (for example,
integer) tells the compiler how much memory (how many cubbyholes) to set aside for the
variable.

There was a time when it was imperative that programmers understood bits and bytes;
after all, these are the fundamental units of storage. Computer programs have gotten bet-
ter at abstracting away these details, but it is still helpful to understand how data is
stored. For a quick review of the underlying concepts in binary math, please take a look
at Appendix A, “Working with Numbers: Binary and Hexadecimal.”

If mathematics makes you want to run from the room screaming, don’t
bother with Appendix A; you won’t really need it. The truth is that program-
mers no longer need to be mathematicians; though it is important to be
comfortable with logic and rational thinking.

NOTE

Size of Integers
On any one computer, each variable type takes up a single, unchanging amount of room.
That is, an integer might be two bytes on one machine and four on another, but on either
computer it is always the same, day in and day out.

Single characters—including letters, numbers, and symbols—are stored in a variable of
type char. A char variable is most often one byte long.

There is endless debate about how to pronounce char. Some say it as “car,”
some say it as “char”(coal), others say it as “care.” Clearly, car is correct
because that is how I say it, but feel free to say it however you like.

NOTE

For smaller integer numbers, a variable can be created using the short type. A short
integer is two bytes on most computers, a long integer is usually four bytes, and an inte-
ger (without the keyword short or long) is usually two or four bytes.

You’d think the language would specify the exact size that each of its types should be;
however, C++ doesn’t. All it says is that a short must be less than or equal to the size of
an int, which, in turn, must be less than or equal to the size of a long.

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 43

That said, you’re probably working on a computer with a two-byte short and a four-byte
int, with a four-byte long.

The size of an integer is determined by the processor (16 bit, 32 bit, or 64 bit) and the
compiler you use. On a 32-bit computer with an Intel Pentium processor, using modern
compilers, integers are four bytes.

44 Day 3

When creating programs, you should never assume the amount of memory
that is being used for any particular type.

CAUTION

Compile and run Listing 3.1 and it will tell you the exact size of each of these types on
your computer.

LISTING 3.1 Determining the Size of Variable Types on Your Computer

1: #include <iostream>
2:
3: int main()
4: {
5: using std::cout;
6:
7: cout << “The size of an int is:\t\t”
8: << sizeof(int) << “ bytes.\n”;
9: cout << “The size of a short int is:\t”
10: << sizeof(short) << “ bytes.\n”;
11: cout << “The size of a long int is:\t”
12: << sizeof(long) << “ bytes.\n”;
13: cout << “The size of a char is:\t\t”
14: << sizeof(char) << “ bytes.\n”;
15: cout << “The size of a float is:\t\t”
16: << sizeof(float) << “ bytes.\n”;
17: cout << “The size of a double is:\t”
18: << sizeof(double) << “ bytes.\n”;
19: cout << “The size of a bool is:\t”
20: << sizeof(bool) << “ bytes.\n”;
21:
22: return 0;
23: }

The size of an int is: 4 bytes.
The size of a short int is: 2 bytes.
The size of a long int is: 4 bytes.
The size of a char is: 1 bytes.
The size of a float is: 4 bytes.
The size of a double is: 8 bytes.
The size of a bool is: 1 bytes.

OUTPUT

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 44

Working with Variables and Constants 45

3

Most of Listing 3.1 should be pretty familiar. The lines have been split to make them fit
for the book, so for example, lines 7 and 8 could really be on a single line. The compiler
ignores whitespace (spaces, tabs, line returns) and so you can treat these as a single line.
That’s why you need a “;” at the end of most lines.

The new feature in this program to notice is the use of the sizeof operator on lines
7–20. The sizeof is used like a function. When called, it tells you the size of the item
you pass to it as a parameter. On line 8, for example, the keyword int is passed to
sizeof. You’ll learn later in today’s lesson that int is used to describe a standard integer
variable. Using sizeof on a Pentium 4, Windows XP machine, an int is four bytes,
which coincidentally also is the size of a long int on the same computer.

The other lines of Listing 3.1 show the sizes of other data types. You’ll learn about the
values these data types can store and the differences between each in a few minutes.

signed and unsigned
All integer types come in two varieties: signed and unsigned. Sometimes, you need neg-
ative numbers, and sometimes you don’t. Any integer without the word “unsigned” is
assumed to be signed. signed integers can be negative or positive. unsigned integers are
always positive.

Integers, whether signed or unsigned are stored in the same amount of space. Because
of this, part of the storage room for a signed integer must be used to hold information on
whether the number is negative or positive. The result is that the largest number you can
store in an unsigned integer is twice as big as the largest positive number you can store
in a signed integer.

For example, if a short integer is stored in two bytes, then an unsigned short integer
can handle numbers from 0 to 65,535. Alternatively, for a signed short, half the num-
bers that can be stored are negative; thus, a signed short can only represent positive
numbers up to 32,767. The signed short can also, however, represent negative numbers
giving it a total range from –32,768 to 32,767.

For more information on the precedence of operators, read Appendix C, “Operator
Precedence.”

Fundamental Variable Types
Several variable types are built in to C++. They can be conveniently divided into integer
variables (the type discussed so far), floating-point variables, and character variables.

On your computer, the number of bytes presented might be different.NOTE

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 45

Floating-point variables have values that can be expressed as fractions—that is, they are
real numbers. Character variables hold a single byte and are generally used for holding
the 256 characters and symbols of the ASCII and extended ASCII character sets.

46 Day 3

The ASCII character set is the set of characters standardized for use on com-
puters. ASCII is an acronym for American Standard Code for Information
Interchange. Nearly every computer operating system supports ASCII,
although many support other international character sets as well.

NOTE

The types of variables used in C++ programs are described in Table 3.1. This table shows
the variable type, how much room the type generally takes in memory, and what kinds of
values can be stored in these variables. The values that can be stored are determined by
the size of the variable types, so check your output from Listing 3.1 to see if your vari-
able types are the same size. It is most likely that they are the same size unless you are
using a computer with a 64-bit processor.

TABLE 3.1 Variable Types

Type Size Values

bool 1 byte true or false

unsigned short int 2 bytes 0 to 65,535

short int 2 bytes –32,768 to 32,767

unsigned long int 4 bytes 0 to 4,294,967,295

long int 4 bytes –2,147,483,648 to 2,147,483,647

int (16 bit) 2 bytes –32,768 to 32,767

int (32 bit) 4 bytes –2,147,483,648 to 2,147,483,647

unsigned int (16 bit) 2 bytes 0 to 65,535

unsigned int (32 bit) 4 bytes 0 to 4,294,967,295

char 1 byte 256 character values

float 4 bytes 1.2e–38 to 3.4e38

double 8 bytes 2.2e–308 to 1.8e308

The sizes of variables might be different from those shown in Table 3.1,
depending on the compiler and the computer you are using. If your com-
puter had the same output as was presented in Listing 3.1, Table 3.1 should

NOTE

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 46

Working with Variables and Constants 47

3

Defining a Variable
Up to this point, you have seen a number of variables created and used. Now, it is time to
learn how to create your own.

You create or define a variable by stating its type, followed by one or more spaces, fol-
lowed by the variable name and a semicolon. The variable name can be virtually any
combination of letters, but it cannot contain spaces. Legal variable names include x,
J23qrsnf, and myAge. Good variable names tell you what the variables are for; using
good names makes it easier to understand the flow of your program. The following state-
ment defines an integer variable called myAge:

int myAge;

apply to your compiler. If your output from Listing 3.1 was different, you
should consult your compiler’s manual for the values that your variable
types can hold.

When you declare a variable, memory is allocated (set aside) for that vari-
able. The value of the variable will be whatever happened to be in that
memory at that time. You will see in a moment how to assign a new value
to that memory.

NOTE

As a general programming practice, avoid such horrific names as J23qrsnf, and restrict
single-letter variable names (such as x or i) to variables that are used only very briefly.
Try to use expressive names such as myAge or howMany. Such names are easier to under-
stand three weeks later when you are scratching your head trying to figure out what you
meant when you wrote that line of code.

Try this experiment: Guess what these programs do, based on the first few lines of code:

Example 1

int main()
{

unsigned short x;
unsigned short y;
unsigned short z;
z = x * y;
return 0;

}

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 47

Example 2

int main()
{

unsigned short Width;
unsigned short Length;
unsigned short Area;
Area = Width * Length;
return 0;

}

48 Day 3

If you compile these programs, your compiler will warn that the values are
not initialized. You’ll see how to solve this problem shortly.

NOTE

Clearly, the purpose of the second program is easier to guess, and the inconvenience of
having to type the longer variable names is more than made up for by how much easier it
is to understand, and thus maintain, the second program.

Case Sensitivity
C++ is case sensitive. In other words, uppercase and lowercase letters are considered to
be different. A variable named age is different from Age, which is different from AGE.

Some compilers allow you to turn case sensitivity off. Don’t be tempted to
do this; your programs won’t work with other compilers, and other C++ pro-
grammers will be very confused by your code.

CAUTION

Naming Conventions
Various conventions exist for how to name variables, and although it doesn’t much mat-
ter which method you adopt, it is important to be consistent throughout your program.
Inconsistent naming will confuse other programmers when they read your code.

Many programmers prefer to use all lowercase letters for their variable names. If the
name requires two words (for example, my car), two popular conventions are used:
my_car or myCar. The latter form is called camel notation because the capitalization
looks something like a camel’s hump.

Some people find the underscore character (my_car) to be easier to read, but others prefer
to avoid the underscore because it is more difficult to type. This book uses camel nota-
tion, in which the second and all subsequent words are capitalized: myCar,
theQuickBrownFox, and so forth.

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 48

Working with Variables and Constants 49

3

Many advanced programmers employ a notation style referred to as Hungarian notation.
The idea behind Hungarian notation is to prefix every variable with a set of characters
that describes its type. Integer variables might begin with a lowercase letter i. Variables
of type long might begin with a lowercase l. Other notations indicate different constructs
within C++ that you will learn about later, such as constants, globals, pointers, and so
forth.

It is called Hungarian notation because the man who invented it, Charles
Simonyi of Microsoft, is Hungarian. You can find his original monograph at
http://www.strangecreations.com//library/c/naming.txt.

NOTE

Microsoft has moved away from Hungarian notation recently, and the design recommen-
dations for C# strongly recommend not using Hungarian notation. Their reasoning for C#
applies equally well to C++.

Keywords
Some words are reserved by C++, and you cannot use them as variable names. These
keywords have special meaning to the C++ compiler. Keywords include if, while, for,
and main. A list of keywords defined by C++ is presented in Table 3.2 as well as in
Appendix B, “C++ Keywords.” Your compiler might have additional reserved words, so
you should check its manual for a complete list.

TABLE 3.2 The C++ Keywords

asm else new this

auto enum operator throw

bool explicit private true

break export protected try

case extern public typedef

catch false register typeid

char float reinterpret_cast typename

class for return union

const friend short unsigned

const_cast goto signed using

continue if sizeof virtual

default inline static void

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 49

delete int static_cast volatile

do long struct wchar_t

double mutable switch while

dynamic_cast namespace template

In addition, the following words are reserved:

And bitor not_eq xor

and_eq compl or xor_eq

bitand not or_eq

50 Day 3

TABLE 3.2 continued

DO define a variable by writing the type,
then the variable name.

DO use meaningful variable names.

DO remember that C++ is case sensitive.

DO understand the number of bytes
each variable type consumes in memory
and what values can be stored in vari-
ables of that type.

DON’T use C++ keywords as variable
names.

DON’T make assumptions about how
many bytes are used to store a variable.

DON’T use unsigned variables for nega-
tive numbers.

DO DON’T

Creating More Than One Variable at a Time
You can create more than one variable of the same type in one statement by writing the
type and then the variable names, separated by commas. For example:

unsigned int myAge, myWeight; // two unsigned int variables
long int area, width, length; // three long integers

As you can see, myAge and myWeight are each declared as unsigned integer variables.
The second line declares three individual long variables named area, width, and length.
The type (long) is assigned to all the variables, so you cannot mix types in one definition
statement.

Assigning Values to Your Variables
You assign a value to a variable by using the assignment operator (=). Thus, you would
assign 5 to width by writing

unsigned short width;
width = 5;

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 50

Working with Variables and Constants 51

3

You can combine the steps of creating a variable and assigning a value to it. For exam-
ple, you can combine these two steps for the width variable by writing:

unsigned short width = 5;

This initialization looks very much like the earlier assignment, and when using integer
variables like width, the difference is minor. Later, when const is covered, you will see
that some variables must be initialized because they cannot be assigned a value at a later
time.

Just as you can define more than one variable at a time, you can initialize more than one
variable at creation. For example, the following creates two variables of type long and
initializes them:

long width = 5, length = 7;

This example initializes the long integer variable width to the value 5 and the long inte-
ger variable length to the value 7. You can even mix definitions and initializations:

int myAge = 39, yourAge, hisAge = 40;

This example creates three type int variables, and it initializes the first (myAge) and third
(hisAge).

Listing 3.2 shows a complete program, ready to compile, that computes the area of a rec-
tangle and writes the answer to the screen.

LISTING 3.2 A Demonstration of the Use of Variables

1: // Demonstration of variables
2: #include <iostream>
3:
4: int main()
5: {
6: using std::cout;
7: using std::endl;
8:
9: unsigned short int Width = 5, Length;
10: Length = 10;
11:
12: // create an unsigned short and initialize with result
13: // of multiplying Width by Length
14: unsigned short int Area = (Width * Length);

long is a shorthand version of long int, and short is a shorthand version of
short int.

NOTE

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 51

15:
16: cout << “Width:” << Width << endl;
17: cout << “Length: “ << Length << endl;
18: cout << “Area: “ << Area << endl;
19: return 0;
20: }

Width:5
Length: 10
Area: 50

As you have seen in the previous listing, line 2 includes the required include
statement for the iostream’s library so that cout will work. Line 4 begins the

program with the main() function. Lines 6 and 7 define cout and endl as being part of
the standard (std) namespace.

On line 9, the first variables are defined. Width is defined as an unsigned short integer,
and its value is initialized to 5. Another unsigned short integer, Length, is also defined,
but it is not initialized. On line 10, the value 10 is assigned to Length.

On line 14, an unsigned short integer, Area, is defined, and it is initialized with the
value obtained by multiplying Width times Length. On lines 16–18, the values of the
variables are printed to the screen. Note that the special word endl creates a new line.

Creating Aliases with typedef
It can become tedious, repetitious, and, most important, error-prone to keep writing
unsigned short int. C++ enables you to create an alias for this phrase by using the
keyword typedef, which stands for type definition.

In effect, you are creating a synonym, and it is important to distinguish this from creating
a new type (which you will do on Day 6, “Understanding Object-Oriented
Programming”). typedef is used by writing the keyword typedef, followed by the exist-
ing type, then the new name, and ending with a semicolon. For example,

typedef unsigned short int USHORT;

creates the new name USHORT that you can use anywhere you might have written
unsigned short int. Listing 3.3 is a replay of Listing 3.2, using the type definition
USHORT rather than unsigned short int.

OUTPUT

52 Day 3

LISTING 3.2 continued

ANALYSIS

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 52

Working with Variables and Constants 53

3

LISTING 3.3 A Demonstration of typedef

1: // Demonstrates typedef keyword
2: #include <iostream>
3:
4: typedef unsigned short int USHORT; //typedef defined
5:
6: int main()
7: {
8:
9: using std::cout;
10: using std::endl;
11:
12: USHORT Width = 5;
13: USHORT Length;
14: Length = 10;
15: USHORT Area = Width * Length;
16: cout << “Width:” << Width << endl;
17: cout << “Length: “ << Length << endl;
18: cout << “Area: “ << Area <<endl;
19: return 0;
20: }

Width:5
Length: 10
Area: 50

OUTPUT

An asterisk (*) indicates multiplication.NOTE

On line 4, USHORT is typedefined (some programmers say “typedef’ed”) as a
synonym for unsigned short int. The program is very much like Listing 3.2,

and the output is the same.

When to Use short and When to Use long
One source of confusion for new C++ programmers is when to declare a variable to be
type long and when to declare it to be type short. The rule, when understood, is fairly
straightforward: If any chance exists that the value you’ll want to put into your variable
will be too big for its type, use a larger type.

As shown in Table 3.1, unsigned short integers, assuming that they are two bytes,
can hold a value only up to 65,535. signed short integers split their values between

ANALYSIS

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 53

positive and negative numbers, and thus their maximum value is only half that of the
unsigned.

Although unsigned long integers can hold an extremely large number (4,294,967,295),
that is still quite finite. If you need a larger number, you’ll have to go to float or
double, and then you lose some precision. Floats and doubles can hold extremely large
numbers, but only the first seven or nine digits are significant on most computers. This
means that the number is rounded off after that many digits.

Shorter variables use up less memory. These days, memory is cheap and life is short.
Feel free to use int, which is probably four bytes on your machine.

Wrapping Around an unsigned Integer
That unsigned long integers have a limit to the values they can hold is only rarely a
problem, but what happens if you do run out of room?

When an unsigned integer reaches its maximum value, it wraps around and starts over,
much as a car odometer might. Listing 3.4 shows what happens if you try to put too large
a value into a short integer.

LISTING 3.4 A Demonstration of Putting Too Large a Value in an unsigned short Integer

1: #include <iostream>
2: int main()
3: {
4: using std::cout;
5: using std::endl;
6:
7: unsigned short int smallNumber;
8: smallNumber = 65535;
9: cout << “small number:” << smallNumber << endl;
10: smallNumber++;
11: cout << “small number:” << smallNumber << endl;
12: smallNumber++;
13: cout << “small number:” << smallNumber << endl;
14: return 0;
15: }

small number:65535
small number:0
small number:1

On line 7, smallNumber is declared to be an unsigned short int, which on a
Pentium 4 computer running Windows XP is a two-byte variable, able to hold a

value between 0 and 65,535. On line 8, the maximum value is assigned to smallNumber,
and it is printed on line 9.

OUTPUT

54 Day 3

ANALYSIS

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 54

Working with Variables and Constants 55

3

On line 10, smallNumber is incremented; that is, 1 is added to it. The symbol for incre-
menting is ++ (as in the name C++—an incremental increase from C). Thus, the value in
smallNumber would be 65,536. However, unsigned short integers can’t hold a number
larger than 65,535, so the value is wrapped around to 0, which is printed on line 11.

On line 12 smallNumber is incremented again, and then its new value, 1, is printed.

Wrapping Around a signed Integer
A signed integer is different from an unsigned integer, in that half of the values you can
represent are negative. Instead of picturing a traditional car odometer, you might picture
a clock much like the one shown in Figure 3.2, in which the numbers count upward mov-
ing clockwise and downward moving counterclockwise. They cross at the bottom of the
clock face (traditional 6 o’clock).

FIGURE 3.2
If clocks used signed
numbers.

One number from 0 is either 1 (clockwise) or –1 (counterclockwise). When you run out
of positive numbers, you run right into the largest negative numbers and then count back
down to 0. Listing 3.5 shows what happens when you add 1 to the maximum positive
number in a short integer.

LISTING 3.5 A Demonstration of Adding Too Large a Number to a signed short Integer

1: #include <iostream>
2: int main()
3: {
4: short int smallNumber;

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 55

5: smallNumber = 32767;
6: std::cout << “small number:” << smallNumber << std::endl;
7: smallNumber++;
8: std::cout << “small number:” << smallNumber << std::endl;
9: smallNumber++;
10: std::cout << “small number:” << smallNumber << std::endl;
11: return 0;
12: }

small number:32767
small number:-32768
small number:-32767

On line 4, smallNumber is declared this time to be a signed short integer (if
you don’t explicitly say that it is unsigned, an integer variable is assumed to be

signed). The program proceeds much as the preceding one, but the output is quite differ-
ent. To fully understand this output, you must be comfortable with how signed numbers
are represented as bits in a two-byte integer.

The bottom line, however, is that just like an unsigned integer, the signed integer wraps
around from its highest positive value to its highest negative value.

Working with Characters
Character variables (type char) are typically 1 byte, enough to hold 256 values (see
Appendix C). A char can be interpreted as a small number (0–255) or as a member of
the ASCII set. The ASCII character set and its ISO equivalent are a way to encode all the
letters, numerals, and punctuation marks.

OUTPUT

56 Day 3

LISTING 3.5 continued

ANALYSIS

Computers do not know about letters, punctuation, or sentences. All they
understand are numbers. In fact, all they really know about is whether a suf-
ficient amount of electricity is at a particular junction of wires. These two
states are represented symbolically as a 1 and 0. By grouping ones and
zeros, the computer is able to generate patterns that can be interpreted as
numbers, and these, in turn, can be assigned to letters and punctuation.

NOTE

In the ASCII code, the lowercase letter “a” is assigned the value 97. All the lower- and
uppercase letters, all the numerals, and all the punctuation marks are assigned values
between 1 and 128. An additional 128 marks and symbols are reserved for use by the

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 56

Working with Variables and Constants 57

3

Characters and Numbers
When you put a character, for example, “a,” into a char variable, what really is there is a
number between 0 and 255. The compiler knows, however, how to translate back and
forth between characters (represented by a single quotation mark and then a letter,
numeral, or punctuation mark, followed by a closing single quotation mark) and the cor-
responding ASCII values.

The value/letter relationship is arbitrary; there is no particular reason that the lowercase
“a” is assigned the value 97. As long as everyone (your keyboard, compiler, and screen)
agrees, no problem occurs. It is important to realize, however, that a big difference exists
between the value 5 and the character ‘5’. The character ‘5’ actually has an ASCII value
of 53, much as the letter “a” is valued at 97. This is illustrated in Listing 3.6.

LISTING 3.6 Printing Characters Based on Numbers

1: #include <iostream>
2: int main()
3: {
4: for (int i = 32; i<128; i++)
5: std::cout << (char) i;
6: return 0;
7: }

!”#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcde-
fghijklmno
pqrstuvwxyz{|}~?

This simple program prints the character values for the integers 32 through 127.
This listing uses an integer variable, i, on line 4 to accomplish this task. On

line 5, the number in the variable i is forced to display as a character.

A character variable could also have been used as shown in Listing 3.7, which has the
same output.

OUTPUT

ASCII is usually pronounced “Ask-ee.”NOTE

ANALYSIS

computer maker, although the IBM extended character set has become something of a
standard.

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 57

LISTING 3.7 Printing Characters Based on Numbers, Take 2

1: #include <iostream>
2: int main()
2: {
4: for (unsigned char i = 32; i<128; i++)
5: std::cout << i;
6: return 0;
7: }

As you can see, an unsigned character is used on line 4. Because a character variable is
being used instead of a numeric variable, the cout on line 5 knows to display the charac-
ter value.

Special Printing Characters
The C++ compiler recognizes some special characters for formatting. Table 3.3 shows
the most common ones. You put these into your code by typing the backslash (called the
escape character), followed by the character. Thus, to put a tab character into your code,
you enter a single quotation mark, the slash, the letter t, and then a closing single quota-
tion mark:

char tabCharacter = ‘\t’;

This example declares a char variable (tabCharacter) and initializes it with the charac-
ter value \t, which is recognized as a tab. The special printing characters are used when
printing either to the screen or to a file or other output device.

The escape character (\) changes the meaning of the character that follows it. For exam-
ple, normally the character n means the letter n, but when it is preceded by the escape
character, it means new line.

TABLE 3.3 The Escape Characters

Character What It Means

\a Bell (alert)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\v Vertical tab

\’ Single quote

58 Day 3

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 58

Working with Variables and Constants 59

3

\” Double quote

\? Question mark

\\ Backslash

\000 Octal notation

\xhhh Hexadecimal notation

Constants
Like variables, constants are data storage locations. Unlike variables, and as the name
implies, constants don’t change—they remain constant. You must initialize a constant
when you create it, and you cannot assign a new value later.

C++ has two types of constants: literal and symbolic.

Literal Constants
A literal constant is a value typed directly into your program wherever it is needed. For
example:

int myAge = 39;

myAge is a variable of type int; 39 is a literal constant. You can’t assign a value to 39,
and its value can’t be changed.

Symbolic Constants
A symbolic constant is a constant that is represented by a name, just as a variable is rep-
resented. Unlike a variable, however, after a constant is initialized, its value can’t be
changed.

If your program has an integer variable named students and another named classes,
you could compute how many students you have, given a known number of classes, if
you knew each class consisted of 15 students:

students = classes * 15;

In this example, 15 is a literal constant. Your code would be easier to read, and easier to
maintain, if you substituted a symbolic constant for this value:

students = classes * studentsPerClass

TABLE 3.3 continued

Character

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 59

If you later decided to change the number of students in each class, you could do so
where you define the constant studentsPerClass without having to make a change
every place you used that value.

Two ways exist to declare a symbolic constant in C++. The old, traditional, and now
obsolete way is with a preprocessor directive, #define. The second, and appropriate way
to create them is using the const keyword.

Defining Constants with #define
Because a number of existing programs use the preprocessor #define directive, it is
important for you to understand how it has been used. To define a constant in this obso-
lete manner, you would enter this:

#define studentsPerClass 15

Note that studentsPerClass is of no particular type (int, char, and so on). The pre-
processor does a simple text substitution. In this case, every time the preprocessor sees
the word studentsPerClass, it puts in the text 15.

Because the preprocessor runs before the compiler, your compiler never sees your con-
stant; it sees the number 15.

60 Day 3

Although #define looks very easy to use, it should be avoided as it has been
declared obsolete in the C++ standard.

CAUTION

Defining Constants with const
Although #define works, a much better way exists to define constants in C++:

const unsigned short int studentsPerClass = 15;

This example also declares a symbolic constant named studentsPerClass, but this time
studentsPerClass is typed as an unsigned short int.

This method of declaring constants has several advantages in making your code easier to
maintain and in preventing bugs. The biggest difference is that this constant has a type,
and the compiler can enforce that it is used according to its type.

Constants cannot be changed while the program is running. If you need to
change studentsPerClass, for example, you need to change the code and
recompile.

NOTE

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 60

Working with Variables and Constants 61

3

Enumerated Constants
Enumerated constants enable you to create new types and then to define variables of
those types whose values are restricted to a set of possible values. For example, you
could create an enumeration to store colors. Specifically, you could declare COLOR to be
an enumeration, and then you could define five values for COLOR: RED, BLUE, GREEN,
WHITE, and BLACK.

The syntax for creating enumerated constants is to write the keyword enum, followed by
the new type name, an opening brace, each of the legal values separated by a comma,
and finally, a closing brace and a semicolon. Here’s an example:

enum COLOR { RED, BLUE, GREEN, WHITE, BLACK };

This statement performs two tasks:

1. It makes COLOR the name of an enumeration; that is, a new type.

2. It makes RED a symbolic constant with the value 0, BLUE a symbolic constant with
the value 1, GREEN a symbolic constant with the value 2, and so forth.

Every enumerated constant has an integer value. If you don’t specify otherwise, the first
constant has the value 0, and the rest count up from there. Any one of the constants can
be initialized with a particular value, however, and those that are not initialized count
upward from the ones before them. Thus, if you write

enum Color { RED=100, BLUE, GREEN=500, WHITE, BLACK=700 };

then RED has the value 100; BLUE, the value 101; GREEN, the value 500; WHITE, the value
501; and BLACK, the value 700.

You can define variables of type COLOR, but they can be assigned only one of the enumer-
ated values (in this case, RED, BLUE, GREEN, WHITE, or BLACK. You can assign any color
value to your COLOR variable.

DO watch for numbers overrunning the
size of the integer and wrapping around
incorrect values.

DO give your variables meaningful
names that reflect their use.

DON’T use keywords as variable names.

DON’T use the #define preprocessor
directive to declare constants. Use const.

DO DON’T

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 61

It is important to realize that enumerator variables are generally of type unsigned int,
and that the enumerated constants equate to integer variables. It is, however, very conve-
nient to be able to name these values when working with information such as colors,
days of the week, or similar sets of values. Listing 3.8 presents a program that uses an
enumerated type.

LISTING 3.8 A Demonstration of Enumerated Constants

1: #include <iostream>
2: int main()
3: {
4: enum Days { Sunday, Monday, Tuesday,
5: Wednesday, Thursday, Friday, Saturday };
6:
7: Days today;
8: today = Monday;
9:
10: if (today == Sunday || today == Saturday)
11: std::cout << “\nGotta’ love the weekends!\n”;
12: else
13: std::cout << “\nBack to work.\n”;
14:
15: return 0;
16: }

Back to work.

On lines 4 and 5, the enumerated constant Days is defined, with seven values.
Each of these evaluates to an integer, counting upward from 0; thus, Monday’s

value is 1 (Sunday was 0).

On line 7, a variable of type Days is created—that is, the variable contains a valid value
from the list of enumerated constants defined on lines 4 and 5. The value Monday is
assigned to the variable on line 8. On line 10, a test is done against the value.

The enumerated constant shown on line 8 could be replaced with a series of constant
integers, as shown in Listing 3.9.

LISTING 3.9 Same Program Using Constant Integers

1: #include <iostream>
2: int main()
3: {
4: const int Sunday = 0;
5: const int Monday = 1;

OUTPUT

62 Day 3

ANALYSIS

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 62

Working with Variables and Constants 63

3

6: const int Tuesday = 2;
7: const int Wednesday = 3;
8: const int Thursday = 4;
9: const int Friday = 5;
10: const int Saturday = 6;
11:
12: int today;
13: today = Monday;
14:
15: if (today == Sunday || today == Saturday)
16: std::cout << “\nGotta’ love the weekends!\n”;
17: else
18: std::cout << “\nBack to work.\n”;
19:
20: return 0;
21: }

Back to work.
OUTPUT

LISTING 3.9 continued

A number of the variables you declare in this program are not used. As such,
your compiler might give you warnings when you compile this listing.

CAUTION

The output of this listing is identical to Listing 3.8. Here, each of the constants
(Sunday, Monday, and so on) was explicitly defined, and no enumerated Days type

exists. Enumerated constants have the advantage of being self-documenting—the intent
of the Days enumerated type is immediately clear.

Summary
Today’s lesson discussed numeric and character variables and constants, which are used
by C++ to store data during the execution of your program. Numeric variables are either
integral (char, short, int, and long int) or they are floating point (float, double, and
long double). Numeric variables can also be signed or unsigned. Although all the
types can be of various sizes among different computers, the type specifies an exact size
on any given computer.

You must declare a variable before it can be used, and then you must store the type of
data that you’ve declared as correct for that variable. If you put a number that is too large
into an integral variable, it wraps around and produces an incorrect result.

ANALYSIS

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 63

Today’s lesson also presented literal and symbolic constants as well as enumerated con-
stants. You learned two ways to declare a symbolic constant: using #define and using
the keyword const; however, you learned that using const is the appropriate way.

Q&A
Q If a short int can run out of room and wrap around, why not always use long

integers?

A All integer types can run out of room and wrap around, but a long integer does so
with a much larger number. For example, a two-byte unsigned short int wraps
around after 65,535, whereas a four-byte unsigned long int does not wrap
around until 4,294,967,295. However, on most machines, a long integer takes up
twice as much memory every time you declare one (such as four bytes versus two
bytes), and a program with 100 such variables consumes an extra 200 bytes of
RAM. Frankly, this is less of a problem than it used to be because most personal
computers now come with millions (if not billions) of bytes of memory.

Using larger types than you need might also require additional time for your com-
puter’s processor to processes.

Q What happens if I assign a number with a decimal point to an integer rather
than to a float? Consider the following line of code:

int aNumber = 5.4;

A A good compiler issues a warning, but the assignment is completely legal. The
number you’ve assigned is truncated into an integer. Thus, if you assign 5.4 to an
integer variable, that variable will have the value 5. Information will be lost, how-
ever, and if you then try to assign the value in that integer variable to a float vari-
able, the float variable will have only 5.

Q Why not use literal constants; why go to the bother of using symbolic
constants?

A If you use a value in many places throughout your program, a symbolic constant
allows all the values to change just by changing the one definition of the constant.
Symbolic constants also speak for themselves. It might be hard to understand why
a number is being multiplied by 360, but it’s much easier to understand what’s
going on if the number is being multiplied by degreesInACircle.

Q What happens if I assign a negative number to an unsigned variable?
Consider the following line of code:

unsigned int aPositiveNumber = -1;

A A good compiler issues a warning, but the assignment is legal. The negative num-
ber is assessed as a bit pattern and is assigned to the variable. The value of that

64 Day 3

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 64

Working with Variables and Constants 65

3

variable is then interpreted as an unsigned number. Thus, –1, whose bit pattern is
11111111 11111111 (0xFF in hex), is assessed as the unsigned value 65,535.

Q Can I work with C++ without understanding bit patterns, binary arithmetic,
and hexadecimal?

A Yes, but not as effectively as if you do understand these topics. C++ does not do as
good a job as some languages at “protecting” you from what the computer is really
doing. This is actually a benefit because it provides you with tremendous power
that other languages don’t. As with any power tool, however, to get the most out of
C++, you must understand how it works. Programmers who try to program in C++
without understanding the fundamentals of the binary system often are confused by
their results.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain that you understand the answers before continuing to tomor-
row’s lesson.

Quiz
1. What is the difference between an integer variable and a floating-point variable?

2. What are the differences between an unsigned short int and a long int?

3. What are the advantages of using a symbolic constant rather than a literal constant?

4. What are the advantages of using the const keyword rather than #define?

5. What makes for a good or bad variable name?

6. Given this enum, what is the value of BLUE?

enum COLOR { WHITE, BLACK = 100, RED, BLUE, GREEN = 300 };

7. Which of the following variable names are good, which are bad, and which are
invalid?

a. Age

b. !ex

c. R79J

d. TotalIncome

e. __Invalid

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 65

Exercises
1. What would be the correct variable type in which to store the following

information?

a. Your age

b. The area of your backyard

c. The number of stars in the galaxy

d. The average rainfall for the month of January

2. Create good variable names for this information.

3. Declare a constant for pi as 3.14159.

4. Declare a float variable and initialize it using your pi constant.

66 Day 3

05 0672327112_ch03.qxd 11/19/04 12:25 PM Page 66

DAY 4

WEEK 1

Creating Expressions
and Statements

At its heart, a program is a set of commands executed in sequence. The power
in a program comes from its capability to execute one or another set of com-
mands, based on whether a particular condition is true or false.

Today, you will learn

• What statements are

• What blocks are

• What expressions are

• How to branch your code based on conditions

• What truth is, and how to act on it

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 67

Starting with Statements
In C++, a statement controls the sequence of execution, evaluates an expression, or does
nothing (the null statement). All C++ statements end with a semicolon and nothing else.
One of the most common statements is the following assignment statement:

x = a + b;

Unlike in algebra, this statement does not mean that x is equal to a+b. Rather, this is
read, “Assign the value of the sum of a and b to x,” or “Assign to x, a+b,” or “Set x equal
to a plus b.”

This statement is doing two things. It is adding a and b together, and it is assigning the
result to x using the assignment operator (=). Even though this statement is doing two
things, it is one statement, and thus has one semicolon.

68 Day 4

The assignment operator assigns whatever is on the right side of the equal
sign to whatever is on the left side.

NOTE

Using Whitespace
Whitespace is the invisible characters such as tabs, spaces, and new lines. These are
called “whitespace characters” because if they are printed on a piece of white paper, you
only see the white of the paper.

Whitespace is generally ignored in statements. For example, the assignment statement
previously discussed could be written as

x=a+b;

or as

x =a
+ b ;

Although this last variation is perfectly legal, it is also perfectly foolish. Whitespace can
be used to make your programs more readable and easier to maintain, or it can be used to
create horrific and indecipherable code. In this, as in all things, C++ provides the power;
you supply the judgment.

Blocks and Compound Statements
Any place you can put a single statement, you can put a compound statement, also called
a block. A block begins with an opening brace ({) and ends with a closing brace (}).

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 68

Creating Expressions and Statements 69

4

Although every statement in the block must end with a semicolon, the block itself does
not end with a semicolon, as shown in the following example:

{
temp = a;
a = b;
b = temp;

}

This block of code acts as one statement and swaps the values in the variables a and b.

DO end your statements with a semi-
colon.

DO use whitespace judiciously to make
your code clearer.

DON’T forget to use a closing brace any
time you have an opening brace.

DO DON’T

Expressions
Anything that evaluates to a value is an expression in C++. An expression is said to
return a value. Thus, the statement 3+2; returns the value 5, so it is an expression. All
expressions are statements.

The myriad pieces of code that qualify as expressions might surprise you. Here are three
examples:

3.2 // returns the value 3.2

PI // float constant that returns the value 3.14

SecondsPerMinute // int constant that returns 60

Assuming that PI is a constant created that is initialized to 3.14 and SecondsPerMinute
is a constant equal to 60, all three of these statements are expressions.

The slightly more complicated expression

x = a + b;

not only adds a and b and assigns the result to x, but returns the value of that assignment
(the value of x) as well. Thus, this assignment statement is also an expression.

As a note, any expression can be used on the right side of an assignment operator. This
includes the assignment statement just shown. The following is perfectly legal in C++:

y = x = a + b;

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 69

This line is evaluated in the following order:

Add a to b.

Assign the result of the expression a + b to x.

Assign the result of the assignment expression x = a + b to y.

If a, b, x, and y are all integers, and if a has the value 9 and b has the value 7, both x and
y will be assigned the value 16. This is illustrated in Listing 4.1.

LISTING 4.1 Evaluating Complex Expressions

1: #include <iostream>
2: int main()
3: {
4: using std::cout;
5: using std::endl;
6:
7: int a=0, b=0, x=0, y=35;
8: cout << “a: “ << a << “ b: “ << b;
9: cout << “ x: “ << x << “ y: “ << y << endl;
10: a = 9;
11: b = 7;
12: y = x = a+b;
13: cout << “a: “ << a << “ b: “ << b;
14: cout << “ x: “ << x << “ y: “ << y << endl;
15: return 0;
16: }

a: 0 b: 0 x: 0 y: 35
a: 9 b: 7 x: 16 y: 16

On line 7, the four variables are declared and initialized. Their values are printed
on lines 8 and 9. On line 10, a is assigned the value 9. On line 11, b is assigned

the value 7. On line 12, the values of a and b are summed and the result is assigned to x.
This expression (x = a+b) evaluates to a value (the sum of a + b), and that value is, in
turn, assigned to y. On lines 13 and 14, these results are confirmed by printing out the
values of the four variables.

Working with Operators
An operator is a symbol that causes the compiler to take an action. Operators act on
operands, and in C++ any expression can be an operand. In C++, several categories of
operators exist. The first two categories of operators that you will learn about are

OUTPUT

70 Day 4

ANALYSIS

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 70

Creating Expressions and Statements 71

4

• Assignment operators

• Mathematical operators

Assignment Operators
You saw the assignment operator (=) earlier. This operator causes the operand on the left
side of the assignment operator to have its value changed to the value of the expression
on the right side of the assignment operator. The expression

x = a + b;

assigns the value that is the result of adding a and b to the operand x.

l-values and r-values

An operand that legally can be on the left side of an assignment operator is called an
l-value. That which can be on the right side is called (you guessed it) an r-value.

You should note that all l-values are r-values, but not all r-values are l-values. An example
of an r-value that is not an l-value is a literal. Thus, you can write

x = 5;

but you cannot write

5 = x;

x can be an l-value or an r-value, 5 can only be an r-value.

Mathematical Operators
A second category of operators is the mathematical operators. Five mathematical opera-
tors are addition (+), subtraction (–), multiplication (*), division (/), and modulus (%).

Addition and subtraction work as you would expect: Two numbers separated by the plus
or minus sign are added or subtracted. Multiplication works in the same manner; how-
ever, the operator you use to do multiplication is an asterisk (*). Division is done using a
forward slash operator. The following are examples of expressions using each of these
operators. In each case, the result is assigned to the variable result. The comments to the
right show what the value of result would be

Constants are r-values. Because they cannot have their values changed, they
are not allowed to be on the left side of the assignment operator, which
means they can’t be l-values.

NOTE

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 71

result = 56 + 32 // result = 88
result = 12 – 10 // result = 2
result = 21 / 7 // result = 3
result = 12 * 4 // result = 48

Subtraction Troubles
Subtraction with unsigned integers can lead to surprising results if the result is a nega-
tive number. You saw something much like this yesterday, when variable overflow was
described. Listing 4.2 shows what happens when you subtract a large unsigned number
from a small unsigned number.

LISTING 4.2 A Demonstration of Subtraction and Integer Overflow

1: // Listing 4.2 - demonstrates subtraction and
2: // integer overflow
3: #include <iostream>
4:
5: int main()
6: {
7: using std::cout;
8: using std::endl;
9:
10: unsigned int difference;
11: unsigned int bigNumber = 100;
12: unsigned int smallNumber = 50;
13:
14: difference = bigNumber - smallNumber;
15: cout << “Difference is: “ << difference;
16:
17: difference = smallNumber - bigNumber;
18: cout << “\nNow difference is: “ << difference <<endl;
19: return 0;
20: }

Difference is: 50
Now difference is: 4294967246

The subtraction operator is invoked for the first time on line 14, and the result is
printed on line 15, much as you might expect. The subtraction operator is called

again on line 17, but this time a large unsigned number is subtracted from a small
unsigned number. The result would be negative, but because it is evaluated (and printed)
as an unsigned number, the result is an overflow, as described yesterday. This topic is
reviewed in detail in Appendix C, “Operator Precedence.”

OUTPUT

72 Day 4

ANALYSIS

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 72

Creating Expressions and Statements 73

4

Integer Division and Modulus
Integer division is the division you learned when you were in elementary school. When
you divide 21 by 4 (21 / 4), and you are doing integer division, the answer is 5 (with a
remainder).

The fifth mathematical operator might be new to you. The modulus operator (%) tells you
the remainder after an integer division. To get the remainder of 21 divided by 4, you take
21 modulus 4 (21 % 4). In this case, the result is 1.

Finding the modulus can be very useful. For example, you might want to print a state-
ment on every 10th action. Any number whose value is 0 when you modulus 10 with that
number is an exact multiple of 10. Thus 1 % 10 is 1, 2 % 10 is 2, and so forth, until 10
% 10, whose result is 0. 11 % 10 is back to 1, and this pattern continues until the next
multiple of 10, which is 20. 20%10 = 0 again. You’ll use this technique when looping is
discussed on Day 7, “More on Program Flow.”

FAQ

When I divide 5/3, I get 1. What is going wrong?

Answer: If you divide one integer by another, you get an integer as a result.

Thus, 5/3 is 1. (The actual answer is 1 with a remainder of 2. To get the remainder, try
5%3, whose value is 2.)

To get a fractional return value, you must use floating-point numbers (type float,
double, or long double).

5.0 / 3.0 gives you a fractional answer: 1.66667.

If either the divisor or the dividend is a floating point, the compiler generates a floating-
point quotient. However, if this is assigned to an l-value that is an integer, the value is
once again truncated.

Combining the Assignment and
Mathematical Operators

It is not uncommon to want to add a value to a variable and then to assign the result back
into the same variable. If you have a variable myAge and you want to increase the value
stored in it by two, you can write

int myAge = 5;
int temp;
temp = myAge + 2; // add 5 + 2 and put it in temp
myAge = temp; // put it back in myAge

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 73

The first two lines create the myAge variable and a temporary variable. As you can see in
the third line, the value in myAge has two added to it. The resulting value is assigned to
temp. In the next line, this value is then placed back into myAge, thus updating it.

This method, however, is terribly convoluted and wasteful. In C++, you can put the same
variable on both sides of the assignment operator; thus, the preceding becomes

myAge = myAge + 2;

which is much clearer and much better. In algebra, this expression would be meaning-
less, but in C++ it is read as “add two to the value in myAge and assign the result to
myAge.”

Even simpler to write, but perhaps a bit harder to read is

myAge += 2;

This line is using the self-assigned addition operator (+=). The self-assigned addition
operator adds the r-value to the l-value and then reassigns the result into the l-value. This
operator is pronounced “plus-equals.” The statement is read “myAge plus-equals two.” If
myAge had the value 24 to start, it would have 26 after this statement.

Self-assigned subtraction (-=), division (/=), multiplication (*=), and modulus (%=) opera-
tors exist as well.

Incrementing and Decrementing
The most common value to add (or subtract) and then reassign into a variable is 1. In
C++, increasing a value by 1 is called incrementing, and decreasing by 1 is called decre-
menting. Special operators are provided in C++ to perform these actions.

The increment operator (++) increases the value of the variable by 1, and the decrement
operator (––) decreases it by 1. Thus, if you have a variable, Counter, and you want to
increment it, you would use the following statement:

Counter++; // Start with Counter and increment it.

This statement is equivalent to the more verbose statement

Counter = Counter + 1;

which is also equivalent to the moderately verbose statement

Counter += 1;

74 Day 4

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 74

Creating Expressions and Statements 75

4

As you might have guessed, C++ got its name by applying the increment
operator to the name of its predecessor language: C. The idea is that C++ is
an incremental improvement over C.

NOTE

Prefixing Versus Postfixing
Both the increment operator (++) and the decrement operator(––) come in two varieties:
prefix and postfix. The prefix variety is written before the variable name (++myAge); the
postfix variety is written after the variable name (myAge++).

In a simple statement, it doesn’t matter which you use, but in a complex statement when
you are incrementing (or decrementing) a variable and then assigning the result to
another variable, it matters very much.

The prefix operator is evaluated before the assignment; the postfix is evaluated after the
assignment. The semantics of prefix is this: Increment the value in the variable and then
fetch or use it. The semantics of postfix is different: Fetch or use the value and then
increment the original variable.

This can be confusing at first, but if x is an integer whose value is 5 and using a prefix
increment operator you write

int a = ++x;

you have told the compiler to increment x (making it 6) and then fetch that value and
assign it to a. Thus, a is now 6 and x is now 6.

If, after doing this, you use the postfix operator to write

int b = x++;

you have now told the compiler to fetch the value in x (6) and assign it to b, and then go
back and increment x. Thus, b is now 6, but x is now 7. Listing 4.3 shows the use and
implications of both types.

LISTING 4.3 A Demonstration of Prefix and Postfix Operators

1: // Listing 4.3 - demonstrates use of
2: // prefix and postfix increment and
3: // decrement operators
4: #include <iostream>
5: int main()
6: {
7: using std::cout;

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 75

8:
9: int myAge = 39; // initialize two integers
10: int yourAge = 39;
11: cout << “I am: “ << myAge << “ years old.\n”;
12: cout << “You are: “ << yourAge << “ years old\n”;
13: myAge++; // postfix increment
14: ++yourAge; // prefix increment
15: cout << “One year passes...\n”;
16: cout << “I am: “ << myAge << “ years old.\n”;
17: cout << “You are: “ << yourAge << “ years old\n”;
18: cout << “Another year passes\n”;
19: cout << “I am: “ << myAge++ << “ years old.\n”;
20: cout << “You are: “ << ++yourAge << “ years old\n”;
21: cout << “Let’s print it again.\n”;
22: cout << “I am: “ << myAge << “ years old.\n”;
23: cout << “You are: “ << yourAge << “ years old\n”;
24: return 0;
25: }

I am 39 years old
You are 39 years old
One year passes
I am 40 years old
You are 40 years old
Another year passes
I am 40 years old
You are 41 years old
Let’s print it again
I am 41 years old
You are 41 years old

On lines 9 and 10, two integer variables are declared, and each is initialized with
the value 39. Their values are printed on lines 11 and 12.

On line 13, myAge is incremented using the postfix increment operator, and on line 14,
yourAge is incremented using the prefix increment operator. The results are printed on
lines 16 and 17, and they are identical (both 40).

On line 19, myAge is incremented as part of the printing statement, using the postfix
increment operator. Because it is postfix, the increment happens after the printing, and so
the value 40 is printed again, and then the myAge variable is incremented. In contrast, on
line 20, yourAge is incremented using the prefix increment operator. Thus, it is incre-
mented before being printed, and the value displays as 41.

Finally, on lines 22 and 23, the values are printed again. Because the increment statement
has completed, the value in myAge is now 41, as is the value in yourAge.

OUTPUT

76 Day 4

LISTING 4.3 continued

ANALYSIS

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 76

Creating Expressions and Statements 77

4

Understanding Operator Precedence
In the complex statement

x = 5 + 3 * 8;

which is performed first, the addition or the multiplication? If the addition is performed
first, the answer is 8 * 8, or 64. If the multiplication is performed first, the answer is 5 +
24, or 29.

The C++ standard does not leave the order random. Rather, every operator has a prece-
dence value, and the complete list is shown in Appendix C. Multiplication has higher
precedence than addition; thus, the value of the expression is 29.

When two mathematical operators have the same precedence, they are performed in left-
to-right order. Thus,

x = 5 + 3 + 8 * 9 + 6 * 4;

is evaluated multiplication first, left to right. Thus, 8*9 = 72, and 6*4 = 24. Now the
expression is essentially

x = 5 + 3 + 72 + 24;

Now, the addition, left to right, is 5 + 3 = 8; 8 + 72 = 80; 80 + 24 = 104.

Be careful with this. Some operators, such as assignment, are evaluated in right-to-left
order!

In any case, what if the precedence order doesn’t meet your needs? Consider the
expression

TotalSeconds = NumMinutesToThink + NumMinutesToType * 60

In this expression, you do not want to multiply the NumMinutesToType variable by 60 and
then add it to NumMinutesToThink. You want to add the two variables to get the total
number of minutes, and then you want to multiply that number by 60 to get the total
seconds.

You use parentheses to change the precedence order. Items in parentheses are evaluated
at a higher precedence than any of the mathematical operators. Thus, the preceding
example should be written as:

TotalSeconds = (NumMinutesToThink + NumMinutesToType) * 60

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 77

Nesting Parentheses
For complex expressions, you might need to nest parentheses one within another. For
example, you might need to compute the total seconds and then compute the total num-
ber of people who are involved before multiplying seconds times people:

TotalPersonSeconds = (((NumMinutesToThink + NumMinutesToType) * 60) *
(PeopleInTheOffice + PeopleOnVacation))

This complicated expression is read from the inside out. First, NumMinutesToThink is
added to NumMinutesToType because these are in the innermost parentheses. Then, this
sum is multiplied by 60. Next, PeopleInTheOffice is added to PeopleOnVacation.
Finally, the total number of people found is multiplied by the total number of seconds.

This example raises an important related issue. This expression is easy for a computer to
understand, but very difficult for a human to read, understand, or modify. Here is the
same expression rewritten, using some temporary integer variables:

TotalMinutes = NumMinutesToThink + NumMinutesToType;
TotalSeconds = TotalMinutes * 60;
TotalPeople = PeopleInTheOffice + PeopleOnVacation;
TotalPersonSeconds = TotalPeople * TotalSeconds;

This example takes longer to write and uses more temporary variables than the preceding
example, but it is far easier to understand. If you add a comment at the top to explain
what this code does and change the 60 to a symbolic constant, you will have code that is
easy to understand and maintain.

78 Day 4

DO remember that expressions have a
value.

DO use the prefix operator (++variable)
to increment or decrement the variable
before it is used in the expression.

DO use the postfix operator (variable++)
to increment or decrement the variable
after it is used.

DO use parentheses to change the order
of precedence.

DON’T nest too deeply because the
expression becomes hard to understand
and maintain.

DON’T confuse the postfix operator with
the prefix operator.

DO DON’T

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 78

Creating Expressions and Statements 79

4

The Nature of Truth
Every expression can be evaluated for its truth or falsity. Expressions that evaluate math-
ematically to zero return false; all others return true.

In previous versions of C++, all truth and falsity was represented by integers, but the
ANSI standard introduced the type bool. A bool can only have one of two values: false
or true.

Many compilers previously offered a bool type, which was represented inter-
nally as a long int and, thus, had a size of four bytes. Now, ANSI-compliant
compilers often provide a one-byte bool.

NOTE

Evaluating with the Relational Operators
The relational operators are used to compare two numbers to determine whether they are
equal or if one is greater or less than the other. Every relational statement evaluates to
either true or false. The relational operators are presented later, in Table 4.1.

All relational operators return a value of type bool, that is either true or
false. In previous versions of C++, these operators returned either 0 for
false or a nonzero value (usually 1) for true.

NOTE

If the integer variable myAge has the value 45, and the integer variable yourAge has the
value 50, you can determine whether they are equal by using the relational “equals”
operator (==):

myAge == yourAge; // is the value in myAge the same as in yourAge?

This expression evaluates to false because the variables are not equal. You can check to
see if myAge is less than yourAge using the expression,

myAge < yourAge; // is myAge less than yourAge?

which evaluates to true because 45 is less than 50.

Many novice C++ programmers confuse the assignment operator (=) with
the equals operator (==). This can create a nasty bug in your program.

CAUTION

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 79

The six relational operators are equals (==), less than (<), greater than (>), less than or
equal to (<=), greater than or equal to (>=), and not equals (!=). Table 4.1 shows each
relational operator and a sample code use.

TABLE 4.1 The Relational Operators

Name Operator Sample Evaluates

Equals == 100 == 50; false

50 == 50; true

Not equals != 100 != 50; true

50 != 50; false

Greater than > 100 > 50; true

50 > 50; false

Greater than or equal to >= 100 >= 50; true

50 >= 50; true

Less than < 100 < 50; false

50 < 50; false

Less than or equal to <= 100 <= 50; false

50 <= 50; true

80 Day 4

DO remember that relational operators
return the value true or false.

DON’T confuse the assignment operator
(=) with the equals relational operator
(==). This is one of the most common C++
programming mistakes—be on guard
for it.

DO DON’T

The if Statement
Normally, your program flows along line-by-line in the order in which it appears in your
source code. The if statement enables you to test for a condition (such as whether two
variables are equal) and branch to different parts of your code, depending on the result.

The simplest form of an if statement is the following:

if (expression)
statement;

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 80

Creating Expressions and Statements 81

4

The expression in the parentheses can be any expression, but it usually contains one of
the relational expressions. If the expression has the value false, the statement is skipped.
If it evaluates true, the statement is executed. Consider the following example:

if (bigNumber > smallNumber)
bigNumber = smallNumber;

This code compares bigNumber and smallNumber. If bigNumber is larger, the second line
sets its value to the value of smallNumber. If bigNumber is not larger than smallNumber,
the statement is skipped.

Because a block of statements surrounded by braces is equivalent to a single statement,
the branch can be quite large and powerful:

if (expression)
{

statement1;
statement2;
statement3;

}

Here’s a simple example of this usage:

if (bigNumber > smallNumber)
{

bigNumber = smallNumber;
std::cout << “bigNumber: “ << bigNumber << “\n”;
std::cout << “smallNumber: “ << smallNumber << “\n”;

}

This time, if bigNumber is larger than smallNumber, not only is it set to the value of
smallNumber, but an informational message is printed. Listing 4.4 shows a more detailed
example of branching based on relational operators.

LISTING 4.4 A Demonstration of Branching Based on Relational Operators

1: // Listing 4.4 - demonstrates if statement
2: // used with relational operators
3: #include <iostream>
4: int main()
5: {
6: using std::cout;
7: using std::cin;
8:
9: int MetsScore, YankeesScore;
10: cout << “Enter the score for the Mets: “;
11: cin >> MetsScore;
12:
13: cout << “\nEnter the score for the Yankees: “;

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 81

14: cin >> YankeesScore;
15:
16: cout << “\n”;
17:
18: if (MetsScore > YankeesScore)
19: cout << “Let’s Go Mets!\n”;
20:
21: if (MetsScore < YankeesScore)
22: {
23: cout << “Go Yankees!\n”;
24: }
25:
26: if (MetsScore == YankeesScore)
27: {
28: cout << “A tie? Naah, can’t be.\n”;
29: cout << “Give me the real score for the Yanks: “;
30: cin >> YankeesScore;
31:
32: if (MetsScore > YankeesScore)
33: cout << “Knew it! Let’s Go Mets!”;
34:
35: if (YankeesScore > MetsScore)
36: cout << “Knew it! Go Yanks!”;
37:
38: if (YankeesScore == MetsScore)
39: cout << “Wow, it really was a tie!”;
40: }
41:
42: cout << “\nThanks for telling me.\n”;
43: return 0;
44: }

Enter the score for the Mets: 10

Enter the score for the Yankees: 10

A tie? Naah, can’t be
Give me the real score for the Yanks: 8
Knew it! Let’s Go Mets!
Thanks for telling me.

This program asks for the user to input scores for two baseball teams; the scores
are stored in integer variables, MetsScore and YankeesScore. The variables are

compared in the if statement on lines 18, 21, and 26.

If one score is higher than the other, an informational message is printed. If the scores
are equal, the block of code that begins on line 27 and ends on line 40 is entered. The
second score is requested again, and then the scores are compared again.

OUTPUT

82 Day 4

LISTING 4.4 continued

ANALYSIS

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 82

Creating Expressions and Statements 83

4

Note that if the initial Yankees’ score is higher than the Mets score, the if statement on
line 18 evaluates as false, and line 19 is not invoked. The test on line 21 evaluates as
true, and the statement on line 23 is invoked. Then, the if statement on line 26 is tested
and this is false (if line 18 is true). Thus, the program skips the entire block, falling
through to line 41.

This example illustrates that getting a true result in one if statement does not stop other
if statements from being tested.

Note that the action for the first two if statements is one line (printing “Let’s Go Mets!”
or “Go Yankees!”). In the first example (on line 19), this line is not in braces; a single line
block doesn’t need them. The braces are legal, however, and are used on lines 22–24.

Avoiding Common Errors with if Statements

Many novice C++ programmers inadvertently put a semicolon after their if statements:

if(SomeValue < 10); // Oops! Notice the semicolon!
SomeValue = 10;

What was intended here was to test whether SomeValue is less than 10, and if so, to set it
to 10, making 10 the minimum value for SomeValue. Running this code snippet shows that
SomeValue is always set to 10! Why? The if statement terminates with the semicolon (the
do-nothing operator).

Remember that indentation has no meaning to the compiler. This snippet could more
accurately have been written as

if (SomeValue < 10) // test
; // do nothing
SomeValue = 10; // assign

Removing the semicolon makes the final line part of the if statement and makes this
code do what was intended.

To minimize the chances of this problem, you can always write your if statements with
braces, even when the body of the if statement is only one line:

if (SomeValue < 10)
{

SomeValue = 10;
};

Indentation Styles
Listing 4.4 shows one style of indenting if statements. Nothing is more likely to create a
religious war, however, than to ask a group of programmers what is the best style for
brace alignment. Although dozens of variations are possible, the following appear to be
the most popular three:

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 83

• Putting the initial brace after the condition and aligning the closing brace under the
if to close the statement block:
if (expression){

statements
}

• Aligning the braces under the if and indenting the statements:
if (expression)
{

statements
}

• Indenting the braces and statements:

if (expression)
{
statements
}

This book uses the middle alternative because it is easy to understand where blocks of
statements begin and end if the braces line up with each other and with the condition
being tested. Again, it doesn’t matter which style you choose, so long as you are consis-
tent with it.

The else Statement
Often, your program needs to take one branch if your condition is true, or another if it is
false. In Listing 4.4, you wanted to print one message (Let’s Go Mets!) if the first test
(MetsScore > YankeesScore) evaluated true, and another message (Go Yankees!) if it
evaluated false.

The method shown so far—testing first one condition and then the other—works fine but
is a bit cumbersome. The keyword else can make for far more readable code:

if (expression)
statement;

else
statement;

Listing 4.5 demonstrates the use of the keyword else.

LISTING 4.5 Demonstrating the else Keyword

1: // Listing 4.5 - demonstrates if statement
2: // with else clause
3: #include <iostream>
4: int main()
5: {

84 Day 4

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 84

Creating Expressions and Statements 85

4

6: using std::cout;
7: using std::cin;
8:
9: int firstNumber, secondNumber;
10: cout << “Please enter a big number: “;
11: cin >> firstNumber;
12: cout << “\nPlease enter a smaller number: “;
13: cin >> secondNumber;
14: if (firstNumber > secondNumber)
15: cout << “\nThanks!\n”;
16: else
17: cout << “\nOops. The first number is not bigger!”;
18:
19: return 0;
20: }

Please enter a big number: 10

Please enter a smaller number: 12
Oops. The first number is not bigger!

The if statement on line 14 is evaluated. If the condition is true, the statement on
line 15 is run and then program flow goes to line 18 (after the else statement). If

the condition on line 14 evaluates to false, control goes to the else clause and so the
statement on line 17 is run. If the else clause on line 16 was removed, the statement on
line 17 would run regardless of whether the if statement was true.

Remember, the if statement ends after line 15. If the else was not there, line 17 would
just be the next line in the program. You should also note that either or both of the if and
the else statements could be replaced with a block of code in braces.

OUTPUT

LISTING 4.5 continued

ANALYSIS

The if Statement

The syntax for the if statement is as follows:

Form 1

if (expression)
statement;

next_statement;

If the expression is evaluated as true, the statement is executed and the program contin-
ues with the next_statement. If the expression is not true, the statement is ignored and
the program jumps to the next_statement.

Remember that the statement can be a single statement ending with a semicolon or a
block enclosed in braces.

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 85

Advanced if Statements
It is worth noting that any statement can be used in an if or else clause, even another if
or else statement. Thus, you might see complex if statements in the following form:

if (expression1)
{

if (expression2)
statement1;

else
{

if (expression3)
statement2;

else
statement3;

}
}
else

statement4;

This cumbersome if statement says, “If expression1 is true and expression2 is true,
execute statement1. If expression1 is true but expression2 is not true, then if expres-
sion3 is true execute statement2. If expression1 is true but expression2 and expres-
sion3 are false, then execute statement3. Finally, if expression1 is not true, execute
statement4.” As you can see, complex if statements can be confusing!

Listing 4.6 gives an example of one such complex if statement.

86 Day 4

Form 2

if (expression)
statement1;

else
statement2;

next_statement;

If the expression evaluates true, statement1 is executed; otherwise, statement2 is exe-
cuted. Afterward, the program continues with the next_statement.

Example 1

Example
if (SomeValue < 10)
cout << “SomeValue is less than 10”);

else
cout << “SomeValue is not less than 10!”);

cout << “Done.” << endl;

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 86

Creating Expressions and Statements 87

4

LISTING 4.6 A Complex, Nested if Statement

1: // Listing 4.6 - a complex nested
2: // if statement
3: #include <iostream>
4: int main()
5: {
6: // Ask for two numbers
7: // Assign the numbers to bigNumber and littleNumber
8: // If bigNumber is bigger than littleNumber,
9: // see if they are evenly divisible
10: // If they are, see if they are the same number
11:
12: using namespace std;
13:
14: int firstNumber, secondNumber;
15: cout << “Enter two numbers.\nFirst: “;
16: cin >> firstNumber;
17: cout << “\nSecond: “;
18: cin >> secondNumber;
19: cout << “\n\n”;
20:
21: if (firstNumber >= secondNumber)
22: {
23: if ((firstNumber % secondNumber) == 0) // evenly divisible?
24: {
25: if (firstNumber == secondNumber)
26: cout << “They are the same!\n”;
27: else
28: cout << “They are evenly divisible!\n”;
29: }
30: else
31: cout << “They are not evenly divisible!\n”;
32: }
33: else
34: cout << “Hey! The second one is larger!\n”;
35: return 0;
36: }

Enter two numbers.
First: 10

Second: 2
They are evenly divisible!

Two numbers are prompted for one at a time, and then compared. The first if
statement, on line 21, checks to ensure that the first number is greater than or

equal to the second. If not, the else clause on line 33 is executed.

OUTPUT

ANALYSIS

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 87

If the first if is true, the block of code beginning on line 22 is executed, and a second if
statement is tested on line 23. This checks to see whether the first number divided by the
second number yields no remainder. If so, the numbers are either evenly divisible or
equal. The if statement on line 25 checks for equality and displays the appropriate mes-
sage either way.

If the if statement on line 23 fails (evaluates to false), then the else statement on line 30
is executed.

Using Braces in Nested if Statements
Although it is legal to leave out the braces on if statements that are only a single state-
ment, and it is legal to nest if statements, doing so can cause enormous confusion. The
following is perfectly legal in C++, although it looks somewhat confusing:

if (x > y) // if x is bigger than y
if (x < z) // and if x is smaller than z

x = y; // set x to the value in y
else // otherwise, if x isn’t less than z

x = z; // set x to the value in z
else // otherwise if x isn’t greater than y

y = x; // set y to the value in x

Remember, whitespace and indentation are a convenience for the programmer; they make
no difference to the compiler. It is easy to confuse the logic and inadvertently assign an
else statement to the wrong if statement. Listing 4.7 illustrates this problem.

LISTING 4.7 A Demonstration of Why Braces Help Clarify Which else Statement Goes
with Which if Statement

1: // Listing 4.7 - demonstrates why braces
2: // are important in nested if statements
3: #include <iostream>
4: int main()
5: {
6: int x;
7: std::cout << “Enter a number less than 10 or greater than 100: “;
8: std::cin >> x;
9: std::cout << “\n”;
10:
11: if (x >= 10)
12: if (x > 100)
13: std::cout << “More than 100, Thanks!\n”;
14: else // not the else intended!
15: std::cout << “Less than 10, Thanks!\n”;
16:
17: return 0;
18: }

88 Day 4

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 88

Creating Expressions and Statements 89

4

Enter a number less than 10 or greater than 100: 20

Less than 10, Thanks!

The programmer intended to ask for a number less than 10 or greater than 100,
check for the correct value, and then print a thank-you note.

When the if statement on line 11 evaluates true, the following statement (line 12) is exe-
cuted. In this case, line 12 executes when the number entered is greater than 10. Line 12
contains an if statement also. This if statement evaluates true if the number entered is
greater than 100. If the number is greater than 100, the statement on line 13 is executed,
thus printing out an appropriate message.

If the number entered is less than 10, the if statement on line 11 evaluates false.
Program control goes to the next line following the if statement, in this case line 16. If
you enter a number less than 10, the output is as follows:

Enter a number less than 10 or greater than 100: 9

As you can see, there was no message printed. The else clause on line 14 was clearly
intended to be attached to the if statement on line 11, and thus is indented accordingly.
Unfortunately, the else statement is really attached to the if statement on line 12, and
thus this program has a subtle bug.

It is a subtle bug because the compiler will not complain. This is a legal C++ program,
but it just doesn’t do what was intended. Further, most of the times the programmer tests
this program, it will appear to work. As long as a number that is greater than 100 is
entered, the program will seem to work just fine. However, if you enter a number from
11 to 99, you’ll see that there is obviously a problem!

Listing 4.8 fixes the problem by putting in the necessary braces.

LISTING 4.8 A Demonstration of the Proper Use of Braces with an if Statement

1: // Listing 4.8 - demonstrates proper use of braces
2: // in nested if statements
3: #include <iostream>
4: int main()
5: {
6: int x;
7: std::cout << “Enter a number less than 10 or greater than 100: “;
8: std::cin >> x;
9: std::cout << “\n”;
10:
11: if (x >= 10)
12: {
13: if (x > 100)

OUTPUT

ANALYSIS

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 89

14: std::cout << “More than 100, Thanks!\n”;
15: }
16: else // fixed!
17: std::cout << “Less than 10, Thanks!\n”;
18: return 0;
19: }

Enter a number less than 10 or greater than 100: 9
Less than 10, Thanks!

The braces on lines 12 and 15 make everything between them into one statement,
and now the else on line 16 applies to the if on line 11, as intended.

If the user types 9, the if statement on line 11 is true; however, the if statement on line
13 is false, so nothing would be printed. It would be better if the programmer put another
else clause after line 14 so that errors would be caught and a message printed.

OUTPUT

90 Day 4

LISTING 4.8 continued

ANALYSIS

You can minimize many of the problems that come with if...else state-
ments by always using braces for the statements in the if and else clauses,
even when only one statement follows the condition.

if (SomeValue < 10)
{

SomeValue = 10;
}
else
{

SomeValue = 25;
};

TIP

The programs shown in this book are written to demonstrate the particular
issues being discussed. They are kept intentionally simple; no attempt is
made to “bulletproof” the code to protect against user error. Ideally, in
professional-quality code, every possible user error is anticipated and han-
dled gracefully.

NOTE

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 90

Creating Expressions and Statements 91

4

Using the Logical Operators
Often, you want to ask more than one relational question at a time. “Is it true that x is
greater than y, and also true that y is greater than z?” A program might need to determine
that both of these conditions are true—or that some other set of conditions is true—in
order to take an action.

Imagine a sophisticated alarm system that has this logic: “If the door alarm sounds AND
it is after 6:00 p.m. AND it is NOT a holiday, OR if it is a weekend, then call the police.”
C++’s three logical operators are used to make this kind of evaluation. These operators
are listed in Table 4.2.

TABLE 4.2 The Logical Operators

Operator Symbol Example

AND && expression1 && expression2

OR || expression1 || expression2

NOT ! !expression

The Logical AND Operator
A logical AND statement uses the AND operator to connect and evaluates two expressions.
If both expressions are true, the logical AND statement is true as well. If it is true that you
are hungry, AND it is true that you have money, THEN it is true that you can buy lunch.
Thus,

if ((x == 5) && (y == 5))

evaluates true if both x and y are equal to 5, and it evaluates false if either one is not
equal to 5. Note that both sides must be true for the entire expression to be true.

Note that the logical AND is two && symbols. A single & symbol is a different operator,
which is discussed on Day 21, “What’s Next.”

The Logical OR Operator
A logical OR statement evaluates two expressions. If either one is true, the expression is
true. If you have money OR you have a credit card, you can pay the bill. You don’t need
both money and a credit card; you need only one, although having both is fine as well.
Thus,

if ((x == 5) || (y == 5))

evaluates true if either x or y is equal to 5, or if both are equal to 5.

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 91

Note that the logical OR is two || symbols. A single | symbol is a different operator,
which is discussed on Day 21.

The Logical NOT Operator
A logical NOT statement evaluates true if the expression being tested is false. Again, if the
expression being tested is false, the value of the test is true! Thus,

if (!(x == 5))

is true only if x is not equal to 5. This is the same as writing

if (x != 5)

Short Circuit Evaluation
When the compiler is evaluating an AND statement, such as

if ((x == 5) && (y == 5))

the compiler evaluates the truth of the first statement (x==5), and if this fails (that is, if x
is not equal to 5), the compiler does NOT go on to evaluate the truth or falsity of the sec-
ond statement (y == 5) because AND requires both to be true.

Similarly, if the compiler is evaluating an OR statement, such as

if ((x == 5) || (y == 5))

if the first statement is true (x == 5), the compiler never evaluates the second statement
(y == 5) because the truth of either is sufficient in an OR statement.

Although this might not seem important, consider the following example:

if ((x == 5)|| (++y == 3))

If x is not equal to 5, then (++y == 3) is not evaluated. If you are counting on y to be
incremented regardless, it might not happen.

Relational Precedence
Like all C++ expressions, the use of relational operators and logical operators each return
a value: true or false. Like all expressions, they also have a precedence order (see
Appendix C) that determines which relations are evaluated first. This fact is important
when determining the value of statements such as the following:

if (x > 5 && y > 5 || z > 5)

92 Day 4

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 92

Creating Expressions and Statements 93

4

It might be that the programmer wanted this expression to evaluate true if both x and y
are greater than 5 or if z is greater than 5. On the other hand, the programmer might have
wanted this expression to evaluate true only if x is greater than 5 and if it is also true that
either y is greater than 5 or z is greater than 5.

If x is 3, and y and z are both 10, the first interpretation is true (z is greater than 5, so
ignore x and y), but the second is false (it isn’t true that x is greater than 5, and thus it
doesn’t matter what is on the right side of the && symbol because both sides must be
true).

Although precedence determines which relation is evaluated first, parentheses can both
change the order and make the statement clearer:

if ((x > 5) && (y > 5 || z > 5))

Using the values from earlier, this statement is false. Because it is not true that x is
greater than 5, the left side of the AND statement fails, and thus the entire statement is
false. Remember that an AND statement requires that both sides be true—something isn’t
both “good tasting” AND “good for you” if it isn’t good tasting.

It is often a good idea to use extra parentheses to clarify what you want to
group. Remember, the goal is to write programs that work and that are easy
to read and to understand. Using parentheses help to clarify your intent and
avoid errors that come from misunderstanding operator precedence.

TIP

More About Truth and Falsehood
In C++, zero evaluates to false, and all other values evaluate to true. Because an expres-
sion always has a value, many C++ programmers take advantage of this feature in their
if statements. A statement such as

if (x) // if x is true (nonzero)
x = 0;

can be read as “If x has a nonzero value, set it to 0.” This is a bit of a cheat; it would be
clearer if written

if (x != 0) // if x is not zero
x = 0;

Both statements are legal, but the latter is clearer. It is good programming practice to
reserve the former method for true tests of logic, rather than for testing for nonzero
values.

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 93

These two statements also are equivalent:

if (!x) // if x is false (zero)
if (x == 0) // if x is zero

The second statement, however, is somewhat easier to understand and is more explicit if
you are testing for the mathematical value of x rather than for its logical state.

94 Day 4

DO put parentheses around your logical
tests to make them clearer and to make
the precedence explicit.

DO use braces in nested if statements to
make the else statements clearer and to
avoid bugs.

DON’T use if(x) as a synonym for
if(x != 0); the latter is clearer.

DON’T use if(!x) as a synonym for
if(x == 0); the latter is clearer.

DO DON’T

The Conditional (Ternary) Operator
The conditional operator (?:) is C++’s only ternary operator; that is, it is the only opera-
tor to take three terms.

The conditional operator takes three expressions and returns a value:

(expression1) ? (expression2) : (expression3)

This line is read as “If expression1 is true, return the value of expression2; otherwise,
return the value of expression3.” Typically, this value is assigned to a variable. Listing
4.9 shows an if statement rewritten using the conditional operator.

LISTING 4.9 A Demonstration of the Conditional Operator

1: // Listing 4.9 - demonstrates the conditional operator
2: //
3: #include <iostream>
4: int main()
5: {
6: using namespace std;
7:
8: int x, y, z;
9: cout << “Enter two numbers.\n”;
10: cout << “First: “;
11: cin >> x;
12: cout << “\nSecond: “;
13: cin >> y;
14: cout << “\n”;

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 94

Creating Expressions and Statements 95

4

15:
16: if (x > y)
17: z = x;
18: else
19: z = y;
20:
21: cout << “After if test, z: “ << z;
22: cout << “\n”;
23:
24: z = (x > y) ? x : y;
25:
26: cout << “After conditional test, z: “ << z;
27: cout << “\n”;
28: return 0;
29: }

Enter two numbers.
First: 5

Second: 8

After if test, z: 8
After conditional test, z: 8

Three integer variables are created: x, y, and z. The first two are given values by
the user. The if statement on line 16 tests to see which is larger and assigns the

larger value to z. This value is printed on line 21.

The conditional operator on line 24 makes the same test and assigns z the larger value. It
is read like this: “If x is greater than y, return the value of x; otherwise, return the value
of y.” The value returned is assigned to z. That value is printed on line 26. As you can
see, the conditional statement is a shorter equivalent to the if...else statement.

Summary
In today’s lesson, you have learned what C++ statements and expressions are, what C++
operators do, and how C++ if statements work.

You have seen that a block of statements enclosed by a pair of braces can be used any-
where a single statement can be used.

You have learned that every expression evaluates to a value, and that value can be tested
in an if statement or by using the conditional operator. You’ve also seen how to evaluate
multiple statements using the logical operator, how to compare values using the rela-
tional operators, and how to assign values using the assignment operator.

OUTPUT

LISTING 4.9 continued

ANALYSIS

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 95

You have explored operator precedence. And you have seen how parentheses can be used
to change the precedence and to make precedence explicit, and thus easier to manage.

Q&A
Q Why use unnecessary parentheses when precedence will determine which

operators are acted on first?

A It is true that the compiler will know the precedence and that a programmer can
look up the precedence order. Using parentheses, however, makes your code easier
to understand, and therefore easier to maintain.

Q If the relational operators always return true or false, why is any nonzero
value considered true?

A This convention was inherited from the C language, which was frequently used for
writing low-level software, such as operating systems and real-time control soft-
ware. It is likely that this usage evolved as a shortcut for testing if all of the bits in
a mask or variable are 0.

The relational operators return true or false, but every expression returns a value,
and those values can also be evaluated in an if statement. Here’s an example:

if ((x = a + b) == 35)

This is a perfectly legal C++ statement. It evaluates to a value even if the sum of a
and b is not equal to 35. Also note that x is assigned the value that is the sum of a
and b in any case.

Q What effect do tabs, spaces, and new lines have on the program?

A Tabs, spaces, and new lines (known as whitespace) have no effect on the program,
although judicious use of whitespace can make the program easier to read.

Q Are negative numbers true or false?

A All nonzero numbers, positive and negative, are true.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain that you understand the answers before continuing to tomor-
row’s lesson on functions.

96 Day 4

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 96

Creating Expressions and Statements 97

4

Quiz
1. What is an expression?

2. Is x = 5 + 7 an expression? What is its value?

3. What is the value of 201 / 4?

4. What is the value of 201 % 4?

5. If myAge, a, and b are all int variables, what are their values after
myAge = 39;
a = myAge++;
b = ++myAge;

6. What is the value of 8+2*3?

7. What is the difference between if(x = 3) and if(x == 3)?

8. Do the following values evaluate true or false?

a. 0

b. 1

c. –1

d. x = 0

e. x == 0 // assume that x has the value of 0

Exercises
1. Write a single if statement that examines two integer variables and changes the

larger to the smaller, using only one else clause.

2. Examine the following program. Imagine entering three numbers, and write what
output you expect.
1: #include <iostream>
2: using namespace std;
3: int main()
4: {
5: int a, b, c;
6: cout << “Please enter three numbers\n”;
7: cout << “a: “;
8: cin >> a;
9: cout << “\nb: “;
10: cin >> b;
11: cout << “\nc: “;
12: cin >> c;
13:
14: if (c = (a-b))
15: cout << “a: “ << a << “ minus b: “ << b <<
16: _” equals c: “ << c;

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 97

17: else
18: cout << “a-b does not equal c: “;
19: return 0;
20: }

3. Enter the program from Exercise 2; compile, link, and run it. Enter the numbers
20, 10, and 50. Did you get the output you expected? Why not?

4. Examine this program and anticipate the output:
1: #include <iostream>
2: using namespace std;
3: int main()
4: {
5: int a = 2, b = 2, c;
6: if (c = (a-b))
7: cout << “The value of c is: “ << c;
8: return 0;
9: }

Enter, compile, link, and run the program from Exercise 4. What was the output? Why?

98 Day 4

06 0672327112_ch04.qxd 11/19/04 12:25 PM Page 98

DAY 5

WEEK 1

Organizing into Functions
Although object-oriented programming has shifted attention from functions and
toward objects, functions nonetheless remain a central component of any pro-
gram. Global functions can exist outside of objects and classes, and member
functions (sometimes called member methods) exist within a class and do its
work.

Today, you will learn

• What a function is and what its parts are

• How to declare and define functions

• How to pass parameters into functions

• How to return a value from a function

You’ll start with global functions today, and tomorrow you’ll see how functions
work from within classes and objects as well.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 99

What Is a Function?
A function is, in effect, a subprogram that can act on data and return a value. Every C++
program has at least one function, main(). When your program starts, the main() func-
tion is called automatically. main() might call other functions, some of which might call
still others.

Because these functions are not part of an object, they are called “global”—that is, they
can be accessed from anywhere in your program. For today, you will learn about global
functions unless it is otherwise noted.

Each function has its own name, and when that name is encountered, the execution of the
program branches to the body of that function. This is referred to as calling the function.
When the function finishes (through encountering a return statement or the final brace
of the function), execution resumes on the next line of the calling function. This flow is
illustrated in Figure 5.1.

100 Day 5

FIGURE 5.1
When a program calls
a function, execution
switches to the func-
tion and then resumes
at the line after the
function call.

Program

Main ()
Statement;
func1 ();
Statement
func2 ();

Statement;
func4 ();
Statement;

func1

return

func4

return;

func3

return;

func2

Statement
func3 ();

return;

{

}

Well-designed functions perform a single, specific, and easily understood task, identified
by the function name. Complicated tasks should be broken down into multiple functions,
and then each can be called in turn.

Functions come in two varieties: user-defined and built-in. Built-in functions are part of
your compiler package—they are supplied by the manufacturer for your use. User-
defined functions are the functions you write yourself.

Return Values, Parameters, and Arguments
As you learned on Day 2, “The Anatomy of a C++ Program,” functions can receive val-
ues and can return a value.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 100

Organizing into Functions 101

5

When you call a function, it can do work and then send back a value as a result of that
work. This is called its return value, and the type of that return value must be declared.
Thus, if you write

int myFunction();

you are declaring a function called myFunction that will return an integer value. Now
consider the following declaration:

int myFunction(int someValue, float someFloat);

This declaration indicates that myFunction will still return an integer, but it will also take
two values.

When you send values into a function, these values act as variables that you can manipu-
late from within the function. The description of the values you send is called a parame-
ter list. In the previous example, the parameter list contains someValue that is a variable
of type integer and someFloat that is a variable of type float.

As you can see, a parameter describes the type of the value that will be passed into the
function when the function is called. The actual values you pass into the function are
called the arguments. Consider the following:

int theValueReturned = myFunction(5,6.7);

Here, you see that an integer variable theValueReturned is initialized with the value
returned by myFunction, and that the values 5 and 6.7 are passed in as arguments. The
type of the arguments must match the declared parameter types. In this case, the 5 goes
to an integer and the 6.7 goes to a float variable, so the values match.

Declaring and Defining Functions
Using functions in your program requires that you first declare the function and that you
then define the function. The declaration tells the compiler the name, return type, and
parameters of the function. The definition tells the compiler how the function works.

No function can be called from any other function if it hasn’t first been declared. A dec-
laration of a function is called a prototype.

Three ways exist to declare a function:

• Write your prototype into a file, and then use the #include directive to include it
in your program.

• Write the prototype into the file in which your function is used.

• Define the function before it is called by any other function. When you do this, the
definition acts as its own prototype.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 101

Although you can define the function before using it, and thus avoid the necessity of cre-
ating a function prototype, this is not good programming practice for three reasons.

First, it is a bad idea to require that functions appear in a file in a particular order. Doing
so makes it hard to maintain the program when requirements change.

Second, it is possible that function A() needs to be able to call function B(), but function
B() also needs to be able to call function A() under some circumstances. It is not possi-
ble to define function A() before you define function B() and also to define function B()
before you define function A(), so at least one of them must be declared in any case.

Third, function prototypes are a good and powerful debugging technique. If your proto-
type declares that your function takes a particular set of parameters or that it returns a
particular type of value, and then your function does not match the prototype, the com-
piler can flag your error instead of waiting for it to show itself when you run the pro-
gram. This is like double-entry bookkeeping. The prototype and the definition check
each other, reducing the likelihood that a simple typo will lead to a bug in your program.

Despite this, the vast majority of programmers select the third option. This is because of
the reduction in the number of lines of code, the simplification of maintenance (changes
to the function header also require changes to the prototype), and the order of functions in
a file is usually fairly stable. At the same time, prototypes are required in some situations.

Function Prototypes
Many of the built-in functions you use will have their function prototypes already written
for you. These appear in the files you include in your program by using #include. For
functions you write yourself, you must include the prototype.

The function prototype is a statement, which means it ends with a semicolon. It consists of
the function’s return type and signature. A function signature is its name and parameter list.

The parameter list is a list of all the parameters and their types, separated by commas.
Figure 5.2 illustrates the parts of the function prototype.

102 Day 5

FIGURE 5.2
Parts of a function
prototype.

unsigned short int

return type name parameters semicolon

FindArea (int length, int width) ;

Parameter type

Parameter name

The function prototype and the function definition must agree exactly about the return
type and signature. If they do not agree, you receive a compile-time error. Note, however,

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 102

Organizing into Functions 103

5

that the function prototype does not need to contain the names of the parameters, just
their types. A prototype that looks like this is perfectly legal:

long Area(int, int);

This prototype declares a function named Area() that returns a long and that has two
parameters, both integers. Although this is legal, it is not a good idea. Adding parameter
names makes your prototype clearer. The same function with named parameters might be

long Area(int length, int width);

It is now much more obvious what this function does and what the parameters are.

Note that all functions have a return type. If none is explicitly stated, the return type
defaults to int. Your programs will be easier to understand, however, if you explicitly
declare the return type of every function, including main().

If your function does not actually return a value, you declare its return type to be void,
as shown here:

void printNumber(int myNumber);

This declares a function called printNumber that has one integer parameter. Because
void is used as the return time, nothing is returned.

Defining the Function
The definition of a function consists of the function header and its body. The header is
like the function prototype except that the parameters must be named, and no terminating
semicolon is used.

The body of the function is a set of statements enclosed in braces. Figure 5.3 shows the
header and body of a function.

FIGURE 5.3
The header and body
of a function.

return type

keyword
return value

 int

// Statements

return (length * width);

- opening brace

name parameters

(int length, int width)Area

{

- closing brace}

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 103

Listing 5.1 demonstrates a program that includes a function prototype for the Area()
function.

LISTING 5.1 A Function Declaration and the Definition and Use of That Function

1: // Listing 5.1 - demonstrates the use of function prototypes
2:
3: #include <iostream>
4: int Area(int length, int width); //function prototype
5:
6: int main()
7: {
8: using std::cout;
9: using std::cin;
10:
11: int lengthOfYard;
12: int widthOfYard;
13: int areaOfYard;
14:
15: cout << “\nHow wide is your yard? “;
16: cin >> widthOfYard;
17: cout << “\nHow long is your yard? “;
18: cin >> lengthOfYard;
19:
20: areaOfYard= Area(lengthOfYard, widthOfYard);
21:
22: cout << “\nYour yard is “;
23: cout << areaOfYard;
24: cout << “ square feet\n\n”;
25: return 0;
26: }
27:
28: int Area(int len, int wid)
29: {
30: return len * wid;
31: }

How wide is your yard? 100

How long is your yard? 200

Your yard is 20000 square feet

The prototype for the Area() function is on line 4. Compare the prototype with
the definition of the function on line 28. Note that the name, the return type, and

the parameter types are the same. If they were different, a compiler error would have
been generated. In fact, the only required difference is that the function prototype ends
with a semicolon and has no body.

OUTPUT

104 Day 5

ANALYSIS

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 104

Organizing into Functions 105

5

Also note that the parameter names in the prototype are length and width, but the para-
meter names in the definition are len and wid. As discussed, the names in the prototype
are not used; they are there as information to the programmer. It is good programming
practice to match the prototype parameter names to the implementation parameter names,
but as this listing shows, this is not required.

The arguments are passed in to the function in the order in which the parameters are
declared and defined, but no matching of the names occurs. Had you passed in
widthOfYard, followed by lengthOfYard, the FindArea() function would have used the
value in widthOfYard for length and lengthOfYard for width.

The body of the function is always enclosed in braces, even when it consists
of only one statement, as in this case.

NOTE

Execution of Functions
When you call a function, execution begins with the first statement after the opening
brace ({). Branching can be accomplished by using the if statement. (The if and other
related statements will be discussed on Day 7, “More on Program Flow.”) Functions can
also call other functions and can even call themselves (see the section “Recursion,” later
today).

When a function is done executing, control is returned to the calling function. When the
main() function finishes, control is returned to the operating system.

Determining Variable Scope
A variable has scope, which determines how long it is available to your program and
where it can be accessed. Variables declared within a block are scoped to that block; they
can be accessed only within that block’s braces and “go out of existence” when that
block ends. Global variables have global scope and are available anywhere within your
program.

Local Variables
Not only can you pass in variables to the function, but you also can declare variables
within the body of the function. Variables you declare within the body of the function are
called “local” because they exist only locally within the function itself. When the func-
tion returns, the local variables are no longer available; they are marked for destruction
by the compiler.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 105

Local variables are defined the same as any other variables. The parameters passed in to
the function are also considered local variables and can be used exactly as if they had
been defined within the body of the function. Listing 5.2 is an example of using parame-
ters and locally defined variables within a function.

LISTING 5.2 The Use of Local Variables and Parameters

1: #include <iostream>
2:
3: float Convert(float);
4: int main()
5: {
6: using namespace std;
7:
8: float TempFer;
9: float TempCel;
10:
11: cout << “Please enter the temperature in Fahrenheit: “;
12: cin >> TempFer;
13: TempCel = Convert(TempFer);
14: cout << “\nHere’s the temperature in Celsius: “;
15: cout << TempCel << endl;
16: return 0;
17: }
18:
19: float Convert(float TempFer)
20: {
21: float TempCel;
22: TempCel = ((TempFer - 32) * 5) / 9;
23: return TempCel;
24: }

Please enter the temperature in Fahrenheit: 212

Here’s the temperature in Celsius: 100

Please enter the temperature in Fahrenheit: 32

Here’s the temperature in Celsius: 0

Please enter the temperature in Fahrenheit: 85

Here’s the temperature in Celsius: 29.4444

On lines 8 and 9, two float variables are declared, one to hold the temperature
in Fahrenheit and one to hold the temperature in degrees Celsius. The user is

prompted to enter a Fahrenheit temperature on line 11, and that value is passed to the
function Convert() on line 13.

OUTPUT

106 Day 5

ANALYSIS

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 106

Organizing into Functions 107

5

With the call of Convert() on line 13, execution jumps to the first line of the Convert()
function on line 21, where a local variable, also named TempCel, is declared. Note that
this local variable is not the same as the variable TempCel on line 9. This variable exists
only within the function Convert(). The value passed as a parameter, TempFer, is also
just a local copy of the variable passed in by main().

This function could have named the parameter and local variable anything else and the
program would have worked equally well. FerTemp instead of TempFer or CelTemp
instead of TempCel would be just as valid and the function would have worked the same.
You can enter these different names and recompile the program to see this work.

The local function variable TempCel is assigned the value that results from subtracting 32
from the parameter TempFer, multiplying by 5, and then dividing by 9. This value is then
returned as the return value of the function. On line 13, this return value is assigned to
the variable TempCel in the main() function. The value is printed on line 15.

The preceding output shows that the program was ran three times. The first time, the
value 212 is passed in to ensure that the boiling point of water in degrees Fahrenheit
(212) generates the correct answer in degrees Celsius (100). The second test is the freez-
ing point of water. The third test is a random number chosen to generate a fractional
result.

Local Variables Within Blocks
You can define variables anywhere within the function, not just at its top. The scope of
the variable is the block in which it is defined. Thus, if you define a variable inside a set
of braces within the function, that variable is available only within that block. Listing 5.3
illustrates this idea.

LISTING 5.3 Variables Scoped Within a Block

1: // Listing 5.3 - demonstrates variables
2: // scoped within a block
3:
4: #include <iostream>
5:
6: void myFunc();
7:
8: int main()
9: {
10: int x = 5;
11: std::cout << “\nIn main x is: “ << x;
12:
13: myFunc();
14:

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 107

15: std::cout << “\nBack in main, x is: “ << x;
16: return 0;
17: }
18:
19: void myFunc()
20: {
21: int x = 8;
22: std::cout << “\nIn myFunc, local x: “ << x << std::endl;
23:
24: {
25: std::cout << “\nIn block in myFunc, x is: “ << x;
26:
27: int x = 9;
28:
29: std::cout << “\nVery local x: “ << x;
30: }
31:
32: std::cout << “\nOut of block, in myFunc, x: “ << x << std::endl;
33: }

In main x is: 5
In myFunc, local x: 8

In block in myFunc, x is: 8
Very local x: 9
Out of block, in myFunc, x: 8
Back in main, x is: 5

This program begins with the initialization of a local variable, x, on line 10, in
main(). The printout on line 11 verifies that x was initialized with the value 5.

On line 13, MyFunc() is called.

On line 21 within MyFunc(), a local variable, also named x, is initialized with the value
8. Its value is printed on line 22.

The opening brace on line 24 starts a block. The variable x from the function is printed
again on line 25. A new variable also named x, but local to the block, is created on line
27 and initialized with the value 9. The value of this newest variable x is printed on
line 29.

The local block ends on line 30, and the variable created on line 27 goes “out of scope”
and is no longer visible.

When x is printed on line 32, it is the x that was declared on line 21 within myFunc().
This x was unaffected by the x that was defined on line 27 in the block; its value is
still 8.

OUTPUT

108 Day 5

LISTING 5.3 continued

ANALYSIS

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 108

Organizing into Functions 109

5

On line 33, MyFunc() goes out of scope, and its local variable x becomes unavailable.
Execution returns to line 14. On line 15, the value of the local variable x, which was cre-
ated on line 10, is printed. It was unaffected by either of the variables defined in
MyFunc().

Needless to say, this program would be far less confusing if these three variables were
given unique names!

Parameters Are Local Variables
The arguments passed in to the function are local to the function. Changes made to the
arguments do not affect the values in the calling function. This is known as passing by
value, which means a local copy of each argument is made in the function. These local
copies are treated the same as any other local variables. Listing 5.4 once again illustrates
this important point.

LISTING 5.4 A Demonstration of Passing by Value

1: // Listing 5.4 - demonstrates passing by value
2: #include <iostream>
3:
4: using namespace std;
5: void swap(int x, int y);
6:
7: int main()
8: {
9: int x = 5, y = 10;
10:
11: cout << “Main. Before swap, x: “ << x << “ y: “ << y << endl;
12: swap(x,y);
13: cout << “Main. After swap, x: “ << x << “ y: “ << y << endl;
14: return 0;
15: }
16:
17: void swap (int x, int y)
18: {
19: int temp;
20:
21: cout << “Swap. Before swap, x: “ << x << “ y: “ << y << endl;
22:
23: temp = x;
24: x = y;
25: y = temp;
26:
27: cout << “Swap. After swap, x: “ << x << “ y: “ << y << endl;
28: }

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 109

Main. Before swap, x: 5 y: 10
Swap. Before swap, x: 5 y: 10
Swap. After swap, x: 10 y: 5
Main. After swap, x: 5 y: 10

This program initializes two variables in main() and then passes them to the
swap() function, which appears to swap them. When they are examined again in

main(), however, they are unchanged!

The variables are initialized on line 9, and their values are displayed on line 11. The
swap() function is called on line 12, and the variables are passed in.

Execution of the program switches to the swap() function, where on line 21 the values
are printed again. They are in the same order as they were in main(), as expected. On
lines 23 to 25, the values are swapped, and this action is confirmed by the printout on
line 27. Indeed, while in the swap() function, the values are swapped.

Execution then returns to line 13, back in main(), where the values are no longer
swapped.

As you’ve figured out, the values passed in to the swap() function are passed by value,
meaning that copies of the values are made that are local to swap(). These local variables
are swapped on lines 23 to 25, but the variables back in main() are unaffected.

On Day 8, “Understanding Pointers,” and Day 10, “Working with Advanced Functions,”
you’ll see alternatives to passing by value that will allow the values in main() to be
changed.

Global Variables
Variables defined outside of any function have global scope, and thus are available from
any function in the program, including main().

Local variables with the same name as global variables do not change the global vari-
ables. A local variable with the same name as a global variable hides the global variable,
however. If a function has a variable with the same name as a global variable, the name
refers to the local variable—not the global—when used within the function. Listing 5.5
illustrates these points.

LISTING 5.5 Demonstrating Global and Local Variables

1: #include <iostream>
2: void myFunction(); // prototype
3:
4: int x = 5, y = 7; // global variables
5: int main()

OUTPUT

110 Day 5

ANALYSIS

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 110

Organizing into Functions 111

5

6: {
7: using namespacestd;
8:
9: cout << “x from main: “ << x << endl;
10: cout << “y from main: “ << y << endl << endl;
11: myFunction();
12: cout << “Back from myFunction!” << endl << endl;
13: cout << “x from main: “ << x << endl;
14: cout << “y from main: “ << y << endl;
15: return 0;
16: }
17:
18: void myFunction()
19: {
20: using std::cout;
21:
22: int y = 10;
23:
24: cout << “x from myFunction: “ << x << endl;
25: cout << “y from myFunction: “ << y << endl << endl;
26: }

x from main: 5
y from main: 7

x from myFunction: 5
y from myFunction: 10

Back from myFunction!

x from main: 5
y from main: 7

This simple program illustrates a few key, and potentially confusing, points about
local and global variables. On line 4, two global variables, x and y, are declared.

The global variable x is initialized with the value 5, and the global variable y is initial-
ized with the value 7.

On lines 9 and 10 in the function main(), these values are printed to the console. Note
that the function main() defines neither variable; because they are global, they are
already available to main().

When myFunction() is called on line 11, program execution passes to line 18, and on
line 22 a local variable, y, is defined and initialized with the value 10. On line 24,
myFunction() prints the value of the variable x, and the global variable x is used, just as

OUTPUT

LISTING 5.5 continued

ANALYSIS

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 111

it was in main(). On line 25, however, when the variable name y is used, the local vari-
able y is used, hiding the global variable with the same name.

The function call ends, and control returns to main(), which again prints the values in
the global variables. Note that the global variable y was totally unaffected by the value
assigned to myFunction()’s local y variable.

Global Variables: A Word of Caution
In C++, global variables are legal, but they are almost never used. C++ grew out of C,
and in C global variables are a dangerous but necessary tool. They are necessary because
at times the programmer needs to make data available to many functions, and it is cum-
bersome to pass that data as a parameter from function to function, especially when
many of the functions in the calling sequence only receive the parameter to pass it on to
other functions.

Globals are dangerous because they are shared data, and one function can change a
global variable in a way that is invisible to another function. This can and does create
bugs that are very difficult to find.

On Day 15, “Special Classes and Functions,” you’ll see a powerful alternative to global
variables called static member variables.

Considerations for Creating Function
Statements

Virtually no limit exists to the number or types of statements that can be placed in the
body of a function. Although you can’t define another function from within a function,
you can call a function, and of course, main() does just that in nearly every C++ pro-
gram. Functions can even call themselves, which is discussed soon in the section on
recursion.

Although no limit exists to the size of a function in C++, well-designed functions tend to
be small. Many programmers advise keeping your functions short enough to fit on a sin-
gle screen so that you can see the entire function at one time. This is a rule of thumb,
often broken by very good programmers, but it is true that a smaller function is easier to
understand and maintain.

Each function should carry out a single, easily understood task. If your functions start
getting large, look for places where you can divide them into component tasks.

112 Day 5

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 112

Organizing into Functions 113

5

More About Function Arguments
Any valid C++ expression can be a function argument, including constants, mathematical
and logical expressions, and other functions that return a value. The important thing is
that the result of the expression match the argument type that is expected by the function.

It is even valid for a function to be passed as an argument. After all, the function will
evaluate to its return type. Using a function as an argument, however, can make for code
that is hard to read and hard to debug.

As an example, suppose you have the functions myDouble(), triple(), square(), and
cube(), each of which returns a value. You could write

Answer = (myDouble(triple(square(cube(myValue)))));

You can look at this statement in two ways. First, you can see that the function
myDouble() takes the function triple() as an argument. In turn, triple() takes the
function square(), which takes the function cube() as its argument. The cube() func-
tion takes the variable, myValue, as its argument.

Looking at this from the other direction, you can see that this statement takes a variable,
myValue, and passes it as an argument to the function cube(), whose return value is
passed as an argument to the function square(), whose return value is in turn passed to
triple(), and that return value is passed to myDouble(). The return value of this dou-
bled, tripled, squared, and cubed number is now assigned to Answer.

It is difficult to be certain what this code does (was the value tripled before or after it
was squared?), and if the answer is wrong, it will be hard to figure out which function
failed.

An alternative is to assign each step to its own intermediate variable:

unsigned long myValue = 2;
unsigned long cubed = cube(myValue); // cubed = 8
unsigned long squared = square(cubed); // squared = 64
unsigned long tripled = triple(squared); // tripled = 192
unsigned long Answer = myDouble(tripled); // Answer = 384

Now, each intermediate result can be examined, and the order of execution is explicit.

C++ makes it really easy to write compact code like the preceding example
used to combine the cube(), square(), triple(), and myDouble() functions.
Just because you can make compact code does not mean you should. It is
better to make your code easier to read, and thus more maintainable, than
to make it as compact as you can.

CAUTION

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 113

More About Return Values
Functions return a value or return void. Void is a signal to the compiler that no value will
be returned.

To return a value from a function, write the keyword return followed by the value you
want to return. The value might itself be an expression that returns a value. For example:

return 5;
return (x > 5);
return (MyFunction());

These are all legal return statements, assuming that the function MyFunction() itself
returns a value. The value in the second statement, return (x > 5), will be false if x is
not greater than 5, or it will be true. What is returned is the value of the expression,
false or true, not the value of x.

When the return keyword is encountered, the expression following return is returned
as the value of the function. Program execution returns immediately to the calling func-
tion, and any statements following the return are not executed.

It is legal to have more than one return statement in a single function. Listing 5.6 illus-
trates this idea.

LISTING 5.6 A Demonstration of Multiple Return Statements

1: // Listing 5.6 - demonstrates multiple return
2: // statements
3: #include <iostream>
4:
5: int Doubler(int AmountToDouble);
6:
7: int main()
8: {
9: using std::cout;
10:
11: int result = 0;
12: int input;
13:
14: cout << “Enter a number between 0 and 10,000 to double: “;
15: std::cin >> input;
16:
17: cout << “\nBefore doubler is called... “;
18: cout << “\ninput: “ << input << “ doubled: “ << result << “\n”;
19:
20: result = Doubler(input);
21:
22: cout << “\nBack from Doubler...\n”;

114 Day 5

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 114

Organizing into Functions 115

5

23: cout << “\ninput: “ << input << “ doubled: “ << result << “\n”;
24:
25: return 0;
26: }
27:
28: int Doubler(int original)
29: {
30: if (original <= 10000)
31: return original * 2;
32: else
33: return -1;
34: std::cout << “You can’t get here!\n”;
35: }

Enter a number between 0 and 10,000 to double: 9000

Before doubler is called...
input: 9000 doubled: 0

Back from doubler...

input: 9000 doubled: 18000

Enter a number between 0 and 10,000 to double: 11000

Before doubler is called...
input: 11000 doubled: 0

Back from doubler...
input: 11000 doubled: -1

A number is requested on lines 14 and 15 and printed on lines 17 and 18, along
with the local variable result. The function Doubler() is called on line 20, and

the input value is passed as a parameter. The result will be assigned to the local variable,
result, and the values will be reprinted on line 23.

On line 30, in the function Doubler(), the parameter is tested to see whether it is less
than or equal to 10,000. If it is, then the function returns twice the original number. If the
value of original is greater than 10,000, the function returns –1 as an error value.

The statement on line 34 is never reached because regardless of whether the value is less
than or equal to 10,000 or greater than 10,000, the function returns on either line 31 or
line 33—before it gets to line 34. A good compiler warns that this statement cannot be
executed, and a good programmer takes it out!

OUTPUT

LISTING 5.6 continued

ANALYSIS

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 115

Default Parameters
For every parameter you declare in a function prototype and definition, the calling func-
tion must pass in a value. The value passed in must be of the declared type. Thus, if you
have a function declared as

long myFunction(int);

the function must, in fact, take an integer variable. If the function definition differs, or if
you fail to pass in an integer, you receive a compiler error.

The one exception to this rule is if the function prototype declares a default value for the
parameter. A default value is a value to use if none is supplied. The preceding declaration
could be rewritten as

long myFunction (int x = 50);

This prototype says, “myFunction() returns a long and takes an integer parameter. If an
argument is not supplied, use the default value of 50.” Because parameter names are not
required in function prototypes, this declaration could have been written as

long myFunction (int = 50);

The function definition is not changed by declaring a default parameter. The function
definition header for this function would be

long myFunction (int x)

If the calling function did not include a parameter, the compiler would fill x with the
default value of 50. The name of the default parameter in the prototype need not be the
same as the name in the function header; the default value is assigned by position, not
name.

116 Day 5

FAQ

What is the difference between int main() and void main(); which one should I
use? I have used both and they both worked fine, so why do we need to use int
main(){ return 0;}?

Answer: Both will work on most compilers, but only int main() is ANSI compliant, and
thus only int main() is guaranteed to continue working.

Here’s the difference: int main() returns a value to the operating system. When your
program completes, that value can be captured by, for example, batch programs.

You won’t be using the return value in programs in this book (it is rare that you will oth-
erwise), but the ANSI standard requires it.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 116

Organizing into Functions 117

5

Any or all of the function’s parameters can be assigned default values. The one restric-
tion is this: If any of the parameters does not have a default value, no previous parameter
can have a default value.

If the function prototype looks like

long myFunction (int Param1, int Param2, int Param3);

you can assign a default value to Param2 only if you have assigned a default value to
Param3. You can assign a default value to Param1 only if you’ve assigned default values
to both Param2 and Param3. Listing 5.7 demonstrates the use of default values.

LISTING 5.7 A Demonstration of Default Parameter Values

1: // Listing 5.7 - demonstrates use
2: // of default parameter values
3: #include <iostream>
4:
5: int AreaCube(int length, int width = 25, int height = 1);
6:
7: int main()
8: {
9: int length = 100;
10: int width = 50;
11: int height = 2;
12: int area;
13:
14: area = AreaCube(length, width, height);
15: std::cout << “First area equals: “ << area << “\n”;
16:
17: area = AreaCube(length, width);
18: std::cout << “Second time area equals: “ << area << “\n”;
19:
20: area = AreaCube(length);
21: std::cout << “Third time area equals: “ << area << “\n”;
22: return 0;
23: }
24:
25: AreaCube(int length, int width, int height)
26: {
27:
28: return (length * width * height);
29: }

First area equals: 10000
Second time area equals: 5000
Third time area equals: 2500

OUTPUT

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 117

On line 5, the AreaCube() prototype specifies that the AreaCube() function takes
three integer parameters. The last two have default values.

This function computes the area of the cube whose dimensions are passed in. If no width
is passed in, a width of 25 is used and a height of 1 is used. If the width but not the
height is passed in, a height of 1 is used. It is not possible to pass in the height without
passing in a width.

On lines 9–11, the dimension’s length, height, and width are initialized, and they are
passed to the AreaCube() function on line 14. The values are computed, and the result is
printed on line 15.

Execution continues to line 17, where AreaCube() is called again, but with no value for
height. The default value is used, and again the dimensions are computed and printed.

Execution then continues to line 20, and this time neither the width nor the height is
passed in. With this call to AreaCube(), execution branches for a third time to line 25.
The default values are used and the area is computed. Control returns to the main() func-
tion where the final value is then printed.

118 Day 5

ANALYSIS

DO remember that function parameters
act as local variables within the function.

DO remember that changes to a global
variable in one function change that
variable for all functions.

DON’T try to create a default value for a
first parameter if no default value exists
for the second.

DON’T forget that arguments passed by
value cannot affect the variables in the
calling function.

DO DON’T

Overloading Functions
C++ enables you to create more than one function with the same name. This is called
function overloading. The functions must differ in their parameter list with a different
type of parameter, a different number of parameters, or both. Here’s an example:

int myFunction (int, int);
int myFunction (long, long);
int myFunction (long);

myFunction() is overloaded with three parameter lists. The first and second versions dif-
fer in the types of the parameters, and the third differs in the number of parameters.

The return types can be the same or different on overloaded functions.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 118

Organizing into Functions 119

5

Function overloading is also called function polymorphism. Poly means many, and morph
means form: A polymorphic function is many-formed.

Function polymorphism refers to the capability to “overload” a function with more than
one meaning. By changing the number or type of the parameters, you can give two or
more functions the same function name, and the right one will be called automatically by
matching the parameters used. This enables you to create a function that can average
integers, doubles, and other values without having to create individual names for each
function, such as AverageInts(), AverageDoubles(), and so on.

Suppose you write a function that doubles whatever input you give it. You would like to
be able to pass in an int, a long, a float, or a double. Without function overloading,
you would have to create four function names:

int DoubleInt(int);
long DoubleLong(long);
float DoubleFloat(float);
double DoubleDouble(double);

With function overloading, you make this declaration:

int Double(int);
long Double(long);
float Double(float);
double Double(double);

This is easier to read and easier to use. You don’t have to worry about which one to call;
you just pass in a variable, and the right function is called automatically. Listing 5.8
illustrates the use of function overloading.

LISTING 5.8 A Demonstration of Function Polymorphism

1: // Listing 5.8 - demonstrates
2: // function polymorphism
3: #include <iostream>
4:
5: int Double(int);
6: long Double(long);
7: float Double(float);
8: double Double(double);
9:

Two functions with the same name and parameter list, but different return
types, generate a compiler error. To change the return type, you must also
change the signature (name and/or parameter list).

NOTE

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 119

10: using namespace std;
11:
12: int main()
13: {
14: int myInt = 6500;
15: long myLong = 65000;
16: float myFloat = 6.5F;
17: double myDouble = 6.5e20;
18:
19: int doubledInt;
20: long doubledLong;
21: float doubledFloat;
22: double doubledDouble;
23:
24: cout << “myInt: “ << myInt << “\n”;
25: cout << “myLong: “ << myLong << “\n”;
26: cout << “myFloat: “ << myFloat << “\n”;
27: cout << “myDouble: “ << myDouble << “\n”;
28:
29: doubledInt = Double(myInt);
30: doubledLong = Double(myLong);
31: doubledFloat = Double(myFloat);
32: doubledDouble = Double(myDouble);
33:
34: cout << “doubledInt: “ << doubledInt << “\n”;
35: cout << “doubledLong: “ << doubledLong << “\n”;
36: cout << “doubledFloat: “ << doubledFloat << “\n”;
37: cout << “doubledDouble: “ << doubledDouble << “\n”;
38:
39: return 0;
40: }
41:
42: int Double(int original)
43: {
44: cout << “In Double(int)\n”;
45: return 2 * original;
46: }
47:
48: long Double(long original)
49: {
50: cout << “In Double(long)\n”;
51: return 2 * original;
52: }
53:
54: float Double(float original)
55: {
56: cout << “In Double(float)\n”;
57: return 2 * original;
58: }

120 Day 5

LISTING 5.8 continued

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 120

Organizing into Functions 121

5

59:
60: double Double(double original)
61: {
62: cout << “In Double(double)\n”;
63: return 2 * original;
64: }

myInt: 6500
myLong: 65000
myFloat: 6.5
myDouble: 6.5e+20
In Double(int)
In Double(long)
In Double(float)
In Double(double)
DoubledInt: 13000
DoubledLong: 130000
DoubledFloat: 13
DoubledDouble: 1.3e+21

The Double() function is overloaded with int, long, float, and double. The
prototypes are on lines 5–8, and the definitions are on lines 42–64.

Note that in this example, the statement using namespace std; has been added on line
10, outside of any particular function. This makes the statement global to this file, and
thus the namespace is used in all the functions declared within this file.

In the body of the main program, eight local variables are declared. On lines 14–17, four
of the values are initialized, and on lines 29–32, the other four are assigned the results of
passing the first four to the Double() function. Note that when Double() is called, the
calling function does not distinguish which one to call; it just passes in an argument, and
the correct one is invoked.

The compiler examines the arguments and chooses which of the four Double() functions
to call. The output reveals that each of the four was called in turn, as you would expect.

Special Topics About Functions
Because functions are so central to programming, a few special topics arise that might be
of interest when you confront unusual problems. Used wisely, inline functions can help
you squeak out that last bit of performance. Function recursion is one of those wonder-
ful, esoteric bits of programming, which, every once in a while, can cut through a thorny
problem otherwise not easily solved.

OUTPUT

LISTING 5.8 continued

ANALYSIS

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 121

Inline Functions
When you define a function, normally the compiler creates just one set of instructions in
memory. When you call the function, execution of the program jumps to those instruc-
tions, and when the function returns, execution jumps back to the next line in the calling
function. If you call the function 10 times, your program jumps to the same set of
instructions each time. This means only one copy of the function exists, not 10.

A small performance overhead occurs in jumping in and out of functions. It turns out
that some functions are very small, just a line or two of code, and an efficiency might be
gained if the program can avoid making these jumps just to execute one or two instruc-
tions. When programmers speak of efficiency, they usually mean speed; the program runs
faster if the function call can be avoided.

If a function is declared with the keyword inline, the compiler does not create a real
function; it copies the code from the inline function directly into the calling function. No
jump is made; it is just as if you had written the statements of the function right into the
calling function.

Note that inline functions can bring a heavy cost. If the function is called 10 times, the
inline code is copied into the calling functions each of those 10 times. The tiny improve-
ment in speed you might achieve might be more than swamped by the increase in size of
the executable program, which might in fact actually slow the program!

The reality is that today’s optimizing compilers can almost certainly do a better job of
making this decision than you can; and so it is generally a good idea not to declare a
function inline unless it is only one or at most two statements in length. When in doubt,
though, leave inline out.

122 Day 5

Performance optimization is a difficult challenge, and most programmers
are not good at identifying the location of performance problems in their
programs without help. Help, in this case, involves specialized programs like
debuggers and profilers.

Also, it is always better to write code that is clear and understandable than
to write code that contains your guess about what will run fast or slow, but
is harder to understand. This is because it is easier to make understandable
code run faster.

NOTE

Listing 5.9 demonstrates an inline function.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 122

Organizing into Functions 123

5

LISTING 5.9 A Demonstration of an Inline Function

1: // Listing 5.9 - demonstrates inline functions
2: #include <iostream>
3:
4: inline int Double(int);
5:
6: int main()
7: {
8: int target;
9: using std::cout;
10: using std::cin;
11: using std::endl;
12:
13: cout << “Enter a number to work with: “;
14: cin >> target;
15: cout << “\n”;
16:
17: target = Double(target);
18: cout << “Target: “ << target << endl;
19:
20: target = Double(target);
21: cout << “Target: “ << target << endl;
22:
23: target = Double(target);
24: cout << “Target: “ << target << endl;
25: return 0;
26: }
27:
28: int Double(int target)
29: {
30: return 2*target;
31: }

Enter a number to work with: 20

Target: 40
Target: 80
Target: 160

On line 4, Double() is declared to be an inline function taking an int parameter
and returning an int. The declaration is just like any other prototype except that

the keyword inline is prepended just before the return value.

This compiles into code that is the same as if you had written the following:

target = 2 * target;

everywhere you entered

target = Double(target);

OUTPUT

ANALYSIS

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 123

By the time your program executes, the instructions are already in place, compiled into
the .obj file. This saves a jump and return in the execution of the code at the cost of a
larger program.

124 Day 5

The inline keyword is a hint to the compiler that you want the function to
be inlined. The compiler is free to ignore the hint and make a real function
call.

NOTE

Recursion
A function can call itself. This is called recursion, and recursion can be direct or indirect.
It is direct when a function calls itself; it is indirect recursion when a function calls
another function that then calls the first function.

Some problems are most easily solved by recursion, usually those in which you act on
data and then act in the same way on the result. Both types of recursion, direct and indi-
rect, come in two varieties: those that eventually end and produce an answer, and those
that never end and produce a runtime failure. Programmers think that the latter is quite
funny (when it happens to someone else).

It is important to note that when a function calls itself, a new copy of that function is run.
The local variables in the second version are independent of the local variables in the
first, and they cannot affect one another directly, any more than the local variables in
main() can affect the local variables in any function it calls, as was illustrated in
Listing 5.3.

To illustrate solving a problem using recursion, consider the Fibonacci series:

1,1,2,3,5,8,13,21,34…

Each number, after the second, is the sum of the two numbers before it. A Fibonacci
problem might be to determine what the 12th number in the series is.

To solve this problem, you must examine the series carefully. The first two numbers are
1. Each subsequent number is the sum of the previous two numbers. Thus, the seventh
number is the sum of the sixth and fifth numbers. More generally, the nth number is the
sum of n–2 and n–1, as long as n > 2.

Recursive functions need a stop condition. Something must happen to cause the program
to stop recursing, or it will never end. In the Fibonacci series, n < 3 is a stop condition
(that is, when n is less than 3 the program can stop working on the problem).

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 124

Organizing into Functions 125

5

An algorithm is a set of steps you follow to solve a problem. One algorithm for the
Fibonacci series is the following:

1. Ask the user for a position in the series.

2. Call the fib() function with that position, passing in the value the user entered.

3. The fib() function examines the argument (n). If n < 3 it returns 1; otherwise,
fib() calls itself (recursively) passing in n-2. It then calls itself again passing in n-
1, and returns the sum of the first call and the second.

If you call fib(1), it returns 1. If you call fib(2), it returns 1. If you call fib(3), it
returns the sum of calling fib(2) and fib(1). Because fib(2) returns 1 and fib(1)
returns 1, fib(3) returns 2 (the sum of 1 + 1).

If you call fib(4), it returns the sum of calling fib(3) and fib(2). You just saw that
fib(3) returns 2 (by calling fib(2) and fib(1)) and that fib(2) returns 1, so fib(4)
sums these numbers and returns 3, which is the fourth number in the series.

Taking this one more step, if you call fib(5), it returns the sum of fib(4) and fib(3).
You’ve seen that fib(4) returns 3 and fib(3) returns 2, so the sum returned is 5.

This method is not the most efficient way to solve this problem (in fib(20) the fib()
function is called 13,529 times!), but it does work. Be careful—if you feed in too large a
number, you’ll run out of memory. Every time fib() is called, memory is set aside.
When it returns, memory is freed. With recursion, memory continues to be set aside
before it is freed, and this system can eat memory very quickly. Listing 5.10 implements
the fib() function.

When you run Listing 5.10, use a small number (less than 15). Because this
uses recursion, it can consume a lot of memory.

CAUTION

LISTING 5.10 A Demonstration of Recursion Using the Fibonacci Series

1: // Fibonacci series using recursion
2: #include <iostream>
3: int fib (int n);
4:
5: int main()
6: {
7:
8: int n, answer;
9: std::cout << “Enter number to find: “;
10: std::cin >> n;
11:

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 125

12: std::cout << “\n\n”;
13:
14: answer = fib(n);
15:
16: std::cout << answer << “ is the “ << n;
17: std::cout << “th Fibonacci number\n”;
18: return 0;
19: }
20:
21: int fib (int n)
22: {
23: std::cout << “Processing fib(“ << n << “)... “;
24:
25: if (n < 3)
26: {
27: std::cout << “Return 1!\n”;
28: return (1);
29: }
30: else
31: {
32: std::cout << “Call fib(“ << n-2 << “) “;
33: std::cout << “and fib(“ << n-1 << “).\n”;
34: return(fib(n-2) + fib(n-1));
35: }
36: }

Enter number to find: 6

Processing fib(6)... Call fib(4) and fib(5).
Processing fib(4)... Call fib(2) and fib(3).
Processing fib(2)... Return 1!
Processing fib(3)... Call fib(1) and fib(2).
Processing fib(1)... Return 1!
Processing fib(2)... Return 1!
Processing fib(5)... Call fib(3) and fib(4).
Processing fib(3)... Call fib(1) and fib(2).
Processing fib(1)... Return 1!
Processing fib(2)... Return 1!
Processing fib(4)... Call fib(2) and fib(3).
Processing fib(2)... Return 1!
Processing fib(3)... Call fib(1) and fib(2).
Processing fib(1)... Return 1!
Processing fib(2)... Return 1!
8 is the 6th Fibonacci number

OUTPUT

126 Day 5

LISTING 5.10 continued

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 126

Organizing into Functions 127

5

The program asks for a number to find on line 9 and assigns that number to n. It
then calls fib() with n. Execution branches to the fib() function, where, on line

23, it prints its argument.

The argument n is tested to see whether it is less than 3 on line 25; if so, fib() returns
the value 1. Otherwise, it returns the sum of the values returned by calling fib() on n-2
and n-1.

It cannot return these values until the call (to fib()) is resolved. Thus, you can picture
the program diving into fib repeatedly until it hits a call to fib that returns a value. The
only calls that return a value are the calls to fib(2) and fib(1). These values are then
passed up to the waiting callers, which, in turn, add the return value to their own, and
then they return. Figures 5.4 and 5.5 illustrate this recursion into fib().

Some compilers have difficulty with the use of operators in a cout state-
ment. If you receive a warning on line 32, place parentheses around the sub-
traction operation so that lines 32 and 33 become:

std::cout << “Call fib(“ << (n-2) << “) “;
std::cout << “and fib(“ << (n-1) << “).\n”;

NOTE

ANALYSIS

int main()
{
int x = fib(6)

}

return fib(4) + fib(5) return fib(3) + fib(4)

fib(6) fib(5)

return fib(2) + fib(3)

fib(4)

return fib(1) + fib(2)

fib(3)

return fib(2) + fib(3)

fib(4)

return 1

fib(2)

return 1

fib(1)

return 1

fib(1)

return 1

fib(2)

return 1

fib(2)

return fib(1) + fib(2)

fib(3)

return 1

fib(2)

return fib(1) + fib(2)

fib(3)

return 1

fib(1)

return 1

fib(2)

FIGURE 5.4 Using recursion.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 127

128 Day 5

int main()
{
int x = fib(6)

}

return fib(4) + fig(5) return fib(3) + fib(4)

fib(6) fib(5)

return fib92) + fib(3)

fib(4)

return fib(1) + fib(2)

fib(3)

return fib(2) + fib(3)

fib(4)

return 1

fib(2)

return 1

fib(1)

return 1

fib(1)

return 1

fib(2)

return 1

fib(2)

return fib(1) + fib(2)

fib(3)

return 1

fib(2)

return fib(1) + fib(2)

fib(3)

return 1

fib(1)

return 1

fib(2)

8 5

3

2 2

2 3

1

1 1

1

1

1 1

1

FIGURE 5.5 Returning from recursion.

In the example, n is 6 so fib(6) is called from main(). Execution jumps to the fib()
function, and n is tested for a value less than 3 on line 25. The test fails, so fib(6)
returns on line 34 the sum of the values returned by fib(4) and fib(5). Look at line 34:

return(fib(n-2) + fib(n-1));

From this return statement a call is made to fib(4) (because n == 6, fib(n-2) is the
same as fib(4)) and another call is made to fib(5) (fib(n-1)), and then the function
you are in (fib(6)) waits until these calls return a value. When these return a value, this
function can return the result of summing those two values.

Because fib(5) passes in an argument that is not less than 3, fib() is called again, this
time with 4 and 3. fib(4) in turn calls fib(3) and fib(2).

The output traces these calls and the return values. Compile, link, and run this program,
entering first 1, then 2, then 3, building up to 6, and watch the output carefully.

This would be a great time to start experimenting with your debugger. Put a break point
on line 21 and then trace into each call to fib, keeping track of the value of n as you
work your way into each recursive call to fib.

Recursion is not used often in C++ programming, but it can be a powerful and elegant
tool for certain needs.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 128

Organizing into Functions 129

5

How Functions Work—A Peek Under the
Hood

When you call a function, the code branches to the called function, parameters are
passed in, and the body of the function is executed. When the function completes, a
value is returned (unless the function returns void), and control returns to the calling
function.

How is this task accomplished? How does the code know where to branch? Where are
the variables kept when they are passed in? What happens to variables that are declared
in the body of the function? How is the return value passed back out? How does the code
know where to resume?

Most introductory books don’t try to answer these questions, but without understanding
this information, you’ll find that programming remains a fuzzy mystery. The explanation
requires a brief tangent into a discussion of computer memory.

Levels of Abstraction
One of the principal hurdles for new programmers is grappling with the many layers of
intellectual abstraction. Computers, of course, are only electronic machines. They don’t
know about windows and menus, they don’t know about programs or instructions, and
they don’t even know about ones and zeros. All that is really going on is that voltage is
being measured at various places on an integrated circuit. Even this is an abstraction:
Electricity itself is just an intellectual concept representing the behavior of subatomic
particles, which arguably are themselves intellectual abstractions(!).

Few programmers bother with any level of detail below the idea of values in RAM. After
all, you don’t need to understand particle physics to drive a car, make toast, or hit a base-
ball, and you don’t need to understand the electronics of a computer to program one.

You do need to understand how memory is organized, however. Without a reasonably
strong mental picture of where your variables are when they are created and how values
are passed among functions, it will all remain an unmanageable mystery.

Recursion is a tricky part of advanced programming. It is presented here
because it can be useful to understand the fundamentals of how it works,
but don’t worry too much if you don’t fully understand all the details.

NOTE

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 129

Partitioning RAM
When you begin your program, your operating system (such as DOS, Linux/Unix, or
Microsoft Windows) sets up various areas of memory based on the requirements of your
compiler. As a C++ programmer, you’ll often be concerned with the global namespace,
the free store, the registers, the code space, and the stack.

Global variables are in global namespace. You’ll learn more about global namespace and
the free store in coming days, but here, the focus is on the registers, code space, and
stack.

Registers are a special area of memory built right into the central processing unit (or
CPU). They take care of internal housekeeping. A lot of what goes on in the registers is
beyond the scope of this book, but what you should be concerned with is the set of regis-
ters responsible for pointing, at any given moment, to the next line of code. These regis-
ters, together, can be called the instruction pointer. It is the job of the instruction pointer
to keep track of which line of code is to be executed next.

The code itself is in the code space, which is that part of memory set aside to hold the
binary form of the instructions you created in your program. Each line of source code is
translated into a series of instructions, and each of these instructions is at a particular
address in memory. The instruction pointer has the address of the next instruction to exe-
cute. Figure 5.6 illustrates this idea.

130 Day 5

FIGURE 5.6
The instruction pointer.

Code Space

Instruction
Pointer

100 Int x=5;

101 Int y=7;

102 Cout << x;

103 Func (x,y);

104 y=9;

105 return;

102

The stack is a special area of memory allocated for your program to hold the data
required by each of the functions in your program. It is called a stack because it is a last-
in, first-out queue, much like a stack of dishes at a cafeteria, as shown in Figure 5.7.

Last-in, first-out means that whatever is added to the stack last is the first thing taken off.
This differs from most queues in which the first in is the first out (like a line at a theater:
The first one in line is the first one off). A stack is more like a stack of coins: If you
stack 10 pennies on a tabletop and then take some back, the last three you put on top are
the first three you take off.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 130

Organizing into Functions 131

5

When data is pushed onto the stack, the stack grows; as data is popped off the stack, the
stack shrinks. It isn’t possible to pop a dish off the stack without first popping off all the
dishes placed on after that dish.

A stack of dishes is the common analogy. It is fine as far as it goes, but it is wrong in a
fundamental way. A more accurate mental picture is of a series of cubbyholes aligned top
to bottom. The top of the stack is whatever cubby the stack pointer (which is another reg-
ister) happens to be pointing to.

Each of the cubbies has a sequential address, and one of those addresses is kept in the
stack pointer register. Everything below that magic address, known as the top of the
stack, is considered to be on the stack. Everything above the top of the stack is consid-
ered to be off the stack and invalid. Figure 5.8 illustrates this idea.

FIGURE 5.7
A stack.

FIGURE 5.8
The stack pointer.

Stack

80

100

101

102

103

104

105

106

107

108

109

110

37YourAge

50MyAge

on the stack

off the stack

stack pointer

102
theVariable

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 131

When data is put on the stack, it is placed into a cubby above the stack pointer, and then
the stack pointer is moved to the new data. When data is popped off the stack, all that
really happens is that the address of the stack pointer is changed by moving it down the
stack. Figure 5.9 makes this rule clear.

The data above the stack pointer (off the stack) might or might not be changed at any
time. These values are referred to as “garbage” because their value is no longer reliable.

132 Day 5

FIGURE 5.9
Moving the stack
pointer.

Stack

80

100

101

102

103

104

105

106

107

108

109

110

37YourAge

50MyAge

on the stack

off the stack

stack pointer

108
theVariable

The Stack and Functions
The following is an approximation of what happens when your program branches to a
function. (The details will differ depending on the operating system and compiler.)

1. The address in the instruction pointer is incremented to the next instruction past the
function call. That address is then placed on the stack, and it will be the return
address when the function returns.

2. Room is made on the stack for the return type you’ve declared. On a system with
two-byte integers, if the return type is declared to be int, another two bytes are
added to the stack, but no value is placed in these bytes (that means that whatever
“garbage” was in those two bytes remains until the local variable is initialized).

3. The address of the called function, which is kept in a special area of memory set
aside for that purpose, is loaded into the instruction pointer, so the next instruction
executed will be in the called function.

4. The current top of the stack is now noted and is held in a special pointer called the
stack frame. Everything added to the stack from now until the function returns will
be considered “local” to the function.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 132

Organizing into Functions 133

5

5. All the arguments to the function are placed on the stack.

6. The instruction now in the instruction pointer is executed, thus executing the first
instruction in the function.

7. Local variables are pushed onto the stack as they are defined.

When the function is ready to return, the return value is placed in the area of the stack
reserved at step 2. The stack is then popped all the way up to the stack frame pointer,
which effectively throws away all the local variables and the arguments to the function.

The return value is popped off the stack and assigned as the value of the function call
itself, and the address stashed away in step 1 is retrieved and put into the instruction
pointer. The program thus resumes immediately after the function call, with the value of
the function retrieved.

Some of the details of this process change from compiler to compiler, or between com-
puter operating system or processors, but the essential ideas are consistent across envi-
ronments. In general, when you call a function, the return address and the parameters are
put on the stack. During the life of the function, local variables are added to the stack.
When the function returns, these are all removed by popping the stack.

In coming days, you will learn about other places in memory that are used to hold data
that must persist beyond the life of the function.

Summary
Today’s lesson introduced functions. A function is, in effect, a subprogram into which
you can pass parameters and from which you can return a value. Every C++ program
starts in the main() function, and main(), in turn, can call other functions.

A function is declared with a function prototype, which describes the return value, the
function name, and its parameter types. A function can optionally be declared inline. A
function prototype can also declare default values for one or more of the parameters.

The function definition must match the function prototype in return type, name, and
parameter list. Function names can be overloaded by changing the number or type of
parameters; the compiler finds the right function based on the argument list.

Local function variables, and the arguments passed in to the function, are local to the
block in which they are declared. Parameters passed by value are copies and cannot
affect the value of variables in the calling function.

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 133

Q&A
Q Why not make all variables global?

A At one time, this was exactly how programming was done. As programs became
more complex, however, it became very difficult to find bugs in programs because
data could be corrupted by any of the functions—global data can be changed any-
where in the program. Years of experience have convinced programmers that data
should be kept as local as possible, and access to changing that data should be nar-
rowly defined.

Q When should the keyword inline be used in a function prototype?

A If the function is very small, no more than a line or two, and won’t be called from
many places in your program, it is a candidate for inlining.

Q Why aren’t changes to the value of function arguments reflected in the calling
function?

A Arguments passed to a function are passed by value. That means that the argument
in the function is actually a copy of the original value. This concept is explained in
depth in the section “How Functions Work—A Peek Under the Hood.”

Q If arguments are passed by value, what do I do if I need to reflect the changes
back in the calling function?

A On Day 8, pointers will be discussed and on Day 9, you’ll learn about references.
Use of pointers or references will solve this problem, as well as provide a way
around the limitation of returning only a single value from a function.

Q What happens if I have the following two functions?

int Area (int width, int length = 1); int Area (int size);

Will these overload? A different number of parameters exist, but the first one
has a default value.

A The declarations will compile, but if you invoke Area with one parameter, you will
receive an error: ambiguity between Area(int, int) and Area(int).

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain that you understand the answers before continuing to tomor-
row’s lesson.

134 Day 5

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 134

Organizing into Functions 135

5

Quiz
1. What are the differences between the function prototype and the function

definition?

2. Do the names of parameters have to agree in the prototype, definition, and call to
the function?

3. If a function doesn’t return a value, how do you declare the function?

4. If you don’t declare a return value, what type of return value is assumed?

5. What is a local variable?

6. What is scope?

7. What is recursion?

8. When should you use global variables?

9. What is function overloading?

Exercises
1. Write the prototype for a function named Perimeter(), which returns an unsigned

long int and takes two parameters, both unsigned short ints.

2. Write the definition of the function Perimeter() as described in Exercise 1. The
two parameters represent the length and width of a rectangle. Have the function
return the perimeter (twice the length plus twice the width).

3. BUG BUSTERS: What is wrong with the function in the following code?
#include <iostream>
void myFunc(unsigned short int x);
int main()
{

unsigned short int x, y;
y = myFunc(int);
std::cout << “x: “ << x << “ y: “ << y << “\n”;
return 0;

}

void myFunc(unsigned short int x)
{

return (4*x);
}

4. BUG BUSTERS: What is wrong with the function in the following code?
#include <iostream>
int myFunc(unsigned short int x);
int main()

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 135

{
unsigned short int x, y;
x = 7;
y = myFunc(x);
std::cout << “x: “ << x << “ y: “ << y << “\n”;
return 0;

}

int myFunc(unsigned short int x);
{

return (4*x);
}

5. Write a function that takes two unsigned short integer arguments and returns the
result of dividing the first by the second. Do not do the division if the second num-
ber is zero, but do return –1.

6. Write a program that asks the user for two numbers and calls the function you
wrote in Exercise 5. Print the answer, or print an error message if you get –1.

7. Write a program that asks for a number and a power. Write a recursive function
that takes the number to the power. Thus, if the number is 2 and the power is 4, the
function will return 16.

136 Day 5

07 0672327112_ch05.qxd 11/19/04 12:26 PM Page 136

DAY 6

WEEK 1

Understanding Object-
Oriented Programming

Classes extend the built-in capabilities of C++ to assist you in representing and
solving complex, real-world problems.

Today, you will learn

• What classes and objects are

• How to define a new class and create objects of that class

• What member functions and member data are

• What constructors are and how to use them

Is C++ Object-Oriented?
At one point, C, the predecessor to C++, was the world’s most popular pro-
gramming language for commercial software development. It was used for cre-
ating operating systems (such as the Unix operating system), for real-time

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 137

programming (machine, device, and electronics control), and only later began to be used
as a language for programming conventional languages. Its intent was to provide an eas-
ier and safer way to program down close to the hardware.

C was developed as a middle ground between high-level business application languages
such as COBOL and the pedal-to-the-metal, high-performance, but difficult-to-use
Assembler language. C was to enforce “structured” programming, in which problems
were “decomposed” into smaller units of repeatable activities called procedures and data
was assembled into packages called structures.

But research languages such as Smalltalk and CLU had begun to pave a new direction—
object-orientation—which combined the data locked away in assemblies like structures
with the capabilities of procedures into a single unit: the object.

The world is filled with objects: cars, dogs, trees, clouds, flowers. Objects. Each object
has characteristics (fast, friendly, brown, puffy, pretty). Most objects have behavior
(move, bark, grow, rain, wilt). You don’t generally think about a car’s specifications and
how those specifications might be manipulated. Rather, a car is thought about as an
object that looks and acts a certain way. And the same should be true with any real-world
object that is brought into the domain of the computer.

The programs being written early in the twenty-first century are much more complex
than those written at the end of the twentieth century. Programs created in procedural
languages tend to be difficult to manage, hard to maintain, and expensive to extend.
Graphical user interfaces, the Internet, digital and wireless telephony, and a host of new
technologies have dramatically increased the complexity of our projects at the same time
that consumer expectations for the quality of the user interface are rising.

Object-oriented software development offers a tool to help with the challenges of soft-
ware development. Though there are no silver bullets for complex software development,
object-oriented programming languages build a strong link between the data structures
and the methods that manipulate that data and have a closer fit to the way humans (pro-
grammers and clients) think, improving communication and improving the quality of
delivered software. In object-oriented programming, you no longer think about data
structures and manipulating functions; you think instead about objects as if they were
their real-world counterparts: as things that look and act a certain way.

C++ was created as a bridge between object-oriented programming and C. The goal was
to provide object-oriented design to a fast, commercial software development platform,
with a special focus on high performance. Next, you’ll see more about how C++ meets
its objectives.

138 Day 6

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 138

Understanding Object-Oriented Programming 139

6

Creating New Types
Programs are usually written to solve real-world problems, such as keeping track of
employee records or simulating the workings of a heating system. Although it is possible
to solve complex problems by using programs written with only numbers and characters,
it is far easier to grapple with large, complex problems if you can create representations
of the objects that you are talking about. In other words, simulating the workings of a
heating system is easier if you can create variables that represent rooms, heat sensors,
thermostats, and boilers. The closer these variables correspond to reality, the easier it is
to write the program.

You’ve already learned about a number of variable types, including unsigned integers
and characters. The type of a variable tells you quite a bit about it. For example, if you
declare Height and Width to be unsigned short integers, you know that each one can
hold a number between 0 and 65,535, assuming an unsigned short integer is two bytes.
That is the meaning of saying they are unsigned integers; trying to hold anything else in
these variables causes an error. You can’t store your name in an unsigned short integer,
and you shouldn’t try.

Just by declaring these variables to be unsigned short integers, you know that it is pos-
sible to add Height to Width and to assign the result to another number.

The type of these variables tells you

• Their size in memory

• What information they can hold

• What actions can be performed on them

In traditional languages such as C, types were built in to the language. In C++, the pro-
grammer can extend the language by creating any type needed, and each of these new
types can have all the functionality and power of the built-in types.

Downsides of Creating Types with struct

Some capabilities to extend the C language with new types were provided by the ability
to combine related variables into structs, which could be made available as a new data
type through the typedef statement.

There were things lacking in this capability, however:

• Structs and the functions that operate on them aren’t cohesive wholes; functions
can only be found by reading the header files for the libraries available and looking
for those with the new type as a parameter.

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 139

140 Day 6

• Coordinating the activities of groups of related functions on the struct is harder
because anything in the struct can be changed at any time by any piece of program
logic. There is no way to protect struct data from interference.

• The built-in operators don’t work on structs—it does not work to add two structs
with a plus sign (+), even when that might be the most natural way to represent the
solution to a problem (for instance, when each struct represents a complex piece of
text to be joined together).

Introducing Classes and Members
You make a new type in C++ by declaring a class. A class is just a collection of vari-
ables—often of different types—combined with a set of related functions.

One way to think about a car is as a collection of wheels, doors, seats, windows, and so
forth. Another way is to think about what a car can do: It can move, speed up, slow
down, stop, park, and so on. A class enables you to encapsulate, or bundle, these various
parts and various functions into one collection, which is called an object.

Encapsulating everything you know about a car into one class has a number of advan-
tages for a programmer. Everything is in one place, which makes it easy to refer to, copy,
and call on functions that manipulate the data. Likewise, clients of your class—that is,
the parts of the program that use your class—can use your object without worrying about
what is in it or how it works.

A class can consist of any combination of the variable types and also other class types.
The variables in the class are referred to as the member variables or data members. A Car
class might have member variables representing the seats, radio type, tires, and so forth.

Member variables, also known as data members, are the variables in your class. Member
variables are part of your class, just as the wheels and engine are part of your car.

A class can also contain functions called member functions or methods. Member func-
tions are as much a part of your class as the member variables. They determine what
your class can do.

The member functions in the class typically manipulate the member variables. For exam-
ple, methods of the Car class might include Start() and Brake(). A Cat class might
have data members that represent age and weight; its methods might include Sleep(),
Meow(), and ChaseMice().

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 140

Understanding Object-Oriented Programming 141

6

Declaring a Class
Declaring a class tells the compiler about the class. To declare a class, use the class key-
word followed by the class name, an opening brace, and then a list of the data members
and methods of that class. End the declaration with a closing brace and a semicolon.
Here’s the declaration of a class called Cat:

class Cat
{

unsigned int itsAge;
unsigned int itsWeight;
void Meow();

};

Declaring this class doesn’t allocate memory for a Cat. It just tells the compiler what a
Cat is, what data members it contains (itsAge and itsWeight), and what it can do
(Meow()). Although memory isn’t allocated, it does let the compiler know how big a Cat
is—that is, how much room the compiler must set aside for each Cat that you will create.
In this example, if an integer is four bytes, a Cat is eight bytes big: itsAge is four bytes,
and itsWeight is another four bytes. Meow() takes up only the room required for storing
information on the location of Meow(). This is a pointer to a function that can take four
bytes on a 32-bit platform.

A Word on Naming Conventions
As a programmer, you must name all your member variables, member functions, and
classes. As you learned on Day 3, “Working with Variables and Constants,” these should
be easily understood and meaningful names. Cat, Rectangle, and Employee are good
class names. Meow(), ChaseMice(), and StopEngine() are good function names because
they tell you what the functions do. Many programmers name the member variables with
the prefix “its,” as in itsAge, itsWeight, and itsSpeed. This helps to distinguish mem-
ber variables from nonmember variables.

Other programmers use different prefixes. Some prefer myAge, myWeight, and mySpeed.
Still others simply use the letter m (for member), possibly with an underscore (_) such as
mAge or m_age, mWeight or m_weight, or mSpeed or m_speed.

Some programmers like to prefix every class name with a particular letter—for example,
cCat or cPerson—whereas others put the name in all uppercase or all lowercase. The
convention that this book uses is to name all classes with initial capitalization, as in Cat
and Person.

Similarly, many programmers begin all functions with capital letters and all variables
with lowercase. Words are usually separated with an underscore—as in Chase_Mice—
or by capitalizing each word—for example, ChaseMice or DrawCircle.

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 141

The important idea is that you should pick one style and stay with it through each pro-
gram. Over time, your style will evolve to include not only naming conventions, but also
indentation, alignment of braces, and commenting style.

142 Day 6

It’s common for development companies to have house standards for many
style issues. This ensures that all developers can easily read one another’s
code. Unfortunately, this extends to the companies that develop operating
systems and libraries of reusable classes, which usually means that C++ pro-
grams must work with several different naming conventions at once.

NOTE

As stated before, C++ is case sensitive, so all class, function, and variable
names should follow the same pattern so that you never have to check how
to spell them—was it Rectangle, rectangle, or RECTANGLE?

CAUTION

Defining an Object
After you declare a class, you can then use it as a new type to declare variables of that
type. You declare an object of your new type the same as you declare an integer variable:

unsigned int GrossWeight; // define an unsigned integer
Cat Frisky; // define a Cat

This code defines a variable called GrossWeight, whose type is an unsigned integer. It
also defines Frisky, which is an object whose class (or type) is Cat.

Classes Versus Objects
You never pet the definition of a cat; you pet individual cats. You draw a distinction
between the idea of a cat and the particular cat that right now is shedding all over your
living room. In the same way, C++ differentiates between the class Cat, which is the idea
of a cat, and each individual Cat object. Thus, Frisky is an object of type Cat in the
same way that GrossWeight is a variable of type unsigned int.

An object is an individual instance of a class.

Accessing Class Members
After you define an actual Cat object—for example,

Cat Frisky;

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 142

Understanding Object-Oriented Programming 143

6

you use the dot operator (.) to access the members of that object. Therefore, to assign 50
to Frisky’s Weight member variable, you would write

Frisky.itsWeight = 50;

In the same way, to call the Meow() function, you would write

Frisky.Meow();

When you use a class method, you call the method. In this example, you are calling
Meow() on Frisky.

Assigning to Objects, Not to Classes
In C++, you don’t assign values to types; you assign values to variables. For example,
you would never write

int = 5; // wrong

The compiler would flag this as an error because you can’t assign 5 to an integer. Rather,
you must define an integer variable and assign 5 to that variable. For example,

int x; // define x to be an int
x = 5; // set x’s value to 5

This is a shorthand way of saying, “Assign 5 to the variable x, which is of type int.” In
the same way, you wouldn’t write

Cat.itsAge=5; // wrong

The compiler would flag this as an error because you can’t assign 5 to the age part of a
class called Cat. Rather, you must define a specific Cat object and assign 5 to that object.
For example,

Cat Frisky; // just like int x;
Frisky.itsAge = 5; // just like x = 5;

If You Don’t Declare It, Your Class Won’t Have It
Try this experiment: Walk up to a three-year-old and show her a cat. Then say, “This is
Frisky. Frisky knows a trick. Frisky, bark.” The child will giggle and say, “No, silly, cats
can’t bark.”

If you wrote

Cat Frisky; // make a Cat named Frisky
Frisky.Bark() // tell Frisky to bark

the compiler would say, “No, silly, Cats can’t bark.” (Your compiler’s wording will prob-
ably look more like “[531] Error: Member function Bark not found in class Cat”.) The

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 143

compiler knows that Frisky can’t bark because the Cat class doesn’t have a Bark()
method. The compiler wouldn’t even let Frisky meow if you didn’t define a Meow()
function.

144 Day 6

DO use the keyword class to declare a
class.

DO use the dot operator (.) to access
class members and functions.

DON’T confuse a declaration with a defi-
nition. A declaration says what a class is.
A definition sets aside memory for an
object.

DON’T confuse a class with an object.

DON’T assign values to a class. Assign val-
ues to the data members of an object.

DO DON’T

Private Versus Public Access
Additional keywords are often used in the declaration of a class. Two of the most impor-
tant are public and private.

The private and public keywords are used with members of a class—both data mem-
bers and member methods. Private members can be accessed only within methods of the
class itself. Public members can be accessed through any object of the class. This distinc-
tion is both important and confusing. All members of a class are private, by default.

To make this a bit clearer, consider an example from earlier:

class Cat
{
unsigned int itsAge;
unsigned int itsWeight;
void Meow();

};

In this declaration, itsAge, itsWeight, and Meow() are all private because all members
of a class are private by default. Unless you specify otherwise, they are private. If you
create a program and try to write the following within main (for example):

int main()
{

Cat Boots;
Boots.itsAge=5; // error! can’t access private data!
...

the compiler flags this as an error. In effect, by leaving these members as private,
you’ve said to the compiler, “I’ll access itsAge, itsWeight, and Meow() only from

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 144

Understanding Object-Oriented Programming 145

6

within member functions of the Cat class.” Yet, here, you’ve accessed the itsAge mem-
ber variable of the Boots object from outside a Cat method. Just because Boots is an
object of class Cat, that doesn’t mean that you can access the parts of Boots that are pri-
vate (even though they are visible in the declaration).

This is a source of endless confusion to new C++ programmers. I can almost hear you
yelling, “Hey! I just said Boots is a Cat. Why can’t Boots access his own age?” The
answer is that Boots can, but you can’t. Boots, in his own methods, can access all his
parts—public and private. Even though you’ve created a Cat, that doesn’t mean that you
can see or change the parts of it that are private.

The way to use Cat so that you can access the data members is to make some of the
members public:

class Cat
{
public:
unsigned int itsAge;
unsigned int itsWeight;
void Meow();

};

In this declaration, itsAge, itsWeight, and Meow() are all public. Boots.itsAge=5 from
the previous example will compile without problems.

The keyword public applies to all members in the declaration until the key-
word private is encountered—and vice versa. This lets you easily declare
sections of your class as public or private.

NOTE

Listing 6.1 shows the declaration of a Cat class with public member variables.

LISTING 6.1 Accessing the Public Members of a Simple Class

1: // Demonstrates declaration of a class and
2: // definition of an object of the class
3:
4: #include <iostream>
5:
6: class Cat // declare the Cat class
7: {
8: public: // members that follow are public
9: int itsAge; // member variable
10: int itsWeight; // member variable
11: }; // note the semicolon

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 145

12:
13: int main()
14: {
15: Cat Frisky;
16: Frisky.itsAge = 5; // assign to the member variable
17: std::cout << “Frisky is a cat who is “ ;
18: std::cout << Frisky.itsAge << “ years old.\n”;
19: return 0;
20: }

Frisky is a cat who is 5 years old.

Line 6 contains the keyword class. This tells the compiler that what follows is a
declaration. The name of the new class comes after the keyword class. In this

case, the name is Cat.

The body of the declaration begins with the opening brace on line 7 and ends with a
closing brace and a semicolon on line 11. Line 8 contains the keyword public followed
by a colon, which indicates that everything that follows is public until the keyword
private or the end of the class declaration.

Lines 9 and 10 contain the declarations of the class members itsAge and itsWeight.

Line 13 begins the main() function of the program. Frisky is defined on line 15 as an
instance of a Cat—that is, as a Cat object. On line 16, Frisky’s age is set to 5. On lines
17 and 18, the itsAge member variable is used to print out a message about Frisky. You
should notice on lines 16 and 18 how the member of the Frisky object is accessed.
itsAge is accessed by using the object name (Frisky in this case) followed by period
and then the member name (itsAge in this case).

OUTPUT

146 Day 6

LISTING 6.1 continued

ANALYSIS

Try commenting out line 8 and try to recompile. You will receive an error on
line 16 because itsAge will no longer have public access. Rather, itsAge and
the other members go to the default access, which is private access.

NOTE

Making Member Data Private
As a general rule of design, you should keep the data members of a class private. Of
course, if you make all of the data members private, you might wonder how you access
information about the class. For example, if itsAge is private, how would you be able to
set or get a Cat object’s age?

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 146

Understanding Object-Oriented Programming 147

6

To access private data in a class, you must create public functions known as accessor
methods. Use these methods to set and get the private member variables. These accessor
methods are the member functions that other parts of your program call to get and set
your private member variables.

A public accessor method is a class member function used either to read (get) the value
of a private class member variable or to set its value.

Why bother with this extra level of indirect access? Why add extra functions when it is
simpler and easier to use the data directly? Why work through accessor functions?

The answer to these questions is that accessor functions enable you to separate the
details of how the data is stored from how it is used. By using accessor functions, you
can later change how the data is stored without having to rewrite any of the other func-
tions in your programs that use the data.

If a function that needs to know a Cat’s age accesses itsAge directly, that function would
need to be rewritten if you, as the author of the Cat class, decided to change how that
data is stored. By having the function call GetAge(), your Cat class can easily return the
right value no matter how you arrive at the age. The calling function doesn’t need to
know whether you are storing it as an unsigned integer or a long, or whether you are
computing it as needed.

This technique makes your program easier to maintain. It gives your code a longer life
because design changes don’t make your program obsolete.

In addition, accessor functions can include additional logic, for instance, if a Cat’s age is
unlikely to be more than 100, or its weight is unlikely to be 1000. These values should
probably not be allowed. An accessor function can enforce these types of restrictions as
well as do other tasks.

Listing 6.2 shows the Cat class modified to include private member data and public
accessor methods. Note that this is not a listing that can be run if it is compiled.

LISTING 6.2 A Class with Accessor Methods

1: // Cat class declaration
2: // Data members are private, public accessor methods
3: // mediate setting and getting the values of the private data
4:
4: class Cat
5: {
6: public:
7: // public accessors
8: unsigned int GetAge();

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 147

9: void SetAge(unsigned int Age);
10:
11: unsigned int GetWeight();
12: void SetWeight(unsigned int Weight);
13:
14: // public member functions
15: void Meow();
16:
17: // private member data
18: private:
19: unsigned int itsAge;
20: unsigned int itsWeight;
21: };

This class has five public methods. Lines 8 and 9 contain the accessor methods
for itsAge. You can see that on line 8 there is a method for getting the age and

on line 9 there is one for setting it. Lines 11 and 12 contain similar accessor methods for
itsWeight. These accessor functions set the member variables and return their values.

The public member function Meow() is declared on line 15. Meow() is not an accessor
function. It doesn’t get or set a member variable; it performs another service for the
class, printing the word “Meow.”

The member variables themselves are declared on lines 19 and 20.

To set Frisky’s age, you would pass the value to the SetAge() method, as in

Cat Frisky;
Frisky.SetAge(5); // set Frisky’s age using the public accessor

Later today, you’ll see the specific code for making the SetAge and the other methods
work.

Declaring methods or data private enables the compiler to find programming mistakes
before they become bugs. Any programmer worth his consulting fees can find a way
around privacy if he wants to. Stroustrup, the inventor of C++, said, “The C++ access
control mechanisms provide protection against accident—not against fraud” (ARM,
1990).

148 Day 6

LISTING 6.2 continued

ANALYSIS

The class Keyword

Syntax for the class keyword is as follows:

class class_name
{

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 148

Understanding Object-Oriented Programming 149

6

// access control keywords here
// class variables and methods declared here

};

You use the class keyword to declare new types. A class is a collection of class member
data, which are variables of various types, including other classes. The class also contains
class functions—or methods—which are functions used to manipulate the data in the
class and to perform other services for the class.

You define objects of the new type in much the same way in which you define any vari-
able. State the type (class) and then the variable name (the object). You access the class
members and functions by using the dot (.) operator.

You use access control keywords to declare sections of the class as public or private. The
default for access control is private. Each keyword changes the access control from that
point on to the end of the class or until the next access control keyword. Class declara-
tions end with a closing brace and a semicolon.

Example 1

class Cat
{
public:
unsigned int Age;
unsigned int Weight;
void Meow();

};

Cat Frisky;
Frisky.Age = 8;
Frisky.Weight = 18;
Frisky.Meow();

Example 2

class Car
{
public: // the next five are public

void Start();
void Accelerate();
void Brake();
void SetYear(int year);
int GetYear();

private: // the rest is private

int Year;
Char Model [255];

}; // end of class declaration

Car OldFaithful; // make an instance of car
int bought; // a local variable of type int
OldFaithful.SetYear(84) ; // assign 84 to the year
bought = OldFaithful.GetYear(); // set bought to 84
OldFaithful.Start(); // call the start method

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 149

Implementing Class Methods
As you’ve seen, an accessor function provides a public interface to the private member
data of the class. Each accessor function, along with any other class methods that you
declare, must have an implementation. The implementation is called the function
definition.

A member function definition begins similarly to the definition of a regular function.
First, you state the return type that will come from the function, or void if nothing will
be returned. This is followed by the name of the class, two colons, the name of the func-
tion, and then the function’s parameters. Listing 6.3 shows the complete declaration of a
simple Cat class and the implementation of its accessor function and one general class
member function.

LISTING 6.3 Implementing the Methods of a Simple Class

1: // Demonstrates declaration of a class and
2: // definition of class methods
3: #include <iostream> // for cout
4:
5: class Cat // begin declaration of the class
6: {
7: public: // begin public section
8: int GetAge(); // accessor function
9: void SetAge (int age); // accessor function
10: void Meow(); // general function
11: private: // begin private section
12: int itsAge; // member variable
13: };
14:
15: // GetAge, Public accessor function
16: // returns value of itsAge member
17: int Cat::GetAge()
18: {
19: return itsAge;
20: }
21:

150 Day 6

DO use public accessor methods.

DO access private member variables from
within class member functions.

DON’T declare member variables public
if you don’t need to.

DON’T try to use private member vari-
ables from outside the class.

DO DON’T

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 150

Understanding Object-Oriented Programming 151

6

22: // definition of SetAge, public
23: // accessor function
24: // sets itsAge member
25: void Cat::SetAge(int age)
26: {
27: // set member variable itsAge to
28: // value passed in by parameter age
29: itsAge = age;
30: }
31:
32: // definition of Meow method
33: // returns: void
34: // parameters: None
35: // action: Prints “meow” to screen
36: void Cat::Meow()
37: {
38: std::cout << “Meow.\n”;
39: }
40:
41: // create a cat, set its age, have it
42: // meow, tell us its age, then meow again.
43: int main()
44: {
45: Cat Frisky;
46: Frisky.SetAge(5);
47: Frisky.Meow();
48: std::cout << “Frisky is a cat who is “ ;
49: std::cout << Frisky.GetAge() << “ years old.\n”;
50: Frisky.Meow();
51: return 0;
52: }

Meow.
Frisky is a cat who is 5 years old.
Meow.

Lines 5–13 contain the definition of the Cat class. Line 7 contains the keyword
public, which tells the compiler that what follows is a set of public members.

Line 8 has the declaration of the public accessor method GetAge(). GetAge() provides
access to the private member variable itsAge, which is declared on line 12. Line 9 has
the public accessor function SetAge(). SetAge() takes an integer as an argument and
sets itsAge to the value of that argument.

Line 10 has the declaration of the class method Meow(). Meow() is not an accessor func-
tion. Here it is a general method that prints the word “Meow” to the screen.

OUTPUT

LISTING 6.3 continued

ANALYSIS

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 151

Line 11 begins the private section, which includes only the declaration on line 12 of the
private member variable itsAge. The class declaration ends with a closing brace and
semicolon on line 13.

Lines 17–20 contain the definition of the member function GetAge(). This method takes
no parameters, and it returns an integer. Note on line 17 that class methods include the
class name followed by two colons and the function name. This syntax tells the compiler
that the GetAge() function you are defining here is the one that you declared in the Cat
class. With the exception of this header line, the GetAge() function is created the same
as any other function.

The GetAge() function takes only one line; it returns the value in itsAge. Note that the
main() function cannot access itsAge because itsAge is private to the Cat class. The
main() function has access to the public method GetAge().

Because GetAge() is a member function of the Cat class, it has full access to the itsAge
variable. This access enables GetAge() to return the value of itsAge to main().

Line 25 contains the definition of the SetAge() member function. You can see that this
function takes one integer value, called age, and doesn’t return any values, as indicated
by void. SetAge() takes the value of the age parameter and assigns it to itsAge on line
29. Because SetAge() is a member of the Cat class, it has direct access to the private
member variable itsAge.

Line 36 begins the definition, or implementation, of the Meow() method of the Cat class.
It is a one-line function that prints the word “Meow” to the screen, followed by a new
line. Remember that the \n character prints a new line to the screen. You can see that
Meow is set up just like the accessor functions in that it begins with the return type, the
class name, the function name, and the parameters (none in this case).

Line 43 begins the body of the program with the familiar main() function. On line 45,
main() declares an object called Frisky of type Cat. Read a different way, you could say
that main() declares a Cat named Frisky.

On line 46, the value 5 is assigned to the itsAge member variable by way of the
SetAge() accessor method. Note that the method is called by using the object name
(Frisky) followed by the member operator (.) and the method name (SetAge()). In this
same way, you can call any of the other methods in a class.

152 Day 6

The terms member function and method can be used interchangeably.NOTE

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 152

Understanding Object-Oriented Programming 153

6

Line 47 calls the Meow() member function, and line 48 prints a message using the
GetAge() accessor. Line 50 calls Meow() again. Although these methods are a part of a
class (Cat) and are being used through an object (Frisky), they operate just like the
functions you have seen before.

Adding Constructors and Destructors
Two ways exist to define an integer variable. You can define the variable and then assign
a value to it later in the program. For example:

int Weight; // define a variable
... // other code here
Weight = 7; // assign it a value

Or, you can define the integer and immediately initialize it. For example,

int Weight = 7; // define and initialize to 7

Initialization combines the definition of the variable with its initial assignment. Nothing
stops you from changing that value later. Initialization ensures that your variable is never
without a meaningful value.

How do you initialize the member data of a class? You can initialize the member data of
a class using a special member function called a constructor. The constructor can take
parameters as needed, but it cannot have a return value—not even void. The constructor
is a class method with the same name as the class itself.

Whenever you declare a constructor, you’ll also want to declare a destructor. Just as con-
structors create and initialize objects of your class, destructors clean up after your object
and free any resources or memory that you might have allocated (either in the construc-
tor, or throughout the lifespan of the object). A destructor always has the name of the
class, preceded by a tilde (~). Destructors take no arguments and have no return value.
If you were to declare a destructor for the Cat class, its declaration would look like the
following:

~Cat();

Getting a Default Constructor and Destructor
Many types of constructors are available; some take arguments, others do not. The one
that takes no arguments is called the default constructor. There is only one destructor.
Like the default constructor, it takes no arguments.

It turns out that if you don’t create a constructor or a destructor, the compiler provides
one for you. The constructor that is provided by the compiler is the default constructor.

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 153

The default constructor and destructor created by the compiler don’t have arguments. In
addition, they don’t appear to do anything! If you want them to do something, you must
create your own default constructor or destructor.

Using the Default Constructor
What good is a constructor that does nothing? In part, it is a matter of form. All objects
must be “constructed” and “destructed,” and these do-nothing functions are called as a
part of the process of constructing and destructing.

To declare an object without passing in parameters, such as

Cat Rags; // Rags gets no parameters

you must have a constructor in the form

Cat();

When you define an object of a class, the constructor is called. If the Cat constructor
took two parameters, you might define a Cat object by writing

Cat Frisky (5,7);

In this example, the first parameter might be its age and the second might be its weight.
If the constructor took one parameter, you would write

Cat Frisky (3);

In the event that the constructor takes no parameters at all (that is, that it is a default con-
structor), you leave off the parentheses and write

Cat Frisky;

This is an exception to the rule that states all functions require parentheses, even if they
take no parameters. This is why you are able to write

Cat Frisky;

This is interpreted as a call to the default constructor. It provides no parameters, and it
leaves off the parentheses.

Note that you don’t have to use the compiler-provided default constructor. You are
always free to write your own default constructor—that is, a constructor with no parame-
ters. You are free to give your default constructor a function body in which you might
initialize the object. As a matter of form, it is always recommended that you define a
constructor, and set the member variables to appropriate defaults, to ensure that the
object will always behave correctly.

154 Day 6

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 154

Understanding Object-Oriented Programming 155

6

Also as a matter of form, if you declare a constructor, be certain to declare a destructor,
even if your destructor does nothing. Although it is true that the default destructor would
work correctly, it doesn’t hurt to declare your own. It makes your code clearer.

Listing 6.4 rewrites the Cat class to use a nondefault constructor to initialize the Cat
object, setting its age to whatever initial age you provide, and it demonstrates where the
destructor is called.

LISTING 6.4 Using Constructors and Destructors

1: // Demonstrates declaration of constructors and
2: // destructor for the Cat class
3: // Programmer created default constructor
4: #include <iostream> // for cout
5:
6: class Cat // begin declaration of the class
7: {
8: public: // begin public section
9: Cat(int initialAge); // constructor
10: ~Cat(); // destructor
11: int GetAge(); // accessor function
12: void SetAge(int age); // accessor function
13: void Meow();
14: private: // begin private section
15: int itsAge; // member variable
16: };
17:
18: // constructor of Cat,
19: Cat::Cat(int initialAge)
20: {
21: itsAge = initialAge;
22: }
23:
24: Cat::~Cat() // destructor, takes no action
25: {
26: }
27:
28: // GetAge, Public accessor function
29: // returns value of itsAge member
30: int Cat::GetAge()
31: {
32: return itsAge;
33: }
34:
35: // Definition of SetAge, public
36: // accessor function
37: void Cat::SetAge(int age)
38: {
39: // set member variable itsAge to

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 155

40: // value passed in by parameter age
41: itsAge = age;
42: }
43:
44: // definition of Meow method
45: // returns: void
46: // parameters: None
47: // action: Prints “meow” to screen
48: void Cat::Meow()
49: {
50: std::cout << “Meow.\n”;
51: }
52:
53: // create a cat, set its age, have it
54: // meow, tell us its age, then meow again.
55: int main()
56: {
57: Cat Frisky(5);
58: Frisky.Meow();
59: std::cout << “Frisky is a cat who is “ ;
60: std::cout << Frisky.GetAge() << “ years old.\n”;
61: Frisky.Meow();
62: Frisky.SetAge(7);
63: std::cout << “Now Frisky is “ ;
64: std::cout << Frisky.GetAge() << “ years old.\n”;
65: return 0;
66: }

Meow.
Frisky is a cat who is 5 years old.
Meow.
Now Frisky is 7 years old.

Listing 6.4 is similar to Listing 6.3, except that line 9 adds a constructor that
takes an integer. Line 10 declares the destructor, which takes no parameters.

Destructors never take parameters, and neither constructors nor destructors return a
value—not even void.

Lines 19–22 show the implementation of the constructor. It is similar to the implementa-
tion of the SetAge() accessor function. As you can see, the class name precedes the con-
structor name. As mentioned before, this identifies the method, Cat() in this case as a
part of the Cat class. This is a constructor, so there is no return value—not even void.
This constructor does, however, take an initial value that is assigned to the data member,
itsAge, on line 21.

OUTPUT

156 Day 6

LISTING 6.4 continued

ANALYSIS

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 156

Understanding Object-Oriented Programming 157

6

Lines 24–26 show the implementation of the destructor ~Cat(). For now, this function
does nothing, but you must include the definition of the function if you declare it in the
class declaration. Like the constructor and other methods, this is also preceded by the
class name. Like the constructor, but differing from other methods, no return time or
parameters are included. This is standard for a destructor.

Line 57 contains the definition of a Cat object, Frisky. The value 5 is passed in to
Frisky’s constructor. No need exists to call SetAge() because Frisky was created with
the value 5 in its member variable itsAge, as shown on line 60. On line 62, Frisky’s
itsAge variable is reassigned to 7. Line 64 prints the new value.

DO use constructors to initialize your
objects.

DO add a destructor if you add a
constructor.

DON’T give constructors or destructors a
return value.

DON’T give destructors parameters.

DO DON’T

Including const Member Functions
You have used the const keyword to declare variables that would not change. You can
also use the const keyword with member functions within a class. If you declare a class
method const, you are promising that the method won’t change the value of any of the
members of the class.

To declare a class method constant, put the keyword const after the parentheses enclos-
ing any parameters, but before the semicolon ending the method declaration. For
example,

void SomeFunction() const;

This declares a constant member method called SomeFunction() that takes no arguments
and returns void. You know this will not change any of the data members within the
same class because it has been declared const.

Accessor functions that only get values are often declared as constant functions by using
the const modifier. Earlier, you saw that the Cat class has two accessor functions:

void SetAge(int anAge);
int GetAge();

SetAge() cannot be const because it changes the member variable itsAge. GetAge(), on
the other hand, can and should be const because it doesn’t change the class at all.

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 157

GetAge() simply returns the current value of the member variable itsAge. Therefore, the
declaration of these functions should be written like this:

void SetAge(int anAge);
int GetAge() const;

If you declare a function to be const, and the implementation of that function changes
the object by changing the value of any of its members, the compiler flags it as an error.
For example, if you wrote GetAge() in such a way that it kept count of the number of
times that the Cat was asked its age, it would generate a compiler error. This is because
you would be changing the Cat object when the method was called.

It is good programming practice to declare as many methods to be const as possible.
Each time you do, you enable the compiler to catch your errors instead of letting your
errors become bugs that will show up when your program is running.

Interface Versus Implementation
Clients are the parts of the program that create and use objects of your class. You can
think of the public interface to your class—the class declaration—as a contract with
these clients. The contract tells how your class will behave.

In the Cat class declaration, for example, you create a contract that every Cat’s age can
be initialized in its constructor, assigned to by its SetAge() accessor function, and read
by its GetAge() accessor. You also promise that every Cat will know how to Meow().
Note that you say nothing in the public interface about the member variable itsAge; that
is an implementation detail that is not part of your contract. You will provide an age
(GetAge()) and you will set an age (SetAge()), but the mechanism (itsAge) is invisible.

If you make GetAge() a const function—as you should—the contract also promises that
GetAge() won’t change the Cat on which it is called.

C++ is strongly typed, which means that the compiler enforces these contracts by giving
you a compiler error when you violate them. Listing 6.5 demonstrates a program that
doesn’t compile because of violations of these contracts.

158 Day 6

Listing 6.5 does not compile!CAUTION

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 158

Understanding Object-Oriented Programming 159

6

LISTING 6.5 A Demonstration of Violations of the Interface

1: // Demonstrates compiler errors
2: // This program does not compile!
3: #include <iostream> // for cout
4:
5: class Cat
6: {
7: public:
8: Cat(int initialAge);
9: ~Cat();
10: int GetAge() const; // const accessor function
11: void SetAge (int age);
12: void Meow();
13: private:
14: int itsAge;
15: };
16:
17: // constructor of Cat,
18: Cat::Cat(int initialAge)
19: {
20: itsAge = initialAge;
21: std::cout << “Cat Constructor\n”;
22: }
23:
24: Cat::~Cat() // destructor, takes no action
25: {
26: std::cout << “Cat Destructor\n”;
27: }
28: // GetAge, const function
29: // but we violate const!
30: int Cat::GetAge() const
31: {
32: return (itsAge++); // violates const!
33: }
34:
35: // definition of SetAge, public
36: // accessor function
37:
38: void Cat::SetAge(int age)
39: {
40: // set member variable its age to
41: // value passed in by parameter age
42: itsAge = age;
43: }
44:
45: // definition of Meow method
46: // returns: void
47: // parameters: None
48: // action: Prints “meow” to screen

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 159

49: void Cat::Meow()
50: {
51: std::cout << “Meow.\n”;
52: }
53:
54: // demonstrate various violations of the
55: // interface, and resulting compiler errors
56: int main()
57: {
58: Cat Frisky; // doesn’t match declaration
59: Frisky.Meow();
60: Frisky.Bark(); // No, silly, cat’s can’t bark.
61: Frisky.itsAge = 7; // itsAge is private
62: return 0;
63: }

As it is written, this program doesn’t compile. Therefore, there is no output.

This program was fun to write because so many errors are in it.

Line 10 declares GetAge() to be a const accessor function—as it should be. In the body
of GetAge(), however, on line 32, the member variable itsAge is incremented. Because
this method is declared to be const, it must not change the value of itsAge. Therefore, it
is flagged as an error when the program is compiled.

On line 12, Meow() is not declared const. Although this is not an error, it is poor pro-
gramming practice. A better design takes into account that this method doesn’t change
the member variables of Cat. Therefore, Meow() should be const.

Line 58 shows the creation of a Cat object, Frisky. Cat now has a constructor, which
takes an integer as a parameter. This means that you must pass in a parameter. Because
no parameter exists on line 58, it is flagged as an error.

160 Day 6

LISTING 6.5 continued

ANALYSIS

If you provide any constructor, the compiler will not provide one at all. Thus,
if you create a constructor that takes a parameter, you then have no default
constructor unless you write your own.

NOTE

Line 60 shows a call to a class method, Bark(). Bark() was never declared. Therefore, it
is illegal.

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 160

Understanding Object-Oriented Programming 161

6

Line 61 shows itsAge being assigned the value 7. Because itsAge is a private data
member, it is flagged as an error when the program is compiled.

Why Use the Compiler to Catch Errors?

Although it would be wonderful to write 100 percent bug-free code, few programmers
have been able to do so. However, many programmers have developed a system to help
minimize bugs by catching and fixing them early in the process.

Although compiler errors are infuriating and are the bane of a programmer’s existence,
they are far better than the alternative. A weakly typed language enables you to violate
your contracts without a peep from the compiler, but your program crashes at runtime—
when, for example, your boss is watching. Worse yet, testing is of comparatively little
help in catching errors, because there are too many paths through real programs to have
any hope of testing them all.

Compile-time errors—that is, errors found while you are compiling—are far better than
runtime errors—that is, errors found while you are executing the program. This is
because compile-time errors can be found much more reliably. It is possible to run a pro-
gram many times without going down every possible code path. Thus, a runtime error
can hide for quite a while. Compile-time errors are found every time you compile. Thus,
they are easier to identify and fix. It is the goal of quality programming to ensure that
the code has no runtime bugs. One tried-and-true technique to accomplish this is to use
the compiler to catch your mistakes early in the development process.

Where to Put Class Declarations and Method
Definitions

Each function that you declare for your class must have a definition. The definition is
also called the function implementation. Like other functions, the definition of a class
method has a function header and a function body.

The definition must be in a file that the compiler can find. Most C++ compilers want that
file to end with .c or .cpp. This book uses .cpp, but check your compiler to see what it
prefers.

Many compilers assume that files ending with .c are C programs, and that
C++ program files end with .cpp. You can use any extension, but .cpp mini-
mizes confusion.

NOTE

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 161

You are free to put the declaration in this file as well, but that is not good programming
practice. The convention that most programmers adopt is to put the declaration into what
is called a header file, usually with the same name but ending in .h, .hp, or .hpp. This
book names the header files with .hpp, but check your compiler to see what it prefers.

For example, you put the declaration of the Cat class into a file named Cat.hpp, and you
put the definition of the class methods into a file called Cat.cpp. You then attach the
header file to the .cpp file by putting the following code at the top of Cat.cpp:

#include “Cat.hpp”

This tells the compiler to read Cat.hpp into the file, the same as if you had typed in its
contents at this point. Be aware that some compilers insist that the capitalization agree
between your #include statement and your file system.

Why bother separating the contents of your .hpp file and your .cpp file if you’re just
going to read the .hpp file back into the .cpp file? Most of the time, clients of your class
don’t care about the implementation specifics. Reading the header file tells them every-
thing they need to know; they can ignore the implementation files. In addition, you might
very well end up including the .hpp file into more than one .cpp file.

162 Day 6

The declaration of a class tells the compiler what the class is, what data it
holds, and what functions it has. The declaration of the class is called its
interface because it tells the user how to interact with the class. The inter-
face is usually stored in an .hpp file, which is referred to as a header file.

The function definition tells the compiler how the function works. The func-
tion definition is called the implementation of the class method, and it is
kept in a .cpp file. The implementation details of the class are of concern
only to the author of the class. Clients of the class—that is, the parts of the
program that use the class—don’t need to know, and don’t care, how the
functions are implemented.

NOTE

Inline Implementation
Just as you can ask the compiler to make a regular function inline, you can make class
methods inline. The keyword inline appears before the return type. The inline imple-
mentation of the GetWeight() function, for example, looks like this:

inline int Cat::GetWeight()
{

return itsWeight; // return the Weight data member
}

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 162

Understanding Object-Oriented Programming 163

6

You can also put the definition of a function into the declaration of the class, which auto-
matically makes that function inline. For example,

class Cat
{
public:
int GetWeight() { return itsWeight; } // inline
void SetWeight(int aWeight);

};

Note the syntax of the GetWeight() definition. The body of the inline function begins
immediately after the declaration of the class method; no semicolon is used after the
parentheses. Like any function, the definition begins with an opening brace and ends
with a closing brace. As usual, whitespace doesn’t matter; you could have written the
declaration as

class Cat
{
public:
int GetWeight() const
{

return itsWeight;
} // inline
void SetWeight(int aWeight);

};

Listings 6.6 and 6.7 re-create the Cat class, but they put the declaration in Cat.hpp and
the implementation of the functions in Cat.cpp. Listing 6.7 also changes the accessor
functions and the Meow() function to inline.

LISTING 6.6 Cat Class Declaration in Cat.hpp

1: #include <iostream>
2: class Cat
3: {
4: public:
5: Cat (int initialAge);
6: ~Cat();
7: int GetAge() const { return itsAge;} // inline!
8: void SetAge (int age) { itsAge = age;} // inline!
9: void Meow() const { std::cout << “Meow.\n”;} // inline!
10: private:
11: int itsAge;
12: };

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 163

LISTING 6.7 Cat Implementation in Cat.cpp

1: // Demonstrates inline functions
2: // and inclusion of header files
3: // be sure to include the header files!
4: #include “Cat.hpp”
5:
6:
7: Cat::Cat(int initialAge) //constructor
8: {
9: itsAge = initialAge;
10: }
11:
12: Cat::~Cat() //destructor, takes no action
13: {
14: }
15:
16: // Create a cat, set its age, have it
17: // meow, tell us its age, then meow again.
18: int main()
19: {
20: Cat Frisky(5);
21: Frisky.Meow();
22: std::cout << “Frisky is a cat who is “ ;
23: std::cout << Frisky.GetAge() << “ years old.\n”;
24: Frisky.Meow();
25: Frisky.SetAge(7);
26: std::cout << “Now Frisky is “ ;
27: std::cout << Frisky.GetAge() << “ years old.\n”;
28: return 0;
29: }

Meow.
Frisky is a cat who is 5 years old.
Meow.
Now Frisky is 7 years old.

The code presented in Listing 6.6 and Listing 6.7 is similar to the code in Listing
6.4, except that three of the methods are written inline in the declaration file and

the declaration has been separated into Cat.hpp (Listing 6.6).

GetAge() is declared on line 6 of Cat.hpp, and its inline implementation is provided.
Lines 7 and 8 provide more inline functions, but the functionality of these functions is
unchanged from the previous “outline” implementations.

Line 4 of Cat.cpp (Listing 6.7) shows #include “Cat.hpp”, which brings in the listings
from Cat.hpp. By including Cat.hpp, you have told the precompiler to read Cat.hpp into
the file as if it had been typed there, starting on line 5.

OUTPUT

164 Day 6

ANALYSIS

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 164

Understanding Object-Oriented Programming 165

6

This technique enables you to put your declarations into a different file from your imple-
mentation, yet have that declaration available when the compiler needs it. This is a very
common technique in C++ programming. Typically, class declarations are in an .hpp file
that is then #included into the associated .cpp file.

Lines 18–29 repeat the main function from Listing 6.4. This shows that making these
functions inline doesn’t change their performance.

Classes with Other Classes as Member Data
It is not uncommon to build up a complex class by declaring simpler classes and includ-
ing them in the declaration of the more complicated class. For example, you might
declare a wheel class, a motor class, a transmission class, and so forth, and then combine
them into a car class. This declares a has-a relationship. A car has a motor, it has wheels,
and it has a transmission.

Consider a second example. A rectangle is composed of lines. A line is defined by two
points. A point is defined by an x-coordinate and a y-coordinate. Listing 6.8 shows a
complete declaration of a Rectangle class, as might appear in Rectangle.hpp. Because
a rectangle is defined as four lines connecting four points, and each point refers to a
coordinate on a graph, you first declare a Point class to hold the x- and y-coordinates of
each point. Listing 6.9 provides the implementation for both classes.

LISTING 6.8 Declaring a Complete Class

1: // Begin Rectangle.hpp
2: #include <iostream>
3: class Point // holds x,y coordinates
4: {
5: // no constructor, use default
6: public:
7: void SetX(int x) { itsX = x; }
8: void SetY(int y) { itsY = y; }
9: int GetX()const { return itsX;}
10: int GetY()const { return itsY;}
11: private:
12: int itsX;
13: int itsY;
14: }; // end of Point class declaration
15:
16:
17: class Rectangle
18: {
19: public:
20: Rectangle (int top, int left, int bottom, int right);

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 165

21: ~Rectangle () {}
22:
23: int GetTop() const { return itsTop; }
24: int GetLeft() const { return itsLeft; }
25: int GetBottom() const { return itsBottom; }
26: int GetRight() const { return itsRight; }
27:
28: Point GetUpperLeft() const { return itsUpperLeft; }
29: Point GetLowerLeft() const { return itsLowerLeft; }
30: Point GetUpperRight() const { return itsUpperRight; }
31: Point GetLowerRight() const { return itsLowerRight; }
32:
33: void SetUpperLeft(Point Location) {itsUpperLeft = Location;}
34: void SetLowerLeft(Point Location) {itsLowerLeft = Location;}
35: void SetUpperRight(Point Location) {itsUpperRight = Location;}
36: void SetLowerRight(Point Location) {itsLowerRight = Location;}
37:
38: void SetTop(int top) { itsTop = top; }
39: void SetLeft (int left) { itsLeft = left; }
40: void SetBottom (int bottom) { itsBottom = bottom; }
41: void SetRight (int right) { itsRight = right; }
42:
43: int GetArea() const;
44:
45: private:
46: Point itsUpperLeft;
47: Point itsUpperRight;
48: Point itsLowerLeft;
49: Point itsLowerRight;
50: int itsTop;
51: int itsLeft;
52: int itsBottom;
53: int itsRight;
54: };
55: // end Rectangle.hpp

LISTING 6.9 Rect.cpp

1: // Begin Rect.cpp
2: #include “Rectangle.hpp”
3: Rectangle::Rectangle(int top, int left, int bottom, int right)
4: {
5: itsTop = top;
6: itsLeft = left;
7: itsBottom = bottom;
8: itsRight = right;

166 Day 6

LISTING 6.8 continued

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 166

Understanding Object-Oriented Programming 167

6

9:
10: itsUpperLeft.SetX(left);
11: itsUpperLeft.SetY(top);
12:
13: itsUpperRight.SetX(right);
14: itsUpperRight.SetY(top);
15:
16: itsLowerLeft.SetX(left);
17: itsLowerLeft.SetY(bottom);
18:
19: itsLowerRight.SetX(right);
20: itsLowerRight.SetY(bottom);
21: }
22:
23:
24: // compute area of the rectangle by finding sides,
25: // establish width and height and then multiply
26: int Rectangle::GetArea() const
27: {
28: int Width = itsRight-itsLeft;
29: int Height = itsTop - itsBottom;
30: return (Width * Height);
31: }
32:
33: int main()
34: {
35: //initialize a local Rectangle variable
36: Rectangle MyRectangle (100, 20, 50, 80);
37:
38: int Area = MyRectangle.GetArea();
39:
40: std::cout << “Area: “ << Area << “\n”;
41: std::cout << “Upper Left X Coordinate: “;
42: std::cout << MyRectangle.GetUpperLeft().GetX();
43: return 0;
44: }

Area: 3000
Upper Left X Coordinate: 20

Lines 3–14 in Rectangle.hpp (Listing 6.8) declare the class Point, which is
used to hold a specific x- and y-coordinate on a graph. As written, this program

doesn’t use Points much; however, other drawing methods require Points.

OUTPUT

LISTING 6.9 continued

ANALYSIS

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 167

168 Day 6

Some compilers report an error if you declare a class named Rectangle. This
is usually because of the existence of an internal class named Rectangle. If
you have this problem, simply rename your class to myRectangle.

NOTE

Within the declaration of the class Point, you declare two member variables (itsX and
itsY) on lines 12 and 13. These variables hold the values of the coordinates. As the x-
coordinate increases, you move to the right on the graph. As the y-coordinate increases,
you move upward on the graph. Other graphs use different systems. Some windowing
programs, for example, increase the y-coordinate as you move down in the window.

The Point class uses inline accessor functions declared on lines 7–10 to get and set the x
and y points. The Points class uses the default constructor and destructor. Therefore, you
must set their coordinates explicitly.

Line 17 begins the declaration of a Rectangle class. A Rectangle consists of four points
that represent the corners of the Rectangle.

The constructor for the Rectangle (line 20) takes four integers, known as top, left,
bottom, and right. The four parameters to the constructor are copied into four member
variables (Listing 6.9), and then the four Points are established.

In addition to the usual accessor functions, Rectangle has a function GetArea() declared
on line 43. Instead of storing the area as a variable, the GetArea() function computes the
area on lines 28 and 29 of Listing 6.9. To do this, it computes the width and the height of
the rectangle, and then it multiplies these two values.

Getting the x-coordinate of the upper-left corner of the rectangle requires that you access
the UpperLeft point and ask that point for its x value. Because GetUpperLeft() is a
method of Rectangle, it can directly access the private data of Rectangle, including
itsUpperLeft. Because itsUpperLeft is a Point and Point’s itsX value is private,
GetUpperLeft() cannot directly access this data. Rather, it must use the public accessor
function GetX() to obtain that value.

Line 33 of Listing 6.9 is the beginning of the body of the actual program. Until line 36,
no memory has been allocated, and nothing has really happened. The only thing you’ve
done is tell the compiler how to make a point and how to make a rectangle, in case one is
ever needed.

On line 36, you define a Rectangle by passing in values for top, left, bottom, and
right.

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 168

Understanding Object-Oriented Programming 169

6

On line 38, you make a local variable, Area, of type int. This variable holds the area of
the Rectangle that you’ve created. You initialize Area with the value returned by
Rectangle’s GetArea() function. A client of Rectangle could create a Rectangle object
and get its area without ever looking at the implementation of GetArea().

Rectangle.hpp is shown in Listing 6.8. Just by looking at the header file, which contains
the declaration of the Rectangle class, the programmer knows that GetArea() returns an
int. How GetArea() does its magic is not of concern to the user of class Rectangle. In
fact, the author of Rectangle could change GetArea() without affecting the programs
that use the Rectangle class as long as it still returned an integer.

Line 42 of Listing 6.9 might look a little strange, but if you think about what is happen-
ing, it should be clear. In this line of code, you are getting the x-coordinate from the
upper-left point of your rectangle. In this line of code, you are calling the
GetUpperLeft() method of your rectangle, which returns to you a Point. From this
Point, you want to get the x-coordinate. You saw that the accessor for an x-coordinate in
the Point class is GetX(). Line 42 simply puts the GetUpperLeft() and GetX() acces-
sors together:

MyRectangle.GetUpperLeft().GetX();

This gets the x-coordinate from the upper-left point coordinate that is accessed from the
MyRectangle object.

FAQ

What is the difference between declaring and defining?

Answer: A declaration introduces a name of something but does not allocate memory. A
definition allocates memory.

With a few exceptions, all declarations are also definitions. The most important excep-
tions are the declaration of a global function (a prototype) and the declaration of a class
(usually in a header file).

Exploring Structures
A very close cousin to the keyword class is the keyword struct, which is used to
declare a structure. In C++, a struct is the same as a class, except that its members are
public by default. You can declare a structure exactly as you declare a class, and you can
give it the same data members and functions. In fact, if you follow the good program-
ming practice of always explicitly declaring the private and public sections of your class,
no difference will exist whatsoever.

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 169

Try re-entering Listing 6.8 with these changes:

• On line 3, change class Point to struct Point.

• On line 17, change class Rectangle to struct Rectangle.

Now run the program again and compare the output. No change should have occurred.

You’re probably wondering why two keywords do the same thing. This is an accident of
history. When C++ was developed, it was built as an extension of the C language. C has
structures, although C structures don’t have class methods. Bjarne Stroustrup, the creator
of C++, built upon structs, but he changed the name to class to represent the new,
expanded functionality, and the change in the default visibility of members. This also
allowed the continued use of a vast library of C functions in C++ programs.

170 Day 6

DO put your class declaration in an .hpp
(header) file and your member functions
in a .cpp file.

DO use const whenever you can.

DON’T move on until you understand
classes.

DO DON’T

Summary
Today, you learned how to create new data types using classes. You learned how to
define variables of these new types, which are called objects.

A class can have data members, which are variables of various types, including other
classes. A class can also include member functions—also known as methods. You use
these member functions to manipulate the member data and to perform other services.

Class members, both data and functions, can be public or private. Public members are
accessible to any part of your program. Private members are accessible only to the mem-
ber functions of the class. Members of a class are private by default.

It is good programming practice to isolate the interface, or declaration, of the class in a
header file. You usually do this in a file with an .hpp extension and then use it in your
code files (.cpp) using an include statement. The implementation of the class methods
is written in a file with a .cpp extension.

Class constructors can be used to initialize object data members. Class destructors are
executed when an object is destroyed and are often used to free memory and other
resources that might be allocated by methods of the class.

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 170

Understanding Object-Oriented Programming 171

6

Q&A
Q How big is a class object?

A A class object’s size in memory is determined by the sum of the sizes of its mem-
ber variables. Class methods take up just a small amount of memory, which is used
to store information on the location of the method (a pointer).

Some compilers align variables in memory in such a way that two-byte variables
actually consume somewhat more than two bytes. Check your compiler manual to
be certain, but at this point you do not need to be concerned with these details.

Q If I declare a class Cat with a private member itsAge and then define two Cat
objects, Frisky and Boots, can Boots access Frisky’s itsAge member variable?

A No. Different instances of a class can access each other’s nonpublic data. In other
words, if Frisky and Boots are both instances of Cat, Frisky’s member functions
can access Frisky’s data and but not Boots’s data.

Q Why shouldn’t I make all the member data public?

A Making member data private enables the client of the class to use the data without
being dependent on how it is stored or computed. For example, if the Cat class has
a method GetAge(), clients of the Cat class can ask for the Cat’s age without
knowing or caring if the Cat stores its age in a member variable or computes its
age on-the-fly. This means the programmer of the Cat class can change the design
of the Cat class in the future without requiring all of the users of Cat to change
their programs as well.

Q If using a const function to change the class causes a compiler error, why
shouldn’t I just leave out the word const and be certain to avoid errors?

A If your member function logically shouldn’t change the class, using the keyword
const is a good way to enlist the compiler in helping you find mistakes. For exam-
ple, GetAge() might have no reason to change the Cat class, but your implementa-
tion has this line:

if (itsAge = 100) cout << “Hey! You’re 100 years old\n”;

Declaring GetAge() to be const causes this code to be flagged as an error. You
meant to check whether itsAge is equal to 100, but instead you inadvertently
assigned 100 to itsAge. Because this assignment changes the class—and you said
this method would not change the class—the compiler is able to find the error.

This kind of mistake can be hard to find just by scanning the code. The eye often
sees only what it expects to see. More importantly, the program might appear to
run correctly, but itsAge has now been set to a bogus number. This causes prob-
lems sooner or later.

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 171

Q Is there ever a reason to use a structure in a C++ program?

A Many C++ programmers reserve the struct keyword for classes that have no func-
tions. This is a throwback to the old C structures, which could not have functions.
Frankly, it is confusing and poor programming practice. Today’s methodless struc-
ture might need methods tomorrow. Then, you’ll be forced either to change the
type to class or to break your rule and end up with a structure with methods. If
you need to call a legacy C function that requires a particular struct, then you
would have the only good reason to use one.

Q Some people working with object-oriented programming use the term “instan-
tiation.” What is this?

A Instantiation is simply a fancy word for the process of creating an object from a
class. A specific object defined as being of the type of a class is a single instance
of a class.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson, where you will learn more about controlling the flow of your program.

Quiz
1. What is the dot operator, and what is it used for?

2. Which sets aside memory—a declaration or a definition?

3. Is the declaration of a class its interface or its implementation?

4. What is the difference between public and private data members?

5. Can member functions be private?

6. Can member data be public?

7. If you declare two Cat objects, can they have different values in their itsAge mem-
ber data?

8. Do class declarations end with a semicolon? Do class method definitions?

9. What would the header be for a Cat function, Meow, that takes no parameters and
returns void?

10. What function is called to initialize a class?

172 Day 6

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 172

Understanding Object-Oriented Programming 173

6

Exercises
1. Write the code that declares a class called Employee with these data members:

itsAge, itsYearsOfService, and itsSalary.

2. Rewrite the Employee class declaration to make the data members private, and pro-
vide public accessor methods to get and set each of the data members.

3. Write a program with the Employee class that makes two employees; sets their
itsAge, itsYearsOfService, and itsSalary; and prints their values. You’ll need
to add the code for the accessor methods as well.

4. Continuing from Exercise 3, write the code for a method of Employee that reports
how many thousands of dollars the employee earns, rounded to the nearest 1,000.

5. Change the Employee class so that you can initialize itsAge, itsYearsOfService,
and itsSalary when you create the employee.

6. BUG BUSTERS: What is wrong with the following declaration?
class Square
{
public:
int Side;

}

7. BUG BUSTERS: Why isn’t the following class declaration very useful?
class Cat
{

int GetAge() const;
private:
int itsAge;

};

8. BUG BUSTERS: What three bugs in this code should the compiler find?

class TV
{
public:
void SetStation(int Station);
int GetStation() const;

private:
int itsStation;

};

int main()
{

TV myTV;
myTV.itsStation = 9;
TV.SetStation(10);
TV myOtherTv(2);

}

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 173

08 0672327112_ch06.qxd 11/19/04 12:26 PM Page 174

DAY 7

WEEK 1

More on Program Flow
Programs accomplish most of their work by branching and looping. On Day 4,
“Creating Expressions and Statements,” you learned how to branch your pro-
gram using the if statement.

Today, you will learn

• What loops are and how they are used

• How to build various loops

• An alternative to deeply nested if...else statements

Looping
Many programming problems are solved by repeatedly acting on the same data.
Two ways to do this are recursion (discussed on Day 5, “Organizing into
Functions”) and iteration. Iteration means doing the same thing again and
again. The principal method of iteration is the loop.

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 175

The Roots of Looping: goto
In the primitive days of early computer science, programs were nasty, brutish, and short.
Loops consisted of a label, some statements, and a jump that went to the label.

In C++, a label is just a name followed by a colon (:). The label is placed to the left of a
legal C++ statement. A jump is accomplished by writing goto followed by the name of a
label. Listing 7.1 illustrates this primitive way of looping.

LISTING 7.1 Looping with the Keyword goto

1: // Listing 7.1
2: // Looping with goto
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8: int counter = 0; // initialize counter
9: loop:
10: counter ++; // top of the loop
11: cout << “counter: “ << counter << endl;
12: if (counter < 5) // test the value
13: goto loop; // jump to the top
14:
15: cout << “Complete. Counter: “ << counter << endl;
16: return 0;
17: }

counter: 1
counter: 2
counter: 3
counter: 4
counter: 5
Complete. Counter: 5.

On line 8, counter is initialized to zero. A label called loop is on line 9, marking
the top of the loop. counter is incremented and its new value is printed on line

11. The value of counter is tested on line 12. If the value is less than 5, the if statement
is true and the goto statement is executed. This causes program execution to jump back
to the loop label on line 9. The program continues looping until counter is equal to 5, at
which time it “falls through” the loop and the final output is printed.

Why goto Is Shunned
As a rule, programmers avoid goto, and with good reason. goto statements can cause a
jump to any location in your source code, backward or forward. The indiscriminate use

OUTPUT

176 Day 7

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 176

More on Program Flow 177

7

of goto statements has caused tangled, miserable, impossible-to-read programs known as
“spaghetti code.”

The goto Statement

To use the goto statement, you write goto followed by a label name. This causes an
unconditioned jump to the label.

Example

if (value > 10)
goto end;

if (value < 10)
goto end;

cout << “value is 10!”;
end:

cout << “done”;

To avoid the use of goto, more sophisticated, tightly controlled looping commands have
been introduced: for, while, and do...while.

Using while Loops
A while loop causes your program to repeat a sequence of statements as long as the
starting condition remains true. In the goto example in Listing 7.1, the counter was
incremented until it was equal to 5. Listing 7.2 shows the same program rewritten to take
advantage of a while loop.

LISTING 7.2 while Loops

1: // Listing 7.2
2: // Looping with while
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8: int counter = 0; // initialize the condition
9:
10: while(counter < 5) // test condition still true
11: {
12: counter++; // body of the loop
13: cout << “counter: “ << counter << endl;
14: }
15:
16: cout << “Complete. Counter: “ << counter << endl;
17: return 0;
18: }

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 177

counter: 1
counter: 2
counter: 3
counter: 4
counter: 5
Complete. Counter: 5.

This simple program demonstrates the fundamentals of the while loop. On line
8, an integer variable called counter is created and initialized to zero. This is

then used as a part of a condition. The condition is tested, and if it is true, the body of
the while loop is executed. In this case, the condition tested on line 10 is whether
counter is less than 5. If the condition is true, the body of the loop is executed; on line
12, the counter is incremented, and on line 13, the value is printed. When the conditional
statement on line 10 fails (when counter is no longer less than 5), the entire body of the
while loop (lines 11–14) is skipped. Program execution falls through to line 15.

It is worth noting here that it is a good idea to always use braces around the block exe-
cuted by a loop, even when it is just a single line of code. This avoids the common error
of inadvertently putting a semicolon at the end of a loop and causing it to endlessly
repeat—for instance,

int counter = 0;
while (counter < 5);

counter++;

In this example, the counter++ is never executed.

OUTPUT

178 Day 7

ANALYSIS

The while Statement

The syntax for the while statement is as follows:

while (condition)
statement;

condition is any C++ expression, and statement is any valid C++ statement or block of
statements. When condition evaluates true, statement is executed, and then condition
is tested again. This continues until condition tests false, at which time the while loop
terminates and execution continues on the first line below statement.

Example

// count to 10
int x = 0;
while (x < 10)
cout << “X: “ << x++;

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 178

More on Program Flow 179

7

Exploring More Complicated while Statements
The condition tested by a while loop can be as complex as any legal C++ expression.
This can include expressions produced using the logical && (AND), || (OR), and !
(NOT) operators. Listing 7.3 is a somewhat more complicated while statement.

LISTING 7.3 Complex while Loops

1: // Listing 7.3
2: // Complex while statements
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8: unsigned short small;
9: unsigned long large;
10: const unsigned short MAXSMALL=65535;
11:
12: cout << “Enter a small number: “;
13: cin >> small;
14: cout << “Enter a large number: “;
15: cin >> large;
16:
17: cout << “small: “ << small << “...”;
18:
19: // for each iteration, test two conditions
20: while (small < large && small < MAXSMALL)
21: {
22: if (small % 5000 == 0) // write a dot every 5k lines
23: cout << “.”;
24:
25: small++;
26: large-=2;
27: }
28:
29: cout << “\nSmall: “ << small << “ Large: “ << large << endl;
30: return 0;
31: }

Enter a small number: 2
Enter a large number: 100000
small: 2.........
Small: 33335 Large: 33334

This program is a game. Enter two numbers, one small and one large. The
smaller number will count up by ones, and the larger number will count down by

twos. The goal of the game is to guess when they’ll meet.

OUTPUT

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 179

On lines 12–15, the numbers are entered. Line 20 sets up a while loop, which will con-
tinue only as long as two conditions are met:

1. Small is not bigger than large.

2. Small doesn’t overrun the size of a small integer (MAXSMALL).

On line 22, the value in small is calculated modulo 5,000. This does not change the
value in small; however, it only returns the value 0 when small is an exact multiple of
5,000. Each time it is, a dot (.) is printed to the screen to show progress. On line 25,
small is incremented, and on line 26, large is decremented by 2.

When either of the two conditions in the while loop fails, the loop ends and execution of
the program continues after the while loop’s closing brace on line 27.

180 Day 7

The modulus operator (%) and compound conditions were covered on Day 3,
“Working with Variables and Constants.”

NOTE

Introducing continue and break
At times, you’ll want to return to the top of a while loop before the entire set of state-
ments in the while loop is executed. The continue statement jumps back to the top of
the loop.

At other times, you might want to exit the loop before the exit conditions are met. The
break statement immediately exits the while loop, and program execution resumes after
the closing brace.

Listing 7.4 demonstrates the use of these statements. This time, the game has become
more complicated. The user is invited to enter a small number and a large number, a skip
number, and a target number. The small number will be incremented by one, and the
large number will be decremented by 2. The decrement will be skipped each time the
small number is a multiple of the skip. The game ends if small becomes larger than
large. If the large number reaches the target exactly, a statement is printed and the game
stops.

The user’s goal is to put in a target number for the large number that will stop the game.

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 180

More on Program Flow 181

7

LISTING 7.4 break and continue

1: // Listing 7.4 - Demonstrates break and continue
2: #include <iostream>
3:
4: int main()
5: {
6: using namespace std;
7:
8: unsigned short small;
9: unsigned long large;
10: unsigned long skip;
11: unsigned long target;
12: const unsigned short MAXSMALL=65535;
13:
14: cout << “Enter a small number: “;
15: cin >> small;
16: cout << “Enter a large number: “;
17: cin >> large;
18: cout << “Enter a skip number: “;
19: cin >> skip;
20: cout << “Enter a target number: “;
21: cin >> target;
22:
23: cout << “\n”;
24:
25: // set up 2 stop conditions for the loop
26: while (small < large && small < MAXSMALL)
27: {
28: small++;
29:
30: if (small % skip == 0) // skip the decrement?
31: {
32: cout << “skipping on “ << small << endl;
33: continue;
34: }
35:
36: if (large == target) // exact match for the target?
37: {
38: cout << “Target reached!”;
39: break;
40: }
41:
42: large-=2;
43: } // end of while loop
44:
45: cout << “\nSmall: “ << small << “ Large: “ << large << endl;
46: return 0;
47: }

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 181

Enter a small number: 2
Enter a large number: 20
Enter a skip number: 4
Enter a target number: 6

skipping on 4
skipping on 8

Small: 10 Large: 8

In this play, the user lost; small became larger than large before the target num-
ber of 6 was reached.

On line 26, the while conditions are tested. If small continues to be smaller than large
and if small hasn’t overrun the maximum value for a small int, the body of the while
loop is entered.

On line 30, the small value is taken modulo the skip value. If small is a multiple of skip,
the continue statement is reached and program execution jumps to the top of the loop
back at line 26. This effectively skips over the test for the target and the decrement of
large.

On line 36, target is tested against the value for large. If they are the same, the user
has won. A message is printed and the break statement is reached and executed. This
causes an immediate break out of the while loop, and program execution resumes on
line 44.

OUTPUT

182 Day 7

ANALYSIS

Both continue and break should be used with caution. They are the next
most dangerous commands after goto, for much the same reason. Programs
that suddenly change direction are harder to understand, and liberal use of
continue and break can render even a small while loop unreadable.

A need for breaking within a loop often indicates that the terminating con-
dition of the loop has not been set up with the appropriate Boolean expres-
sion. It is often better to use an if statement within a loop to skip some
lines than to use a breaking statement.

NOTE

The continue Statement

continue; causes a while, do...while, or for loop to begin again at the top of the loop.

See Listing 7.4 for an example of using continue.

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 182

More on Program Flow 183

7

Examining while (true) Loops
The condition tested in a while loop can be any valid C++ expression. As long as that
condition remains true, the while loop continues. You can create a loop that never ends
by using the value true for the condition to be tested. Listing 7.5 demonstrates counting
to 10 using this construct.

LISTING 7.5 while Loops

1: // Listing 7.5
2: // Demonstrates a while true loop
3: #include <iostream>
4:
5: int main()
6: {
7: int counter = 0;
8:
9: while (true)
10: {
11: counter ++;
12: if (counter > 10)
13: break;
14: }
15: std::cout << “Counter: “ << counter << std::endl;
16: return 0;
17: }

Counter: 11

On line 9, a while loop is set up with a condition that can never be false. The
loop increments the counter variable on line 11, and then on line 12 it tests to see

OUTPUT

The break Statement

break; causes the immediate end of a while, do...while, or for loop. Execution jumps to
the closing brace.

Example

while (condition)
{

if (condition2)
break;

// statements;
}

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 183

whether counter has gone past 10. If it hasn’t, the while loop iterates. If counter is
greater than 10, the break on line 13 ends the while loop, and program execution falls
through to line 15, where the results are printed.

This program works, but it isn’t pretty. This is a good example of using the wrong tool
for the job. The same thing can be accomplished by putting the test of counter’s value
where it belongs—in the while condition.

184 Day 7

Eternal loops such as while (true) can cause your computer to hang if
the exit condition is never reached. Use these with caution and test them
thoroughly.

CAUTION

C++ gives you many ways to accomplish the same task. The real trick is picking the
right tool for the particular job.

DO use while loops to iterate while a
condition is true.

DO exercise caution when using con-
tinue and break statements.

DO be certain your loop will eventually
end.

DON’T use the goto statement.

DON’T forget the difference between
continue and break. continue goes to
the top; break goes to the bottom.

DO DON’T

Implementing do...while Loops
It is possible that the body of a while loop will never execute. The while statement
checks its condition before executing any of its statements, and if the condition evaluates
false, the entire body of the while loop is skipped. Listing 7.6 illustrates this.

LISTING 7.6 Skipping the Body of the while Loop

1: // Listing 7.6
2: // Demonstrates skipping the body of
3: // the while loop when the condition is false.
4:
5: #include <iostream>
6:

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 184

More on Program Flow 185

7

7: int main()
8: {
9: int counter;
10: std::cout << “How many hellos?: “;
11: std::cin >> counter;
12: while (counter > 0)
13: {
14: std::cout << “Hello!\n”;
15: counter--;
16: }
17: std::cout << “Counter is OutPut: “ << counter;
18: return 0;
19: }

How many hellos?: 2
Hello!
Hello!
Counter is OutPut: 0

How many hellos?: 0
Counter is OutPut: 0

The user is prompted for a starting value on line 10. This starting value is stored
in the integer variable counter. The value of counter is tested on line 12 and

decremented in the body of the while loop. In the output, you can see that the first time
through, counter was set to 2, and so the body of the while loop ran twice. The second
time through, however, the 0 was entered. The value of counter was tested on line 12
and the condition was false; counter was not greater than 0. The entire body of the
while loop was skipped, and Hello was never printed.

What if you want to ensure that Hello is always printed at least once? The while loop
can’t accomplish this because the if condition is tested before any printing is done. You
can force the issue with an if statement just before entering the while loop

if (counter < 1) // force a minimum value
counter = 1;

but that is what programmers call a “kludge” (pronounced klooj to rhyme with stooge),
an ugly and inelegant solution.

OUTPUT

LISTING 7.6 continued

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 185

Using do...while
The do...while loop executes the body of the loop before its condition is tested, thus
ensuring that the body always executes at least one time. Listing 7.7 rewrites Listing 7.6,
this time using a do...while loop.

LISTING 7.7 Demonstrates do...while Loop

1: // Listing 7.7
2: // Demonstrates do while
3:
4: #include <iostream>
5:
6: int main()
7: {
8: using namespace std;
9: int counter;
10: cout << “How many hellos? “;
11: cin >> counter;
12: do
13: {
14: cout << “Hello\n”;
15: counter--;
16: } while (counter >0);
17: cout << “Counter is: “ << counter << endl;
18: return 0;
19: }

How many hellos? 2
Hello
Hello
Counter is: 0

Like the previous program, Listing 7.7 prints the word “Hello” to the console a
specified number of times. Unlike the preceding program, however, this program

will always print at least once.

The user is prompted for a starting value on line 10, which is stored in the integer vari-
able counter. In the do...while loop, the body of the loop is entered before the condi-
tion is tested, and, therefore, the body of the loop is guaranteed to run at least once. On
line 14, the hello message is printed, on line 15 the counter is decremented, and then
finally, on line 16 the condition is tested. If the condition evaluates true, execution jumps
to the top of the loop on line 13; otherwise, it falls through to line 17.

The continue and break statements work in the do...while loop exactly as they do in
the while loop. The only difference between a while loop and a do...while loop is
when the condition is tested.

OUTPUT

186 Day 7

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 186

More on Program Flow 187

7

The do...while Statement

The syntax for the do...while statement is as follows:

do
statement

while (condition);

statement is executed, and then condition is evaluated. If condition is true, the loop is
repeated; otherwise, the loop ends. The statements and conditions are otherwise identi-
cal to the while loop.

Example 1

// count to 10
int x = 0;
do
cout << “X: “ << x++;

while (x < 10)

Example 2

// print lowercase alphabet.
char ch = ‘a’;
do
{

cout << ch << ‘ ‘;
ch++;

} while (ch <= ‘z’);

DO use do...while when you want to
ensure the loop is executed at least once.

DO use while loops when you want to
skip the loop if the condition is false.

DO test all loops to be certain they do
what you expect.

DON’T use break and continue with
loops unless it is clear what your code is
doing. There are often clearer ways to
accomplish the same tasks.

DON’T use the goto statement.

DO DON’T

Looping with the for Statement
When programming while loops, you’ll often find yourself going through three steps:
setting up a starting condition, testing to see whether the condition is true, and incre-
menting or otherwise changing a variable each time through the loop. Listing 7.8 demon-
strates this.

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 187

LISTING 7.8 while Reexamined

1: // Listing 7.8
2: // Looping with while
3:
4: #include <iostream>
5:
6: int main()
7: {
8: int counter = 0;
9:
10: while(counter < 5)
11: {
12: counter++;
13: std::cout << “Looping! “;
14: }
15:
16: std::cout << “\nCounter: “ << counter << std::endl;
17: return 0;
18: }

Looping! Looping! Looping! Looping! Looping!
Counter: 5.

In this listing, you can see that three steps are occurring. First, the starting condi-
tion is set on line 8: counter is initialized to 0. On line 10, the test of the condi-

tion occurs when counter is tested to see if it is less than 5. Finally, the counter variable
is incremented on line 12. This loop prints a simple message at line 13. As you can imag-
ine, more important work could be done for each increment of the counter.

A for loop combines the three steps into one statement. The three steps are initializing,
testing, and incrementing. A for statement consists of the keyword for followed by a
pair of parentheses. Within the parentheses are three statements separated by semicolons:

for(initialization; test ; action)
{

...
}

The first expression, initialization, is the starting conditions or initialization. Any
legal C++ statement can be put here, but typically this is used to create and initialize a
counting variable. The second expression, test, is the test, and any legal C++ expression
can be used here. This test serves the same role as the condition in the while loop. The
third expression, action, is the action that will take place. This action is typically the
increment or decrement of a value, though any legal C++ statement can be put here.
Listing 7.9 demonstrates a for loop by rewriting Listing 7.8.

OUTPUT

188 Day 7

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 188

More on Program Flow 189

7

LISTING 7.9 Demonstrating the for Loop

1: // Listing 7.9
2: // Looping with for
3:
4: #include <iostream>
5:
6: int main()
7: {
8: int counter;
9: for (counter = 0; counter < 5; counter++)
10: std::cout << “Looping! “;
11:
12: std::cout << “\nCounter: “ << counter << std::endl;
13: return 0;
14: }

Looping! Looping! Looping! Looping! Looping!
Counter: 5.

The for statement on line 9 combines the initialization of counter, the test that
counter is less than 5, and the increment of counter all into one line. The body

of the for statement is on line 10. Of course, a block could be used here as well.

OUTPUT

ANALYSIS

The for Statement

The syntax for the for statement is as follows:

for (initialization; test; action)
statement;

The initialization statement is used to initialize the state of a counter, or to otherwise
prepare for the loop. test is any C++ expression and is evaluated each time through the
loop. If test is true, the body of the for loop is executed and then the action in the
header is executed (typically the counter is incremented).

Example 1

// print Hello ten times
for (int i = 0; i<10; i++)

cout << “Hello! “;

Example 2

for (int i = 0; i < 10; i++)
{

cout << “Hello!” << endl;
cout << “the value of i is: “ << i << endl;

}

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 189

Advanced for Loops
for statements are powerful and flexible. The three independent statements (initial-
ization, test, and action) lend themselves to a number of variations.

Multiple Initialization and Increments
It is not uncommon to initialize more than one variable, to test a compound logical
expression, and to execute more than one statement. The initialization and the action can
be replaced by multiple C++ statements, each separated by a comma. Listing 7.10
demonstrates the initialization and increment of two variables.

LISTING 7.10 Demonstrating Multiple Statements in for Loops

1: //Listing 7.10
2: // Demonstrates multiple statements in
3: // for loops
4: #include <iostream>
5:
6: int main()
7: {
8:
9: for (int i=0, j=0; i<3; i++, j++)
10: std::cout << “i: “ << i << “ j: “ << j << std::endl;
11: return 0;
12: }

i: 0 j: 0
i: 1 j: 1
i: 2 j: 2

On line 9, two variables, i and j, are each initialized with the value 0. A comma
is used to separate the two separate expressions. You can also see that these ini-

tializations are separated from the test condition by the expected semicolon.

When this program executes, the test (i<3) is evaluated, and because it is true, the body
of the for statement is executed, where the values are printed. Finally, the third clause in
the for statement is executed. As you can see, two expressions are here as well. In this
case, both i and j are incremented.

After line 10 completes, the condition is evaluated again, and if it remains true, the
actions are repeated (i and j are again incremented), and the body of the loop is exe-
cuted again. This continues until the test fails, in which case the action statement is not
executed, and control falls out of the loop.

OUTPUT

190 Day 7

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 190

More on Program Flow 191

7

Null Statements in for Loops
Any or all the statements in a for loop can be left out. To accomplish this, you use a null
statement. A null statement is simply the use of a semicolon (;) to mark where the state-
ment would have been. Using a null statement, you can create a for loop that acts
exactly like a while loop by leaving out the first and third statements. Listing 7.11 illus-
trates this idea.

LISTING 7.11 Null Statements in for Loops

1: // Listing 7.11
2: // For loops with null statements
3:
4: #include <iostream>
5:
6: int main()
7: {
8: int counter = 0;
9:
10: for(; counter < 5;)
11: {
12: counter++;
13: std::cout << “Looping! “;
14: }
15:
16: std::cout << “\nCounter: “ << counter << std::endl;
17: return 0;
18: }

Looping! Looping! Looping! Looping! Looping!
Counter: 5.

You might recognize this as exactly like the while loop illustrated in Listing 7.8.
On line 8, the counter variable is initialized. The for statement on line 10 does

not initialize any values, but it does include a test for counter < 5. No increment state-
ment exists, so this loop behaves exactly as if it had been written:

while (counter < 5)

You can once again see that C++ gives you several ways to accomplish the same thing.
No experienced C++ programmer would use a for loop in this way shown in Listing
7.11, but it does illustrate the flexibility of the for statement. In fact, it is possible, using
break and continue, to create a for loop with none of the three statements. Listing 7.12
illustrates how.

OUTPUT

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 191

LISTING 7.12 Illustrating an Empty for Loop Statement

1: //Listing 7.12 illustrating
2: //empty for loop statement
3:
4: #include <iostream>
5:
6: int main()
7: {
8: int counter=0; // initialization
9: int max;
10: std::cout << “How many hellos? “;
11: std::cin >> max;
12: for (;;) // a for loop that doesn’t end
13: {
14: if (counter < max) // test
15: {
16: std::cout << “Hello! “ << std::endl;
17: counter++; // increment
18: }
19: else
20: break;
21: }
22: return 0;
23: }

How many hellos? 3
Hello!
Hello!
Hello!

The for loop has now been pushed to its absolute limit. Initialization, test, and
action have all been taken out of the for statement on line 12. The initialization

is done on line 8, before the for loop begins. The test is done in a separate if statement
on line 14, and if the test succeeds, the action, an increment to counter, is performed on
line 17. If the test fails, breaking out of the loop occurs on line 20.

Although this particular program is somewhat absurd, sometimes a for(;;) loop or a
while (true) loop is just what you’ll want. You’ll see an example of a more reasonable
use of such loops when switch statements are discussed later today.

Empty for Loops
Because so much can be done in the header of a for statement, at times you won’t need
the body to do anything at all. In that case, be certain to put a null statement (;) as the
body of the loop. The semicolon can be on the same line as the header, but this is easy to
overlook. Listing 7.13 illustrates an appropriate way to use a null body in a for loop.

OUTPUT

192 Day 7

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 192

More on Program Flow 193

7

LISTING 7.13 Illustrates the Null Statement in a for Loop

1: //Listing 7.13
2: //Demonstrates null statement
3: // as body of for loop
4:
5: #include <iostream>
6: int main()
7: {
8: for (int i = 0; i<5; std::cout << “i: “ << i++ << std::endl)
9: ;
10: return 0;
11: }

i: 0
i: 1
i: 2
i: 3
i: 4

The for loop on line 8 includes three statements: The initialization statement
establishes the counter i and initializes it to 0. The condition statement tests for

i<5, and the action statement prints the value in i and increments it.

Nothing is left to do in the body of the for loop, so the null statement (;) is used. Note
that this is not a well-designed for loop: The action statement is doing far too much.
This would be better rewritten as

8: for (int i = 0; i<5; i++)
9: cout << “i: “ << i << endl;

Although both do the same thing, this example is easier to understand.

Nesting Loops
Any of the loop can be nested within the body of another. The inner loop will be exe-
cuted in full for every execution of the outer loop. Listing 7.14 illustrates writing marks
into a matrix using nested for loops.

LISTING 7.14 Illustrates Nested for Loops

1: //Listing 7.14
2: //Illustrates nested for loops
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;

OUTPUT

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 193

8: int rows, columns;
9: char theChar;
10: cout << “How many rows? “;
11: cin >> rows;
12: cout << “How many columns? “;
13: cin >> columns;
14: cout << “What character? “;
15: cin >> theChar;
16: for (int i = 0; i<rows; i++)
17: {
18: for (int j = 0; j<columns; j++)
19: cout << theChar;
20: cout << endl;
21: }
22: return 0;
23: }

How many rows? 4
How many columns? 12
What character? X
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

In this listing, the user is prompted for the number of rows and columns and for a
character to print. The first for loop, on line 16, initializes a counter (i) to 0, and

then the body of the outer for loop is run.

On line 18, the first line of the body of the outer for loop, another for loop is estab-
lished. A second counter (j) is initialized to 0, and the body of the inner for loop is exe-
cuted. On line 19, the chosen character is printed, and control returns to the header of the
inner for loop. Note that the inner for loop is only one statement (the printing of the
character). The condition is tested (j < columns) and if it evaluates true, j is incre-
mented and the next character is printed. This continues until j equals the number of
columns.

When the inner for loop fails its test, in this case after 12 Xs are printed, execution falls
through to line 20, and a new line is printed. The outer for loop now returns to its
header, where its condition (i < rows) is tested. If this evaluates true, i is incremented
and the body of the loop is executed.

In the second iteration of the outer for loop, the inner for loop is started over. Thus, j is
reinitialized to 0 and the entire inner loop is run again.

OUTPUT

194 Day 7

LISTING 7.14 continued

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 194

More on Program Flow 195

7

The important idea here is that by using a nested loop, the inner loop is executed for
each iteration of the outer loop. Thus, the character is printed columns times for
each row.

As an aside, many C++ programmers use the letters i and j as counting vari-
ables. This tradition goes all the way back to FORTRAN, in which the letters
i, j, k, l, m, and n were the only counting variables.

Although this might seem innocuous, readers of your program can become
confused by the purpose of the counter, and might use it improperly. You
can even become confused in a complex program with nested loops. It is
better to indicate the use of the index variable in its name—for instance,
CustomerIndex or InputCounter.

NOTE

Scoping in for Loops
In the past, variables declared in the for loop were scoped to the outer block. The
American National Standards Institute (ANSI) standard changes this to scope these vari-
ables only to the block of the for loop itself; however, not every compiler supports this
change. You can test your compiler with the following code:

#include <iostream>
int main()
{

// i scoped to the for loop?
for (int i = 0; i<5; i++)
{

std::cout << “i: “ << i << std::endl;
}

i = 7; // should not be in scope!
return 0;

}

If this compiles without complaint, your compiler does not yet support this aspect of the
ANSI standard.

If your compiler complains that i is not yet defined (in the line i=7), your compiler does
support the new standard. You can write code that will compile on either compiler by
declaring i outside of the loop, as shown here:

#include <iostream>
int main()
{

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 195

int i; //declare outside the for loop
for (i = 0; i<5; i++)
{

std::cout << “i: “ << i << std::endl;
}

i = 7; // now this is in scope for all compilers
return 0;

}

Summing Up Loops
On Day 5, you learned how to solve the Fibonacci series problem using recursion. To
review briefly, a Fibonacci series starts with 1, 1, 2, 3, and all subsequent numbers are
the sum of the previous two:

1,1,2,3,5,8,13,21,34…

The nth Fibonacci number is the sum of the n-1 and the n-2 Fibonacci numbers. The
problem solved on Day 5 was finding the value of the nth Fibonacci number. This was
done with recursion. Listing 7.15 offers a solution using iteration.

LISTING 7.15 Solving the nth Fibonacci Number Using Iteration

1: // Listing 7.15 - Demonstrates solving the nth
2: // Fibonacci number using iteration
3:
4: #include <iostream>
5:
6: unsigned int fib(unsigned int position);
7: int main()
8: {
9: using namespace std;
10: unsigned int answer, position;
11: cout << “Which position? “;
12: cin >> position;
13: cout << endl;
14:
15: answer = fib(position);
16: cout << answer << “ is the “;
17: cout << position << “th Fibonacci number. “ << endl;
18: return 0;
19: }
20:
21: unsigned int fib(unsigned int n)
22: {
23: unsigned int minusTwo=1, minusOne=1, answer=2;
24:

196 Day 7

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 196

More on Program Flow 197

7

25: if (n < 3)
26: return 1;
27:
28: for (n -= 3; n != 0; n--)
29: {
30: minusTwo = minusOne;
31: minusOne = answer;
32: answer = minusOne + minusTwo;
33: }
34:
35: return answer;
36: }

Which position? 4
3 is the 4th Fibonacci number.
Which position? 5
5 is the 5th Fibonacci number.
Which position? 20
6765 is the 20th Fibonacci number.
Which position? 100
3314859971 is the 100th Fibonacci number.

Listing 7.15 solves the Fibonacci series using iteration rather than recursion. This
approach is faster and uses less memory than the recursive solution.

On line 11, the user is asked for the position to check. The function fib() is called,
which evaluates the position. If the position is less than 3, the function returns the value
1. Starting with position 3, the function iterates using the following algorithm:

1. Establish the starting position: Fill variable answer with 2, minusTwo with 1, and
minusOne with 1. Decrement the position by 3 because the first two numbers are
handled by the starting position.

2. For every number, count up the Fibonacci series. This is done by

a. Putting the value currently in minusOne into minusTwo

b. Putting the value currently in answer into minusOne

c. Adding minusOne and minusTwo and putting the sum in answer

d. Decrementing n

3. When n reaches 0, return the answer.

This is exactly how you would solve this problem with pencil and paper. If you were
asked for the fifth Fibonacci number, you would write

1, 1, 2,

OUTPUT

LISTING 7.15 continued

ANALYSIS

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 197

and think, “two more to do.” You would then add 2+1 and write 3, and think, “one more
to find.” Finally, you would write 3+2 and the answer would be 5. In effect, you are
shifting your attention right one number each time through and decrementing the number
remaining to be found.

Note the condition tested on line 28 (n != 0). Many C++ programmers use the follow-
ing for line 28:

for (n-=3; n; n--)

You can see that instead of using a relational condition, just the value of n is used for the
condition in the for statement. This is a C++ idiom, and n is considered equivalent to n
!= 0. Using just n relies on the fact that when n reaches 0, it will evaluate false, because
0 has been considered as false in C++. In keeping with the current C++ standards, it is
better to rely on a condition to evaluate to the value of false than to use a numeric
value.

Compile, link, and run this program, along with the recursive solution offered on Day 5.
Try finding position 25 and compare the time it takes each program. Recursion is ele-
gant, but because the function call brings a performance overhead, and because it is
called so many times, its performance is noticeably slower than iteration. Microcom-
puters tend to be optimized for the arithmetic operations, so the iterative solution should
be blazingly fast.

Be careful how large a number you enter. fib grows quickly, and even unsigned long
integers will overflow after a while.

Controlling Flow with switch Statements
On Day 4, you saw how to write if and if...else statements. These can become quite
confusing when nested too deeply, and C++ offers an alternative. Unlike if, which eval-
uates one value, switch statements enable you to branch on any of several values. The
general form of the switch statement is

switch (expression)
{

case valueOne: statement;
break;

case valueTwo: statement;
break;

....
case valueN: statement;

break;
default: statement;

}

198 Day 7

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 198

More on Program Flow 199

7

expression is any legal C++ expression, and the statements are any legal C++ state-
ments or block of statements that evaluate (or can be unambiguously converted to) an
integer value. Note, however, that the evaluation is for equality only; relational operators
cannot be used here, nor can Boolean operations.

If one of the case values matches the expression, program execution jumps to those
statements and continues to the end of the switch block unless a break statement is
encountered. If nothing matches, execution branches to the optional default statement.
If no default and no matching case value exist, execution falls through the switch
statement and the statement ends.

It is almost always a good idea to have a default case in switch statements.
If you have no other need for the default, use it to test for the supposedly
impossible case, and print out an error message; this can be a tremendous
aid in debugging.

TIP

It is important to note that if no break statement is at the end of a case statement, execu-
tion falls through to the next case statement. This is sometimes necessary, but usually is
an error. If you decide to let execution fall through, be certain to put a comment indicat-
ing that you didn’t just forget the break.

Listing 7.16 illustrates use of the switch statement.

LISTING 7.16 Demonstrating the switch Statement

1: //Listing 7.16
2: // Demonstrates switch statement
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8: unsigned short int number;
9: cout << “Enter a number between 1 and 5: “;
10: cin >> number;
11: switch (number)
12: {
13: case 0: cout << “Too small, sorry!”;
14: break;
15: case 5: cout << “Good job! “ << endl; // fall through
16: case 4: cout << “Nice Pick!” << endl; // fall through
17: case 3: cout << “Excellent!” << endl; // fall through
18: case 2: cout << “Masterful!” << endl; // fall through

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 199

19: case 1: cout << “Incredible!” << endl;
20: break;
21: default: cout << “Too large!” << endl;
22: break;
23: }
24: cout << endl << endl;
25: return 0;
26: }

Enter a number between 1 and 5: 3
Excellent!
Masterful!
Incredible!

Enter a number between 1 and 5: 8
Too large!

The user is prompted for a number on lines 9 and 10. That number is given to the
switch statement on line 11. If the number is 0, the case statement on line 13

matches, the message Too small, sorry! is printed, and the break statement on line 14
ends the switch. If the value is 5, execution switches to line 15 where a message is
printed, and then falls through to line 16, another message is printed, and so forth until
hitting the break on line 20, at which time the switch ends.

The net effect of these statements is that for a number between 1 and 5, that many mes-
sages are printed. If the value of number is not 0 to 5, it is assumed to be too large, and
the default statement is invoked on line 21.

OUTPUT

200 Day 7

LISTING 7.16 continued

ANALYSIS

The switch Statement

The syntax for the switch statement is as follows:

switch (expression)
{

case valueOne: statement;
case valueTwo: statement;
....
case valueN: statement;
default: statement;

}

The switch statement allows for branching on multiple values of expression. The expres-
sion is evaluated, and if it matches any of the case values, execution jumps to that line.
Execution continues until either the end of the switch statement or a break statement is
encountered.

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 200

More on Program Flow 201

7

Using a switch Statement with a Menu
Listing 7.17 returns to the for(;;) loop discussed earlier. These loops are also called
forever loops, as they will loop forever if a break is not encountered. In Listing 7.17, the
forever loop is used to put up a menu, solicit a choice from the user, act on the choice,
and then return to the menu. This continues until the user chooses to exit.

If expression does not match any of the case statements, and if there is a default state-
ment, execution switches to the default statement, otherwise the switch statement
ends.

Example 1

switch (choice)
{

case 0:
cout << “Zero!” << endl;
break;

case 1:
cout << “One!” << endl;
break;

case 2:
cout << “Two!” << endl;

default:
cout << “Default!” << endl;

}

Example 2

switch (choice)
{

case 0:
case 1:
case 2:

cout << “Less than 3!”;
break;

case 3:
cout << “Equals 3!”;
break;

default:
cout << “greater than 3!”;

}

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 201

202 Day 7

Some programmers like to write:

#define EVER ;;
for (EVER)
{

// statements...
}

NOTE

A forever loop is a loop that does not have an exit condition. To exit the loop, a break
statement must be used. Forever loops are also known as eternal or infinite loops.

LISTING 7.17 Demonstrating a Forever Loop

1: //Listing 7.17
2: //Using a forever loop to manage user interaction
3: #include <iostream>
4:
5: // prototypes
6: int menu();
7: void DoTaskOne();
8: void DoTaskMany(int);
9:
10: using namespace std;
11:
12: int main()
13: {
14: bool exit = false;
15: for (;;)
16: {
17: int choice = menu();
18: switch(choice)
19: {
20: case (1):
21: DoTaskOne();
22: break;
23: case (2):
24: DoTaskMany(2);
25: break;
26: case (3):
27: DoTaskMany(3);
28: break;
29: case (4):
30: continue; // redundant!
31: break;
32: case (5):
33: exit=true;
34: break;

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 202

More on Program Flow 203

7

35: default:
36: cout << “Please select again! “ << endl;
37: break;
38: } // end switch
39:
40: if (exit == true)
41: break;
42: } // end forever
43: return 0;
44: } // end main()
45:
46: int menu()
47: {
48: int choice;
49:
50: cout << “ **** Menu **** “ << endl << endl;
51: cout << “(1) Choice one. “ << endl;
52: cout << “(2) Choice two. “ << endl;
53: cout << “(3) Choice three. “ << endl;
54: cout << “(4) Redisplay menu. “ << endl;
55: cout << “(5) Quit. “ << endl << endl;
56: cout << “: “;
57: cin >> choice;
58: return choice;
59: }
60:
61: void DoTaskOne()
62: {
63: cout << “Task One! “ << endl;
64: }
65:
66: void DoTaskMany(int which)
67: {
68: if (which == 2)
69: cout << “Task Two! “ << endl;
70: else
71: cout << “Task Three! “ << endl;
72: }

**** Menu ****

(1) Choice one.
(2) Choice two.
(3) Choice three.
(4) Redisplay menu.
(5) Quit.

OUTPUT

LISTING 7.17 continued

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 203

: 1
Task One!
**** Menu ****
(1) Choice one.
(2) Choice two.
(3) Choice three.
(4) Redisplay menu.
(5) Quit.

: 3
Task Three!
**** Menu ****
(1) Choice one.
(2) Choice two.
(3) Choice three.
(4) Redisplay menu.
(5) Quit.

: 5

This program brings together a number of concepts from today and previous
days. It also shows a common use of the switch statement.

The forever loop begins on line 15. The menu() function is called, which prints the menu
to the screen and returns the user’s selection. The switch statement, which begins on line
18 and ends on line 38, switches on the user’s choice.

If the user enters 1, execution jumps to the case (1): statement on line 20. Line 21
switches execution to the DoTaskOne() function, which prints a message and returns. On
its return, execution resumes on line 22, where the break ends the switch statement, and
execution falls through to line 39. On line 40, the variable exit is evaluated to see
whether it is true. If it evaluates true, the break on line 41 is executed and the for(;;)
loop ends; but if it evaluates false, execution resumes at the top of the loop on line 15.

Note that the continue statement on line 30 is redundant. If it were left out and the
break statement were encountered, the switch would end, exit would evaluate false, the
loop would reiterate, and the menu would be reprinted. The continue does, however,
bypass the test of exit.

204 Day 7

ANALYSIS

DO carefully document all intentional
fall-through cases.

DO put a default case in switch state-
ments, if only to detect seemingly impos-
sible situations.

DON’T use complex if...else state-
ments if a clearer switch statement will
work.

DON’T forget break at the end of each
case unless you want to fall through.

DO DON’T

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 204

More on Program Flow 205

7

Summary
Today’s lesson started with a look at the goto command that you were told to avoid
using. You were then shown different methods to cause a C++ program to loop that don’t
require a goto.

The while statement loops check a condition, and if it is true, execute the statements in
the body of the loop. do...while loops execute the body of the loop and then test the
condition. for loops initialize a value, then test an expression. If the expression is true,
the body of the loop is executed. The final expression in the for header is then executed
and the condition is then checked again. This process of checking the condition, execut-
ing the statements in the body, and executing the final expression in the for statement
continues until the conditional expression evaluates to false.

You also learned about continue, which causes while, do...while, and for loops to
start over, and break, which causes while, do...while, for, and switch statements
to end.

Q&A
Q How do I choose between if...else and switch?

A If more than just one or two else clauses are used, and all are testing the same
value, consider using a switch statement.

Q How do I choose between while and do...while?

A If the body of the loop should always execute at least once, consider a do...while
loop; otherwise, try to use the while loop.

Q How do I choose between while and for?

A If you are initializing a counting variable, testing that variable, and incrementing it
each time through the loop, consider the for loop. If your variable is already ini-
tialized and is not incremented on each loop, a while loop might be the better
choice. Experienced programmers look for this usage and will find your program
harder to understand if you violate this expectation.

Q Is it better to use while (true) or for (;;)?

A No significant difference exists; however, it is best to avoid both.

Q Why shouldn’t a variable be used as a condition, such as while(n)?

A In the current C++ standard, an expression is evaluated to a Boolean value of true
or false. Although you can equate false to 0 and true to any other value, it is

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 205

better—and more in line with the current standards—to use an expression that
evaluates to a Boolean value of true or false. However, a variable of type bool can
be used in a condition without any potential problems.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered as well as exercises to provide you with experience in using what
you’ve learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix D, and be certain you understand the answers before continuing to
tomorrow’s lesson.

Quiz
1. How do you initialize more than one variable in a for loop?

2. Why is goto avoided?

3. Is it possible to write a for loop with a body that is never executed?

4. What is the value of x when the for loop completes?

for (int x = 0; x < 100; x++)

5. Is it possible to nest while loops within for loops?

6. Is it possible to create a loop that never ends? Give an example.

7. What happens if you create a loop that never ends?

Exercises
1. Write a nested for loop that prints a 10×10 pattern of 0s.

2. Write a for statement to count from 100 to 200 by twos.

3. Write a while loop to count from 100 to 200 by twos.

4. Write a do...while loop to count from 100 to 200 by twos.

5. BUG BUSTERS: What is wrong with this code?
int counter = 0;
while (counter < 10)
{

cout << “counter: “ << counter;
}

6. BUG BUSTERS: What is wrong with this code?
for (int counter = 0; counter < 10; counter++);

cout << counter << “ “;

206 Day 7

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 206

More on Program Flow 207

7

7. BUG BUSTERS: What is wrong with this code?
int counter = 100;
while (counter < 10)
{

cout << “counter now: “ << counter;
counter--;

}

8. BUG BUSTERS: What is wrong with this code?

cout << “Enter a number between 0 and 5: “;
cin >> theNumber;
switch (theNumber)
{

case 0:
doZero();

case 1: // fall through
case 2: // fall through
case 3: // fall through
case 4: // fall through
case 5:

doOneToFive();
break;

default:
doDefault();
break;

}

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 207

09 0672327112_ch07.qxd 11/19/04 12:26 PM Page 208

In Review
You have finished your first week of learning how to program
in C++. You should feel comfortable entering programs and
using your editor and compiler. Now that you have some
experience using C++, it is time for a more robust program.
The following program pulls together many of the topics you
have learned over the previous seven days’ lessons.

After you look through Listing R1.1, you will see that analy-
sis has been included. You will find that every topic in this
listing has been covered in the preceding week’s lessons. You
will see similar Weeks in Review after Weeks 2 and 3.

WEEK 1 1

2

3

4

5

6

7

10 0672327112_w1_wir.qxd 11/19/04 12:26 PM Page 209

210 Week 1

LISTING R1.1 Week 1 in Review Listing

1: /* Listing: WR01.cpp
2: * Description: Week in Review listing for week 1
3: *===*/

4: #include <iostream>

5: using namespace std;
6:

7: enum CHOICE {
8: DrawRect = 1,
9: GetArea,
10: GetPerim,
11: ChangeDimensions,
12: Quit };
13:

14: // Rectangle class declaration

15: class Rectangle
16: {

17: public:
18: // constructors
19: Rectangle(int width, int height);
20: ~Rectangle();
21:
22: // accessors
23: int GetHeight() const { return itsHeight; }
24: int GetWidth() const { return itsWidth; }
25: int GetArea() const { return itsHeight * itsWidth; }
26: int GetPerim() const { return 2*itsHeight + 2*itsWidth; }
27: void SetSize(int newWidth, int newHeight);
28:
29: // Misc. methods
30:

DAY 6

DAY 6

DAY 2

DAY 3

DAY 2

DAY 1

DAY 2

10 0672327112_w1_wir.qxd 11/19/04 12:26 PM Page 210

In Review 211

31: private:

32: int itsWidth;
33: int itsHeight;
34: };
35:
36: // Class method implementations
37: void Rectangle::SetSize(int newWidth, int newHeight)
38: {
39: itsWidth = newWidth;
40: itsHeight = newHeight;
41: }
42:
43: Rectangle::Rectangle(int width, int height)
44: {
45: itsWidth = width;
46: itsHeight = height;
47: }
48:

49: Rectangle::~Rectangle() {}
50:

51: int DoMenu();
52: void DoDrawRect(Rectangle);
53: void DoGetArea(Rectangle);
54: void DoGetPerim(Rectangle);
55:

56: /*===*/
57: int main()
58: {
59: // initialize a rectangle to 30,5

60: Rectangle theRect(30,5);
61:
62: int choice = DrawRect;

63: int fQuit = false;
64:

DAY 3

DAY 6

DAY 2

DAY 2

DAY 6

DAY 3

DAY 6

LISTING R1.1 continued

10 0672327112_w1_wir.qxd 11/19/04 12:26 PM Page 211

212 Week 1

65: while (!fQuit)
66: {

67: choice = DoMenu();

68: if (choice < DrawRect || choice > Quit)
69: {
70: cout << “\nInvalid Choice, try again. “;
71: cout << endl << endl;

72: continue;
73: }

74: switch (choice)
75: {

76: case DrawRect:
77: DoDrawRect(theRect);
78: break;
79: case GetArea:

80: DoGetArea(theRect);
81: break;
82: case GetPerim:
83: DoGetPerim(theRect);
84: break;
85: case ChangeDimensions:

86: int newLength, newWidth;
87: cout << “\nNew width: “;
88: cin >> newWidth;
89: cout << “New height: “;
90: cin >> newLength;

91: theRect.SetSize(newWidth, newLength);
92: DoDrawRect(theRect);

DAY 6

DAY 3

DAY 5

DAY 7

DAY 7

DAY 4

DAY 4

DAY 5

DAY 7

LISTING R1.1 continued

10 0672327112_w1_wir.qxd 11/19/04 12:26 PM Page 212

In Review 213

93: break;
94: case Quit:

95: fQuit = true;
96: cout << “\nExiting... “ << endl << endl;
97: break;

98: default:
99: cout << “Error in choice!” << endl;
100: fQuit = true;
101: break;
102: } // end switch
103: } // end while

104: return 0;
105: } // end main
106:

107: int DoMenu()
108: {

109: int choice;

110: cout << endl << endl; // create two new lines
111: cout << “ *** Menu *** “ << endl;
112: cout << “(1) Draw Rectangle” << endl;
113: cout << “(2) Area” << endl;
114: cout << “(3) Perimeter” << endl;
115: cout << “(4) Resize” << endl;
116: cout << “(5) Quit” << endl;
117:

118: cin >> choice;
119: return choice;
120: }
121:
122: void DoDrawRect(Rectangle theRect)
123: {

DAY 3

DAY 2

DAY 3

DAY 7

DAY 5

DAY 7

DAY 3

LISTING R1.1 continued

10 0672327112_w1_wir.qxd 11/19/04 12:26 PM Page 213

214 Week 1

124: int height = theRect.GetHeight();
125: int width = theRect.GetWidth();
126:

127: for (int i = 0; i<height; i++)
128: {
129: for (int j = 0; j< width; j++)
130: cout << “*”;
131: cout << endl;
132: }
133: }
134:
135:

136: void DoGetArea(Rectangle theRect)
137: {

138: cout << “Area: “ << theRect.GetArea() << endl;
139: }
140:

141: void DoGetPerim(Rectangle theRect)
142: {
143: cout << “Perimeter: “ << theRect.GetPerim() << endl;
144: }
145: // ========== End of Listing ==========

*** Menu ***
(1) Draw Rectangle
(2) Area
(3) Perimeter
(4) Resize
(5) Quit
1

DAY 5

DAY 3

DAY 5

DAY 7

DAY 6

OUTPUT

LISTING R1.1 continued

10 0672327112_w1_wir.qxd 11/19/04 12:26 PM Page 214

In Review 215

*** Menu ***
(1) Draw Rectangle
(2) Area
(3) Perimeter
(4) Resize
(5) Quit
2
Area: 150

*** Menu ***
(1) Draw Rectangle
(2) Area
(3) Perimeter
(4) Resize
(5) Quit
3
Perimeter: 70

*** Menu ***
(1) Draw Rectangle
(2) Area
(3) Perimeter
(4) Resize
(5) Quit
4

New Width: 10
New height: 8

*** Menu ***
(1) Draw Rectangle
(2) Area
(3) Perimeter
(4) Resize
(5) Quit
2
Area: 80

*** Menu ***
(1) Draw Rectangle
(2) Area
(3) Perimeter

10 0672327112_w1_wir.qxd 11/19/04 12:26 PM Page 215

216 Week 1

(4) Resize
(5) Quit
3
Perimeter: 36

*** Menu ***
(1) Draw Rectangle
(2) Area
(3) Perimeter
(4) Resize
(5) Quit
5

Exiting...

This program utilizes most of the skills you learned this week. You should not
only be able to enter, compile, link, and run this program, but also understand

what it does and how it works, based on the work you’ve done this week. If you are con-
fused by any of the lines in this listing, you should go back and review the previous
week’s material. To the left of many of the lines are references to which day that line’s
primary function is covered.

This program presents a text menu and waits for you to make a selection. The menu
works with a rectangle. You have options to print out a representation of the rectangle as
well as options to get its area and perimeter. You can also change the default values for
the rectangle. The menu does not do all of the error checking that a full-fledged program
should do; however, it does do some checking.

On lines 7–12, the program listing sets up the new types and definitions that will be used
throughout the program.

Lines 15–34 declare the Rectangle class. There are public accessor methods for obtain-
ing and setting the width and height of the rectangle, as well as for computing the area
and perimeter. Lines 37–47 contain the class function definitions that were not declared
inline. Because a constructor was created on lines 43–47, a destructor is also created on
line 49.

The function prototypes, for the nonclass member functions, are on lines 51–54, and the
entry point of the program begins on line 57. As stated, the essence of this program is to
generate a rectangle, and then to print out a menu offering five options: Draw the rectan-
gle, determine its area, determine its perimeter, resize the rectangle, or quit.

A flag is set on line 63, and as long as the flag is set to false, the menu loop continues.
The flag is only set to true if the user chooses Quit from the menu.

ANALYSIS

10 0672327112_w1_wir.qxd 11/19/04 12:26 PM Page 216

In Review 217

Each of the other choices, with the exception of ChangeDimensions, calls a function.
This makes the switch statement on lines 74–102 cleaner. ChangeDimensions cannot
call out to a function because it must change the dimensions of the rectangle. If the rec-
tangle were passed (by value) to a function such as DoChangeDimensions(), the dimen-
sions would be changed on the local copy of the rectangle in DoChangeDimensions()
and not on the rectangle in main(). On Day 8, “Understanding Pointers,” and Day 10,
“Working with Advanced Functions,” you’ll learn how to overcome this restriction, but
for now the change is made in the main() function.

Note how the use of an enumeration makes the switch statement much cleaner and eas-
ier to understand. Had the switch depended on the numeric choices (1–5) of the user, you
would have to constantly refer to the description of the menu to see which pick was
which.

On line 68, the user’s choice is checked to be certain it is in range. If not, an error mes-
sage is printed and the menu is reprinted. Note that the switch statement includes an
“impossible” default condition. This is an aid in debugging. If the program is working,
that statement can never be reached.

Congratulations! You’ve completed the first week! Now, you can create and understand
sophisticated C++ programs. Of course, there’s much more to do, and next week starts
with one of the most difficult concepts in C++: pointers. Don’t give up now, you’re about
to delve deeply into the meaning and use of object-oriented programming, virtual func-
tions, and many of the advanced features of this powerful language.

Take a break, bask in the glory of your accomplishment, and then turn the page to start
Week 2.

10 0672327112_w1_wir.qxd 11/19/04 12:26 PM Page 217

10 0672327112_w1_wir.qxd 11/19/04 12:26 PM Page 218

At a Glance
You have finished the first week of learning how to program
in C++. By now, you should feel comfortable entering pro-
grams, using your compiler, and thinking about objects,
classes, and program flow.

Where You Are Going
Week 2 begins with pointers. Pointers are traditionally a diffi-
cult subject for new C++ programmers, but you will find
them explained fully and clearly, and they should not be a
stumbling block. On Day 9, “Exploiting References,” you
will learn about references, which are a close cousin to point-
ers. On Day 10, “Working with Advanced Functions,” you
will see how to overload functions.

Day 11, “Object-Oriented Analysis and Design,” is a depar-
ture: Rather than focusing on the syntax of the language, you
will take a day out to learn about object-oriented analysis and
design. On Day 12, “Implementing Inheritance,” you will be
introduced to inheritance, a fundamental concept in object-
oriented programming. On Day 13, “Managing Arrays and
Strings,” you will learn how to work with arrays and collec-
tions. Day 14, “Polymorphism,” extends the lessons of Day
12 to discuss polymorphism.

WEEK 2 8

9

10

11

12

13

14

11 0672327112_w2_aag.qxd 11/19/04 12:26 PM Page 219

11 0672327112_w2_aag.qxd 11/19/04 12:26 PM Page 220

DAY 8

WEEK 2

Understanding Pointers
One of the powerful but low-level tools available to a C++ programmer is the
capability to manipulate computer memory directly by using pointers. This is
an advantage that C++ has over some other languages, such as C# and Visual
Basic.

Today, you will learn

• What pointers are

• How to declare and use pointers

• What the free store is and how to manipulate memory

Pointers present two special challenges when you’re learning C++: They can be
somewhat confusing, and it isn’t immediately obvious why they are needed.
Today’s lesson explains how pointers work, step-by-step. You will fully under-
stand the need for pointers, however, only as the book progresses.

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 221

What Is a Pointer?
A pointer is a variable that holds a memory address. That’s it. If you understand this sim-
ple sentence, then you know the core of what there is to know about pointers.

A Bit About Memory
To understand pointers, you must know a little about computer memory. Computer mem-
ory is divided into sequentially numbered memory locations. Each variable is located at a
unique location in memory, known as its address. Figure 8.1 shows a schematic represen-
tation of the storage of an unsigned long integer variable named theAge.

222 Day 8

The ability to use pointers and manipulate memory at a low level is one of
the factors that makes C++ the language of choice for embedded and real-
time applications.

NOTE

FIGURE 8.1
A schematic
representation
of theAge.

theAge

100 101 102 103 104 105 106 107 108 109 110

each location = 1 byte

unsigned long int theAge = 4 bytes = 32 bits
variable name theAge points to 1st byte
the address of theAge is 102

1011
 0101

0111
 0110

1111
 0110

1110
 1110

Memory

Getting a Variable’s Memory Address
Different computers number this memory using different complex schemes. Usually, as a
programmer, you don’t need to know the particular address of any given variable because
the compiler handles the details. If you want this information, though, you can use the
address-of operator (&), which returns the address of an object in memory. Listing 8.1 is
used to illustrate the use of this operator.

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 222

Understanding Pointers 223

8
LISTING 8.1 Demonstrating the Address-of Operator

1: // Listing 8.1 Demonstrates address-of operator
2: // and addresses of local variables
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8: unsigned short shortVar=5;
9: unsigned long longVar=65535;
10: long sVar = -65535;
11:
12: cout << “shortVar:\t” << shortVar;
13: cout << “\tAddress of shortVar:\t”;
14: cout << &shortVar << endl;
15:
16: cout << “longVar:\t” << longVar;
17: cout << “\tAddress of longVar:\t” ;
18: cout << &longVar << endl;
19:
20: cout << “sVar:\t\t” << sVar;
21: cout << “\tAddress of sVar:\t” ;
22: cout << &sVar << endl;
23:
24: return 0;
25: }

shortVar: 5 Address of shortVar: 0012FF7C
longVar: 65535 Address of longVar: 0012FF78
sVar: -65535 Address of sVar: 0012FF74

(Your printout might look different, especially the last column.)

Three variables are declared and initialized: an unsigned short on line 8, an
unsigned long on line 9, and a long on line 10. Their values and addresses are

printed on lines 12–22. You can see on lines 14, 18, and 22 that the address-of operator
(&) is used to get the address of the variable. This operator is simply placed on the front
of the variable name in order to have the address returned.

Line 12 prints the value of shortVar as 5, which is expected. In the first line of the out-
put, you can see that its address is 0012FF7C when run on a Pentium (32-bit) computer.
This address is computer-specific and might change slightly each time the program is
run. Your results will be different.

When you declare a variable, the compiler determines how much memory to allow based
on the variable type. The compiler takes care of allocating memory and automatically

OUTPUT

ANALYSIS

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 223

assigns an address for it. For a long integer that is typically four bytes, for example, an
address to four bytes of memory is used.

224 Day 8

Note that your compiler might insist on assigning new variables on four-byte
boundaries. (Thus, longVar was assigned an address four bytes after
shortVar even though shortVar only needed two bytes!)

NOTE

Storing a Variable’s Address in a Pointer
Every variable has an address. Even without knowing the specific address, you can store
a variable’s address in a pointer.

Suppose, for example, that howOld is an integer. To declare a pointer called pAge to hold
its address, you write

int *pAge = 0;

This declares pAge to be a pointer to an int. That is, pAge is declared to hold the address
of an integer.

Note that pAge is a variable. When you declare an integer variable (type int), the com-
piler sets aside enough memory to hold an integer. When you declare a pointer variable
such as pAge, the compiler sets aside enough memory to hold an address (on most com-
puters, four bytes). A pointer, and thus pAge, is just a different type of variable.

Pointer Names
Because pointers are just another variable, you can use any name that is legal for other
variables. The same naming rules and suggestions apply. Many programmers follow the
convention of naming all pointers with an initial p, as in pAge or pNumber.

In the example,

int *pAge = 0;

pAge is initialized to zero. A pointer whose value is zero is called a null pointer. All
pointers, when they are created, should be initialized to something. If you don’t know
what you want to assign to the pointer, assign 0. A pointer that is not initialized is called
a wild pointer because you have no idea what it is pointing to—and it could be pointing
to anything! Wild pointers are very dangerous.

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 224

Understanding Pointers 225

8

For a pointer to hold an address, the address must be assigned to it. For the previous
example, you must specifically assign the address of howOld to pAge, as shown in the fol-
lowing example:

unsigned short int howOld = 50; // make a variable
unsigned short int * pAge = 0; // make a pointer
pAge = &howOld; // put howOld’s address in pAge

The first line creates a variable named howOld—whose type is unsigned short int—
and initializes it with the value 50. The second line declares pAge to be a pointer to type
unsigned short int and initializes it to zero. You know that pAge is a pointer because
of the asterisk (*) after the variable type and before the variable name.

The third and final line assigns the address of howOld to the pointer pAge. You can tell
that the address of howOld is being assigned because of the address-of operator (&). If the
address-of operator had not been used, the value of howOld would have been assigned.
That might, or might not, have been a valid address.

At this point, pAge has as its value the address of howOld. howOld, in turn, has the value
50. You could have accomplished this with one fewer step, as in

unsigned short int howOld = 50; // make a variable
unsigned short int * pAge = &howOld; // make pointer to howOld

pAge is a pointer that now contains the address of the howOld variable.

Getting the Value from a Variable
Using pAge, you can actually determine the value of howOld, which in this case is 50.
Accessing the value stored in a variable by using a pointer is called indirection because
you are indirectly accessing the variable by means of the pointer. For example, you can
use indirection with the pAge pointer to access the value in howOld.

Indirection means accessing the value at the address held by a pointer. The pointer pro-
vides an indirect way to get the value held at that address.

Practice safe computing: Initialize all of your pointers!NOTE

With a normal variable, the type tells the compiler how much memory is
needed to hold the value. With a pointer, the type does not do this; all
pointers are the same size—usually four bytes on a machine with a 32-bit
processor and eight bytes on a machine with a 64-bit processor.

NOTE

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 225

226 Day 8

The type tells the compiler how much memory is needed for the object at
the address, which the pointer holds!

In the declaration

unsigned short int * pAge = 0; // make a pointer

pAge is declared to be a pointer to an unsigned short integer. This tells the
compiler that the pointer (which needs four bytes to hold an address) will
hold the address of an object of type unsigned short int, which itself
requires two bytes.

Dereferencing with the Indirection Operator
The indirection operator (*) is also called the dereference operator. When a pointer is
dereferenced, the value at the address stored by the pointer is retrieved.

Normal variables provide direct access to their own values. If you create a new variable
of type unsigned short int called yourAge, and you want to assign the value in howOld
to that new variable, you write

unsigned short int yourAge;
yourAge = howOld;

A pointer provides indirect access to the value of the variable whose address it stores. To
assign the value in howOld to the new variable yourAge by way of the pointer pAge, you
write

unsigned short int yourAge;
yourAge = *pAge;

The indirection operator (*) in front of the pointer variable pAge means “the value
stored at.” This assignment says, “Take the value stored at the address in pAge and
assign it to yourAge.” If you didn’t include the indirection operator:

yourAge = pAge; // bad!!

you would be attempting to assign the value in pAge, a memory address, to YourAge.
Your compiler would most likely give you a warning that you are making a mistake.

Different Uses of the Asterisk

The asterisk (*) is used in two distinct ways with pointers: as part of the pointer declara-
tion and also as the dereference operator.

When you declare a pointer, the * is part of the declaration and it follows the type of the
object pointed to. For example,

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 226

Understanding Pointers 227

8

Pointers, Addresses, and Variables
It is important to distinguish between a pointer, the address that the pointer holds, and
the value at the address held by the pointer. This is the source of much of the confusion
about pointers.

Consider the following code fragment:

int theVariable = 5;
int * pPointer = &theVariable ;

theVariable is declared to be an integer variable initialized with the value 5. pPointer
is declared to be a pointer to an integer; it is initialized with the address of theVariable.
pPointer is the pointer. The address that pPointer holds is the address of theVariable.
The value at the address that pPointer holds is 5. Figure 8.2 shows a schematic repre-
sentation of theVariable and pPointer.

// make a pointer to an unsigned short
unsigned short * pAge = 0;

When the pointer is dereferenced, the dereference (or indirection) operator indicates
that the value at the memory location stored in the pointer is to be accessed, rather than
the address itself.

// assign 5 to the value at pAge
*pAge = 5;

Also note that this same character (*) is used as the multiplication operator. The compiler
knows which operator to call based on how you are using it (context).

FIGURE 8.2
A schematic
representation
of memory.

5

0000

100 101 102 103 104 105 106 107 108 109

0000
0000

0101
0000

0000
0000

0000
0000

0000
0110

0101

101

Address location

theVariable pPointer

In Figure 8.2, the value 5 is stored at address location 101. This is shown in the binary
number

0000 0000 0000 0101

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 227

This is two bytes (16 bits) whose decimal value is 5.

The pointer variable is at location 106. Its value is

000 0000 0000 0000 0000 0000 0110 0101

This is the binary representation of the value 101, which is the address of theVariable,
whose value is 5.

The memory layout here is schematic, but it illustrates the idea of how pointers store an
address.

Manipulating Data by Using Pointers
In addition to using the indirection operator to see what data is stored at a location
pointed to by a variable, you can also manipulate that data. After the pointer is assigned
the address, you can use that pointer to access the data in the variable being pointed to.

Listing 8.2 pulls together what you have just learned about pointers. In this listing, you
see how the address of a local variable is assigned to a pointer and how the pointer can
be used along with the indirection operator to manipulate the values in that variable.

LISTING 8.2 Manipulating Data by Using Pointers

1: // Listing 8.2 Using pointers
2: #include <iostream>
3:
4: typedef unsigned short int USHORT;
5:
6: int main()
7: {
8:
9: using namespace std;
10:
11: USHORT myAge; // a variable
12: USHORT * pAge = 0; // a pointer
13:
14: myAge = 5;
15:
16: cout << “myAge: “ << myAge << endl;
17: pAge = &myAge; // assign address of myAge to pAge
18: cout << “*pAge: “ << *pAge << endl << endl;
19:
20: cout << “Setting *pAge = 7... “ << endl;
21: *pAge = 7; // sets myAge to 7
22:
23: cout << “*pAge: “ << *pAge << endl;
24: cout << “myAge: “ << myAge << endl << endl;
25:

228 Day 8

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 228

Understanding Pointers 229

826: cout << “Setting myAge = 9… “ << endl;
27: myAge = 9;
28:
29: cout << “myAge: “ << myAge << endl;
30: cout << “*pAge: “ << *pAge << endl;
31:
32: return 0;
33: }

myAge: 5
*pAge: 5

Setting *pAge = 7...
*pAge: 7
myAge: 7

Setting myAge = 9...
myAge: 9
*pAge: 9

This program declares two variables: an unsigned short, myAge, and a pointer
to an unsigned short, pAge. myAge is assigned the value 5 on line 14; this is ver-

ified by the printout on line 16.

On line 17, pAge is assigned the address of myAge. On line 18, pAge is dereferenced—
using the indirection operator (*)—and printed, showing that the value at the address that
pAge stores is the 5 stored in myAge.

On line 21, the value 7 is assigned to the variable at the address stored in pAge. This sets
myAge to 7, and the printouts on lines 23 and 24 confirm this. Again, you should notice
that the indirect access to the variable was obtained by using an asterisk—the indirection
operator in this context.

On line 27, the value 9 is assigned to the variable myAge. This value is obtained directly
on line 29 and indirectly (by dereferencing pAge) on line 30.

Examining the Address
Pointers enable you to manipulate addresses without ever knowing their real value. After
today, you’ll take it on faith that when you assign the address of a variable to a pointer, it
really has the address of that variable as its value. But just this once, why not check to be
certain? Listing 8.3 illustrates this idea.

OUTPUT

LISTING 8.2 continued

ANALYSIS

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 229

LISTING 8.3 Finding Out What Is Stored in Pointers

1: // Listing 8.3
2: // What is stored in a pointer.
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8:
9: unsigned short int myAge = 5, yourAge = 10;
10:
11: // a pointer
12: unsigned short int * pAge = &myAge;
13:
14: cout << “myAge:\t” << myAge
15: << “\t\tyourAge:\t” << yourAge << endl;
16:
17: cout << “&myAge:\t” << &myAge
18: << “\t&yourAge:\t” << &yourAge << endl;
19:
20: cout << “pAge:\t” << pAge << endl;
21: cout << “*pAge:\t” << *pAge << endl;
22:
23:
24: cout << “\nReassigning: pAge = &yourAge...” << endl << endl;
25: pAge = &yourAge; // reassign the pointer
26:
27: cout << “myAge:\t” << myAge <<
28: “\t\tyourAge:\t” << yourAge << endl;
29:
30: cout << “&myAge:\t” << &myAge
31: << “\t&yourAge:\t” << &yourAge << endl;
32:
33: cout << “pAge:\t” << pAge << endl;
34: cout << “*pAge:\t” << *pAge << endl;
35:
36: cout << “\n&pAge:\t” << &pAge << endl;
37:
38: return 0;
39: }

myAge: 5 yourAge: 10
&myAge: 0012FF7C &yourAge: 0012FF78
pAge: 0012FF7C
*pAge: 5

Reassigning: pAge = &yourAge...

OUTPUT

230 Day 8

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 230

Understanding Pointers 231

8
myAge: 5 yourAge: 10
&myAge: 0012FF7C &yourAge: 0012FF78
pAge: 0012FF78
*pAge: 10

&pAge: 0012FF74

(Your output might look different.)

On line 9, myAge and yourAge are declared to be variables of type unsigned
short integer. On line 12, pAge is declared to be a pointer to an unsigned short

integer, and it is initialized with the address of the variable myAge.

Lines 14–18 print the values and the addresses of myAge and yourAge. Line 20 prints the
contents of pAge, which is the address of myAge. You should notice that the output con-
firms that the value of pAge matches the value of myAge’s address. Line 21 prints the
result of dereferencing pAge, which prints the value at pAge—the value in myAge, or 5.

This is the essence of pointers. Line 20 shows that pAge stores the address of myAge, and
line 21 shows how to get the value stored in myAge by dereferencing the pointer pAge. Be
certain that you understand this fully before you go on. Study the code and look at the
output.

On line 25, pAge is reassigned to point to the address of yourAge. The values and
addresses are printed again. The output shows that pAge now has the address of the vari-
able yourAge and that dereferencing obtains the value in yourAge.

Line 36 prints the address of pAge itself. Like any variable, it has an address, and that
address can be stored in a pointer. (Assigning the address of a pointer to another pointer
will be discussed shortly.)

ANALYSIS

DO use the indirection operator (*) to
access the data stored at the address in a
pointer.

DO initialize all pointers either to a valid
address or to null (0).

DON’T confuse the address in a pointer
with the value at that address.

DO DON’T

Using Pointers

To declare a pointer, write the type of the variable or object whose address will be stored
in the pointer, followed by the pointer operator (*) and the name of the pointer. For
example,

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 231

Why Would You Use Pointers?
So far, you’ve seen step-by-step details of assigning a variable’s address to a pointer. In
practice, though, you would never do this. After all, why bother with a pointer when you
already have a variable with access to that value? The only reason for this kind of pointer
manipulation of an automatic variable is to demonstrate how pointers work. Now that
you are comfortable with the syntax of pointers, you can put them to good use. Pointers
are used, most often, for three tasks:

• Managing data on the free store

• Accessing class member data and functions

• Passing variables by reference to functions

The remainder of today’s lesson focuses on managing data on the free store and access-
ing class member data and functions. Tomorrow, you will learn about passing variables
using pointers, which is called passing by reference.

The Stack and the Free Store (Heap)
In the section “How Functions Work—A Peek Under the Hood” on Day 5, “Organizing
into Functions,” five areas of memory are mentioned:

• Global namespace

• The free store

• Registers

• Code space

• The stack

232 Day 8

unsigned short int * pPointer = 0;

To assign or initialize a pointer, prepend the name of the variable whose address is being
assigned with the address-of operator (&). For example,

unsigned short int theVariable = 5;
unsigned short int * pPointer = &theVariable;

To dereference a pointer, prepend the pointer name with the dereference operator (*).
For example:

unsigned short int theValue = *pPointer

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 232

Understanding Pointers 233

8
Local variables are on the stack, along with function parameters. Code is in code space,
of course, and global variables are in the global namespace. The registers are used for
internal housekeeping functions, such as keeping track of the top of the stack and the
instruction pointer. Just about all of the remaining memory is given to the free store,
which is often referred to as the heap.

Local variables don’t persist; when a function returns, its local variables are destroyed.
This is good, because it means the programmer doesn’t have to do anything to manage
this memory space, but is bad because it makes it hard for functions to create objects for
use by other objects or functions without generating the extra overhead of copying
objects from stack to return value to destination object in the caller. Global variables
solve that problem at the cost of providing unrestricted access to those variables through-
out the program, which leads to the creation of code that is difficult to understand and
maintain. Putting data in the free store can solve both of these problems if that data is
managed properly.

You can think of the free store as a massive section of memory in which thousands of
sequentially numbered cubbyholes lie waiting for your data. You can’t label these cubby-
holes, though, as you can with the stack. You must ask for the address of the cubbyhole
that you reserve and then stash that address away in a pointer.

One way to think about this is with an analogy: A friend gives you the 800 number for
Acme Mail Order. You go home and program your telephone with that number, and then
you throw away the piece of paper with the number on it. If you push the button, a tele-
phone rings somewhere, and Acme Mail Order answers. You don’t remember the num-
ber, and you don’t know where the other telephone is located, but the button gives you
access to Acme Mail Order. Acme Mail Order is your data on the free store. You don’t
know where it is, but you know how to get to it. You access it by using its address—in
this case, the telephone number. You don’t have to know that number; you just have to
put it into a pointer (the button). The pointer gives you access to your data without both-
ering you with the details.

The stack is cleaned automatically when a function returns. All the local variables go out
of scope, and they are removed from the stack. The free store is not cleaned until your
program ends, and it is your responsibility to free any memory that you’ve reserved
when you are done with it. This is where destructors are absolutely critical, because they
provide a place where any heap memory allocated in a class can be reclaimed.

The advantage to the free store is that the memory you reserve remains available until
you explicitly state you are done with it by freeing it. If you reserve memory on the free
store while in a function, the memory is still available when the function returns.

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 233

The disadvantage of the free store is also that the memory you reserve remains available
until you explicitly state you are done with it by freeing it. If you neglect to free that
memory, it can build up over time and cause the system to crash.

The advantage of accessing memory in this way, rather than using global variables, is
that only functions with access to the pointer (which has the appropriate address) have
access to the data. This requires the object containing the pointer to the data, or the
pointer itself, to be explicitly passed to any function making changes, thus reducing the
chances that a function can change the data without that change being traceable.

For this to work, you must be able to create a pointer to an area on the free store and to
pass that pointer among functions. The following sections describe how to do this.

Allocating Space with the new Keyword
You allocate memory on the free store in C++ by using the new keyword. new is followed
by the type of the object that you want to allocate, so that the compiler knows how much
memory is required. Therefore, new unsigned short int allocates two bytes in the free
store, and new long allocates four, assuming your system uses a two-byte unsigned
short int and a four-byte long.

The return value from new is a memory address. Because you now know that memory
addresses are stored in pointers, it should be no surprise to you that the return value from
new should be assigned to a pointer. To create an unsigned short on the free store, you
might write

unsigned short int * pPointer;
pPointer = new unsigned short int;

You can, of course, do this all on one line by initializing the pointer at the same time you
declare it:

unsigned short int * pPointer = new unsigned short int;

In either case, pPointer now points to an unsigned short int on the free store. You
can use this like any other pointer to a variable and assign a value into that area of mem-
ory by writing

*pPointer = 72;

This means “Put 72 at the value in pPointer,” or “Assign the value 72 to the area on the
free store to which pPointer points.”

234 Day 8

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 234

Understanding Pointers 235

8

Putting Memory Back: The delete Keyword
When you are finished with an area of memory, you must free it back to the system. You
do this by calling delete on the pointer. delete returns the memory to the free store.

It is critical to remember that memory allocated with new is not freed automatically. If a
pointer variable is pointing to memory on the free store and the pointer goes out of
scope, the memory is not automatically returned to the free store. Rather, it is considered
allocated and because the pointer is no longer available, you can no longer access the
memory. This happens, for instance, if a pointer is a local variable. When the function in
which that pointer is declared returns, that pointer goes out of scope and is lost. The
memory allocated with new is not freed—instead, it becomes unavailable.

This situation is called a memory leak. It’s called a memory leak because that memory
can’t be recovered until the program ends. It is as though the memory has leaked out of
your computer.

To prevent memory leaks, you should restore any memory you allocate back to the free
store. You do this by using the keyword delete. For example:

delete pPointer;

When you delete the pointer, you are really freeing up the memory whose address is
stored in the pointer. You are saying, “Return to the free store the memory that this
pointer points to.” The pointer is still a pointer, and it can be reassigned. Listing 8.4
demonstrates allocating a variable on the heap, using that variable, and deleting it.

Most commonly, you will allocate items from the heap in a constructor, and deallocate
them in the destructor. In other cases, you will initialize pointers in the constructor, allo-
cate memory for those pointers as the object is used, and, in the destructor, test the point-
ers for null and deallocate them if they are not null.

If new cannot create memory on the free store (memory is, after all, a limited
resource), it throws an exception (see Day 20, “Handling Errors and
Exceptions”).

NOTE

When you call delete on a pointer, the memory it points to is freed. Calling
delete on that pointer again crashes your program! When you delete a
pointer, set it to zero (null). Calling delete on a null pointer is guaranteed
to be safe. For example:

CAUTION

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 235

236 Day 8

Animal *pDog = new Animal; // allocate memory
delete pDog; //frees the memory

pDog = 0; //sets pointer to null
//...

delete pDog; //harmless

LISTING 8.4 Allocating, Using, and Deleting Pointers

1: // Listing 8.4
2: // Allocating and deleting a pointer
3: #include <iostream>
4: int main()
5: {
6: using namespace std;
7: int localVariable = 5;
8: int * pLocal= &localVariable;
9: int * pHeap = new int;
10: *pHeap = 7;
11: cout << “localVariable: “ << localVariable << endl;
12: cout << “*pLocal: “ << *pLocal << endl;
13: cout << “*pHeap: “ << *pHeap << endl;
14: delete pHeap;
15: pHeap = new int;
16: *pHeap = 9;
17: cout << “*pHeap: “ << *pHeap << endl;
18: delete pHeap;
19: return 0;
20: }

localVariable: 5
*pLocal: 5
*pHeap: 7
*pHeap: 9

Line 7 declares and initializes a local variable ironically called localVariable.
Line 8 declares a pointer called pLocal and initializes it with the address of the

local variable. On line 9, a second pointer called pHeap is declared; however, it is initial-
ized with the result obtained from calling new int. This allocates space on the free store
for an int, which can be accessed using the pHeap pointer. This allocated memory is
assigned the value 7 on line 10.

Lines 11–13 print a few values. Line 11 prints the value of the local variable
(localVariable), line 12 prints the value pointed to by the pLocal pointer, and line 13
prints the value pointed to by the pHeap pointer. You should notice that, as expected, the
values printed on lines 11 and 12 match. In addition, line 13 confirms that the value
assigned on line 10 is, in fact, accessible.

OUTPUT

ANALYSIS

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 236

Understanding Pointers 237

8
On line 14, the memory allocated on line 9 is returned to the free store by a call to
delete. This frees the memory and disassociates the pointer from that memory. pHeap is
now free to be used to point to other memory. It is reassigned on lines 15 and 16, and
line 17 prints the result. Line 18 restores that memory to the free store.

Although line 18 is redundant (the end of the program would have returned that mem-
ory), it is a good idea to free this memory explicitly. If the program changes or is
extended, having already taken care of this step is beneficial.

Another Look at Memory Leaks
Memory leaks are one of the most serious issues and complaints about pointers. You
have seen one way that memory leaks can occur. Another way you might inadvertently
create a memory leak is by reassigning your pointer before deleting the memory to
which it points. Consider this code fragment:

1: unsigned short int * pPointer = new unsigned short int;
2: *pPointer = 72;
3: pPointer = new unsigned short int;
4: *pPointer = 84;

Line 1 creates pPointer and assigns it the address of an area on the free store. Line 2
stores the value 72 in that area of memory. Line 3 reassigns pPointer to another area of
memory. Line 4 places the value 84 in that area. The original area—in which the value
72 is now held—is unavailable because the pointer to that area of memory has been reas-
signed. No way exists to access that original area of memory, nor is there any way to free
it before the program ends.

The code should have been written like this:

1: unsigned short int * pPointer = new unsigned short int;
2: *pPointer = 72;
3: delete pPointer;
4: pPointer = new unsigned short int;
5: *pPointer = 84;

Now, the memory originally pointed to by pPointer is deleted, and thus freed, on line 3.

For every time in your program that you call new, there should be a call to
delete. It is important to keep track of which pointer owns an area of mem-
ory and to ensure that the memory is returned to the free store when you
are done with it.

NOTE

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 237

Creating Objects on the Free Store
Just as you can create a pointer to an integer, you can create a pointer to any data type,
including classes. If you have declared an object of type Cat, you can declare a pointer to
that class and instantiate a Cat object on the free store, just as you can make one on the
stack. The syntax is the same as for integers:

Cat *pCat = new Cat;

This calls the default constructor—the constructor that takes no parameters. The con-
structor is called whenever an object is created (on the stack or on the free store). Be
aware, however, that you are not limited to using only the default constructor when creat-
ing an object with new—any constructor can be used.

Deleting Objects from the Free Store
When you call delete on a pointer to an object on the free store, that object’s destructor
is called before the memory is released. This gives your class a chance to clean up (gen-
erally deallocating heap allocated memory), just as it does for objects destroyed on the
stack. Listing 8.5 illustrates creating and deleting objects on the free store.

LISTING 8.5 Creating and Deleting Objects on the Free Store

1: // Listing 8.5 - Creating objects on the free store
2: // using new and delete
3:
4: #include <iostream>
5:
6: using namespace std;
7:
8: class SimpleCat
9: {
10: public:
11: SimpleCat();
12: ~SimpleCat();
13: private:
14: int itsAge;
15: };
16:
17: SimpleCat::SimpleCat()
18: {
19: cout << “Constructor called. “ << endl;
20: itsAge = 1;
21: }
22:
23: SimpleCat::~SimpleCat()
24: {

238 Day 8

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 238

Understanding Pointers 239

825: cout << “Destructor called. “ << endl;
26: }
27:
28: int main()
29: {
30: cout << “SimpleCat Frisky... “ << endl;
31: SimpleCat Frisky;
32: cout << “SimpleCat *pRags = new SimpleCat...” << endl;
33: SimpleCat * pRags = new SimpleCat;
34: cout << “delete pRags... “ << endl;
35: delete pRags;
36: cout << “Exiting, watch Frisky go... “ << endl;
37: return 0;
38: }

SimpleCat Frisky...
Constructor called.
SimpleCat *pRags = new SimpleCat..
Constructor called.
delete pRags...
Destructor called.
Exiting, watch Frisky go...
Destructor called.

Lines 8–15 declare the stripped-down class SimpleCat. Line 11 declares
SimpleCat’s constructor, and lines 17–21 contain its definition. Line 12 declares

SimpleCat’s destructor, and lines 23–26 contain its definition. As you can see, both the
constructor and destructor simply print a simple message to let you know they have been
called.

On line 31, Frisky is created as a regular local variable, thus it is created on the stack.
This creation causes the constructor to be called. On line 33, the SimpleCat pointed to
by pRags is also created; however, because a pointer is being used, it is created on the
heap. Once again, the constructor is called.

On line 35, delete is called on the pointer, pRags. This causes the destructor to be called
and the memory that had been allocated to hold this SimpleCat object to be returned.
When the function ends on line 38, Frisky goes out of scope, and its destructor is called.

Accessing Data Members
You learned on Day 6, “Understanding Object-Oriented Programming,” that you
accessed data members and functions by using the dot (.) operator. As you should be
aware, this works for Cat objects created locally.

OUTPUT

LISTING 8.5 continued

ANALYSIS

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 239

Accessing the members of an object when using a pointer is a little more complex. To
access the Cat object on the free store, you must dereference the pointer and call the dot
operator on the object pointed to by the pointer. It is worth repeating this. You must first
dereference the pointer. You then use the dereferenced value—the value being pointed
to—along with the dot operator to access the members of the object. Therefore, to access
the GetAge member function of an object pointed to by pRags, you write

(*pRags).GetAge();

As you can see, parentheses are used to ensure that pRags is dereferenced first—before
GetAge() is accessed. Remember, parentheses have a higher precedence than other
operators.

Because this is cumbersome, C++ provides a shorthand operator for indirect access: the
class member access operator (->), which is created by typing the dash (-) immediately
followed by the greater-than symbol (>). C++ treats this as a single symbol. Listing 8.6
demonstrates accessing member variables and functions of objects created on the free
store.

240 Day 8

Because the class member access operator (->) can also be used for indirect
access to members of an object (through a pointer), it can also be referred
to as an indirection operator. Some people also refer to it as the points-to
operator because that is what it does.

NOTE

LISTING 8.6 Accessing Member Data of Objects on the Free Store

1: // Listing 8.6 - Accessing data members of objects on the heap
2: // using the -> operator
3:
4: #include <iostream>
5:
6: class SimpleCat
7: {
8: public:
9: SimpleCat() {itsAge = 2; }
10: ~SimpleCat() {}
11: int GetAge() const { return itsAge; }
12: void SetAge(int age) { itsAge = age; }
13: private:
14: int itsAge;
15: };
16:
17: int main()
18: {

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 240

Understanding Pointers 241

819: using namespace std;
20: SimpleCat * Frisky = new SimpleCat;
21: cout << “Frisky is “ << Frisky->GetAge() << “ years old “ << endl;
22: Frisky->SetAge(5);
23: cout << “Frisky is “ << Frisky->GetAge() << “ years old “ << endl;
24: delete Frisky;
25: return 0;
26: }

Frisky is 2 years old
Frisky is 5 years old

On line 20, a SimpleCat object that is pointed to by the pointer Frisky is instan-
tiated (created) on the free store. The default constructor of the object sets its age

to 2, and the GetAge() method is called on line 21. Because Frisky is a pointer, the indi-
rection operator (->) is used to access the member data and functions. On line 22, the
SetAge() method is called, and GetAge() is accessed again on line 23.

Creating Member Data on the Free Store
In addition to creating objects on the free store, you can also create data members within
an object on the free store. One or more of the data members of a class can be a pointer
to an object on the free store. Using what you have already learned, you can allocate
memory on the free store for these pointers to use. The memory can be allocated in the
class constructor or in one of the class’ methods. When you are done using the member,
you can—and should—delete it in one of the methods or in the destructor, as Listing 8.7
illustrates.

LISTING 8.7 Pointers as Member Data

1: // Listing 8.7 - Pointers as data members
2: // accessed with -> operator
3:
4: #include <iostream>
5:
6: class SimpleCat
7: {
8: public:
9: SimpleCat();
10: ~SimpleCat();
11: int GetAge() const { return *itsAge; }
12: void SetAge(int age) { *itsAge = age; }
13:

OUTPUT

LISTING 8.6 continued

ANALYSIS

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 241

14: int GetWeight() const { return *itsWeight; }
15: void setWeight (int weight) { *itsWeight = weight; }
16:
17: private:
18: int * itsAge;
19: int * itsWeight;
20: };
21:
22: SimpleCat::SimpleCat()
23: {
24: itsAge = new int(2);
25: itsWeight = new int(5);
26: }
27:
28: SimpleCat::~SimpleCat()
29: {
30: delete itsAge;
31: delete itsWeight;
32: }
33:
34: int main()
35: {
36: using namespace std;
37: SimpleCat *Frisky = new SimpleCat;
38: cout << “Frisky is “ << Frisky->GetAge()
39: << “ years old “ << endl;
40: Frisky->SetAge(5);
41: cout << “Frisky is “ << Frisky->GetAge()
42: << “ years old “ << endl;
43: delete Frisky;
44: return 0;
45: }

Frisky is 2 years old
Frisky is 5 years old

The class SimpleCat is declared to have two member variables—both of which
are pointers to integers—on lines 18 and 19. The constructor (lines 22–26) ini-

tializes the pointers to memory on the free store and to the default values.

Notice on lines 24 and 25 that a pseudoconstructor is called on the new integer, passing
in the value for the integer. This creates an integer on the heap and initializes its value
(on line 24 to the value 2 and on line 25 to the value 5).

OUTPUT

242 Day 8

LISTING 8.7 continued

ANALYSIS

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 242

Understanding Pointers 243

8
The destructor (lines 28–32) cleans up the allocated memory. Because this is the destruc-
tor, there is no point in assigning these pointers to null because they will no longer be
accessible. This is one of the safe places to break the rule that deleted pointers should be
assigned to null, although following the rule doesn’t hurt.

The calling function (in this case, main()) is unaware that itsAge and itsWeight are
pointers to memory on the free store. main() continues to call GetAge() and SetAge(),
and the details of the memory management are hidden in the implementation of the
class—as they should be.

When Frisky is deleted on line 41, its destructor is called. The destructor deletes each of
its member pointers. If these, in turn, point to objects of other user-defined classes, their
destructors are called as well.

Understanding What You Are Accomplishing

The use of pointers as was done in Listing 8.7 would be pretty silly in a real program
unless a good reason existed for the Cat object to hold its members by reference. In this
case, there is no good reason to use pointers to access itsAge and itsWeight, but in
other cases, this can make a lot of sense.

This brings up the obvious question: What are you trying to accomplish by using pointers
as references to variables instead of just using variables? Understand, too, that you must
start with design. If what you’ve designed is an object that refers to another object, but
the second object might come into existence before the first object and continue after
the first object is gone, then the first object must contain the second by reference.

For example, the first object might be a window and the second object might be a docu-
ment. The window needs access to the document, but it doesn’t control the lifetime of
the document. Thus, the window needs to hold the document by reference.

This is implemented in C++ by using pointers or references. References are covered on
Day 9, “Exploiting References.”

The this Pointer
Every class member function has a hidden parameter: the this pointer. this points to
“this” individual object. Therefore, in each call to GetAge() or SetAge(), each function
gets this for its object as a hidden parameter.

It is possible to use the pointer to this explicitly, as Listing 8.8 illustrates.

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 243

LISTING 8.8 Using the this Pointer

1: // Listing 8.8
2: // Using the this pointer
3:
4: #include <iostream>
5:
6: class Rectangle
7: {
8: public:
9: Rectangle();
10: ~Rectangle();
11: void SetLength(int length)
12: { this->itsLength = length; }
13: int GetLength() const
14: { return this->itsLength; }
15:
16: void SetWidth(int width)
17: { itsWidth = width; }
18: int GetWidth() const
19: { return itsWidth; }
20:
21: private:
22: int itsLength;
23: int itsWidth;
24: };
25:
26: Rectangle::Rectangle()
27: {
28: itsWidth = 5;
29: itsLength = 10;
30: }
31: Rectangle::~Rectangle()
32: {}
33:
34: int main()
35: {
36: using namespace std;
37: Rectangle theRect;
38: cout << “theRect is “ << theRect.GetLength()
39: << “ feet long.” << endl;
40: cout << “theRect is “ << theRect.GetWidth()
41: << “ feet wide.” << endl;
42: theRect.SetLength(20);
43: theRect.SetWidth(10);
44: cout << “theRect is “ << theRect.GetLength()
45: << “ feet long.” << endl;
46: cout << “theRect is “ << theRect.GetWidth()
47: << “ feet wide. “ << endl;
48: return 0;
49: }

244 Day 8

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 244

Understanding Pointers 245

8
theRect is 10 feet long.
theRect is 5 feet wide.
theRect is 20 feet long.
theRect is 10 feet wide.

The SetLength() accessor function on lines 11–12 and the GetLength() acces-
sor function on lines 13–14, both explicitly use the this pointer to access the

member variables of the Rectangle object. The SetWidth() and GetWidth() accessors
on lines 16–19 do not. No difference exists in their behavior, although the syntax is eas-
ier to understand.

If that were all there was to this, there would be little point in bothering you with it.
this, however, is a pointer; it stores the memory address of an object. As such, it can be
a powerful tool.

You’ll see a practical use for this on Day 10, “Working with Advanced Functions,”
when operator overloading is discussed. For now, your goal is to know about this and to
understand what it is: a pointer to the object that holds the function.

You don’t have to worry about creating or deleting the this pointer. The compiler takes
care of that.

Stray, Wild, or Dangling Pointers
Yet again, issues with pointers are being brought up. This is because errors you create in
your programs with pointers can be among the most difficult to find and among the most
problematic. One source of bugs that are especially nasty and difficult to find in C++ is
stray pointers. A stray pointer (also called a wild or dangling pointer) is created when
you call delete on a pointer—thereby freeing the memory that it points to—and then
you don’t set it to null. If you then try to use that pointer again without reassigning it, the
result is unpredictable and, if you are lucky, your program will crash.

It is as though the Acme Mail Order company moved away, but you still pressed the pro-
grammed button on your phone. It is possible that nothing terrible happens—a telephone
rings in a deserted warehouse. On the other hand, perhaps the telephone number has
been reassigned to a munitions factory, and your call detonates an explosive and blows
up your whole city!

In short, be careful not to use a pointer after you have called delete on it. The pointer
still points to the old area of memory, but the compiler is free to put other data there;
using the pointer without reallocating new memory for it can cause your program to
crash. Worse, your program might proceed merrily on its way and crash several minutes
later. This is called a time bomb, and it is no fun. To be safe, after you delete a pointer,
set it to null (0). This disarms the pointer.

OUTPUT

ANALYSIS

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 245

LISTING 8.9 Creating a Stray Pointer

1: // Listing 8.9 - Demonstrates a stray pointer
2:
3: typedef unsigned short int USHORT;
4: #include <iostream>
5:
6: int main()
7: {
8: USHORT * pInt = new USHORT;
9: *pInt = 10;
10: std::cout << “*pInt: “ << *pInt << std::endl;
11: delete pInt;
12:
13: long * pLong = new long;
14: *pLong = 90000;
15: std::cout << “*pLong: “ << *pLong << std::endl;
16:
17: *pInt = 20; // uh oh, this was deleted!
18:
19: std::cout << “*pInt: “ << *pInt << std::endl;
20: std::cout << “*pLong: “ << *pLong << std::endl;
21: delete pLong;
22: return 0;
23: }

*pInt: 10
*pLong: 90000
*pInt: 20
*pLong: 65556

(Do not try to re-create this output; yours will differ if you are lucky; or your computer
will crash if you are not.)

OUTPUT

246 Day 8

Stray pointers are often called wild pointers or dangling pointers.NOTE

Listing 8.9 illustrates creating a stray pointer.

This program intentionally creates a stray pointer. Do NOT run this
program—it will crash, if you are lucky.

CAUTION

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 246

Understanding Pointers 247

8
This is a listing you should avoid running because it could lock up your machine.
On line 8, pInt is declared to be a pointer to USHORT, and is pointed to newly

allocated memory. On line 9, the value 10 is put into that memory allocated for pInt.
The value pointed to is then printed on line 10. After the value is printed, delete is
called on the pointer. After line 11 executes, pInt is a stray, or dangling, pointer.

Line 13 declares a new pointer, pLong, which is pointed at the memory allocated by new.
On line 14, the value 90000 is assigned to pLong, and on line 15, this value prints.

It is on line 17 that the troubles begin. On line 17, the value 20 is assigned to the mem-
ory that pInt points to, but pInt no longer points anywhere that is valid. The memory
that pInt points to was freed by the call to delete on line 11. Assigning a value to that
memory is certain disaster.

On line 19, the value at pInt is printed. Sure enough, it is 20. Line 20 prints the value at
pLong; it has suddenly been changed to 65556. Two questions arise:

1. How could pLong’s value change, given that pLong wasn’t touched?

2. Where did the 20 go when pInt was used on line 17?

As you might guess, these are related questions. When a value was placed at pInt on line
17, the compiler happily placed the value 20 at the memory location that pInt previously
pointed to. However, because that memory was freed on line 11, the compiler was free to
reassign it. When pLong was created on line 13, it was given pInt’s old memory loca-
tion. (On some computers, this might not happen, depending on where in memory these
values are stored.) When the value 20 was assigned to the location that pInt previously
pointed to, it wrote over the value pointed to by pLong. This is called ”stomping on a
pointer.” It is often the unfortunate outcome of using a stray pointer.

This is a particularly nasty bug because the value that changed wasn’t associated with the
stray pointer. The change to the value at pLong was a side effect of the misuse of pInt. In
a large program, this would be very difficult to track down.

ANALYSIS

Just for Fun

Here are the details of how 65,556 got into the memory address of pLong in Listing 8.9:

1. pInt was pointed at a particular memory location, and the value 10 was assigned.

2. delete was called on pInt, which told the compiler that it could put something else
at that location. Then, pLong was assigned the same memory location.

3. The value 90000 was assigned to *pLong. The particular computer used in this exam-
ple stored the four-byte value of 90,000 (00 01 5F 90) in byte-swapped order.
Therefore, it was stored as 5F 90 00 01.

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 247

248 Day 8

4. pInt was assigned the value 20—or 00 14 in hexadecimal notation. Because pInt still
pointed to the same address, the first two bytes of pLong were overwritten, leaving
00 14 00 01.

5. The value at pLong was printed, reversing the bytes back to their correct order of 00
01 00 14, which was translated into the DOS value of 65556.

FAQ

What is the difference between a null pointer and a stray pointer?

Answer: When you delete a pointer, you tell the compiler to free the memory, but the
pointer itself continues to exist. It is now a stray pointer.

When you then write myPtr = 0; you change it from being a stray pointer to being a
null pointer.

Normally, if you delete a pointer and then delete it again, your program is undefined.
That is, anything might happen—if you are lucky, the program will crash. If you delete a
null pointer, nothing happens; it is safe.

Using a stray or a null pointer (for example, writing myPtr = 5;) is illegal, and it might
crash. If the pointer is null, it will crash, another benefit of null over stray. Predictable
crashes are preferred because they are easier to debug.

Using const Pointers
You can use the keyword const for pointers before the type, after the type, or in both
places. For example, all the following are legal declarations:

const int * pOne;
int * const pTwo;
const int * const pThree;

Each of these, however, does something different:

• pOne is a pointer to a constant integer. The value that is pointed to can’t be
changed.

• pTwo is a constant pointer to an integer. The integer can be changed, but pTwo can’t
point to anything else.

• pThree is a constant pointer to a constant integer. The value that is pointed to can’t
be changed, and pThree can’t be changed to point to anything else.

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 248

Understanding Pointers 249

8
The trick to keeping this straight is to look to the right of the keyword const to find out
what is being declared constant. If the type is to the right of the keyword, it is the value
that is constant. If the variable is to the right of the keyword const, it is the pointer vari-
able itself that is constant. The following helps to illustrate this:

const int * p1; // the int pointed to is constant
int * const p2; // p2 is constant, it can’t point to anything else

const Pointers and const Member Functions
On Day 6, you learned that you can apply the keyword const to a member function.
When a function is declared const, the compiler flags as an error any attempt to change
data in the object from within that function.

If you declare a pointer to a const object, the only methods that you can call with that
pointer are const methods. Listing 8.10 illustrates this.

LISTING 8.10 Using Pointers to const Objects

1: // Listing 8.10 - Using pointers with const methods
2:
3: #include <iostream>
4: using namespace std;
5:
6: class Rectangle
7: {
8: public:
9: Rectangle();
10: ~Rectangle();
11: void SetLength(int length) { itsLength = length; }
12: int GetLength() const { return itsLength; }
13: void SetWidth(int width) { itsWidth = width; }
14: int GetWidth() const { return itsWidth; }
15:
16: private:
17: int itsLength;
18: int itsWidth;
19: };
20:
21: Rectangle::Rectangle()
22: {
23: itsWidth = 5;
24: itsLength = 10;
25: }
26:
27: Rectangle::~Rectangle()
28: {}
29:

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 249

30: int main()
31: {
32: Rectangle* pRect = new Rectangle;
33: const Rectangle * pConstRect = new Rectangle;
34: Rectangle * const pConstPtr = new Rectangle;
35:
36: cout << “pRect width: “ << pRect->GetWidth()
37: << “ feet” << endl;
38: cout << “pConstRect width: “ << pConstRect->GetWidth()
39: << “ feet” << endl;
40: cout << “pConstPtr width: “ << pConstPtr->GetWidth()
41: << “ feet” << endl;
42:
43: pRect->SetWidth(10);
44: // pConstRect->SetWidth(10);
45: pConstPtr->SetWidth(10);
46:
47: cout << “pRect width: “ << pRect->GetWidth()
48: << “ feet\n”;
49: cout << “pConstRect width: “ << pConstRect->GetWidth()
50: << “ feet\n”;
51: cout << “pConstPtr width: “ << pConstPtr->GetWidth()
52: << “ feet\n”;
53: return 0;
54: }

pRect width: 5 feet
pConstRect width: 5 feet
pConstPtr width: 5 feet
pRect width: 10 feet
pConstRect width: 5 feet
pConstPtr width: 10 feet

Lines 6–19 declare the Rectangle class. Line 14 declares the GetWidth() member
method const.

Line 32 declares a pointer to Rectangle called pRect. On line 33, a pointer to a constant
Rectangle object is declared and named pConstRect. On line 34, pConstPtr is declared
as a constant pointer to a Rectangle. Lines 36–41 print the values of these three variables.

On line 43, pRect is used to set the width of the rectangle to 10. On line 44, pConstRect
would be used to set the width, but it was declared to point to a constant Rectangle.
Therefore, it cannot legally call a non-const member function. Because it is not a valid
statement, it is commented out.

On line 45, pConstPtr calls SetWidth(). pConstPtr is declared to be a constant pointer
to a rectangle. In other words, the pointer is constant and cannot point to anything else,

OUTPUT

250 Day 8

LISTING 8.10 continued

ANALYSIS

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 250

Understanding Pointers 251

8
but the rectangle is not constant, so methods such as GetWidth() and SetWidth() can
be used.

Using a const this Pointers
When you declare an object to be const, you are in effect declaring that the object’s
this pointer is a pointer to a const object. A const this pointer can be used only with
const member functions.

DO protect objects passed by reference
with const if they should not be
changed.

DO set pointers to null rather than leav-
ing them uninitialized or dangling.

DON’T use a pointer that has been
deleted.

DON’T delete pointers more than once.

DO DON’T

Constant objects and constant pointers will be discussed again tomorrow, when refer-
ences to constant objects are discussed.

Summary
Pointers provide a powerful way to access data by indirection. Every variable has an
address, which can be obtained using the address-of operator (&). The address can be
stored in a pointer.

Pointers are declared by writing the type of object that they point to, followed by the
indirection operator (*) and the name of the pointer. Pointers should be initialized to
point to an object or to null (0).

You access the value at the address stored in a pointer by using the indirection operator
(*).

You can declare const pointers, which can’t be reassigned to point to other objects, and
pointers to const objects, which can’t be used to change the objects to which they point.

To create new objects on the free store, you use the new keyword and assign the address
that is returned to a pointer. You free that memory by calling the delete keyword on the
pointer. delete frees the memory, but it doesn’t destroy the pointer. Therefore, you must
reassign the pointer after its memory has been freed.

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 251

Q&A
Q Why are pointers so important?

A Pointers are important for a number of reasons. These include being able to use
pointers to hold the address of objects and to use them to pass arguments by refer-
ence. On Day 14, “Polymorphism,” you’ll see how pointers are used in class poly-
morphism. In addition, many operating systems and class libraries create objects
on your behalf and return pointers to them.

Q Why should I bother to declare anything on the free store?

A Objects on the free store persist after the return of a function. In addition, the capa-
bility to store objects on the free store enables you to decide at runtime how many
objects you need, instead of having to declare this in advance. This is explored in
greater depth tomorrow.

Q Why should I declare an object const if it limits what I can do with it?

A As a programmer, you want to enlist the compiler in helping you find bugs. One
serious bug that is difficult to find is a function that changes an object in ways that
aren’t obvious to the calling function. Declaring an object const prevents such
changes.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson.

Quiz
1. What operator is used to determine the address of a variable?

2. What operator is used to find the value stored at an address held in a pointer?

3. What is a pointer?

4. What is the difference between the address stored in a pointer and the value at that
address?

252 Day 8

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 252

Understanding Pointers 253

8
5. What is the difference between the indirection operator and the address-of

operator?

6. What is the difference between const int * ptrOne and int * const ptrTwo?

Exercises
1. What do these declarations do?

a. int * pOne;

b. int vTwo;

c. int * pThree = &vTwo;

2. If you have an unsigned short variable named yourAge, how would you declare a
pointer to manipulate yourAge?

3. Assign the value 50 to the variable yourAge by using the pointer that you declared
in Exercise 2.

4. Write a small program that declares an integer and a pointer to integer. Assign the
address of the integer to the pointer. Use the pointer to set a value in the integer
variable.

5. BUG BUSTERS: What is wrong with this code?
#include <iostream>
using namespace std;
int main()
{

int *pInt;
*pInt = 9;
cout << “The value at pInt: “ << *pInt;
return 0;

}

6. BUG BUSTERS: What is wrong with this code?

#include <iostream>
using namespace std;
int main()
{

int SomeVariable = 5;
cout << “SomeVariable: “ << SomeVariable << endl;
int *pVar = & SomeVariable;
pVar = 9;
cout << “SomeVariable: “ << *pVar << endl;
return 0;

}

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 253

12 0672327112_ch08.qxd 11/19/04 12:26 PM Page 254

DAY 9

WEEK 2

Exploiting References
Yesterday, you learned how to use pointers to manipulate objects on the free
store and how to refer to those objects indirectly. References, the topic of
today’s lesson, give you almost all the power of pointers but with a much easier
syntax.

Today, you will learn

• What references are

• How references differ from pointers

• How to create references and use them

• What the limitations of references are

• How to pass values and objects into and out of functions by reference

What Is a Reference?
A reference is an alias; when you create a reference, you initialize it with the
name of another object, the target. From that moment on, the reference acts as
an alternative name for the target, and anything you do to the reference is really
done to the target.

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 255

You create a reference by writing the type of the target object, followed by the reference
operator (&), followed by the name of the reference, followed by an equal sign, followed
by the name of the target object.

References can have any legal variable name, but some programmers prefer to prefix ref-
erence names with the letter “r.” Thus, if you have an integer variable named someInt,
you can make a reference to that variable by writing the following:

int &rSomeRef = someInt;

This statement is read as “rSomeRef is a reference to an integer. The reference is initial-
ized to refer to someInt.” References differ from other variables that you can declare in
that they must be initialized when they are declared. If you try to create a reference vari-
able without assigning, you receive a compiler error. Listing 9.1 shows how references
are created and used.

256 Day 9

Note that the reference operator (&) is the same symbol as the one used for
the address-of operator. These are not the same operators, however,
although clearly they are related.

The space before the reference operator is required; the space between the
reference operator and the name of the reference variable is optional. Thus

int &rSomeRef = someInt; // ok
int & rSomeRef = someInt; // ok

NOTE

LISTING 9.1 Creating and Using References

1: //Listing 9.1 - Demonstrating the use of references
2:
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8: int intOne;
9: int &rSomeRef = intOne;
10:
11: intOne = 5;
12: cout << “intOne: “ << intOne << endl;
13: cout << “rSomeRef: “ << rSomeRef << endl;
14:
15: rSomeRef = 7;
16: cout << “intOne: “ << intOne << endl;
17: cout << “rSomeRef: “ << rSomeRef << endl;
18:
19: return 0;
20: }

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 256

Exploiting References 257

9

intOne: 5
rSomeRef: 5
intOne: 7
rSomeRef: 7

On line 8, a local integer variable, intOne, is declared. On line 9, a reference to
an integer (int), rSomeRef, is declared and initialized to refer to intOne. As

already stated, if you declare a reference but don’t initialize it, you receive a compile-
time error. References must be initialized.

On line 11, intOne is assigned the value 5. On lines 12 and 13, the values in intOne and
rSomeRef are printed, and are, of course, the same.

On line 15, 7 is assigned to rSomeRef. Because this is a reference, it is an alias for intOne,
and thus the 7 is really assigned to intOne, as is shown by the printouts on lines 16 and 17.

Using the Address-Of Operator (&) on
References

You have now seen that the & symbol is used for both the address of a variable and to
declare a reference. But what if you take the address of a reference variable? If you ask a
reference for its address, it returns the address of its target. That is the nature of refer-
ences. They are aliases for the target. Listing 9.2 demonstrates taking the address of a
reference variable called rSomeRef.

LISTING 9.2 Taking the Address of a Reference

1: //Listing 9.2 - Demonstrating the use of references
2:
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8: int intOne;
9: int &rSomeRef = intOne;
10:
11: intOne = 5;
12: cout << “intOne: “ << intOne << endl;
13: cout << “rSomeRef: “ << rSomeRef << endl;
14:
15: cout << “&intOne: “ << &intOne << endl;
16: cout << “&rSomeRef: “ << &rSomeRef << endl;
17:
18: return 0;
19: }

OUTPUT

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 257

intOne: 5
rSomeRef: 5
&intOne: 0x3500
&rSomeRef: 0x3500

OUTPUT

258 Day 9

Because the final two lines print memory addresses that might be unique to
your computer or to a specific run of the program, your output might differ.

CAUTION

Once again, rSomeRef is initialized as a reference to intOne. This time, the
addresses of the two variables are printed in lines 15 and 16, and they are

identical.

C++ gives you no way to access the address of the reference itself because it is not
meaningful as it would be if you were using a pointer or other variable. References are
initialized when created, and they always act as a synonym for their target, even when
the address-of operator is applied.

For example, if you have a class called President, you might declare an instance of that
class as follows:

President George_Washington;

You might then declare a reference to President and initialize it with this object:

President &FatherOfOurCountry = George_Washington;

Only one President exists; both identifiers refer to the same object of the same class.
Any action you take on FatherOfOurCountry is taken on George_Washington as well.

Be careful to distinguish between the & symbol on line 9 of Listing 9.2, which declares a
reference to an integer named rSomeRef, and the & symbols on lines 15 and 16, which
return the addresses of the integer variable intOne and the reference rSomeRef. The com-
piler knows how to distinguish these two uses by the context in which they are being
used.

ANALYSIS

Normally, when you use a reference, you do not use the address-of operator.
You simply use the reference as you would use the target variable.

NOTE

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 258

Exploiting References 259

9

Attempting to Reassign References (Not!)
Reference variables cannot be reassigned. Even experienced C++ programmers can be
confused by what happens when you try to reassign a reference. Reference variables are
always aliases for their target. What appears to be a reassignment turns out to be the
assignment of a new value to the target. Listing 9.3 illustrates this fact.

LISTING 9.3 Assigning to a Reference

1: //Listing 9.3 - //Reassigning a reference
2:
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8: int intOne;
9: int &rSomeRef = intOne;
10:
11: intOne = 5;
12: cout << “intOne: “ << intOne << endl;
13: cout << “rSomeRef: “ << rSomeRef << endl;
14: cout << “&intOne: “ << &intOne << endl;
15: cout << “&rSomeRef: “ << &rSomeRef << endl;
16:
17: int intTwo = 8;
18: rSomeRef = intTwo; // not what you think!
19: cout << “\nintOne: “ << intOne << endl;
20: cout << “intTwo: “ << intTwo << endl;
21: cout << “rSomeRef: “ << rSomeRef << endl;
22: cout << “&intOne: “ << &intOne << endl;
23: cout << “&intTwo: “ << &intTwo << endl;
24: cout << “&rSomeRef: “ << &rSomeRef << endl;
25: return 0;
26: }

intOne: 5
rSomeRef: 5
&intOne: 0012FEDC
&rSomeRef: 0012FEDC

intOne: 8
intTwo: 8
rSomeRef: 8
&intOne: 0012FEDC
&intTwo: 0012FEE0
&rSomeRef: 0012FEDC

OUTPUT

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 259

Once again, on lines 8 and 9, an integer variable and a reference to an integer are
declared. The integer is assigned the value 5 on line 11, and the values and their

addresses are printed on lines 12–15.

On line 17, a new variable, intTwo, is created and initialized with the value 8. On line
18, the programmer tries to reassign rSomeRef to now be an alias to the variable intTwo,
but that is not what happens. What actually happens is that rSomeRef continues to act as
an alias for intOne, so this assignment is equivalent to the following:

intOne = intTwo;

Sure enough, when the values of intOne and rSomeRef are printed (lines 19–21), they are
the same as intTwo. In fact, when the addresses are printed on lines 22–24, you see that
rSomeRef continues to refer to intOne and not intTwo.

260 Day 9

ANALYSIS

DO use references to create an alias to
an object.

DO initialize all references.

DON’T try to reassign a reference.

DON’T confuse the address-of operator
with the reference operator.

DO DON’T

Referencing Objects
Any object can be referenced, including user-defined objects. Note that you create a ref-
erence to an object, but not to a class. For instance, your compiler will not allow this:

int & rIntRef = int; // wrong

You must initialize rIntRef to a particular integer, such as this:

int howBig = 200;
int & rIntRef = howBig;

In the same way, you don’t initialize a reference to a Cat:

Cat & rCatRef = Cat; // wrong

You must initialize a reference to a particular Cat object:

Cat Frisky;
Cat & rCatRef = Frisky;

References to objects are used just like the object itself. Member data and methods are
accessed using the normal class member access operator (.), and just as with the built-in
types, the reference acts as an alias to the object. Listing 9.4 illustrates this.

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 260

Exploiting References 261

9

LISTING 9.4 References to Objects

1: // Listing 9.4 - References to class objects
2:
3: #include <iostream>
4:
5: class SimpleCat
6: {
7: public:
8: SimpleCat (int age, int weight);
9: ~SimpleCat() {}
10: int GetAge() { return itsAge; }
11: int GetWeight() { return itsWeight; }
12: private:
13: int itsAge;
14: int itsWeight;
15: };
16:
17: SimpleCat::SimpleCat(int age, int weight)
18: {
19: itsAge = age;
20: itsWeight = weight;
21: }
22:
23: int main()
24: {
25: SimpleCat Frisky(5,8);
26: SimpleCat & rCat = Frisky;
27:
28: std::cout << “Frisky is: “;
29: std::cout << Frisky.GetAge() << “ years old.” << std::endl;
30: std::cout << “And Frisky weighs: “;
31: std::cout << rCat.GetWeight() << “ pounds.” << std::endl;
32: return 0;
33: }

Frisky is: 5 years old.
And Frisky weighs 8 pounds.

On line 25, Frisky is declared to be a SimpleCat object. On line 26, a
SimpleCat reference, rCat, is declared and initialized to refer to Frisky. On

lines 29 and 31, the SimpleCat accessor methods are accessed by using first the
SimpleCat object and then the SimpleCat reference. Note that the access is identical.
Again, the reference is an alias for the actual object.

OUTPUT

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 261

Null Pointers and Null References
When pointers are not initialized or when they are deleted, they ought to be assigned to
null (0). This is not true for references because they must be initialized to what they ref-
erence when they are declared.

However, because C++ needs to be usable for device drivers, embedded systems, and
real-time systems that can reach directly into the hardware, the ability to reference spe-
cific addresses is valuable and required. For this reason, most compilers support a null or
numeric initialization of a reference without much complaint, crashing only if you try to
use the object in some way when that reference would be invalid.

Taking advantage of this in normal programming, however, is still not a good idea. When
you move your program to another machine or compiler, mysterious bugs might develop
if you have null references.

Passing Function Arguments by Reference
On Day 5, “Organizing into Functions,” you learned that functions have two limitations:
Arguments are passed by value, and the return statement can return only one value.

Passing values to a function by reference can overcome both of these limitations. In C++,
passing a variable by reference is accomplished in two ways: using pointers and using
references. Note the difference: You pass by reference using a pointer, or you pass a ref-
erence using a reference.

The syntax of using a pointer is different from that of using a reference, but the net effect
is the same. Rather than a copy being created within the scope of the function, the actual
original object is (effectively) made directly available to the function.

262 Day 9

References

References act as an alias to another variable. Declare a reference by writing the type,
followed by the reference operator (&), followed by the reference name. References must
be initialized at the time of creation.

Example 1

int hisAge;
int &rAge = hisAge;

Example 2

Cat Boots;
Cat &rCatRef = Boots;

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 262

Exploiting References 263

9

Passing an object by reference enables the function to change the object being referred
to. On Day 5, you learned that functions are passed their parameters on the stack. When
a function is passed a value by reference (using either pointers or references), the address
of the original object is put on the stack, not the entire object. In fact, on some comput-
ers, the address is actually held in a register and nothing is put on the stack. In either
case, because an address is being passed, the compiler now knows how to get to the orig-
inal object, and changes are made there and not in a copy.

Recall that Listing 5.5 on Day 5 demonstrated that a call to the swap() function did not
affect the values in the calling function. Listing 5.5 is reproduced here as Listing 9.5, for
your convenience.

LISTING 9.5 Demonstrating Passing by Value

1: //Listing 9.5 - Demonstrates passing by value
2: #include <iostream>
3:
4: using namespace std;
5: void swap(int x, int y);
6:
7: int main()
8: {
9: int x = 5, y = 10;
10:
11: cout << “Main. Before swap, x: “ << x << “ y: “ << y << endl;
12: swap(x,y);
13: cout << “Main. After swap, x: “ << x << “ y: “ << y << endl;
14: return 0;
15: }
16:
17: void swap (int x, int y)
18: {
19: int temp;
20:
21: cout << “Swap. Before swap, x: “ << x << “ y: “ << y << endl;
22:
23: temp = x;
24: x = y;
25: y = temp;
26:
27: cout << “Swap. After swap, x: “ << x << “ y: “ << y << endl;
28: }

Main. Before swap, x: 5 y: 10
Swap. Before swap, x: 5 y: 10
Swap. After swap, x: 10 y: 5
Main. After swap, x: 5 y: 10

OUTPUT

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 263

This program initializes two variables in main() and then passes them to the
swap() function, which appears to swap them. When they are examined again in

main(), they are unchanged!

The problem here is that x and y are being passed to swap() by value. That is, local
copies were made in the function. These local copies were changed and then thrown
away when the function returned and its local storage was deallocated. What is prefer-
able is to pass x and y by reference, which changes the source values of the variable
rather than a local copy.

Two ways to solve this problem are possible in C++: You can make the parameters of
swap() pointers to the original values, or you can pass in references to the original
values.

Making swap() Work with Pointers
When you pass in a pointer, you pass in the address of the object, and thus the function
can manipulate the value at that address. To make swap() change the actual values of x
and y by using pointers, the function, swap(), should be declared to accept two int
pointers. Then, by dereferencing the pointers, the values of x and y will actually be
accessed and, in fact, be swapped. Listing 9.6 demonstrates this idea.

LISTING 9.6 Passing by Reference Using Pointers

1: //Listing 9.6 Demonstrates passing by reference
2: #include <iostream>
3:
4: using namespace std;
5: void swap(int *x, int *y);
6:
7: int main()
8: {
9: int x = 5, y = 10;
10:
11: cout << “Main. Before swap, x: “ << x << “ y: “ << y << endl;
12: swap(&x,&y);
13: cout << “Main. After swap, x: “ << x << “ y: “ << y << endl;
14: return 0;
15: }
16:
17: void swap (int *px, int *py)
18: {
19: int temp;
20:
21: cout << “Swap. Before swap, *px: “ << *px <<
22: “ *py: “ << *py << endl;

264 Day 9

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 264

Exploiting References 265

9

23:
24: temp = *px;
25: *px = *py;
26: *py = temp;
27:
28: cout << “Swap. After swap, *px: “ << *px <<
29: “ *py: “ << *py << endl;
30:
31: }

Main. Before swap, x: 5 y: 10
Swap. Before swap, *px: 5 *py: 10
Swap. After swap, *px: 10 *py: 5
Main. After swap, x: 10 y: 5

Success! On line 5, the prototype of swap() is changed to indicate that its two
parameters will be pointers to int rather than int variables. When swap() is

called on line 12, the addresses of x and y are passed as the arguments. You can see that
the addresses are passed because the address-of operator (&) is being used.

On line 19, a local variable, temp, is declared in the swap() function. temp need not be a
pointer; it will just hold the value of *px (that is, the value of x in the calling function)
for the life of the function. After the function returns, temp is no longer needed.

On line 24, temp is assigned the value at px. On line 25, the value at px is assigned to the
value at py. On line 26, the value stashed in temp (that is, the original value at px) is put
into py.

The net effect of this is that the values in the calling function, whose address was passed
to swap(), are, in fact, swapped.

Implementing swap() with References
The preceding program works, but the syntax of the swap() function is cumbersome in
two ways. First, the repeated need to dereference the pointers within the swap() function
makes it error-prone—for instance, if you fail to dereference the pointer, the compiler
still lets you assign an integer to the pointer, and a subsequent user experiences an
addressing error. This is also hard to read. Finally, the need to pass the address of the
variables in the calling function makes the inner workings of swap() overly apparent to
its users.

It is a goal of an object-oriented language such as C++ to prevent the user of a function
from worrying about how it works. Passing by pointers puts the burden on the calling

OUTPUT

LISTING 9.6 continued

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 265

function rather than where it belongs—on the function being called. Listing 9.7 rewrites
the swap() function, using references.

LISTING 9.7 swap() Rewritten with References

1: //Listing 9.7 Demonstrates passing by reference
2: // using references!
3: #include <iostream>
4:
5: using namespace std;
6: void swap(int &x, int &y);
7:
8: int main()
9: {
10: int x = 5, y = 10;
11:
12: cout << “Main. Before swap, x: “ << x << “ y: “
13: << y << endl;
14:
15: swap(x,y);
16:
17: cout << “Main. After swap, x: “ << x << “ y: “
18: << y << endl;
19:
20: return 0;
21: }
22:
23: void swap (int &rx, int &ry)
24: {
25: int temp;
26:
27: cout << “Swap. Before swap, rx: “ << rx << “ ry: “
28: << ry << endl;
29:
30: temp = rx;
31: rx = ry;
32: ry = temp;
33:
34:
35: cout << “Swap. After swap, rx: “ << rx << “ ry: “
36: << ry << endl;
37:
38: }

Main. Before swap, x:5 y: 10
Swap. Before swap, rx:5 ry:10
Swap. After swap, rx:10 ry:5
Main. After swap, x:10, y:5

OUTPUT

266 Day 9

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 266

Exploiting References 267

9

Just as in the example with pointers, two variables are declared on line 10, and
their values are printed on line 12. On line 15, the function swap() is called, but

note that x and y, not their addresses, are passed. The calling function simply passes the
variables.

When swap() is called, program execution jumps to line 23, where the variables are
identified as references. The values from the variables are printed on line 27, but note
that no special operators are required. These variables are aliases for the original vari-
ables and can be used as such.

On lines 30–32, the values are swapped, and then they’re printed on line 35. Program
execution jumps back to the calling function, and on line 17, the values are printed in
main(). Because the parameters to swap() are declared to be references, the variables
from main() are passed by reference, and thus their changed values are what is seen in
main() as well.

As you can see from this listing, references provide the convenience and ease of use of
normal variables, with the power and pass-by-reference capability of pointers!

Understanding Function Headers
and Prototypes

Listing 9.6 shows swap() using pointers, and Listing 9.7 shows it using references.
Using the function that takes references is easier, and the code is easier to read, but how
does the calling function know if the values are passed by reference or by value? As a
client (or user) of swap(), the programmer must ensure that swap() will, in fact, change
the parameters.

This is another use for the function prototype. By examining the parameters declared in
the prototype, which is typically in a header file along with all the other prototypes, the
programmer knows that the values passed into swap() are passed by reference, and thus
will be swapped properly. On line 6 of Listing 9.7, you can see the prototype for
swap()—you can see that the two parameters are passed as references.

If swap() had been a member function of a class, the class declaration, also available in a
header file, would have supplied this information.

In C++, clients of classes and functions can rely on the header file to tell all that is
needed; it acts as the interface to the class or function. The actual implementation is hid-
den from the client. This enables the programmer to focus on the problem at hand and to
use the class or function without concern for how it works.

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 267

When Colonel John Roebling designed the Brooklyn Bridge, he worried in detail about
how the concrete was poured and how the wire for the bridge was manufactured. He was
intimately involved in the mechanical and chemical processes required to create his
materials. Today, however, engineers make more efficient use of their time by using well-
understood building materials, without regard to how their manufacturer produced them.

It is the goal of C++ to enable programmers to rely on well-understood classes and func-
tions without regard to their internal workings. These “component parts” can be assem-
bled to produce a program, much the same way wires, pipes, clamps, and other parts are
assembled to produce buildings and bridges.

In much the same way that an engineer examines the spec sheet for a pipe to determine
its load-bearing capacity, volume, fitting size, and so forth, a C++ programmer reads the
declaration of a function or class to determine what services it provides, what parameters
it takes, and what values it returns.

Returning Multiple Values
As discussed, functions can only return one value. What if you need to get two values
back from a function? One way to solve this problem is to pass two objects into the func-
tion, by reference. The function can then fill the objects with the correct values. Because
passing by reference allows a function to change the original objects, this effectively
enables the function to return two pieces of information. This approach bypasses the
return value of the function, which can then be reserved for reporting errors.

Once again, this can be done with references or pointers. Listing 9.8 demonstrates a
function that returns three values: two as pointer parameters and one as the return value
of the function.

LISTING 9.8 Returning Values with Pointers

1: //Listing 9.8 - Returning multiple values from a function
2:
3: #include <iostream>
4:
5: using namespace std;
6: short Factor(int n, int* pSquared, int* pCubed);
7:
8: int main()
9: {
10: int number, squared, cubed;
11: short error;
12:

268 Day 9

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 268

Exploiting References 269

9

13: cout << “Enter a number (0 - 20): “;
14: cin >> number;
15:
16: error = Factor(number, &squared, &cubed);
17:
18: if (!error)
19: {
20: cout << “number: “ << number << endl;
21: cout << “square: “ << squared << endl;
22: cout << “cubed: “ << cubed << endl;
23: }
24: else
25: cout << “Error encountered!!” << endl;
26: return 0;
27: }
28:
29: short Factor(int n, int *pSquared, int *pCubed)
30: {
31: short Value = 0;
32: if (n > 20)
33: Value = 1;
34: else
35: {
36: *pSquared = n*n;
37: *pCubed = n*n*n;
38: Value = 0;
39: }
40: return Value;
41: }

Enter a number (0-20): 3
number: 3
square: 9
cubed: 27

On line 10, number, squared, and cubed are defined as short integers. number is
assigned a value based on user input on line 14. On line 16, this number and the

addresses of squared and cubed are passed to the function Factor().

On line 32, Factor() examines the first parameter, which is passed by value. If it is
greater than 20 (the maximum value this function can handle), it sets the return value,
Value, to a simple error value. Note that the return value from Function() is reserved
for either this error value or the value 0, indicating all went well, and note that the func-
tion returns this value on line 40.

OUTPUT

LISTING 9.8 continued

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 269

The actual values needed, the square and cube of number, are not returned by using the
return mechanism; rather, they are returned by changing the pointers that were passed
into the function.

On lines 36 and 37, the pointers are assigned their return values. These values are
assigned to the original variables by the use of indirection. You know this by the use of
the dereference operator (*) with the pointer names. On line 38, Value is assigned a suc-
cess value and then on line 40 it is returned.

270 Day 9

Because passing by reference or by pointer allows uncontrolled access to
object attributes and methods, you should pass the minimum required for
the function to do its job. This helps to ensure that the function is safer to
use and more easily understandable.

TIP

Returning Values by Reference
Although Listing 9.8 works, it can be made easier to read and maintain by using
references rather than pointers. Listing 9.9 shows the same program rewritten to use
references.

Listing 9.9 also includes a second improvement. An enum has been added to make the
return value easier to understand. Rather than returning 0 or 1, using an enum, the pro-
gram can return SUCCESS or FAILURE.

LISTING 9.9 Rewritten Using References

1: //Listing 9.9
2: // Returning multiple values from a function
3: // using references
4: #include <iostream>
5:
6: using namespace std;
7:
8: enum ERR_CODE { SUCCESS, ERROR };
9:
10: ERR_CODE Factor(int, int&, int&);
11:
12: int main()
13: {
14: int number, squared, cubed;
15: ERR_CODE result;
16:
17: cout << “Enter a number (0 - 20): “;

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 270

Exploiting References 271

9

18: cin >> number;
19:
20: result = Factor(number, squared, cubed);
21:
22: if (result == SUCCESS)
23: {
24: cout << “number: “ << number << endl;
25: cout << “square: “ << squared << endl;
26: cout << “cubed: “ << cubed << endl;
27: }
28: else
29: cout << “Error encountered!!” << endl;
30: return 0;
31: }
32:
33: ERR_CODE Factor(int n, int &rSquared, int &rCubed)
34: {
35: if (n > 20)
36: return ERROR; // simple error code
37: else
38: {
39: rSquared = n*n;
40: rCubed = n*n*n;
41: return SUCCESS;
42: }
43: }

Enter a number (0 - 20): 3
number: 3
square: 9
cubed: 27

Listing 9.9 is identical to 9.8, with two exceptions. The ERR_CODE enumeration
makes the error reporting a bit more explicit on lines 36 and 41, as well as the

error handling on line 22.

The larger change, however, is that Factor() is now declared to take references to
squared and cubed rather than to pointers. This makes the manipulation of these parame-
ters far simpler and easier to understand.

Passing by Reference for Efficiency
Each time you pass an object into a function by value, a copy of the object is made. Each
time you return an object from a function by value, another copy is made.

OUTPUT

LISTING 9.9 continued

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 271

On Day 5, you learned that these objects are copied onto the stack. Doing so takes time
and memory. For small objects, such as the built-in integer values, this is a trivial cost.

However, with larger, user-created objects, the cost is greater. The size of a user-created
object on the stack is the sum of each of its member variables. These, in turn, can each
be user-created objects, and passing such a massive structure by copying it onto the stack
can be very expensive in performance and memory consumption.

Another cost occurs as well. With the classes you create, each of these temporary copies
is created when the compiler calls a special constructor: the copy constructor. Tomorrow,
you will learn how copy constructors work and how you can make your own, but for
now it is enough to know that the copy constructor is called each time a temporary copy
of the object is put on the stack.

When the temporary object is destroyed, which happens when the function returns, the
object’s destructor is called. If an object is returned by the function by value, a copy of
that object must be made and destroyed as well.

With large objects, these constructor and destructor calls can be expensive in speed and
use of memory. To illustrate this idea, Listing 9.10 creates a stripped-down, user-created
object: SimpleCat. A real object would be larger and more expensive, but this is suffi-
cient to show how often the copy constructor and destructor are called.

LISTING 9.10 Passing Objects by Reference

1: //Listing 9.10 - Passing pointers to objects
2:
3: #include <iostream>
4:
5: using namespace std;
6: class SimpleCat
7: {
8: public:
9: SimpleCat (); // constructor
10: SimpleCat(SimpleCat&); // copy constructor
11: ~SimpleCat(); // destructor
12: };
13:
14: SimpleCat::SimpleCat()
15: {
16: cout << “Simple Cat Constructor...” << endl;
17: }
18:
19: SimpleCat::SimpleCat(SimpleCat&)
20: {
21: cout << “Simple Cat Copy Constructor...” << endl;

272 Day 9

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 272

Exploiting References 273

9

22: }
23:
24: SimpleCat::~SimpleCat()
25: {
26: cout << “Simple Cat Destructor...” << endl;
27: }
28:
29: SimpleCat FunctionOne (SimpleCat theCat);
30: SimpleCat* FunctionTwo (SimpleCat *theCat);
31:
32: int main()
33: {
34: cout << “Making a cat...” << endl;
35: SimpleCat Frisky;
36: cout << “Calling FunctionOne...” << endl;
37: FunctionOne(Frisky);
38: cout << “Calling FunctionTwo...” << endl;
39: FunctionTwo(&Frisky);
40: return 0;
41: }
42:
43: // FunctionOne, passes by value
44: SimpleCat FunctionOne(SimpleCat theCat)
45: {
46: cout << “Function One. Returning... “ << endl;
47: return theCat;
48: }
49:
50: // functionTwo, passes by reference
51: SimpleCat* FunctionTwo (SimpleCat *theCat)
52: {
53: cout << “Function Two. Returning... “ << endl;
54: return theCat;
55: }

Making a cat...
Simple Cat Constructor...
Calling FunctionOne...
Simple Cat Copy Constructor...
Function One. Returning...
Simple Cat Copy Constructor...
Simple Cat Destructor...
Simple Cat Destructor...
Calling FunctionTwo...
Function Two. Returning...
Simple Cat Destructor...

OUTPUT

LISTING 9.10 continued

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 273

Listing 9.10 creates the SimpleCat object and then calls two functions. The first
function receives the Cat by value and then returns it by value. The second one

receives a pointer to the object, rather than the object itself, and returns a pointer to the
object.

The very simplified SimpleCat class is declared on lines 6–12. The constructor, copy
constructor, and destructor all print an informative message so that you can tell when
they’ve been called.

On line 34, main() prints out a message, and that is seen on the first line of the output.
On line 35, a SimpleCat object is instantiated. This causes the constructor to be called,
and the output from the constructor is seen on the second line of output.

On line 36, main() reports that it is calling FunctionOne, which creates the third line of
output. Because FunctionOne() is called passing the SimpleCat object by value, a copy
of the SimpleCat object is made on the stack as an object local to the called function.
This causes the copy constructor to be called, which creates the fourth line of output.

Program execution jumps to line 46 in the called function, which prints an informative
message, the fifth line of output. The function then returns, and returns the SimpleCat
object by value. This creates yet another copy of the object, calling the copy constructor
and producing the sixth line of output.

The return value from FunctionOne() is not assigned to any object, and so the temporary
object created for the return is thrown away, calling the destructor, which produces the
seventh line of output. Because FunctionOne() has ended, its local copy goes out of
scope and is destroyed, calling the destructor and producing the eighth line of output.

Program execution returns to main(), and FunctionTwo() is called, but the parameter is
passed by reference. No copy is produced, so there’s no output. FunctionTwo() prints
the message that appears as the tenth line of output and then returns the SimpleCat
object, again by reference, and so again produces no calls to the constructor or
destructor.

Finally, the program ends and Frisky goes out of scope, causing one final call to the
destructor and printing the final line of output.

The net effect of this is that the call to FunctionOne(), because it passed the Frisky by
value, produced two calls to the copy constructor and two to the destructor, while the call
to FunctionTwo() produced none.

Passing a const Pointer
Although passing a pointer to FunctionTwo() is more efficient, it is dangerous.
FunctionTwo() is not meant to be allowed to change the SimpleCat object it is passed,

274 Day 9

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 274

Exploiting References 275

9

yet it is given the address of the SimpleCat. This seriously exposes the original object to
change and defeats the protection offered in passing by value.

Passing by value is like giving a museum a photograph of your masterpiece instead of
the real thing. If vandals mark it up, there is no harm done to the original. Passing by ref-
erence is like sending your home address to the museum and inviting guests to come
over and look at the real thing.

The solution is to pass a pointer to a constant SimpleCat. Doing so prevents calling any
non-const method on SimpleCat, and thus protects the object from change.

Passing a constant reference allows your guests to see the original painting, but not to
alter it in any way. Listing 9.11 demonstrates this idea.

LISTING 9.11 Passing Pointer to a Constant Object

1: //Listing 9.11 - Passing pointers to objects
2:
3: #include <iostream>
4:
5: using namespace std;
6: class SimpleCat
7: {
8: public:
9: SimpleCat();
10: SimpleCat(SimpleCat&);
11: ~SimpleCat();
12:
13: int GetAge() const { return itsAge; }
14: void SetAge(int age) { itsAge = age; }
15:
16: private:
17: int itsAge;
18: };
19:
20: SimpleCat::SimpleCat()
21: {
22: cout << “Simple Cat Constructor...” << endl;
23: itsAge = 1;
24: }
25:
26: SimpleCat::SimpleCat(SimpleCat&)
27: {
28: cout << “Simple Cat Copy Constructor...” << endl;
29: }
30:
31: SimpleCat::~SimpleCat()
32: {

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 275

33: cout << “Simple Cat Destructor...” << endl;
34: }
35:
36: const SimpleCat * const FunctionTwo
37: (const SimpleCat * const theCat);
38:
39: int main()
40: {
41: cout << “Making a cat...” << endl;
42: SimpleCat Frisky;
43: cout << “Frisky is “ ;
44: cout << Frisky.GetAge();
45: cout << “ years old” << endl;
46: int age = 5;
47: Frisky.SetAge(age);
48: cout << “Frisky is “ ;
49: cout << Frisky.GetAge();
50: cout << “ years old” << endl;
51: cout << “Calling FunctionTwo...” << endl;
52: FunctionTwo(&Frisky);
53: cout << “Frisky is “ ;
54: cout << Frisky.GetAge();
55: cout << “ years old” << endl;
56: return 0;
57: }
58:
59: // functionTwo, passes a const pointer
60: const SimpleCat * const FunctionTwo
61: (const SimpleCat * const theCat)
62: {
63: cout << “Function Two. Returning...” << endl;
64: cout << “Frisky is now “ << theCat->GetAge();
65: cout << “ years old “ << endl;
66: // theCat->SetAge(8); const!
67: return theCat;
68: }

Making a cat...
Simple Cat constructor...
Frisky is 1 years old
Frisky is 5 years old
Calling FunctionTwo...
FunctionTwo. Returning...
Frisky is now 5 years old
Frisky is 5 years old
Simple Cat Destructor...

OUTPUT

276 Day 9

LISTING 9.11 continued

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 276

Exploiting References 277

9

SimpleCat has added two accessor functions, GetAge() on line 13, which is a
const function, and SetAge() on line 14, which is not a const function. It has

also added the member variable itsAge on line 17.

The constructor, copy constructor, and destructor are still defined to print their messages.
The copy constructor is never called, however, because the object is passed by reference
and so no copies are made. On line 42, an object is created, and its default age is printed,
starting on line 43.

On line 47, itsAge is set using the accessor SetAge, and the result is printed on line 48.
FunctionOne is not used in this program, but FunctionTwo() is called. FunctionTwo()
has changed slightly; the parameter and return value are now declared, on line 36, to take
a constant pointer to a constant object and to return a constant pointer to a constant object.

Because the parameter and return value are still passed by reference, no copies are made
and the copy constructor is not called. The object being pointed to in FunctionTwo(),
however, is now constant, and thus cannot call the non-const method, SetAge(). If the
call to SetAge() on line 66 was not commented out, the program would not compile.

Note that the object created in main() is not constant, and Frisky can call SetAge().
The address of this nonconstant object is passed to FunctionTwo(), but because
FunctionTwo()’s declaration declares the pointer to be a constant pointer to a constant
object, the object is treated as if it were constant!

References as an Alternative
Listing 9.11 solves the problem of making extra copies, and thus saves the calls to the
copy constructor and destructor. It uses constant pointers to constant objects, and thereby
solves the problem of the function changing the object. It is still somewhat cumbersome,
however, because the objects passed to the function are pointers.

Because you know the object will never be null, it would be easier to work within the
function if a reference were passed in, rather than a pointer. Listing 9.12 illustrates this.

LISTING 9.12 Passing References to Objects

1: //Listing 9.12 - Passing references to objects
2:
3: #include <iostream>
4:
5: using namespace std;
6: class SimpleCat
7: {
8: public:
9: SimpleCat();
10: SimpleCat(SimpleCat&);

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 277

11: ~SimpleCat();
12:
13: int GetAge() const { return itsAge; }
14: void SetAge(int age) { itsAge = age; }
15:
16: private:
17: int itsAge;
18: };
19:
20: SimpleCat::SimpleCat()
21: {
22: cout << “Simple Cat Constructor...” << endl;
23: itsAge = 1;
24: }
25:
26: SimpleCat::SimpleCat(SimpleCat&)
27: {
28: cout << “Simple Cat Copy Constructor...” << endl;
29: }
30:
31: SimpleCat::~SimpleCat()
32: {
33: cout << “Simple Cat Destructor...” << endl;
34: }
35:
36: const SimpleCat & FunctionTwo (const SimpleCat & theCat);
37:
38: int main()
39: {
40: cout << “Making a cat...” << endl;
41: SimpleCat Frisky;
42: cout << “Frisky is “ << Frisky.GetAge() << “ years old” << endl;
43: int age = 5;
44: Frisky.SetAge(age);
45: cout << “Frisky is “ << Frisky.GetAge() << “ years old” << endl;
46: cout << “Calling FunctionTwo...” << endl;
47: FunctionTwo(Frisky);
48: cout << “Frisky is “ << Frisky.GetAge() << “ years old” << endl;
49: return 0;
50: }
51:
52: // functionTwo, passes a ref to a const object
53: const SimpleCat & FunctionTwo (const SimpleCat & theCat)
54: {
55: cout << “Function Two. Returning...” << endl;
56: cout << “Frisky is now “ << theCat.GetAge();
57: cout << “ years old “ << endl;
58: // theCat.SetAge(8); const!
59: return theCat;
60: }

278 Day 9

LISTING 9.12 continued

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 278

Exploiting References 279

9

Making a cat...
Simple Cat constructor...
Frisky is 1 years old
Frisky is 5 years old
Calling FunctionTwo...
FunctionTwo. Returning...
Frisky is now 5 years old
Frisky is 5 years old
Simple Cat Destructor...

The output is identical to that produced by Listing 9.11. The only significant
change is that FunctionTwo() now takes and returns a reference to a constant

object. Once again, working with references is somewhat simpler than working with
pointers, and the same savings and efficiency are achieved, as well as the safety provided
by using const.

OUTPUT

ANALYSIS

const References

C++ programmers do not usually differentiate between “constant reference to a
SimpleCat object” and “reference to a constant SimpleCat object.” References them-
selves can never be reassigned to refer to another object, and so they are always con-
stant. If the keyword const is applied to a reference, it is to make the object referred to
constant.

Knowing When to Use References Versus
Pointers

Experienced C++ programmers strongly prefer references to pointers. References are
cleaner and easier to use, and they do a better job of hiding information, as you saw in
the previous example.

References cannot be reassigned, however. If you need to point first to one object and
then to another, you must use a pointer. References cannot be null, so if any chance
exists that the object in question might be null, you must not use a reference. You must
use a pointer.

An example of the latter concern is the operator new. If new cannot allocate memory on
the free store, it returns a null pointer. Because a reference shouldn’t be null, you must
not initialize a reference to this memory until you’ve checked that it is not null. The fol-
lowing example shows how to handle this:

int *pInt = new int;
if (pInt != NULL)
int &rInt = *pInt;

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 279

In this example, a pointer to int, pInt, is declared and initialized with the memory
returned by the operator new. The address in pInt is tested, and if it is not null, pInt is
dereferenced. The result of dereferencing an int variable is an int object, and rInt is
initialized to refer to that object. Thus, rInt becomes an alias to the int returned by the
operator new.

280 Day 9

DO pass parameters by reference when-
ever possible.

DO use const to protect references and
pointers whenever possible.

DON’T use pointers if references will
work.

DON’T try to reassign a reference to a
different variable. You can’t.

DO DON’T

Mixing References and Pointers
It is perfectly legal to declare both pointers and references in the same function parame-
ter list, along with objects passed by value. Here’s an example:

Cat * SomeFunction (Person &theOwner, House *theHouse, int age);

This declaration says that SomeFunction takes three parameters. The first is a reference
to a Person object, the second is a pointer to a House object, and the third is an integer. It
returns a pointer to a Cat object.

The question of where to put the reference (&) or the indirection operator (*) when
declaring these variables is a great controversy. When declaring a reference, you can
legally write any of the following:

1: Cat& rFrisky;
2: Cat & rFrisky;
3: Cat &rFrisky;

Whitespace is completely ignored, so anywhere you see a space here you can put as
many spaces, tabs, and new lines as you want.

Setting aside freedom of expression issues, which is best? Here are the arguments for
all three:

The argument for case 1 is that rFrisky is a variable whose name is rFrisky and whose
type can be thought of as “reference to Cat object.” Thus, this argument goes, the &
should be with the type.

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 280

Exploiting References 281

9

The counterargument is that the type is Cat. The & is part of the “declarator,” which
includes the variable name and the ampersand. More important, having the & near the
Cat can lead to the following bug:

Cat& rFrisky, rBoots;

Casual examination of this line would lead you to think that both rFrisky and rBoots
are references to Cat objects, but you’d be wrong. This really says that rFrisky is a ref-
erence to a Cat, and rBoots (despite its name) is not a reference but a plain old Cat vari-
able. This should be rewritten as follows:

Cat &rFrisky, rBoots;

The answer to this objection is that declarations of references and variables should never
be combined like this. Here’s the right way to declare the reference and nonreference
variable:

Cat& rFrisky;
Cat boots;

Finally, many programmers opt out of the argument and go with the middle position, that
of putting the & in the middle of the two, as illustrated in case 2.

Of course, everything said so far about the reference operator (&) applies equally well to
the indirection operator (*). The important thing is to recognize that reasonable people
differ in their perceptions of the one true way. Choose a style that works for you, and be
consistent within any one program; clarity is, and remains, the goal.

Many programmers like the following conventions for declaring references
and pointers:

• Put the ampersand and asterisk in the middle, with a space on either
side.

• Never declare references, pointers, and variables all on the same line.

NOTE

Returning Out-of-Scope Object References
After C++ programmers learn to pass by reference, they have a tendency to go hog-wild.
It is possible, however, to overdo it. Remember that a reference is always an alias to
some other object. If you pass a reference into or out of a function, be certain to ask
yourself, “What is the object I’m aliasing, and will it still exist every time it’s used?”

Listing 9.13 illustrates the danger of returning a reference to an object that no longer
exists.

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 281

LISTING 9.13 Returning a Reference to a Nonexistent Object

1: // Listing 9.13
2: // Returning a reference to an object
3: // which no longer exists
4:
5: #include <iostream>
6:
7: class SimpleCat
8: {
9: public:
10: SimpleCat (int age, int weight);
11: ~SimpleCat() {}
12: int GetAge() { return itsAge; }
13: int GetWeight() { return itsWeight; }
14: private:
15: int itsAge;
16: int itsWeight;
17: };
18:
19: SimpleCat::SimpleCat(int age, int weight)
20: {
21: itsAge = age;
22: itsWeight = weight;
23: }
24:
25: SimpleCat &TheFunction();
26:
27: int main()
28: {
29: SimpleCat &rCat = TheFunction();
30: int age = rCat.GetAge();
31: std::cout << “rCat is “ << age << “ years old!” << std::endl;
32: return 0;
33: }
34:
35: SimpleCat &TheFunction()
36: {
37: SimpleCat Frisky(5,9);
38: return Frisky;
39: }

Compile error: Attempting to return a reference to a local object!
OUTPUT

282 Day 9

This program won’t compile on the Borland compiler. It will compile on
Microsoft compilers; however, it should be noted that it is a poor coding
practice.

CAUTION

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 282

Exploiting References 283

9

On lines 7–17, SimpleCat is declared. On line 29, a reference to a SimpleCat is
initialized with the results of calling TheFunction(), which is declared on line

25 to return a reference to a SimpleCat.

The body of TheFunction() in lines 35–39 declares a local object of type SimpleCat and
initializes its age and weight. It then returns that local object by reference on line 38.
Some compilers are smart enough to catch this error and don’t let you run the program.
Others let you run the program, with unpredictable results.

When TheFunction() returns, the local object, Frisky, is destroyed (painlessly, I assure
you). The reference returned by this function is an alias to a nonexistent object, and this
is a bad thing.

Returning a Reference to an Object on the Heap
You might be tempted to solve the problem in Listing 9.13 by having TheFunction()
create Frisky on the heap. That way, when you return from TheFunction(), Frisky still
exists.

The problem with this approach is: What do you do with the memory allocated for
Frisky when you are done with it? Listing 9.14 illustrates this problem.

LISTING 9.14 Memory Leaks

1: // Listing 9.14 - Resolving memory leaks
2:
3: #include <iostream>
4:
5: class SimpleCat
6: {
7: public:
8: SimpleCat (int age, int weight);
9: ~SimpleCat() {}
10: int GetAge() { return itsAge; }
11: int GetWeight() { return itsWeight; }
12:
13: private:
14: int itsAge;
15: int itsWeight;
16: };
17:
18: SimpleCat::SimpleCat(int age, int weight)
19: {
20: itsAge = age;
21: itsWeight = weight;
22: }
23:

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 283

24: SimpleCat & TheFunction();
25:
26: int main()
27: {
28: SimpleCat & rCat = TheFunction();
29: int age = rCat.GetAge();
30: std::cout << “rCat is “ << age << “ years old!” << std::endl;
31: std::cout << “&rCat: “ << &rCat << std::endl;
32: // How do you get rid of that memory?
33: SimpleCat * pCat = &rCat;
34: delete pCat;
35: // Uh oh, rCat now refers to ??
36: return 0;
37: }
38:
39: SimpleCat &TheFunction()
40: {
41: SimpleCat * pFrisky = new SimpleCat(5,9);
42: std::cout << “pFrisky: “ << pFrisky << std::endl;
43: return *pFrisky;
44: }

pFrisky: 0x00431C60
rCat is 5 years old!
&rCat: 0x00431C60

OUTPUT

284 Day 9

LISTING 9.14 continued

This compiles, links, and appears to work. But it is a time bomb waiting to
go off.

CAUTION

TheFunction() in lines 39–44 has been changed so that it no longer returns a
reference to a local variable. Memory is allocated on the free store and assigned

to a pointer on line 41. The address that pointer holds is printed, and then the pointer is
dereferenced and the SimpleCat object is returned by reference.

On line 28, the return of TheFunction() is assigned to a reference to SimpleCat, and
that object is used to obtain the cat’s age, which is printed on line 30.

To prove that the reference declared in main() is referring to the object put on the free
store in TheFunction(), the address-of operator is applied to rCat. Sure enough, it dis-
plays the address of the object it refers to, and this matches the address of the object on
the free store.

ANALYSIS

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 284

Exploiting References 285

9

So far, so good. But how will that memory be freed? You can’t call delete on the refer-
ence. One clever solution is to create another pointer and initialize it with the address
obtained from rCat. This does delete the memory, and it plugs the memory leak. One
small problem, though: What is rCat referring to after line 34? As stated earlier, a refer-
ence must always alias an actual object; if it references a null object (as this does now),
the program is invalid.

It cannot be overemphasized that a program with a reference to a null
object might compile, but it is invalid and its performance is unpredictable.

NOTE

Three solutions exist to this problem. The first is to declare a SimpleCat object on line
28 and to return that cat from TheFunction() by value. The second is to go ahead and
declare the SimpleCat on the free store in TheFunction(), but have TheFunction()
return a pointer to that memory. Then, the calling function can delete the pointer when it
is done.

The third workable solution, and the right one, is to declare the object in the calling func-
tion and then to pass it to TheFunction() by reference.

Pointer, Pointer, Who Has the Pointer?
When your program allocates memory on the free store, a pointer is returned. It is imper-
ative that you keep a pointer to that memory because after the pointer is lost, the memory
cannot be deleted and becomes a memory leak.

As you pass this block of memory between functions, someone will “own” the pointer.
Typically, the value in the block is passed using references, and the function that created
the memory is the one that deletes it. But this is a general rule, not an ironclad one.

It is dangerous for one function to create memory and another to free it, however.
Ambiguity about who owns the pointer can lead to one of two problems: forgetting to
delete a pointer or deleting it twice. Either one can cause serious problems in your pro-
gram. It is safer to build your functions so that they delete the memory they create.

If you are writing a function that needs to create memory and then pass it back to the
calling function, consider changing your interface. Have the calling function allocate the
memory and then pass it into your function by reference. This moves all memory man-
agement out of your program and back to the function that is prepared to delete it.

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 285

Summary
Today, you learned what references are and how they compare to pointers. You saw that
references must be initialized to refer to an existing object and cannot be reassigned to
refer to anything else. Any action taken on a reference is in fact taken on the reference’s
target object. Proof of this is that taking the address of a reference returns the address of
the target.

You saw that passing objects by reference can be more efficient than passing by value.
Passing by reference also allows the called function to change the value in the arguments
back in the calling function.

You saw that arguments to functions and values returned from functions can be passed
by reference, and that this can be implemented with pointers or with references.

You saw how to use pointers to constant objects and constant references to pass values
between functions safely while achieving the efficiency of passing by reference.

Q&A
Q Why have references if pointers can do everything references can?

A References are easier to use and to understand. The indirection is hidden, and no
need exists to repeatedly dereference the variable.

Q Why have pointers if references are easier?

A References cannot be null, and they cannot be reassigned. Pointers offer greater
flexibility but are slightly more difficult to use.

Q Why would you ever return by value from a function?

A If the object being returned is local, you must return by value or you will be return-
ing a reference to a nonexistent object.

Q Given the danger in returning by reference, why not always return by value?

A Far greater efficiency is achieved in returning by reference. Memory is saved and
the program runs faster.

286 Day 9

DO pass parameters by value when you
must.

DO return by value when you must.

DON’T pass by reference if the item
referred to might go out of scope.

DON’T lose track of when and where
memory is allocated so you can be cer-
tain it is also freed.

DO DON’T

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 286

Exploiting References 287

9

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to tomorrow’s lesson.

Quiz
1. What is the difference between a reference and a pointer?

2. When must you use a pointer rather than a reference?

3. What does new return if there is insufficient memory to make your new object?

4. What is a constant reference?

5. What is the difference between passing by reference and passing a reference?

6. When declaring a reference, which is correct:

a. int& myRef = myInt;

b. int & myRef = myInt;

c. int &myRef = myInt;

Exercises
1. Write a program that declares an int, a reference to an int, and a pointer to an

int. Use the pointer and the reference to manipulate the value in the int.

2. Write a program that declares a constant pointer to a constant integer. Initialize the
pointer to an integer variable, varOne. Assign 6 to varOne. Use the pointer to
assign 7 to varOne. Create a second integer variable, varTwo. Reassign the pointer
to varTwo. Do not compile this exercise yet.

3. Now compile the program in Exercise 2. What produces errors? What produces
warnings?

4. Write a program that produces a stray pointer.

5. Fix the program from Exercise 4.

6. Write a program that produces a memory leak.

7. Fix the program from Exercise 6.

8. BUG BUSTERS: What is wrong with this program?
1: #include <iostream>
2: using namespace std;
3: class CAT
4: {
5: public:

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 287

6: CAT(int age) { itsAge = age; }
7: ~CAT(){}
8: int GetAge() const { return itsAge;}
9: private:
10: int itsAge;
11: };
12:
13: CAT & MakeCat(int age);
14: int main()
15: {
16: int age = 7;
17: CAT Boots = MakeCat(age);
18: cout << “Boots is “ << Boots.GetAge()
19: << “ years old” << endl;
20: return 0;
21: }
22:
23: CAT & MakeCat(int age)
24: {
25: CAT * pCat = new CAT(age);
26: return *pCat;
27: }

9. Fix the program from Exercise 8.

288 Day 9

13 0672327112_ch09.qxd 11/19/04 12:27 PM Page 288

DAY 10

WEEK 2

Working with Advanced
Functions

On Day 5, “Organizing into Functions,” you learned the fundamentals of work-
ing with functions. Now that you know how pointers and references work, you
can do more with functions.

Today, you will learn

• How to overload member functions

• How to overload operators

• How to write functions to support classes with dynamically allocated
variables

Overloaded Member Functions
On Day 5, you learned how to implement function polymorphism, or function
overloading, by writing two or more functions with the same name but with dif-
ferent parameters. Class member functions can be overloaded as well, in much
the same way.

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 289

The Rectangle class, demonstrated in Listing 10.1, has two DrawShape() functions.
One, which takes no parameters, draws the rectangle based on the class’s current values.
The other takes two values, width and length, and draws the rectangle based on those
values, ignoring the current class values.

LISTING 10.1 Overloading Member Functions

1: //Listing 10.1 Overloading class member functions
2: #include <iostream>
3:
4: // Rectangle class declaration
5: class Rectangle
6: {
7: public:
8: // constructors
9: Rectangle(int width, int height);
10: ~Rectangle(){}
11:
12: // overloaded class function DrawShape
13: void DrawShape() const;
14: void DrawShape(int aWidth, int aHeight) const;
15:
16: private:
17: int itsWidth;
18: int itsHeight;
19: };
20:
21: //Constructor implementation
22: Rectangle::Rectangle(int width, int height)
23: {
24: itsWidth = width;
25: itsHeight = height;
26: }
27:
28:
29: // Overloaded DrawShape - takes no values
30: // Draws based on current class member values
31: void Rectangle::DrawShape() const
32: {
33: DrawShape(itsWidth, itsHeight);
34: }
35:
36:
37: // overloaded DrawShape - takes two values
38: // draws shape based on the parameters
39: void Rectangle::DrawShape(int width, int height) const
40: {
41: for (int i = 0; i<height; i++)
42: {

290 Day 10

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 290

Working with Advanced Functions 291

10

43: for (int j = 0; j< width; j++)
44: {
45: std::cout << “*”;
46: }
47: std::cout << std::endl;
48: }
49: }
50:
51: // Driver program to demonstrate overloaded functions
52: int main()
53: {
54: // initialize a rectangle to 30,5
55: Rectangle theRect(30,5);
56: std::cout << “DrawShape():” << std::endl;
57: theRect.DrawShape();
58: std::cout << “\nDrawShape(40,2):” << std::endl;
59: theRect.DrawShape(40,2);
60: return 0;
61: }

DrawShape():

DrawShape(40,2):
**
**

Listing 10.1 represents a stripped-down version of the Week in Review project
from Week 1. The test for illegal values has been taken out to save room, as have

some of the accessor functions. The main program has been stripped down to a simple
driver program, rather than a menu.

The important code, however, is on lines 13 and 14, where DrawShape() is overloaded.
The implementation for these overloaded class methods is on lines 31–49. Note that the
version of DrawShape() that takes no parameters simply calls the version that takes two
parameters, passing in the current member variables. Try very hard to avoid duplicating
code in two functions. Otherwise, keeping them in sync when changes are made to one
or the other will be difficult and error-prone.

The driver program on lines 52–61 creates a rectangle object and then calls
DrawShape(), first passing in no parameters and then passing in two unsigned short
integers.

OUTPUT

LISTING 10.1 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 291

The compiler decides which method to call based on the number and type of parameters
entered. You can imagine a third overloaded function named DrawShape() that takes one
dimension and an enumeration for whether it is the width or height, at the user’s choice.

Using Default Values
Just as global functions can have one or more default values, so can each member func-
tion of a class. The same rules apply for declaring the default values, as illustrated in
Listing 10.2.

LISTING 10.2 Using Default Values

1: //Listing 10.2 Default values in member functions
2: #include <iostream>
3:
4: using namespace std;
5:
6: // Rectangle class declaration
7: class Rectangle
8: {
9: public:
10: // constructors
11: Rectangle(int width, int height);
12: ~Rectangle(){}
13: void DrawShape(int aWidth, int aHeight,
14: bool UseCurrentVals = false) const;
15:
16: private:
17: int itsWidth;
18: int itsHeight;
19: };
20:
21: //Constructor implementation
22: Rectangle::Rectangle(int width, int height):
23: itsWidth(width), // initializations
24: itsHeight(height)
25: {} // empty body
26:
27:
28: // default values used for third parameter
29: void Rectangle::DrawShape(
30: int width,
31: int height,
32: bool UseCurrentValue
33:) const
34: {

292 Day 10

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 292

Working with Advanced Functions 293

10

35: int printWidth;
36: int printHeight;
37:
38: if (UseCurrentValue == true)
39: {
40: printWidth = itsWidth; // use current class values
41: printHeight = itsHeight;
42: }
43: else
44: {
45: printWidth = width; // use parameter values
46: printHeight = height;
47: }
48:
49:
50: for (int i = 0; i<printHeight; i++)
51: {
52: for (int j = 0; j< printWidth; j++)
53: {
54: cout << “*”;
55: }
56: cout << endl;
57: }
58: }
59:
60: // Driver program to demonstrate overloaded functions
61: int main()
62: {
63: // initialize a rectangle to 30,5
64: Rectangle theRect(30,5);
65: cout << “DrawShape(0,0,true)...” << endl;
66: theRect.DrawShape(0,0,true);
67: cout <<”DrawShape(40,2)...” << endl;
68: theRect.DrawShape(40,2);
69: return 0;
70: }

DrawShape(0,0,true)...

DrawShape(40,2)...
**
**

OUTPUT

LISTING 10.2 continued

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 293

Listing 10.2 replaces the overloaded DrawShape() function with a single function
with default parameters. The function is declared on line 13 to take three parame-

ters. The first two, aWidth and aHeight, are integers, and the third, UseCurrentVals, is a
bool that defaults to false.

The implementation for this somewhat awkward function begins on line 29. Remember
that whitespace doesn’t matter in C++, so the function header is actually on lines 29–33.

Within the method, the third parameter, UseCurrentValue, is evaluated on line 38. If it is
true, the member variables itsWidth and itsHeight are used to set the local variables
printWidth and printHeight, respectively.

If UseCurrentValue is false, either because it has defaulted false or was set by the user,
the first two parameters are used for setting printWidth and printHeight.

Note that if UseCurrentValue is true, the values of the other two parameters are com-
pletely ignored.

Choosing Between Default Values and
Overloaded Functions

Listings 10.1 and 10.2 accomplish the same thing, but the overloaded functions in
Listing 10.1 are easier to understand and more natural to use. Also, if a third variation is
needed—perhaps the user wants to supply either the width or the height, but not both—it
is easy to extend the overloaded functions. The default value, however, will quickly
become unusably complex as new variations are added.

How do you decide whether to use function overloading or default values? Here’s a rule
of thumb:

Use function overloading when

• No reasonable default value exists.

• You need different algorithms.

• You need to support different types in your parameter list.

The Default Constructor
The point of a constructor is to establish the object; for example, the point of a
Rectangle constructor is to make a valid rectangle object. Before the constructor runs,
no rectangle exists, only an area of memory. After the constructor finishes, there is a
complete, ready-to-use rectangle object. This is a key benefit of object-oriented

294 Day 10

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 294

Working with Advanced Functions 295

10

programming—the calling program does not have to do anything to ensure that the
object starts in a self-consistent state.

As discussed on Day 6, “Understanding Object-Oriented Programming,” if you do not
explicitly declare a constructor for your class, a default constructor is created that takes
no parameters and does nothing. You are free to make your own default constructor, how-
ever, that takes no arguments but that “sets up” your object as required.

The constructor provided for you is called the “default” constructor, but by convention so
is any constructor that takes no parameters. This can be a bit confusing, but it is usually
clear which one is meant from the context.

Take note that if you make any constructors at all, the default constructor is not provided
by the compiler. So if you want a constructor that takes no parameters and you’ve cre-
ated any other constructors, you must add the default constructor yourself!

Overloading Constructors
Constructors, like all member functions, can be overloaded. The capability to overload
constructors is very powerful and very flexible.

For example, you might have a rectangle object that has two constructors: The first takes
a length and a width and makes a rectangle of that size. The second takes no values and
makes a default-sized rectangle. Listing 10.3 implements this idea.

LISTING 10.3 Overloading the Constructor

1: // Listing 10.3 - Overloading constructors
2:
3: #include <iostream>
4: using namespace std;
5:
6: class Rectangle
7: {
8: public:
9: Rectangle();
10: Rectangle(int width, int length);
11: ~Rectangle() {}
12: int GetWidth() const { return itsWidth; }
13: int GetLength() const { return itsLength; }
14: private:
15: int itsWidth;
16: int itsLength;
17: };
18:
19: Rectangle::Rectangle()
20: {

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 295

21: itsWidth = 5;
22: itsLength = 10;
23: }
24:
25: Rectangle::Rectangle (int width, int length)
26: {
27: itsWidth = width;
28: itsLength = length;
29: }
30:
31: int main()
32: {
33: Rectangle Rect1;
34: cout << “Rect1 width: “ << Rect1.GetWidth() << endl;
35: cout << “Rect1 length: “ << Rect1.GetLength() << endl;
36:
37: int aWidth, aLength;
38: cout << “Enter a width: “;
39: cin >> aWidth;
40: cout << “\nEnter a length: “;
41: cin >> aLength;
42:
43: Rectangle Rect2(aWidth, aLength);
44: cout << “\nRect2 width: “ << Rect2.GetWidth() << endl;
45: cout << “Rect2 length: “ << Rect2.GetLength() << endl;
46: return 0;
47: }

Rect1 width: 5
Rect1 length: 10
Enter a width: 20

Enter a length: 50

Rect2 width: 20
Rect2 length: 50

The Rectangle class is declared on lines 6–17. Two constructors are declared:
the “default constructor” on line 9 and a second constructor on line 10, which

takes two integer variables.

On line 33, a rectangle is created using the default constructor, and its values are printed
on lines 34 and 35. On lines 38–41, the user is prompted for a width and length, and the
constructor taking two parameters is called on line 43. Finally, the width and height for
this rectangle are printed on lines 44 and 45.

Just as it does any overloaded function, the compiler chooses the right constructor, based
on the number and type of the parameters.

OUTPUT

296 Day 10

LISTING 10.3 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 296

Working with Advanced Functions 297

10

Initializing Objects
Up to now, you’ve been setting the member variables of objects in the body of the con-
structor. Constructors, however, are invoked in two stages: the initialization stage and the
body.

Most variables can be set in either stage, either by initializing in the initialization stage
or by assigning in the body of the constructor. It is cleaner, and often more efficient, to
initialize member variables at the initialization stage. The following example shows how
to initialize member variables:

Cat(): // constructor name and parameters
itsAge(5), // initialization list
itsWeight(8)
{ } // body of constructor

After the closing parentheses on the constructor’s parameter list, write a colon. Then
write the name of the member variable and a pair of parentheses. Inside the parentheses,
write the expression to be used to initialize that member variable. If more than one ini-
tialization exists, separate each one with a comma.

Listing 10.4 shows the definition of the constructors from Listing 10.3 with initialization
of the member variables in the initialization portion of the constructor rather than by
doing assignments in the body.

LISTING 10.4 A Code Snippet Showing Initialization of Member Variables

1: // Listing 10.4 – Initializing Member Variables
2: Rectangle::Rectangle():
3: itsWidth(5),
4: itsLength(10)
5: {
6: }
7:
8: Rectangle::Rectangle (int width, int length):
9: itsWidth(width),
10: itsLength(length)
11: {
12: }

Listing 10.4 is just a snippet of code, so there isn’t output. Looking at the code,
line 2 starts the default constructor. As was mentioned previously, after the stan-

dard header, a colon was added. This is followed by setting default values of 5 and 10 for
itsWidth and itsLength on lines 3 and 4.

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 297

Line 8 contains the second constructor definition. In this overloaded version, two
parameters are passed. These parameters are then set to the class’s members on lines 9
and 10.

Some variables must be initialized and cannot be assigned to, such as references and
constants. It is common to have other assignments or action statements in the body of the
constructor; however, it is best to use initialization as much as possible.

The Copy Constructor
In addition to providing a default constructor and destructor, the compiler provides a
default copy constructor. The copy constructor is called every time a copy of an object
is made.

As you learned on Day 9, “Exploiting References,” when you pass an object by value,
either into a function or as a function’s return value, a temporary copy of that object is
made. If the object is a user-defined object, the class’s copy constructor is called. You
saw this yesterday in Listing 9.6.

All copy constructors take one parameter, a reference to an object of the same class. It is
a good idea to make it a constant reference because the constructor will not have to alter
the object passed in. For example,

Cat(const Cat & theCat);

Here, the Cat constructor takes a constant reference to an existing Cat object. The goal
of this copy constructor is to make a copy of theCat.

The default copy constructor simply copies each member variable from the object passed
as a parameter to the member variables of the new object. This is called a member-wise
(or shallow) copy, and although this is fine for most member variables, it breaks pretty
quickly for member variables that are pointers to objects on the free store.

A shallow or member-wise copy copies the exact values of one object’s member vari-
ables into another object. Pointers in both objects end up pointing to the same memory.
A deep copy copies the values allocated on the heap to newly allocated memory.

If the Cat class includes a member variable, itsAge, that is a pointer to an integer on the
free store, the default copy constructor copies the passed-in Cat’s itsAge member vari-
able to the new Cat’s itsAge member variable. The two objects now point to the same
memory, as illustrated in Figure 10.1.

This leads to a disaster when either Cat goes out of scope. If the original Cat’s destructor
frees this memory and the new Cat is still pointing to the memory, a stray pointer has
been created, and the program is in mortal danger. Figure 10.2 illustrates this problem.

298 Day 10

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 298

Working with Advanced Functions 299

10

FIGURE 10.1
Using the default copy
constructor.

5

itsAge

old CAT

itsAge

New CAT

Free Store

FIGURE 10.2
Creating a stray
pointer. 5

itsAge

old CAT

itsAge

New CAT

Free Store

The solution to this is to create your own copy constructor and to allocate the memory as
required. After the memory is allocated, the old values can be copied into the new mem-
ory. This is called a deep copy. Listing 10.5 illustrates how to do this.

LISTING 10.5 Copy Constructors

1: // Listing 10.5 - Copy constructors
2:
3: #include <iostream>
4: using namespace std;
5:
6: class Cat
7: {
8: public:
9: Cat(); // default constructor
10: Cat (const Cat &); // copy constructor
11: ~Cat(); // destructor
12: int GetAge() const { return *itsAge; }
13: int GetWeight() const { return *itsWeight; }
14: void SetAge(int age) { *itsAge = age; }
15:
16: private:
17: int *itsAge;
18: int *itsWeight;
19: };
20:

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 299

21: Cat::Cat()
22: {
23: itsAge = new int;
24: itsWeight = new int;
25: *itsAge = 5;
26: *itsWeight = 9;
27: }
28:
29: Cat::Cat(const Cat & rhs)
30: {
31: itsAge = new int;
32: itsWeight = new int;
33: *itsAge = rhs.GetAge(); // public access
34: *itsWeight = *(rhs.itsWeight); // private access
35: }
36:
37: Cat::~Cat()
38: {
39: delete itsAge;
40: itsAge = 0;
41: delete itsWeight;
42: itsWeight = 0;
43: }
44:
45: int main()
46: {
47: Cat Frisky;
48: cout << “Frisky’s age: “ << Frisky.GetAge() << endl;
49: cout << “Setting Frisky to 6...\n”;
50: Frisky.SetAge(6);
51: cout << “Creating Boots from Frisky\n”;
52: Cat Boots(Frisky);
53: cout << “Frisky’s age: “ << Frisky.GetAge() << endl;
54: cout << “Boots’ age: “ << Boots.GetAge() << endl;
55: cout << “setting Frisky to 7...\n”;
56: Frisky.SetAge(7);
57: cout << “Frisky’s age: “ << Frisky.GetAge() << endl;
58: cout << “boot’s age: “ << Boots.GetAge() << endl;
59: return 0;
60: }

Frisky’s age: 5
Setting Frisky to 6...
Creating Boots from Frisky
Frisky’s age: 6
Boots’ age: 6
setting Frisky to 7...
Frisky’s age: 7
Boots’ age: 6

OUTPUT

300 Day 10

LISTING 10.5 continued

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 300

Working with Advanced Functions 301

10

On lines 6–19, the Cat class is declared. Note that on line 9 a default constructor
is declared, and on line 10 a copy constructor is declared. You know this is a

copy constructor on line 10 because the constructor is receiving a reference—a constant
reference in this case—to an object of its same type.

On lines 17 and 18, two member variables are declared, each as a pointer to an integer.
Typically, there is little reason for a class to store int member variables as pointers, but
this was done to illustrate how to manage member variables on the free store.

The default constructor on lines 21–27 allocates room on the free store for two int vari-
ables and then assigns values to them.

The copy constructor begins on line 29. Note that the parameter is rhs. It is common to
refer to the parameter to a copy constructor as rhs, which stands for right-hand side.
When you look at the assignments on lines 33 and 34, you’ll see that the object passed in
as a parameter is on the right-hand side of the equal sign. Here’s how it works:

On lines 31 and 32, memory is allocated on the free store. Then, on lines 33 and 34, the
value at the new memory location is assigned the values from the existing Cat.

The parameter rhs is a Cat object that is passed into the copy constructor as a constant
reference. As a Cat object, rhs has all the member variables of any other Cat.

Any Cat object can access private member variables of any other Cat object; however, it
is good programming practice to use public accessor methods when possible. The mem-
ber function rhs.GetAge() returns the value stored in the memory pointed to by rhs’s
member variable itsAge. In a real-world application, you should get the value for
itsWeight in the same way—using an accessor method. On line 34, however, you see
confirmation that different objects of the same class can access each other’s members. In
this case, a copy is made directly from the rhs object’s private itsWeight member.

Figure 10.3 diagrams what is happening here. The values pointed to by the existing Cat’s
member variables are copied to the memory allocated for the new Cat.

On line 47, a Cat called Frisky is created. Frisky’s age is printed, and then his age is set
to 6 on line 50. On line 52, a new Cat, Boots, is created, using the copy constructor and
passing in Frisky. Had Frisky been passed as a parameter to a function by value (not by
reference), this same call to the copy constructor would have been made by the compiler.

On lines 53 and 54, the ages of both Cats are printed. Sure enough, Boots has Frisky’s
age, 6, not the default age of 5. On line 56, Frisky’s age is set to 7, and then the ages are
printed again. This time Frisky’s age is 7, but Boots’s age is still 6, demonstrating that
they are stored in separate areas of memory.

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 301

When the Cats fall out of scope, their destructors are automatically invoked. The imple-
mentation of the Cat destructor is shown on lines 37–43. delete is called on both point-
ers, itsAge and itsWeight, returning the allocated memory to the free store. Also, for
safety, the pointers are reassigned to a null value.

Operator Overloading
C++ has a number of built-in types, including int, float, char, and so forth. Each of
these has a number of built-in operators, such as addition (+) and multiplication (*). C++
enables you to add these operators to your own classes as well.

To explore operator overloading fully, Listing 10.6 creates a new class, Counter. A
Counter object will be used in counting (surprise!) in loops and other applications in
which a number must be incremented, decremented, or otherwise tracked.

LISTING 10.6 The Counter Class

1: // Listing 10.6 - The Counter class
2:
3: #include <iostream>
4: using namespace std;
5:
6: class Counter
7: {
8: public:
9: Counter();
10: ~Counter(){}
11: int GetItsVal()const { return itsVal; }
12: void SetItsVal(int x) {itsVal = x; }
13:
14: private:

302 Day 10

FIGURE 10.3
Deep copy illustrated. 5

5

itsAge

old CAT

itsAge

New CAT

Free Store

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 302

Working with Advanced Functions 303

10

15: int itsVal;
16: };
17:
18: Counter::Counter():
19: itsVal(0)
20: {}
21:
22: int main()
23: {
24: Counter i;
25: cout << “The value of i is “ << i.GetItsVal() << endl;
26: return 0;
27: }

The value of i is 0

As it stands, this is a pretty useless class. It is defined on lines 6–16. Its only
member variable is an int. The default constructor, which is declared on line 9

and whose implementation is on line 18, initializes the one member variable, itsVal,
to zero.

Unlike an honest, red-blooded int, the Counter object cannot be incremented, decre-
mented, added, assigned, or otherwise manipulated. In exchange for this, it makes print-
ing its value far more difficult!

Writing an Increment Function
Operator overloading restores much of the functionality that has been stripped out of this
class. Two ways exist, for example, to add the capability to increment a Counter object.
The first is to write an increment method, as shown in Listing 10.7.

LISTING 10.7 Adding an Increment Operator

1: // Listing 10.7 - The Counter class
2:
3: #include <iostream>
4: using namespace std;
5:
6: class Counter
7: {
8: public:
9: Counter();
10: ~Counter(){}
11: int GetItsVal()const { return itsVal; }

OUTPUT

LISTING 10.6 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 303

12: void SetItsVal(int x) {itsVal = x; }
13: void Increment() { ++itsVal; }
14:
15: private:
16: int itsVal;
17: };
18:
19: Counter::Counter():
20: itsVal(0)
21: {}
22:
23: int main()
24: {
25: Counter i;
26: cout << “The value of i is “ << i.GetItsVal() << endl;
27: i.Increment();
28: cout << “The value of i is “ << i.GetItsVal() << endl;
29: return 0;
30: }

The value of i is 0
The value of i is 1

Listing 10.7 adds an Increment function, defined on line 13. Although this
works, it is cumbersome to use. The program cries out for the capability to add a

++ operator, and, of course, this can be done.

Overloading the Prefix Operator
Prefix operators can be overloaded by declaring functions with the form:

returnType operator op ()

Here, op is the operator to overload. Thus, the ++ operator can be overloaded with the
following syntax:

void operator++ ()

This statement indicates that you are overloading the ++ operator and that it will not
result in a return value—thus void is the return type. Listing 10.8 demonstrates this alter-
native.

LISTING 10.8 Overloading operator++

1: // Listing 10.8 - The Counter class
2: // prefix increment operator
3:

OUTPUT

304 Day 10

LISTING 10.7 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 304

Working with Advanced Functions 305

10

4: #include <iostream>
5: using namespace std;
6:
7: class Counter
8: {
9: public:
10: Counter();
11: ~Counter(){}
12: int GetItsVal()const { return itsVal; }
13: void SetItsVal(int x) {itsVal = x; }
14: void Increment() { ++itsVal; }
15: void operator++ () { ++itsVal; }
16:
17: private:
18: int itsVal;
19: };
20:
21: Counter::Counter():
22: itsVal(0)
23: {}
24:
25: int main()
26: {
27: Counter i;
28: cout << “The value of i is “ << i.GetItsVal() << endl;
29: i.Increment();
30: cout << “The value of i is “ << i.GetItsVal() << endl;
31: ++i;
32: cout << “The value of i is “ << i.GetItsVal() << endl;
33: return 0;
34: }

The value of i is 0
The value of i is 1
The value of i is 2

On line 15, operator++ is overloaded. You can see on line 15 that the overloaded
operator simply increments the value of the private member, itsVal. This over-

loaded operator is then used on line 31. This use is much closer to the syntax of a built-in
type such as int.

At this point, you might consider putting in the extra capabilities for which Counter was
created in the first place, such as detecting when the Counter overruns its maximum size.
A significant defect exists in the way the increment operator was written, however. If you
want to put the Counter on the right side of an assignment, it will fail. For example,

Counter a = ++i;

OUTPUT

LISTING 10.8 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 305

This code intends to create a new Counter, a, and then assign to it the value in i after i
is incremented. The built-in copy constructor will handle the assignment, but the current
increment operator does not return a Counter object. It returns void. You can’t assign a
void to anything, including a Counter object. (You can’t make something from nothing!)

Returning Types in Overloaded Operator Functions
Clearly, what you want is to return a Counter object so that it can be assigned to another
Counter object. Which object should be returned? One approach is to create a temporary
object and return that. Listing 10.9 illustrates this approach.

LISTING 10.9 Returning a Temporary Object

1: // Listing 10.9 - operator++ returns a temporary object
2:
3: #include <iostream>
4:
5: using namespace std;
6:
7: class Counter
8: {
9: public:
10: Counter();
11: ~Counter(){}
12: int GetItsVal()const { return itsVal; }
13: void SetItsVal(int x) {itsVal = x; }
14: void Increment() { ++itsVal; }
15: Counter operator++ ();
16:
17: private:
18: int itsVal;
19:
20: };
21:
22: Counter::Counter():
23: itsVal(0)
24: {}
25:
26: Counter Counter::operator++()
27: {
28: ++itsVal;
29: Counter temp;
30: temp.SetItsVal(itsVal);
31: return temp;
32: }
33:
34: int main()
35: {

306 Day 10

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 306

Working with Advanced Functions 307

10

36: Counter i;
37: cout << “The value of i is “ << i.GetItsVal() << endl;
38: i.Increment();
39: cout << “The value of i is “ << i.GetItsVal() << endl;
40: ++i;
41: cout << “The value of i is “ << i.GetItsVal() << endl;
42: Counter a = ++i;
43: cout << “The value of a: “ << a.GetItsVal();
44: cout << “ and i: “ << i.GetItsVal() << endl;
45: return 0;
46: }

The value of i is 0
The value of i is 1
The value of i is 2
The value of a: 3 and i: 3

In this version, operator++ has been declared on line 15 and is defined on lines
26–32. This version has been declared to return a Counter object. On line 29, a

temporary variable, temp, is created, and its value is set to match that in the current
object being incremented. When the increment is completed, the temporary variable is
returned. You can see on line 42, that the temporary variable that is returned is immedi-
ately assigned to a.

Returning Nameless Temporaries
There is really no need to name the temporary object created on line 29. If Counter had
a constructor that took a value, you could simply return the result of that constructor as
the return value of the increment operator. Listing 10.10 illustrates this idea.

LISTING 10.10 Returning a Nameless Temporary Object

1: // Listing 10.10 - operator++ returns a nameless temporary object
2:
3: #include <iostream>
4:
5: using namespace std;
6:
7: class Counter
8: {
9: public:
10: Counter();
11: Counter(int val);
12: ~Counter(){}
13: int GetItsVal()const { return itsVal; }

OUTPUT

LISTING 10.9 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 307

14: void SetItsVal(int x) {itsVal = x; }
15: void Increment() { ++itsVal; }
16: Counter operator++ ();
17:
18: private:
19: int itsVal;
20: };
21:
22: Counter::Counter():
23: itsVal(0)
24: {}
25:
26: Counter::Counter(int val):
27: itsVal(val)
28: {}
29:
30: Counter Counter::operator++()
31: {
32: ++itsVal;
33: return Counter (itsVal);
34: }
35:
36: int main()
37: {
38: Counter i;
39: cout << “The value of i is “ << i.GetItsVal() << endl;
40: i.Increment();
41: cout << “The value of i is “ << i.GetItsVal() << endl;
42: ++i;
43: cout << “The value of i is “ << i.GetItsVal() << endl;
44: Counter a = ++i;
45: cout << “The value of a: “ << a.GetItsVal();
46: cout << “ and i: “ << i.GetItsVal() << endl;
47: return 0;
48: }

The value of i is 0
The value of i is 1
The value of i is 2
The value of a: 3 and i: 3

On line 11, a new constructor is declared that takes an int. The implementation
is on lines 26–28. It initializes itsVal with the passed-in value.

The implementation of operator++ is now simplified. On line 32, itsVal is incre-
mented. Then on line 33, a temporary Counter object is created, initialized to the value
in itsVal, and then returned as the result of the operator++.

OUTPUT

308 Day 10

LISTING 10.10 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 308

Working with Advanced Functions 309

10

This is more elegant, but raises the question, “Why create a temporary object at all?”
Remember that each temporary object must be constructed and later destroyed—each of
these is potentially an expensive operation. Also, the object i already exists and already
has the right value, so why not return it? This problem can be solved by using the this
pointer.

Using the this Pointer
The this pointer is passed to all member functions, including overloaded operators such
as operator++(). In the listings you’ve been creating, this points to i, and if it is deref-
erenced it returns the object i, which already has the right value in its member variable
itsVal. Listing 10.11 illustrates returning the dereferenced this pointer and avoiding the
creation of an unneeded temporary object.

LISTING 10.11 Returning the this Pointer

1: // Listing 10.11 - Returning the dereferenced this pointer
2:
3: #include <iostream>
4:
5: using namespace std;
6:
7: class Counter
8: {
9: public:
10: Counter();
11: ~Counter(){}
12: int GetItsVal()const { return itsVal; }
13: void SetItsVal(int x) {itsVal = x; }
14: void Increment() { ++itsVal; }
15: const Counter& operator++ ();
16:
17: private:
18: int itsVal;
19: };
20:
21: Counter::Counter():
22: itsVal(0)
23: {};
24:
25: const Counter& Counter::operator++()
26: {
27: ++itsVal;
28: return *this;
29: }
30:
31: int main()
32: {

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 309

33: Counter i;
34: cout << “The value of i is “ << i.GetItsVal() << endl;
35: i.Increment();
36: cout << “The value of i is “ << i.GetItsVal() << endl;
37: ++i;
38: cout << “The value of i is “ << i.GetItsVal() << endl;
39: Counter a = ++i;
40: cout << “The value of a: “ << a.GetItsVal();
41: cout << “ and i: “ << i.GetItsVal() << endl;
42: return 0;
43: }

The value of i is 0
The value of i is 1
The value of i is 2
The value of a: 3 and i: 3

The implementation of operator++, on lines 25–29, has been changed to derefer-
ence the this pointer and to return the current object. This provides a Counter

object to be assigned to a. As discussed, if the Counter object allocated memory, it
would be important to override the copy constructor. In this case, the default copy con-
structor works fine.

Note that the value returned is a Counter reference, thereby avoiding the creation of an
extra temporary object. It is a const reference because the value should not be changed
by the function using the returned Counter.

The returned Counter object must be constant. If it were not, it would be possible to per-
form operations on that returned object that might change its values. For example, if the
returned value were not constant, then you might write line 39 as

Counter a = ++++i;

What you should expect from this is for the increment operator (++) to be called on the
result of calling ++i. This would actually result in calling the increment operator on the
object, i, twice—which is something you should most likely block.

Try this: Change the return value to nonconstant in both the declaration and the imple-
mentation (lines 15 and 25), and change line 39 as shown (++++i). Put a break point in
your debugger on line 39 and step in. You will find that you step into the increment oper-
ator twice. The increment is being applied to the (now nonconstant) return value.

It is to prevent this that you declare the return value to be constant. If you change lines
15 and 25 back to constant, and leave line 39 as shown (++++i), the compiler complains
that you can’t call the increment operator on a constant object.

OUTPUT

310 Day 10

LISTING 10.11 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 310

Working with Advanced Functions 311

10

Overloading the Postfix Operator
So far, you’ve overloaded the prefix operator. What if you want to overload the postfix
increment operator? Here, the compiler has a problem: How is it to differentiate between
prefix and postfix? By convention, an integer variable is supplied as a parameter to the
operator declaration. The parameter’s value is ignored; it is just a signal that this is the
postfix operator.

Difference Between Prefix and Postfix
Before you can write the postfix operator, you must understand how it is different from
the prefix operator. You learned about this in detail on Day 4, “Creating Expressions and
Statements” (see Listing 4.3).

To review, prefix says “increment, and then fetch,” but postfix says “fetch, and then
increment.”

Thus, although the prefix operator can simply increment the value and then return the
object itself, the postfix must return the value that existed before it was incremented. To
do this, you must create a temporary object that will hold the original value, increment
the value of the original object, and then return the temporary object.

Let’s go over that again. Consider the following line of code:

a = x++;

If x was 5, after this statement a is 5, but x is 6. Thus, the value in x was returned and
assigned to a, and then the value of x is increased. If x is an object, its postfix increment
operator must stash away the original value (5) in a temporary object, increment x’s
value to 6, and then return that temporary object to assign its original value to a.

Note that because the temporary is being returned, it must be returned by value and not
by reference, because the temporary will go out of scope as soon as the function returns.

Listing 10.12 demonstrates the use of both the prefix and the postfix operators.

LISTING 10.12 Prefix and Postfix Operators

1: // Listing 10.12 - Prefix and Postfix operator overloading
2:
3: #include <iostream>
4:
5: using namespace std;
6:
7: class Counter
8: {

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 311

9: public:
10: Counter();
11: ~Counter(){}
12: int GetItsVal()const { return itsVal; }
13: void SetItsVal(int x) {itsVal = x; }
14: const Counter& operator++ (); // prefix
15: const Counter operator++ (int); // postfix
16:
17: private:
18: int itsVal;
19: };
20:
21: Counter::Counter():
22: itsVal(0)
23: {}
24:
25: const Counter& Counter::operator++()
26: {
27: ++itsVal;
28: return *this;
29: }
30:
31: const Counter Counter::operator++(int theFlag)
32: {
33: Counter temp(*this);
34: ++itsVal;
35: return temp;
36: }
37:
38: int main()
39: {
40: Counter i;
41: cout << “The value of i is “ << i.GetItsVal() << endl;
42: i++;
43: cout << “The value of i is “ << i.GetItsVal() << endl;
44: ++i;
45: cout << “The value of i is “ << i.GetItsVal() << endl;
46: Counter a = ++i;
47: cout << “The value of a: “ << a.GetItsVal();
48: cout << “ and i: “ << i.GetItsVal() << endl;
49: a = i++;
50: cout << “The value of a: “ << a.GetItsVal();
51: cout << “ and i: “ << i.GetItsVal() << endl;
52: return 0;
53: }

312 Day 10

LISTING 10.12 continued

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 312

Working with Advanced Functions 313

10

The value of i is 0
The value of i is 1
The value of i is 2
The value of a: 3 and i: 3
The value of a: 3 and i: 4

The postfix operator is declared on line 15 and implemented on lines 31–36. The
prefix operator is declared on line 14.

The parameter passed into the postfix operator on line 32 (theFlag) serves to signal that
it is the postfix operator, but this value is never used.

Overloading Binary Mathematical Operators
The increment operator is a unary operator. It operates on only one object. Many of the
mathematical operators are binary operators; they take two objects (one of the current
class, and one of any class). Obviously, overloading operators such as the addition (+),
subtraction (-), multiplication (*), division (/), and modulus (%) operators is going to be
different from overloading the prefix and postfix operators. Consider how you would
implement overloading the + operator for Count.

The goal is to be able to declare two Counter variables and then add them, as in the fol-
lowing example:

Counter varOne, varTwo, varThree;
VarThree = VarOne + VarTwo;

Once again, you could start by writing a function, Add(), which would take a Counter as
its argument, add the values, and then return a Counter with the result. Listing 10.13
illustrates this approach.

LISTING 10.13 The Add() Function

1: // Listing 10.13 - Add function
2:
3: #include <iostream>
4:
5: using namespace std;
6:
7: class Counter
8: {
9: public:
10: Counter();
11: Counter(int initialValue);
12: ~Counter(){}
13: int GetItsVal()const { return itsVal; }
14: void SetItsVal(int x) {itsVal = x; }

OUTPUT

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 313

15: Counter Add(const Counter &);
16:
17: private:
18: int itsVal;
19: };
20:
21: Counter::Counter(int initialValue):
22: itsVal(initialValue)
23: {}
24:
25: Counter::Counter():
26: itsVal(0)
27: {}
28:
29: Counter Counter::Add(const Counter & rhs)
30: {
31: return Counter(itsVal+ rhs.GetItsVal());
32: }
33:
34: int main()
35: {
36: Counter varOne(2), varTwo(4), varThree;
37: varThree = varOne.Add(varTwo);
38: cout << “varOne: “ << varOne.GetItsVal()<< endl;
39: cout << “varTwo: “ << varTwo.GetItsVal() << endl;
40: cout << “varThree: “ << varThree.GetItsVal() << endl;
41:
42: return 0;
43: }

varOne: 2
varTwo: 4
varThree: 6

The Add() function is declared on line 15. It takes a constant Counter reference,
which is the number to add to the current object. It returns a Counter object,

which is the result to be assigned to the left side of the assignment statement, as shown
on line 37. That is, VarOne is the object, varTwo is the parameter to the Add() function,
and the result is assigned to VarThree.

To create varThree without having to initialize a value for it, a default constructor is
required. The default constructor initializes itsVal to 0, as shown on lines 25–27.
Because varOne and varTwo need to be initialized to a nonzero value, another constructor
was created, as shown on lines 21–23. Another solution to this problem is to provide the
default value 0 to the constructor declared on line 11.

The Add() function itself is shown on lines 29–32. It works, but its use is unnatural.

OUTPUT

314 Day 10

LISTING 10.13 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 314

Working with Advanced Functions 315

10

Overloading the Addition Operator (operator+)
Overloading the + operator would make for a more natural use of the Counter class.
Remember, you saw earlier that to overload an operator, you use the structure:

returnType operator op ()

Listing 10.14 illustrates using this to overload the addition operator.

LISTING 10.14 operator+

1: // Listing 10.14 - Overload operator plus (+)
2:
3: #include <iostream>
4:
5: using namespace std;
6:
7: class Counter
8: {
9: public:
10: Counter();
11: Counter(int initialValue);
12: ~Counter(){}
13: int GetItsVal()const { return itsVal; }
14: void SetItsVal(int x) {itsVal = x; }
15: Counter operator+ (const Counter &);
16: private:
17: int itsVal;
18: };
19:
20: Counter::Counter(int initialValue):
21: itsVal(initialValue)
22: {}
23:
24: Counter::Counter():
25: itsVal(0)
26: {}
27:
28: Counter Counter::operator+ (const Counter & rhs)
29: {
30: return Counter(itsVal + rhs.GetItsVal());
31: }
32:
33: int main()
34: {
35: Counter varOne(2), varTwo(4), varThree;
36: varThree = varOne + varTwo;
37: cout << “varOne: “ << varOne.GetItsVal()<< endl;
38: cout << “varTwo: “ << varTwo.GetItsVal() << endl;
39: cout << “varThree: “ << varThree.GetItsVal() << endl;
40:
41: return 0;
42: }

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 315

varOne: 2
varTwo: 4
varThree: 6

operator+ is declared on line 15 and defined on lines 28–31.

Compare these with the declaration and definition of the Add() function in the previous
listing; they are nearly identical. The syntax of their use, however, is quite different. It is
more natural to say this:

varThree = varOne + varTwo;

than to say:

varThree = varOne.Add(varTwo);

Not a big change, but enough to make the program easier to use and understand.

On line 36, the operator is used

36: varThree = varOne + varTwo;

This is translated by the compiler into

VarThree = varOne.operator+(varTwo);

You could, of course, have written it this way yourself, and the compiler would have
been equally happy.

The operator+ method is called on the left-hand operand, passing in the right-hand
operand.

Issues in Operator Overloading
Overloaded operators can be member functions, as described in today’s lesson, or non-
member functions. The latter is described on Day 15, “Special Classes and Functions,”
when you learn about friend functions.

The only operators that must be class members are the assignment (=), subscript([]),
function call (()), and indirection (->) operators.

Operator [] is discussed on Day 13, “Managing Arrays and Strings,” when arrays are
covered. Overloading operator -> is discussed on Day 15, when smart pointers are
discussed.

Limitations on Operator Overloading
Operators for built-in types (such as int) cannot be overloaded. The precedence order
cannot be changed, and the arity of the operator, that is, whether it is unary or binary,

OUTPUT

316 Day 10

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 316

Working with Advanced Functions 317

10

cannot be changed. You cannot make up new operators, so you cannot declare ** to be
the “power of” operator.

Arity refers to how many terms are used in the operator. Some C++ operators are unary
and use only one term (myValue++). Some operators are binary and use two terms (a+b).
Only one operator is ternary and uses three terms. The ? operator is often called the
ternary operator because it is the only ternary operator in C++ (a > b ? x : y).

What to Overload
Operator overloading is one of the aspects of C++ most overused and abused by new
programmers. It is tempting to create new and interesting uses for some of the more
obscure operators, but these invariably lead to code that is confusing and difficult to read.

Of course, making the + operator subtract and the * operator add can be fun, but no pro-
fessional programmer would do that. The greater danger lies in the well-intentioned but
idiosyncratic use of an operator—using + to mean concatenate a series of letters or / to
mean split a string. There is good reason to consider these uses, but there is even better
reason to proceed with caution. Remember, the goal of overloading operators is to
increase usability and understanding.

DO use operator overloading when it
will clarify the program.

DO return an object of the class from
overloaded operators.

DON’T create counterintuitive operator
behaviors.

DON’T confuse the prefix and postfix
operators, especially when overloading.

DO DON’T

The Assignment Operator
The fourth and final function that is supplied by the compiler, if you don’t specify one, is
the assignment operator (operator=()). This operator is called whenever you assign to
an object. For example:

Cat catOne(5,7);
Cat catTwo(3,4);
// ... other code here
catTwo = catOne;

Here, catOne is created and initialized with itsAge equal to 5 and itsWeight equal to 7.
catTwo is then created and assigned the values 3 and 4.

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 317

After a while, catTwo is assigned the values in catOne. Two issues are raised here: What
happens if itsAge is a pointer, and what happens to the original values in catTwo?

Handling member variables that store their values on the free store was discussed earlier
during the examination of the copy constructor. The same issues arise here, as you saw
illustrated in Figures 10.1 and 10.2.

C++ programmers differentiate between a shallow, or member-wise, copy on the one
hand and a deep copy on the other. A shallow copy just copies the members, and both
objects end up pointing to the same area on the free store. A deep copy allocates the nec-
essary memory. This was illustrated in Figure 10.3.

An added wrinkle occurs with the assignment operator, however. The object catTwo
already exists and has memory already allocated. That memory must be deleted to avoid
any memory leaks. But what happens if you assign catTwo to itself?

catTwo = catTwo;

No one is likely to do this on purpose. It is, however, possible for this to happen by acci-
dent when references and dereferenced pointers hide the fact that the assignment is to
itself.

If you did not handle this problem carefully, catTwo would delete its memory allocation.
Then, when it was ready to copy in the values from memory on the right-hand side of the
assignment, there would be a very big problem: The value would be gone!

To protect against this, your assignment operator must check to see if the right-hand side
of the assignment operator is the object itself. It does this by examining the value of the
this pointer. Listing 10.15 shows a class with an assignment operator overloaded. It also
avoids the issue just mentioned.

LISTING 10.15 An Assignment Operator

1: // Listing 10.15 - Copy constructors
2:
3: #include <iostream>
4:
5: using namespace std;
6:
7: class Cat
8: {
9: public:
10: Cat(); // default constructor
11: // copy constructor and destructor elided!
12: int GetAge() const { return *itsAge; }
13: int GetWeight() const { return *itsWeight; }

318 Day 10

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 318

Working with Advanced Functions 319

10

14: void SetAge(int age) { *itsAge = age; }
15: Cat & operator=(const Cat &);
16:
17: private:
18: int *itsAge;
19: int *itsWeight;
20: };
21:
22: Cat::Cat()
23: {
24: itsAge = new int;
25: itsWeight = new int;
26: *itsAge = 5;
27: *itsWeight = 9;
28: }
29:
30:
31: Cat & Cat::operator=(const Cat & rhs)
32: {
33: if (this == &rhs)
34: return *this;
35: *itsAge = rhs.GetAge();
36: *itsWeight = rhs.GetWeight();
37: return *this;
38: }
39:
40:
41: int main()
42: {
43: Cat Frisky;
44: cout << “Frisky’s age: “ << Frisky.GetAge() << endl;
45: cout << “Setting Frisky to 6...\n”;
46: Frisky.SetAge(6);
47: Cat Whiskers;
48: cout << “Whiskers’ age: “ << Whiskers.GetAge() << endl;
49: cout << “copying Frisky to Whiskers...\n”;
50: Whiskers = Frisky;
51: cout << “Whiskers’ age: “ << Whiskers.GetAge() << endl;
52: return 0;
53: }

Frisky’s age: 5
Setting Frisky to 6...
Whiskers’ age: 5
copying Frisky to Whiskers...
Whiskers’ age: 6

OUTPUT

LISTING 10.15 continued

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 319

Listing 10.15 brings back the Cat class, but leaves out the copy constructor and
destructor to save room. New to the listing on line 15 is the declaration of the

assignment operator. This is the method that will be used to overload the assignment
operator. On lines 31–38, this overload method is defined.

On line 33, the current object (the Cat being assigned to) is tested to see whether it is the
same as the Cat being assigned. This is done by checking whether the address of the Cat
object on the right side (rhs) is the same as the address stored in the this pointer. If they
are the same, there is no need to do anything because the object on the left is the same
object that is on the right. Because of this, line 34 returns the current object.

If the object on the right-hand side is not the same, then the members are copied on lines
35 and 36 before returning.

You see the use of the assignment operator on line 50 of the main program when a Cat
object called Frisky is assigned to the Cat object Whiskers. The rest of this listing
should be familiar.

This listing assumes that if the two objects are pointing to the same address, then they
must be the same. Of course, the equality operator (==) can be overloaded as well,
enabling you to determine for yourself what it means for your objects to be equal.

Handling Data Type Conversion
Now that you’ve seen how to assign an object to another object of the same type, con-
sider another situation. What happens when you try to assign a variable of a built-in type,
such as int or unsigned short, to an object of a user-defined class? For example, the
Counter class was created earlier. What if you wanted to assign an integer to this class?
Listing 10.16 attempts to do this.

320 Day 10

ANALYSIS

Listing 10.16 will not compile!CAUTION

LISTING 10.16 Attempting to Assign a Counter to an int

1: // Listing 10.16 - This code won’t compile!
2:
3: #include <iostream>
4:
5: using namespace std;
6:
7: class Counter
8: {

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 320

Working with Advanced Functions 321

10

9: public:
10: Counter();
11: ~Counter(){}
12: int GetItsVal()const { return itsVal; }
13: void SetItsVal(int x) {itsVal = x; }
14: private:
15: int itsVal;
16: };
17:
18: Counter::Counter():
19: itsVal(0)
20: {}
21:
22: int main()
23: {
24: int theInt = 5;
25: Counter theCtr = theInt;
26: cout << “theCtr: “ << theCtr.GetItsVal() << endl;
27: return 0;
28: }

Compiler error! Unable to convert int to Counter

The Counter class declared on lines 7–16 has only a default constructor. It does
not declare methods for turning any built-in types into a Counter object. In the

main() function, an integer is declared on line 24. This is then assigned to a Counter
object. This line, however, leads to an error. The compiler cannot figure out, unless you
tell it that, given an int, it should assign that value to the member variable itsVal.

Listing 10.17 corrects this by creating a conversion operator: a constructor that takes an
int and produces a Counter object.

LISTING 10.17 Converting int to Counter

1: // Listing 10.17 - Constructor as conversion operator
2:
3: #include <iostream>
4:
5: using namespace std;
6:
7: class Counter
8: {
9: public:
10: Counter();
11: Counter(int val);

OUTPUT

LISTING 10.16 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 321

12: ~Counter(){}
13: int GetItsVal()const { return itsVal; }
14: void SetItsVal(int x) {itsVal = x; }
15: private:
16: int itsVal;
17: };
18:
19: Counter::Counter():
20: itsVal(0)
21: {}
22:
23: Counter::Counter(int val):
24: itsVal(val)
25: {}
26:
27: int main()
28: {
29: int theInt = 5;
30: Counter theCtr = theInt;
31: cout << “theCtr: “ << theCtr.GetItsVal() << endl;
32: return 0;
33: }

theCtr: 5

The important change is on line 11, where the constructor is overloaded to take
an int, and on lines 23–25, where the constructor is implemented. The effect of

this constructor is to create a Counter out of an int.

Given this, the compiler is able to call the constructor that takes an int as its argument.
Here’s how:

Step 1: Create a Counter called theCtr.

This is like saying int x = 5; which creates an integer variable x and then initializes it
with the value 5. In this case, a Counter object theCtr is being created and initialized
with the integer variable theInt.

Step 2: Assign to theCtr the value of theInt.

But theInt is an integer, not a counter! First, you have to convert it into a Counter. The
compiler will try to make certain conversions for you automatically, but you have to
teach it how. You teach the compiler how to make the conversion by creating a construc-
tor. In this case, you need a constructor for Counter that takes an integer as its only
parameter:

OUTPUT

322 Day 10

LISTING 10.17 continued

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 322

Working with Advanced Functions 323

10

class Counter
{

Counter (int x);
// ..

};

This constructor creates Counter objects from integers. It does this by creating a tempo-
rary and unnamed counter. For illustration purposes, suppose that the temporary Counter
object created from the integer is called wasInt.

Step 3: Assign wasInt to theCtr, which is equivalent to

theCtr = wasInt;

In this step, wasInt (the temporary Counter created when you ran the constructor) is
substituted for what was on the right-hand side of the assignment operator. That is, now
that the compiler has made a temporary Counter for you, it initializes theCtr with that
temporary object.

To further understand this, you must understand that all operator overloading works the
same way—you declare an overloaded operator using the keyword operator. With
binary operators (such as = or +), the right-hand side variable becomes the parameter.
This is done by the constructor. Thus

a = b;

becomes

a.operator=(b);

What happens, however, if you try to reverse the assignment with the following?

1: Counter theCtr(5);
2: int theInt = theCtr;
3: cout << “theInt : “ << theInt << endl;

Again, this generates a compile error. Although the compiler now knows how to create a
Counter out of an int, it does not know how to reverse the process.

Conversion Operators
To solve the conversion back to a different type from objects of your class, C++ provides
conversion operators. These conversion operators can be added to your class. This
enables your class to specify how to do implicit conversions to built-in types. Listing
10.18 illustrates this. One note, however: Conversion operators do not specify a return
value, even though they do return a converted value.

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 323

LISTING 10.18 Converting from Counter to unsigned short()

1: // Listing 10.18 - Conversion Operators
2: #include <iostream>
3:
4: class Counter
5: {
6: public:
7: Counter();
8: Counter(int val);
9: ~Counter(){}
10: int GetItsVal()const { return itsVal; }
11: void SetItsVal(int x) {itsVal = x; }
12: operator unsigned int();
13: private:
14: int itsVal;
15: };
16:
17: Counter::Counter():
18: itsVal(0)
19: {}
20:
21: Counter::Counter(int val):
22: itsVal(val)
23: {}
24:
25: Counter::operator unsigned int ()
26: {
27: return (int (itsVal));
28: }
29:
30: int main()
31: {
32: Counter ctr(5);
33: int theInt = ctr;
34: std::cout << “theInt: “ << theInt << std::endl;
35: return 0;
36: }

theShort: 5

On line 12, the conversion operator is declared. Note that this declaration starts
with the operator keyword, and that it has no return value. The implementation of

this function is on lines 25–28. Line 27 returns the value of itsVal, converted to an int.

Now, the compiler knows how to turn ints into Counter objects and vice versa, and they
can be assigned to one another freely. You assign and return other data types in the exact
same manner.

OUTPUT

324 Day 10

ANALYSIS

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 324

Working with Advanced Functions 325

10

Summary
Today, you learned how to overload member functions of your classes. You also learned
how to supply default values to functions and how to decide when to use default values
and when to overload.

Overloading class constructors enables you to create flexible classes that can be created
from other objects. Initialization of objects happens at the initialization stage of construc-
tion and is more efficient than assigning values in the body of the constructor.

The copy constructor and the assignment operator are supplied by the compiler if you
don’t create your own, but they do a member-wise copy of the class. In classes in which
member data includes pointers to the free store, these methods must be overridden so
that you can allocate memory for the target member variable.

Almost all C++ operators can be overloaded, although you want to be cautious not to
create operators whose use is counterintuitive. You cannot change the arity of operators,
nor can you invent new operators.

this refers to the current object and is an invisible parameter to all member functions.
The dereferenced this pointer is often returned by overloaded operators so that they can
participate in expressions.

Conversion operators enable you to create classes that can be used in expressions that
expect a different type of object. They are exceptions to the rule that all functions return
an explicit value; like constructors and destructors, they have no return type.

Q&A
Q Why would I ever use default values when I can overload a function?

A It is easier to maintain one function than two, and it is often easier to understand a
function with default parameters than to study the bodies of two functions.
Furthermore, updating one of the functions and neglecting to update the second is a
common source of bugs.

Q Given the problems with overloaded functions, why not always use default val-
ues instead?

A Overloaded functions supply capabilities not available with default variables, such
as varying the list of parameters by type rather than just by number or providing a
different implementation for different parameter type combinations.

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 325

Q When writing a class constructor, how do I decide what to put in the initializa-
tion and what to put in the body of the constructor?

A A simple rule of thumb is to do as much as possible in the initialization phase—
that is, initialize all member variables there. Some things, like computations
(including those used for initialization) and print statements, must be in the body
of the constructor.

Q Can an overloaded function have a default parameter?

A Yes. One or more of the overloaded functions can have its own default values, fol-
lowing the normal rules for default variables in any function.

Q Why are some member functions defined within the class declaration and oth-
ers are not?

A Defining the implementation of a member function within the declaration makes it
inline. Generally, this is done only if the function is extremely simple. Note that
you can also make a member function inline by using the keyword inline, even if
the function is declared outside the class declaration.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to tomorrow’s lesson.

Quiz
1. When you overload member functions, in what ways must they differ?

2. What is the difference between a declaration and a definition?

3. When is the copy constructor called?

4. When is the destructor called?

5. How does the copy constructor differ from the assignment operator (=)?

6. What is the this pointer?

7. How do you differentiate between overloading the prefix and postfix increment
operators?

8. Can you overload the operator+ for short integers?

9. Is it legal in C++ to overload the operator++ so that it decrements a value in your
class?

10. What return value must conversion operators have in their declarations?

326 Day 10

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 326

Working with Advanced Functions 327

10

Exercises
1. Write a SimpleCircle class declaration (only) with one member variable:

itsRadius. Include a default constructor, a destructor, and accessor methods for
radius.

2. Using the class you created in Exercise 1, write the implementation of the default
constructor, initializing itsRadius with the value 5. Do this within the initializa-
tion phase of the constructor and not within the body.

3. Using the same class, add a second constructor that takes a value as its parameter
and assigns that value to itsRadius.

4. Create a prefix and postfix increment operator for your SimpleCircle class that
increments itsRadius.

5. Change SimpleCircle to store itsRadius on the free store, and fix the existing
methods.

6. Provide a copy constructor for SimpleCircle.

7. Provide an assignment operator for SimpleCircle.

8. Write a program that creates two SimpleCircle objects. Use the default construc-
tor on one and instantiate the other with the value 9. Call the increment operator on
each and then print their values. Finally, assign the second to the first and print its
values.

9. BUG BUSTERS: What is wrong with this implementation of the assignment oper-
ator?
SQUARE SQUARE ::operator=(const SQUARE & rhs)
{

itsSide = new int;
*itsSide = rhs.GetSide();
return *this;

}

10. BUG BUSTERS: What is wrong with this implementation of the addition
operator?

VeryShort VeryShort::operator+ (const VeryShort& rhs)
{

itsVal += rhs.GetItsVal();
return *this;

}

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 327

14 0672327112_ch10.qxd 11/19/04 12:27 PM Page 328

DAY 11

WEEK 2

Object-Oriented Analysis
and Design

It is easy to become focused on the syntax of C++ and to lose sight of how and
why you use these techniques to build programs.

Today, you will learn

• How to use object-oriented analysis to understand the problem you are
trying to solve

• How to use object-oriented design to create a robust, extensible, and reli-
able solution

• How to use the Unified Modeling Language (UML) to document your
analysis and design

Building Models
If complexity is to be managed, a model of the universe must be created. The
goal of the model is to create a meaningful abstraction of the real world. Such
an abstraction should be simpler than the real world but should also accurately

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 329

reflect the real world so that the model can be used to predict the behavior of things in
the real world.

A child’s globe is a classic model. The model isn’t the thing itself; a child’s globe would
never be confused with the Earth, but one maps the other well enough that you can learn
about the Earth by studying the globe.

There are, of course, significant simplifications. My daughter’s globe never has rain,
floods, globe-quakes, and so forth, but I can use her globe to predict how long it will
take me to fly from my home to Indianapolis should I ever need to come in and explain
myself to the Sams senior management when they ask me why my manuscript was late
(“you see, I was doing great, but then I got lost in a metaphor and it took me hours to
get out”).

A model that is not simpler than the thing being modeled is not much use. The comedian
Steve Wright quips: “I have a map on which one inch equals one inch. I live at E5.”

Object-oriented software design is about building good models. It consists of two signifi-
cant pieces: a modeling language and a process.

Software Design: The Modeling Language
The modeling language is the least important aspect of object-oriented analysis and
design; unfortunately, it tends to get the most attention. A modeling language is nothing
more than a convention for representing a model in some other medium such as paper or
a computer system, and in some format such as graphics, text, or symbols. For example,
you can easily decide to draw your classes as triangles and draw the inheritance relation-
ship as a dotted line. If so, you might model a geranium as shown in Figure 11.1.

330 Day 11

FIGURE 11.1
Generalization/
specialization.

Flower

Geranium

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 330

Object-Oriented Analysis and Design 331

11

In the figure, you see that a Geranium is a special kind of Flower. If you and I agree to
draw our inheritance (generalization/specialization) diagrams like this, we’ll understand
each other perfectly. Over time, we’ll probably want to model lots of complex relation-
ships, and so we’ll develop our own complicated set of diagramming conventions and
rules.

Of course, we’ll need to explain our conventions to everyone else with whom we work,
and each new employee or collaborator will have to learn our conventions. We might
interact with other companies that have their own conventions, and we’ll need to
allow time to negotiate a common convention and to compensate for the inevitable
misunderstandings.

It would be more convenient if everyone in the industry agreed on a common modeling
language. (For that matter, it would be convenient if everyone in the world agreed on a
single spoken language, but one thing at a time.)

The lingua franca of software analysis and design is UML—the Unified Modeling
Language. The job of the UML specification is to answer questions such as, “How
should we draw an inheritance relationship?” The geranium drawing shown in Figure
11.1 would be drawn in UML as shown in Figure 11.2.

FIGURE 11.2
UML drawing of
specialization.

Flower

Geranium

In UML, classes are drawn as rectangles, and inheritance is drawn as a line with an
arrowhead. Interestingly, the arrowhead points from the more specialized class to the
more general class. The direction of the arrow can be counterintuitive, but it doesn’t mat-
ter; as long as we all agree, then after we learn the representation, we can communicate.

The details of the UML are rather straightforward. The diagrams generally are not hard
to use or to understand, and you’ll learn about them as they are presented. Although it is
possible to write a whole book on the UML, the truth is that 90 percent of the time, you
use only a small subset of the UML notation, and that subset is easily learned.

Software Design: The Process
The process of object-oriented analysis and design is much more complex and important
than the modeling language. So, of course, it is ironic that you hear much less about it.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 331

That is because the debate about modeling languages is pretty much settled; as an indus-
try, it has been decided that UML is the primary standard to be used. The debate about
process, however, rages on.

A method is a modeling language and a process. Method is often incorrectly referred to
as “methodology,” but “methodology” is the study of methods.

A methodologist is someone who develops or studies one or more methods. Typically,
methodologists develop and publish their own methods. Three of the leading methodolo-
gists and their methods are Grady Booch, who developed the Booch method, Ivar
Jacobson, who developed object-oriented software engineering, and James Rumbaugh,
who developed Object Modeling Technology (OMT). Together, these three men have cre-
ated what is now called the Rational Unified Process (formerly known as Objectory), a
method and a commercial product from Rational Software, Inc. All three men have been
employed at IBM’s Rational Software division, where they are affectionately known as
the Three Amigos.

Today’s lesson loosely follows their process rather than slavishly adhering to academic
theory—it is much more important to ship a product than to adhere to a method. Other
methods have something to offer, and so you will learn the bits and pieces that are valu-
able to use when stitching together a workable framework. Not every practitioner agrees
with this approach, and you are encouraged to read the extensive literature on software
engineering practice to determine what you think is the best practice. If you work for a
company that follows a specific method as their official practice, you need to be prepared
to follow that method to the level of compliance they require.

The process of software design can be iterative. In that case, as software is developed,
you can go through the entire process repeatedly as you strive to enhance your under-
standing of the requirements. The design directs the implementation, but the details
uncovered during implementation feed back into the design. In this approach, you should
not try to develop any sizable project in a single, orderly, straight line; rather, you should
iterate over pieces of the project, constantly improving your design and refining your
implementation.

Waterfall Versus Iterative Development
Iterative development can be distinguished from waterfall development. In waterfall
development, the output from one stage becomes the input to the next. Just like you can’t
easily go up a waterfall, with this method of development, there is no going back to pre-
vious stages (see Figure 11.3).

332 Day 11

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 332

Object-Oriented Analysis and Design 333

11

In a waterfall development process, the requirements are detailed, and the clients sign off
(“Yes, this is what I want”); the requirements are then passed on to the designer, set in
stone. The designer creates the design (and a wonder to behold it is), and passes it off to
the programmer who implements the design. The programmer, in turn, hands the code to
a QA person who tests the code and then releases it to the customer. Great in theory,
however, this is potentially disastrous in practice.

The Process of Iterative Development
In iterative development, you start with a concept; an idea of what you might want to
build. As the details are examined, the vision might grow and evolve.

When you have a good start on the requirements, you begin the design, knowing full well
that the questions that arise during design might cause modifications back in the require-
ments. As you work on design, you can also begin prototyping and then implementing
the product. The issues that arise in development feed back into design and might even
influence your understanding of the requirements. Most important, you design and
implement only pieces of the full product, iterating over the design and implementation
phases repeatedly.

Although the steps of the process are repeated iteratively, it is nearly impossible to
describe them in such a cyclical manner. Therefore, the following list describes them in
sequence.

The following are the steps of the iterative development process you’ll use for this:

Step 1: Conceptualization

Conceptualization is the “vision thing.” It is the single sentence that describes the
great idea.

Step 2: Analysis

Analysis is the process of understanding the requirements.

FIGURE 11.3
The waterfall method. Analysis

Design

Implementation

Test

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 333

Step 3: Design

Design is the process of creating the model of your classes, from which you will
generate your code.

Step 4: Implementation

Implementation is writing it in code (for example, in C++).

Step 5: Testing

Testing is making sure that you did it right.

Step 6: Rollout

Rollout is getting it to your customers.

334 Day 11

These are not the same as the phases of the Rational Unified Process,
which are

• Inception

• Elaboration

• Construction

• Transition

Or the workflows of the Rational Unified Process, which are

• Business Modeling

• Requirements

• Analysis and Design

• Implementation

• Test

• Deployment

• Configuration and Change Management

• Project Management

• Environment

NOTE

Don’t misunderstand—in reality, you run through each of these steps many times during
the course of the development of a single product. The iterative development process is
just hard to present and understand if you cycle through each step.

This process should sound easy. All the rest of today’s lesson is simply the details.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 334

Object-Oriented Analysis and Design 335

11

Step 1: The Conceptualization Phase:
Starting with The Vision

All great software starts with a vision. One individual has an insight into a product he
thinks would be good to build. In a business, someone envisions a product or service he
wants the business to create or offer. Rarely do committees create compelling visions.

The very first phase of object-oriented analysis and design is to capture this vision in a
single sentence (or at most, a short paragraph). The vision becomes the guiding principle
of development, and the team that comes together to implement the vision ought to refer
back to it—and update it if necessary—as it goes forward.

Even if the vision statement comes out of a committee in the marketing department, one
person should be designated as the “visionary.” It is her job to be the keeper of the sacred
light. As you progress, the requirements will evolve. Scheduling and time-to-market
demands might (and should) modify what you try to accomplish in the first iteration of
the program, but the visionary must keep an eye on the essential idea, to ensure that
whatever is produced reflects the core vision with high fidelity. It is this ruthless dedica-
tion—this passionate commitment—that sees the project through to completion. If you
lose sight of the vision, your product is doomed.

The conceptualization phase, in which the vision is articulated, is very brief. It might be
no longer than a flash of insight followed by the time it takes to write down what the
visionary has in mind. In other projects, the vision requires a complex and sometimes

Controversies

Endless controversies exist about what happens in each stage of the iterative design
process, and even about what you name those stages.

Here’s a secret: It doesn’t matter.

The essential steps are the same in just about every object-oriented process: Find out
what you need to build, design a solution, and implement that design.

Although the newsgroups and object-technology mailing lists thrive on splitting hairs,
the essentials of object-oriented analysis and design are fairly straightforward. This lesson
lays out a practical approach to the process as the bedrock on which you can build the
architecture of your application.

The goal of all this work is to produce code that meets the stated requirements and that
is reliable, extensible, and maintainable. Most important, the goal is to produce high-
quality code on time and on budget.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 335

challenging “scoping” phase, in which agreement on the components of the vision must
be generated between the people or groups involved. In such a process, what’s in and
what’s out can be a key determinant of the success of the project, especially because this
effort is usually when initial estimates of costs are set forth.

Often, as the object-oriented expert, you join the project after the vision has been
articulated.

Step 2: The Analysis Phase: Gathering
Requirements

Some companies confuse the vision statement with the requirements. A strong vision is
necessary, but it is not sufficient. To move on to design, you must understand how the
product will be used and how it must perform. The goal of the analysis phase is to articu-
late and capture these requirements. The outcome of the analysis phase is the production
of a requirements document. The first section in the requirements document is the use-
case analysis.

Use Cases
The driving force in analysis, design, and implementation is the use cases. A use case is
nothing more than a high-level description of how the product will be used. Use cases
drive not only the analysis, but they also drive the design, they help you determine the
classes, and they are especially important in testing the product.

Creating a robust and comprehensive set of use cases might be the single most important
task in analysis. It is here that you depend most heavily on your domain experts—those
experts having the most information about the business requirements you are trying to
capture.

Use cases pay little attention to the details of the user interface, and they pay no attention
to the internals of the system you are building. Rather, they should be focused on the
interactions that need to occur and those people and systems (called actors) that will
need to be working together to produce the desired results.

To summarize, the following are some definitions:

• Use case—A description of how the software will be used

• Domain experts—People with expertise in the domain (area) of business for
which you are creating the product

• Actor—Any person or system that interacts with the system you are developing

336 Day 11

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 336

Object-Oriented Analysis and Design 337

11

A use case is a description of the interaction between an actor and the system itself. For
purposes of use-case analysis, the system is treated as a “black box.” An actor “sends a
message” to the system, and something happens: Information is returned; the state of the
system is changed; the spaceship changes direction; whatever.

Use cases are not sufficient to capture all of the requirements, but they are a key compo-
nent and often receive the most attention. Other items might include business rules, data
elements, and technical requirements for performance, security, and so on.

Identifying the Actors
It is important to note that not all actors are people. Systems that interact with the system
you are building are also actors. Thus, if you are building an automated teller machine
(ATM), the customer and the bank clerk can both be actors—as can other systems with
which the new system interacts, such as a mortgage-tracking or student-loan system. The
essential characteristics of actors are as follows:

• They are external to the system.

• They interact with the system.

Getting started is often the hardest part of use-case analysis. Often, the best
way to get going is with a “brainstorming” session. Simply write down the
list of people and systems that will interact with your new system.
Remember that people really means roles—the bank clerk, the manager, the
customer, and so forth. One person can have more than one role.

TIP

For the ATM example just mentioned, the list of roles would include the following:

• The customer

• The bank personnel

• A back-office system

• The person who fills the ATM with money and supplies

No need exists to go beyond the obvious list at first. Generating even three or four actors
might be enough to get you started on generating use cases. Each of these actors interacts
with the system in different ways. You need to capture these interactions in the use cases.

Determining the First Use Cases
You have to start somewhere. For the ATM example, start with the customer role. What
are the actions for the customer role? Brainstorming could lead to the following use
cases for a customer:

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 337

• Customer checks his balances.

• Customer deposits money to his account.

• Customer withdraws money from his account.

• Customer transfers money between accounts.

• Customer opens an account.

• Customer closes an account.

Should you distinguish between “Customer deposits money in his checking account” and
“Customer deposits money in his savings account,” or should these actions be combined
(as they are in the preceding list) into “Customer deposits money to his account?” The
answer to this question lies in whether this distinction is meaningful in the domain (the
domain is the real-world environment being modeled—in this case, banking).

To determine whether these actions are one use case or two, you must ask whether the
mechanisms are different (does the customer do something significantly different with
these deposits) and whether the outcomes are different (does the system reply in a differ-
ent way). The answer to both questions for the deposit issue is “no”: The customer
deposits money to either account in essentially the same way, and the outcome is pretty
much the same; the ATM responds by incrementing the balance in the appropriate
account.

Given that the actor and the system behave and respond more or less identically, regard-
less of whether the deposit is made to the checking or to the savings account, these two
use cases are actually a single use case. Later, when the use-case scenarios are fleshed
out, you can try the two variations to see whether they make any difference at all.

As you think about each actor, you might discover additional use cases by asking these
questions:

• Why is the actor using this system?

The customer is using the system to get cash, to make a deposit, or to check an
account balance.

• What outcome does the actor want or expect from each request?

Add cash to an account or get cash to make a purchase.

• What happened to cause the actor to use this system now?

She might recently have been paid or might be on the way to make a purchase.

• What must the actor do to use the system?

Identify herself by putting an ATM card into the slot in the machine.

Aha! We need a use case for the customer logging in to the system.

338 Day 11

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 338

Object-Oriented Analysis and Design 339

11

• What information must the actor provide to the system?

Enter a Personal ID number.

Aha! We need use cases for obtaining and editing the Personal ID number.

• What information does the actor hope to get from the system?

Balances, and so on.

You can often find additional use cases by focusing on the attributes of the objects in the
domain. The customer has a name, a PIN, and an account number; do you have use cases
to manage these objects? An account has an account number, a balance, and a transaction
history; have these elements been captured in the use cases?

After the customer use cases have been explored in detail, the next step in fleshing out
the list of use cases is to develop the use cases for each of the other actors. The following
list shows a reasonable first set of use cases for the ATM example:

• Customer checks his balances.

• Customer deposits money to his account.

• Customer withdraws money from his account.

• Customer transfers money between accounts.

• Customer opens an account.

• Customer closes an account.

• Customer logs in to his account.

• Customer checks recent transactions.

• Bank clerk logs in to special management account.

• Bank clerk makes an adjustment to a customer’s account.

• A back-office system updates a user’s account based on external activity.

• Changes in a user’s account are reflected in a back-office system.

• The ATM signals it is out of cash to dispense.

• The bank technician fills the ATM with cash and supplies.

Creating the Domain Model
After you have a first cut at your use cases, the requirements document can be fleshed
out with a detailed domain model. The domain model is a document that captures all you
know about the domain (the field of business you are working in). As part of your
domain model, you create domain objects that describe all the objects mentioned in your
use cases. So far, the ATM example includes these objects: customer, bank personnel,
back-office systems, checking account, savings account, and so forth.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 339

For each of these domain objects, you need to capture essential data, such as the name of
the object (for example, customer, account, and so on), whether the object is an actor, the
object’s principal attributes and behavior, and so forth. Many modeling tools support cap-
turing this information in “class” descriptions. Figure 11.4 shows how this information is
captured with the Rational Rose modeling tool.

340 Day 11

FIGURE 11.4
Rational Rose.

It is important to realize that what is being described here is not the class that will be
used in the design (even though there will probably be similar classes used in the
design), but rather classes of objects in the requirements domain. This is documentation
of what the requirements will demand of the system, not documentation of how the sys-
tem will meet those requirements.

You can diagram the relationship among the objects in the domain of the ATM example
using the UML—with the same diagramming conventions that will be used later to
describe the relationships among classes in the design. This is one of the great strengths
of the UML: You can use the similar representations at every stage of the project.

For example, you can capture that checking accounts and savings accounts are both spe-
cializations of the more general concept of bank account by using the UML conventions
for classes and generalization relationships, as shown in Figure 11.5.

In the diagram in Figure 11.5, the boxes represent the various domain objects, and the
line with an arrowhead indicates generalization. The UML specifies that this line is
drawn from the specialized class to the more general “base” class. Thus, both Checking
Account and Savings Account point up to Bank Account, indicating that each is a spe-
cialized form of Bank Account.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 340

Object-Oriented Analysis and Design 341

11
The UML is a rich modeling language, and you can capture any number of relationships.
The principal relationships captured in analysis, however, are as follows:

• Generalization (or specialization)

• Containment

• Association

Generalization Generalization is often equated with “inheritance,” but a sharp and
meaningful distinction exists between the two. Generalization describes the relationship;
inheritance is the programming implementation of generalization. Inheritance is how
generalization is manifested in code. The other side of the generalization coin is special-
ization. A cat is a specialized form of animal; animal is a generalized concept that unifies
cat and dog.

Specialization implies that the derived object is a subtype of the base object. Thus, a
checking account is a bank account. The relationship is symmetrical: Bank account gen-
eralizes the common behavior and attributes of checking and savings accounts.

During domain analysis, you should seek to capture these relationships as they exist in
the real world.

FIGURE 11.5
Specialization.

Bank Account

Checking Account Savings Account

Generalization

Domain object

Again, it is important to note that what is being shown at this time are the
relationships among classes in the requirements domain. Later, you might
decide to have a CheckingAccount object in your design as well as a
BankAccount object, and you can implement this relationship using inheri-
tance; but these are design-time decisions. At analysis time, all you are docu-
menting is your understanding of these requirements domain.

NOTE

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 341

Containment Often, one object is composed of many subobjects. For example, a car
is composed of a steering wheel, tires, doors, radio, and so forth. A checking account is
composed of a balance, a transaction history, a customer ID, and so on. The checking
account has these items; containment models the “has a” relationship. The UML illus-
trates the containment relationship by drawing a line with a diamond from the containing
object to the contained object, as shown in Figure 11.6.

342 Day 11

FIGURE 11.6
Containment.

Checking Account

Balance

Aggregation

The diagram in Figure 11.6 suggests that the Checking Account has a Balance. You can
combine these diagrams to show a fairly complex set of relationships (see Figure 11.7).

FIGURE 11.7
Object relationships.

Bank Account

Checking Account Savings Account

Balance Transaction History

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 342

Object-Oriented Analysis and Design 343

11

The diagram in Figure 11.7 states that a Checking Account and a Savings Account are
both Bank Accounts, and that all Bank Accounts have both a Balance and a Transaction
History.

Association The third relationship commonly captured in the domain analysis is a
simple association. An association suggests that two objects interact in some way, with-
out being terribly precise about what that way actually might be. This definition will
become much more precise in the design stage, but for analysis, it is only being sug-
gested that Object A and Object B interact, but that neither contains the other and neither
is a specialization of the other. This association is shown in the UML with a simple
straight line between the objects, as shown in Figure 11.8.

FIGURE 11.8
Association.

Object A Object B

Association

The diagram in Figure 11.8 indicates that Object A associates in some way with
Object B.

Establishing Scenarios
Now that you have a preliminary set of use cases and the tools with which to diagram the
relationship among the objects in the domain, you are ready to formalize the use cases
and give them more depth.

Each use case can be broken into a series of scenarios. A scenario is a description of a
specific set of circumstances that distinguish among the various elements of the use case.
For example, the use case “Customer withdraws money from his account” might have
the following scenarios:

• Customer requests a $300 withdrawal from checking, takes the cash from the cash
slot, and the system prints a receipt.

• Customer requests a $300 withdrawal from checking, but his balance is $200.
Customer is informed that not enough cash is in the checking account to accom-
plish the withdrawal.

• Customer requests a $300 withdrawal from checking, but he has already withdrawn
$100 today and the limit is $300 per day. Customer is informed of the problem,
and he chooses to withdraw only $200.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 343

• Customer requests a $300 withdrawal from checking, but the receipt roll is out of
paper. Customer is informed of the problem, and he chooses to proceed without a
receipt.

And so forth. Each scenario explores a variation on the original use case. Often, these
variations are exception conditions (not enough money in account, not enough money in
machine, and so on). Sometimes, the variations explore nuances of decisions in the use
case itself. (For example, did the customer want to transfer money before making the
withdrawal?)

Not every possible scenario must be explored. Rather, you are looking for those scenar-
ios that tease out requirements of the system or details of the interaction with the actor.

Establishing Guidelines
As part of your method, you need to create guidelines for documenting each scenario.
You capture these guidelines in your requirements document. Typically, you need to
ensure that each scenario includes the following:

• Preconditions—What must be true for the scenario to begin

• Triggers—What event causes the scenario to begin

• What actions the actors take

• What results or changes are caused by the system

• What feedback the actors receive

• Whether repeating activities occur, and what causes them to conclude

• A description of the logical flow of the scenario

• What causes the scenario to end

• Postconditions—What must be true when the scenario is complete

In addition, you need to name each use case and each scenario. Thus, you might have the
following situation:

Use Case: Customer withdraws cash.

Scenario: Successful cash withdrawal from checking.

Preconditions: Customer is already logged in to system.

Trigger: Customer requests “withdrawal.”

Description: Customer chooses to withdraw cash from a checking account.
Sufficient cash is in the account, sufficient cash and receipt paper
are in the ATM, and the network is up and running. The ATM
asks the customer to indicate the amount of the withdrawal, and

344 Day 11

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 344

Object-Oriented Analysis and Design 345

11

the customer asks for $300, a legal amount to withdraw at this
time. The machine dispenses $300 and prints a receipt, and the
customer takes the money and the receipt.

Postconditions: Customer account is debited $300, and customer has $300 cash.

This use case can be shown with the incredibly simple diagram given in Figure 11.9.

FIGURE 11.9
Use-case diagram.

Withdraw Cash

Association

Customer

Actor
Use Case

Little information is captured here except a high-level abstraction of an interaction
between an actor (the customer) and the system. This diagram becomes slightly more
useful when you show the interaction among use cases. I say only slightly more useful
because only two interactions are possible: <<uses>> and <<extends>>. The <<uses>>
stereotype indicates that one use case is a superset of another. For example, it isn’t possi-
ble to withdraw cash without first logging in. This relationship can be shown with the
diagram in Figure 11.10.

FIGURE 11.10
The <<uses>>
stereotype. Withdraw Cash

Customer

Log in

<<Uses>>

Figure 11.10 indicates that the Withdraw Cash use case “uses” the Log In use case, and,
thus, Log In is a part of Withdraw Cash.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 345

The <<extends>> use case was intended to indicate conditional relationships and some-
thing akin to inheritance, but so much confusion exists in the object-modeling commu-
nity about the distinction between <<uses>> and <<extends>> that many developers have
simply set aside <<extends>>, feeling that its meaning is not sufficiently well under-
stood. Personally, I use <<uses>> when I would otherwise copy and paste the entire use
case in place, and I use <<extends>> when I only use the use case under certain defin-
able conditions.

Interaction Diagrams Although the diagram of the use case itself might be of lim-
ited value, you can associate diagrams with the use case that can dramatically improve
the documentation and understanding of the interactions. For example, you know that the
Withdraw Cash scenario represents the interactions among the following domain objects:
customer, checking account, and the user interface. You can document this interaction
with an interaction diagram (also called a collaboration diagram), as shown in
Figure 11.11.

346 Day 11

FIGURE 11.11
UML interaction
diagram.

Customer
User-Interface

(ATM)
Checking
Account

1: Request Withdrawal

2: Show options

3: Indicate amount and account

4: Check Balances, status, etc.

5: Return Authorization

6: Debit $300

7: Dispense cash

8: Request receipt

9: Print Receipt

The interaction diagram in Figure 11.11 captures details of the scenario that might not be
evident by reading the text. The objects that are interacting are domain objects, and the
entire ATM/UI is treated as a single object, with only the specific bank account called
out in any detail.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 346

Object-Oriented Analysis and Design 347

11

This rather simple ATM example shows only a fanciful set of interactions, but nailing
down the specifics of these interactions can be a powerful tool in understanding both the
problem domain and the requirements of your new system.

Creating Packages
Because you generate many use cases for any problem of significant complexity, the
UML enables you to group your use cases in packages.

A package is like a directory or a folder—it is a collection of modeling objects (classes,
actors, and so forth). To manage the complexity of use cases, you can create packages
aggregated by whatever characteristics make sense for your problem. Thus, you can
aggregate your use cases by account type (everything affecting checking or savings), by
credit or debit, by customer type, or by whatever characteristics make sense to you.
More important, a single use case can appear in different packages, allowing you great
flexibility.

Application Analysis
In addition to creating use cases, the requirements document must capture your cus-
tomer’s assumptions, and any constraints or requirements concerning hardware and oper-
ating systems, security, performance, and so forth. These requirements are your
particular customer’s prerequisites—those things that you would normally determine
during design and implementation but that your client has decided for you.

The application requirements (sometimes called “technical requirements”) are often dri-
ven by the need to interface with existing systems. In this case, understanding what the
existing systems do and how they work is an essential component of your analysis.

Ideally, you analyze the problem, design the solution, and then decide which platform
and operating system best fits your design. That scenario is as ideal as it is rare. More
often, the client has a standing investment in a particular operating system or hardware
platform. The client’s business plan depends on your software running on the existing
system, and you must capture these requirements early and design accordingly.

Systems Analysis
Some software is written to stand alone, interacting only with the end user. Often, how-
ever, you will be called on to interface to an existing system. Systems analysis is the
process of collecting all the details of the systems with which you will interact. Will your
new system be a server, providing services to the existing system, or will it be a client?
Will you be able to negotiate an interface between the systems, or must you adapt to an
existing standard? Will the other system be stable, or must you continually hit a moving
target?

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 347

These and related questions must be answered in the analysis phase, before you begin to
design your new system. In addition, you need to try to capture the constraints and limi-
tations implicit in interacting with the other systems. Will they slow down the respon-
siveness of your system? Will they put high demands on your new system, consuming
resources and computing time?

Planning Documents
After you understand what your system must do and how it must behave, it is time to
take a first stab at creating a time and budget document. Often, the client dictates the
timeline: “You have 18 months to get this done.” Ideally, you examine the requirements
and estimate the time it will take to design and implement the solution. That is the ideal;
the practical reality is that most systems come with an imposed time limit and cost limit,
and the real trick is to figure out how much of the required functionality you can build in
the allotted time—and at the allotted cost.

Here are a couple guidelines to keep in mind when you are creating a project budget and
timeline:

• If you are given a range, the outer number is probably optimistic.

• Liberty’s Law states that everything takes longer than you expect—even if you take
into account Liberty’s Law.

Given these realities, it is imperative that you prioritize your work so that the most
important tasks are done first. You should not expect to have time to finish—it is that
simple. It is important that when you run out of time, what you have works and is ade-
quate for a first release. If you are building a bridge and run out of time, if you didn’t get
a chance to put in the bicycle path, that is too bad; but you can still open the bridge and
start collecting tolls. If you run out of time and you’re only halfway across the river, that
is not as good.

An essential thing to know about planning documents is that they are generally wrong.
This early in the process, it is virtually impossible to offer a reliable estimate of the dura-
tion of the project. After you have the requirements, you can get a good handle on how
long the design will take, a fair estimate of how long the implementation will take, and a
reasonable guesstimate of the testing time. Then, you must allow yourself at least 20 to
25 percent “wiggle room,” which you can tighten as you move forward through the itera-
tions and learn more.

348 Day 11

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 348

Object-Oriented Analysis and Design 349

11

Visualizations
The final piece of the requirements document is the visualization. The visualization is a
fancy name for the diagrams, pictures, screen shots, prototypes, and any other visual rep-
resentations created to help you think through and design the graphical user interface of
your product.

For many large projects, you can develop a full prototype to help you (and your cus-
tomers) understand how the system will behave. On some teams, the prototype becomes
the living requirements document; the “real” system is designed to implement the func-
tionality demonstrated in the prototype.

Artifacts
At the end of each phase of analysis and design, you will create a series of documents
(often called “artifacts” or “deliverables”). Table 11.1 shows some of the artifacts of the
analysis phase. Several groups use these documents. The customer will use the docu-
ments to be certain that you understand what they need. End users will use them to give
feedback and guidance to the project. The project team will use them to design and
implement the code. Many of these documents also provide material crucial both to your
documentation team and to Quality Assurance to tell them how the system ought to
behave.

TABLE 11.1 Artifacts Created During the Analysis Stage of Project Development

Artifact Description

Use-case report Document detailing the use cases, scenarios,
stereotypes, preconditions, postconditions, and
visualizations

Domain analysis Document and diagrams describing the relationships
among the domain objects

Analysis collaboration diagrams Collaboration diagrams describing interactions
among objects in the problem domain

The inclusion of “wiggle room” in your planning document is not an excuse
to avoid planning documents. It is merely a warning not to rely on them too
much early on. As the project goes forward, you’ll strengthen your under-
standing of how the system works, and your estimates will become increas-
ingly precise.

NOTE

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 349

Analysis activity diagrams Activity diagrams describing interactions among
objects in the problem domain

Systems analysis Report and diagrams describing low-level and hard-
ware systems on which the project will be built

Application analysis document Report and diagrams describing the customer’s
requirements specific to this particular project

Operational constraints report Report describing performance characteristics and
constraints imposed by this client

Cost and planning document Report with charts and graphs indicating projected
scheduling, milestones, and costs

Step 3: The Design Phase
Analysis focuses on understanding the problem domain, whereas the next step of the
processes, design, focuses on creating the solution. Design is the process of transforming
your understanding of the requirements into a model that can be implemented in soft-
ware. The result of this process is the production of a design document.

A design document can be divided into two sections: Class Design and Architectural
Mechanisms. The Class Design section, in turn, is divided into static design (which
details the various classes and their relationships and characteristics) and dynamic design
(which details how the classes interact).

The Architectural Mechanisms section of the design document provides details about
how you will implement object persistence, concurrency, a distributed object system, and
so forth. The rest of today’s lesson focuses on the class design aspect of the design docu-
ment; other lessons in the rest of this book explain elements of how to implement various
architectural mechanisms.

What Are the Classes?
As a C++ programmer, you are now used to creating classes. Formal design methods
require you to separate the concept of the C++ class from the concept of the design class,
although they are intimately related. The C++ class you write in code is the implementa-
tion of the class you designed. There is a one-to-one relationship: Each class in your
design corresponds to a class in your code, but don’t confuse one for the other. It is cer-
tainly possible to implement your design classes in another language, and the syntax of
the class definitions might be changed.

350 Day 11

TABLE 11.1 continued

Artifact Description

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 350

Object-Oriented Analysis and Design 351

11

That said, most of the time these classes are discussed without distinguishing them
because the differences are highly abstract. When you say that in your model the Cat
class will have a Meow() method, understand that this means that you will put a Meow()
method into your C++ class as well.

You capture the design model’s classes in UML diagrams, and you capture the imple-
mentation’s C++ classes in code that can be compiled. The distinction is meaningful, yet
subtle.

In any case, the biggest stumbling block for many novices is finding the initial set of
classes and understanding what makes a well-designed class. One simplistic technique
suggests writing out the use-case scenarios and then creating a class for every noun.
Consider the following use-case scenario:

Customer chooses to withdraw cash from checking. Sufficient cash is in the
account, sufficient cash and receipts are in the ATM, and the network is up and run-
ning. The ATM asks the customer to indicate an amount for the withdrawal, and the
customer asks for $300, a legal amount to withdraw at this time. The machine dis-
penses $300 and prints a receipt, and the customer takes the money and the receipt.

You might pull out of this scenario the following classes:

• Customer

• Cash

• Checking

• Account

• Receipts

• ATM

• Network

• Amount

• Withdrawal

• Machine

• Money

You might then aggregate the synonyms to create this list, and then create classes for
each of these nouns:

• Customer

• Cash (money, amount, withdrawal)

• Checking

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 351

• Account

• Receipts

• ATM (machine)

• Network

This is not a bad way to start, as far as it goes. You might then go on to diagram the
obvious relationships among some of these classes, as shown in Figure 11.12.

352 Day 11

FIGURE 11.12
Preliminary classes.

Checking Account

Account

ATM

Cash Receipt

Customer

Network

Dispenses
Dispenses

Transformations
What you began to do in the preceding section was not so much extract the nouns from
the scenario as to begin transforming objects from the domain analysis into objects in the
design. That is a fine first step. Often, many of the objects in the domain have surrogates
in the design. An object is called a surrogate to distinguish between the actual physical
receipt dispensed by an ATM and the object in your design that is merely an intellectual
abstraction implemented in code.

You will likely find that most of the domain objects have a representation in the design—
that is, a one-to-one correspondence exists between the domain object and the design
object. Other times, however, a single domain object is represented in the design by an
entire series of design objects. And at times, a series of domain objects might be repre-
sented by a single design object.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 352

Object-Oriented Analysis and Design 353

11

Note that in Figure 11.12, CheckingAccount has already been captured as a specializa-
tion of Account. You didn’t set out to find the generalization relationship, but this one
was self-evident, so it has been captured. Similarly, from the domain analysis, you know
that the ATM dispenses both Cash and Receipts, so that information has been captured
immediately into the design.

The relationship between Customer and CheckingAccount is less obvious. Such a rela-
tionship exists, but the details are not obvious, so you should hold off.

Other Transformations
After you have transformed the domain objects, you can begin to look for other useful
design-time objects. Often, each actor has a class. A good starting place is with the inter-
face between your new system and any existing systems—this should be encapsulated in
an interface class. However, be careful when considering databases and other external
storage media. It is generally better to make it a responsibility of each class to manage its
own “persistence”—that is, how it is stored and retrieved between user sessions. Those
design classes, of course, can use common classes for accessing files or databases, but
most commonly, the operating system or the database vendor provides these to you.

These interface classes allow you to encapsulate your system’s interactions with the other
system, and, thus, shield your code from changes in the other system. Interface classes
allow you to change your own design, or to accommodate changes in the design of other
systems, without breaking the rest of the code. As long as the two systems continue to
support the agreed-on interface, they can change independently of one another.

Data Manipulation
Similarly, you might need to create classes for data manipulation. If you have to trans-
form data from one format into another format (for example, from Fahrenheit to Celsius
or from English to Metric), you might want to encapsulate these transformations behind
a special class. You can use this technique when converting data into required formats for
other systems or for transmission over the Internet—in short, any time you must manipu-
late data into a specified format, you encapsulate the protocol behind a data manipulation
class.

Views and Reports
Every “view” or “report” your system generates (or, if you generate many reports, every
set of reports) is a candidate for a class. The rules behind the report—both how the infor-
mation is gathered and how it is to be displayed—can be productively encapsulated
inside a view class.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 353

Devices
If your system interacts with or manipulates devices (such as printers, cameras, modems,
scanners, and so forth), the specifics of the device protocol ought to be encapsulated in a
class. Again, by creating classes for the interface to the device, you can plug in new
devices with new protocols and not break any of the rest of your code; just create a new
interface class that supports the same interface (or a derived interface), and off you go.

Building the Static Model
When you have established your preliminary set of classes, it is time to begin modeling
their relationships and interactions. For purposes of clarity, the static model is explained
first, and then the dynamic model. In the actual design process, you will move freely
between the static and dynamic models, filling in details of both—and, in fact, adding
new classes and sketching them in as you learn from each.

The static model focuses on three areas of concern: responsibilities, attributes, and rela-
tionships. The most important of these—and the one you focus on first—is the set of
responsibilities for each class. The most important guiding principle is this: Each class
should be responsible for one thing.

That is not to say that each class has only one method. Far from it; many classes will
have dozens of methods. But all these methods must be coherent and cohesive; that is,
they must all relate to one another and contribute to the class’s capability to accomplish a
single area of responsibility.

In a well-designed system, each object is an instance of a well-defined and well-under-
stood class that is responsible for one area of concern. Classes typically delegate extrane-
ous responsibilities to other, related classes. By creating classes that have only a single
area of concern, you promote the creation of highly maintainable code.

To get a handle on the responsibilities of your classes, you might find it beneficial to
begin your design work with the use of CRC cards.

Using CRC Cards
CRC stands for Class, Responsibility, and Collaboration. A CRC card is nothing more
than a 4×6 index card. This simple, low-tech device enables you to work with other peo-
ple in understanding the primary responsibilities of your initial set of classes. You assem-
ble a stack of blank 4×6 index cards and meet around a conference table for a series of
CRC card sessions.

How to Conduct a CRC Session For a large project or component, each CRC ses-
sion should be attended, ideally, by a group of three to six people; any more becomes
unwieldy. You should have a facilitator, whose job it is to keep the session on track and

354 Day 11

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 354

Object-Oriented Analysis and Design 355

11

to help the participants capture what they learn. At least one senior software architect
should be present, ideally someone with significant experience in object-oriented analy-
sis and design. In addition, you need to include at least one or two “domain experts” who
understand the system requirements and who can provide expert advice in how things
ought to work.

The most essential ingredient in a CRC session is the conspicuous absence of managers.
This is a creative, free-wheeling session that must be unencumbered by the need to
impress one’s boss. The goal here is to explore, to take risks, to tease out the responsibil-
ities of the classes, and to understand how they might interact with one another.

You begin the CRC session by assembling your group around a conference table, with a
small stack of 4×6 index cards. At the top of each CRC card, you write the name of a
single class. Draw a line down the center of the card and write Responsibilities on the
left and Collaborations on the right.

Begin by filling out cards for the most important classes you’ve identified. For each card,
write a one-sentence or two-sentence definition on the back. You can also capture what
other class this class specializes if that is obvious at the time you’re working with the
CRC card. Just write Superclass: below the class name and fill in the name of the class
from which this class derives.

Focusing on Responsibilities The point of the CRC session is to identify the
responsibilities of each class. Pay little attention to the attributes, capturing only the most
essential and obvious attributes as you go. The important work is to identify the responsi-
bilities. If, in fulfilling a responsibility, the class must delegate work to another class, you
capture that information under collaborations.

As you progress, keep an eye on your list of responsibilities. If you run out of room on
your 4×6 card, it might make sense to wonder whether you’re asking this class to do too
much. Remember, each class should be responsible for one general area of work, and the
various responsibilities listed should be cohesive and coherent—that is, they should work
together to accomplish the overall responsibility of the class.

At this point, you do not want to focus on relationships, nor do you want to worry about
the class interface or which methods will be public and which will be private. The focus
is only on understanding what each class does.

Anthropomorphic and Use-Case Driven The key feature of CRC cards is to make
them anthropomorphic—that is, you attribute humanlike qualities to each class. Here’s
how it works: After you have a preliminary set of classes, return to your CRC scenarios.
Divide the cards around the table arbitrarily, and walk through the scenario together. For
example, return to the following scenario:

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 355

Customer chooses to withdraw cash from checking. Sufficient cash is in the account,
sufficient cash and receipts are in the ATM, and the network is up and running. The
ATM asks the customer to indicate an amount for the withdrawal, and the customer
asks for $300, a legal amount to withdraw at this time. The machine dispenses $300
and prints a receipt, and the customer takes the money and the receipt.

Assume there are five participants in the CRC session: Amy, the facilitator and object-
oriented designer; Barry, the lead programmer; Charlie, the client; Dorris, the domain
expert; and Ed, a programmer.

Amy holds up a CRC card representing CheckingAccount and says “I tell the customer
how much money is available. He asks me to give him $300. I send a message to the dis-
penser telling him to give out $300 cash.” Barry holds up his card and says “I’m the dis-
penser; I spit out $300 and send Amy a message telling her to decrement her balance by
$300. Who do I tell that the machine now has $300 less? Do I keep track of that?”
Charlie says, “I think we need an object to keep track of cash in the machine.” Ed says,
“No, the dispenser should know how much cash it has; that’s part of being a dispenser.”
Amy disagrees: “No, someone has to coordinate the dispensing of cash. The dispenser
needs to know whether cash is available and whether the customer has enough in the
account, and it has to count out the money and know when to close the drawer. It should
delegate responsibility for keeping track of cash on hand—some kind of internal account.
Whoever knows about cash on hand can also notify the back office when it is time to be
refilled. Otherwise, that’s asking the dispenser to do too much.”

The discussion continues. By holding up cards and interacting with one another, the
requirements and opportunities to delegate are teased out; each class comes alive, and its
responsibilities are clarified. When the group becomes bogged down in design questions,
the facilitator can make a decision and help the group move on.

Limitations of CRC Cards Although CRC cards can be a powerful tool for getting
started with design, they have inherent limitations. The first problem is that they don’t
scale well. In a very complex project, you can be overwhelmed with CRC cards; just
keeping track of them all can be difficult.

CRC cards also don’t capture the interrelationship among classes. Although it is true that
collaborations are noted, the nature of the collaboration is not modeled well. Looking at
the CRC cards, you can’t tell whether classes aggregate one another, who creates whom,
and so forth. CRC cards also don’t capture attributes, so it is difficult to go from CRC
cards to code. Most important, CRC cards are static; although you can act out the inter-
actions among the classes, the CRC cards themselves do not capture this information.

In short, CRC cards are a good start, but you need to move the classes into the UML if
you are to build a robust and complete model of your design. Although the transition into

356 Day 11

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 356

Object-Oriented Analysis and Design 357

11

the UML is not terribly difficult, it is a one-way street. After you move your classes into
UML diagrams, there is no turning back; you set aside the CRC cards and don’t come
back to them. It is simply too difficult to keep the two models synchronized with one
another.

Transforming CRC Cards to UML Each CRC card can be translated directly into a
class modeled with the UML. Responsibilities are translated into class methods, and
whatever attributes you have captured are added as well. The class definition from the
back of the card is put into the class documentation. Figure 11.13 shows the relationship
between the CheckingAccount CRC card and the UML class created from that card.

Class: CheckingAccount

SuperClass: Account

Responsibilities:

Track current balance

Accept deposits and transfers in

Write checks

Transfer cash out

Keep current day’s ATM withdrawal balance

Collaborations:

Other accounts

Back-office systems

Cash dispenser

FIGURE 11.13
CRC card.

<<Abstract>>
 Account

Checking Account

Balance : int
DaysATMWithdrawal : int

GetBalance() : int
Deposit(int amount)() : void
TransferIn(int amount)() :bool
TransferOut() : int
WriteChecks(int amount)() : bool

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 357

Class Relationships
After the classes are in the UML, you can begin to turn your attention to the relation-
ships among the various classes. The principal relationships you’ll model are the
following:

• Generalization

• Association

• Aggregation

• Composition

The generalization relationship is implemented in C++ through public inheritance. From
a design perspective, however, you focus less on the mechanism and more on the seman-
tics: what it is that this relationship implies.

You examined the generalization relationship in the analysis phase, but now turn your
attention to the objects in your design rather than to just the objects in the domain. Your
efforts should now be to “factor out” common functionality in related classes into base
classes that can encapsulate the shared responsibilities.

When you “factor out” common functionality, you move that functionality out of the spe-
cialized classes and up into the more general class. Thus, if you notice that both your
checking and your savings account need methods for transferring money in and out,
you’ll move the TransferFunds() method up into the account base class. The more you
factor out of the derived classes, the more polymorphic your design will be.

One of the capabilities available in C++, which is not available in Java, is multiple inher-
itance (although Java has a similar, if limited, capability with its multiple interfaces).
Multiple inheritance allows a class to inherit from more than one base class, bringing in
the members and methods of two or more classes.

Experience has shown that you should use multiple inheritance judiciously because it can
complicate both your design and the implementation. Many problems initially solved
with multiple inheritance are today solved using aggregation. That said, multiple inheri-
tance is a powerful tool, and your design might require that a single class specializes the
behavior of two or more other classes.

Multiple Inheritance Versus Containment Is an object the sum of its parts? Does
it make sense to model a Car object as a specialization of SteeringWheel, Door, and
Tire, as shown in Figure 11.14?

358 Day 11

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 358

Object-Oriented Analysis and Design 359

11

It is important to come back to the fundamentals: Public inheritance should always
model generalization. The common expression for this is that inheritance should model
is-a relationships. If you want to model the has-a relationship (for example, a car has-a
steering wheel), you do so with aggregation, as shown in Figure 11.15.

FIGURE 11.14
False inheritance.

Car

Steering Wheel TireDoor

FIGURE 11.15
Aggregation.

Car

Steering Wheel TireDoor

1
2..5

4

The diagram in Figure 11.15 indicates that a car has a steering wheel, four wheels, and
two to five doors. This is a more accurate model of the relationship among a car and its
parts. Notice that the diamond in the diagram is not filled in; this is so because this rela-
tionship is being modeled as an aggregation, not as a composition. Composition implies
control for the lifetime of the object. Although the car has tires and a door, the tires and
door can exist before they are part of the car and can continue to exist after they are no
longer part of the car.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 359

Figure 11.16 models composition. This model says that the body is not only an aggrega-
tion of a head, two arms, and two legs, but that these objects (head, arms, legs) are cre-
ated when the body is created and disappear when the body disappears. That is, they
have no independent existence; the body is composed of these things and their lifetimes
are intertwined.

360 Day 11

FIGURE 11.16
Composition.

Body

Head LegsArms

1
2

2

Discriminators and Powertypes How might you design the classes required to
reflect the various model lines of a typical car manufacturer? Suppose that you’ve been
hired to design a system for Acme Motors, which currently manufactures five cars: the
Pluto (a slow, compact car with a small engine), the Venus (a four-door sedan with a
middle-sized engine), the Mars (a sport coupe with the company’s biggest engine, engi-
neered for maximum performance), the Jupiter (a minivan with the same engine as the
sports coupe but designed to shift at a lower RPM and to use its power to move its
greater weight), and the Earth (a station wagon with a small engine but high RPM).

You might start by creating subtypes of car that reflect the various models, and then cre-
ate instances of each model as it rolls off the assembly line, as shown in Figure 11.17.

FIGURE 11.17
Modeling subtypes.

Car

Earth Jupiter Mars Venus Pluto

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 360

Object-Oriented Analysis and Design 361

11

How are these models differentiated? As was stated, they are differentiated by the engine
size, body type, and performance characteristics. These various discriminating character-
istics can be mixed and matched to create various models. This can be modeled in the
UML with the discriminator stereotype, as shown in Figure 11.18.

FIGURE 11.18
Modeling the
discriminator.

Car

High Power Sedan Coupe Family Car

Low Power Sports Car

engine performance

body

The diagram in Figure 11.18 indicates that classes can be derived from Car based on
mixing and matching three discriminating attributes. The size of the engine dictates how
powerful the car is, and the performance characteristics indicate how sporty the car is.
Thus, you can have a powerful and sporty station wagon, a low-power family sedan, and
so forth.

Each attribute can be implemented with a simple enumerator. Thus, in code, the body
type might be implemented with the following statement:

enum BodyType = { sedan, coupe, minivan, stationwagon };

It might turn out, however, that a simple value is insufficient to model a particular dis-
criminator. For example, the performance characteristic might be rather complex. In this
case, the discriminator can be modeled as a class, and the discrimination can be encapsu-
lated in an instance of that type.

Thus, the car might model the performance characteristics in a performance type, which
contains information about where the engine shifts and how fast it can turn. The UML
stereotype for a class that encapsulates a discriminator, and that can be used to create
instances of a class (Car) that are logically of different types (for example, SportsCar
versus LuxuryCar) is <<powertype>>. In this case, the Performance class is a powertype
for Car. When you instantiate Car, you also instantiate a Performance object, and you
associate a given Performance object with a given Car, as shown in Figure 11.19.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 361

Powertypes enable you to create a variety of logical types without using inheritance. You
can thus manage a large and complex set of types without the combinatorial explosion
you might encounter with inheritance.

Typically, you implement the powertype in C++ with pointers. In this case, the Car class
holds a pointer to an instance of PerformanceCharacteristics class (see Figure 11.20).
I’ll leave it as an exercise to the ambitious reader to convert the body and engine discrim-
inators into powertypes.

362 Day 11

FIGURE 11.19
A discriminator as a
powertype.

Car

High Power Sedan Coupe Family Car

Low Power Sports Car

engine performance:PerformanceCharacteristics

body <<powertype>>
Performance Characteristics

shift Point
max RPM

accelerate

Family:PerformanceCharacteristics

Sport:PerformanceCharacteristics

Keep in mind that the practice of creating new types in this way at runtime
can reduce the benefits of C++ strong typing, in which the compiler can
enforce the correctness of interclass relationships. Therefore, use it carefully.

CAUTION

FIGURE 11.20
The relationship
between a Car object
and its powertype.

Car

High Power Sedan Coupe

Low Power

engine

body

Performance Characteristics

shift Point
max RPM

accelerate

Class Car : public Vehicle
{
public:
Car();

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 362

Object-Oriented Analysis and Design 363

11

~Car();
// other public methods elided

private:
PerformanceCharacteristics * pPerformance;

};

As a final note, powertypes enable you to create new types (not just instances) at run-
time. Because each logical type is differentiated only by the attributes of the associated
powertype, these attributes can be parameters to the powertype’s constructor. This means
that you can, at runtime, create new types of cars on the fly. That is, by passing different
engine sizes and shift points to the powertype, you can effectively create new perfor-
mance characteristics. By assigning those characteristics to various cars, you can effec-
tively enlarge the set of types of cars at runtime.

Dynamic Model
In addition to modeling the relationships among the classes, it is critical to model how
they interact. For example, the CheckingAccount, ATM, and Receipt classes can interact
with the Customer in fulfilling the “Withdraw Cash” use case. You now return to the
kinds of sequence diagrams first used in analysis, but now flesh out the details based on
the methods developed in the classes, as shown in Figure 11.21.

FIGURE 11.21
Sequence diagram.

Customer ATM
Checking
Account

1: Check Balances

2: Get Balance

3: Display Balance

6: Print

4 : Withdraw cash

5 : Dispense

Receipt

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 363

This simple interaction diagram shows the interaction among a number of design classes
over time. It suggests that the ATM class delegates to the CheckingAccount class all
responsibility for managing the balance, while the CheckingAccount calls on the ATM to
manage display to the user.

Interaction diagrams comes in two flavors. The one in Figure 11.21 is called a sequence
diagram. Another view on the same information is provided by the collaboration dia-
gram. The sequence diagram emphasizes the sequence of events over time; the collabora-
tion diagram emphasizes the “timeless” interactions among the classes. You can generate
a collaboration diagram directly from a sequence diagram; tools such as Rational Rose
automate this task at the click of a button (see Figure 11.22).

364 Day 11

FIGURE 11.22
Collaboration
diagram.

Customer
ATM

Checking
Account

1: Check Balances

2: Get Balance

3: Display Balance

6: Print

4 : Withdraw cash

5 : Dispense

Receipt

State Transition Diagrams
As you come to understand the interactions among the objects, you also have to under-
stand the various possible states of each individual object. You can model the transitions
among the various states in a state diagram (or state transition diagram). Figure 11.23
shows the various states of the CustomerAccount class as the customer logs in to the
system.

Every state diagram begins with a single start state and ends with zero or more end
states. The individual states are named, and the transitions might be labeled. The guard
indicates a condition that must be satisfied for an object to move from one state to
another.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 364

Object-Oriented Analysis and Design 365

11Super States The customer can change her mind at any time and decide not to log in.
She can do this after she swipes her card to identify her account or after she enters her
password. In either case, the system must accept her request to cancel and return to the
“not logged in state” (see Figure 11.24).

FIGURE 11.23
Customer account
state.

Getting Account Info

Getting Password

Not Logged In

Logged In

Solid bullet = start

State transition

State

Guard

Bullseye = end

[Valid Account ID]

Start

FIGURE 11.24
User can cancel.

Getting Account Info

Getting Password

Not Logged In

Logged In

Start

Canceled

Canceled

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 365

As you can see, in a more complicated diagram, the Canceled state quickly becomes a
distraction. This is particularly annoying because canceling is an exceptional condition
that should not be given prominence in the diagram. You can simplify this diagram by
using a super state, as shown in Figure 11.25.

366 Day 11

FIGURE 11.25
Super state.

Not Logged In

Logged In

Start

Getting Password

Getting Account InfoCanceled

Cancelable

The diagram in Figure 11.25 provides the same information in Figure 11.24 but is much
cleaner and easier to read. From the time you start logging in until the system finalizes
your login, you can cancel the process. If you do cancel, you return to the state “not
logged in.”

Steps 4–6: Implementation, Testing, and
Rollout?

The remaining three stages of the processes are important, but not covered here. In
regard to implementation, if you are using C++, the rest of this book covers the details.
Testing and rollout are each their own complex discipline with their own demands; how-
ever, detailed coverage of them is beyond the scope of this book. Nevertheless, don’t for-
get that carefully testing your classes in isolation and together is key to determining that
you have successfully implemented the design.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 366

Object-Oriented Analysis and Design 367

11

Iterations
In the Rational Unified Process, the activities listed previously are “workflows” that pro-
ceed at different levels across the phases of inception, elaboration, construction, and tran-
sition. For instance, business modeling peaks during inception but can still be occurring
during construction as the review of the developed system fleshes out the requirements,
whereas implementation peaks during construction, but can be occurring when proto-
types are created for the elaboration phase.

Within each phase, such as construction, there can be several iterations. In the first itera-
tion of construction, for instance, the core functions of the system can be developed; in
the second iteration, those capabilities can be deepened and others added, In the third
iteration, yet more deepening and addition might occur, until an iteration is reached in
which the system is complete.

Summary
Today’s lesson provided an introduction to the issues involved in object-oriented analysis
and design. The essence of this approach is to analyze how your system will be used (use
cases) and how it must perform, and then to design the classes and model their relation-
ships and interactions.

In the old days, ideas for what should be accomplished were sketched out and the writing
of the code began quickly. The problem is that complex projects are never finished; and
if they are, they are unreliable and brittle. By investing up front in understanding the
requirements and modeling the design, you ensure a finished product that is correct (that
is, it meets the design) and that is robust, reliable, and extensible.

Much of the rest of this book focuses on the details of implementation. Issues relating to
testing and rollout are beyond the scope of this book, except to mention that you want to
plan your unit testing as you implement, and that you will use your requirements docu-
ment as the foundation of your test plan prior to rollout.

Q&A
Q I didn’t learn any C++ programming in today’s lesson. Why was this lesson

included?

A To be effective in writing C++ programs, you have to know how to structure them.
By planning and designing before you start coding, you will build better, more
effective C++ programs.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 367

Q In what way is object-oriented analysis and design fundamentally different
from other approaches?

A Prior to the development of these object-oriented techniques, analysts and pro-
grammers tended to think of programs as groups of functions that acted on data.
Object-oriented programming focuses on the integrated data and functionality as
discrete units that have both knowledge (data) and capabilities (functions).
Procedural programs, on the other hand, focus on functions and how they act on
data. It has been said that Pascal and C programs are collections of procedures, and
C++ programs are collections of classes.

Q Is object-oriented programming finally the silver bullet that will solve all
programming problems?

A No, it was never intended to be. For large, complex problems, however, object-
oriented analysis, design, and programming can provide the programmer with tools
to manage enormous complexity in ways that were previously impossible.

Q Is C++ the perfect object-oriented language?

A C++ has a number of advantages and disadvantages when compared with alterna-
tive object-oriented programming languages, but it has one killer advantage above
and beyond all others: It is the single most popular object-oriented programming
language for writing fully executable applications. This book exists—and I’d wager
you are reading it—because C++ is the development language of choice at so many
corporations.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson.

Quiz
1. What is the difference between object-oriented programming and procedural

programming?

2. What are the phases of object-oriented analysis and design?

3. What is encapsulation?

4. In regard to analysis, what is a domain?

368 Day 11

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 368

Object-Oriented Analysis and Design 369

11

5. In regard to analysis, what is an actor?

6. What is a use case?

7. Which of the following is true?

a. A cat is a specialized form of animal.

b. Animal is a specialized form of cat and dog.

Exercises
1. A computer system is made up of a number of pieces. These include a keyboard, a

mouse, a monitor, and a CPU. Draw a composition diagram to illustrate the rela-
tionship between the computer and its pieces. Hint: This is an aggregation.

2. Suppose you had to simulate the intersection of Massachusetts Avenue and Vassar
Street—two typical two-lane roads, with traffic lights and crosswalks. The purpose
of the simulation is to determine whether the timing of the traffic signal allows for
a smooth flow of traffic.

What kinds of objects should be modeled in the simulation? What would the
classes be for the simulation?

3. You are asked to design a group scheduler. The software enables you to arrange
meetings among individuals or groups and to reserve a limited number of confer-
ence rooms. Identify the principal subsystems.

4. Design and show the interfaces to the classes in the room reservation portion of the
program discussed in Exercise 3.

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 369

15 0672327112_ch11.qxd 11/19/04 12:27 PM Page 370

DAY 12

WEEK 2

Implementing Inheritance
Yesterday, you learned about a number of object-oriented relationships, includ-
ing specialization/generalization. C++ implements this relationship through
inheritance.

Today, you will learn

• The nature of what inheritance is

• How to use inheritance to derive one class from another

• What protected access is and how to use it

• What virtual functions are

What Is Inheritance?
What is a dog? When you look at your pet, what do you see? I see four legs in
service to a mouth. A biologist sees a network of interacting organs, a physicist
sees atoms and forces at work, and a taxonomist sees a representative of the
species canine domesticus.

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 371

It is that last assessment that is of interest at the moment. A dog is a kind of canine, a
canine is a kind of mammal, and so forth. Taxonomists divide the world of living things
into Kingdom, Phylum, Class, Order, Family, Genus, and Species.

This specialization/generalization hierarchy establishes an is-a relationship. A Homo
sapiens (human) is a kind of primate. This relationship can be seen everywhere: A station
wagon is a kind of car, which is a kind of vehicle. A sundae is a kind of dessert, which is
a kind of food.

When something is said to be a kind of something else, it is implied that it is a special-
ization of that thing. That is, a car is a special kind of vehicle.

Inheritance and Derivation
The concept dog inherits—that is, it automatically gets—all the features of a mammal.
Because it is a mammal, you know that it moves and that it breathes air. All mammals,
by definition, move and breathe air. The concept of a dog adds the idea of barking, wag-
ging its tail, eating my revisions to this chapter just when I was finally done, barking
when I’m trying to sleep… Sorry. Where was I? Oh yes:

You can divide dogs into working dogs, sporting dogs, and terriers, and you can divide
sporting dogs into retrievers, spaniels, and so forth. Finally, each of these can be special-
ized further; for example, retrievers can be subdivided into Labradors and Goldens.

A Golden is a kind of retriever, which is a sporting dog, which is a dog, and thus a kind
of mammal, which is a kind of animal, and, therefore, a kind of living thing. This hierar-
chy is represented in Figure 12.1.

C++ attempts to represent these relationships by enabling you to define classes that
derive from one another. Derivation is a way of expressing the is-a relationship. You
derive a new class, Dog, from the class Mammal. You don’t have to state explicitly that
dogs move because they inherit that from Mammal.

A class that adds new functionality to an existing class is said to derive from that original
class. The original class is said to be the new class’s base class.

If the Dog class derives from the Mammal class, then Mammal is a base class of Dog.
Derived classes are supersets of their base classes. Just as dog adds certain features to the
idea of mammal, the Dog class adds certain methods or data to the Mammal class.

Typically, a base class has more than one derived class. Because dogs, cats, and horses
are all types of mammals, their classes would all derive from the Mammal class.

372 Day 12

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 372

Implementing Inheritance 373

12

The Animal Kingdom
To facilitate the discussion of derivation and inheritance, this chapter focuses on the rela-
tionships among a number of classes representing animals. You can imagine that you
have been asked to design a children’s game—a simulation of a farm.

In time, you will develop a whole set of farm animals, including horses, cows, dogs, cats,
sheep, and so forth. You will create methods for these classes so that they can act in the
ways the child might expect, but for now you’ll stub-out each method with a simple print
statement.

Stubbing-out a function means you’ll write only enough to show that the function was
called, leaving the details for later when you have more time. Please feel free to
extend the minimal code provided in today’s lesson to enable the animals to act more
realistically.

You should find that the examples using animals are easy to follow. You also find it easy
to apply the concepts to other areas. For example, if you were building an ATM bank
machine program, then you might have a checking account, which is a type of bank
account, which is a type of account. This parallels the idea of a dog being an mammal,
which in turn is an animal.

FIGURE 12.1
Hierarchy of animals.

Animal

Mammal Reptile

Horse Dog

Retrievers Spaniels

Labradors Goldens

Working TerriersSporting

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 373

The Syntax of Derivation
When you declare a class, you can indicate what class it derives from by writing a colon
after the class name, the type of derivation (public or otherwise), and the class from
which it derives. The format of this is:

class derivedClass : accessType baseClass

As an example, if you create a new class called Dog that inherits from the existing class
Mammal:

class Dog : public Mammal

The type of derivation (accessType) is discussed later in today’s lesson. For now, always
use public. The class from which you derive must have been declared earlier, or you
receive a compiler error. Listing 12.1 illustrates how to declare a Dog class that is derived
from a Mammal class.

LISTING 12.1 Simple Inheritance

1: //Listing 12.1 Simple inheritance
2: #include <iostream>
3: using namespace std;
4:
5: enum BREED { GOLDEN, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };
6:
7: class Mammal
8: {
9: public:
10: // constructors
11: Mammal();
12: ~Mammal();
13:
14: //accessors
15: int GetAge() const;
16: void SetAge(int);
17: int GetWeight() const;
18: void SetWeight();
19:
20: //Other methods
21: void Speak() const;
22: void Sleep() const;
23:
24:
25: protected:
26: int itsAge;
27: int itsWeight;
28: };

374 Day 12

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 374

Implementing Inheritance 375

12

29:
30: class Dog : public Mammal
31: {
32: public:
33:
34: // Constructors
35: Dog();
36: ~Dog();
37:
38: // Accessors
39: BREED GetBreed() const;
40: void SetBreed(BREED);
41:
42: // Other methods
43: WagTail();
44: BegForFood();
45:
46: protected:
47: BREED itsBreed;
48: };

This program has no output because it is only a set of class declarations without their
implementations. Nonetheless, there is much to see here.

On lines 7–28, the Mammal class is declared. Note that in this example, Mammal
does not derive from any other class. In the real world, mammals do derive—that

is, mammals are kinds of animals. In a C++ program, you can represent only a fraction
of the information you have about any given object. Reality is far too complex to capture
all of it, so every C++ hierarchy is a carefully limited representation of the data available.
The trick of good design is to represent the areas that you care about in a way that maps
back to reality in a reasonably faithful manner without adding unnecessary complication.

The hierarchy has to begin somewhere; this program begins with Mammal. Because of this
decision, some member variables that might properly belong in a higher base class are
now represented here. Certainly all animals have an age and weight, for example, so if
Mammal is derived from Animal, you would expect to inherit those attributes. As it is, the
attributes appear in the Mammal class.

In the future, if another animal sharing some of these features were added (for instance,
Insect), the relevant attributes could be hoisted to a newly created Animal class that
would become the base class of Mammal and Insect. This is how class hierarchies evolve
over time.

LISTING 12.1 continued

ANALYSIS

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 375

To keep the program reasonably simple and manageable, only six methods have been put
in the Mammal class—four accessor methods, Speak(), and Sleep().

The Dog class inherits from Mammal, as indicated on line 30. You know Dog inherits from
Mammal because of the colon following the class name (Dog), which is then followed by
the base class name (Mammal).

Every Dog object will have three member variables: itsAge, itsWeight, and itsBreed.
Note that the class declaration for Dog does not include the member variables itsAge and
itsWeight. Dog objects inherit these variables from the Mammal class, along with all
Mammal’s methods except the copy operator and the constructors and destructor.

Private Versus Protected
You might have noticed that a new access keyword, protected, has been introduced on
lines 25 and 46 of Listing 12.1. Previously, class data had been declared private.
However, private members are not available outside of the existing class. This privacy
even applies to prevent access from derived classes. You could make itsAge and
itsWeight public, but that is not desirable. You don’t want other classes accessing these
data members directly.

376 Day 12

There is an argument to be made that you ought to make all member data
private and never protected. Stroustrup (the creator of C++) makes this
argument in The Design and Evolution of C++, ISBN 0-201-543330-3, Addison
Wesley, 1994. Protected methods, however, are not generally regarded as
problematic, and can be very useful.

NOTE

What you want is a designation that says, “Make these visible to this class and to classes
that derive from this class.” That designation is protected. Protected data members and
functions are fully visible to derived classes, but are otherwise private.

In total, three access specifiers exist: public, protected, and private. If a function has an
object of your class, it can access all the public member data and functions. The member
functions, in turn, can access all private data members and functions of their own class
and all protected data members and functions of any class from which they derive.

Thus, the function Dog::WagTail() can access the private data itsBreed and can access
the protected data of itsAge and itsWeight in the Mammal class.

Even if other classes are layered between Mammal and Dog (for example,
DomesticAnimals), the Dog class will still be able to access the protected members of

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 376

Implementing Inheritance 377

12

Mammal, assuming that these other classes all use public inheritance. Private inheritance is
discussed on Day 16, “Advanced Inheritance.”

Listing 12.2 demonstrates how to create objects of type Dog and then how to access the
data and methods of that type.

LISTING 12.2 Using a Derived Object

1: //Listing 12.2 Using a derived object
2: #include <iostream>
3: using std::cout;
4: using std::endl;
5:
6: enum BREED { GOLDEN, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };
7:
8: class Mammal
9: {
10: public:
11: // constructors
12: Mammal():itsAge(2), itsWeight(5){}
13: ~Mammal(){}
14:
15: //accessors
16: int GetAge() const { return itsAge; }
17: void SetAge(int age) { itsAge = age; }
18: int GetWeight() const { return itsWeight; }
19: void SetWeight(int weight) { itsWeight = weight; }
20:
21: //Other methods
22: void Speak()const { cout << “Mammal sound!\n”; }
23: void Sleep()const { cout << “shhh. I’m sleeping.\n”; }
24:
25: protected:
26: int itsAge;
27: int itsWeight;
28: };
29:
30: class Dog : public Mammal
31: {
32: public:
33:
34: // Constructors
35: Dog():itsBreed(GOLDEN){}
36: ~Dog(){}
37:
38: // Accessors
39: BREED GetBreed() const { return itsBreed; }
40: void SetBreed(BREED breed) { itsBreed = breed; }
41:
42: // Other methods

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 377

43: void WagTail() const { cout << “Tail wagging...\n”; }
44: void BegForFood() const { cout << “Begging for food...\n”; }
45:
46: private:
47: BREED itsBreed;
48: };
49:
50: int main()
51: {
52: Dog Fido;
53: Fido.Speak();
54: Fido.WagTail();
55: cout << “Fido is “ << Fido.GetAge() << “ years old” << endl;
56: return 0;
57: }

Mammal sound!
Tail wagging...
Fido is 2 years old

On lines 8–28, the Mammal class is declared (all its functions are inline to save
space here). On lines 30–48, the Dog class is declared as a derived class of

Mammal. Thus, by these declarations, all Dogs have an age, a weight, and a breed. As
stated before, the age and weight come from the base class, Mammal.

On line 52, a Dog is declared: Fido. Fido inherits all the attributes of a Mammal, as well as
all the attributes of a Dog. Thus, Fido knows how to WagTail(), but he also knows how
to Speak() and Sleep(). On lines 53 and 54, Fido calls two of these methods from the
Mammal base class. On line 55, the GetAge() accessor method from the base class is also
called successfully.

Inheritance with Constructors and
Destructors

Dog objects are Mammal objects. This is the essence of the is-a relationship.

When Fido is created, his base constructor is called first, creating a Mammal. Then, the
Dog constructor is called, completing the construction of the Dog object. Because Fido is
given no parameters, the default constructor was called in each case. Fido doesn’t exist
until he is completely constructed, which means that both his Mammal part and his Dog
part must be constructed. Thus, both constructors must be called.

OUTPUT

378 Day 12

LISTING 12.2 continued

ANALYSIS

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 378

Implementing Inheritance 379

12

When Fido is destroyed, first the Dog destructor is called and then the destructor for the
Mammal part of Fido is called. Each destructor is given an opportunity to clean up after its
own part of Fido. Remember to clean up after your Dog! Listing 12.3 demonstrates the
calling of the constructors and destructors.

LISTING 12.3 Constructors and Destructors Called

1: //Listing 12.3 Constructors and destructors called.
2: #include <iostream>
3: using namespace std;
4: enum BREED { GOLDEN, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };
5:
6: class Mammal
7: {
8: public:
9: // constructors
10: Mammal();
11: ~Mammal();
12:
13: //accessors
14: int GetAge() const { return itsAge; }
15: void SetAge(int age) { itsAge = age; }
16: int GetWeight() const { return itsWeight; }
17: void SetWeight(int weight) { itsWeight = weight; }
18:
19: //Other methods
20: void Speak() const { cout << “Mammal sound!\n”; }
21: void Sleep() const { cout << “shhh. I’m sleeping.\n”; }
22:
23: protected:
24: int itsAge;
25: int itsWeight;
26: };
27:
28: class Dog : public Mammal
29: {
30: public:
31:
32: // Constructors
33: Dog();
34: ~Dog();
35:
36: // Accessors
37: BREED GetBreed() const { return itsBreed; }
38: void SetBreed(BREED breed) { itsBreed = breed; }
39:
40: // Other methods
41: void WagTail() const { cout << “Tail wagging...\n”; }
42: void BegForFood() const { cout << “Begging for food...\n”; }

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 379

43:
44: private:
45: BREED itsBreed;
46: };
47:
48: Mammal::Mammal():
49: itsAge(3),
50: itsWeight(5)
51: {
52: std::cout << “Mammal constructor... “ << endl;
53: }
54:
55: Mammal::~Mammal()
56: {
57: std::cout << “Mammal destructor... “ << endl;
58: }
59:
60: Dog::Dog():
61: itsBreed(GOLDEN)
62: {
63: std::cout << “Dog constructor... “ << endl;
64: }
65:
66: Dog::~Dog()
67: {
68: std::cout << “Dog destructor... “ << endl;
69: }
70: int main()
71: {
72: Dog Fido;
73: Fido.Speak();
74: Fido.WagTail();
75: std::cout << “Fido is “ << Fido.GetAge() << “ years old” << endl;
76: return 0;
77: }

Mammal constructor...
Dog constructor...
Mammal sound!
Tail wagging...
Fido is 3 years old
Dog destructor...
Mammal destructor...

Listing 12.3 is like Listing 12.2, except that on lines 48 to 69 the constructors
and destructors now print to the screen when called. Mammal’s constructor is

called, then Dog’s. At that point, the Dog fully exists, and its methods can be called.

OUTPUT

380 Day 12

LISTING 12.3 continued

ANALYSIS

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 380

Implementing Inheritance 381

12

When Fido goes out of scope, Dog’s destructor is called, followed by a call to Mammal’s
destructor. You see that this is confirmed in the output from the listing.

Passing Arguments to Base Constructors
It is possible that you will want to initialize values in a base constructor. For example,
you might want to overload the constructor of Mammal to take a specific age, and want to
overload the Dog constructor to take a breed. How do you get the age and weight parame-
ters passed up to the right constructor in Mammal? What if Dogs want to initialize weight
but Mammals don’t?

Base class initialization can be performed during class initialization by writing the base
class name, followed by the parameters expected by the base class. Listing 12.4 demon-
strates this.

LISTING 12.4 Overloading Constructors in Derived Classes

1: //Listing 12.4 Overloading constructors in derived classes
2: #include <iostream>
3: using namespace std;
4:
5: enum BREED { GOLDEN, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };
6:
7: class Mammal
8: {
9: public:
10: // constructors
11: Mammal();
12: Mammal(int age);
13: ~Mammal();
14:
15: //accessors
16: int GetAge() const { return itsAge; }
17: void SetAge(int age) { itsAge = age; }
18: int GetWeight() const { return itsWeight; }
19: void SetWeight(int weight) { itsWeight = weight; }
20:
21: //Other methods
22: void Speak() const { cout << “Mammal sound!\n”; }
23: void Sleep() const { cout << “shhh. I’m sleeping.\n”; }
24:
25:
26: protected:
27: int itsAge;
28: int itsWeight;
29: };
30:
31: class Dog : public Mammal

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 381

32: {
33: public:
34:
35: // Constructors
36: Dog();
37: Dog(int age);
38: Dog(int age, int weight);
39: Dog(int age, BREED breed);
40: Dog(int age, int weight, BREED breed);
41: ~Dog();
42:
43: // Accessors
44: BREED GetBreed() const { return itsBreed; }
45: void SetBreed(BREED breed) { itsBreed = breed; }
46:
47: // Other methods
48: void WagTail() const { cout << “Tail wagging...\n”; }
49: void BegForFood() const { cout << “Begging for food...\n”; }
50:
51: private:
52: BREED itsBreed;
53: };
54:
55: Mammal::Mammal():
56: itsAge(1),
57: itsWeight(5)
58: {
59: cout << “Mammal constructor...” << endl;
60: }
61:
62: Mammal::Mammal(int age):
63: itsAge(age),
64: itsWeight(5)
65: {
66: cout << “Mammal(int) constructor...” << endl;
67: }
68:
69: Mammal::~Mammal()
70: {
71: cout << “Mammal destructor...” << endl;
72: }
73:
74: Dog::Dog():
75: Mammal(),
76: itsBreed(GOLDEN)
77: {
78: cout << “Dog constructor...” << endl;
79: }
80:

382 Day 12

LISTING 12.4 continued

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 382

Implementing Inheritance 383

12

81: Dog::Dog(int age):
82: Mammal(age),
83: itsBreed(GOLDEN)
84: {
85: cout << “Dog(int) constructor...” << endl;
86: }
87:
88: Dog::Dog(int age, int weight):
89: Mammal(age),
90: itsBreed(GOLDEN)
91: {
92: itsWeight = weight;
93: cout << “Dog(int, int) constructor...” << endl;
94: }
95:
96: Dog::Dog(int age, int weight, BREED breed):
97: Mammal(age),
98: itsBreed(breed)
99: {
100: itsWeight = weight;
101: cout << “Dog(int, int, BREED) constructor...” << endl;
102: }
103:
104: Dog::Dog(int age, BREED breed):
105: Mammal(age),
106: itsBreed(breed)
107: {
108: cout << “Dog(int, BREED) constructor...” << endl;
109: }
110:
111: Dog::~Dog()
112: {
113: cout << “Dog destructor...” << endl;
114: }
115: int main()
116: {
117: Dog Fido;
118: Dog rover(5);
119: Dog buster(6,8);
120: Dog yorkie (3,GOLDEN);
121: Dog dobbie (4,20,DOBERMAN);
122: Fido.Speak();
123: rover.WagTail();
124: cout << “Yorkie is “ << yorkie.GetAge()
125: << “ years old” << endl;
126: cout << “Dobbie weighs “;
127: cout << dobbie.GetWeight() << “ pounds” << endl;
128: return 0;
129: }

LISTING 12.4 continued

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 383

1: Mammal constructor...
2: Dog constructor...
3: Mammal(int) constructor...
4: Dog(int) constructor...
5: Mammal(int) constructor...
6: Dog(int, int) constructor...
7: Mammal(int) constructor...
8: Dog(int, BREED) constructor....
9: Mammal(int) constructor...
10: Dog(int, int, BREED) constructor...
11: Mammal sound!
12: Tail wagging...
13: Yorkie is 3 years old.
14: Dobbie weighs 20 pounds.
15: Dog destructor. . .
16: Mammal destructor...
17: Dog destructor...
18: Mammal destructor...
19: Dog destructor...
20: Mammal destructor...
21: Dog destructor...
22: Mammal destructor...
23: Dog destructor...
24: Mammal destructor...

In Listing 12.4, Mammal’s constructor has been overloaded on line 12 to take an
integer, the Mammal’s age. The implementation on lines 62–67 initializes itsAge

with the value passed into the constructor and initializes itsWeight with the value 5.

Dog has overloaded five constructors on lines 36–40. The first is the default constructor.
On line 37, the second constructor takes the age, which is the same parameter that the
Mammal constructor takes. The third constructor takes both the age and the weight, the
fourth takes the age and the breed, and the fifth takes the age, the weight, and the breed.

On line 74 is the code for Dog’s default constructor. You can see that this has something
new. When this constructor is called, it in turn calls Mammal’s default constructor as you
can see on line 75. Although it is not strictly necessary to do this, it serves as documenta-
tion that you intended to call the base constructor, which takes no parameters. The base
constructor would be called in any case, but actually doing so makes your intentions
explicit.

OUTPUT

384 Day 12

The output has been numbered here so that each line can be referred to in
the analysis.

NOTE

ANALYSIS

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 384

Implementing Inheritance 385

12

The implementation for the Dog constructor, which takes an integer, is on lines 81–86. In
its initialization phase (lines 82 and 83), Dog initializes its base class, passing in the para-
meter, and then it initializes its breed.

Another Dog constructor is on lines 88–94. This constructor takes two parameters. Once
again, it initializes its base class by calling the appropriate constructor on line 89, but this
time it also assigns weight to its base class’s variable itsWeight. Note that you cannot
assign to the base class variable in the initialization phase. Because Mammal does not have
a constructor that takes this parameter, you must do this within the body of the Dog’s
constructor.

Walk through the remaining constructors to be certain you are comfortable with how
they work. Note what is initialized and what must wait for the body of the constructor.

The output has been numbered so that each line can be referred to in this analysis. The
first two lines of output represent the instantiation of Fido, using the default constructor.

In the output, lines 3 and 4 represent the creation of rover. Lines 5 and 6 represent
buster. Note that the Mammal constructor that was called is the constructor that takes one
integer, but the Dog constructor is the constructor that takes two integers.

After all the objects are created, they are used and then go out of scope. As each object is
destroyed, first the Dog destructor and then the Mammal destructor is called, five of each in
total.

Overriding Base Class Functions
A Dog object has access to all the data members and functions in class Mammal, as well as
to any of its own data members and functions, such as WagTail(), that the declaration of
the Dog class might add. A derived class can also override a base class function.
Overriding a function means changing the implementation of a base class function in a
derived class.

When a derived class creates a function with the same return type and signature as a
member function in the base class, but with a new implementation, it is said to be over-
riding that function. When you make an object of the derived class, the correct function
is called.

When you override a function, its signature must agree with the signature of the function
in the base class. The signature is the function prototype other than the return type; that
is, the name of the function, the parameter list, and the keyword const, if used. The
return types might differ.

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 385

Listing 12.5 illustrates what happens if the Dog class overrides the Speak() method in
Mammal. To save room, the accessor functions have been left out of these classes.

LISTING 12.5 Overriding a Base Class Method in a Derived Class

1: //Listing 12.5 Overriding a base class method in a derived class
2: #include <iostream>
3: using std::cout;
4:
5: enum BREED { GOLDEN, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };
6:
7: class Mammal
8: {
9: public:
10: // constructors
11: Mammal() { cout << “Mammal constructor...\n”; }
12: ~Mammal() { cout << “Mammal destructor...\n”; }
13:
14: //Other methods
15: void Speak()const { cout << “Mammal sound!\n”; }
16: void Sleep()const { cout << “shhh. I’m sleeping.\n”; }
17:
18: protected:
19: int itsAge;
20: int itsWeight;
21: };
22:
23: class Dog : public Mammal
24: {
25: public:
26 // Constructors
27: Dog(){ cout << “Dog constructor...\n”; }
28: ~Dog(){ cout << “Dog destructor...\n”; }
29:
30: // Other methods
31: void WagTail() const { cout << “Tail wagging...\n”; }
32: void BegForFood() const { cout << “Begging for food...\n”; }
33: void Speak() const { cout << “Woof!\n”; }
34:
35: private:
36: BREED itsBreed;
37: };
38:
39: int main()
40: {
41: Mammal bigAnimal;
42: Dog Fido;
43: bigAnimal.Speak();
44: Fido.Speak();
45: return 0;
46: }

386 Day 12

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 386

Implementing Inheritance 387

12

Mammal constructor...
Mammal constructor...
Dog constructor...
Mammal sound!
Woof!
Dog destructor...
Mammal destructor...
Mammal destructor...

Looking at the Mammal class, you can see a method called Speak() defined on
line 15. The Dog class declared on lines 23–37 inherits from Mammal (line 23),

and, therefore, has access to this Speak() method. The Dog class, however, overrides this
method on line 33, causing Dog objects to say Woof! when the Speak() method is called.

In the main() function, a Mammal object, bigAnimal, is created on line 41, causing the
first line of output when the Mammal constructor is called. On line 42, a Dog object, Fido,
is created, causing the next two lines of output, where the Mammal constructor and then
the Dog constructor are called.

On line 43, the Mammal object calls its Speak() method; then on line 44, the Dog object
calls its Speak() method. The output reflects that the correct methods were called. The
bigAnimal made a mammal sound and Fido woofed. Finally, the two objects go out of
scope and the destructors are called.

OUTPUT

ANALYSIS

Overloading Versus Overriding

These terms are similar, and they do similar things. When you overload a method, you
create more than one method with the same name, but with a different signature. When
you override a method, you create a method in a derived class with the same name as a
method in the base class and the same signature.

Hiding the Base Class Method
In the previous listing, the Dog class’s Speak() method hides the base class’s method.
This is what is wanted, but it can have unexpected results. If Mammal has a method,
Move(), which is overloaded, and Dog overrides that method, the Dog method hides all the
Mammal methods with that name.

If Mammal overloads Move() as three methods—one that takes no parameters, one that
takes an integer, and one that takes an integer and a direction—and Dog overrides just the
Move() method that takes no parameters, it will not be easy to access the other two meth-
ods using a Dog object. Listing 12.6 illustrates this problem.

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 387

LISTING 12.6 Hiding Methods

1: //Listing 12.6 Hiding methods
2: #include <iostream>
3: using std::cout;
4:
5: class Mammal
6: {
7: public:
8: void Move() const { cout << “Mammal move one step.\n”; }
9: void Move(int distance) const
10: {
11: cout << “Mammal move “;
12: cout << distance <<” steps.\n”;
13: }
14: protected:
15: int itsAge;
16: int itsWeight;
17: };
18:
19: class Dog : public Mammal
20: {
21: public:
22: // You might receive a warning that you are hiding a function!
23: void Move() const { cout << “Dog move 5 steps.\n”; }
24: };
25:
26: int main()
27: {
28: Mammal bigAnimal;
29: Dog Fido;
30: bigAnimal.Move();
31: bigAnimal.Move(2);
32: Fido.Move();
33: // Fido.Move(10);
34: return 0;
35: }

Mammal move one step.
Mammal move 2 steps.
Dog move 5 steps.

All the extra methods and data have been removed from these classes. On lines 8
and 9, the Mammal class declares the overloaded Move() methods. On line 23, Dog

overrides the version of Move() with no parameters. These methods are invoked on lines
30–32, and the output reflects this as executed.

Line 33, however, is commented out because it causes a compile-time error. After you
override one of the methods, you can no longer use any of the base methods of the same

OUTPUT

388 Day 12

ANALYSIS

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 388

Implementing Inheritance 389

12

name. So, although the Dog class could have called the Move(int) method if it had not
overridden the version of Move() without parameters, now that it has done so, it must
override both if it wants to use both. Otherwise, it hides the method that it doesn’t over-
ride. This is reminiscent of the rule that if you supply any constructor, the compiler no
longer supplies a default constructor.

The rule is this: After you override any overloaded method, all the other overrides of that
method are hidden. If you want them not to be hidden, you must override them all.

It is a common mistake to hide a base class method when you intend to override it, by
forgetting to include the keyword const. const is part of the signature, and leaving it off
changes the signature, and thus hides the method rather than overrides it.

Overriding Versus Hiding

In the next section, virtual methods are described. Overriding a virtual method supports
polymorphism—hiding it undermines polymorphism. You’ll see more on this very soon.

Calling the Base Method
If you have overridden the base method, it is still possible to call it by fully qualifying
the name of the method. You do this by writing the base name, followed by two colons
and then the method name:

baseClass::Method()

You can call the Move() method of the Mammal class as follows:

Mammal::Move().

You can use these qualified names just as you would any other method name. It would
have been possible to rewrite line 33 in Listing 12.6 so that it would compile, by writing

Fido.Mammal::Move(10);

This calls the Mammal method explicitly. Listing 12.7 fully illustrates this idea.

LISTING 12.7 Calling a Base Method from a Overridden Method

1: //Listing 12.7 Calling a base method from a overridden method.
2: #include <iostream>
3: using namespace std;
4:
5: class Mammal
6: {

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 389

7: public:
8: void Move() const { cout << “Mammal move one step\n”; }
9: void Move(int distance) const
10: {
11: cout << “Mammal move “ << distance;
12: cout << “ steps.” << endl;
13: }
14:
15: protected:
16: int itsAge;
17: int itsWeight;
18: };
19:
20: class Dog : public Mammal
21: {
22: public:
23: void Move() const;
24: };
25:
26: void Dog::Move() const
27: {
28: cout << “In dog move...\n”;
29: Mammal::Move(3);
30: }
31:
32: int main()
33: {
34: Mammal bigAnimal;
35: Dog Fido;
36: bigAnimal.Move(2);
37: Fido.Mammal::Move(6);
38: return 0;
39: }

Mammal move 2 steps.
Mammal move 6 steps.

On line 34, a Mammal, bigAnimal, is created, and on line 35, a Dog, Fido, is cre-
ated. The method call on line 36 invokes the Move() method of Mammal, which

takes an integer.

The programmer wanted to invoke Move(int) on the Dog object, but had a problem. Dog
overrides the Move() method (with no parameters), but does not overload the method that
takes an integer—it does not provide a version that takes an integer. This is solved by the
explicit call to the base class Move(int) method on line 37.

OUTPUT

390 Day 12

LISTING 12.7 continued

ANALYSIS

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 390

Implementing Inheritance 391

12

Virtual Methods
This lesson has emphasized the fact that a Dog object is a Mammal object. So far that has
meant only that the Dog object has inherited the attributes (data) and capabilities (meth-
ods) of its base class. In C++, the is-a relationship runs deeper than that, however.

C++ extends its polymorphism to allow pointers to base classes to be assigned to derived
class objects. Thus, you can write

Mammal* pMammal = new Dog;

This creates a new Dog object on the heap and returns a pointer to that object, which it
assigns to a pointer to Mammal. This is fine because a dog is a mammal.

When calling overridden ancestor class functions using “::”, keep in mind
that if a new class is inserted in the inheritance hierarchy between the
descendant and its ancestor, the descendant will be now making a call that
skips past the intermediate class and, therefore, might miss invoking some
key capability implemented by the intermediate ancestor.

TIP

DO extend the functionality of existing,
tested classes by deriving.

DO change the behavior of certain func-
tions in the derived class by overriding
the base class methods.

DON’T hide a base class function by
changing the function signature.

DON’T forget that const is a part of the
signature.

DON’T forget that the return type is not
part of the signature.

DO DON’T

This is the essence of polymorphism. For example, you could create many
types of windows, including dialog boxes, scrollable windows, and list boxes,
and give them each a virtual draw() method. By creating a pointer to a win-
dow and assigning dialog boxes and other derived types to that pointer, you
can call draw() without regard to the actual runtime type of the object
pointed to. The correct draw() function will be called.

NOTE

You can then use this pointer to invoke any method on Mammal. What you would like is
for those methods that are overridden in Dog() to call the correct function. Virtual

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 391

functions enable you to do that. To create a virtual function, you add the keyword vir-
tual in front of the function declaration. Listing 12.8 illustrates how this works, and
what happens with nonvirtual methods.

LISTING 12.8 Using Virtual Methods

1: //Listing 12.8 Using virtual methods
2: #include <iostream>
3: using std::cout;
4:
5: class Mammal
6: {
7: public:
8: Mammal():itsAge(1) { cout << “Mammal constructor...\n”; }
9: virtual ~Mammal() { cout << “Mammal destructor...\n”; }
10: void Move() const { cout << “Mammal move one step\n”; }
11: virtual void Speak() const { cout << “Mammal speak!\n”; }
12:
13: protected:
14: int itsAge;
15: };
16:
17: class Dog : public Mammal
18: {
19: public:
20: Dog() { cout << “Dog Constructor...\n”; }
21: virtual ~Dog() { cout << “Dog destructor...\n”; }
22: void WagTail() { cout << “Wagging Tail...\n”; }
23: void Speak()const { cout << “Woof!\n”; }
24: void Move()const { cout << “Dog moves 5 steps...\n”; }
25: };
26:
27: int main()
28: {
29: Mammal *pDog = new Dog;
30: pDog->Move();
31: pDog->Speak();
32:
33: return 0;
34: }

Mammal constructor...
Dog Constructor...
Mammal move one step
Woof!

On line 11, Mammal is provided a virtual method—Speak(). The designer of this
class thereby signals that she expects this class eventually to be another class’s

base type. The derived class will probably want to override this function.

OUTPUT

392 Day 12

ANALYSIS

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 392

Implementing Inheritance 393

12

On line 29, a pointer to Mammal is created (pDog), but it is assigned the address of a new
Dog object. Because a dog is a mammal, this is a legal assignment. The pointer is then
used on line 30 to call the Move() function. Because the compiler knows pDog only to be
a Mammal, it looks to the Mammal object to find the Move() method. On line 10, you can
see that this is a standard, nonvirtual method, so the Mammal’s version is called.

On line 31, the pointer then calls the Speak() method. Because Speak() is virtual (see
line 11), the Speak() method overridden in Dog is invoked.

This is almost magical. As far as the calling function knew, it had a Mammal pointer, but
here a method on Dog was called. In fact, if you had an array of pointers to Mammal, each
of which pointed to a different subclass of Mammal, you could call each in turn, and the
correct function would be called. Listing 12.9 illustrates this idea.

LISTING 12.9 Multiple Virtual Functions Called in Turn

1: //Listing 12.9 Multiple virtual functions called in turn
2: #include <iostream>
3: using namespace std;
4:
5: class Mammal
6: {
7: public:
8: Mammal():itsAge(1) { }
9: virtual ~Mammal() { }
10: virtual void Speak() const { cout << “Mammal speak!\n”; }
11:
12: protected:
13: int itsAge;
14: };
15:
16: class Dog : public Mammal
17: {
18: public:
19: void Speak()const { cout << “Woof!\n”; }
20: };
21:
22: class Cat : public Mammal
23: {
24: public:
25: void Speak()const { cout << “Meow!\n”; }
26: };
27:
28:
29: class Horse : public Mammal
30: {
31: public:
32: void Speak()const { cout << “Winnie!\n”; }

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 393

33: };
34:
35: class Pig : public Mammal
36: {
37: public:
38: void Speak()const { cout << “Oink!\n”; }
39: };
40:
41: int main()
42: {
43: Mammal* theArray[5];
44: Mammal* ptr;
45: int choice, i;
46: for (i = 0; i<5; i++)
47: {
48: cout << “(1)dog (2)cat (3)horse (4)pig: “;
49: cin >> choice;
50: switch (choice)
51: {
52: case 1: ptr = new Dog;
53: break;
54: case 2: ptr = new Cat;
55: break;
56: case 3: ptr = new Horse;
57: break;
58: case 4: ptr = new Pig;
59: break;
60: default: ptr = new Mammal;
61: break;
62: }
63: theArray[i] = ptr;
64: }
65: for (i=0;i<5;i++)
66: theArray[i]->Speak();
67: return 0;
68: }

(1)dog (2)cat (3)horse (4)pig: 1
(1)dog (2)cat (3)horse (4)pig: 2
(1)dog (2)cat (3)horse (4)pig: 3
(1)dog (2)cat (3)horse (4)pig: 4
(1)dog (2)cat (3)horse (4)pig: 5
Woof!
Meow!
Whinny!
Oink!
Mammal speak!

OUTPUT

394 Day 12

LISTING 12.9 continued

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 394

Implementing Inheritance 395

12

This stripped-down program, which provides only the barest functionality to each
class, illustrates virtual functions in their purest form. Four classes are declared:

Dog, Cat, Horse, and Pig. All four are derived from Mammal.

On line 10, Mammal’s Speak() function is declared to be virtual. On lines 19, 25, 32, and
38, the four derived classes override the implementation of Speak().

On lines 46–64, the program loops five times. Each time, the user is prompted to pick
which object to create, and a new pointer to that object type is added to the array from
within the switch statement on lines 50–62.

At the time this program is compiled, it is impossible to know which object types will be
created, and thus which Speak() methods will be invoked. The pointer ptr is bound to
its object at runtime. This is called dynamic binding, or runtime binding, as opposed to
static binding, or compile-time binding.

On lines 65 and 66, the program loops through the array again. This time, each object in
the array has its Speak() method called. Because Speak() was virtual in the base class,
the appropriate Speak() methods are called for each type. You can see in the output that
if you choose each different type, that the corresponding method is indeed called.

ANALYSIS

FAQ

If I mark a member method as virtual in the base class, do I need to also mark it as vir-
tual in derived classes?

Answer: No, once a method is virtual, if you override it in derived classes, it remains vir-
tual. It is a good idea (though not required) to continue to mark it virtual—this makes
the code easier to understand.

How Virtual Functions Work
When a derived object, such as a Dog object, is created, first the constructor for the base
class is called, and then the constructor for the derived class is called. Figure 12.2 shows
what the Dog object looks like after it is created. Note that the Mammal part of the object
is contiguous in memory with the Dog part.

FIGURE 12.2
The Dog object after it
is created.

Mammal

Dog

Dog Object

Mammal Part

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 395

When a virtual function is created in an object, the object must keep track of that func-
tion. Many compilers build a virtual function table, called a v-table. One of these is kept
for each type, and each object of that type keeps a virtual table pointer (called a vptr or
v-pointer), which points to that table.

Although implementations vary, all compilers must accomplish the same thing.

Each object’s vptr points to the v-table that, in turn, has a pointer to each of the virtual
functions. (Note: Pointers to functions are discussed in depth on Day 15, “Special
Classes and Functions.”) When the Mammal part of the Dog is created, the vptr is initial-
ized to point to the correct part of the v-table, as shown in Figure 12.3.

396 Day 12

FIGURE 12.3
The v-table of a
Mammal.

Mammal

Move

VPTR

&

Speak&

When the Dog constructor is called, and the Dog part of this object is added, the vptr
is adjusted to point to the virtual function overrides (if any) in the Dog object (see
Figure 12.4).

FIGURE 12.4
The v-table of a Dog.

Mammal

Dog

Mammal: Move ()

VPTR

&

Dog: Speak ()&

When a pointer to a Mammal is used, the vptr continues to point to the correct function,
depending on the “real” type of the object. Thus, when Speak() is invoked, the correct
function is invoked.

Trying to Access Methods from a Base Class
You have seen methods accessed in a derived class from a base class using virtual func-
tions. What if there is a method in the derived class that isn’t in the base class? Can you

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 396

Implementing Inheritance 397

12

access it in the same way you have been using the base class to access the virtual meth-
ods? There shouldn’t be a name conflict because only the derived class has the method.

If the Dog object had a method, WagTail(), which is not in Mammal, you could not use the
pointer to Mammal to access that method. Because WagTail() is not a virtual function,
and because it is not in a Mammal object, you can’t get there without either a Dog object or
a Dog pointer.

You could cast the Mammal to act as a Dog; however, this is not safe if the Mammal is not a
Dog. Although this would transform the Mammal pointer into a Dog pointer, a much better
and safer way exists to call the WagTail() method. Besides, C++ frowns on explicit casts
because they are error-prone. This subject is addressed in depth when multiple inheri-
tance is covered on Day 15, and again when templates are covered on Day 20, “Handling
Errors and Exceptions.”

Slicing
Note that the virtual function magic operates only on pointers and references. Passing an
object by value does not enable the virtual functions to be invoked. Listing 12.10 illus-
trates this problem.

LISTING 12.10 Data Slicing When Passing by Value

1: //Listing 12.10 Data slicing with passing by value
2: #include <iostream>
3: using namespace std;
4:
5: class Mammal
6: {
7: public:
8: Mammal():itsAge(1) { }
9: virtual ~Mammal() { }
10: virtual void Speak() const { cout << “Mammal speak!\n”; }
11:
12: protected:
13: int itsAge;
14: };
15:
16: class Dog : public Mammal
17: {
18: public:
19: void Speak()const { cout << “Woof!\n”; }
20: };
21:
22: class Cat : public Mammal
23: {
24: public:

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 397

25: void Speak()const { cout << “Meow!\n”; }
26: };
27:
28: void ValueFunction (Mammal);
29: void PtrFunction (Mammal*);
30: void RefFunction (Mammal&);
31: int main()
32: {
33: Mammal* ptr=0;
34: int choice;
35: while (1)
36: {
37: bool fQuit = false;
38: cout << “(1)dog (2)cat (0)Quit: “;
39: cin >> choice;
40: switch (choice)
41: {
42: case 0: fQuit = true;
43: break;
44: case 1: ptr = new Dog;
45: break;
46: case 2: ptr = new Cat;
47: break;
48: default: ptr = new Mammal;
49: break;
50: }
51: if (fQuit == true)
52: break;
53: PtrFunction(ptr);
54: RefFunction(*ptr);
55: ValueFunction(*ptr);
56: }
57: return 0;
58: }
59:
60: void ValueFunction (Mammal MammalValue)
61: {
62: MammalValue.Speak();
63: }
64:
65: void PtrFunction (Mammal * pMammal)
66: {
67: pMammal->Speak();
68: }
69:
70: void RefFunction (Mammal & rMammal)
71: {
72: rMammal.Speak();
73: }

398 Day 12

LISTING 12.10 continued

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 398

Implementing Inheritance 399

12

(1)dog (2)cat (0)Quit: 1
Woof
Woof
Mammal Speak!
(1)dog (2)cat (0)Quit: 2
Meow!
Meow!
Mammal Speak!
(1)dog (2)cat (0)Quit: 0

On lines 4–26, stripped-down versions of the Mammal, Dog, and Cat classes are
declared. Three functions are declared—PtrFunction(), RefFunction(), and

ValueFunction(). They take a pointer to a Mammal, a Mammal reference, and a Mammal
object, respectively. As you can see on lines 60–73, all three functions do the same
thing—they call the Speak() method.

The user is prompted to choose a Dog or a Cat, and based on the choice that is made, a
pointer to the correct type is created on lines 44 or 46.

In the first line of the output, the user chooses Dog. The Dog object is created on the free
store on line 44. The Dog is then passed to a function as a pointer on line 53, as a refer-
ence on line 54, and by value on line 55.

The pointer and reference calls invoke the virtual functions, and the Dog->Speak()
member function is invoked. This is shown on the first two lines of output after the user’s
choice.

The dereferenced pointer, however, is passed by value on line 55 to the function on lines
60–63. The function expects a Mammal object, and so the compiler slices down the Dog
object to just the Mammal part. When the Mammal Speak() method is called on line 72,
only Mammal information is available. The Dog pieces are gone. This is reflected in the
third line of output after the user’s choice. This effect is called slicing because the Dog
portions (your derived class portions) of your object were sliced off when converting to
just a Mammal (the base class).

This experiment is then repeated for the Cat object, with similar results.

Creating Virtual Destructors
It is legal and common to pass a pointer to a derived object when a pointer to a base
object is expected. What happens when that pointer to a derived subject is deleted? If the
destructor is virtual, as it should be, the right thing happens—the derived class’s destruc-
tor is called. Because the derived class’s destructor automatically invokes the base class’s
destructor, the entire object is properly destroyed.

OUTPUT

ANALYSIS

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 399

The rule of thumb is this: If any of the functions in your class are virtual, the destructor
should be as well.

400 Day 12

You should have noticed that the listings in today’s lesson have been includ-
ing virtual destructors. Now you know why! As a general practice, it is wise
to always make destructors virtual.

NOTE

Virtual Copy Constructors
Constructors cannot be virtual, and so, technically, no such thing exists as a virtual copy
constructor. Nonetheless, at times, your program desperately needs to be able to pass in a
pointer to a base object and have a copy of the correct derived object that is created. A
common solution to this problem is to create a Clone() method in the base class and to
make that be virtual. The Clone() method creates a new object copy of the current class
and returns that object.

Because each derived class overrides the Clone() method, a copy of the derived class is
created. Listing 12.11 illustrates how the Clone() method is used.

LISTING 12.11 Virtual Copy Constructor

1: //Listing 12.11 Virtual copy constructor
2: #include <iostream>
3: using namespace std;
4:
5: class Mammal
6: {
7: public:
8: Mammal():itsAge(1) { cout << “Mammal constructor...\n”; }
9: virtual ~Mammal() { cout << “Mammal destructor...\n”; }
10: Mammal (const Mammal & rhs);
11: virtual void Speak() const { cout << “Mammal speak!\n”; }
12: virtual Mammal* Clone() { return new Mammal(*this); }
13: int GetAge()const { return itsAge; }
14: protected:
15: int itsAge;
16: };
17:
18: Mammal::Mammal (const Mammal & rhs):itsAge(rhs.GetAge())
19: {
20: cout << “Mammal Copy Constructor...\n”;
21: }
22:
23: class Dog : public Mammal

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 400

Implementing Inheritance 401

12

24: {
25: public:
26: Dog() { cout << “Dog constructor...\n”; }
27: virtual ~Dog() { cout << “Dog destructor...\n”; }
28: Dog (const Dog & rhs);
29: void Speak()const { cout << “Woof!\n”; }
30: virtual Mammal* Clone() { return new Dog(*this); }
31: };
32:
33: Dog::Dog(const Dog & rhs):
34: Mammal(rhs)
35: {
36: cout << “Dog copy constructor...\n”;
37: }
38:
39: class Cat : public Mammal
40: {
41: public:
42: Cat() { cout << “Cat constructor...\n”; }
43: ~Cat() { cout << “Cat destructor...\n”; }
44: Cat (const Cat &);
45: void Speak()const { cout << “Meow!\n”; }
46: virtual Mammal* Clone() { return new Cat(*this); }
47: };
48:
49: Cat::Cat(const Cat & rhs):
50: Mammal(rhs)
51: {
52: cout << “Cat copy constructor...\n”;
53: }
54:
55: enum ANIMALS { MAMMAL, DOG, CAT};
56: const int NumAnimalTypes = 3;
57: int main()
58: {
59: Mammal *theArray[NumAnimalTypes];
60: Mammal* ptr;
61: int choice, i;
62: for (i = 0; i<NumAnimalTypes; i++)
63: {
64: cout << “(1)dog (2)cat (3)Mammal: “;
65: cin >> choice;
66: switch (choice)
67: {
68: case DOG: ptr = new Dog;
69: break;
70: case CAT: ptr = new Cat;
71: break;
72: default: ptr = new Mammal;

LISTING 12.11 continued

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 401

73: break;
74: }
75: theArray[i] = ptr;
76: }
77: Mammal *OtherArray[NumAnimalTypes];
78: for (i=0;i<NumAnimalTypes;i++)
79: {
80: theArray[i]->Speak();
81: OtherArray[i] = theArray[i]->Clone();
82: }
83: for (i=0;i<NumAnimalTypes;i++)
84: OtherArray[i]->Speak();
85: return 0;
86: }

1: (1)dog (2)cat (3)Mammal: 1
2: Mammal constructor...
3: Dog constructor...
4: (1)dog (2)cat (3)Mammal: 2
5: Mammal constructor...
6: Cat constructor...
7: (1)dog (2)cat (3)Mammal: 3
8: Mammal constructor...
9: Woof!
10: Mammal Copy Constructor...
11: Dog copy constructor...
12: Meow!
13: Mammal Copy Constructor...
14: Cat copy constructor...
15: Mammal speak!
16: Mammal Copy Constructor...
17: Woof!
18: Meow!
19: Mammal speak!

Listing 12.11 is very similar to the previous two listings, except that on line 12 a
new virtual method has been added to the Mammal class: Clone(). This method

returns a pointer to a new Mammal object by calling the copy constructor, passing in itself
(*this) as a const reference.

Dog and Cat both override the Clone() method, initializing their data and passing in
copies of themselves to their own copy constructors. Because Clone() is virtual, this
effectively creates a virtual copy constructor. You see this when line 81 executes.

Similar to the last listing, the user is prompted to choose dogs, cats, or mammals, and
these are created on lines 68–73. A pointer to each choice is stored in an array on line 75.

OUTPUT

402 Day 12

LISTING 12.11 continued

ANALYSIS

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 402

Implementing Inheritance 403

12

As the program iterates over the array on lines 78 to 82, each object has its Speak() and
its Clone() methods called, in turn. The result of the Clone() call on line 81 is a pointer
to a copy of the object, which is then stored in a second array.

On line 1 of the output, the user is prompted and responds with 1, choosing to create a
dog. The Mammal and Dog constructors are invoked. This is repeated for Cat on line 4 and
for Mammal on line 8 of the constructor.

Line 9 of the output represents the call to Speak() on the first object, the Dog. The virtual
Speak() method is called, and the correct version of Speak() is invoked. The Clone()
function is then called, and because this is also virtual, Dog’s Clone() method is invoked,
causing the Mammal constructor and the Dog copy constructor to be called.

The same is repeated for Cat on lines 12–14, and then for Mammal on lines 15 and 16.
Finally, the new array is iterated on lines 83 and 84 of the listing, and each of the new
objects has Speak() invoked, as can be seen by output lines 17 to 19.

The Cost of Virtual Methods
Because objects with virtual methods must maintain a v-table, some overhead occurs in
having virtual methods. If you have a very small class from which you do not expect to
derive other classes, there might not be a reason to have any virtual methods at all.

After you declare any methods virtual, you’ve paid most of the price of the v-table
(although each entry does add a small memory overhead). At that point, you want the
destructor to be virtual, and the assumption is that all other methods probably are virtual
as well. Take a long, hard look at any nonvirtual methods, and be certain you understand
why they are not virtual.

DO use virtual methods when you expect
to derive from a class.

DO use a virtual destructor if any meth-
ods are virtual.

DON’T mark the constructor as virtual.

DON’T try to access private data in a
base class from a derived class.

DO DON’T

Summary
Today, you learned how derived classes inherit from base classes. Today’s class discussed
public inheritance and virtual functions. Classes inherit all the public and protected data
and functions from their base classes.

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 403

Protected access is public to derived classes and private to all other classes. Even derived
classes cannot access private data or functions in their base classes.

Constructors can be initialized before the body of the constructor. At that time, the base
constructors are invoked and parameters can be passed to the base class.

Functions in the base class can be overridden in the derived class. If the base class func-
tions are virtual, and if the object is accessed by pointer or reference, the derived class’s
functions will be invoked, based on the runtime type of the object pointed to.

Methods in the base class can be invoked by explicitly naming the function with the pre-
fix of the base class name and two colons. For example, if Dog inherits from Mammal,
Mammal’s walk() method can be called with Mammal::walk().

In classes with virtual methods, the destructor should almost always be made virtual. A
virtual destructor ensures that the derived part of the object will be freed when delete is
called on the pointer. Constructors cannot be virtual. Virtual copy constructors can be
effectively created by making a virtual member function that calls the copy constructor.

Q&A
Q Are inherited members and functions passed along to subsequent generations?

If Dog derives from Mammal, and Mammal derives from Animal, does Dog inherit
Animal’s functions and data?

A Yes. As derivation continues, derived classes inherit the sum of all the functions
and data in all their base classes, but can only access those that are public or
protected.

Q If, in the preceding example, Mammal overrides a function in Animal, which
does Dog get, the original or the overridden function?

A If Dog inherits from Mammal, it gets the overridden function.

Q Can a derived class make a public base function private?

A Yes, the derived class can override the method and make it private. It then remains
private for all subsequent derivation. However, this should be avoided when possi-
ble, because users of your class will expect it to contain the sum of the methods
provided by its ancestors.

Q Why not make all class functions virtual?

A Overhead occurs with the first virtual function in the creation of a v-table. After
that, the overhead is trivial. Many C++ programmers feel that if one function is vir-
tual, all others should be. Other programmers disagree, feeling that there should
always be a reason for what you do.

404 Day 12

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 404

Implementing Inheritance 405

12

Q If a function (SomeFunc()) is virtual in a base class and is also overloaded, so
as to take either an integer or two integers, and the derived class overrides the
form taking one integer, what is called when a pointer to a derived object calls
the two-integer form?

A As you learned in today’s lesson, the overriding of the one-integer form hides the
entire base class function, and thus you receive a compile error complaining that
that function requires only one int.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material that was covered and exercises to provide you with experience in using what
you’ve learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix D, and be certain you understand the answers before continuing to
tomorrow’s lesson.

Quiz
1. What is a v-table?

2. What is a virtual destructor?

3. How do you show the declaration of a virtual constructor?

4. How can you create a virtual copy constructor?

5. How do you invoke a base member function from a derived class in which you’ve
overridden that function?

6. How do you invoke a base member function from a derived class in which you
have not overridden that function?

7. If a base class declares a function to be virtual, and a derived class does not use the
term virtual when overriding that class, is it still virtual when inherited by a
third-generation class?

8. What is the protected keyword used for?

Exercises
1. Show the declaration of a virtual function that takes an integer parameter and

returns void.

2. Show the declaration of a class Square, which derives from Rectangle, which in
turn derives from Shape.

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 405

3. If, in Exercise 2, Shape takes no parameters, Rectangle takes two (length and
width), but Square takes only one (length), show the constructor initialization for
Square.

4. Write a virtual copy constructor for the class Square (in Exercise 3).

5. BUG BUSTERS: What is wrong with this code snippet?
void SomeFunction (Shape);
Shape * pRect = new Rectangle;
SomeFunction(*pRect);

6. BUG BUSTERS: What is wrong with this code snippet?
class Shape()
{
public:

Shape();
virtual ~Shape();
virtual Shape(const Shape&);

};

406 Day 12

16 0672327112_ch12.qxd 11/19/04 12:27 PM Page 406

DAY 13

WEEK 2

Managing Arrays
and Strings

In lessons on previous days, you declared a single int, char, or other object.
You often want to declare a collection of objects, such as 20 ints or a litter of
Cats.

Today, you will learn

• What arrays are and how to declare them

• What strings are and how to use character arrays to make them

• The relationship between arrays and pointers

• How to use pointer arithmetic

• What linked lists are

What Is an Array?
An array is a sequential collection of data storage locations, each of which
holds the same type of data. Each storage location is called an element of the
array.

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 407

You declare an array by writing the type, followed by the array name and the subscript.
The subscript is the number of elements in the array, surrounded by square brackets. For
example,

long LongArray[25];

declares an array of 25 long integers, named LongArray. When the compiler sees this
declaration, it sets aside enough memory to hold all 25 elements. If each long integer
requires four bytes, this declaration sets aside 100 contiguous bytes of memory, as illus-
trated in Figure 13.1.

408 Day 13

FIGURE 13.1
Declaring an array.

4 bytes

100 bytes

Accessing Array Elements
You access an array element by referring to its offset from the beginning of the array.
Array element offsets are counted from zero. Therefore, the first array element is referred
to as arrayName[0]. In the LongArray example, LongArray[0] is the first array element,
LongArray[1] the second, and so forth.

This can be somewhat confusing. The array SomeArray[3] has three elements. They are
SomeArray[0], SomeArray[1], and SomeArray[2]. More generally, SomeArray[n] has n
elements that are numbered SomeArray[0] through SomeArray[n-1]. Again, remember
that this is because the index is an offset, so the first array element is 0 storage locations
from the beginning of the array, the second is 1 storage location, and so on.

Therefore, LongArray[25] is numbered from LongArray[0] through LongArray[24].
Listing 13.1 shows how to declare an array of five integers and fill each with a value.

Starting with today’s listings, the line numbers will start with zero. This is to
help you remember that arrays in C++ start from zero!

NOTE

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 408

Managing Arrays and Strings 409

13

LISTING 13.1 Using an Integer Array

0: //Listing 13.1 - Arrays
1: #include <iostream>
2:
3: int main()
4: {
5: int myArray[5]; // Array of 5 integers
6: int i;
7: for (i=0; i<5; i++) // 0-4
8: {
9: std::cout << “Value for myArray[“ << i << “]: “;
10: std::cin >> myArray[i];
11: }
12: for (i = 0; i<5; i++)
13: std::cout << i << “: “ << myArray[i] << std::endl;
14: return 0;
15: }

Value for myArray[0]: 3
Value for myArray[1]: 6
Value for myArray[2]: 9
Value for myArray[3]: 12
Value for myArray[4]: 15
0: 3
1: 6
2: 9
3: 12
4: 15

Listing 13.1 creates an array, has you enter values for each element, and then
prints the values to the console. In line 5, the array, called myArray, is declared

and is of type integer. You can see that it is declared with five in the square brackets. This
means that myArray can hold five integers. Each of these elements can be treated like an
integer variable.

In line 7, a for loop is started that counts from zero through four. This is the proper set
of offsets for a five-element array. The user is prompted for a value on line 9, and on line
10 the value is saved at the correct offset into the array.

Looking closer at line 10, you see that each element is accessed using the name of the
array followed by square brackets with the offset in between. Each of these elements can
then be treated like a variable of the array’s type.

The first value is saved at myArray[0], the second at myArray[1], and so forth. On lines
12 and 13, a second for loop prints each value to the console.

OUTPUT

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 409

Writing Past the End of an Array
When you write a value to an element in an array, the compiler computes where to store
the value based on the size of each element and the subscript. Suppose that you ask to
write over the value at LongArray[5], which is the sixth element. The compiler multi-
plies the offset (5) by the size of each element—in this case, 4 bytes. It then moves that
many bytes (20) from the beginning of the array and writes the new value at that
location.

If you ask to write at LongArray[50], most compilers ignore the fact that no such ele-
ment exists. Rather, the compiler computes how far past the first element it should look
(200 bytes) and then writes over whatever is at that location. This can be virtually any
data, and writing your new value there might have unpredictable results. If you’re lucky,
your program will crash immediately. If you’re unlucky, you’ll get strange results much
later in your program, and you’ll have a difficult time figuring out what went wrong.

The compiler is like a blind man pacing off the distance from a house. He starts out at
the first house, MainStreet[0]. When you ask him to go to the sixth house on Main
Street, he says to himself, “I must go five more houses. Each house is four big paces. I
must go an additional 20 steps.” If you ask him to go to MainStreet[100] and Main
Street is only 25 houses long, he paces off 400 steps. Long before he gets there, he will,
no doubt, step in front of a truck. So be careful where you send him.

Listing 13.2 writes past the end of an array. You should compile this listing to see what
error and warning messages you get. If you don’t get any, you should be extra careful
when working with arrays!

410 Day 13

Arrays count from zero, not from one. This is the cause of many bugs in pro-
grams written by C++ novices. Think of the index as the offset. The first ele-
ment, such as ArrayName[0], is at the beginning of the array, so the offset is
zero. Thus, whenever you use an array, remember that an array with 10 ele-
ments counts from ArrayName[0] to ArrayName[9]. ArrayName[10] is an error.

NOTE

Do not run this program; it might crash your system!CAUTION

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 410

Managing Arrays and Strings 411

13

LISTING 13.2 Writing Past the End of an Array

0: //Listing 13.2 - Demonstrates what happens when you write
1: // past the end of an array
2: #include <iostream>
3: using namespace std;
4:
5: int main()
6: {
7: // sentinels
8: long sentinelOne[3];
9: long TargetArray[25]; // array to fill
10: long sentinelTwo[3];
11: int i;
12: for (i=0; i<3; i++)
13: {
14: sentinelOne[i] = 0;
15: sentinelTwo[i] = 0;
16: }
17: for (i=0; i<25; i++)
18: TargetArray[i] = 10;
19:
20: cout << “Test 1: \n”; // test current values (should be 0)
21: cout << “TargetArray[0]: “ << TargetArray[0] << endl;
22: cout << “TargetArray[24]: “ << TargetArray[24] << endl << endl;
23:
24: for (i = 0; i<3; i++)
25: {
26: cout << “sentinelOne[“ << i << “]: “;
27: cout << sentinelOne[i] << endl;
28: cout << “sentinelTwo[“ << i << “]: “;
29: cout << sentinelTwo[i]<< endl;
30: }
31:
32: cout << “\nAssigning...”;
33: for (i = 0; i<=25; i++) // Going a little too far!
34: TargetArray[i] = 20;
35:
36: cout << “\nTest 2: \n”;
37: cout << “TargetArray[0]: “ << TargetArray[0] << endl;
38: cout << “TargetArray[24]: “ << TargetArray[24] << endl;
39: cout << “TargetArray[25]: “ << TargetArray[25] << endl << endl;
40: for (i = 0; i<3; i++)
41: {
42: cout << “sentinelOne[“ << i << “]: “;
43: cout << sentinelOne[i]<< endl;
44: cout << “sentinelTwo[“ << i << “]: “;
45: cout << sentinelTwo[i]<< endl;
46: }
47:
48: return 0;
49: }

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 411

Test 1:
TargetArray[0]: 10
TargetArray[24]: 10

SentinelOne[0]: 0
SentinelTwo[0]: 0
SentinelOne[1]: 0
SentinelTwo[1]: 0
SentinelOne[2]: 0
SentinelTwo[2]: 0

Assigning...
Test 2:
TargetArray[0]: 20
TargetArray[24]: 20
TargetArray[25]: 20

SentinelOne[0]: 20
SentinelTwo[0]: 0
SentinelOne[1]: 0
SentinelTwo[1]: 0
SentinelOne[2]: 0
SentinelTwo[2]: 0

Lines 8 and 10 declare two arrays of three long integers that act as sentinels
around TargetArray. These sentinel arrays are initialized with the value 0 on

lines 12–16. Because these are declared before and after TargetArray, there is a good
chance that they will be placed in memory just before and just after it. If memory is writ-
ten to beyond the end of TargetArray, it is the sentinels that are likely to be changed
rather than some unknown area of data. Some compilers count down in memory; others
count up. For this reason, the sentinels are placed both before and after TargetArray.

Lines 20–30 confirm the sentinel values are okay by printing them as well as the first
and last elements of TargetArray. On line 34, TargetArray’s members are all reas-
signed from the initial value of 10 to the new value of 20. Line 34, however, counts to
TargetArray offset 25, which doesn’t exist in TargetArray.

Lines 37–39 print TargetArray’s values again as a second test to see what the values are.
Note that on line 39 TargetArray[25] is perfectly happy to print the value 20. However,
when SentinelOne and SentinelTwo are printed, SentinelOne[0] reveals that its value
has changed. This is because the memory that is 25 elements after TargetArray[0] is the
same memory that is at SentinelOne[0]. When the nonexistent TargetArray[25] was
accessed, what was actually accessed was SentinelOne[0].

OUTPUT

412 Day 13

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 412

Managing Arrays and Strings 413

13

This nasty bug can be very hard to find, because SentinelOne [0]’s value was changed
in a part of the code that was not writing to SentinelOne at all.

Fence Post Errors
It is so common to write to one past the end of an array that this bug has its own name. It
is called a fence post error. This refers to the problem in counting how many fence posts
you need for a 10-foot fence if you need one post for every foot. Most people answer 10,
but of course you need 11. Figure 13.2 makes this clear.

Note that because all compilers use memory differently, your results might
vary. You might find that the sentinels did not get overwritten. If this is the
case, try changing line 33 to assign yet another value—change the 25 to 26.
This increases the likelihood that you’ll overwrite a sentinel. Of course, you
might overwrite something else or crash your system instead.

NOTE

FIGURE 13.2
Fence post errors.

1ft

1 2 3 4 5 6 7 8 9 10 11

2ft 3ft 4ft 5ft 6ft 7ft 8ft 9ft 10ft

This type of “off by one” counting can be the bane of any C++ programmer’s life. Over
time, however, you’ll get used to the idea that a 25-element array counts only to element
24, and that everything counts from 0.

Some programmers refer to ArrayName[0] as the zeroth element. Getting
into this habit is a mistake. If ArrayName[0] is the zeroth element, what is
ArrayName[1]? The oneth? If so, when you see ArrayName[24], will you real-
ize that it is not the 24th element in the array, but rather the 25th? It is far
less confusing to say that ArrayName[0] is at offset zero and is the first
element.

NOTE

Initializing Arrays
You can initialize a simple array of built-in types, such as integers and characters, when
you first declare the array. After the array name, you put an equal sign (=) and a list of
comma-separated values enclosed in braces. For example,

int IntegerArray[5] = { 10, 20, 30, 40, 50 };

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 413

declares IntegerArray to be an array of five integers. It assigns IntegerArray[0] the
value 10, IntegerArray[1] the value 20, and so forth.

If you omit the size of the array, an array just big enough to hold the initialization is cre-
ated. Therefore, if you write

int IntegerArray[] = { 10, 20, 30, 40, 50 };

you will create the same array as you did in the previous example, an array that holds
five elements.

You cannot initialize more elements than you’ve declared for the array. Therefore,

int IntegerArray[5] = { 10, 20, 30, 40, 50, 60};

generates a compiler error because you’ve declared a five-member array and initialized
six values. It is legal, however, to write

int IntegerArray[5] = {10, 20};

In this case, you have declared a five-element array and only initialized the first two ele-
ments, IntegerArray[0] and IntegerArray[1].

414 Day 13

DO let the compiler set the size of initial-
ized arrays.

DO remember that the first member of
the array is at offset 0.

DON’T write past the end of the array.

DON’T get goofy with naming arrays.
They should have meaningful names just
as any other variable would have.

DO DON’T

Declaring Arrays
This code uses “magic numbers” such as 3 for the size of the sentinel arrays and 25 for
the size of TargetArray. It is safer to use constants so that you can change all these val-
ues in one place.

Arrays can have any legal variable name, but they cannot have the same name as another
variable or array within their scope. Therefore, you cannot have an array named
myCats[5] and a variable named myCats at the same time.

In addition, when declaring the number of elements, in addition to using literals, you can
use a constant or enumeration. It is actually better to use these rather than a literal num-
ber because it gives you a single location to control the number of elements. In Listing
13.2, literal numbers were used. If you want to change the TargetArray so it holds only

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 414

Managing Arrays and Strings 415

13

20 elements instead of 25, you have to change several lines of code. If you used a con-
stant, you only have to change the value of your constant.

Creating the number of elements, or dimension size, with an enumeration is a little dif-
ferent. Listing 13.3 illustrates this by creating an array that holds values—one for each
day of the week.

LISTING 13.3 Using consts and enums in Arrays

0: // Listing 13.3
1: // Dimensioning arrays with consts and enumerations
2:
3: #include <iostream>
4: int main()
5: {
6: enum WeekDays { Sun, Mon, Tue,
7: Wed, Thu, Fri, Sat, DaysInWeek };
8: int ArrayWeek[DaysInWeek] = { 10, 20, 30, 40, 50, 60, 70 };
9:
10: std::cout << “The value at Tuesday is: “ << ArrayWeek[Tue];
11: return 0;
12: }

The value at Tuesday is: 30

Line 6 creates an enumeration called WeekDays. It has eight members. Sunday is
equal to 0, and DaysInWeek is equal to 7. On line 8, an array called ArrayWeek is

declared to have DaysInWeek elements, which is 7.

Line 10 uses the enumerated constant Tue as an offset into the array. Because Tue evalu-
ates to 2, the third element of the array, ArrayWeek[2], is returned and printed on line 10.

OUTPUT

ANALYSIS

Arrays

To declare an array, write the type of object stored, followed by the name of the array
and a subscript with the number of objects to be held in the array.

Example 1

int MyIntegerArray[90];

Example 2

long * ArrayOfPointersToLongs[100];

To access members of the array, use the subscript operator.

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 415

Using Arrays of Objects
Any object, whether built-in or user defined, can be stored in an array. When you declare
the array to hold objects, you tell the compiler the type of object to store and the number
for which to allocate room. The compiler knows how much room is needed for each
object based on the class declaration. The class must have a default constructor that takes
no arguments so that the objects can be created when the array is defined.

Accessing member data in an array of objects is a two-step process. You identify the
member of the array by using the index operator ([]), and then you add the member
operator (.) to access the particular member variable. Listing 13.4 demonstrates how you
would create and access an array of five Cats.

LISTING 13.4 Creating an Array of Objects

0: // Listing 13.4 - An array of objects
1:
2: #include <iostream>
3: using namespace std;
4:
5: class Cat
6: {
7: public:
8: Cat() { itsAge = 1; itsWeight=5; }
9: ~Cat() {}
10: int GetAge() const { return itsAge; }
11: int GetWeight() const { return itsWeight; }
12: void SetAge(int age) { itsAge = age; }
13:
14: private:
15: int itsAge;
16: int itsWeight;
17: };
18:

416 Day 13

Example 1

// assign ninth member of MyIntegerArray to theNinethInteger
int theNinethInteger = MyIntegerArray[8];

Example 2

// assign ninth member of ArrayOfPointersToLongs to pLong.
long * pLong = ArrayOfPointersToLongs[8];

Arrays count from zero. An array of n items is numbered from 0 to n–1.

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 416

Managing Arrays and Strings 417

13

19: int main()
20: {
21: Cat Litter[5];
22: int i;
23: for (i = 0; i < 5; i++)
24: Litter[i].SetAge(2*i +1);
25:
26: for (i = 0; i < 5; i++)
27: {
28: cout << “Cat #” << i+1<< “: “;
29: cout << Litter[i].GetAge() << endl;
30: }
31: return 0;
32: }

cat #1: 1
cat #2: 3
cat #3: 5
cat #4: 7
cat #5: 9

Lines 5–17 declare the Cat class. The Cat class must have a default constructor
so that Cat objects can be created in an array. In this case, the default constructor

is declared and defined on line 8. For each Cat, a default age of 1 is set as well as a
default weight of 5. Remember that if you create any other constructor, the compiler-
supplied default constructor is not created; you must create your own.

The first for loop (lines 23 and 24) sets values for the age of each of the five Cat objects
in the array. The second for loop (lines 26–30) accesses each member of the array and
calls GetAge() to display the age of each Cat object.

Each individual Cat’s GetAge() method is called by accessing the member in the array,
Litter, followed by the dot operator (.), and the member function. You can access other
members and methods in the exact same way.

Declaring Multidimensional Arrays
It is possible to have arrays of more than one dimension. Each dimension is represented
as a subscript in the array. Therefore, a two-dimensional array has two subscripts; a
three-dimensional array has three subscripts; and so on. Arrays can have any number of
dimensions, although it is likely that most of the arrays you create will be of one or two
dimensions.

OUTPUT

LISTING 13.4 continued

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 417

A good example of a two-dimensional array is a chess board. One dimension represents
the eight rows; the other dimension represents the eight columns. Figure 13.3 illustrates
this idea.

418 Day 13

FIGURE 13.3
A chess board and a
two-dimensional array.

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8

7
6

5
4

3
2

1
00

7
6

5
4

3
2

1
01

7
6

5
4

3
2

1
02

7
6

5
4

3
2

1
07

Suppose that you have a class named SQUARE. The declaration of an array named Board
that represents it would be

SQUARE Board[8][8];

You could also represent the same data with a one-dimensional, 64-square array. For
example:

SQUARE Board[64];

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 418

Managing Arrays and Strings 419

13

This, however, doesn’t correspond as closely to the real-world object as the two-dimen-
sion. When the game begins, the king is located in the fourth position in the first row;
that position corresponds to

Board[0][3];

assuming that the first subscript corresponds to row and the second to column.

Initializing Multidimensional Arrays
You can initialize multidimensional arrays. You assign the list of values to array elements
in order, with the last array subscript (the one farthest to the right) changing while each
of the former holds steady. Therefore, if you have an array

int theArray[5][3];

the first three elements go into theArray[0]; the next three into theArray[1]; and so
forth.

You initialize this array by writing

int theArray[5][3] = { 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };

For the sake of clarity, you could group the initializations with braces. For example:

int theArray[5][3] = { {1,2,3},
{4,5,6},
{7,8,9},
{10,11,12},
{13,14,15} };

The compiler ignores the inner braces, but they do make it easier to understand how the
numbers are distributed.

When initializing elements of an array, each value must be separated by a comma, with-
out regard to the braces. The entire initialization set must be within braces, and it must
end with a semicolon.

Listing 13.5 creates a two-dimensional array. The first dimension is the set of numbers
from zero to four. The second dimension consists of the double of each value in the first
dimension.

LISTING 13.5 Creating a Multidimensional Array

0: // Listing 13.5 - Creating a Multidimensional Array
1: #include <iostream>
2: using namespace std;
3:
4: int main()

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 419

5: {
6: int SomeArray[2][5] = { {0,1,2,3,4}, {0,2,4,6,8}};
7: for (int i = 0; i<2; i++)
8: {
9: for (int j=0; j<5; j++)
10: {
11: cout << “SomeArray[“ << i << “][“ << j << “]: “;
12: cout << SomeArray[i][j]<< endl;
13: }
14: }
15: return 0;
16: }

SomeArray[0][0]: 0
SomeArray[0][1]: 1
SomeArray[0][2]: 2
SomeArray[0][3]: 3
SomeArray[0][4]: 4
SomeArray[1][0]: 0
SomeArray[1][1]: 2
SomeArray[1][2]: 4
SomeArray[1][3]: 6
SomeArray[1][4]: 8

Line 6 declares SomeArray to be a two-dimensional array. The first dimension
indicates that there will be two sets; the second dimension consists of five inte-

gers. This creates a 2×5 grid, as Figure 13.4 shows.

OUTPUT

420 Day 13

LISTING 13.5 continued

ANALYSIS

FIGURE 13.4
A 2×5 array.

0
1

2
3

4

0

Some Array [5] [2]

1
2

3
4

The values are based on the two sets of numbers. The first set is the original numbers;
the second set is the doubled numbers. In this listing, the values are simply set, although
they could be computed as well. Lines 7 and 9 create a nested for loop. The outer for
loop (starting on line 7) ticks through each member of the first dimension, which is each
of the two sets of integers. For every member in that dimension, the inner for loop (start-
ing on line 9) ticks through each member of the second dimension. This is consistent
with the printout. SomeArray[0][0] is followed by SomeArray[0][1]. The first

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 420

Managing Arrays and Strings 421

13

dimension is incremented only after the second dimension has gone through all of its
increments. Then counting for the second dimension starts over.

A Word About Memory

When you declare an array, you tell the compiler exactly how many objects you expect to
store in it. The compiler sets aside memory for all the objects, even if you never use it.
This isn’t a problem with arrays for which you have a good idea of how many objects
you’ll need. For example, a chessboard has 64 squares, and cats have between 1 and 10
kittens. When you have no idea of how many objects you’ll need, however, you must use
more advanced data structures.

This book looks at arrays of pointers, arrays built on the free store, and various other col-
lections. You’ll see a few advanced data structures, but you can learn more in the book
C++ Unleashed from Sams Publishing. You can also check out Appendix E, “A Look at
Linked Lists.”

Two of the great things about programming are that there are always more things to
learn and that there are always more books from which to learn them.

Building Arrays of Pointers
The arrays discussed so far store all their members on the stack. Usually, stack memory
is more limited, whereas free store memory is much larger. It is possible to declare each
object on the free store and then to store only a pointer to the object in the array. This
dramatically reduces the amount of stack memory used. Listing 13.6 rewrites the array
from Listing 13.4, but it stores all the objects on the free store. As an indication of the
greater memory that this enables, the array is expanded from 5 to 500, and the name is
changed from Litter to Family.

LISTING 13.6 Storing an Array on the Free Store

0: // Listing 13.6 - An array of pointers to objects
1:
2: #include <iostream>
3: using namespace std;
4:
5: class Cat
6: {
7: public:
8: Cat() { itsAge = 1; itsWeight=5; }
9: ~Cat() {} // destructor
10: int GetAge() const { return itsAge; }
11: int GetWeight() const { return itsWeight; }
12: void SetAge(int age) { itsAge = age; }

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 421

13:
14: private:
15: int itsAge;
16: int itsWeight;
17: };
18:
19: int main()
20: {
21: Cat * Family[500];
22: int i;
23: Cat * pCat;
24: for (i = 0; i < 500; i++)
25: {
26: pCat = new Cat;
27: pCat->SetAge(2*i +1);
28: Family[i] = pCat;
29: }
30:
31: for (i = 0; i < 500; i++)
32: {
33: cout << “Cat #” << i+1 << “: “;
34: cout << Family[i]->GetAge() << endl;
35: }
36: return 0;
37: }

Cat #1: 1
Cat #2: 3
Cat #3: 5
...
Cat #499: 997
Cat #500: 999

The Cat object declared on lines 5–17 is identical to the Cat object declared in
Listing 13.4. This time, however, the array declared on line 21 is named Family,

and it is declared to hold 500 elements. More importantly, these 500 elements are point-
ers to Cat objects.

In the initial loop (lines 24–29), 500 new Cat objects are created on the free store, and
each one has its age set to twice the index plus one. Therefore, the first Cat is set to 1,
the second Cat to 3, the third Cat to 5, and so on. After the pointer is created, line 28
assigns the pointer to the array. Because the array has been declared to hold pointers, the
pointer—rather than the dereferenced value in the pointer—is added to the array.

The second loop in lines 31–35 prints each of the values. On line 33, a number is printed
to show which object is being printed. Because index offsets start at zero, line 33 adds 1

OUTPUT

422 Day 13

LISTING 13.6 continued

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 422

Managing Arrays and Strings 423

13

to display a count starting at 1 instead. On line 34, the pointer is accessed by using the
index, Family[i]. That address is then used to access the GetAge() method.

In this example, the array Family and all its pointers are stored on the stack, but the 500
Cat objects that are created are stored on the free store.

A Look at Pointer Arithmetic—An Advanced
Topic

On Day 8, “Understanding Pointers,” you initially learned about pointers. Before contin-
uing with arrays, it is worth coming back to pointers to cover an advanced topic—pointer
arithmetic.

There are a few things that can be done mathematically with pointers. Pointers can be
subtracted, one from another. One powerful technique is to point two pointers at different
elements in an array and to take their difference to see how many elements separate the
two members. This can be very useful when parsing arrays of characters, as illustrated in
Listing 13.7.

LISTING 13.7 Illustrates How to Parse Out Words from a Character String

0: #include <iostream>
1: #include <ctype.h>
2: #include <string.h>
3:
4: bool GetWord(char* theString,
5: char* word, int& wordOffset);
6:
7: // driver program
8: int main()
9: {
10: const int bufferSize = 255;
11: char buffer[bufferSize+1]; // hold the entire string
12: char word[bufferSize+1]; // hold the word
13: int wordOffset = 0; // start at the beginning
14:
15: std::cout << “Enter a string: “;
16: std::cin.getline(buffer,bufferSize);
17:
18: while (GetWord(buffer, word, wordOffset))
19: {
20: std::cout << “Got this word: “ << word << std::endl;
21: }
22: return 0;
23: }
24:

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 423

25: // function to parse words from a string.
26: bool GetWord(char* theString, char* word, int& wordOffset)
27: {
28: if (theString[wordOffset] == 0) // end of string?
29: return false;
30:
31: char *p1, *p2;
32: p1 = p2 = theString+wordOffset; // point to the next word
33:
34: // eat leading spaces
35: for (int i = 0; i<(int)strlen(p1) && !isalnum(p1[0]); i++)
36: p1++;
37:
38: // see if you have a word
39: if (!isalnum(p1[0]))
40: return false;
41:
42: // p1 now points to start of next word
43: // point p2 there as well
44: p2 = p1;
45:
46: // march p2 to end of word
47: while (isalnum(p2[0]))
48: p2++;
49:
50: // p2 is now at end of word
51: // p1 is at beginning of word
52: // length of word is the difference
53: int len = int (p2 - p1);
54:
55: // copy the word into the buffer
56: strncpy (word,p1,len);
57:
58: // null terminate it
59: word[len]=’\0’;
60:
61: // now find the beginning of the next word
62: for (int j = int(p2-theString); j<(int)strlen(theString)
63: && !isalnum(p2[0]); j++)
64: {
65: p2++;
66: }
67:
68: wordOffset = int(p2-theString);
69:
70: return true;
71: }

424 Day 13

LISTING 13.7 continued

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 424

Managing Arrays and Strings 425

13

Enter a string: this code first appeared in C++ Report
Got this word: this
Got this word: code
Got this word: first
Got this word: appeared
Got this word: in
Got this word: C
Got this word: Report

This program allows the user to enter in a sentence. The program then breaks out
each word (each set of alphanumeric characters) of the sentence. On line 15 is

the prompt asking the user to enter a string—basically a sentence. This is fed to a
method called GetWord() on line 18, along with a buffer to hold the first word and an
integer variable called WordOffset, which is initialized on line 13 to zero.

GetWord() returns each word from the string until the end of the string is reached. As
words are returned from GetWord(), they are printed on line 20 until GetWord() returns
false.

Each call to GetWord() causes a jump to line 26. On line 28, a check is done to see if the
value of string[wordOffset]) is zero. This will be true if you are at or past the end of
the string, at which time GetWord() will return false. cin.GetLine() makes sure the
string entered is terminated with a null—that is, that it ends with a zero valued character
‘\0’;.

On line 31, two character pointers, p1 and p2, are declared, and on line 32, they are set to
point into string offset by wordOffset. Initially, wordOffset is zero, so they point to the
beginning of the string.

Lines 35 and 36 tick through the string, pushing p1 to the first alphanumeric character.
Lines 39 and 40 ensure that an alphanumeric character is found. If not, false is returned.

p1 now points to the start of the next word, and line 44 sets p2 to point to the same
position.

Lines 47 and 48 then cause p2 to march through the word, stopping at the first nonal-
phanumeric character. p2 is now pointing to the end of the word that p1 points to the
beginning of. By subtracting p1 from p2 on line 53 and casting the result to an integer,
you are able to establish the length of the word. That word is then copied into the buffer
word using a string-copying method from the Standard Library, passing in as the starting
point p1 and as the length the difference that you’ve established.

On line 59, a null value is appended to mark the end of the word. p2 is then incremented
to point to the beginning of the next word, and the offset of that word is pushed into the
integer reference wordOffset. Finally, true is returned to indicate that a word has been
found.

OUTPUT

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 425

This is a classic example of code that is best understood by putting it into a debugger and
stepping through its execution.

Pointer arithmetic is used in a number of places in this listing. In this listing, you can see
that by subtracting one pointer from another (as on line 53), you determine the number
of elements between the two pointers. In addition, you saw on line 55 that incrementing
a pointer shifts it to the next element within an array rather than just adding one. Using
pointer arithmetic is very common when working with pointers and arrays, but it is also a
dangerous activity and needs to be approached with respect.

Declaring Arrays on the Free Store
It is possible to put the entire array on the free store, also known as the heap. You do this
by creating a pointer to the array. Create the pointer by calling new and using the sub-
script operator. The result is a pointer to an area on the free store that holds the array. For
example,

Cat *Family = new Cat[500];

declares Family to be a pointer to the first element in an array of 500 Cats. In other
words, Family points to—or has the address of—Family[0].

The advantage of using Family in this way is that you can use pointer arithmetic to
access each member of Family. For example, you can write

Cat *Family = new Cat[500];
Cat *pCat = Family; //pCat points to Family[0]
pCat->SetAge(10); // set Family[0] to 10
pCat++; // advance to Family[1]
pCat->SetAge(20); // set Family[1] to 20

This declares a new array of 500 Cats and a pointer to point to the start of the array.
Using that pointer, the first Cat’s SetAge() function is called with a value of 10. The
pointer is then incremented. This causes the pointer to be incremented to point to the
next Cat object in the array. The second Cat’s SetAge() method is then called with a
value of 20.

A Pointer to an Array Versus an Array of Pointers
Examine the following three declarations:

1: Cat FamilyOne[500];
2: Cat * FamilyTwo[500];
3: Cat * FamilyThree = new Cat[500];

426 Day 13

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 426

Managing Arrays and Strings 427

13

FamilyOne is an array of 500 Cat objects. FamilyTwo is an array of 500 pointers to Cat
objects. FamilyThree is a pointer to an array of 500 Cat objects.

The differences among these three code lines dramatically affect how these arrays oper-
ate. What is perhaps even more surprising is that FamilyThree is a variant of FamilyOne,
but it is very different from FamilyTwo.

This raises the thorny issue of how pointers relate to arrays. In the third case,
FamilyThree is a pointer to an array. That is, the address in FamilyThree is the address
of the first item in that array. This is exactly the case for FamilyOne.

Pointers and Array Names
In C++, an array name is a constant pointer to the first element of the array. Therefore, in
the declaration

Cat Family[500];

Family is a pointer to &Family[0], which is the address of the first element of the array
Family.

It is legal to use array names as constant pointers, and vice versa. Therefore, Family + 4
is a legitimate way of accessing the data at Family[4].

The compiler does all the arithmetic when you add to, increment, and decrement point-
ers. The address accessed when you write Family + 4 isn’t four bytes past the address
of Family—it is four objects. If each object is four bytes long, Family + 4 is 16 bytes
past the start of the array. If each object is a Cat that has four long member variables of
four bytes each and two short member variables of two bytes each, each Cat is 20 bytes,
and Family + 4 is 80 bytes past the start of the array.

Listing 13.8 illustrates declaring and using an array on the free store.

LISTING 13.8 Creating an Array by Using new

0: // Listing 13.8 - An array on the free store
1:
2: #include <iostream>
3:
4: class Cat
5: {
6: public:
7: Cat() { itsAge = 1; itsWeight=5; }
8: ~Cat();
9: int GetAge() const { return itsAge; }
10: int GetWeight() const { return itsWeight; }

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 427

11: void SetAge(int age) { itsAge = age; }
12:
13: private:
14: int itsAge;
15: int itsWeight;
16: };
17:
18: Cat :: ~Cat()
19: {
20: // std::cout << “Destructor called!\n”;
21: }
22:
23: int main()
24: {
25: Cat * Family = new Cat[500];
26: int i;
27:
28: for (i = 0; i < 500; i++)
29: {
30: Family[i].SetAge(2*i +1);
31: }
32:
33: for (i = 0; i < 500; i++)
34: {
35: std::cout << “Cat #” << i+1 << “: “;
36: std::cout << Family[i].GetAge() << std::endl;
37: }
38:
39: delete [] Family;
40:
41: return 0;
42: }

Cat #1: 1
Cat #2: 3
Cat #3: 5
...
Cat #499: 997
Cat #500: 999

Line 25 declares Family, which is a pointer to an array of 500 Cat objects. The
entire array is created on the free store with the call to new Cat[500].

On line 30, you can see that the pointer you declared can be used with the index operator
[], and thus be treated just like a regular array. On line 36, you see that it is once again
used to call the GetAge() method. For all practical purposes, you can treat this pointer to

OUTPUT

428 Day 13

LISTING 13.8 continued

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 428

Managing Arrays and Strings 429

13

the Family array as an array name. The one thing you will need to do, however, is to free
the memory you allocated in setting up the array. This is done on line 39 with a call to
delete.

Deleting Arrays on the Free Store
What happens to the memory allocated for these Cat objects when the array is
destroyed? Is there a chance of a memory leak?

Deleting Family automatically returns all the memory set aside for the array if you use
the delete with the [] operator. By including the square brackets, the compiler is smart
enough to destroy each object in the array and to return its memory to the free store.

To see this, change the size of the array from 500 to 10 on lines 25, 28, and 33. Then
uncomment the cout statement on line 20. When line 39 is reached and the array is
destroyed, each Cat object destructor is called.

When you create an item on the heap by using new, you always delete that item and free
its memory with delete. Similarly, when you create an array by using new
<class>[size], you delete that array and free all its memory with delete[]. The brack-
ets signal the compiler that this array is being deleted.

If you leave the brackets off, only the first object in the array is deleted. You can prove
this to yourself by removing the bracket on line 39. If you edited line 20 so that the
destructor prints, you should now see only one Cat object destroyed. Congratulations!
You just created a memory leak.

Resizing Arrays at Runtime
The biggest advantage of being able to allocate arrays on the heap is that you determine
the size of the array at runtime and then allocate it. For instance, if you asked the user to
enter the size of a family into a variable called SizeOfFamily, you could then declare a
Cat array as follows:

Cat *pFamily = new Cat[SizeOfFamily];

With that, you now have a pointer to an array of Cat objects. You can then create a
pointer to the first element and loop through this array using a pointer and pointer
arithmetic:

Cat *pCurrentCat = Family[0];
for (int Index = 0; Index < SizeOfFamily; Index++, pCurrentCat++)
{

pCurrentCat->SetAge(Index);
};

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 429

Because C++ views arrays as no more than special cases of pointers, you can skip the
second pointer and simply use standard array indexing:

for (int Index = 0; Index < SizeOfFamily; Index++)
{

pFamily[Index].SetAge(Index);
};

The use of the subscript brackets automatically dereferences the resulting pointer and the
compiler causes the appropriate pointer arithmetic to be performed.

A further advantage is that you can use a similar technique to resize an array at runtime
when you run out of room. Listing 13.9 illustrates this reallocation.

LISTING 13.9 Reallocating an Array at Runtime

0: //Listing 13.9
1:
2: #include <iostream>
3: using namespace std;
4: int main()
5: {
6: int AllocationSize = 5;
7: int *pArrayOfNumbers = new int[AllocationSize];
8: int ElementsUsedSoFar = 0;
9: int MaximumElementsAllowed = AllocationSize;
10: int InputNumber = -1;
11:
12: cout << endl << “Next number = “;
13: cin >> InputNumber;
14:
15: while (InputNumber > 0)
16: {
17: pArrayOfNumbers[ElementsUsedSoFar++] = InputNumber;
18:
19: if (ElementsUsedSoFar == MaximumElementsAllowed)
20: {
21: int *pLargerArray =
22: new int[MaximumElementsAllowed+AllocationSize];
23:
24: for (int CopyIndex = 0;
25: CopyIndex < MaximumElementsAllowed;
26: CopyIndex++)
27 : {
28: pLargerArray[CopyIndex] = pArrayOfNumbers[CopyIndex];
29: };
30:
31: delete [] pArrayOfNumbers;
32: pArrayOfNumbers = pLargerArray;
33: MaximumElementsAllowed+= AllocationSize;

430 Day 13

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 430

Managing Arrays and Strings 431

13

34: };
35: cout << endl << “Next number = “;
36: cin >> InputNumber;
37: }
38:
39: for (int Index = 0; Index < ElementsUsedSoFar; Index++)
40: {
41: cout << pArrayOfNumbers[Index] << endl;
42: }
43: return 0;
44: }

Next number = 10

Next number = 20

Next number = 30

Next number = 40

Next number = 50

Next number = 60

Next number = 70

Next number = 0
10
20
30
40
50
60
70

In this example, numbers are entered one after the other and stored in an array.
When a number less or equal to 0 is entered, the array of numbers that has been

gathered is printed.

Looking closer, you can see on lines 6–9 that a number of variables are declared. More
specifically, the initial size of the array is set at 5 on line 6 and then the array is allocated
on line 7 and its address is assigned to pArrayOfNumbers.

Lines 12–13 get the first number from the user and place it into the variable,
InputNumber. On line 15, if the number entered is greater than zero, processing occurs.
If not, the program jumps to line 38.

OUTPUT

LISTING 13.9 continued

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 431

On line 17, InputNumber is put into the array. This is safe the first time in because you
know you have room at this point. On line 19, a check is done to see if this is the last
element that the array has room for. If there is room, control passes to line 35; otherwise,
the body of the if statement is processed in order to increase the size of the array (lines
20–34).

A new array is created on line 21. This array is created to hold five more elements
(AllocationSize) than the current array. Lines 24–29 then copy the old array to the new
array using array notation (you could also use pointer arithmetic).

Line 31 deletes the old array and line 32 then replaces the old pointer with the pointer to
the larger array. Line 33 increases the MaximumElementsAllowed to match the new larger
size.

Lines 39–42 display the resulting array.

432 Day 13

DO remember that an array of n items is
numbered from zero through n–1.

DO use array indexing with pointers that
point to arrays.

DO use delete[] to remove an entire
array created on the free store. Using
just delete without the [] only deletes
the first element.

DON’T write or read past the end of an
array.

DON’T confuse an array of pointers with
a pointer to an array.

DON’T forget to delete any memory you
allocate using new.

DO DON’T

char Arrays and Strings
There is a type of array that gets special attention. This is an array of characters that is
terminated by a null. This array is considered a “C-style string.” The only C-style strings
you’ve seen until now have been unnamed C-style string constants used in cout state-
ments, such as

cout << “hello world”;

You can declare and initialize a C-style string the same as you would any other array. For
example:

char Greeting[] =
{ ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘ ‘, ‘W’,’o’,’r’,’l’,’d’,’\0’ };

In this case, Greeting is declared as an array of characters and it is initialized with a
number of characters. The last character, ‘\0’, is the null character, which many C++

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 432

Managing Arrays and Strings 433

13

functions recognize as the terminator for a C-style string. Although this character-by-
character approach works, it is difficult to type and admits too many opportunities for
error. C++ enables you to use a shorthand form of the previous line of code. It is

char Greeting[] = “Hello World”;

You should note two things about this syntax:

• Instead of single-quoted characters separated by commas and surrounded by
braces, you have a double-quoted C-style string, no commas, and no braces.

• You don’t need to add the null character because the compiler adds it for you.

When you declare a string, you need to ensure that you make it as large as you will need.
The length of a C-style string includes the number of characters including the null char-
acter. For example, Hello World is 12 bytes. Hello is 5 bytes, the space is 1 byte, World
is 5 bytes, and the null character is 1 byte.

You can also create uninitialized character arrays. As with all arrays, it is important to
ensure that you don’t put more into it than there is room for. Listing 13.10 demonstrates
the use of an uninitialized buffer.

LISTING 13.10 Filling an Array

0: //Listing 13.10 char array buffers
1:
2: #include <iostream>
3:
4: int main()
5: {
6: char buffer[80];
7: std::cout << “Enter the string: “;
8: std::cin >> buffer;
9: std::cout << “Here’s the buffer: “ << buffer << std::endl;
10: return 0;
11: }

Enter the string: Hello World
Here’s the buffer: Hello

On line 6, a character array is created to act as a buffer to hold 80 characters.
This is large enough to hold a 79-character C-style string and a terminating null

character.

On line 7, the user is prompted to enter a C-style string, which is entered into the buffer
on line 8. cin writes a terminating null to the buffer after it writes the string.

OUTPUT

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 433

Two problems occur with the program in Listing 13.10. First, if the user enters more than
79 characters, cin writes past the end of the buffer. Second, if the user enters a space,
cin thinks that it is the end of the string, and it stops writing to the buffer.

To solve these problems, you must call a special method on cin called get(). cin.get()
takes three parameters:

• The buffer to fill

• The maximum number of characters to get

• The delimiter that terminates input

The delimiter defaults to a newline character. Listing 13.11 illustrates the use of get().

LISTING 13.11 Filling an Array With a Maximum Number of Characters.

0: //Listing 13.11 using cin.get()
1:
2: #include <iostream>
3: using namespace std;
4:
5: int main()
6: {
7: char buffer[80];
8: cout << “Enter the string: “;
9: cin.get(buffer, 79); // get up to 79 or newline
10: cout << “Here’s the buffer: “ << buffer << endl;
11: return 0;
12: }

Enter the string: Hello World
Here’s the buffer: Hello World

Line 9 calls the method get() of cin. The buffer declared on line 7 is passed in
as the first argument. The second argument is the maximum number of characters

to get. In this case, it must be no greater than 79 to allow for the terminating null. No
need exists to provide a terminating character because the default value of newline is suf-
ficient.

If you enter spaces, tabs, or other whitespace characters, they are assigned to the string.
A newline character ends the input. Entering 79 characters also results in the end of the
input. You can verify this by rerunning the listing and trying to enter a string longer than
79 characters.

OUTPUT

434 Day 13

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 434

Managing Arrays and Strings 435

13

Using the strcpy() and strncpy() Methods
A number of existing functions are available in the C++ library for dealing with strings.
C++ inherits many of these functions for dealing with C-style strings from the C lan-
guage. Among the many functions provided are two for copying one string into another:
strcpy() and strncpy(). strcpy() copies the entire contents of one string into a desig-
nated buffer. The other, strncpy() copies a number of characters from one string to
another. Listing 13.12 demonstrates the use of strcpy().

LISTING 13.12 Using strcpy()

0: //Listing 13.12 Using strcpy()
1:
2: #include <iostream>
3: #include <string.h>
4: using namespace std;
5:
6: int main()
7: {
8: char String1[] = “No man is an island”;
9: char String2[80];
10:
11: strcpy(String2,String1);
12:
13: cout << “String1: “ << String1 << endl;
14: cout << “String2: “ << String2 << endl;
15: return 0;
16: }

String1: No man is an island
String2: No man is an island

This listing is relatively simple. It copies data from one string into another. The
header file string.h is included on line 3. This file contains the prototype of the

strcpy() function. strcpy() takes two character arrays—a destination followed by a
source. On line 11, this function is used to copy String1 into String2.

You have to be careful using the strcpy() function. If the source is larger than the desti-
nation, strcpy() overwrites past the end of the buffer. To protect against this, the
Standard Library also includes strncpy(). This variation takes a maximum number of
characters to copy. strncpy() copies up to the first null character or the maximum num-
ber of characters specified into the destination buffer. Listing 13.13 illustrates the use of
strncpy().

OUTPUT

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 435

LISTING 13.13 Using strncpy()

0: //Listing 13.13 Using strncpy()
1:
2: #include <iostream>
3: #include <string.h>
4:
5: int main()
6: {
7: const int MaxLength = 80;
8: char String1[] = “No man is an island”;
9: char String2[MaxLength+1];
10:
11: strncpy(String2,String1,MaxLength);
12:
13: std::cout << “String1: “ << String1 << std::endl;
14: std::cout << “String2: “ << String2 << std::endl;
15: return 0;
16: }

String1: No man is an island
String2: No man is an island

Once again, a simple listing is presented. Like the preceding listing, this one sim-
ply copies data from one string into another. On line 11, the call to strcpy() has

been changed to a call to strncpy(), which takes a third parameter: the maximum num-
ber of characters to copy. The buffer String2 is declared to take MaxLength+1 characters.
The extra character is for the null, which both strcpy() and strncpy() automatically
add to the end of the string.

OUTPUT

436 Day 13

ANALYSIS

As with the integer array shown in Listing 13.9, character arrays can be
resized using heap allocation techniques and element-by-element copying.
Most flexible string classes provided to C++ programmers use some variation
on that technique to allow strings to grow and shrink or to insert or delete
elements from the middle of the string.

NOTE

String Classes
C++ inherited the null-terminated C-style string and the library of functions that includes
strcpy() from C, but these functions aren’t integrated into an object-oriented frame-
work. The Standard Library includes a String class that provides an encapsulated set of
data and functions for manipulating that data, as well as accessor functions so that the
data itself is hidden from the clients of the String class.

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 436

Managing Arrays and Strings 437

13

Before using this class, you will create a custom String class as an exercise in under-
standing the issues involved. At a minimum, your String class should overcome the
basic limitations of character arrays.

Like all arrays, character arrays are static. You define how large they are. They always
take up that much room in memory, even if you don’t need it all. Writing past the end of
the array is disastrous.

A good String class allocates only as much memory as it needs and always enough to
hold whatever it is given. If it can’t allocate enough memory, it should fail gracefully.

Listing 13.14 provides a first approximation of a String class.

This custom String class is quite limited and is by no means complete,
robust, or ready for commercial use. That is fine, however, as the Standard
Library does provide a complete and robust String class.

NOTE

LISTING 13.14 Using a String class

0: //Listing 13.14 Using a String class
1:
2: #include <iostream>
3: #include <string.h>
4: using namespace std;
5:
6: // Rudimentary string class
7: class String
8: {
9: public:
10: // constructors
11: String();
12: String(const char *const);
13: String(const String &);
14: ~String();
15:
16: // overloaded operators
17: char & operator[](unsigned short offset);
18: char operator[](unsigned short offset) const;
19: String operator+(const String&);
20: void operator+=(const String&);
21: String & operator= (const String &);
22:
23: // General accessors
24: unsigned short GetLen()const { return itsLen; }
25: const char * GetString() const { return itsString; }
26:
27: private:

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 437

28: String (unsigned short); // private constructor
29: char * itsString;
30: unsigned short itsLen;
31: };
32:
33: // default constructor creates string of 0 bytes
34: String::String()
35: {
36: itsString = new char[1];
37: itsString[0] = ‘\0’;
38: itsLen=0;
39: }
40:
41: // private (helper) constructor, used only by
42: // class methods for creating a new string of
43: // required size. Null filled.
44: String::String(unsigned short len)
45: {
46: itsString = new char[len+1];
47: for (unsigned short i = 0; i<=len; i++)
48: itsString[i] = ‘\0’;
49: itsLen=len;
50: }
51:
52: // Converts a character array to a String
53: String::String(const char * const cString)
54: {
55: itsLen = strlen(cString);
56: itsString = new char[itsLen+1];
57: for (unsigned short i = 0; i<itsLen; i++)
58: itsString[i] = cString[i];
59: itsString[itsLen]=’\0’;
60: }
61:
62: // copy constructor
63: String::String (const String & rhs)
64: {
65: itsLen=rhs.GetLen();
66: itsString = new char[itsLen+1];
67: for (unsigned short i = 0; i<itsLen;i++)
68: itsString[i] = rhs[i];
69: itsString[itsLen] = ‘\0’;
70: }
71:
72: // destructor, frees allocated memory
73: String::~String ()
74: {
75: delete [] itsString;
76: itsLen = 0;
77: }

438 Day 13

LISTING 13.14 continued

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 438

Managing Arrays and Strings 439

13

78:
79: // operator equals, frees existing memory
80: // then copies string and size
81: String& String::operator=(const String & rhs)
82: {
83: if (this == &rhs)
84: return *this;
85: delete [] itsString;
86: itsLen=rhs.GetLen();
87: itsString = new char[itsLen+1];
88: for (unsigned short i = 0; i<itsLen;i++)
89: itsString[i] = rhs[i];
90: itsString[itsLen] = ‘\0’;
91: return *this;
92: }
93:
94: //nonconstant offset operator, returns
95: // reference to character so it can be
96: // changed!
97: char & String::operator[](unsigned short offset)
98: {
99: if (offset > itsLen)
100: return itsString[itsLen-1];
101: else
102: return itsString[offset];
103: }
104:
105: // constant offset operator for use
106: // on const objects (see copy constructor!)
107: char String::operator[](unsigned short offset) const
108: {
109: if (offset > itsLen)
110: return itsString[itsLen-1];
111: else
112: return itsString[offset];
113: }
114:
115: // creates a new string by adding current
116: // string to rhs
117: String String::operator+(const String& rhs)
118: {
119: unsigned short totalLen = itsLen + rhs.GetLen();
120: String temp(totalLen);
121: unsigned short i;
122: for (i= 0; i<itsLen; i++)
123: temp[i] = itsString[i];
124: for (unsigned short j = 0; j<rhs.GetLen(); j++, i++)
125: temp[i] = rhs[j];
126: temp[totalLen]=’\0’;
127: return temp;

LISTING 13.14 continued

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 439

128: }
129:
130: // changes current string, returns nothing
131: void String::operator+=(const String& rhs)
132: {
133: unsigned short rhsLen = rhs.GetLen();
134: unsigned short totalLen = itsLen + rhsLen;
135: String temp(totalLen);
136: unsigned short i;
137: for (i = 0; i<itsLen; i++)
138: temp[i] = itsString[i];
139: for (unsigned short j = 0; j<rhs.GetLen(); j++, i++)
140: temp[i] = rhs[i-itsLen];
141: temp[totalLen]=’\0’;
142: *this = temp;
143: }
144:
145: int main()
146: {
147: String s1(“initial test”);
148: cout << “S1:\t” << s1.GetString() << endl;
149:
150: char * temp = “Hello World”;
151: s1 = temp;
152: cout << “S1:\t” << s1.GetString() << endl;
153:
154: char tempTwo[20];
155: strcpy(tempTwo,”; nice to be here!”);
156: s1 += tempTwo;
157: cout << “tempTwo:\t” << tempTwo << endl;
158: cout << “S1:\t” << s1.GetString() << endl;
159:
160: cout << “S1[4]:\t” << s1[4] << endl;
161: s1[4]=’x’;
162: cout << “S1:\t” << s1.GetString() << endl;
163:
164: cout << “S1[999]:\t” << s1[999] << endl;
165:
166: String s2(“ Another string”);
167: String s3;
168: s3 = s1+s2;
169: cout << “S3:\t” << s3.GetString() << endl;
170:
171: String s4;
172: s4 = “Why does this work?”;
173: cout << “S4:\t” << s4.GetString() << endl;
174: return 0;
175: }

440 Day 13

LISTING 13.14 continued

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 440

Managing Arrays and Strings 441

13

S1: initial test
S1: Hello World
tempTwo: ; nice to be here!
S1: Hello World; nice to be here!
S1[4]: o
S1: Hellx World; nice to be here!
S1[999]: !
S3: Hellx World; nice to be here! Another string
S4: Why does this work?

Your String class’s declaration is on lines 7–31. To add flexibility to the class,
there are three constructors in lines 11–13: the default constructor, the copy con-

structor, and a constructor that takes an existing null-terminated (C-style) string.

To allow the your users to manipulate strings easily, this String class overloads several
operators including the offset operator ([]), operator plus (+), and operator plus-equals
(+=). The offset operator is overloaded twice: once as a constant function returning a
char and again as a nonconstant function returning a reference to a char.

The nonconstant version is used in statements such as

S1[4]=’x’;

as seen on line 161. This enables direct access to each of the characters in the string.
A reference to the character is returned so that the calling function can manipulate it.

The constant version is used when a constant String object is being accessed, such as in
the implementation of the copy constructor starting on line 63. Note that rhs[i] is
accessed, yet rhs is declared as a const String &. It isn’t legal to access this object by
using a nonconstant member function. Therefore, the offset operator must be overloaded
with a constant accessor. If the object being returned were large, you might want to
declare the return value to be a constant reference. However, because a char is only one
byte, there would be no point in doing that.

The default constructor is implemented on lines 34–39. It creates a string whose length is
0. It is the convention of this String class to report its length not counting the terminat-
ing null. This default string contains only a terminating null.

The copy constructor is implemented on lines 63–70. This constructor sets the new
string’s length to that of the existing string—plus one for the terminating null. It copies
each character from the existing string to the new string, and it null-terminates the new
string. Remember that, unlike assignment operators, copy constructors do not need to test
if the string being copied into this new object is itself—that can never happen.

Stepping back, you see in lines 53–60 the implementation of the constructor that takes an
existing C-style string. This constructor is similar to the copy constructor. The length of

OUTPUT

ANALYSIS

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 441

the existing string is established by a call to the standard String library function
strlen().

On line 28, another constructor, String(unsigned short), is declared to be a private
member function. It is the intent of the designer of this class that no client class ever cre-
ate a String of arbitrary length. This constructor exists only to help in the internal cre-
ation of Strings as required, for example, by operator+=, on line 131. This is discussed
in depth when operator+= is described later.

On lines 44–50, you can see that the String(unsigned short) constructor fills every
member of its array with a null character (‘\0’). Therefore, the for loop checks for
i<=len rather than i<len.

The destructor, implemented on lines 73–77, deletes the character string maintained by
the class. Be certain to include the brackets in the call to the delete operator so that
every member of the array is deleted, instead of only the first.

The assignment operator is overloaded on lines 81–92. This method first checks to see
whether the right-hand side of the assignment is the same as the left-hand side. If it isn’t,
the current string is deleted, and the new string is created and copied into place. A refer-
ence is returned to facilitate stacked assignments such as

String1 = String2 = String3;

Another overloaded operator is the offset operator. This operator is overloaded twice,
first on lines 97–103 and again on lines 107–113. Rudimentary bounds checking is per-
formed both times. If the user attempts to access a character at a location beyond the end
of the array, the last character—that is, len-1—is returned.

Lines 117–127 implement the overloading of the operator plus (+) as a concatenation
operator. It is convenient to be able to write

String3 = String1 + String2;

and have String3 be the concatenation of the other two strings. To accomplish this, the
operator plus function computes the combined length of the two strings and creates a
temporary string temp. This invokes the private constructor, which takes an integer, and
creates a string filled with nulls. The nulls are then replaced by the contents of the two
strings. The left-hand side string (*this) is copied first, followed by the right-hand side
string (rhs). The first for loop counts through the string on the left-hand side and adds
each character to the new string. The second for loop counts through the right-hand side.
Note that i continues to count the place for the new string, even as j counts into the rhs
string.

442 Day 13

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 442

Managing Arrays and Strings 443

13

On line 127, operator plus returns the string, temp, by value, which is assigned to the
string on the left-hand side of the assignment (string1). On lines 131–143, operator +=
operates on the existing string—that is, the left-hand side of the statement string1 +=
string2. It works the same as operator plus, except that the temporary value, temp, is
assigned to the current string (*this = temp) on line 142.

The main() function (lines 145–175) acts as a test driver program for this class. Line 147
creates a String object by using the constructor that takes a null-terminated C-style
string. Line 148 prints its contents by using the accessor function GetString(). Line 150
creates a second C-style string, which is assigned on line 151 to the original string, s1.
Line 152 prints the result of this assignment, thus showing that the overloading of the
assignment operator truly does work.

Line 154 creates a third C-style string called tempTwo. Line 155 invokes strcpy() to fill
the buffer with the characters ; nice to be here! Line 156 invokes the overloaded
operator += in order to concatenate tempTwo onto the existing string s1. Line 158 prints
the results.

On line 160, the fifth character in s1 is accessed using the overloaded offset operator.
This value is printed. On line 161, a new value of ‘x’ is assigned to this character within
the string. This invokes the nonconstant offset operator ([]). Line 162 prints the result,
which shows that the actual value has, in fact, been changed.

Line 164 attempts to access a character beyond the end of the array. From the informa-
tion printed, you can see that the last character of the array is returned, as designed.

Lines 166 and 167 create two more String objects, and line 168 calls the addition opera-
tor. Line 169 prints the results.

Line 171 creates a new String object, s4. Line 172 uses the overloaded assignment
operator to assign a literal C-style string to s4. Line 173 prints the results. You might be
thinking, “The assignment operator is defined to take a constant String reference on line
21, but here the program passes in a C-style string. Why is this legal?”

The answer is that the compiler expects a String, but it is given a character array.
Therefore, it checks whether it can create a String from what it is given. On line 12, you
declared a constructor that creates Strings from character arrays. The compiler creates a
temporary String from the character array and passes it to the assignment operator. This
is known as implicit casting, or promotion. If you had not declared—and provided the
implementation for—the constructor that takes a character array, this assignment would
have generated a compiler error.

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 443

In looking through Listing 13.14, you see that the String class that you’ve built is begin-
ning to become pretty robust. You’ll also realize that it is a longer listing than what
you’ve seen. Fortunately, the Standard C++ Library provides an even more robust String
class that you’ll be able to use by including the <string> library.

Linked Lists and Other Structures
Arrays are much like Tupperware. They are great containers, but they are of a fixed size.
If you pick a container that is too large, you waste space in your storage area. If you pick
one that is too small, its contents spill all over and you have a big mess.

One way to solve this problem is shown in Listing 13.9. However, when you start using
large arrays or when you want to move, delete, or insert entries in the array, the number
of allocations and deallocations can be expensive.

One way to solve such a problem is with a linked list. A linked list is a data structure that
consists of small containers that are designed to link together as needed. The idea is to
write a class that holds one object of your data—such as one Cat or one Rectangle—and
that can point at the next container. You create one container for each object that you
need to store, and you chain them together as needed.

Linked lists are considered an advanced level topic. More information can be found on
them in Appendix E, “A Look at Linked Lists.”

Creating Array Classes
Writing your own array class has many advantages over using the built-in arrays. For
starters, you can prevent array overruns. You might also consider making your array class
dynamically sized: At creation, it might have only one member, growing as needed dur-
ing the course of the program.

You might also want to sort or otherwise order the members of the array. You might have
a need for one or more of these powerful array variants:

• Ordered collection—Each member is in sorted order.

• Set—No member appears more than once.

• Dictionary—This uses matched pairs in which one value acts as a key to retrieve
the other value.

• Sparse array—Indices are permitted for a large set, but only those values actually
added to the array consume memory. Thus, you can ask for SparseArray[5] or
SparseArray[200], but it is possible that memory is allocated only for a small
number of entries.

444 Day 13

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 444

Managing Arrays and Strings 445

13

• Bag—An unordered collection that is added to and retrieved in indeterminate
order.

By overloading the index operator ([]), you can turn a linked list into an ordered col-
lection. By excluding duplicates, you can turn a collection into a set. If each object in the
list has a pair of matched values, you can use a linked list to build a dictionary or a
sparse array.

Writing your own array class has many advantages over using the built-in
arrays. Using the Standard Library implementations of similar classes usually
has advantages over writing your own classes.

NOTE

Summary
Today, you learned how to create arrays in C++. An array is a fixed-size collection of
objects that are all the same type.

Arrays don’t do bounds checking. Therefore, it is legal—even if disastrous—to read or
write past the end of an array. Arrays count from 0. A common mistake is to write to off-
set n of an array of n members.

Arrays can be one dimensional or multidimensional. In either case, the members of the
array can be initialized, as long as the array contains either built-in types, such as int, or
objects of a class that has a default constructor.

Arrays and their contents can be on the free store or on the stack. If you delete an array
on the free store, remember to use the brackets in the call to delete.

Array names are constant pointers to the first elements of the array. Pointers and arrays
use pointer arithmetic to find the next element of an array.

Strings are arrays of characters, or chars. C++ provides special features for managing
char arrays, including the capability to initialize them with quoted strings.

Q&A
Q What is in an uninitialized array element?

A Whatever happens to be in memory at a given time. The results of using an unini-
tialized array member without assigning a value can be unpredictable. If the com-
piler is following the C++ standards, array elements that are static, nonlocal objects
will be zero initialized.

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 445

Q Can I combine arrays?

A Yes. With simple arrays, you can use pointers to combine them into a new, larger
array. With strings, you can use some of the built-in functions, such as strcat, to
combine strings.

Q Why should I create a linked list if an array will work?

A An array must have a fixed size, whereas a linked list can be sized dynamically at
runtime. Appendix E provides more information on creating linked lists.

Q Why would I ever use built-in arrays if I can make a better array class?

A Built-in arrays are quick and easy to use, and you generally need them to build
your better array class.

Q Is there a better construct to use than arrays?

A On Day 19, “Templates,” you learn about templates as well as the Standard
Template Library. This library contains templates for arrays that contain all the
functionality you will generally need. Using these templates is a safer alternative to
building your own.

Q Must a string class use a char * to hold the contents of the string?

A No. It can use any memory storage the designer thinks is best.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson.

Quiz
1. What are the first and last elements in SomeArray[25]?

2. How do you declare a multidimensional array?

3. Initialize the members of an array declared as SomeArray[2][3][2].

4. How many elements are in the array SomeArray[10][5][20]?

5. How does a linked list differ from an array?

6. How many characters are stored in the string “Jesse knows C++”?

7. What is the last character in the string “Brad is a nice guy”?

446 Day 13

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 446

Managing Arrays and Strings 447

13

Exercises
1. Declare a two-dimensional array that represents a tic-tac-toe game board.

2. Write the code that initializes all the elements in the array you created in Exercise
1 to the value 0.

3. Write a program that contains four arrays. Three of the arrays should contain your
first name, middle initial, and last name. Use the string-copying function presented
in today’s lesson to copy these strings together into the fourth array, full name.

4. BUG BUSTERS: What is wrong with this code fragment?
unsigned short SomeArray[5][4];
for (int i = 0; i<4; i++)

for (int j = 0; j<5; j++)
SomeArray[i][j] = i+j;

5. BUG BUSTERS: What is wrong with this code fragment?
unsigned short SomeArray[5][4];
for (int i = 0; i<=5; i++)

for (int j = 0; j<=4; j++)
SomeArray[i][j] = 0;

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 447

17 0672327112_ch13.qxd 11/19/04 12:28 PM Page 448

DAY 14

WEEK 2

Polymorphism
On Day 12, “Implementing Inheritance,” you learned how to write virtual func-
tions in derived classes. This is the fundamental building block of polymor-
phism: the capability to bind specific, derived class objects to base class
pointers at runtime.

Today, you will learn

• What multiple inheritance is and how to use it

• What virtual inheritance is and when to use it

• What abstract classes are and when to use them

• What pure virtual functions are

Problems with Single Inheritance
Suppose you’ve been working with your animal classes for a while, and you’ve
divided the class hierarchy into Birds and Mammals. The Bird class includes the
member function Fly(). The Mammal class has been divided into a number of
types of Mammals, including Horse. The Horse class includes the member func-
tions Whinny() and Gallop().

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 449

Suddenly, you realize you need a Pegasus object: a cross between a Horse and a Bird. A
Pegasus can Fly(), it can Whinny(), and it can Gallop(). With single inheritance, you’re
in quite a jam.

With single inheritance, you can only pull from one of these existing classes. You can
make Pegasus a Bird, but then it won’t be able to Whinny() or Gallop(). You can make
it a Horse, but then it won’t be able to Fly().

Your first solution is to copy the Fly() method into the Pegasus class and derive
Pegasus from Horse. This works fine, at the cost of having the Fly() method in two
places (Bird and Pegasus). If you change one, you must remember to change the other.
Of course, a developer who comes along months or years later to maintain your code
must also know to fix both places.

Soon, however, you have a new problem. You want to create a list of Horse objects and a
list of Bird objects. You’d like to be able to add your Pegasus objects to either list, but if
a Pegasus is a Horse, you can’t add it to a list of Birds.

You have a couple of potential solutions. You can rename the Horse method Gallop() to
Move(), and then override Move() in your Pegasus object to do the work of Fly(). You
would then override Move() in your other horses to do the work of Gallop(). Perhaps
Pegasus could be clever enough to gallop short distances and fly longer distances.

Pegasus::Move(long distance)
{

if (distance > veryFar)
fly(distance);

else
gallop(distance);

}

This is a bit limiting. Perhaps one day Pegasus will want to fly a short distance or gallop
a long distance. Your next solution might be to move Fly() up into Horse, as illustrated
in Listing 14.1. The problem is that most horses can’t fly, so you have to make this
method do nothing unless it is a Pegasus.

LISTING 14.1 If Horses Could Fly…

0: // Listing 14.1. If horses could fly...
1: // Percolating Fly() up into Horse
2:
3: #include <iostream>
4: using namespace std;
5:
6: class Horse
7: {
8: public:

450 Day 14

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 450

Polymorphism 451

14

9: void Gallop(){ cout << “Galloping...\n”; }
10: virtual void Fly() { cout << “Horses can’t fly.\n” ; }
11: private:
12: int itsAge;
13: };
14:
15: class Pegasus : public Horse
16: {
17: public:
18: virtual void Fly()
19: {cout<<”I can fly! I can fly! I can fly!\n”;}
20: };
21:
22: const int NumberHorses = 5;
23: int main()
24: {
25: Horse* Ranch[NumberHorses];
26: Horse* pHorse;
27: int choice,i;
28: for (i=0; i<NumberHorses; i++)
29: {
30: cout << “(1)Horse (2)Pegasus: “;
31: cin >> choice;
32: if (choice == 2)
33: pHorse = new Pegasus;
34: else
35: pHorse = new Horse;
36: Ranch[i] = pHorse;
37: }
38: cout << endl;
39: for (i=0; i<NumberHorses; i++)
40: {
41: Ranch[i]->Fly();
42: delete Ranch[i];
43: }
44: return 0;
45: }

(1)Horse (2)Pegasus: 1
(1)Horse (2)Pegasus: 2
(1)Horse (2)Pegasus: 1
(1)Horse (2)Pegasus: 2
(1)Horse (2)Pegasus: 1

Horses can’t fly.
I can fly! I can fly! I can fly!
Horses can’t fly.
I can fly! I can fly! I can fly!
Horses can’t fly.

OUTPUT

LISTING 14.1 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 451

This program certainly works, although at the expense of the Horse class having
a Fly() method. On line 10, the method Fly() is provided to Horse. In a real-

world class, you might have it issue an error, or fail quietly. On line 18, the Pegasus
class overrides the Fly() method to “do the right thing,” represented here by printing a
happy message.

The array of Horse pointers called Ranch on line 25 is used to demonstrate that the cor-
rect Fly() method is called, based on the runtime binding of the Horse or Pegasus
object.

In lines 28–37, the user is prompted to select a Horse or a Pegasus. An object of the cor-
responding type is then created and placed into the Ranch array.

In lines 38–43, the program loops again through the Ranch array. This time, each object
in the array has its Fly() method called. Depending on whether the object is a Horse or
a Pegasus, the correct Fly() method is called. You can see this in the output. Because
this program will no longer use the objects in Ranch, in line 42 a call to delete is made
to free the memory used by each object.

452 Day 14

ANALYSIS

These examples have been stripped down to their bare essentials to illus-
trate the points under consideration. Constructors, virtual destructors, and
so on have been removed to keep the code simple. This is not recommended
for your programs.

NOTE

Percolating Upward
Putting the required function higher in the class hierarchy is a common solution to this
problem and results in many functions “percolating up” into the base class. The base
class is then in grave danger of becoming a global namespace for all the functions that
might be used by any of the derived classes. This can seriously undermine the class typ-
ing of C++, and can create a large and cumbersome base class.

In general, you want to percolate shared functionality up the hierarchy, without migrating
the interface of each class. This means that if two classes that share a common base class
(for example, Horse and Bird both share Animal) and have a function in common (both
birds and horses eat, for example), you’ll want to move that functionality up into the
base class and create a virtual function.

What you’ll want to avoid, however, is percolating a function (such as Fly) up where it
doesn’t belong just so you can call that function only on some derived classes, when it
doesn’t fit the meaning of that base class.

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 452

Polymorphism 453

14

Casting Down
An alternative to this approach, still within single inheritance, is to keep the Fly()
method within Pegasus and only call it if the pointer is actually pointing to a Pegasus
object. To make this work, you need to be able to ask your pointer what type it is really
pointing to. This is known as Run Time Type Identification (RTTI).

Because RTTI is a newer feature of the C++ specification, not all compilers support it. If
your compiler does not support RTTI, you can mimic it by putting a method that returns
an enumerated type in each of the classes. You can then test that type at runtime and call
Fly() if it returns Pegasus.

Beware of using RTTI in your programs. Needing to use it might be an indi-
cation of poor inheritance hierarchy design. Consider using virtual functions,
templates, or multiple inheritance instead.

CAUTION

In the previous example, you declared both Horse and Pegasus objects and placed them
in an array of Horse objects. Everything was placed as a Horse. With RTTI, you would
check each of these Horses to see if it was just a horse or if indeed a Pegasus had actu-
ally been created.

To call Fly(), however, you must cast the pointer, telling it that the object it is pointing
to is a Pegasus object, not a Horse. This is called casting down because you are casting
the Horse object down to a more derived type.

C++ now officially, though perhaps reluctantly, supports casting down using the new
dynamic_cast operator. Here’s how it works.

If you have a pointer to a base class such as Horse, and you assign to it a pointer to a
derived class, such as Pegasus, you can use the Horse pointer polymorphically. If you
then need to get at the Pegasus object, you create a Pegasus pointer and use the
dynamic_cast operator to make the conversion.

At runtime, the base pointer is examined. If the conversion is proper, your new Pegasus
pointer is fine. If the conversion is improper, if you didn’t really have a Pegasus object
after all, then your new pointer is null. Listing 14.2 illustrates this point.

LISTING 14.2 Casting Down

0: // Listing 14.2 Using dynamic_cast.
1: // Using rtti
2:

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 453

454 Day 14

3: #include <iostream>
4: using namespace std;
5:
6: enum TYPE { HORSE, PEGASUS };
7:
8: class Horse
9: {
10: public:
11: virtual void Gallop(){ cout << “Galloping...\n”; }
12:
13: private:
14: int itsAge;
15: };
16:
17: class Pegasus : public Horse
18: {
19: public:
20: virtual void Fly()
21: {cout<<”I can fly! I can fly! I can fly!\n”;}
22: };
23:
24: const int NumberHorses = 5;
25: int main()
26: {
27: Horse* Ranch[NumberHorses];
28: Horse* pHorse;
29: int choice,i;
30: for (i=0; i<NumberHorses; i++)
31: {
32: cout << “(1)Horse (2)Pegasus: “;
33: cin >> choice;
34: if (choice == 2)
35: pHorse = new Pegasus;
36: else
37: pHorse = new Horse;
38: Ranch[i] = pHorse;
39: }
40: cout << endl;
41: for (i=0; i<NumberHorses; i++)
42: {
43: Pegasus *pPeg = dynamic_cast< Pegasus *> (Ranch[i]);
44: if (pPeg != NULL)
45: pPeg->Fly();
46: else
47: cout << “Just a horse\n”;
48:
49: delete Ranch[i];
50: }
51: return 0;
52: }

LISTING 14.2 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 454

Polymorphism 455

14

(1)Horse (2)Pegasus: 1
(1)Horse (2)Pegasus: 2
(1)Horse (2)Pegasus: 1
(1)Horse (2)Pegasus: 2
(1)Horse (2)Pegasus: 1

Just a horse
I can fly! I can fly! I can fly!
Just a horse
I can fly! I can fly! I can fly!
Just a horse

OUTPUT

FAQ

When compiling, I got a warning from Microsoft Visual C++: “warning C4541:
‘dynamic_cast’ used on polymorphic type ‘class Horse’ with /GR-; unpredictable behavior
may result.” What should I do? When running this program, I get a message:

“This application has requested the Runtime to terminate it in an unusual way. Please
contact the application’s support team for more information.”

Answer: These are some of this compiler’s most confusing error messages. To fix these, do
the following:

1. In your project, choose Project, Settings.

2. Go to the C++ tab.

3. Change the drop-down to C++ Language.

4. Click Enable Runtime Type Information (RTTI).

5. Rebuild your entire project.

Alternatively, if you are using the command-line compiler for Visual C++, add the /GR
flag:

cl /GR List1402.cpp

This solution also works; however, it is not recommended.

The desired results are achieved. Fly() is kept out of Horse, and it is not called on Horse
objects. When it is called on Pegasus objects (line 45), however, the objects must be
explicitly cast (line 43); Horse objects don’t have the method Fly(), so the pointer must
be told it is pointing to a Pegasus object before being used.

The need for you to cast the Pegasus object is a warning that something might be wrong
with your design. This program effectively undermines the virtual function polymor-
phism because it depends on casting the object to its real runtime type.

ANALYSIS

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 455

456 Day 14

Adding to Two Lists
The other problem with these solutions is that you’ve declared Pegasus to be a type of
Horse, so you cannot add a Pegasus object to a list of Birds. You’ve paid the price of
either moving Fly() up into Horse or casting down the pointer, and yet you still don’t
have the full functionality you need.

One final, single inheritance solution presents itself. You can push Fly(), Whinny(), and
Gallop() all up into a common base class of both Bird and Horse: Animal. Now, instead
of having a list of Birds and a list of Horses, you can have one unified list of Animals.
This works, but eventually leads to a base class that has all of the characteristics of all of
its descendant classes. So who needs descendant classes then?

Alternatively, you can leave the methods where they are and cast down Horses and Birds
and Pegasus objects, but that is even worse!

DO move functionality up the inheri-
tance hierarchy when it is conceptually
cohesive with the meaning of the ances-
tor class.

DO avoid performing actions based on
the runtime type of the object—use vir-
tual methods, templates, and multiple
inheritance.

DON’T clutter ancestor classes with capa-
bilities that are only added to support a
need for polymorphism in descendant
classes.

DON’T cast pointers to base objects
down to derived objects.

DO DON’T

Multiple Inheritance
It is possible to derive a new class from more than one base class. This is called multiple
inheritance. To derive from more than the base class, you separate each base class by
commas in the class designation, as shown here:

class DerivedClass : public BaseClass1, public BaseClass2 {}

This is exactly like declaring single inheritance with an additional base class,
BaseClass2, added.

Listing 14.3 illustrates how to declare Pegasus so that it derives from both Horses and
Birds. The program then adds Pegasus objects to both types of lists.

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 456

Polymorphism 457

14

LISTING 14.3 Multiple Inheritance

0: // Listing 14.3. Multiple inheritance.
1:
2: #include <iostream>
3: using std::cout;
4: using std::cin;
5: using std::endl;
6:
7: class Horse
8: {
9: public:
10: Horse() { cout << “Horse constructor... “; }
11: virtual ~Horse() { cout << “Horse destructor... “; }
12: virtual void Whinny() const { cout << “Whinny!... “; }
13: private:
14: int itsAge;
15: };
16:
17: class Bird
18: {
19: public:
20: Bird() { cout << “Bird constructor... “; }
21: virtual ~Bird() { cout << “Bird destructor... “; }
22: virtual void Chirp() const { cout << “Chirp... “; }
23: virtual void Fly() const
24: {
25: cout << “I can fly! I can fly! I can fly! “;
26: }
27: private:
28: int itsWeight;
29: };
30:
31: class Pegasus : public Horse, public Bird
32: {
33: public:
34: void Chirp() const { Whinny(); }
35: Pegasus() { cout << “Pegasus constructor... “; }
36: ~Pegasus() { cout << “Pegasus destructor... “; }
37: };
38:
39: const int MagicNumber = 2;
40: int main()
41: {
42: Horse* Ranch[MagicNumber];
43: Bird* Aviary[MagicNumber];
44: Horse * pHorse;
45: Bird * pBird;
46: int choice,i;
47: for (i=0; i<MagicNumber; i++)

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 457

458 Day 14

48: {
49: cout << “\n(1)Horse (2)Pegasus: “;
50: cin >> choice;
51: if (choice == 2)
52: pHorse = new Pegasus;
53: else
54: pHorse = new Horse;
55: Ranch[i] = pHorse;
56: }
57: for (i=0; i<MagicNumber; i++)
58: {
59: cout << “\n(1)Bird (2)Pegasus: “;
60: cin >> choice;
61: if (choice == 2)
62: pBird = new Pegasus;
63: else
64: pBird = new Bird;
65: Aviary[i] = pBird;
66: }
67:
68: cout << endl;
69: for (i=0; i<MagicNumber; i++)
70: {
71: cout << “\nRanch[“ << i << “]: “ ;
72: Ranch[i]->Whinny();
73: delete Ranch[i];
74: }
75:
76: for (i=0; i<MagicNumber; i++)
77: {
78: cout << “\nAviary[“ << i << “]: “ ;
79: Aviary[i]->Chirp();
80: Aviary[i]->Fly();
81: delete Aviary[i];
82: }
83: return 0;
84: }

(1)Horse (2)Pegasus: 1
Horse constructor...
(1)Horse (2)Pegasus: 2
Horse constructor... Bird constructor... Pegasus constructor...
(1)Bird (2)Pegasus: 1
Bird constructor...
(1)Bird (2)Pegasus: 2
Horse constructor... Bird constructor... Pegasus constructor...

OUTPUT

LISTING 14.3 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 458

Polymorphism 459

14

Ranch[0]: Whinny!... Horse destructor...
Ranch[1]: Whinny!... Pegasus destructor... Bird destructor...
Horse destructor...
Aviary[0]: Chirp... I can fly! I can fly! I can fly! Bird destructor...
Aviary[1]: Whinny!... I can fly! I can fly! I can fly!
Pegasus destructor... Bird destructor... Horse destructor...

On lines 7–15, a Horse class is declared. The constructor and destructor print out
a message, and the Whinny() method prints Whinny!....

On lines 17–29, a Bird class is declared. In addition to its constructor and destructor, this
class has two methods: Chirp() and Fly(), both of which print identifying messages. In
a real program, these might, for example, activate the speaker or generate animated
images.

Finally, on lines 31–37, you see the new code—using multiple inheritance, the class
Pegasus is declared. In line 31, you can see that this class is derived from both Horse
and Bird. The Pegasus class overrides the Chirp() method in line 34. The Pegasus’
Chirp() method simply does a call to the Whinny() method, which it inherits from
Horse.

In the main section of this program, two lists are created: a Ranch with pointers to Horse
objects on line 42, and an Aviary with pointers to Bird objects on line 43. On lines
47–56, Horse and Pegasus objects are added to the Ranch. On lines 57–66, Bird and
Pegasus objects are added to the Aviary.

Invocations of the virtual methods on both the Bird pointers and the Horse pointers do
the right things for Pegasus objects. For example, on line 79 the members of the Aviary
array are used to call Chirp() on the objects to which they point. The Bird class declares
this to be a virtual method, so the right function is called for each object.

Note that each time a Pegasus object is created, the output reflects that both the Bird
part and the Horse part of the Pegasus object are also created. When a Pegasus object is
destroyed, the Bird and Horse parts are destroyed as well, thanks to the destructors being
made virtual.

ANALYSIS

Declaring Multiple Inheritance

Declare an object to inherit from more than one class by listing the base classes following
the colon after the class name. Separate the base classes by commas.

Example 1

class Pegasus : public Horse, public Bird

Example 2

class Schnoodle : public Schnauzer, public Poodle

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 459

460 Day 14

The Parts of a Multiply Inherited Object
When the Pegasus object is created in memory, both the base classes form part of the
Pegasus object, as illustrated in Figure 14.1. This figure represents an entire Pegasus
object. This includes the new features added in the Pegasus class and the features picked
up from the base classes.

FIGURE 14.1
Multiply inherited
objects. Horse

Bird

Pegasus

Several issues arise with objects with multiple base classes. For example, what happens
if two base classes that happen to have the same name have virtual functions or data?
How are multiple base class constructors initialized? What happens if multiple base
classes both derive from the same class? The next sections answer these questions and
explore how multiple inheritance can be put to work.

Constructors in Multiply Inherited Objects
If Pegasus derives from both Horse and Bird, and each of the base classes has construc-
tors that take parameters, the Pegasus class initializes these constructors in turn. Listing
14.4 illustrates how this is done.

LISTING 14.4 Calling Multiple Constructors

0: // Listing 14.4
1: // Calling multiple constructors
2:
3: #include <iostream>
4: using namespace std;
5:
6: typedef int HANDS;
7: enum COLOR { Red, Green, Blue, Yellow, White, Black, Brown } ;
8:
9: class Horse
10: {
11: public:

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 460

Polymorphism 461

14

12: Horse(COLOR color, HANDS height);
13: virtual ~Horse() { cout << “Horse destructor...\n”; }
14: virtual void Whinny()const { cout << “Whinny!... “; }
15: virtual HANDS GetHeight() const { return itsHeight; }
16: virtual COLOR GetColor() const { return itsColor; }
17: private:
18: HANDS itsHeight;
19: COLOR itsColor;
20: };
21:
22: Horse::Horse(COLOR color, HANDS height):
23: itsColor(color),itsHeight(height)
24: {
25: cout << “Horse constructor...\n”;
26: }
27:
28: class Bird
29: {
30: public:
31: Bird(COLOR color, bool migrates);
32: virtual ~Bird() {cout << “Bird destructor...\n”; }
33: virtual void Chirp()const { cout << “Chirp... “; }
34: virtual void Fly()const
35: {
36: cout << “I can fly! I can fly! I can fly! “;
37: }
38: virtual COLOR GetColor()const { return itsColor; }
39: virtual bool GetMigration() const { return itsMigration; }
40:
41: private:
42: COLOR itsColor;
43: bool itsMigration;
44: };
45:
46: Bird::Bird(COLOR color, bool migrates):
47: itsColor(color), itsMigration(migrates)
48: {
49: cout << “Bird constructor...\n”;
50: }
51:
52: class Pegasus : public Horse, public Bird
53: {
54: public:
55: void Chirp()const { Whinny(); }
56: Pegasus(COLOR, HANDS, bool,long);
57: ~Pegasus() {cout << “Pegasus destructor...\n”;}
58: virtual long GetNumberBelievers() const
59: {

LISTING 14.4 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 461

462 Day 14

60: return itsNumberBelievers;
61: }
62:
63: private:
64: long itsNumberBelievers;
65: };
66:
67: Pegasus::Pegasus(
68: COLOR aColor,
69: HANDS height,
70: bool migrates,
71: long NumBelieve):
72: Horse(aColor, height),
73: Bird(aColor, migrates),
74: itsNumberBelievers(NumBelieve)
75: {
76: cout << “Pegasus constructor...\n”;
77: }
78:
79: int main()
80: {
81: Pegasus *pPeg = new Pegasus(Red, 5, true, 10);
82: pPeg->Fly();
83: pPeg->Whinny();
84: cout << “\nYour Pegasus is “ << pPeg->GetHeight();
85: cout << “ hands tall and “;
86: if (pPeg->GetMigration())
87: cout << “it does migrate.”;
88: else
89: cout << “it does not migrate.”;
90: cout << “\nA total of “ << pPeg->GetNumberBelievers();
91: cout << “ people believe it exists.” << endl;
92: delete pPeg;
93: return 0;
94: }

Horse constructor...
Bird constructor...
Pegasus constructor...
I can fly! I can fly! I can fly! Whinny!...
Your Pegasus is 5 hands tall and it does migrate.
A total of 10 people believe it exists.
Pegasus destructor...
Bird destructor...
Horse destructor...

OUTPUT

LISTING 14.4 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 462

Polymorphism 463

14

On lines 9–20, the Horse class is declared. The constructor takes two parameters:
One is an enumeration for colors, which is declared on line 7, and the other is a

typedef declared on line 6. The implementation of the constructor on lines 22–26 simply
initializes the member variables and prints a message.

On lines 28–44, the Bird class is declared, and the implementation of its constructor is
on lines 46–50. Again, the Bird class takes two parameters. Interestingly, the Horse con-
structor takes color (so that you can detect horses of different colors), and the Bird con-
structor takes the color of the feathers (so those of one feather can stick together). This
leads to a problem when you want to ask the Pegasus for its color, which you’ll see in
the next example.

The Pegasus class itself is declared on lines 52–65, and its constructor is on lines 67–77.
The initialization of the Pegasus object includes three statements. First, the Horse con-
structor is initialized with color and height (line 72). Then, the Bird constructor is initial-
ized with color and the Boolean indicating if it migrates (line 73). Finally, the Pegasus
member variable itsNumberBelievers is initialized. After all that is accomplished, the
body of the Pegasus constructor is called.

In the main() function, a Pegasus pointer is created in line 81. This object is then used
to access the member functions that were derived from the base classes. The access of
these methods is straightforward.

Ambiguity Resolution
In Listing 14.4, both the Horse class and the Bird class have a method GetColor().
You’ll notice that these methods were not called in Listing 14.4! You might need to ask
the Pegasus object to return its color, but you have a problem—the Pegasus class inher-
its from both Bird and Horse. They both have a color, and their methods for getting that
color have the same names and signature. This creates an ambiguity for the compiler,
which you must resolve.

If you simply write

COLOR currentColor = pPeg->GetColor();

you receive a compiler error:

Member is ambiguous: ‘Horse::GetColor’ and ‘Bird::GetColor’

You can resolve the ambiguity with an explicit call to the function you want to invoke:

COLOR currentColor = pPeg->Horse::GetColor();

ANALYSIS

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 463

464 Day 14

Any time you need to resolve which class a member function or member data inherits
from, you can fully qualify the call by prepending the class name to the base class data
or function.

Note that if Pegasus were to override this function, the problem would be moved, as it
should be, into the Pegasus member function:

virtual COLOR GetColor()const { return Horse::GetColor(); }

This hides the problem from clients of the Pegasus class and encapsulates within
Pegasus the knowledge of which base class from which it wants to inherit its color. A
client is still free to force the issue by writing

COLOR currentColor = pPeg->Bird::GetColor();

Inheriting from Shared Base Class
What happens if both Bird and Horse inherit from a common base class, such as
Animal? Figure 14.2 illustrates what this looks like.

FIGURE 14.2
Common base classes.

Animal

Horse

Animal

Bird

Pegasus

As you can see in Figure 14.2, two base class objects exist. When a function or data
member is called in the shared base class, another ambiguity exists. For example, if
Animal declares itsAge as a member variable and GetAge() as a member function, and
you call pPeg->GetAge(), did you mean to call the GetAge() function you inherit from
Animal by way of Horse, or by way of Bird? You must resolve this ambiguity as well, as
illustrated in Listing 14.5.

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 464

Polymorphism 465

14

LISTING 14.5 Common Base Classes

0: // Listing 14.5
1: // Common base classes
2:
3: #include <iostream>
4: using namespace std;
5:
6: typedef int HANDS;
7: enum COLOR { Red, Green, Blue, Yellow, White, Black, Brown } ;
8:
9: class Animal // common base to both horse and bird
10: {
11: public:
12: Animal(int);
13: virtual ~Animal() { cout << “Animal destructor...\n”; }
14: virtual int GetAge() const { return itsAge; }
15: virtual void SetAge(int age) { itsAge = age; }
16: private:
17: int itsAge;
18: };
19:
20: Animal::Animal(int age):
21: itsAge(age)
22: {
23: cout << “Animal constructor...\n”;
24: }
25:
26: class Horse : public Animal
27: {
28: public:
29: Horse(COLOR color, HANDS height, int age);
30: virtual ~Horse() { cout << “Horse destructor...\n”; }
31: virtual void Whinny()const { cout << “Whinny!... “; }
32: virtual HANDS GetHeight() const { return itsHeight; }
33: virtual COLOR GetColor() const { return itsColor; }
34: protected:
35: HANDS itsHeight;
36: COLOR itsColor;
37: };
38:
39: Horse::Horse(COLOR color, HANDS height, int age):
40: Animal(age),
41: itsColor(color),itsHeight(height)
42: {
43: cout << “Horse constructor...\n”;
44: }
45:
46: class Bird : public Animal
47: {
48: public:

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 465

466 Day 14

49: Bird(COLOR color, bool migrates, int age);
50: virtual ~Bird() {cout << “Bird destructor...\n”; }
51: virtual void Chirp()const { cout << “Chirp... “; }
52: virtual void Fly()const
53: { cout << “I can fly! I can fly! I can fly! “; }
54: virtual COLOR GetColor()const { return itsColor; }
55: virtual bool GetMigration() const { return itsMigration; }
56: protected:
57: COLOR itsColor;
58: bool itsMigration;
59: };
60:
61: Bird::Bird(COLOR color, bool migrates, int age):
62: Animal(age),
63: itsColor(color), itsMigration(migrates)
64: {
65: cout << “Bird constructor...\n”;
66: }
67:
68: class Pegasus : public Horse, public Bird
69: {
70: public:
71: void Chirp()const { Whinny(); }
72: Pegasus(COLOR, HANDS, bool, long, int);
73: virtual ~Pegasus() {cout << “Pegasus destructor...\n”;}
74: virtual long GetNumberBelievers() const
75: { return itsNumberBelievers; }
76: virtual COLOR GetColor()const { return Horse::itsColor; }
77: virtual int GetAge() const { return Horse::GetAge(); }
78: private:
79: long itsNumberBelievers;
80: };
81:
82: Pegasus::Pegasus(
83: COLOR aColor,
84: HANDS height,
85: bool migrates,
86: long NumBelieve,
87: int age):
88: Horse(aColor, height,age),
89: Bird(aColor, migrates,age),
90: itsNumberBelievers(NumBelieve)
91: {
92: cout << “Pegasus constructor...\n”;
93: }
94:
95: int main()
96: {
97: Pegasus *pPeg = new Pegasus(Red, 5, true, 10, 2);

LISTING 14.5 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 466

Polymorphism 467

14

98: int age = pPeg->GetAge();
99: cout << “This pegasus is “ << age << “ years old.\n”;
100: delete pPeg;
101: return 0;
102: }

Animal constructor...
Horse constructor...
Animal constructor...
Bird constructor...
Pegasus constructor...
This pegasus is 2 years old.
Pegasus destructor...
Bird destructor...
Animal destructor...
Horse destructor...
Animal destructor...

Several interesting features are in this listing. The Animal class is declared on lines
9–18. Animal adds one member variable, itsAge, and two accessors: GetAge()

and SetAge().

On line 26, the Horse class is declared to derive from Animal. The Horse constructor
now has a third parameter, age, which it passes to its base class, Animal (see line 40).
Note that the Horse class does not override GetAge(), it simply inherits it.

On line 46, the Bird class is declared to derive from Animal. Its constructor also takes an
age and uses it to initialize its base class, Animal (see line 62). It also inherits GetAge()
without overriding it.

Pegasus inherits from both Bird and Horse in line 68, and so has two Animal classes in
its inheritance chain. If you were to call GetAge() on a Pegasus object, you would have
to disambiguate, or fully qualify, the method you want if Pegasus did not override the
method.

This is solved on line 77 when the Pegasus object overrides GetAge() to do nothing
more than to chain up—that is, to call the same method in a base class.

Chaining up is done for two reasons: either to disambiguate which base class to call, as
in this case, or to do some work and then let the function in the base class do some more
work. At times, you might want to do work and then chain up, or chain up and then do
the work when the base class function returns.

The Pegasus constructor, which starts on line 82, takes five parameters: the creature’s
color, its height (in HANDS), whether it migrates, how many believe in it, and its age.

OUTPUT

LISTING 14.5 continued

ANALYSIS

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 467

468 Day 14

The constructor initializes the Horse part of the Pegasus with the color, height, and age
on line 88. It initializes the Bird part with color, whether it migrates, and age on line 89.
Finally, it initializes itsNumberBelievers on line 90.

The call to the Horse constructor on line 88 invokes the implementation shown on line
39. The Horse constructor uses the age parameter to initialize the Animal part of the
Horse part of the Pegasus. It then goes on to initialize the two member variables of
Horse—itsColor and itsHeight.

The call to the Bird constructor on line 89 invokes the implementation shown on line 61.
Here, too, the age parameter is used to initialize the Animal part of the Bird.

Note that the color parameter to the Pegasus is used to initialize member variables in
each of Bird and Horse. Note also that the age is used to initialize itsAge in the Horse’s
base Animal and in the Bird’s base Animal.

Keep in mind that whenever you explicitly disambiguate an ancestor class,
you create a risk that a new class inserted between your class and its ances-
tor will cause this class to inadvertently call “past” the new ancestor into the
old ancestor, and this can have unexpected effects.

CAUTION

Virtual Inheritance
In Listing 14.5, the Pegasus class went to some lengths to disambiguate which of its
Animal base classes it meant to invoke. Most of the time, the decision as to which one to
use is arbitrary—after all, the Horse and the Bird have the same base class.

It is possible to tell C++ that you do not want two copies of the shared base class,
as shown in Figure 14.2, but rather to have a single shared base class, as shown in
Figure 14.3.

You accomplish this by making Animal a virtual base class of both Horse and Bird. The
Animal class does not change at all. The Horse and Bird classes change only in their use
of the term virtual in their declarations. Pegasus, however, changes substantially.

Normally, a class’s constructor initializes only its own variables and its base class.
Virtually inherited base classes are an exception, however. They are initialized by their
most derived class. Thus, Animal is initialized not by Horse and Bird, but by Pegasus.
Horse and Bird have to initialize Animal in their constructors, but these initializations
will be ignored when a Pegasus object is created.

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 468

Polymorphism 469

14

Listing 14.6 rewrites Listing 14.5 to take advantage of virtual derivation.

LISTING 14.6 Illustration of the Use of Virtual Inheritance

0: // Listing 14.6
1: // Virtual inheritance
2: #include <iostream>
3: using namespace std;
4:
5: typedef int HANDS;
6: enum COLOR { Red, Green, Blue, Yellow, White, Black, Brown } ;
7:
8: class Animal // common base to both horse and bird
9: {
10: public:
11: Animal(int);
12: virtual ~Animal() { cout << “Animal destructor...\n”; }
13: virtual int GetAge() const { return itsAge; }
14: virtual void SetAge(int age) { itsAge = age; }
15: private:
16: int itsAge;
17: };
18:
19: Animal::Animal(int age):
20: itsAge(age)
21: {
22: cout << “Animal constructor...\n”;
23: }
24:
25: class Horse : virtual public Animal

FIGURE 14.3
A diamond
inheritance. Animal

Horse Bird

Pegasus

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 469

470 Day 14

26: {
27: public:
28: Horse(COLOR color, HANDS height, int age);
29: virtual ~Horse() { cout << “Horse destructor...\n”; }
30: virtual void Whinny()const { cout << “Whinny!... “; }
31: virtual HANDS GetHeight() const { return itsHeight; }
32: virtual COLOR GetColor() const { return itsColor; }
33: protected:
34: HANDS itsHeight;
35: COLOR itsColor;
36: };
37:
38: Horse::Horse(COLOR color, HANDS height, int age):
39: Animal(age),
40: itsColor(color),itsHeight(height)
41: {
42: cout << “Horse constructor...\n”;
43: }
44:
45: class Bird : virtual public Animal
46: {
47: public:
48: Bird(COLOR color, bool migrates, int age);
49: virtual ~Bird() {cout << “Bird destructor...\n”; }
50: virtual void Chirp()const { cout << “Chirp... “; }
51: virtual void Fly()const
52: { cout << “I can fly! I can fly! I can fly! “; }
53: virtual COLOR GetColor()const { return itsColor; }
54: virtual bool GetMigration() const { return itsMigration; }
55: protected:
56: COLOR itsColor;
57: bool itsMigration;
58: };
59:
60: Bird::Bird(COLOR color, bool migrates, int age):
61: Animal(age),
62: itsColor(color), itsMigration(migrates)
63: {
64: cout << “Bird constructor...\n”;
65: }
66:
67: class Pegasus : public Horse, public Bird
68: {
69: public:
70: void Chirp()const { Whinny(); }
71: Pegasus(COLOR, HANDS, bool, long, int);
72: virtual ~Pegasus() {cout << “Pegasus destructor...\n”;}
73: virtual long GetNumberBelievers() const
74: { return itsNumberBelievers; }

LISTING 14.6 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 470

Polymorphism 471

14

75: virtual COLOR GetColor()const { return Horse::itsColor; }
76: private:
77: long itsNumberBelievers;
78: };
79:
80: Pegasus::Pegasus(
81: COLOR aColor,
82: HANDS height,
83: bool migrates,
84: long NumBelieve,
85: int age):
86: Horse(aColor, height,age),
87: Bird(aColor, migrates,age),
88: Animal(age*2),
89: itsNumberBelievers(NumBelieve)
90: {
91: cout << “Pegasus constructor...\n”;
92: }
93:
94: int main()
95: {
96: Pegasus *pPeg = new Pegasus(Red, 5, true, 10, 2);
97: int age = pPeg->GetAge();
98: cout << “This pegasus is “ << age << “ years old.\n”;
99: delete pPeg;
100: return 0;
101: }

Animal constructor...
Horse constructor...
Bird constructor...
Pegasus constructor...
This pegasus is 4 years old.
Pegasus destructor...
Bird destructor...
Horse destructor...
Animal destructor...

On line 25, Horse declares that it inherits virtually from Animal, and on line 45,
Bird makes the same declaration. Note that the constructors for both Bird and

Animal still initialize the Animal object.

Pegasus inherits from both Bird and Animal, and as the most derived object of Animal, it
also initializes Animal. It is Pegasus’s initialization which is called, however, and the
calls to Animal’s constructor in Bird and Horse are ignored. You can see this because the
value 2 is passed in, and Horse and Bird pass it along to Animal, but Pegasus doubles it.
The result, 4, is reflected in the output generated from line 98.

OUTPUT

LISTING 14.6 continued

ANALYSIS

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 471

472 Day 14

Pegasus no longer has to disambiguate the call to GetAge(), and so is free to simply
inherit this function from Animal. Note that Pegasus must still disambiguate the call to
GetColor() because this function is in both of its base classes and not in Animal.

Declaring Classes for Virtual Inheritance

To ensure that derived classes have only one instance of common base classes, declare the
intermediate classes to inherit virtually from the base class.

Example 1

class Horse : virtual public Animal
class Bird : virtual public Animal
class Pegasus : public Horse, public Bird

Example 2

class Schnauzer : virtual public Dog
class Poodle : virtual public Dog
class Schnoodle : public Schnauzer, public Poodle

Problems with Multiple Inheritance
Although multiple inheritance offers several advantages over single inheritance, many
C++ programmers are reluctant to use it. The problems they cite are that it makes debug-
ging harder, that evolving multiple inheritance class hierarchies is harder and more risky
than evolving single inheritance class hierarchies, and that nearly everything that can be
done with multiple inheritance can be done without it. Other languages, such as Java and
C#, don’t support multiple inheritance of classes for some of these same reasons.

These are valid concerns, and you will want to be on your guard against installing need-
less complexity into your programs. Some debuggers have a hard time with multiple
inheritance, and some designs are needlessly made complex by using multiple inheri-
tance when it is not needed.

DO use multiple inheritance when a new
class needs functions and features from
more than one base class.

DO use virtual inheritance when the
most derived classes must have only one
instance of the shared base class.

DO initialize the shared base class from
the most derived class when using virtual
base classes.

DON’T use multiple inheritance when
single inheritance will do.

DO DON’T

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 472

Polymorphism 473

14

Mixins and Capabilities Classes
One way to strike a middle ground between multiple inheritance and single inheritance is
to use what are called mixins. Thus, you might have your Horse class derive from
Animal and from Displayable. Displayable would just add a few methods for display-
ing any object onscreen.

A mixin, or capability class, is a class that adds specialized functionality without adding
many additional methods or much data.

Capability classes are mixed into a derived class the same as any other class might be, by
declaring the derived class to inherit publicly from them. The only difference between a
capability class and any other class is that the capability class has little or no data. This is
an arbitrary distinction, of course, and is just a shorthand way of noting that at times all
you want to do is mix in some additional capabilities without complicating the derived
class.

This will, for some debuggers, make it easier to work with mixins than with more com-
plex multiply inherited objects. In addition, less likelihood exists of ambiguity in access-
ing the data in the other principal base class.

For example, if Horse derives from Animal and from Displayable, Displayable would
have no data. Animal would be just as it always was, so all the data in Horse would
derive from Animal, but the functions in Horse would derive from both.

The term mixin comes from an ice cream store in Sommerville,
Massachusetts, where candies and cakes were mixed into the basic ice cream
flavors. This seemed like a good metaphor to some of the object-oriented
programmers who used to take a summer break there, especially while
working with the object-oriented programming language SCOOPS.

NOTE

Abstract Data Types
Often, you will create a hierarchy of classes together. For example, you might create a
Shape class, and derive from that Rectangle and Circle. From Rectangle, you might
derive Square as a special case of Rectangle.

Each of the derived classes will override the Draw() method, the GetArea() method, and
so forth. Listing 14.7 illustrates a bare-bones implementation of the Shape class and its
derived Circle and Rectangle classes.

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 473

474 Day 14

LISTING 14.7 Shape Classes

0: //Listing 14.7. Shape classes.
1:
2: #include <iostream>
3: using std::cout;
4: using std::cin;
5: using std::endl;
6:
7: class Shape
8: {
9: public:
10: Shape(){}
11: virtual ~Shape(){}
12: virtual long GetArea() { return -1; } // error
13: virtual long GetPerim() { return -1; }
14: virtual void Draw() {}
15: private:
16: };
17:
18: class Circle : public Shape
19: {
20: public:
21: Circle(int radius):itsRadius(radius){}
22: ~Circle(){}
23: long GetArea() { return 3 * itsRadius * itsRadius; }
24: long GetPerim() { return 6 * itsRadius; }
25: void Draw();
26: private:
27: int itsRadius;
28: int itsCircumference;
29: };
30:
31: void Circle::Draw()
32: {
33: cout << “Circle drawing routine here!\n”;
34: }
35:
36:
37: class Rectangle : public Shape
38: {
39: public:
40: Rectangle(int len, int width):
41: itsLength(len), itsWidth(width){}
42: virtual ~Rectangle(){}
43: virtual long GetArea() { return itsLength * itsWidth; }
44: virtual long GetPerim() {return 2*itsLength + 2*itsWidth; }
45: virtual int GetLength() { return itsLength; }
46: virtual int GetWidth() { return itsWidth; }
47: virtual void Draw();
48: private:

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 474

Polymorphism 475

14

49: int itsWidth;
50: int itsLength;
51: };
52:
53: void Rectangle::Draw()
54: {
55: for (int i = 0; i<itsLength; i++)
56: {
57: for (int j = 0; j<itsWidth; j++)
58: cout << “x “;
59:
60: cout << “\n”;
61: }
62: }
63:
64: class Square : public Rectangle
65: {
66: public:
67: Square(int len);
68: Square(int len, int width);
69: ~Square(){}
70: long GetPerim() {return 4 * GetLength();}
71: };
72:
73: Square::Square(int len):
74: Rectangle(len,len)
75: {}
76:
77: Square::Square(int len, int width):
78: Rectangle(len,width)
79: {
80: if (GetLength() != GetWidth())
81: cout << “Error, not a square... a Rectangle??\n”;
82: }
83:
84: int main()
85: {
86: int choice;
87: bool fQuit = false;
88: Shape * sp;
89:
90: while (!fQuit)
91: {
92: cout << “(1)Circle (2)Rectangle (3)Square (0)Quit: “;
93: cin >> choice;
94:
95: switch (choice)
96: {
97: case 0: fQuit = true;

LISTING 14.7 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 475

476 Day 14

98: break;
99: case 1: sp = new Circle(5);
100: break;
101: case 2: sp = new Rectangle(4,6);
102: break;
103: case 3: sp = new Square(5);
104: break;
105: default:
106: cout <<”Please enter a number between 0 and 3”<<endl;
107: continue;
108: break;
109: }
110: if(!fQuit)
111: sp->Draw();
112: delete sp;
113: sp = 0;
114: cout << endl;
115: }
116: return 0;
117: }

(1)Circle (2)Rectangle (3)Square (0)Quit: 2
x x x x x x
x x x x x x
x x x x x x
x x x x x x

(1)Circle (2)Rectangle (3)Square (0)Quit:3
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

(1)Circle (2)Rectangle (3)Square (0)Quit:0

On lines 7–16, the Shape class is declared. The GetArea() and GetPerim()
methods return an error value, and Draw() takes no action. After all, what does it

mean to draw a Shape? Only types of shapes (circles, rectangles, and so on) can be
drawn; Shapes as an abstraction cannot be drawn.

Circle derives from Shape in lines 18–29 and overrides the three virtual methods. Note
that no reason exists to add the word “virtual,” because that is part of their inheritance.
But there is no harm in doing so either, as shown in the Rectangle class on lines 43, 44,
and 47. It is a good idea to include the term virtual as a reminder, a form of
documentation.

OUTPUT

LISTING 14.7 continued

ANALYSIS

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 476

Polymorphism 477

14

Square derives from Rectangle in lines 64–71, and it, too, overrides the GetPerim()
method, inheriting the rest of the methods defined in Rectangle.

It is troubling, though, that a client might try to instantiate a Shape, and it might be desir-
able to make that impossible. After all, the Shape class exists only to provide an interface
for the classes derived from it; as such, it is an abstract data type, or ADT.

In an abstract class, the interface represents a concept (such as shape) rather than a spe-
cific object (such as circle). In C++, an abstract class is always the base class to other
classes, and it is not valid to make an instance of an abstract class.

Pure Virtual Functions
C++ supports the creation of abstract classes by providing the pure virtual function. A
virtual function is made pure by initializing it with zero, as in

virtual void Draw() = 0;

In this example, the class has a Draw() function, but it has a null implementation and
cannot be called. It can, however, be overwritten within descendant classes.

Any class with one or more pure virtual functions is an abstract class, and it becomes
illegal to instantiate. In fact, it is illegal to instantiate an object of any class that is an
abstract class or any class that inherits from an abstract class and doesn’t implement all
of the pure virtual functions. Trying to do so causes a compile-time error. Putting a pure
virtual function in your class signals two things to clients of your class:

• Don’t make an object of this class; derive from it.

• Be certain to override the pure virtual functions your class inherits.

Any class that derives from an abstract class inherits the pure virtual function as pure,
and so must override every pure virtual function if it wants to instantiate objects. Thus, if
Rectangle inherits from Shape, and Shape has three pure virtual functions, Rectangle
must override all three or it, too, will be an abstract class. Listing 14.8 rewrites the Shape
class to be an abstract data type. To save space, the rest of Listing 14.7 is not reproduced
here. Replace the declaration of Shape in Listing 14.7, lines 7–16, with the declaration of
Shape in Listing 14.8 and run the program again.

LISTING 14.8 Abstract Class

0: //Listing 14.8 Abstract Classes
1:
2: class Shape
3: {
4: public:

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 477

478 Day 14

5: Shape(){}
6: ~Shape(){}
7: virtual long GetArea() = 0;
8: virtual long GetPerim()= 0;
9: virtual void Draw() = 0;
10: private:
11: };

(1)Circle (2)Rectangle (3)Square (0)Quit: 2
x x x x x x
x x x x x x
x x x x x x
x x x x x x

(1)Circle (2)Rectangle (3)Square (0)Quit: 3
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

(1)Circle (2)Rectangle (3)Square (0)Quit: 0

As you can see, the workings of the program are totally unaffected. The only dif-
ference is that it would now be impossible to make an object of class Shape.

OUTPUT

LISTING 14.8 continued

ANALYSIS

Abstract Data Types

Declare a class to be an abstract class (also called an abstract data type) by including one
or more pure virtual functions in the class declaration. Declare a pure virtual function by
writing = 0 after the function declaration.

Example

class Shape
{

virtual void Draw() = 0; // pure virtual
};

Implementing Pure Virtual Functions
Typically, the pure virtual functions in an abstract base class are never implemented.
Because no objects of that type are ever created, no reason exists to provide implementa-
tions, and the abstract class works purely as the definition of an interface to objects,
which derive from it.

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 478

Polymorphism 479

14

It is possible, however, to provide an implementation to a pure virtual function. The
function can then be called by objects derived from the abstract class, perhaps to provide
common functionality to all the overridden functions. Listing 14.9 reproduces Listing
14.7, this time with Shape as an abstract class and with an implementation for the pure
virtual function Draw(). The Circle class overrides Draw(), as it must, but it then chains
up to the base class function for additional functionality.

In this example, the additional functionality is simply an additional message printed, but
one can imagine that the base class provides a shared drawing mechanism, perhaps set-
ting up a window that all derived classes will use.

LISTING 14.9 Implementing Pure Virtual Functions

0: //Listing 14.9 Implementing pure virtual functions
1:
2: #include <iostream>
3: using namespace std;
4:
5: class Shape
6: {
7: public:
8: Shape(){}
9: virtual ~Shape(){}
10: virtual long GetArea() = 0;
11: virtual long GetPerim()= 0;
12: virtual void Draw() = 0;
13: private:
14: };
15:
16: void Shape::Draw()
17: {
18: cout << “Abstract drawing mechanism!\n”;
19: }
20:
21: class Circle : public Shape
22: {
23: public:
24: Circle(int radius):itsRadius(radius){}
25: virtual ~Circle(){}
26: long GetArea() { return 3.14 * itsRadius * itsRadius; }
27: long GetPerim() { return 2 * 3.14 * itsRadius; }
28: void Draw();
29: private:
30: int itsRadius;
31: int itsCircumference;
32: };
33:
34: void Circle::Draw()

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 479

480 Day 14

35: {
36: cout << “Circle drawing routine here!\n”;
37: Shape::Draw();
38: }
39:
40:
41: class Rectangle : public Shape
42: {
43: public:
44: Rectangle(int len, int width):
45: itsLength(len), itsWidth(width){}
46: virtual ~Rectangle(){}
47: long GetArea() { return itsLength * itsWidth; }
48: long GetPerim() {return 2*itsLength + 2*itsWidth; }
49: virtual int GetLength() { return itsLength; }
50: virtual int GetWidth() { return itsWidth; }
51: void Draw();
52: private:
53: int itsWidth;
54: int itsLength;
55: };
56:
57: void Rectangle::Draw()
58: {
59: for (int i = 0; i<itsLength; i++)
60: {
61: for (int j = 0; j<itsWidth; j++)
62: cout << “x “;
63:
64: cout << “\n”;
65: }
66: Shape::Draw();
67: }
68:
69:
70: class Square : public Rectangle
71: {
72: public:
73: Square(int len);
74: Square(int len, int width);
75: virtual ~Square(){}
76: long GetPerim() {return 4 * GetLength();}
77: };
78:
79: Square::Square(int len):
80: Rectangle(len,len)
81: {}
82:

LISTING 14.9 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 480

Polymorphism 481

14

83: Square::Square(int len, int width):
84: Rectangle(len,width)
85:
86: {
87: if (GetLength() != GetWidth())
88: cout << “Error, not a square... a Rectangle??\n”;
89: }
90:
91: int main()
92: {
93: int choice;
94: bool fQuit = false;
95: Shape * sp;
96:
97: while (fQuit == false)
98: {
99: cout << “(1)Circle (2)Rectangle (3)Square (0)Quit: “;
100: cin >> choice;
101:
102: switch (choice)
103: {
104: case 1: sp = new Circle(5);
105: break;
106: case 2: sp = new Rectangle(4,6);
107: break;
108: case 3: sp = new Square (5);
109: break;
110: default: fQuit = true;
111: break;
112: }
113: if (fQuit == false)
114: { 115: sp->Draw();
116: delete sp;
117: cout << endl;
118: }
119: }
120: return 0;
121: }

(1)Circle (2)Rectangle (3)Square (0)Quit: 2
x x x x x x
x x x x x x
x x x x x x
x x x x x x
Abstract drawing mechanism!

OUTPUT

LISTING 14.9 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 481

482 Day 14

(1)Circle (2)Rectangle (3)Square (0)Quit: 3
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
Abstract drawing mechanism!

(1)Circle (2)Rectangle (3)Square (0)Quit: 0

On lines 5–14, the abstract class Shape is declared, with all three of its accessor
methods declared to be pure virtual. Note that this is not necessary, but is still a

good practice. If any one were declared pure virtual, the class would have been an
abstract class.

The GetArea() and GetPerim() methods are not implemented, but Draw() is imple-
mented in lines 16–19. Circle and Rectangle both override Draw(), and both chain up
to the base method, taking advantage of shared functionality in the base class.

Complex Hierarchies of Abstraction
At times, you will derive abstract classes from other abstract classes. It might be that you
will want to make some of the derived pure virtual functions nonpure, and leave others
pure.

If you create the Animal class, you can make Eat(), Sleep(), Move(), and Reproduce()
all be pure virtual functions. Perhaps from Animal you derive Mammal and Fish.

On examination, you decide that every Mammal will reproduce in the same way, and so
you make Mammal::Reproduce() nonpure, but you leave Eat(), Sleep(), and Move() as
pure virtual functions.

From Mammal, you derive Dog, and Dog must override and implement the three remaining
pure virtual functions so that you can make objects of type Dog.

What you’ve said, as class designer, is that no Animals or Mammals can be instantiated,
but that all Mammals can inherit the provided Reproduce() method without overriding it.

Listing 14.10 illustrates this technique with a bare-bones implementation of these
classes.

LISTING 14.10 Deriving Abstract Classes from Other Abstract Classes

0: // Listing 14.10
1: // Deriving Abstract Classes from other Abstract Classes
2: #include <iostream>
3: using namespace std;

ANALYSIS

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 482

Polymorphism 483

14

4:
5: enum COLOR { Red, Green, Blue, Yellow, White, Black, Brown } ;
6:
7: class Animal // common base to both Mammal and Fish
8: {
9: public:
10: Animal(int);
11: virtual ~Animal() { cout << “Animal destructor...\n”; }
12: virtual int GetAge() const { return itsAge; }
13: virtual void SetAge(int age) { itsAge = age; }
14: virtual void Sleep() const = 0;
15: virtual void Eat() const = 0;
16: virtual void Reproduce() const = 0;
17: virtual void Move() const = 0;
18: virtual void Speak() const = 0;
19: private:
20: int itsAge;
21: };
22:
23: Animal::Animal(int age):
24: itsAge(age)
25: {
26: cout << “Animal constructor...\n”;
27: }
28:
29: class Mammal : public Animal
30: {
31: public:
32: Mammal(int age):Animal(age)
33: { cout << “Mammal constructor...\n”;}
34: virtual ~Mammal() { cout << “Mammal destructor...\n”;}
35: virtual void Reproduce() const
36: { cout << “Mammal reproduction depicted...\n”; }
37: };
38:
39: class Fish : public Animal
40: {
41: public:
42: Fish(int age):Animal(age)
43: { cout << “Fish constructor...\n”;}
44: virtual ~Fish() {cout << “Fish destructor...\n”; }
45: virtual void Sleep() const { cout << “fish snoring...\n”; }
46: virtual void Eat() const { cout << “fish feeding...\n”; }
47: virtual void Reproduce() const
48: { cout << “fish laying eggs...\n”; }
49: virtual void Move() const
50: { cout << “fish swimming...\n”; }
51: virtual void Speak() const { }
52: };

LISTING 14.10 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 483

484 Day 14

53:
54: class Horse : public Mammal
55: {
56: public:
57: Horse(int age, COLOR color):
58: Mammal(age), itsColor(color)
59: { cout << “Horse constructor...\n”; }
60: virtual ~Horse() { cout << “Horse destructor...\n”; }
61: virtual void Speak()const { cout << “Whinny!... \n”; }
62: virtual COLOR GetItsColor() const { return itsColor; }
63: virtual void Sleep() const
64: { cout << “Horse snoring...\n”; }
65: virtual void Eat() const { cout << “Horse feeding...\n”; }
66: virtual void Move() const { cout << “Horse running...\n”;}
67:
68: protected:
69: COLOR itsColor;
70: };
71:
72: class Dog : public Mammal
73: {
74: public:
75: Dog(int age, COLOR color):
76: Mammal(age), itsColor(color)
77: { cout << “Dog constructor...\n”; }
78: virtual ~Dog() { cout << “Dog destructor...\n”; }
79: virtual void Speak()const { cout << “Whoof!... \n”; }
80: virtual void Sleep() const { cout << “Dog snoring...\n”; }
81: virtual void Eat() const { cout << “Dog eating...\n”; }
82: virtual void Move() const { cout << “Dog running...\n”; }
83: virtual void Reproduce() const
84: { cout << “Dogs reproducing...\n”; }
85:
86: protected:
87: COLOR itsColor;
88: };
89:
90: int main()
91: {
92: Animal *pAnimal=0;
93: int choice;
94: bool fQuit = false;
95:
96: while (fQuit == false)
97: {
98: cout << “(1)Dog (2)Horse (3)Fish (0)Quit: “;
99: cin >> choice;
100:

LISTING 14.10 continued

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 484

Polymorphism 485

14

101: switch (choice)
102: {
103: case 1: pAnimal = new Dog(5,Brown);
104: break;
105: case 2: pAnimal = new Horse(4,Black);
106: break;
107: case 3: pAnimal = new Fish (5);
108: break;
109: default: fQuit = true;
110: break;
111: }
112: if (fQuit == false)
113: {
114: pAnimal->Speak();
115: pAnimal->Eat();
116: pAnimal->Reproduce();
117: pAnimal->Move();
118: pAnimal->Sleep();
119: delete pAnimal;
120: cout << endl;
121: }
122: }
123: return 0;
124: }

(1)Dog (2)Horse (3)Bird (0)Quit: 1
Animal constructor...
Mammal constructor...
Dog constructor...
Whoof!...
Dog eating...
Dog reproducing....
Dog running...
Dog snoring...
Dog destructor...
Mammal destructor...
Animal destructor...

(1)Dog (2)Horse (3)Bird (0)Quit: 0

On lines 7–21, the abstract class Animal is declared. Animal has nonpure virtual
accessors for itsAge, which are shared by all Animal objects. It has five pure vir-

tual functions, Sleep(), Eat(), Reproduce(), Move(), and Speak().

Mammal is derived from Animal on lines 29–37, and adds no data. It overrides
Reproduce(), however, providing a common form of reproduction for all mammals. Fish
must override Reproduce() because Fish derives directly from Animal and cannot take

OUTPUT

LISTING 14.10 continued

ANALYSIS

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 485

486 Day 14

advantage of Mammalian reproduction (and a good thing, too!). Fish does this in lines
47–48.

Mammal classes no longer have to override the Reproduce() function, but they are free to
do so if they choose, as Dog does on line 83. Fish, Horse, and Dog all override the
remaining pure virtual functions, so that objects of their type can be instantiated.

In the body of the main program, an Animal pointer is used to point to the various
derived objects in turn. The virtual methods are invoked, and based on the runtime bind-
ing of the pointer, the correct method is called in the derived class.

It would be a compile-time error to try to instantiate an Animal or a Mammal, as both are
abstract classes.

Which Classes Are Abstract?
In one program, the class Animal is abstract; in another, it is not. What determines
whether to make a class abstract?

The answer to this question is decided not by any real-world intrinsic factor, but by what
makes sense in your program. If you are writing a program that depicts a farm or a zoo,
you might want Animal to be an abstract class, but Dog to be a class from which you can
instantiate objects.

On the other hand, if you are making an animated kennel, you might want to keep Dog as
an abstract class and only instantiate types of dogs: retrievers, terriers, and so forth. The
level of abstraction is a function of how finely you need to distinguish your types.

DO use abstract classes to provide com-
mon description of capabilities provided
in a number of related classes.

DO make pure virtual any function that
must be overridden.

DON’T try to instantiate an object of an
abstract classes.

DO DON’T

Summary
Today, you learned how to overcome some of the limitations in single inheritance. You
learned about the danger of percolating functions up the inheritance hierarchy and the
risks in casting down the inheritance hierarchy. You also learned how to use multiple
inheritance, what problems multiple inheritance can create, and how to solve them using
virtual inheritance.

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 486

Polymorphism 487

14

You also learned what abstract classes are and how to create abstract classes using pure
virtual functions. You learned how to implement pure virtual functions and when and
why you might do so.

Q&A
Q What is the v-ptr?

A The v-ptr, or virtual-function pointer, is an implementation detail of virtual func-
tions. Each object in a class with virtual functions has a v-ptr, which points to the
virtual function table for that class. The virtual function table is consulted when the
compiler needs to determine which function to call in a particular situation.

Q Is percolating upward always a good thing?

A Yes, if you are percolating shared functionality upward. No, if all you are moving
is interface. That is, if all the derived classes can’t use the method, it is a mistake
to move it up into a common base class. If you do, you’ll have to switch on the
runtime type of the object before deciding if you can invoke the function.

Q Why is making a decision on the runtime type of an object bad?

A Because this is an indication that the inheritance hierarchy for the class has not
been properly constructed, and it is better to go back and fix the design than to use
this workaround.

Q Why is casting bad?

A Casting isn’t bad if it is done in a way that is type-safe. Casting can, however, be
used to undermine the strong type checking in C++, and that is what you want to
avoid. If you are switching on the runtime type of the object and then casting a
pointer, that might be a warning sign that something is wrong with your design.

In addition, functions should work with the declared type of their arguments and
member variables, and not depend on “knowing” what the calling program will
provide through some sort of implicit contract. If the assumption turns out to be
wrong, strange and unpredictable problems can result.

Q Why not make all functions virtual?

A Virtual functions are supported by a virtual function table, which incurs runtime
overhead, both in the size of the program and in the performance of the program. If
you have very small classes that you don’t expect to subclass, you might not want
to make any of the functions virtual. However, when this assumption changes, you
need to be careful to go back and make the ancestor class functions virtual, or
unexpected problems can result.

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 487

488 Day 14

Q When should the destructor be made virtual?

A The destructor should be made virtual any time you think the class will be sub-
classed, and a pointer to the base class will be used to access an object of the sub-
class. As a general rule of thumb, if you’ve made any functions in your class
virtual, be certain to make the destructor virtual as well.

Q Why bother making an abstract class—why not just make it nonabstract and
avoid creating any objects of that type?

A The purpose of many of the conventions in C++ is to enlist the compiler in finding
bugs, so as to avoid runtime bugs in code that you give your customers. Making a
class abstract—that is, giving it pure virtual functions—causes the compiler to flag
any objects created of that abstract type as errors.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson.

Quiz
1. What is a down cast?

2. What does “percolating functionality upward” mean?

3. If a round-rectangle has straight edges and rounded corners, and your RoundRect
class inherits both from Rectangle and from Circle, and they in turn both inherit
from Shape, how many Shapes are created when you create a RoundRect?

4. If Horse and Bird inherit from Animal using public virtual inheritance, do their
constructors initialize the Animal constructor? If Pegasus inherits from both Horse
and Bird, how does it initialize Animal’s constructor?

5. Declare a class called Vehicle and make it an abstract class.

6. If a base class is an abstract class, and it has three pure virtual functions, how
many of these must be overridden in its derived classes?

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 488

Polymorphism 489

14

Exercises
1. Show the declaration for a class JetPlane, which inherits from Rocket and

Airplane.

2. Show the declaration for Seven47, which inherits from the JetPlane class
described in Exercise 1.

3. Write the code that derives Car and Bus from the class Vehicle. Make Vehicle be
an abstract class with two pure virtual functions. Make Car and Bus not be abstract
classes.

4. Modify the code in Exercise 3 so that Car is an abstract class, and derive
SportsCar and Coupe from Car. In the Car class, provide an implementation for
one of the pure virtual functions in Vehicle and make it nonpure.

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 489

18 0672327112_ch14.qxd 11/19/04 12:28 PM Page 490

In Review
The Week in Review program for Week 2 brings together
many of the skills you’ve acquired over the past fortnight and
produces a powerful program.

This demonstration of linked lists utilizes virtual functions,
pure virtual functions, function overriding, polymorphism,
public inheritance, function overloading, pointers, references,
and more.

On Day 13, “Managing Arrays and Strings,” linked lists were
mentioned. In addition, Appendix E, “A Look at Linked
Lists,” provides a robust example of using a linked list. If you
haven’t looked at Appendix E, don’t fret, linked lists are com-
posed of C++ code you have learned about already. Note that
this is a different linked list from the one shown in the appen-
dix; in C++, there are many ways to accomplish the same
thing.

The goal of Listing R2.1 is to create a linked list. The nodes
on the list are designed to hold parts, as might be used in a
factory. Although this is not the final form of this program, it
does make a good demonstration of a fairly advanced data
structure. The code list is 298 lines. Try to analyze the code
on your own before reading the analysis that follows the
output.

WEEK 2 8

9

10

11

12

13

14

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 491

492 Week 2

LISTING R2.1 Week 2 in Review Listing

0: // **
1: //
2: // Title: Week 2 in Review
3: //
4: // File: Week2
5: //
6: // Description: Provide a linked list demonstration program
7: //
8: // Classes: PART - holds part numbers and potentially other
9: // information about parts
10: //
11: // PartNode - acts as a node in a PartsList
12: //
13: // PartsList - provides the mechanisms for
14: // a linked list of parts
15: //
16: //
17: // **
18:
19: #include <iostream>
20: using namespace std;
21:
22:
23:
24: // **************** Part ************
25:
26: // Abstract base class of parts
27: class Part
28: {
29: public:
30: Part():itsPartNumber(1) {}
31: Part(int PartNumber):itsPartNumber(PartNumber){}
32: virtual ~Part(){};
33: int GetPartNumber() const { return itsPartNumber; }
34: virtual void Display() const =0; // must be overridden
35: private:
36: int itsPartNumber;
37: };
38:
39: // implementation of pure virtual function so that
40: // derived classes can chain up

41: void Part::Display() const
42: {
43: cout << “\nPart Number: “ << itsPartNumber << endl;
44: }
45:
46: // **************** Car Part ************
47:

DAY 12

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 492

In Review 493

48: class CarPart : public Part
49: {
50: public:
51: CarPart():itsModelYear(94){}
52: CarPart(int year, int partNumber);

53: virtual void Display() const
54: {

55: Part::Display(); cout << “Model Year: “;
56: cout << itsModelYear << endl;
57: }
58: private:
59: int itsModelYear;
60: };
61:

62: CarPart::CarPart(int year, int partNumber):
63: itsModelYear(year),
64: Part(partNumber)
65: {}
66:
67:
68: // **************** AirPlane Part ************
69:

70: class AirPlanePart : public Part
71: {
72: public:

73: AirPlanePart():itsEngineNumber(1){};
74: AirPlanePart(int EngineNumber, int PartNumber);

75: virtual void Display() const
76: {

77: Part::Display(); cout << “Engine No.: “;
78: cout << itsEngineNumber << endl;

DAY 12

DAY 14

DAY 12

DAY 12

DAY 12

DAY 12

DAY 14

DAY 12

LISTING R2.1 continued

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 493

494 Week 2

79: }
80: private:
81: int itsEngineNumber;
82: };
83:

84: AirPlanePart::AirPlanePart(int EngineNumber, int PartNumber):
85: itsEngineNumber(EngineNumber),
86: Part(PartNumber)
87: {}
88:
89: // **************** Part Node ************
90: class PartNode
91: {
92: public:
93: PartNode (Part*);
94: ~PartNode();

95: void SetNext(PartNode * node) { itsNext = node; }

96: PartNode * GetNext() const;
97: Part * GetPart() const;
98: private:

99: Part *itsPart;
100: PartNode * itsNext;
101: };
102:
103: // PartNode Implementations...
104:
105: PartNode::PartNode(Part* pPart):
106: itsPart(pPart),
107: itsNext(0)
108: {}
109:
110: PartNode::~PartNode()
111: {
112: delete itsPart;
113: itsPart = 0;
114: delete itsNext;
115: itsNext = 0;
116: }
117:
118: // Returns NULL if no next PartNode

DAY 8

DAY 8

DAY 8

DAY 12

LISTING R2.1 continued

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 494

In Review 495

119: PartNode * PartNode::GetNext() const
120: {
121: return itsNext;
122: }
123:
124: Part * PartNode::GetPart() const
125: {
126: if (itsPart)
127: return itsPart;
128: else
129: return NULL; //error
130: }
131:
132: // **************** Part List ************
133: class PartsList
134: {
135: public:
136: PartsList();
137: ~PartsList();
138: // needs copy constructor and operator equals!

139: Part* Find(int & position, int PartNumber) const;
140: int GetCount() const { return itsCount; }
141: Part* GetFirst() const;

142: void Insert(Part *);
143: void Iterate() const;

144: Part* operator[](int) const;
145: private:

146: PartNode * pHead;
147: int itsCount;
148: };
149:
150: // Implementations for Lists...
151:
152: PartsList::PartsList():
153: pHead(0),
154: itsCount(0)
155: {}
156:
157: PartsList::~PartsList()
158: {

DAY 8

DAY 10

DAY 8

DAY 9

DAY 8

LISTING R2.1 continued

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 495

496 Week 2

159: delete pHead;
160: }
161:

162: Part* PartsList::GetFirst() const
163: {
164: if (pHead)
165: return pHead->GetPart();
166: else
167: return NULL; // error catch here
168: }
169:

170: Part * PartsList::operator[](int offSet) const
171: {

172: PartNode* pNode = pHead;
173:
174: if (!pHead)
175: return NULL; // error catch here
176:
177: if (offSet > itsCount)
178: return NULL; // error
179:
180: for (int i=0;i<offSet; i++)
181: pNode = pNode->GetNext();
182:
183: return pNode->GetPart();
184: }
185:

186: Part* PartsList::Find(int & position, int PartNumber) const
187: {

188: PartNode * pNode = 0;
189: for (pNode = pHead, position = 0;
190: pNode!=NULL;
191: pNode = pNode->GetNext(), position++)
192: {

DAY 8

DAY 9

DAY 8

DAY 10

DAY 8

DAY 8

LISTING R2.1 continued

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 496

In Review 497

193: if (pNode->GetPart()->GetPartNumber() == PartNumber)
194: break;
195: }
196: if (pNode == NULL)
197: return NULL;
198: else
199: return pNode->GetPart();
200: }
201:
202: void PartsList::Iterate() const
203: {
204: if (!pHead)
205: return;

206: PartNode* pNode = pHead;
207: do

208: pNode->GetPart()->Display();
209: while (pNode = pNode->GetNext());
210: }
211:
212: void PartsList::Insert(Part* pPart)
213: {

214: PartNode * pNode = new PartNode(pPart);
215: PartNode * pCurrent = pHead;
216: PartNode * pNext = 0;
217:
218: int New = pPart->GetPartNumber();
219: int Next = 0;
220: itsCount++;
221:
222: if (!pHead)
223: {
224: pHead = pNode;
225: return;
226: }
227:
228: // if this one is smaller than head
229: // this one is the new head
230: if (pHead->GetPart()->GetPartNumber() > New)
231: {
232: pNode->SetNext(pHead);
233: pHead = pNode;
234: return;
235: }
236:

DAY 8

DAY 8

DAY 8

LISTING R2.1 continued

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 497

498 Week 2

237: for (;;)
238: {
239: // if there is no next, append this new one
240: if (!pCurrent->GetNext())
241: {
242: pCurrent->SetNext(pNode);
243: return;
244: }
245:
246: // if this goes after this one and before the next
247: // then insert it here, otherwise get the next
248: pNext = pCurrent->GetNext();
249: Next = pNext->GetPart()->GetPartNumber();
250: if (Next > New)
251: {
252: pCurrent->SetNext(pNode);
253: pNode->SetNext(pNext);
254: return;
255: }
256: pCurrent = pNext;
257: }
258: }
259:
260: int main()
261: {
262:
263: PartsList pl;
264:

265: Part * pPart = 0;
266: int PartNumber;
267: int value;
268: int choice = 99;
269:
270: while (choice != 0)
271: {
272: cout << “(0)Quit (1)Car (2)Plane: “;
273: cin >> choice;
274:
275: if (choice != 0)
276: {
277: cout << “New PartNumber?: “;
278: cin >> PartNumber;
279:
280: if (choice == 1)
281: {
282: cout << “Model Year?: “;
283: cin >> value;

DAY 8

LISTING R2.1 continued

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 498

In Review 499

284: pPart = new CarPart(value,PartNumber);
285: }
286: else
287: {
288: cout << “Engine Number?: “;
289: cin >> value;
290: pPart = new AirPlanePart(value,PartNumber);
291: }
292:
293: pl.Insert(pPart);
294: }
295: }
296: pl.Iterate();
297: return 0;
298: }

(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 2837
Model Year? 90
(0)Quit (1)Car (2)Plane: 2
New PartNumber?: 378
Engine Number?: 4938
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 4499
Model Year? 94
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 3000
Model Year? 93
(0)Quit (1)Car (2)Plane: 0

Part Number: 378
Engine No.: 4938

Part Number: 2837
Model Year: 90

Part Number: 3000
Model Year: 93

Part Number: 4499
Model Year: 94

The Week 2 in Review listing provides a linked list implementation for Part
objects. A linked list is a dynamic data structure; that is, it is like an array but it

is sized to fit as objects are added and deleted. Linked lists also include pointers to
objects of the same time in order to link the objects together.

This particular linked list is designed to hold objects of class Part, where Part is an
abstract data type serving as a base class to any objects with a part number. In this exam-
ple, Part has been subclassed into CarPart and AirPlanePart.

OUTPUT

ANALYSIS

LISTING R2.1 continued

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 499

500 Week 2

Class Part is declared on lines 27–37, and consists of a part number and some accessors.
Presumably, this class could be fleshed out to hold other important information about the
parts, such as what components they are used in, how many are in stock, and so forth.
Part is an abstract data type, enforced by the pure virtual function Display().

Note that Display() does have an implementation, on lines 41–44. It is the designer’s
intention that derived classes will be forced to create their own Display() method, but
can chain up to this method as well.

Two simple derived classes, CarPart and AirPlanePart, are provided on lines 48–60
and 70–82, respectively. Each provides an overridden Display() method, which does, in
fact, chain up to the base class Display() method.

The class PartNode on lines 90–101 serves as the interface between the Part class and
the PartList class. It contains a pointer to a part and a pointer to the next node in the
list. Its only methods are to get and set the next node in the list and to return the Part to
which it points.

The intelligence of the list is, appropriately, in the class PartsList, whose declaration is
on lines 133–148. PartsList keeps a pointer to the first element in the list (pHead) and
uses that to access all other methods by walking the list. Walking the list means asking
each node in the list for the next node, until you reach a node whose next pointer is NULL.

This is only a partial implementation; a fully developed list would provide either greater
access to its first and last nodes, or would provide an iterator object, which allows clients
to easily walk the list.

PartsList nonetheless provides a number of interesting methods, which are listed in
alphabetical order. This is often a good idea, as it makes finding the functions easier.

Find() takes a PartNumber and an int (lines 186–200). If the part corresponding to
PartNumber is found, it returns a pointer to the Part and fills the int with the position of
that part in the list. If PartNumber is not found, it returns NULL, and the position is mean-
ingless.

GetCount() returns the number of elements in the list (line 140). PartsList keeps this
number as a member variable, itsCount, though it could, of course, compute this num-
ber by walking the list.

GetFirst() returns a pointer to the first Part in the list, or returns NULL if the list is
empty (line 162–168).

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 500

In Review 501

On lines 212–258, the Insert() method takes a pointer to a Part, creates a PartNode for
it, and adds the Part to the list, ordered by PartNumber.

Iterate() on lines 202–210 takes a pointer to a member function of Part, which takes
no parameters, returns void, and is const. It calls that function for every Part object in
the list. In the sample program, this is called on Display(), which is a virtual function,
so the appropriate Display() method is called based on the runtime type of the Part
object called.

On lines 170–184, the bracket operator is overloaded. Operator[] allows direct access to
the Part at the offset provided. Rudimentary bounds checking is provided; if the list is
NULL or if the offset requested is greater than the size of the list, NULL is returned as an
error condition.

Note that in a real program, these comments on the functions would be written into the
class declaration.

The driver program starts on line 260. The PartList object is created on line 263.

On line 277, the user is repeatedly prompted to choose whether to enter a car part or an
airplane part. Depending on the choice, the right value is requested, and the appropriate
part is created. After it is created, the part is inserted into the list on line 293.

The implementation for the Insert() method of PartsList is on lines 212–258. When
the first part number is entered, 2837, a CarPart with that part number and the model
year 90 is created and passed in to LinkedList::Insert().

On line 214, a new PartNode is created with that part, and the variable New is initialized
with the part number. The PartsList’s itsCount member variable is incremented on
line 220.

On line 222, the test that pHead is NULL will evaluate true. Because this is the first
node, it is true that the PartsList’s pHead pointer has zero. Thus, on line 224, pHead is
set to point to the new node and this function returns.

The user is prompted to enter a second part, and this time an AirPlane part with part
number 37 and engine number 4938 is entered. Once again, PartsList::Insert() is
called, and once again, pNode is initialized with the new node. The static member vari-
able itsCount is incremented to 2, and pHead is tested. Because pHead was assigned last
time, it is no longer null and the test fails.

On line 230, the part number held by pHead, 2837, is compared against the current part
number, 378. Because the new one is smaller than the one held by pHead, the new one
must become the new head pointer, and the test on line 230 is true.

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 501

502 Week 2

On line 232, the new node is set to point to the node currently pointed to by pHead. Note
that this does not point the new node to pHead, but rather to the node to which pHead was
pointing! On line 233, pHead is set to point to the new node.

The third time through the loop, the user enters the part number 4499 for a Car with
model year 94. The counter is incremented and the number this time is not less than the
number pointed to by pHead, so the for loop that begins on line 237 is entered.

The value pointed to by pHead is 378. The value pointed to by the second node is 2837.
The current value is 4499. The pointer pCurrent points to the same node as pHead and so
has a next value; pCurrent points to the second node, and so the test on line 240 fails.

The pointer pCurrent is set to point to the next node and the loop repeats. This time, the
test on line 240 succeeds. There is no next item, so the current node is told to point to
the new node on line 242, and the insert is finished.

The fourth time through, the part number 3000 is entered. This proceeds just like the pre-
vious iteration, but this time when the current node is pointing to 2837 and the next node
has 4499, the test on line 250 returns TRUE and the new node is inserted into position.

When the user finally presses 0, the test on line 275 evaluates true and the while loop
breaks. Execution falls to line 296 where Iterate() is called, branching to line 202
where on line 208 the PNode is used to access the Part and the Display() method is
called on that Part object.

19 0672327112_w2_wir.qxd 11/19/04 12:28 PM Page 502

At a Glance
You have finished the second week of learning C++. By now,
you should feel comfortable with some of the more advanced
aspects of object-oriented programming, including encapsula-
tion and polymorphism.

Where You Are Going
The last week begins with a discussion of static functions and
friends. Day 16 discusses advanced inheritance. On Day 17,
“Working with Streams,” you will learn about streams in
depth, and on Day 18, “Creating and Using Namespaces,”
you will learn how to work with this exciting addition to the
C++ Standard. On Day 19, “Templates,” you will be intro-
duced to templates, and on Day 20, “Handling Errors and
Exceptions,” you will learn about exceptions. Day 21,
“What’s Next,” the last day of this book, covers some miscel-
laneous subjects not covered elsewhere, followed by a discus-
sion of the next steps to take in becoming a C++ guru.

WEEK 3 15

16

17

18

19

20

21

20 0672327112_w3_aag.qxd 11/19/04 12:28 PM Page 503

20 0672327112_w3_aag.qxd 11/19/04 12:28 PM Page 504

DAY 15

WEEK 3

Special Classes and
Functions

C++ offers several ways to limit the scope and impact of variables and pointers.
So far, you’ve seen how to create global variables, local function variables,
pointers to variables, and class member variables.

Today, you will learn

• How to share information across objects of the same type

• What static member variables and static member functions are

• How to use static member variables and static member functions

• How to create and manipulate pointers to functions and pointers to
member functions

• How to work with arrays of pointers to functions

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 505

Sharing Data Among Objects of the Same
Type: Static Member Data

Until now, you have probably thought of the data in each object as unique to that object
and not shared among objects in a class. If you have five Cat objects, for example, each
has its own age, weight, and other data. The age of one does not affect the age of
another.

At times, however, you’ll want to keep track of data that applies to all objects of the
same type. For example, you might want to know how many objects for a specific class
have been created in your program, and how many are still in existence. Static member
variables are variables that are shared among all instances of a class. They are a compro-
mise between global data, which is available to all parts of your program, and member
data, which is usually available only to each object.

You can think of a static member as belonging to the class rather than to the object.
Normal member data is one per object, but static members are one per class. Listing 15.1
declares a Cat object with a static data member, HowManyCats. This variable keeps track
of how many Cat objects have been created. This is done by incrementing the static vari-
able, HowManyCats, with each construction and decrementing it with each destruction.

LISTING 15.1 Static Member Data

0: //Listing 15.1 static data members
1:
2: #include <iostream>
3: using namespace std;
4:
5: class Cat
6: {
7: public:
8: Cat(int age):itsAge(age){HowManyCats++; }
9: virtual ~Cat() { HowManyCats--; }
10: virtual int GetAge() { return itsAge; }
11: virtual void SetAge(int age) { itsAge = age; }
12: static int HowManyCats;
13:
14: private:
15: int itsAge;
16: };
17:
18: int Cat::HowManyCats = 0;
19:
20: int main()
21: {

506 Day 15

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 506

Special Classes and Functions 507

1522: const int MaxCats = 5; int i;
23: Cat *CatHouse[MaxCats];
24:
25: for (i = 0; i < MaxCats; i++)
26: CatHouse[i] = new Cat(i);
27:
28: for (i = 0; i < MaxCats; i++)
29: {
30: cout << “There are “;
31: cout << Cat::HowManyCats;
32: cout << “ cats left!” << endl;
33: cout << “Deleting the one that is “;
34: cout << CatHouse[i]->GetAge();
35: cout << “ years old” << endl;
36: delete CatHouse[i];
37: CatHouse[i] = 0;
38: }
39: return 0;
40: }

There are 5 cats left!
Deleting the one that is 0 years old
There are 4 cats left!
Deleting the one that is 1 years old
There are 3 cats left!
Deleting the one that is 2 years old
There are 2 cats left!
Deleting the one that is 3 years old
There are 1 cats left!
Deleting the one that is 4 years old

On lines 5–16, the simplified class Cat is declared. On line 12, HowManyCats is
declared to be a static member variable of type int.

The declaration of HowManyCats does not define an integer; no storage space is set aside.
Unlike the nonstatic member variables, no storage space is set aside by instantiating a
Cat object because the HowManyCats member variable is not in the object. Thus, on line
18, the variable is defined and initialized.

It is a common mistake to forget to declare static member variables and then to forget to
define them. Don’t let this happen to you! Of course, if it does, the linker will catch it
with a pithy error message such as the following:

undefined symbol Cat::HowManyCats

You don’t need to do this for itsAge because it is a nonstatic member variable and is
defined each time you make a Cat object, which you do here on line 26.

OUTPUT

LISTING 15.1 continued

ANALYSIS

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 507

On line 8, the constructor for Cat increments the static member variable. The destructor
decrements it on line 9. Thus, at any moment, HowManyCats has an accurate measure of
how many Cat objects were created but not yet destroyed.

The driver program on lines 20–40 instantiates five Cats and puts them in an array. This
calls five Cat constructors, and, thus, HowManyCats is incremented five times from its ini-
tial value of 0.

The program then loops through each of the five positions in the array and prints out the
value of HowManyCats before deleting the current Cat pointer on line 36. The printout
reflects that the starting value is 5 (after all, 5 are constructed), and that each time the
loop is run, one fewer Cat remains.

Note that HowManyCats is public and is accessed directly by main(). There is no reason
for you to expose this member variable in this way. In fact, it is preferable to make it pri-
vate along with the other member variables and provide a public accessor method, as
long as you will always access the data through an instance of Cat. On the other hand, if
you want to access this data directly, without necessarily having a Cat object available,
you have two options: Keep it public, as shown in Listing 15.2, or provide a static mem-
ber function, as discussed later in today’s lesson.

LISTING 15.2 Accessing Static Members Without an Object

0: //Listing 15.2 static data members
1:
2: #include <iostream>
3: using namespace std;
4:
5: class Cat
6: {
7: public:
8: Cat(int age):itsAge(age){HowManyCats++; }
9: virtual ~Cat() { HowManyCats--; }
10: virtual int GetAge() { return itsAge; }
11: virtual void SetAge(int age) { itsAge = age; }
12: static int HowManyCats;
13:
14: private:
15: int itsAge;
16: };
17:
18: int Cat::HowManyCats = 0;
19:
20: void TelepathicFunction();
21:

508 Day 15

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 508

Special Classes and Functions 509

1522: int main()
23: {
24: const int MaxCats = 5; int i;
25: Cat *CatHouse[MaxCats];
26:
27: for (i = 0; i < MaxCats; i++)
28: {
29: CatHouse[i] = new Cat(i);
30: TelepathicFunction();
31: }
32:
33: for (i = 0; i < MaxCats; i++)
34: {
35: delete CatHouse[i];
36: TelepathicFunction();
37: }
38: return 0;
39: }
40:
41: void TelepathicFunction()
42: {
43: cout << “There are “;
44: cout << Cat::HowManyCats << “ cats alive!” << endl;
45: }

There are 1 cats alive!
There are 2 cats alive!
There are 3 cats alive!
There are 4 cats alive!
There are 5 cats alive!
There are 4 cats alive!
There are 3 cats alive!
There are 2 cats alive!
There are 1 cats alive!
There are 0 cats alive!

Listing 15.2 is very much like Listing 15.1 except for the addition of a new func-
tion, TelepathicFunction(). This function, which is defined on lines 41–45,

does not create a Cat object, nor does it take a Cat object as a parameter, yet it can
access the HowManyCats member variable. Again, it is worth reemphasizing that this
member variable is not in any particular object; it is in the class, where it is accessible to
any member function. If public, this variable can be accessed by any function in the pro-
gram, even when that function does not have an instance of a class.

OUTPUT

LISTING 15.2 continued

ANALYSIS

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 509

The alternative to making this member variable public is to make it private. If you do,
you can access it through a member function, but then you must have an object of that
class available. Listing 15.3 shows this approach. You’ll learn an alternative to this
access—using static member functions—immediately after the analysis of Listing 15.3.

LISTING 15.3 Accessing Static Members Using Nonstatic Member Functions

0: //Listing 15.3 private static data members
1: #include <iostream>
2: using std::cout;
3: using std::endl;
4:
5: class Cat
6: {
7: public:
8: Cat(int age):itsAge(age){HowManyCats++; }
9: virtual ~Cat() { HowManyCats--; }
10: virtual int GetAge() { return itsAge; }
11: virtual void SetAge(int age) { itsAge = age; }
12: virtual int GetHowMany() { return HowManyCats; }
13:
14: private:
15: int itsAge;
16: static int HowManyCats;
17: };
18:
19: int Cat::HowManyCats = 0;
20:
21: int main()
22: {
23: const int MaxCats = 5; int i;
24: Cat *CatHouse[MaxCats];
25:
26: for (i = 0; i < MaxCats; i++)
27: CatHouse[i] = new Cat(i);
28:
29: for (i = 0; i < MaxCats; i++)
30: {
31: cout << “There are “;
32: cout << CatHouse[i]->GetHowMany();
33: cout << “ cats left!\n”;
34: cout << “Deleting the one that is “;
35: cout << CatHouse[i]->GetAge()+2;
36: cout << “ years old” << endl;
37: delete CatHouse[i];
38: CatHouse[i] = 0;
39: }
40: return 0;
41: }

510 Day 15

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 510

Special Classes and Functions 511

15
There are 5 cats left!
Deleting the one that is 2 years old
There are 4 cats left!
Deleting the one that is 3 years old
There are 3 cats left!
Deleting the one that is 4 years old
There are 2 cats left!
Deleting the one that is 5 years old
There are 1 cats left!
Deleting the one that is 6 years old

On line 16, the static member variable HowManyCats is declared to have private
access. Now, you cannot access this variable from nonmember functions, such as

TelepathicFunction() from the previous listing.

Even though HowManyCats is static, it is still within the scope of the class. As such, any
class function, such as GetHowMany(), can access it, just as member functions can access
any member data. However, for a function outside of a Cat object to call GetHowMany(),
it must have a Cat object on which to call the function.

OUTPUT

ANALYSIS

DO use static member variables to share
data among all instances of a class.

DO make static member variables pro-
tected or private if you want to restrict
access to them.

DON’T use static member variables to
store data for one object. Static member
data is shared among all objects of its
class.

DO DON’T

Using Static Member Functions
Static member functions are like static member variables: They exist not in an object but
in the scope of the class. Thus, they can be called without having an object of that class,
as illustrated in Listing 15.4.

LISTING 15.4 Static Member Functions

0: //Listing 15.4 static data members
1:
2: #include <iostream>
3:
4: class Cat
5: {
6: public:
7: Cat(int age):itsAge(age){HowManyCats++; }

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 511

8: virtual ~Cat() { HowManyCats--; }
9: virtual int GetAge() { return itsAge; }
10: virtual void SetAge(int age) { itsAge = age; }
11: static int GetHowMany() { return HowManyCats; }
12: private:
13: int itsAge;
14: static int HowManyCats;
15: };
16:
17: int Cat::HowManyCats = 0;
18:
19: void TelepathicFunction();
20:
21: int main()
22: {
23: const int MaxCats = 5;
24: Cat *CatHouse[MaxCats]; int i;
25: for (i = 0; i < MaxCats; i++)
26: {
27: CatHouse[i] = new Cat(i);
28: TelepathicFunction();
29: }
30:
31: for (i = 0; i < MaxCats; i++)
32: {
33: delete CatHouse[i];
34: TelepathicFunction();
35: }
36: return 0;
37: }
38:
39: void TelepathicFunction()
40: {
41: std::cout <<”There are “ << Cat::GetHowMany()
42: <<” cats alive!” << std::endl;
43: }

There are 1 cats alive!
There are 2 cats alive!
There are 3 cats alive!
There are 4 cats alive!
There are 5 cats alive!
There are 4 cats alive!
There are 3 cats alive!
There are 2 cats alive!
There are 1 cats alive!
There are 0 cats alive!

OUTPUT

512 Day 15

LISTING 15.4 continued

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 512

Special Classes and Functions 513

15
The static member variable HowManyCats is declared to have private access on
line 14 of the Cat declaration. The public accessor function, GetHowMany(), is

declared to be both public and static on line 11.

Because GetHowMany() is public, it can be accessed by any function, and because it is
static, no need exists to have an object of type Cat on which to call it. Thus, on line 41,
the function TelepathicFunction() is able to access the public static accessor, even
though it has no access to a Cat object. You should note, however, that the function is
fully qualified when it is called, meaning the function call is prefixed with the class name
followed by two colons:

Cat::TelepathicFunction()

Of course, you could also have called GetHowMany() on the Cat objects available in
main(), the same as with any other accessor functions.

ANALYSIS

Static member functions do not have a this pointer. Therefore, they cannot
be declared const. Also, because member data variables are accessed in
member functions using the this pointer, static member functions cannot
access any nonstatic member variables!

NOTE

Static Member Functions

You can access static member functions by calling them on an object of the class the same
as you do any other member function, or you can call them without an object by fully
qualifying the class and object name.

Example

class Cat
{
public:

static int GetHowMany() { return HowManyCats; }
private:

static int HowManyCats;
};
int Cat::HowManyCats = 0;
int main()
{

int howMany;
Cat theCat; // define a cat
howMany = theCat.GetHowMany(); // access through an object
howMany = Cat::GetHowMany(); // access without an object

}

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 513

Pointers to Functions
Just as an array name is a constant pointer to the first element of the array, a function
name is a constant pointer to the function. It is possible to declare a pointer variable that
points to a function and to invoke the function by using that pointer. This can be very
useful; it enables you to create programs that decide which functions to invoke based on
user input.

The only tricky part about function pointers is understanding the type of the object being
pointed to. A pointer to int points to an integer variable, and a pointer to a function must
point to a function of the appropriate return type and signature.

In the declaration

long (* funcPtr) (int);

funcPtr is declared to be a pointer (note the * in front of the name) that points to a func-
tion that takes an integer parameter and returns a long. The parentheses around *
funcPtr are necessary because the parentheses around int bind more tightly; that is,
they have higher precedence than the indirection operator (*). Without the first parenthe-
ses, this would declare a function that takes an integer and returns a pointer to a long.
(Remember that spaces are meaningless here.)

Examine these two declarations:

long * Function (int);

long (* funcPtr) (int);

The first, Function (), is a function taking an integer and returning a pointer to a vari-
able of type long. The second, funcPtr, is a pointer to a function taking an integer and
returning a variable of type long.

The declaration of a function pointer will always include the return type and the paren-
theses indicating the type of the parameters, if any. Listing 15.5 illustrates the declaration
and use of function pointers.

LISTING 15.5 Pointers to Functions

0: // Listing 15.5 Using function pointers
1:
2: #include <iostream>
3: using namespace std;
4:
5: void Square (int&,int&);
6: void Cube (int&, int&);

514 Day 15

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 514

Special Classes and Functions 515

157: void Swap (int&, int &);
8: void GetVals(int&, int&);
9: void PrintVals(int, int);
10:
11: int main()
12: {
13: void (* pFunc) (int &, int &);
14: bool fQuit = false;
15:
16: int valOne=1, valTwo=2;
17: int choice;
18: while (fQuit == false)
19: {
20: cout <<

➥”(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: “;
21: cin >> choice;
22: switch (choice)
23: {
24: case 1: pFunc = GetVals; break;
25: case 2: pFunc = Square; break;
26: case 3: pFunc = Cube; break;
27: case 4: pFunc = Swap; break;
28: default: fQuit = true; break;
29: }
30:
31: if (fQuit == false)
32: {
33: PrintVals(valOne, valTwo);
34: pFunc(valOne, valTwo);
35: PrintVals(valOne, valTwo);
36: }
37: }
38: return 0;
39: }
40:
41: void PrintVals(int x, int y)
42: {
43: cout << “x: “ << x << “ y: “ << y << endl;
44: }
45:
46: void Square (int & rX, int & rY)
47: {
48: rX *= rX;
49: rY *= rY;
50: }
51:
52: void Cube (int & rX, int & rY)
53: {
54: int tmp;

LISTING 15.5 continued

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 515

55:
56: tmp = rX;
57: rX *= rX;
58: rX = rX * tmp;
59:
60: tmp = rY;
61: rY *= rY;
62: rY = rY * tmp;
63: }
64:
65: void Swap(int & rX, int & rY)
66: {
67: int temp;
68: temp = rX;
69: rX = rY;
70: rY = temp;
71: }
72:
73: void GetVals (int & rValOne, int & rValTwo)
74: {
75: cout << “New value for ValOne: “;
76: cin >> rValOne;
77: cout << “New value for ValTwo: “;
78: cin >> rValTwo;
79: }

(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 1
x: 1 y: 2
New value for ValOne: 2
New value for ValTwo: 3
x: 2 y: 3
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 3
x: 2 y: 3
x: 8 y: 27
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 2
x: 8 y: 27
x: 64 y: 729
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 4
x: 64 y: 729
x: 729 y: 64
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 0

On lines 5–8, four functions are declared, each with the same return type and sig-
nature, returning void and taking two references to integers.

On line 13, pFunc is declared to be a pointer to a function that returns void and takes
two integer reference parameters. Because the signatures match, any of the previous

OUTPUT

516 Day 15

LISTING 15.5 continued

ANALYSIS

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 516

Special Classes and Functions 517

15
functions can be pointed to by pFunc. The user is repeatedly offered the choice of which
functions to invoke, and pFunc is assigned accordingly. On lines 33–35, the current value
of the two integers is printed, the currently assigned function is invoked, and then the
values are printed again.

Pointer to Function

A pointer to function is invoked the same as the functions it points to, except that the
function pointer name is used instead of the function name.

Assign a pointer to function to a specific function by assigning to the function name with-
out the parentheses. The function name is a constant pointer to the function itself. Use
the pointer to function the same as you would the function name. The pointer to func-
tion must agree in return value and signature with the function to which you assign it.

Example

long (*pFuncOne) (int, int);
long SomeFunction (int, int);
pFuncOne = SomeFunction;
pFuncOne(5,7);

Be aware that pointers to functions can be highly dangerous. You can acci-
dentally assign to a function pointer when you want to call the function, or
you can accidentally call the function when you want to assign to its pointer.

CAUTION

Why Use Function Pointers?
Generally, you shouldn’t use function pointers. Function pointers date from the days of
C, before object-oriented programming was available. They were provided to allow for a
programming style that had some of the virtues of object orientation; however, if you are
writing a program that is highly dynamic and needs to operate different functionality
based on runtime decisions, this can be a viable solution.

You certainly could write a program like Listing 15.5 without function pointers, but the
use of these pointers makes the intent and use of the program explicit: Pick a function
from a list, and then invoke it.

Listing 15.6 uses the function prototypes and definitions from Listing 15.5, but the body
of the program does not use a function pointer. Examine the differences between these
two listings.

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 517

LISTING 15.6 Rewriting Listing 15.5 Without the Pointer to Function

0: // Listing 15.6 Without function pointers
1:
2: #include <iostream>
3: using namespace std;
4:
5: void Square (int&,int&);
6: void Cube (int&, int&);
7: void Swap (int&, int &);
8: void GetVals(int&, int&);
9: void PrintVals(int, int);
10:
11: int main()
12: {
13: bool fQuit = false;
14: int valOne=1, valTwo=2;
15: int choice;
16: while (fQuit == false)
17: {
18: cout << “(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: “;
19: cin >> choice;
20: switch (choice)
21: {
22: case 1:
23: PrintVals(valOne, valTwo);
24: GetVals(valOne, valTwo);
25: PrintVals(valOne, valTwo);
26: break;
27:
28: case 2:
29: PrintVals(valOne, valTwo);
30: Square(valOne,valTwo);
31: PrintVals(valOne, valTwo);
32: break;
33:
34: case 3:
35: PrintVals(valOne, valTwo);
36: Cube(valOne, valTwo);
37: PrintVals(valOne, valTwo);
38: break;
39:
40: case 4:
41: PrintVals(valOne, valTwo);
42: Swap(valOne, valTwo);
43: PrintVals(valOne, valTwo);
44: break;
45:
46: default :

518 Day 15

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 518

Special Classes and Functions 519

1547: fQuit = true;
48: break;
49: }
50: }
51: return 0;
52: }
53:
54: void PrintVals(int x, int y)
55: {
56: cout << “x: “ << x << “ y: “ << y << endl;
57: }
58:
59: void Square (int & rX, int & rY)
60: {
61: rX *= rX;
62: rY *= rY;
63: }
64:
65: void Cube (int & rX, int & rY)
66: {
67: int tmp;
68:
69: tmp = rX;
70: rX *= rX;
71: rX = rX * tmp;
72:
73: tmp = rY;
74: rY *= rY;
75: rY = rY * tmp;
76: }
77:
78: void Swap(int & rX, int & rY)
79: {
80: int temp;
81: temp = rX;
82: rX = rY;
83: rY = temp;
84: }
85:
86: void GetVals (int & rValOne, int & rValTwo)
87: {
88: cout << “New value for ValOne: “;
89: cin >> rValOne;
90: cout << “New value for ValTwo: “;
91: cin >> rValTwo;
92: }

LISTING 15.6 continued

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 519

(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 1
x: 1 y: 2
New value for ValOne: 2
New value for ValTwo: 3
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 3
x: 2 y: 3
x: 8 y: 27
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 2
x: 8 y: 27
x: 64 y: 729
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 4
x: 64 y: 729
x: 729 y: 64
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 0

It was tempting to put PrintVals() at the top of the while loop and again at the
bottom, rather than in each case statement. This would have called PrintVals()

even for the exit case, however, and that was not part of the specification.

Setting aside the increased size of the code and the repeated calls to do the same thing,
the overall clarity is somewhat diminished. This is an artificial case, however, created to
show how pointers to functions work. In real-world conditions, the advantages are even
clearer: Pointers to functions can eliminate duplicate code, clarify a program, and enable
tables of functions that can be called based on runtime conditions.

OUTPUT

520 Day 15

ANALYSIS

Object-oriented programming should generally allow you to avoid the need
to create or pass pointers to functions. Instead, call the desired function on
the desired object or the desired static member function on the class. If you
need an array of function pointers, ask yourself whether what you really
need is an array of appropriate objects.

TIP

Shorthand Invocation

The pointer to function does not need to be dereferenced, although you are free to do
so. Therefore, if pFunc is a pointer to a function taking an integer and returning a vari-
able of type long, and you assign pFunc to a matching function, you can invoke that
function with either

pFunc(x);

or

(*pFunc)(x);

The two forms are identical. The former is just a shorthand version of the latter.

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 520

Special Classes and Functions 521

15
Arrays of Pointers to Functions
Just as you can declare an array of pointers to integers, you can declare an array of point-
ers to functions returning a specific value type and with a specific signature. Listing 15.7
again rewrites Listing 15.5, this time using an array to invoke all the choices at once.

LISTING 15.7 Demonstrates Use of an Array of Pointers to Functions

0: // Listing 15.7
1: //demonstrates use of an array of pointers to functions
2:
3: #include <iostream>
4: using namespace std;
5:
6: void Square(int&,int&);
7: void Cube(int&, int&);
8: void Swap(int&, int &);
9: void GetVals(int&, int&);
10: void PrintVals(int, int);
11:
12: int main()
13: {
14: int valOne=1, valTwo=2;
15: int choice, i;
16: const MaxArray = 5;
17: void (*pFuncArray[MaxArray])(int&, int&);
18:
19: for (i=0; i < MaxArray; i++)
20: {
21: cout << “(1)Change Values (2)Square (3)Cube (4)Swap: “;
22: cin >> choice;
23: switch (choice)
24: {
25: case 1: pFuncArray[i] = GetVals; break;
26: case 2: pFuncArray[i] = Square; break;
27: case 3: pFuncArray[i] = Cube; break;
28: case 4: pFuncArray[i] = Swap; break;
29: default: pFuncArray[i] = 0;
30: }
31: }
32:
33: for (i=0; i < MaxArray; i++)
34: {
35: if (pFuncArray[i] == 0)
36: continue;
37: pFuncArray[i](valOne,valTwo);
38: PrintVals(valOne,valTwo);
39: }
40: return 0;

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 521

41: }
42:
43: void PrintVals(int x, int y)
44: {
45: cout << “x: “ << x << “ y: “ << y << endl;
46: }
47:
48: void Square (int & rX, int & rY)
49: {
50: rX *= rX;
51: rY *= rY;
52: }
53:
54: void Cube (int & rX, int & rY)
55: {
56: int tmp;
57:
58: tmp = rX;
59: rX *= rX;
60: rX = rX * tmp;
61:
62: tmp = rY;
63: rY *= rY;
64: rY = rY * tmp;
65: }
66:
67: void Swap(int & rX, int & rY)
68: {
69: int temp;
70: temp = rX;
71: rX = rY;
72: rY = temp;
73: }
74:
75: void GetVals (int & rValOne, int & rValTwo)
76: {
77: cout << “New value for ValOne: “;
78: cin >> rValOne;
79: cout << “New value for ValTwo: “;
80: cin >> rValTwo;
81: }

(1)Change Values (2)Square (3)Cube (4)Swap: 1
(1)Change Values (2)Square (3)Cube (4)Swap: 2
(1)Change Values (2)Square (3)Cube (4)Swap: 3
(1)Change Values (2)Square (3)Cube (4)Swap: 4
(1)Change Values (2)Square (3)Cube (4)Swap: 2
New Value for ValOne: 2
New Value for ValTwo: 3

OUTPUT

522 Day 15

LISTING 15.7 continued

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 522

Special Classes and Functions 523

15
x: 2 y: 3
x: 4 y: 9
x: 64 y: 729
x: 729 y: 64
x: 531441 y:4096

On line 17, the array pFuncArray is declared to be an array of five pointers to
functions that return void and that take two integer references.

On lines 19–31, the user is asked to pick the functions to invoke, and each member of the
array is assigned the address of the appropriate function. On lines 33–39, each function
is invoked in turn. The result is printed after each invocation.

Passing Pointers to Functions to Other Functions
The pointers to functions (and arrays of pointers to functions, for that matter) can be
passed to other functions, which can take action and then call the right function using the
pointer.

You might improve Listing 15.5, for example, by passing the chosen function pointer to
another function (outside of main()), which prints the values, invokes the function, and
then prints the values again. Listing 15.8 illustrates this variation.

LISTING 15.8 Passing Pointers to Functions as Function Arguments

0: // Listing 15.8 Without function pointers
1:
2: #include <iostream>
3: using namespace std;
4:
5: void Square(int&,int&);
6: void Cube(int&, int&);
7: void Swap(int&, int &);
8: void GetVals(int&, int&);
9: void PrintVals(void (*)(int&, int&),int&, int&);
10:
11: int main()
12: {
13: int valOne=1, valTwo=2;
14: int choice;
15: bool fQuit = false;
16:
17: void (*pFunc)(int&, int&);
18:
19: while (fQuit == false)
20: {
21: cout << “(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: “;
22: cin >> choice;

ANALYSIS

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 523

23: switch (choice)
24: {
25: case 1: pFunc = GetVals; break;
26: case 2: pFunc = Square; break;
27: case 3: pFunc = Cube; break;
28: case 4: pFunc = Swap; break;
29: default: fQuit = true; break;
30: }
31:
32: if (fQuit == false)
33: PrintVals (pFunc, valOne, valTwo);
34: }
35:
36: return 0;
37: }
38:
39: void PrintVals(void (*pFunc)(int&, int&),int& x, int& y)
40: {
41: cout << “x: “ << x << “ y: “ << y << endl;
42: pFunc(x,y);
43: cout << “x: “ << x << “ y: “ << y << endl;
44: }
45:
46: void Square (int & rX, int & rY)
47: {
48: rX *= rX;
49: rY *= rY;
50: }
51:
52: void Cube (int & rX, int & rY)
53: {
54: int tmp;
55:
56: tmp = rX;
57: rX *= rX;
58: rX = rX * tmp;
59:
60: tmp = rY;
61: rY *= rY;
62: rY = rY * tmp;
63: }
64:
65: void Swap(int & rX, int & rY)
66: {
67: int temp;
68: temp = rX;
69: rX = rY;
70: rY = temp;
71: }
72:

524 Day 15

LISTING 15.8 continued

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 524

Special Classes and Functions 525

1573: void GetVals (int & rValOne, int & rValTwo)
74: {
75: cout << “New value for ValOne: “;
76: cin >> rValOne;
77: cout << “New value for ValTwo: “;
78: cin >> rValTwo;
79: }

(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 1
x: 1 y: 2
New value for ValOne: 2
New value for ValTwo: 3
x: 2 y: 3
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 3
x: 2 y: 3
x: 8 y: 27
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 2
x: 8 y: 27
x: 64 y: 729
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 4
x: 64 y: 729
x: 729 y:64
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 0

On line 17, pFunc is declared to be a pointer to a function returning void and
taking two parameters, both integer references. On line 9, PrintVals is declared

to be a function taking three parameters. The first is a pointer to a function that returns
void but takes two integer reference parameters, and the second and third arguments to
PrintVals are integer references. The user is again prompted on lines 19 and 20 for
which functions to call, and then on line 33 PrintVals is called using the function
pointer, pFunc, as the first parameter.

Go find a C++ programmer and ask him what this declaration means:

void PrintVals(void (*)(int&, int&),int&, int&);

This is the kind of declaration that you use infrequently and probably look up in the
book each time you need it, but it will save your program on those rare occasions when it
is exactly the required construct.

Using typedef with Pointers to Functions
The construct void (*)(int&, int&) is cumbersome, at best. You can use typedef to
simplify this, by declaring a type (in Listing 15.9, it is called VPF) as a pointer to a func-
tion returning void and taking two integer references. Listing 15.9 rewrites Listing 15.8
using this typedef statement.

OUTPUT

LISTING 15.8 continued

ANALYSIS

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 525

LISTING 15.9 Using typedef to Make Pointers to Functions More Readable

0: // Listing 15.9.
1: // Using typedef to make pointers to functions more readable
2:
3: #include <iostream>
4: using namespace std;
5:
6: void Square(int&,int&);
7: void Cube(int&, int&);
8: void Swap(int&, int &);
9: void GetVals(int&, int&);
10: typedef void (*VPF) (int&, int&) ;
11: void PrintVals(VPF,int&, int&);
12:
13: int main()
14: {
15: int valOne=1, valTwo=2;
16: int choice;
17: bool fQuit = false;
18:
19: VPF pFunc;
20:
21: while (fQuit == false)
22: {
23: cout << “(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: “;
24: cin >> choice;
25: switch (choice)
26: {
27: case 1: pFunc = GetVals; break;
28: case 2: pFunc = Square; break;
29: case 3: pFunc = Cube; break;
30: case 4: pFunc = Swap; break;
31: default: fQuit = true; break;
32: }
33:
34: if (fQuit == false)
35: PrintVals (pFunc, valOne, valTwo);
36: }
37: return 0;
38: }
39:
40: void PrintVals(VPF pFunc,int& x, int& y)
41: {
42: cout << “x: “ << x << “ y: “ << y << endl;
43: pFunc(x,y);
44: cout << “x: “ << x << “ y: “ << y << endl;
45: }
46:
47: void Square (int & rX, int & rY)
48: {

526 Day 15

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 526

Special Classes and Functions 527

1549: rX *= rX;
50: rY *= rY;
51: }
52:
53: void Cube (int & rX, int & rY)
54: {
55: int tmp;
56:
57: tmp = rX;
58: rX *= rX;
59: rX = rX * tmp;
60:
61: tmp = rY;
62: rY *= rY;
63: rY = rY * tmp;
64: }
65:
66: void Swap(int & rX, int & rY)
67: {
68: int temp;
69: temp = rX;
70: rX = rY;
71: rY = temp;
72: }
73:
74: void GetVals (int & rValOne, int & rValTwo)
75: {
76: cout << “New value for ValOne: “;
77: cin >> rValOne;
78: cout << “New value for ValTwo: “;
79: cin >> rValTwo;
80: }

(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 1
x: 1 y: 2
New value for ValOne: 2
New value for ValTwo: 3
x: 2 y: 3
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 3
x: 2 y: 3
x: 8 y: 27
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 2
x: 8 y: 27
x: 64 y: 729
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 4
x: 64 y: 729
x: 729 y: 64
(0)Quit (1)Change Values (2)Square (3)Cube (4)Swap: 0

OUTPUT

LISTING 15.9 continued

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 527

On line 10, typedef is used to declare VPF to be of the type “pointer to function
that returns void and takes two parameters, both integer references.”

On line 11, the function PrintVals() is declared to take three parameters: a VPF and two
integer references. On line 19, pFunc is now declared to be of type VPF.

After the type VPF is defined, all subsequent uses to declare pFunc and PrintVals() are
much cleaner. As you can see, the output is identical. Remember, a typedef primarily
does a replacement. In this case, using the typedef makes your code much easier to
follow.

Pointers to Member Functions
Up until this point, all the function pointers you’ve created have been for general, non-
class functions. It is also possible to create pointers to functions that are members of
classes. This is a highly advanced and infrequently used technique that should be avoided
whenever possible. It is, however, important to understand this technique as some people
do choose to use it.

To create a pointer to member function, use the same syntax as with a pointer to func-
tion, but include the class name and the scoping operator (::). Thus, if pFunc points to a
member function of the class Shape, which takes two integers and returns void, the dec-
laration for pFunc is the following:

void (Shape::*pFunc) (int, int);

Pointers to member functions are used in the same way as pointers to functions, except
that they require an object of the correct class on which to invoke them. Listing 15.10
illustrates the use of pointers to member functions.

LISTING 15.10 Pointers to Member Functions

0: //Listing 15.10 Pointers to member functions using virtual methods
1:
2: #include <iostream>
3: using namespace std;
4:
5: class Mammal
6: {
7: public:
8: Mammal():itsAge(1) { }
9: virtual ~Mammal() { }
10: virtual void Speak() const = 0;
11: virtual void Move() const = 0;
12: protected:

528 Day 15

ANALYSIS

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 528

Special Classes and Functions 529

1513: int itsAge;
14: };
15:
16: class Dog : public Mammal
17: {
18: public:
19: void Speak()const { cout << “Woof!” << endl; }
20: void Move() const { cout << “Walking to heel...” << endl; }
21: };
22:
23:
24: class Cat : public Mammal
25: {
26: public:
27: void Speak()const { cout << “Meow!” << endl; }
28: void Move() const { cout << “slinking...” << endl; }
29: };
30:
31:
32: class Horse : public Mammal
33: {
34: public:
35: void Speak()const { cout << “Winnie!” << endl; }
36: void Move() const { cout << “Galloping...” << endl; }
37: };
38:
39:
40: int main()
41: {
42: void (Mammal::*pFunc)() const =0;
43: Mammal* ptr =0;
44: int Animal;
45: int Method;
46: bool fQuit = false;
47:
48: while (fQuit == false)
49: {
50: cout << “(0)Quit (1)dog (2)cat (3)horse: “;
51: cin >> Animal;
52: switch (Animal)
53: {
54: case 1: ptr = new Dog; break;
55: case 2: ptr = new Cat; break;
56: case 3: ptr = new Horse; break;
57: default: fQuit = true; break;
58: }
59: if (fQuit == false)
60: {
61: cout << “(1)Speak (2)Move: “;

LISTING 15.10 continued

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 529

62: cin >> Method;
63: switch (Method)
64: {
65: case 1: pFunc = Mammal::Speak; break;
66: default: pFunc = Mammal::Move; break;
67: }
68:
69: (ptr->*pFunc)();
70: delete ptr;
71: }
72: }
73: return 0;
74: }

(0)Quit (1)dog (2)cat (3)horse: 1
(1)Speak (2)Move: 1
Woof!
(0)Quit (1)dog (2)cat (3)horse: 2
(1)Speak (2)Move: 1
Meow!
(0)Quit (1)dog (2)cat (3)horse: 3
(1)Speak (2)Move: 2
Galloping
(0)Quit (1)dog (2)cat (3)horse: 0

On lines 5–14, the abstract class Mammal is declared with two pure virtual meth-
ods: Speak() and Move(). Mammal is subclassed into Dog, Cat, and Horse, each of

which overrides Speak() and Move().

The driver program in main() starts on line 40. On line 50, the user is asked to choose
the type of animal to create. Based on this selection, a new subclass of Animal is created
on the free store and assigned to ptr on lines 54–56.

On line 61, the user is given a second prompt asking him to select the method to invoke.
The method selected, either Speak or Move, is assigned to the pointer pFunc on lines
65–66. On line 69, the method chosen is invoked by the object created, by using the
pointer ptr to access the object and pFunc to access the function.

Finally, on line 70, delete is called on the pointer ptr to return the memory set aside for
the object to the free store. Note that no reason exists to call delete on pFunc because this
is a pointer to code, not to an object on the free store. In fact, attempting to do so gener-
ates a compile-time error.

OUTPUT

530 Day 15

LISTING 15.10 continued

ANALYSIS

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 530

Special Classes and Functions 531

15
Arrays of Pointers to Member Functions
As with pointers to functions, pointers to member functions can be stored in an array.
The array can be initialized with the addresses of various member functions, and these
can be invoked by offsets into the array. Listing 15.11 illustrates this technique.

LISTING 15.11 Array of Pointers to Member Functions

0: //Listing 15.11 Array of pointers to member functions
1: #include <iostream>
2: using std::cout;
3: using std::endl;
4:
5: class Dog
6: {
7: public:
8: void Speak()const { cout << “Woof!” << endl; }
9: void Move() const { cout << “Walking to heel...” << endl; }
10: void Eat() const { cout << “Gobbling food...” << endl; }
11: void Growl() const { cout << “Grrrrr” << endl; }
12: void Whimper() const { cout << “Whining noises...” << endl; }
13: void RollOver() const { cout << “Rolling over...” << endl; }
14: void PlayDead() const

➥ { cout << “The end of Little Caesar?” << endl; }
15: };
16:
17: typedef void (Dog::*PDF)()const ;
18: int main()
19: {
20: const int MaxFuncs = 7;
21: PDF DogFunctions[MaxFuncs] =
22: {Dog::Speak,
23: Dog::Move,
24: Dog::Eat,
25: Dog::Growl,
26: Dog::Whimper,
27: Dog::RollOver,
28: Dog::PlayDead };
29:
30: Dog* pDog =0;
31: int Method;
32: bool fQuit = false;
33:
34: while (!fQuit)
35: {
36: cout << “(0)Quit (1)Speak (2)Move (3)Eat (4)Growl”;
37: cout << “ (5)Whimper (6)Roll Over (7)Play Dead: “;
38: std::cin >> Method;
39: if (Method <= 0 || Method >= 8)

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 531

40: {
41: fQuit = true;
42: }
43: else
44: {
45: pDog = new Dog;
46: (pDog->*DogFunctions[Method-1])();
47: delete pDog;
48: }
49: }
50: return 0;
51: }

(0)Quit (1)Speak (2)Move (3)Eat (4)Growl (5)Whimper (6)Roll Over
➥(7)Play Dead: 1
Woof!
(0)Quit (1)Speak (2)Move (3)Eat (4)Growl (5)Whimper (6)Roll Over

➥(7)Play Dead: 4
Grrr
(0)Quit (1)Speak (2)Move (3)Eat (4)Growl (5)Whimper (6)Roll Over

➥(7)Play Dead: 7
The end of Little Caesar?
(0)Quit (1)Speak (2)Move (3)Eat (4)Growl (5)Whimper (6)Roll Over

➥(7)Play Dead: 0

On lines 5–15, the class Dog is created, with seven member functions all sharing
the same return type and signature. On line 17, a typedef declares PDF to be a

pointer to a member function of Dog that takes no parameters and returns no values, and
that is const: the signature of the seven member functions of Dog.

On lines 21–28, the array DogFunctions is declared to hold seven such member func-
tions, and it is initialized with the addresses of these functions.

On lines 36 and 37, the user is prompted to pick a method. Unless Quit is picked, a new
Dog is created on the heap, and then the correct method is invoked on the array on line
46. Here’s another good line to show to the hotshot C++ programmers in your company;
ask them what this does:

(pDog->*DogFunctions[Method-1])();

You’ll be able to tell the hotshot that it is a call to a method in an object using a pointer
stored to the method that is stored in an array at the offset of Method-1.

Once again, this is a technique that should be avoided whenever possible. If it must be
used, document it extensively and try to think of another way to accomplish the desired
task.

OUTPUT

532 Day 15

LISTING 15.11 continued

ANALYSIS

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 532

Special Classes and Functions 533

15

Summary
Today, you learned how to create static member variables in your class. Each class,
rather than each object, has one instance of the static member variable. It is possible to
access this member variable without an object of the class type by fully qualifying the
name, assuming you’ve declared the static member to have public access.

You learned that one use of static member variables is as counters across instances of the
class. Because they are not part of the object, the declaration of static member variables
does not allocate memory, and static member variables must be defined and initialized
outside the declaration of the class.

Static member functions are part of the class in the same way that static member vari-
ables are. They can be accessed without a particular object of the class and can be used
to access static member data. Static member functions cannot be used to access nonstatic
member data because they do not have the this pointer.

Because static member functions do not have a this pointer, they also cannot be made
const. const in a member function indicates that this is const.

Today’s lesson also included one of the more complex topics in C++. You learned how to
declare and use pointers to functions and pointers to member functions. You saw how to
create arrays of these pointers and how to pass them to functions, and how to call the
functions whose pointers were stored in this way. You learned that this is not really a
great idea, and that object-oriented techniques should allow you to avoid this in almost
every situation.

Q&A
Q Why use static data when I can use global data?

A Static data is scoped to the class. In this manner, static data is available only
through an object of the class, through an explicit call using the class name if they
are public, or by using a static member function. Static data is typed to the class

DO invoke pointers to member functions
on a specific object of a class.

DO use typedef to make pointer to
member function declarations easier to
read.

DON’T use pointer to member functions
when simpler solutions are possible.

DON’T forget the parenthesis when
declaring a pointer to a function (versus
a function that returns a pointer).

DO DON’T

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 533

type, however, and the restricted access and strong typing makes static data safer
than global data.

Q Why use static member functions when I can use global functions?

A Static member functions are scoped to the class and can be called only by using an
object of the class or an explicit full specification (such as
ClassName::FunctionName()).

Q Is it common to use many pointers to functions and pointers to member
functions?

A No, these have their special uses, but are not common constructs. Many complex
and powerful programs have neither. There might, however, be times when these
offer the only solution.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to tomorrow’s lesson.

Quiz
1. Can static member variables be private?

2. Show the declaration for a static member variable called itsStatic that is of
type int.

3. Show the declaration for a static function called SomeFunction that returns an inte-
ger and takes no parameters.

4. Show the declaration for a pointer to function returning long and taking an integer
parameter.

5. Modify the pointer in Question 4 so it’s a pointer to member function of class Car.

6. Show the declaration for an array called theArray that contains 10 pointers as
defined in Question 5.

Exercises
1. Write a short program declaring a class with one member variable and one static

member variable. Have the constructor initialize the member variable and incre-
ment the static member variable. Have the destructor decrement the member
variable.

534 Day 15

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 534

Special Classes and Functions 535

15
2. Using the program from Exercise 1, write a short driver program that makes three

objects and then displays their member variables and the static member variable.
Then destroy each object and show the effect on the static member variable.

3. Modify the program from Exercise 2 to use a static member function to access the
static member variable. Make the static member variable private.

4. Write a pointer to member function to access the nonstatic member data in the pro-
gram in Exercise 3, and use that pointer to print the value of that data.

5. Add two more member variables to the class from the previous exercises. Add
accessor functions that get the value of this data and give all the member functions
the same return values and signatures. Use the pointer to member function to
access these functions.

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 535

21 0672327112_ch15.qxd 11/19/04 12:28 PM Page 536

DAY 16

WEEK 2

Advanced Inheritance
So far, you have worked with single and multiple inheritance to create is-a
relationships.

Today, you will learn

• What aggregation is and how to model it (the has-a relationship)

• What delegation is and how to model it

• How to implement one class in terms of another

• How to use private inheritance

Aggregation
You have seen in previous examples that it is possible for the member data of a
class to contain objects of other class types. This is often called aggregation, or
the has-a relationship.

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 537

As an illustration, consider classes such as a Name class and an Address class:

Class Name
{

// Class information for Name
};
Class Address
{

// Class information for Address
};

As an illustration of aggregation, these two classes could be included as part of an
Employee class:

Class Employee
{

Name EmpName;
Address EmpAddress;
// Any other employee class stuff...

}

Thus, an Employee class contains member variables for a name and for an address
(Employee has-a Name and Employee has-an Address).

A more complex example is presented in Listing 16.1. This is an incomplete, but still
useful, String class, not unlike the String class created on Day 13, “Managing Arrays
and Strings.” This listing does not produce any output. Instead, Listing 16.1 will be used
with later listings.

LISTING 16.1 The String Class

0: // Listing 16.1 The String Class
1:
2: #include <iostream>
3: #include <string.h>
4: using namespace std;
5:
6: class String
7: {
8: public:
9: // constructors
10: String();
11: String(const char *const);
12: String(const String &);
13: ~String();
14:
15: // overloaded operators
16: char & operator[](int offset);
17: char operator[](int offset) const;

538 Day 16

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 538

Advanced Inheritance 539

16

18: String operator+(const String&);
19: void operator+=(const String&);
20: String & operator= (const String &);
21:
22: // General accessors
23: int GetLen()const { return itsLen; }
24: const char * GetString() const { return itsString; }
25: // static int ConstructorCount;
26:
27: private:
28: String (int); // private constructor
29: char * itsString;
30: unsigned short itsLen;
31:
32: };
33:
34: // default constructor creates string of 0 bytes
35: String::String()
36: {
37: itsString = new char[1];
38: itsString[0] = ‘\0’;
39: itsLen=0;
40: // cout << “\tDefault string constructor\n”;
41: // ConstructorCount++;
42: }
43:
44: // private (helper) constructor, used only by
45: // class methods for creating a new string of
46: // required size. Null filled.
47: String::String(int len)
48: {
49: itsString = new char[len+1];
50: for (int i = 0; i<=len; i++)
51: itsString[i] = ‘\0’;
52: itsLen=len;
53: // cout << “\tString(int) constructor\n”;
54: // ConstructorCount++;
55: }
56:
57: // Converts a character array to a String
58: String::String(const char * const cString)
59: {
60: itsLen = strlen(cString);
61: itsString = new char[itsLen+1];
62: for (int i = 0; i<itsLen; i++)
63: itsString[i] = cString[i];
64: itsString[itsLen]=’\0’;
65: // cout << “\tString(char*) constructor\n”;
66: // ConstructorCount++;
67: }
68:

LISTING 16.1 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 539

69: // copy constructor
70: String::String (const String & rhs)
71: {
72: itsLen=rhs.GetLen();
73: itsString = new char[itsLen+1];
74: for (int i = 0; i<itsLen;i++)
75: itsString[i] = rhs[i];
76: itsString[itsLen] = ‘\0’;
77: // cout << “\tString(String&) constructor\n”;
78: // ConstructorCount++;
79: }
80:
81: // destructor, frees allocated memory
82: String::~String ()
83: {
84: delete [] itsString;
85: itsLen = 0;
86: // cout << “\tString destructor\n”;
87: }
88:
89: // operator equals, frees existing memory
90: // then copies string and size
91: String& String::operator=(const String & rhs)
92: {
93: if (this == &rhs)
94: return *this;
95: delete [] itsString;
96: itsLen=rhs.GetLen();
97: itsString = new char[itsLen+1];
98: for (int i = 0; i<itsLen;i++)
99: itsString[i] = rhs[i];
100: itsString[itsLen] = ‘\0’;
101: return *this;
102: // cout << “\tString operator=\n”;
103: }
104:
105: //non constant offset operator, returns
106: // reference to character so it can be
107: // changed!
108: char & String::operator[](int offset)
109: {
110: if (offset > itsLen)
111: return itsString[itsLen-1];
112: else
113: return itsString[offset];
114: }
115:
116: // constant offset operator for use

540 Day 16

LISTING 16.1 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 540

Advanced Inheritance 541

16

117: // on const objects (see copy constructor!)
118: char String::operator[](int offset) const
119: {
120: if (offset > itsLen)
121: return itsString[itsLen-1];
122: else
123: return itsString[offset];
124: }
125:
126: // creates a new string by adding current
127: // string to rhs
128: String String::operator+(const String& rhs)
129: {
130: int totalLen = itsLen + rhs.GetLen();
131: String temp(totalLen);
132: int i, j;
133: for (i = 0; i<itsLen; i++)
134: temp[i] = itsString[i];
135: for (j = 0; j<rhs.GetLen(); j++, i++)
136: temp[i] = rhs[j];
137: temp[totalLen]=’\0’;
138: return temp;
139: }
140:
141: // changes current string, returns nothing
142: void String::operator+=(const String& rhs)
143: {
144: unsigned short rhsLen = rhs.GetLen();
145: unsigned short totalLen = itsLen + rhsLen;
146: String temp(totalLen);
147: int i, j;
148: for (i = 0; i<itsLen; i++)
149: temp[i] = itsString[i];
150: for (j = 0; j<rhs.GetLen(); j++, i++)
151: temp[i] = rhs[i-itsLen];
152: temp[totalLen]=’\0’;
153: *this = temp;
154: }
155:
156: // int String::ConstructorCount = 0;

Put the code from Listing 16.1 into a file called MyString.hpp. Then, any
time you need the String class, you can include Listing 16.1 by using
#include “MyString.hpp”, such as in this listing. You might notice a number
of commented lines in this listing. The purpose of these lines are explained
throughout today’s lesson.

NOTE

LISTING 16.1 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 541

Listing 16.1 provides a String class much like the one used in Listing 13.12 of
Day 13. The significant difference here is that the constructors and a few other

functions in Listing 13.12 have print statements to show their use, which are currently
commented out in Listing 16.1. These functions will be used in later examples.

On line 25, the static member variable ConstructorCount is declared, and on line 156 it
is initialized. This variable is incremented in each string constructor. All this is currently
commented out; it will be used in a later listing.

For convenience, the implementation is included with the declaration of the class. In a
real-world program, you would save the class declaration in String.hpp and the imple-
mentation in String.cpp. You would then add String.cpp into your program (using add
files or a make file) and have String.cpp #include String.hpp.

Of course, in a real program, you’d use the C++ Standard Library String class, and not
this string class in the first place.

Listing 16.2 describes an Employee class that contains three string objects. These objects
are used to hold an employee’s first and last names as well as their address.

LISTING 16.2 The Employee Class and Driver Program

0: // Listing 16.2 The Employee Class and Driver Program
1: #include “MyString.hpp”
2:
3: class Employee
4: {
5: public:
6: Employee();
7: Employee(char *, char *, char *, long);
8: ~Employee();
9: Employee(const Employee&);
10: Employee & operator= (const Employee &);
11:
12: const String & GetFirstName() const
13: { return itsFirstName; }
14: const String & GetLastName() const { return itsLastName; }
15: const String & GetAddress() const { return itsAddress; }
16: long GetSalary() const { return itsSalary; }
17:
18: void SetFirstName(const String & fName)
19: { itsFirstName = fName; }
20: void SetLastName(const String & lName)
21: { itsLastName = lName; }
22: void SetAddress(const String & address)
23: { itsAddress = address; }
24: void SetSalary(long salary) { itsSalary = salary; }

542 Day 16

ANALYSIS

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 542

Advanced Inheritance 543

16

25: private:
26: String itsFirstName;
27: String itsLastName;
28: String itsAddress;
29: long itsSalary;
30: };
31:
32: Employee::Employee():
33: itsFirstName(“”),
34: itsLastName(“”),
35: itsAddress(“”),
36: itsSalary(0)
37: {}
38:
39: Employee::Employee(char * firstName, char * lastName,
40: char * address, long salary):
41: itsFirstName(firstName),
42: itsLastName(lastName),
43: itsAddress(address),
44: itsSalary(salary)
45: {}
46:
47: Employee::Employee(const Employee & rhs):
48: itsFirstName(rhs.GetFirstName()),
49: itsLastName(rhs.GetLastName()),
50: itsAddress(rhs.GetAddress()),
51: itsSalary(rhs.GetSalary())
52: {}
53:
54: Employee::~Employee() {}
55:
56: Employee & Employee::operator= (const Employee & rhs)
57: {
58: if (this == &rhs)
59: return *this;
60:
61: itsFirstName = rhs.GetFirstName();
62: itsLastName = rhs.GetLastName();
63: itsAddress = rhs.GetAddress();
64: itsSalary = rhs.GetSalary();
65:
66: return *this;
67: }
68:
69: int main()
70: {
71: Employee Edie(“Jane”,”Doe”,”1461 Shore Parkway”, 20000);
72: Edie.SetSalary(50000);
73: String LastName(“Levine”);
74: Edie.SetLastName(LastName);
75: Edie.SetFirstName(“Edythe”);

LISTING 16.2 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 543

76:
77: cout << “Name: “;
78: cout << Edie.GetFirstName().GetString();
79: cout << “ “ << Edie.GetLastName().GetString();
80: cout << “.\nAddress: “;
81: cout << Edie.GetAddress().GetString();
82: cout << “.\nSalary: “ ;
83: cout << Edie.GetSalary();
84: return 0;
85: }

Name: Edythe Levine.
Address: 1461 Shore Parkway.
Salary: 50000

Listing 16.2 shows the Employee class, which contains three string objects (see
lines 26–28): itsFirstName, itsLastName, and itsAddress.

On line 71, an Employee object called Edie is created, and four values are passed in. On
line 72, the Employee access function SetSalary() is called, with the constant value
50000. Note that in a real program, this would be either a dynamic value (set at runtime)
or a constant.

On line 73, a string called LastName is created and initialized using a C++ string con-
stant. This string object is then used as an argument to SetLastName() on line 74.

On line 75, the Employee function SetFirstName() is called with yet another string con-
stant. However, if you are paying close attention, you will notice that Employee does not
have a function SetFirstName() that takes a character string as its argument;
SetFirstName() requires a constant string reference (see line 18).

The compiler resolves this because it knows how to make a string from a constant char-
acter string. It knows this because you told it how to do so on line 11 of Listing 16.1.

Looking at lines 78, 79, and 81, you see something that might appear unusual. You might
be wondering why GetString() has been tacked onto the different methods from the
Employee class:

78: cout << Edie.GetFirstName().GetString();

The Edie object’s GetFirstName() method returns a String. Unfortunately, the String
object created in Listing 16.1 does not yet support the cout << operator. To satisfy cout,
you need to return a C-Style string. GetString() is a method on your String object that
returns a C-Style string. This problem will be fixed soon.

544 Day 16

LISTING 16.2 continued

OUTPUT

ANALYSIS

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 544

Advanced Inheritance 545

16

Accessing Members of the Aggregated Class
A class that aggregates other objects does not have special access to those object’s mem-
ber data and functions. Rather, it has whatever access is normally exposed. For example,
Employee objects do not have special access to the member variables of String. If the
Employee object Edie tries to access the private member variable itsLen of its own
itsFirstName member variable, it receives a compile-time error. This is not much of a
burden, however. The accessor functions provide an interface for the String class, and
the Employee class need not worry about the implementation details, any more than it
worries about how the integer variable, itsSalary, stores its information.

Aggregated members don’t have any special access to the members of the
class within which they are aggregated. The only ability they have to access
the instance that aggregates them is to have a copy of the owner class
“this” pointer passed to them at creation or at some point thereafter. If
this is done, they have the same normal access to that object as they would
to any other.

NOTE

Controlling Access to Aggregated Members
Note that the String class provides an overloaded plus operator: operator+. The
designer of the Employee class has blocked access to the operator+ being called on
Employee objects by declaring that all the string accessors, such as GetFirstName(),
return a constant reference. Because operator+ is not (and can’t be) a const function (it
changes the object it is called on), attempting to write the following causes a compile-
time error:

String buffer = Edie.GetFirstName() + Edie.GetLastName();

GetFirstName() returns a constant String, and you can’t call operator+ on a constant
object.

To fix this, overload GetFirstName() to be non-const:

const String & GetFirstName() const { return itsFirstName; }
String & GetFirstName() { return itsFirstName; }

Note that the return value is no longer const and that the member function itself is no
longer const. Changing just the return value is not sufficient to overload the function
name; you must change the “constness” of the function itself.

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 545

Cost of Aggregation
When you have aggregated objects, there can be a cost in performance. Each time an
Employee string is constructed or copied, you are also constructing each of its aggregated
string objects.

Uncommenting the cout statements in Listing 16.1 reveals how often the constructors
are called. Listing 16.3 rewrites the driver program to add print statements indicating
where in the program objects are being created. Uncomment the lines in Listing 16.1,
and then compile Listing 16.3.

546 Day 16

To compile this listing, uncomment lines 40, 53, 65, 77, 86, and 102 in
Listing 16.1.

NOTE

LISTING 16.3 Aggregated Class Constructors

0: //Listing 16.3 Aggregated Class Constructors
1: #include “MyString.hpp”
2:
3: class Employee
4: {
5: public:
6: Employee();
7: Employee(char *, char *, char *, long);
8: ~Employee();
9: Employee(const Employee&);
10: Employee & operator= (const Employee &);
11:
12: const String & GetFirstName() const
13: { return itsFirstName; }
14: const String & GetLastName() const { return itsLastName; }
15: const String & GetAddress() const { return itsAddress; }
16: long GetSalary() const { return itsSalary; }
17:
18: void SetFirstName(const String & fName)
19: { itsFirstName = fName; }
20: void SetLastName(const String & lName)
21: { itsLastName = lName; }
22: void SetAddress(const String & address)
23: { itsAddress = address; }
24: void SetSalary(long salary) { itsSalary = salary; }
25: private:
26: String itsFirstName;
27: String itsLastName;
28: String itsAddress;
29: long itsSalary;

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 546

Advanced Inheritance 547

16

30: };
31:
32: Employee::Employee():
33: itsFirstName(“”),
34: itsLastName(“”),
35: itsAddress(“”),
36: itsSalary(0)
37: {}
38:
39: Employee::Employee(char * firstName, char * lastName,
40: char * address, long salary):
41: itsFirstName(firstName),
42: itsLastName(lastName),
43: itsAddress(address),
44: itsSalary(salary)
45: {}
46:
47: Employee::Employee(const Employee & rhs):
48: itsFirstName(rhs.GetFirstName()),
49: itsLastName(rhs.GetLastName()),
50: itsAddress(rhs.GetAddress()),
51: itsSalary(rhs.GetSalary())
52: {}
53:
54: Employee::~Employee() {}
55:
56: Employee & Employee::operator= (const Employee & rhs)
57: {
58: if (this == &rhs)
59: return *this;
60:
61: itsFirstName = rhs.GetFirstName();
62: itsLastName = rhs.GetLastName();
63: itsAddress = rhs.GetAddress();
64: itsSalary = rhs.GetSalary();
65:
66: return *this;
67: }
68:
69: int main()
70: {
71: cout << “Creating Edie...\n”;
72: Employee Edie(“Jane”,”Doe”,”1461 Shore Parkway”, 20000);
73: Edie.SetSalary(20000);
74: cout << “Calling SetFirstName with char *...\n”;
75: Edie.SetFirstName(“Edythe”);
76: cout << “Creating temporary string LastName...\n”;
77: String LastName(“Levine”);
78: Edie.SetLastName(LastName);
79:
80: cout << “Name: “;

LISTING 16.3 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 547

81: cout << Edie.GetFirstName().GetString();
82: cout << “ “ << Edie.GetLastName().GetString();
83: cout << “\nAddress: “;
84: cout << Edie.GetAddress().GetString();
85: cout << “\nSalary: “ ;
86: cout << Edie.GetSalary();
87: cout << endl;
88: return 0;
89: }

1: Creating Edie...
2: String(char*) constructor
3: String(char*) constructor
4: String(char*) constructor
5: Calling SetFirstName with char *...
6: String(char*) constructor
7: String destructor
8: Creating temporary string LastName...
9: String(char*) constructor
10: Name: Edythe Levine
11: Address: 1461 Shore Parkway
12: Salary: 20000
13: String destructor
14: String destructor
15: String destructor
16: String destructor

Listing 16.3 uses the same class declarations as Listings 16.1 and 16.2. However,
the cout statements have been uncommented. The output from Listing 16.3 has

been numbered to make analysis easier.

On line 71 of Listing 16.3, the statement Creating Edie... is printed, as reflected on
line 1 of the output. On line 72, an Employee object, Edie, is created with four parame-
ters, the first three being strings. The output reflects the constructor for String being
called three times, as expected.

Line 74 prints an information statement, and then on line 75 is the statement
Edie.SetFirstName(“Edythe”). This statement causes a temporary string to be created
from the character string “Edythe”, as reflected on lines 5 and 6 of the output. Note that
the temporary String object is destroyed immediately after it is used in the assignment
statement.

On line 77, a String object is created in the body of the program. Here, the programmer
is doing explicitly what the compiler did implicitly on the previous statement. This time
you see the constructor on line 8 of the output, but no destructor. This object is not
destroyed until it goes out of scope at the end of the function.

548 Day 16

LISTING 16.3 continued

OUTPUT

ANALYSIS

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 548

Advanced Inheritance 549

16

On lines 81–87, the strings in the Employee object are destroyed as the Employee object
falls out of scope, and the string LastName, created on line 77, is destroyed as well when
it falls out of scope.

Copying by Value
Listing 16.3 illustrates how the creation of one Employee object caused five string con-
structor calls. Listing 16.4 again rewrites the driver program. This time, the print state-
ments are not used, but the string static member variable ConstructorCount is
uncommented and used.

Examination of Listing 16.1 shows that ConstructorCount is incremented each time a
string constructor is called. The driver program in 16.4 calls the print functions, passing in
the Employee object, first by reference and then by value. ConstructorCount keeps track
of how many string objects are created when the employee is passed as a parameter.

To compile this listing, leave in the lines that you uncommented in Listing
16.1 to run Listing 16.3, and in addition, uncomment lines 25, 41, 54, 66, 78,
and 155 from Listing 16.1.

NOTE

LISTING 16.4 Passing by Value

0: // Listing 16.4 Passing by Value
1: #include “MyString.hpp”
2:
3: class Employee
4: {
5: public:
6: Employee();
7: Employee(char *, char *, char *, long);
8: ~Employee();
9: Employee(const Employee&);
10: Employee & operator= (const Employee &);
11:
12: const String & GetFirstName() const
13: { return itsFirstName; }
14: const String & GetLastName() const { return itsLastName; }
15: const String & GetAddress() const { return itsAddress; }
16: long GetSalary() const { return itsSalary; }
17:
18: void SetFirstName(const String & fName)
19: { itsFirstName = fName; }
20: void SetLastName(const String & lName)
21: { itsLastName = lName; }

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 549

22: void SetAddress(const String & address)
23: { itsAddress = address; }
24: void SetSalary(long salary) { itsSalary = salary; }
25: private:
26: String itsFirstName;
27: String itsLastName;
28: String itsAddress;
29: long itsSalary;
30: };
31:
32: Employee::Employee():
33: itsFirstName(“”),
34: itsLastName(“”),
35: itsAddress(“”),
36: itsSalary(0)
37: {}
38:
39: Employee::Employee(char * firstName, char * lastName,
40: char * address, long salary):
41: itsFirstName(firstName),
42: itsLastName(lastName),
43: itsAddress(address),
44: itsSalary(salary)
45: {}
46:
47: Employee::Employee(const Employee & rhs):
48: itsFirstName(rhs.GetFirstName()),
49: itsLastName(rhs.GetLastName()),
50: itsAddress(rhs.GetAddress()),
51: itsSalary(rhs.GetSalary())
52: {}
53:
54: Employee::~Employee() {}
55:
56: Employee & Employee::operator= (const Employee & rhs)
57: {
58: if (this == &rhs)
59: return *this;
60:
61: itsFirstName = rhs.GetFirstName();
62: itsLastName = rhs.GetLastName();
63: itsAddress = rhs.GetAddress();
64: itsSalary = rhs.GetSalary();
65:
66: return *this;
67: }
68:
69: void PrintFunc(Employee);

550 Day 16

LISTING 16.4 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 550

Advanced Inheritance 551

16

70: void rPrintFunc(const Employee&);
71:
72: int main()
73: {
74: Employee Edie(“Jane”,”Doe”,”1461 Shore Parkway”, 20000);
75: Edie.SetSalary(20000);
76: Edie.SetFirstName(“Edythe”);
77: String LastName(“Levine”);
78: Edie.SetLastName(LastName);
79:
80: cout << “Constructor count: “ ;
81: cout << String::ConstructorCount << endl;
82: rPrintFunc(Edie);
83: cout << “Constructor count: “;
84: cout << String::ConstructorCount << endl;
85: PrintFunc(Edie);
86: cout << “Constructor count: “;
87: cout << String::ConstructorCount << endl;
88: return 0;
89: }
90: void PrintFunc (Employee Edie)
91: {
92: cout << “Name: “;
93: cout << Edie.GetFirstName().GetString();
94: cout << “ “ << Edie.GetLastName().GetString();
95: cout << “.\nAddress: “;
96: cout << Edie.GetAddress().GetString();
97: cout << “.\nSalary: “ ;
98: cout << Edie.GetSalary();
99: cout << endl;
100: }
101:
102: void rPrintFunc (const Employee& Edie)
103: {
104: cout << “Name: “;
105: cout << Edie.GetFirstName().GetString();
106: cout << “ “ << Edie.GetLastName().GetString();
107: cout << “\nAddress: “;
108: cout << Edie.GetAddress().GetString();
109: cout << “\nSalary: “ ;
110: cout << Edie.GetSalary();
111: cout << endl;
112: }

String(char*) constructor
String(char*) constructor
String(char*) constructor
String(char*) constructor
String destructor
String(char*) constructor

OUTPUT

LISTING 16.4 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 551

Constructor count: 5
Name: Edythe Levine
Address: 1461 Shore Parkway
Salary: 20000
Constructor count: 5

String(String&) constructor
String(String&) constructor
String(String&) constructor

Name: Edythe Levine.
Address: 1461 Shore Parkway.
Salary: 20000

String destructor
String destructor
String destructor

Constructor count: 8
String destructor
String destructor
String destructor
String destructor

The output shows that five string objects were created as part of creating one
Employee object on line 74. When the Employee object is passed on line 82 to

rPrintFunc() by reference, no additional Employee objects are created, and so no addi-
tional String objects are created. (They, too, are passed by reference.) You can see this
in the early part of the output where the constructure count remains at 5 and no construc-
tures are called.

When, on line 85, the Employee object is passed to PrintFunc() by value, a copy of the
Employee is created, and three more string objects are created (by calls to the copy con-
structor).

Implementation in Terms of Inheritance
Versus Aggregation/Delegation

At times, one class wants to draw on some of the capabilities of another class. For exam-
ple, suppose you need to create a PartsCatalog class. The specification you’ve been
given defines a PartsCatalog as a collection of parts; each part has a unique part num-
ber. The PartsCatalog does not allow duplicate entries and does allow access by part
number.

The listing for the Week in Review for Week 2 provides a PartsList class. This
PartsList is well tested and understood, and you’d like to build on that when making
your PartsCatalog, rather than inventing it from scratch.

552 Day 16

ANALYSIS

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 552

Advanced Inheritance 553

16

You could create a new PartsCatalog class and have it contain a PartsList. The
PartsCatalog could delegate management of the linked list to its aggregated PartsList
object.

An alternative would be to make the PartsCatalog derive from PartsList and, thereby,
inherit the properties of a PartsList. Remembering, however, that public inheritance
provides an is-a relationship, you should ask whether a PartsCatalog really is a type of
PartsList.

One way to answer the question of whether PartsCatalog is a PartsList is to assume
that PartsList is the base and PartsCatalog is the derived class, and then to ask these
other questions:

1. Is anything in the base class that should not be in the derived? For example, does
the PartsList base class have functions that are inappropriate for the
PartsCatalog class? If so, you probably don’t want public inheritance.

2. Might the class you are creating have more than one of the base? For example,
might a PartsCatalog need two PartsLists to do its job? If it might, you almost
certainly want to use aggregation.

3. Do you need to inherit from the base class so that you can take advantage of virtual
functions or access protected members? If so, you must use inheritance, public or
private.

Based on the answers to these questions, you must choose between public inheritance
(the is-a relationship) and either private inheritance (explained later today) or aggregation
(the has-a relationship).

Terminology

Several terms are being used here. The following helps to summarize these key terms:

• Aggregation—Declaring an object as a member of another class contained by that class.
This is also referred to as has-a.

• Delegation—Using the members of an aggregated class to perform functions for the
containing class.

• Implemented in terms of—Building one class on the capabilities of another without using
public inheritance (for instance, by using protected or private inheritance).

Using Delegation
Why not derive PartsCatalog from PartsList? The PartsCatalog isn’t a PartsList
because PartsLists are ordered collections, and each member of the collection can

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 553

repeat. The PartsCatalog has unique entries that are not ordered. The fifth member of
the PartsCatalog is not part number 5.

Certainly, it would have been possible to inherit publicly from PartsList and then over-
ride Insert() and the offset operators ([]) to do the right thing, but then you would have
changed the essence of the PartsList class. Instead, you’ll build a PartsCatalog that
has no offset operator, does not allow duplicates, and defines the operator+ to combine
two sets.

The first way to accomplish this is with aggregation. The PartsCatalog will delegate list
management to an aggregated PartsList. Listing 16.5 illustrates this approach.

LISTING 16.5 Delegating to an Aggregated PartsList

0: // Listing 16.5 Delegating to an Aggregated PartsList
1:
2: #include <iostream>
3: using namespace std;
4:
5: // **************** Part ************
6:
7: // Abstract base class of parts
8: class Part
9: {
10: public:
11: Part():itsPartNumber(1) {}
12: Part(int PartNumber):
13: itsPartNumber(PartNumber){}
14: virtual ~Part(){}
15: int GetPartNumber() const
16: { return itsPartNumber; }
17: virtual void Display() const =0;
18: private:
19: int itsPartNumber;
20: };
21:
22: // implementation of pure virtual function so that
23: // derived classes can chain up
24: void Part::Display() const
25: {
26: cout << “\nPart Number: “ << itsPartNumber << endl;
27: }
28:
29: // **************** Car Part ************
30:
31: class CarPart : public Part
32: {
33: public:
34: CarPart():itsModelYear(94){}
35: CarPart(int year, int partNumber);

554 Day 16

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 554

Advanced Inheritance 555

16

36: virtual void Display() const
37: {
38: Part::Display();
39: cout << “Model Year: “;
40: cout << itsModelYear << endl;
41: }
42: private:
43: int itsModelYear;
44: };
45:
46: CarPart::CarPart(int year, int partNumber):
47: itsModelYear(year),
48: Part(partNumber)
49: {}
50:
51:
52: // **************** AirPlane Part ************
53:
54: class AirPlanePart : public Part
55: {
56: public:
57: AirPlanePart():itsEngineNumber(1){};
58: AirPlanePart
59: (int EngineNumber, int PartNumber);
60: virtual void Display() const
61: {
62: Part::Display();
63: cout << “Engine No.: “;
64: cout << itsEngineNumber << endl;
65: }
66: private:
67: int itsEngineNumber;
68: };
69:
70: AirPlanePart::AirPlanePart
71: (int EngineNumber, int PartNumber):
72: itsEngineNumber(EngineNumber),
73: Part(PartNumber)
74: {}
75:
76: // **************** Part Node ************
77: class PartNode
78: {
79: public:
80: PartNode (Part*);
81: ~PartNode();
82: void SetNext(PartNode * node)
83: { itsNext = node; }
84: PartNode * GetNext() const;
85: Part * GetPart() const;
86: private:
87: Part *itsPart;

LISTING 16.5 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 555

88: PartNode * itsNext;
89: };
90: // PartNode Implementations...
91:
92: PartNode::PartNode(Part* pPart):
93: itsPart(pPart),
94: itsNext(0)
95: {}
96:
97: PartNode::~PartNode()
98: {
99: delete itsPart;
100: itsPart = 0;
101: delete itsNext;
102: itsNext = 0;
103: }
104:
105: // Returns NULL if no next PartNode
106: PartNode * PartNode::GetNext() const
107: {
108: return itsNext;
109: }
110:
111: Part * PartNode::GetPart() const
112: {
113: if (itsPart)
114: return itsPart;
115: else
116: return NULL; //error
117: }
118:
119:
120:
121: // **************** Part List ************
122: class PartsList
123: {
124: public:
125: PartsList();
126: ~PartsList();
127: // needs copy constructor and operator equals!
128: void Iterate(void (Part::*f)()const) const;
129: Part* Find(int & position, int PartNumber) const;
130: Part* GetFirst() const;
131: void Insert(Part *);
132: Part* operator[](int) const;
133: int GetCount() const { return itsCount; }
134: static PartsList& GetGlobalPartsList()
135: {
136: return GlobalPartsList;
137: }

556 Day 16

LISTING 16.5 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 556

Advanced Inheritance 557

16

138: private:
139: PartNode * pHead;
140: int itsCount;
141: static PartsList GlobalPartsList;
142: };
143:
144: PartsList PartsList::GlobalPartsList;
145:
146:
147: PartsList::PartsList():
148: pHead(0),
149: itsCount(0)
150: {}
151:
152: PartsList::~PartsList()
153: {
154: delete pHead;
155: }
156:
157: Part* PartsList::GetFirst() const
158: {
159: if (pHead)
160: return pHead->GetPart();
161: else
162: return NULL; // error catch here
163: }
164:
165: Part * PartsList::operator[](int offSet) const
166: {
167: PartNode* pNode = pHead;
168:
169: if (!pHead)
170: return NULL; // error catch here
171:
172: if (offSet > itsCount)
173: return NULL; // error
174:
175: for (int i=0;i<offSet; i++)
176: pNode = pNode->GetNext();
177:
178: return pNode->GetPart();
179: }
180:
181: Part* PartsList::Find(
182: int & position,
183: int PartNumber) const
184: {
185: PartNode * pNode = 0;
186: for (pNode = pHead, position = 0;
187: pNode!=NULL;
188: pNode = pNode->GetNext(), position++)
189: {

LISTING 16.5 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 557

190: if (pNode->GetPart()->GetPartNumber() == PartNumber)
191: break;
192: }
193: if (pNode == NULL)
194: return NULL;
195: else
196: return pNode->GetPart();
197: }
198:
199: void PartsList::Iterate(void (Part::*func)()const) const
200: {
201: if (!pHead)
202: return;
203: PartNode* pNode = pHead;
204: do
205: (pNode->GetPart()->*func)();
206: while ((pNode = pNode->GetNext()) != 0);
207: }
208:
209: void PartsList::Insert(Part* pPart)
210: {
211: PartNode * pNode = new PartNode(pPart);
212: PartNode * pCurrent = pHead;
213: PartNode * pNext = 0;
214:
215: int New = pPart->GetPartNumber();
216: int Next = 0;
217: itsCount++;
218:
219: if (!pHead)
220: {
221: pHead = pNode;
222: return;
223: }
224:
225: // if this one is smaller than head
226: // this one is the new head
227: if (pHead->GetPart()->GetPartNumber() > New)
228: {
229: pNode->SetNext(pHead);
230: pHead = pNode;
231: return;
232: }
233:
234: for (;;)
235: {
236: // if there is no next, append this new one
237: if (!pCurrent->GetNext())
238: {
239: pCurrent->SetNext(pNode);

558 Day 16

LISTING 16.5 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 558

Advanced Inheritance 559

16

240: return;
241: }
242:
243: // if this goes after this one and before the next
244: // then insert it here, otherwise get the next
245: pNext = pCurrent->GetNext();
246: Next = pNext->GetPart()->GetPartNumber();
247: if (Next > New)
248: {
249: pCurrent->SetNext(pNode);
250: pNode->SetNext(pNext);
251: return;
252: }
253: pCurrent = pNext;
254: }
255: }
256:
257: class PartsCatalog
258: {
259: public:
260: void Insert(Part *);
261: int Exists(int PartNumber);
262: Part * Get(int PartNumber);
263: operator+(const PartsCatalog &);
264: void ShowAll() { thePartsList.Iterate(Part::Display); }
265: private:
266: PartsList thePartsList;
267: };
268:
269: void PartsCatalog::Insert(Part * newPart)
270: {
271: int partNumber = newPart->GetPartNumber();
272: int offset;
273:
274: if (!thePartsList.Find(offset, partNumber))
275: {
276: thePartsList.Insert(newPart);
277: }
278: else
279: {
280: cout << partNumber << “ was the “;
281: switch (offset)
282: {
283: case 0: cout << “first “; break;
284: case 1: cout << “second “; break;
285: case 2: cout << “third “; break;
286: default: cout << offset+1 << “th “;
287: }
288: cout << “entry. Rejected!” << endl;
289: }
290: }
291:

LISTING 16.5 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 559

292: int PartsCatalog::Exists(int PartNumber)
293: {
294: int offset;
295: thePartsList.Find(offset,PartNumber);
296: return offset;
297: }
298:
299: Part * PartsCatalog::Get(int PartNumber)
300: {
301: int offset;
302: Part * thePart = thePartsList.Find(offset, PartNumber);
303: return thePart;
304: }
305:
306:
307: int main()
308: {
309: PartsCatalog pc;
310: Part * pPart = 0;
311: int PartNumber;
312: int value;
313: int choice = 99;
314:
315: while (choice != 0)
316: {
317: cout << “(0)Quit (1)Car (2)Plane: “;
318: cin >> choice;
319:
320: if (choice != 0)
321: {
322: cout << “New PartNumber?: “;
323: cin >> PartNumber;
324:
325: if (choice == 1)
326: {
327: cout << “Model Year?: “;
328: cin >> value;
329: pPart = new CarPart(value,PartNumber);
330: }
331: else
332: {
333: cout << “Engine Number?: “;
334: cin >> value;
335: pPart = new AirPlanePart(value,PartNumber);
336: }
337: pc.Insert(pPart);
338: }
339: }
340: pc.ShowAll();
341: return 0;
342: }

560 Day 16

LISTING 16.5 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 560

Advanced Inheritance 561

16

(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 1234
Model Year?: 94
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 4434
Model Year?: 93
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 1234
Model Year?: 94
1234 was the first entry. Rejected!
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 2345
Model Year?: 93
(0)Quit (1)Car (2)Plane: 0

Part Number: 1234
Model Year: 94

Part Number: 2345
Model Year: 93

Part Number: 4434
Model Year: 93

OUTPUT

Some compilers cannot compile line 264, even though it is legal C++. If your
compiler complains about this line, change it to

264: void ShowAll() { thePartsList.Iterate(&Part::Display); }

(Note the addition of the ampersand in front of Part::Display.) If this fixes
the problem, immediately call your compiler vendor and complain.

NOTE

Listing 16.5 reproduces the Part, PartNode, and PartsList classes from Week 2
in Review.

A new class, PartsCatalog, is declared on lines 257–267. PartsCatalog has a
PartsList as its data member (line 265), to which it delegates list management. Another
way to say this is that the PartsCatalog is implemented in terms of this PartsList.

Note that clients of the PartsCatalog do not have access to the PartsList directly. You
can see that PartsList is declared as a private member. The interface to this is through
the PartsCatalog, and as such, the behavior of the PartsList is dramatically changed.
For example, the PartsCatalog::Insert() method does not allow duplicate entries into
the PartsList.

The implementation of PartsCatalog::Insert() starts on line 269. The Part that is
passed in as a parameter is asked for the value of its itsPartNumber member variable.

ANALYSIS

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 561

On line 274, this value is fed to the PartsList’s Find() method, and if no match is
found, the number is inserted (line 276); otherwise, an informative error message is
printed (starting on line 280).

Note that PartsCatalog does the actual insert by calling Insert() on its member vari-
able, pl, which is a PartsList. The mechanics of the actual insertion and the maintenance
of the linked list, as well as searching and retrieving from the linked list, are maintained in
the aggregated PartsList member of PartsCatalog. No reason exists for PartsCatalog
to reproduce this code; it can take full advantage of the well-defined interface.

This is the essence of reusability within C++: PartsCatalog can reuse the PartsList
code, and the designer of PartsCatalog is free to ignore the implementation details of
PartsList. The interface to PartsList (that is, the class declaration) provides all the
information needed by the designer of the PartsCatalog class.

562 Day 16

If you want more information about PartsList, review the Week 2 in
Review listing and analysis!

NOTE

Private Inheritance
If PartsCatalog needed access to the protected members of PartsList (in this case,
none exist), or needed to override any of the PartsList methods, then PartsCatalog
would be forced to inherit from PartsList.

Because a PartsCatalog is not a PartsList object, and because you don’t want to
expose the entire set of functionality of PartsList to clients of PartsCatalog, you
would need to use private inheritance. Private inheritance allows you to inherit from
another class and to keep the internals of that class completely private to your derived
class.

The first thing to know about private inheritance is that all the base member variables
and functions are treated as if they were declared to be private, regardless of their actual
access level in the base. Thus, to any function that is not a member function of
PartsCatalog, every function inherited from PartsList is inaccessible. This is critical:
Private inheritance does not involve inheriting interface, only implementation.

To clients of the PartsCatalog class, the PartsList class is invisible. None of its inter-
face is available to them: They can’t call any of its methods. They can call PartsCatalog
methods; however, PartsCatalog methods can then access all of PartsList because
PartsCatalog is derived from PartsList. The important thing here is that the
PartsCatalog isn’t a PartsList, as would have been implied by public inheritance. It is

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 562

Advanced Inheritance 563

16

implemented in terms of a PartsList, just as would have been the case with aggrega-
tion. The private inheritance is just a convenience.

Listing 16.6 demonstrates the use of private inheritance by rewriting the PartsCatalog
class as privately derived from PartsList.

LISTING 16.6 Private Inheritance

0: //Listing 16.6 demonstrates private inheritance
1: #include <iostream>
2: using namespace std;
3:
4: // **************** Part ************
5:
6: // Abstract base class of parts
7: class Part
8: {
9: public:
10: Part():itsPartNumber(1) {}
11: Part(int PartNumber):
12: itsPartNumber(PartNumber){}
13: virtual ~Part(){}
14: int GetPartNumber() const
15: { return itsPartNumber; }
16: virtual void Display() const =0;
17: private:
18: int itsPartNumber;
19: };
20:
21: // implementation of pure virtual function so that
22: // derived classes can chain up
23: void Part::Display() const
24: {
25: cout << “\nPart Number: “ << itsPartNumber << endl;
26: }
27:
28: // **************** Car Part ************
29:
30: class CarPart : public Part
31: {
32: public:
33: CarPart():itsModelYear(94){}
34: CarPart(int year, int partNumber);
35: virtual void Display() const
36: {
37: Part::Display();
38: cout << “Model Year: “;
39: cout << itsModelYear << endl;
40: }
41: private:
42: int itsModelYear;

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 563

43: };
44:
45: CarPart::CarPart(int year, int partNumber):
46: itsModelYear(year),
47: Part(partNumber)
48: {}
49:
50:
51: // **************** AirPlane Part ************
52:
53: class AirPlanePart : public Part
54: {
55: public:
56: AirPlanePart():itsEngineNumber(1){};
57: AirPlanePart(int EngineNumber, int PartNumber);
58: virtual void Display() const
59: {
60: Part::Display();
61: cout << “Engine No.: “;
62: cout << itsEngineNumber << endl;
63: }
64: private:
65: int itsEngineNumber;
66: };
67:
68: AirPlanePart::AirPlanePart
69: (int EngineNumber, int PartNumber):
70: itsEngineNumber(EngineNumber),
71: Part(PartNumber)
72: {}
73:
74: // **************** Part Node ************
75: class PartNode
76: {
77: public:
78: PartNode (Part*);
79: ~PartNode();
80: void SetNext(PartNode * node)
81: { itsNext = node; }
82: PartNode * GetNext() const;
83: Part * GetPart() const;
84: private:
85: Part *itsPart;
86: PartNode * itsNext;
87: };
88: // PartNode Implementations...
89:
90: PartNode::PartNode(Part* pPart):
91: itsPart(pPart),
92: itsNext(0)

564 Day 16

LISTING 16.6 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 564

Advanced Inheritance 565

16

93: {}
94:
95: PartNode::~PartNode()
96: {
97: delete itsPart;
98: itsPart = 0;
99: delete itsNext;
100: itsNext = 0;
101: }
102:
103: // Returns NULL if no next PartNode
104: PartNode * PartNode::GetNext() const
105: {
106: return itsNext;
107: }
108:
109: Part * PartNode::GetPart() const
110: {
111: if (itsPart)
112: return itsPart;
113: else
114: return NULL; //error
115: }
116:
117:
118:
119: // **************** Part List ************
120: class PartsList
121: {
122: public:
123: PartsList();
124: ~PartsList();
125: // needs copy constructor and operator equals!
126: void Iterate(void (Part::*f)()const) const;
127: Part* Find(int & position, int PartNumber) const;
128: Part* GetFirst() const;
129: void Insert(Part *);
130: Part* operator[](int) const;
131: int GetCount() const { return itsCount; }
132: static PartsList& GetGlobalPartsList()
133: {
134: return GlobalPartsList;
135: }
136: private:
137: PartNode * pHead;
138: int itsCount;
139: static PartsList GlobalPartsList;
140: };
141:
142: PartsList PartsList::GlobalPartsList;
143:
144:

LISTING 16.6 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 565

145: PartsList::PartsList():
146: pHead(0),
147: itsCount(0)
148: {}
149:
150: PartsList::~PartsList()
151: {
152: delete pHead;
153: }
154:
155: Part* PartsList::GetFirst() const
156: {
157: if (pHead)
158: return pHead->GetPart();
159: else
160: return NULL; // error catch here
161: }
162:
163: Part * PartsList::operator[](int offSet) const
164: {
165: PartNode* pNode = pHead;
166:
167: if (!pHead)
168: return NULL; // error catch here
169:
170: if (offSet > itsCount)
171: return NULL; // error
172:
173: for (int i=0;i<offSet; i++)
174: pNode = pNode->GetNext();
175:
176: return pNode->GetPart();
177: }
178:
179: Part* PartsList::Find(int & position, int PartNumber) const
180: {
181: PartNode * pNode = 0;
182: for (pNode = pHead, position = 0;
183: pNode!=NULL;
184: pNode = pNode->GetNext(), position++)
185: {
186: if (pNode->GetPart()->GetPartNumber() == PartNumber)
187: break;
188: }
189: if (pNode == NULL)
190: return NULL;
191: else
192: return pNode->GetPart();
193: }
194:

566 Day 16

LISTING 16.6 Continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 566

Advanced Inheritance 567

16

195: void PartsList::Iterate(void (Part::*func)()const) const
196: {
197: if (!pHead)
198: return;
199: PartNode* pNode = pHead;
200: do
201: (pNode->GetPart()->*func)();
202: while ((pNode = pNode->GetNext()) != 0);
203: }
204:
205: void PartsList::Insert(Part* pPart)
206: {
207: PartNode * pNode = new PartNode(pPart);
208: PartNode * pCurrent = pHead;
209: PartNode * pNext = 0;
210:
211: int New = pPart->GetPartNumber();
212: int Next = 0;
213: itsCount++;
214:
215: if (!pHead)
216: {
217: pHead = pNode;
218: return;
219: }
220:
221: // if this one is smaller than head
222: // this one is the new head
223: if (pHead->GetPart()->GetPartNumber() > New)
224: {
225: pNode->SetNext(pHead);
226: pHead = pNode;
227: return;
228: }
229:
230: for (;;)
231: {
232: // if there is no next, append this new one
233: if (!pCurrent->GetNext())
234: {
235: pCurrent->SetNext(pNode);
236: return;
237: }
238:
239: // if this goes after this one and before the next
240: // then insert it here, otherwise get the next
241: pNext = pCurrent->GetNext();
242: Next = pNext->GetPart()->GetPartNumber();
243: if (Next > New)
244: {
245: pCurrent->SetNext(pNode);
246: pNode->SetNext(pNext);

LISTING 16.6 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 567

247: return;
248: }
249: pCurrent = pNext;
250: }
251: }
252:
253: class PartsCatalog : private PartsList
254: {
255: public:
256: void Insert(Part *);
257: int Exists(int PartNumber);
258: Part * Get(int PartNumber);
259: operator+(const PartsCatalog &);
260: void ShowAll() { Iterate(Part::Display); }
261: private:
262: };
263:
264: void PartsCatalog::Insert(Part * newPart)
265: {
266: int partNumber = newPart->GetPartNumber();
267: int offset;
268:
269: if (!Find(offset, partNumber))
270: {
271: PartsList::Insert(newPart);
272: }
273: else
274: {
275: cout << partNumber << “ was the “;
276: switch (offset)
277: {
278: case 0: cout << “first “; break;
279: case 1: cout << “second “; break;
280: case 2: cout << “third “; break;
281: default: cout << offset+1 << “th “;
282: }
283: cout << “entry. Rejected!” << endl;
284: }
285: }
286:
287: int PartsCatalog::Exists(int PartNumber)
288: {
289: int offset;
290: Find(offset,PartNumber);
291: return offset;
292: }
293:
294: Part * PartsCatalog::Get(int PartNumber)
295: {
296: int offset;

568 Day 16

LISTING 16.6 Continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 568

Advanced Inheritance 569

16

297: return (Find(offset, PartNumber));
298:
299: }
300:
301: int main()
302: {
303: PartsCatalog pc;
304: Part * pPart = 0;
305: int PartNumber;
306: int value;
307: int choice = 99;
308:
309: while (choice != 0)
310: {
311: cout << “(0)Quit (1)Car (2)Plane: “;
312: cin >> choice;
313:
314: if (choice != 0)
315: {
316: cout << “New PartNumber?: “;
317: cin >> PartNumber;
318:
319: if (choice == 1)
320: {
321: cout << “Model Year?: “;
322: cin >> value;
323: pPart = new CarPart(value,PartNumber);
324: }
325: else
326: {
327: cout << “Engine Number?: “;
328: cin >> value;
329: pPart = new AirPlanePart(value,PartNumber);
330: }
331: pc.Insert(pPart);
332: }
333: }
334: pc.ShowAll();
335: return 0;
336: }

(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 1234
Model Year?: 94
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 4434
Model Year?: 93
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 1234
Model Year?: 94

OUTPUT

LISTING 16.6 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 569

1234 was the first entry. Rejected!
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 2345
Model Year?: 93
(0)Quit (1)Car (2)Plane: 0

Part Number: 1234
Model Year: 94

Part Number: 2345
Model Year: 93

Part Number: 4434
Model Year: 93

Listing 16.6 shows a changed interface to PartsCatalog and the rewritten driver
program. The interfaces to the other classes are unchanged from Listing 16.5.

On line 253 of Listing 16.6, PartsCatalog is declared to derive privately from
PartsList. The interface to PartsCatalog doesn’t change from Listing 16.5, although,
of course, it no longer needs an object of type PartsList as member data.

The PartsCatalog ShowAll() function on line 160 calls PartsList Iterate() with the
appropriate pointer to member function of class Part. ShowAll() acts as a public inter-
face to Iterate(), providing the correct information but preventing client classes from
calling Iterate() directly. Although PartsList might allow other functions to be passed
to Iterate(), PartsCatalog does not.

The Insert() function on lines 164–284 has changed as well. Note, on line 269, that
Find() is now called directly because it is inherited from the base class. The call on line
271 to Insert() must be fully qualified, of course, or it would endlessly recurse into itself.

In short, when methods of PartsCatalog want to call PartsList methods, they can do
so directly. The only exception is when PartsCatalog has overridden the method and the
PartsList version is needed, in which case the function name must be qualified fully.

Private inheritance enables the PartsCatalog to inherit what it can use, but still provides
mediated access to Insert() and other methods to which client classes should not have
direct access.

570 Day 16

ANALYSIS

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 570

Advanced Inheritance 571

16

Adding Friend Classes
Sometimes, you will create classes together, as a set. For example, PartNode and
PartsList were tightly coupled, and it would have been convenient if PartsList could
have read PartNode’s Part pointer, itsPart, directly.

You wouldn’t want to make itsPart public, or even protected, because this is an imple-
mentation detail of PartNode and you want to keep it private. You do want to expose it to
PartsList, however.

If you want to expose your private member data or functions to another class, you must
declare that class to be a friend. This extends the interface of your class to include the
friend class.

After a class declares another to be its friend, all of the declaring classes’ member data
and functions are public to the friend class. For example, if PartsNode declares
PartsList to be a friend, all PartsNode’s member data and functions are public as far as
PartsList is concerned.

It is important to note that friendship cannot be transferred. Although you are my friend
and Joe is your friend, that doesn’t mean Joe is my friend. Friendship is not inherited,
either. Again, although you are my friend and I’m willing to share my secrets with you,
that doesn’t mean I’m willing to share my secrets with your children.

Finally, friendship is not commutative. Assigning Class One to be a friend of Class Two
does not make Class Two a friend of Class One. You might be willing to tell me your
secrets, but that doesn’t mean I am willing to tell you mine.

DO inherit publicly when the derived
object is a kind of the base class.

DO use aggregation when you want to
delegate functionality to another class,
but you don’t need access to its pro-
tected members.

DO use private inheritance when you
need to implement one class in terms of
another, and you need access to the base
class’s protected members.

DON’T use private inheritance when you
need to use more than one instance of
the base class. You must use aggrega-
tion. For example, if PartsCatalog
needed two PartsLists, you could not
have used private inheritance.

DON’T use public inheritance when
members of the base class should not be
available to clients of the derived class.

DO DON’T

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 571

To declare a class as a friend, you use the C++ friend keyword:

class ClassOne
{

public:
friend class BefriendedClass;
. . .

In this example, ClassOne has declared BefriendedClass as its friend. This means that
BefriendedClass now has full access to any of ClassOne’s members.

Listing 16.7 illustrates friendship by rewriting the example from Listing 16.6, making
PartsList a friend of PartNode. Note that this does not make PartNode a friend of
PartsList.

LISTING 16.7 Friend Class Illustrated

0: //Listing 16.7 Friend Class Illustrated
1:
2: #include <iostream>
3: using namespace std;
4:
5: // **************** Part ************
6:
7: // Abstract base class of parts
8: class Part
9: {
10: public:
11: Part():itsPartNumber(1) {}
12: Part(int PartNumber):
13: itsPartNumber(PartNumber){}
14: virtual ~Part(){}
15: int GetPartNumber() const
16: { return itsPartNumber; }
17: virtual void Display() const =0;
18: private:
19: int itsPartNumber;
20: };
21:
22: // implementation of pure virtual function so that
23: // derived classes can chain up
24: void Part::Display() const
25: {
26: cout << “\nPart Number: “;
27: cout << itsPartNumber << endl;
28: }
29:
30: // **************** Car Part ************
31:
32: class CarPart : public Part
33: {

572 Day 16

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 572

Advanced Inheritance 573

16

34: public:
35: CarPart():itsModelYear(94){}
36: CarPart(int year, int partNumber);
37: virtual void Display() const
38: {
39: Part::Display();
40: cout << “Model Year: “;
41: cout << itsModelYear << endl;
42: }
43: private:
44: int itsModelYear;
45: };
46:
47: CarPart::CarPart(int year, int partNumber):
48: itsModelYear(year),
49: Part(partNumber)
50: {}
51:
52:
53: // **************** AirPlane Part ************
54:
55: class AirPlanePart : public Part
56: {
57: public:
58: AirPlanePart():itsEngineNumber(1){};
59: AirPlanePart(int EngineNumber, int PartNumber);
60: virtual void Display() const
61: {
62: Part::Display();
63: cout << “Engine No.: “;
64: cout << itsEngineNumber << endl;
65: }
66: private:
67: int itsEngineNumber;
68: };
69:
70: AirPlanePart::AirPlanePart(int EngineNumber, int PartNumber):
71: itsEngineNumber(EngineNumber),
72: Part(PartNumber)
73: {}
74:
75: // **************** Part Node ************
76: class PartNode
77: {
78: public:
79: friend class PartsList;
80: PartNode (Part*);
81: ~PartNode();
82: void SetNext(PartNode * node)
83: { itsNext = node; }
84: PartNode * GetNext() const;
85: Part * GetPart() const;

LISTING 16.7 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 573

86: private:
87: Part *itsPart;
88: PartNode * itsNext;
89: };
90:
91:
92: PartNode::PartNode(Part* pPart):
93: itsPart(pPart),
94: itsNext(0)
95: {}
96:
97: PartNode::~PartNode()
98: {
99: delete itsPart;
100: itsPart = 0;
101: delete itsNext;
102: itsNext = 0;
103: }
104:
105: // Returns NULL if no next PartNode
106: PartNode * PartNode::GetNext() const
107: {
108: return itsNext;
109: }
110:
111: Part * PartNode::GetPart() const
112: {
113: if (itsPart)
114: return itsPart;
115: else
116: return NULL; //error
117: }
118:
119:
120: // **************** Part List ************
121: class PartsList
122: {
123: public:
124: PartsList();
125: ~PartsList();
126: // needs copy constructor and operator equals!
127: void Iterate(void (Part::*f)()const) const;
128: Part* Find(int & position, int PartNumber) const;
129: Part* GetFirst() const;
130: void Insert(Part *);
131: Part* operator[](int) const;
132: int GetCount() const { return itsCount; }
133: static PartsList& GetGlobalPartsList()
134: {
135: return GlobalPartsList;

574 Day 16

LISTING 16.7 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 574

Advanced Inheritance 575

16

136: }
137: private:
138: PartNode * pHead;
139: int itsCount;
140: static PartsList GlobalPartsList;
141: };
142:
143: PartsList PartsList::GlobalPartsList;
144:
145: // Implementations for Lists...
146:
147: PartsList::PartsList():
148: pHead(0),
149: itsCount(0)
150: {}
151:
152: PartsList::~PartsList()
153: {
154: delete pHead;
155: }
156:
157: Part* PartsList::GetFirst() const
158: {
159: if (pHead)
160: return pHead->itsPart;
161: else
162: return NULL; // error catch here
163: }
164:
165: Part * PartsList::operator[](int offSet) const
166: {
167: PartNode* pNode = pHead;
168:
169: if (!pHead)
170: return NULL; // error catch here
171:
172: if (offSet > itsCount)
173: return NULL; // error
174:
175: for (int i=0;i<offSet; i++)
176: pNode = pNode->itsNext;
177:
178: return pNode->itsPart;
179: }
180:
181: Part* PartsList::Find(int & position, int PartNumber) const
182: {
183: PartNode * pNode = 0;
184: for (pNode = pHead, position = 0;
185: pNode!=NULL;
186: pNode = pNode->itsNext, position++)
187: {

LISTING 16.7 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 575

188: if (pNode->itsPart->GetPartNumber() == PartNumber)
189: break;
190: }
191: if (pNode == NULL)
192: return NULL;
193: else
194: return pNode->itsPart;
195: }
196:
197: void PartsList::Iterate(void (Part::*func)()const) const
198: {
199: if (!pHead)
200: return;
201: PartNode* pNode = pHead;
202: do
203: (pNode->itsPart->*func)();
204: while (pNode = pNode->itsNext);
205: }
206:
207: void PartsList::Insert(Part* pPart)
208: {
209: PartNode * pNode = new PartNode(pPart);
210: PartNode * pCurrent = pHead;
211: PartNode * pNext = 0;
212:
213: int New = pPart->GetPartNumber();
214: int Next = 0;
215: itsCount++;
216:
217: if (!pHead)
218: {
219: pHead = pNode;
220: return;
221: }
222:
223: // if this one is smaller than head
224: // this one is the new head
225: if (pHead->itsPart->GetPartNumber() > New)
226: {
227: pNode->itsNext = pHead;
228: pHead = pNode;
229: return;
230: }
231:
232: for (;;)
233: {
234: // if there is no next, append this new one
235: if (!pCurrent->itsNext)
236: {
237: pCurrent->itsNext = pNode;

576 Day 16

LISTING 16.7 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 576

Advanced Inheritance 577

16

238: return;
239: }
240:
241: // if this goes after this one and before the next
242: // then insert it here, otherwise get the next
243: pNext = pCurrent->itsNext;
244: Next = pNext->itsPart->GetPartNumber();
245: if (Next > New)
246: {
247: pCurrent->itsNext = pNode;
248: pNode->itsNext = pNext;
249: return;
250: }
251: pCurrent = pNext;
252: }
253: }
254:
255: class PartsCatalog : private PartsList
256: {
257: public:
258: void Insert(Part *);
259: int Exists(int PartNumber);
260: Part * Get(int PartNumber);
261: operator+(const PartsCatalog &);
262: void ShowAll() { Iterate(Part::Display); }
263: private:
264: };
265:
266: void PartsCatalog::Insert(Part * newPart)
267: {
268: int partNumber = newPart->GetPartNumber();
269: int offset;
270:
271: if (!Find(offset, partNumber))
272: PartsList::Insert(newPart);
273: else
274: {
275: cout << partNumber << “ was the “;
276: switch (offset)
277: {
278: case 0: cout << “first “; break;
279: case 1: cout << “second “; break;
280: case 2: cout << “third “; break;
281: default: cout << offset+1 << “th “;
282: }
283: cout << “entry. Rejected!” << endl;
284: }
285: }
286:
287: int PartsCatalog::Exists(int PartNumber)
288: {
289: int offset;

LISTING 16.7 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 577

290: Find(offset,PartNumber);
291: return offset;
292: }
293:
294: Part * PartsCatalog::Get(int PartNumber)
295: {
296: int offset;
297: return (Find(offset, PartNumber));
298: }
299:
300: int main()
301: {
302: PartsCatalog pc;
303: Part * pPart = 0;
304: int PartNumber;
305: int value;
306: int choice = 99;
307:
308: while (choice != 0)
309: {
310: cout << “(0)Quit (1)Car (2)Plane: “;
311: cin >> choice;
312:
313: if (choice != 0)
314: {
315: cout << “New PartNumber?: “;
316: cin >> PartNumber;
317:
318: if (choice == 1)
319: {
320: cout << “Model Year?: “;
321: cin >> value;
322: pPart = new CarPart(value,PartNumber);
323: }
324: else
325: {
326: cout << “Engine Number?: “;
327: cin >> value;
328: pPart = new AirPlanePart(value,PartNumber);
329: }
330: pc.Insert(pPart);
331: }
332: }
333: pc.ShowAll();
334: return 0;
335: }

578 Day 16

LISTING 16.7 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 578

Advanced Inheritance 579

16

(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 1234
Model Year?: 94
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 4434
Model Year?: 93
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 1234
Model Year?: 94
1234 was the first entry. Rejected!
(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 2345
Model Year?: 93
(0)Quit (1)Car (2)Plane: 0

Part Number: 1234
Model Year: 94

Part Number: 2345
Model Year: 93

Part Number: 4434
Model Year: 93

On line 79, the class PartsList is declared to be a friend to the PartNode
class.

This listing places the friend declaration in the public section, but this is not required; it
can be put anywhere in the class declaration without changing the meaning of the state-
ment. Because of this statement, all the private member data and functions are available
to any member function of class PartsList.

On line 157, the implementation of the member function GetFirst() reflects this
change. Rather than returning pHead->GetPart, this function can now return the other-
wise private member data by writing pHead->itsPart. Similarly, the Insert() function
can now write pNode->itsNext = pHead, rather than writing pNode->SetNext(pHead).

Admittedly, these are trivial changes, and a good enough reason does not exist to make
PartsList a friend of PartNode, but they do serve to illustrate how the keyword friend
works.

Declarations of friend classes should be used with extreme caution. If two classes are
inextricably entwined, and one must frequently access data in the other, good reason
might exist to use this declaration. But use it sparingly; it is often just as easy to use the
public accessor methods, and doing so enables you to change one class without having to
recompile the other.

OUTPUT

ANALYSIS

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 579

Friend Functions
You just learned that declaring another class a friend gives it total access. At times, you
might want to grant this level of access not to an entire class, but only to one or two
functions of that class. You can do this by declaring the member functions of the other
class to be friends, rather than declaring the entire class to be a friend. In fact, you can
declare any function, regardless of whether it is a member function of another class, to
be a friend function.

Friend Functions and Operator Overloading
Listing 16.1 provided a String class that overrode the operator+. It also provided a con-
structor that took a constant character pointer, so that string objects could be created
from C-style strings. This enabled you to create a string and add to it with a C-style
string.

580 Day 16

You will often hear novice C++ programmers complain that friend declara-
tions “undermine” the encapsulation so important to object-oriented pro-
gramming. This is not necessarily true. The friend declaration makes the
declared friend part of the class interface and does not have to undermine
encapsulation. Use of a friend implies a commitment to parallel mainte-
nance of both classes, which could reduce modularity.

NOTE

Friend Class

Declare one class to be a friend of another by putting the word friend into the class granting
the access rights. That is, I can declare you to be my friend, but you can’t declare yourself to be
my friend.

Example

class PartNode{
public:
friend class PartsList; // declares PartsList to be a friend of PartNode
};

C-style strings are null-terminated character arrays, such as char myString[]
= “Hello World”.

NOTE

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 580

Advanced Inheritance 581

16

What you could not do, however, was create a C-style string (a character string) and add
to it using a string object, as shown in this example:

char cString[] = {“Hello”};
String sString(“ World”);
String sStringTwo = cString + sString; //error!

C-style strings don’t have an overloaded operator+. As discussed on Day 10, “Working
with Advanced Functions,” when you say cString + sString; what you are really call-
ing is cString.operator+(sString). Because you can’t call operator+() on a C-style
string, this causes a compile-time error.

You can solve this problem by declaring a friend function in String, which overloads
operator+ but takes two string objects. The C-style string is converted to a string object
by the appropriate constructor, and then operator+ is called using the two string objects.
To clarify this, take a look at Listing 16.8.

LISTING 16.8 Friendly operator+

0: //Listing 16.8 - friendly operators
1:
2: #include <iostream>
3: #include <string.h>
4: using namespace std;
5:
6: // Rudimentary string class
7: class String
8: {
9: public:
10: // constructors
11: String();
12: String(const char *const);
13: String(const String &);
14: ~String();
15:
16: // overloaded operators
17: char & operator[](int offset);
18: char operator[](int offset) const;
19: String operator+(const String&);
20: friend String operator+(const String&, const String&);
21: void operator+=(const String&);
22: String & operator= (const String &);
23:
24: // General accessors
25: int GetLen()const { return itsLen; }
26: const char * GetString() const { return itsString; }
27:
28: private:

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 581

29: String (int); // private constructor
30: char * itsString;
31: unsigned short itsLen;
32: };
33:
34: // default constructor creates string of 0 bytes
35: String::String()
36: {
37: itsString = new char[1];
38: itsString[0] = ‘\0’;
39: itsLen=0;
40: // cout << “\tDefault string constructor” << endl;
41: // ConstructorCount++;
42: }
43:
44: // private (helper) constructor, used only by
45: // class methods for creating a new string of
46: // required size. Null filled.
47: String::String(int len)
48: {
49: itsString = new char[len+1];
50: for (int i = 0; i<=len; i++)
51: itsString[i] = ‘\0’;
52: itsLen=len;
53: // cout << “\tString(int) constructor” << endl;
54: // ConstructorCount++;
55: }
56:
57: // Converts a character array to a String
58: String::String(const char * const cString)
59: {
60: itsLen = strlen(cString);
61: itsString = new char[itsLen+1];
62: for (int i = 0; i<itsLen; i++)
63: itsString[i] = cString[i];
64: itsString[itsLen]=’\0’;
65: // cout << “\tString(char*) constructor” << endl;
66: // ConstructorCount++;
67: }
68:
69: // copy constructor
70: String::String (const String & rhs)
71: {
72: itsLen=rhs.GetLen();
73: itsString = new char[itsLen+1];
74: for (int i = 0; i<itsLen;i++)
75: itsString[i] = rhs[i];
76: itsString[itsLen] = ‘\0’;
77: // cout << “\tString(String&) constructor” << endl;
78: // ConstructorCount++;

582 Day 16

LISTING 16.8 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 582

Advanced Inheritance 583

16

79: }
80:
81: // destructor, frees allocated memory
82: String::~String ()
83: {
84: delete [] itsString;
85: itsLen = 0;
86: // cout << “\tString destructor” << endl;
87: }
88:
89: // operator equals, frees existing memory
90: // then copies string and size
91: String& String::operator=(const String & rhs)
92: {
93: if (this == &rhs)
94: return *this;
95: delete [] itsString;
96: itsLen=rhs.GetLen();
97: itsString = new char[itsLen+1];
98: for (int i = 0; i<itsLen;i++)
99: itsString[i] = rhs[i];
100: itsString[itsLen] = ‘\0’;
101: return *this;
102: // cout << “\tString operator=” << endl;
103: }
104:
105: //non constant offset operator, returns
106: // reference to character so it can be
107: // changed!
108: char & String::operator[](int offset)
109: {
110: if (offset > itsLen)
111: return itsString[itsLen-1];
112: else
113: return itsString[offset];
114: }
115:
116: // constant offset operator for use
117: // on const objects (see copy constructor!)
118: char String::operator[](int offset) const
119: {
120: if (offset > itsLen)
121: return itsString[itsLen-1];
122: else
123: return itsString[offset];
124: }
125:
126: // creates a new string by adding current
127: // string to rhs
128: String String::operator+(const String& rhs)
129: {
130: int totalLen = itsLen + rhs.GetLen();

LISTING 16.8 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 583

131: String temp(totalLen);
132: int i, j;
133: for (i = 0; i<itsLen; i++)
134: temp[i] = itsString[i];
135: for (j = 0, i = itsLen; j<rhs.GetLen(); j++, i++)
136: temp[i] = rhs[j];
137: temp[totalLen]=’\0’;
138: return temp;
139: }
140:
141: // creates a new string by adding
142: // one string to another
143: String operator+(const String& lhs, const String& rhs)
144: {
145: int totalLen = lhs.GetLen() + rhs.GetLen();
146: String temp(totalLen);
147: int i, j;
148: for (i = 0; i<lhs.GetLen(); i++)
149: temp[i] = lhs[i];
150: for (j = 0, i = lhs.GetLen(); j<rhs.GetLen(); j++, i++)
151: temp[i] = rhs[j];
152: temp[totalLen]=’\0’;
153: return temp;
154: }
155:
156: int main()
157: {
158: String s1(“String One “);
159: String s2(“String Two “);
160: char *c1 = { “C-String One “ } ;
161: String s3;
162: String s4;
163: String s5;
164:
165: cout << “s1: “ << s1.GetString() << endl;
166: cout << “s2: “ << s2.GetString() << endl;
167: cout << “c1: “ << c1 << endl;
168: s3 = s1 + s2;
169: cout << “s3: “ << s3.GetString() << endl;
170: s4 = s1 + c1;
171: cout << “s4: “ << s4.GetString() << endl;
172: s5 = c1 + s2;
173: cout << “s5: “ << s5.GetString() << endl;
174: return 0;
175: }

584 Day 16

LISTING 16.8 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 584

Advanced Inheritance 585

16

s1: String One
s2: String Two
c1: C-String One
s3: String One String Two
s4: String One C-String One
s5: C-String One String Two

The implementation of all the string methods except operator+ are unchanged
from Listing 16.1. On line 20, a new operator+ is overloaded to take two con-

stant string references and to return a string, and this function is declared to be a friend.

Note that this operator+ is not a member function of this or any other class. It is
declared within the declaration of the String class only so that it can be made a friend,
but because it is declared, no other function prototype is needed.

The implementation of this operator+ is on lines 143–154. Note that it is similar to the
earlier operator+, except that it takes two strings and accesses them both through their
public accessor methods.

The driver program demonstrates the use of this function on line 172, where operator+
is now called on a C-style string!

OUTPUT

ANALYSIS

Friend Functions

Declare a function to be a friend by using the keyword friend and then the full specification
of the function. Declaring a function to be a friend does not give the friend function access to
your this pointer, but it does provide full access to all private and protected member data and
functions.

Example

class PartNode
{ // ...

// make another class’s member function a _friend
friend void PartsList::Insert(Part *);
// make a global function a friend
friend int SomeFunction();
// ...

};

Overloading the Insertion Operator
You are finally ready to give your String class the capability to use cout the same as
any other type. Until now, when you’ve wanted to print a string, you’ve been forced to
write the following:

cout << theString.GetString();

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 585

What you would like to do is write this:

cout << theString;

To accomplish this, you must override operator<<(). Day 17, “Working with Streams,”
presents the ins and outs (cins and couts?) of working with iostreams; for now, Listing
16.9 illustrates how operator<< can be overloaded using a friend function.

LISTING 16.9 Overloading operator<<()

0: // Listing 16.9 Overloading operator<<()
1:
2: #include <iostream>
3: #include <string.h>
4: using namespace std;
5:
6: class String
7: {
8: public:
9: // constructors
10: String();
11: String(const char *const);
12: String(const String &);
13: ~String();
14:
15: // overloaded operators
16: char & operator[](int offset);
17: char operator[](int offset) const;
18: String operator+(const String&);
19: void operator+=(const String&);
20: String & operator= (const String &);
21: friend ostream& operator<<
22: (ostream& theStream,String& theString);
23: // General accessors
24: int GetLen()const { return itsLen; }
25: const char * GetString() const { return itsString; }
26:
27: private:
28: String (int); // private constructor
29: char * itsString;
30: unsigned short itsLen;
31: };
32:
33:
34: // default constructor creates string of 0 bytes
35: String::String()
36: {
37: itsString = new char[1];
38: itsString[0] = ‘\0’;
39: itsLen=0;
40: // cout << “\tDefault string constructor” << endl;

586 Day 16

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 586

Advanced Inheritance 587

16

41: // ConstructorCount++;
42: }
43:
44: // private (helper) constructor, used only by
45: // class methods for creating a new string of
46: // required size. Null filled.
47: String::String(int len)
48: {
49: itsString = new char[len+1];
50: for (int i = 0; i<=len; i++)
51: itsString[i] = ‘\0’;
52: itsLen=len;
53: // cout << “\tString(int) constructor” << endl;
54: // ConstructorCount++;
55: }
56:
57: // Converts a character array to a String
58: String::String(const char * const cString)
59: {
60: itsLen = strlen(cString);
61: itsString = new char[itsLen+1];
62: for (int i = 0; i<itsLen; i++)
63: itsString[i] = cString[i];
64: itsString[itsLen]=’\0’;
65: // cout << “\tString(char*) constructor” << endl;
66: // ConstructorCount++;
67: }
68:
69: // copy constructor
70: String::String (const String & rhs)
71: {
72: itsLen=rhs.GetLen();
73: itsString = new char[itsLen+1];
74: for (int i = 0; i<itsLen;i++)
75: itsString[i] = rhs[i];
76: itsString[itsLen] = ‘\0’;
77: // cout << “\tString(String&) constructor” << endl;
78: // ConstructorCount++;
79: }
80:
81: // destructor, frees allocated memory
82: String::~String ()
83: {
84: delete [] itsString;
85: itsLen = 0;
86: // cout << “\tString destructor” << endl;
87: }
88:
89: // operator equals, frees existing memory
90: // then copies string and size
91: String& String::operator=(const String & rhs)
92: {

LISTING 16.9 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 587

93: if (this == &rhs)
94: return *this;
95: delete [] itsString;
96: itsLen=rhs.GetLen();
97: itsString = new char[itsLen+1];
98: for (int i = 0; i<itsLen;i++)
99: itsString[i] = rhs[i];
100: itsString[itsLen] = ‘\0’;
101: return *this;
102: // cout << “\tString operator=” << endl;
103: }
104:
105: //non constant offset operator, returns
106: // reference to character so it can be
107: // changed!
108: char & String::operator[](int offset)
109: {
110: if (offset > itsLen)
111: return itsString[itsLen-1];
112: else
113: return itsString[offset];
114: }
115:
116: // constant offset operator for use
117: // on const objects (see copy constructor!)
118: char String::operator[](int offset) const
119: {
120: if (offset > itsLen)
121: return itsString[itsLen-1];
122: else
123: return itsString[offset];
124: }
125:
126: // creates a new string by adding current
127: // string to rhs
128: String String::operator+(const String& rhs)
129: {
130: int totalLen = itsLen + rhs.GetLen();
131: String temp(totalLen);
132: int i, j;
133: for (i = 0; i<itsLen; i++)
134: temp[i] = itsString[i];
135: for (j = 0; j<rhs.GetLen(); j++, i++)
136: temp[i] = rhs[j];
137: temp[totalLen]=’\0’;
138: return temp;
139: }
140:
141: // changes current string, returns nothing
142: void String::operator+=(const String& rhs)

588 Day 16

LISTING 16.9 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 588

Advanced Inheritance 589

16

143: {
144: unsigned short rhsLen = rhs.GetLen();
145: unsigned short totalLen = itsLen + rhsLen;
146: String temp(totalLen);
147: int i, j;
148: for (i = 0; i<itsLen; i++)
149: temp[i] = itsString[i];
150: for (j = 0, i = 0; j<rhs.GetLen(); j++, i++)
151: temp[i] = rhs[i-itsLen];
152: temp[totalLen]=’\0’;
153: *this = temp;
154: }
155:
156: // int String::ConstructorCount =
157: ostream& operator<< (ostream& theStream,String& theString)
158: {
159: theStream << theString.itsString;
160: return theStream;
161: }
162:
163: int main()
164: {
165: String theString(“Hello world.”);
166: cout << theString;
167: return 0;
168: }

Hello world.

On lines 21–22, operator<< is declared to be a friend function that takes an
ostream reference and a String reference and then returns an ostream reference.

Note that this is not a member function of String. It returns a reference to an ostream so
that you can concatenate calls to operator<<, such as this:

cout << “myAge: “ << itsAge << “ years.”;

The implementation of this friend function is on lines 157–161. All this really does is
hide the implementation details of feeding the string to the ostream, and that is just as it
should be. You’ll see more about overloading this operator and operator>> on Day 17.

Summary
Today, you saw how to delegate functionality to an aggregated object. You also saw how
to implement one class in terms of another by using either aggregation or private inheri-
tance. Aggregation is restricted in that the new class does not have access to the pro-
tected members of the aggregated class, and it cannot override the member functions of

OUTPUT

ANALYSIS

LISTING 16.9 continued

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 589

the aggregated object. Aggregation is simpler to use than inheritance, and should be used
when possible.

You also saw how to declare both friend classes and friend functions. Using a friend
function, you saw how to overload the extraction operator, to allow your new classes to
use cout the same as the built-in classes do.

Remember that public inheritance expresses is-a, aggregation expresses has-a, and pri-
vate inheritance expresses implemented in terms of. The relationship delegates-to can be
expressed using either aggregation or private inheritance, although aggregation is more
common.

Q&A
Q Why is it so important to distinguish between is-a, has-a, and implemented in

terms of?

A The point of C++ is to implement well-designed, object-oriented programs.
Keeping these relationships straight helps to ensure that your design corresponds to
the reality of what you are modeling. Furthermore, a well-understood design will
more likely be reflected in well-designed code.

Q What is containment?

A Containment is another word for aggregation.

Q Why is aggregation preferred over private inheritance?

A The challenge in modern programming is to cope with complexity. The more you
can use objects as black boxes, the fewer details you have to worry about and the
more complexity you can manage. Aggregated classes hide their details; private
inheritance exposes the implementation details. To some extent, this is also true for
conventional public inheritance, which is sometimes used when aggregation would
be a better solution.

Q Why not make all classes friends of all the classes they use?

A Making one class a friend of another exposes the implementation details and
reduces encapsulation. The idea is to keep as many of the details of each class hid-
den from all other classes as possible.

Q If a function is overloaded, do I need to declare each form of the function to
be a friend?

A Yes, if you overload a function and declare it to be a friend of another class, you
must declare a friend for each form to which you want to grant this access.

590 Day 16

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 590

Advanced Inheritance 591

16

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to tomorrow’s lesson.

Quiz
1. How do you establish an is-a relationship?

2. How do you establish a has-a relationship?

3. What is the difference between aggregation and delegation?

4. What is the difference between delegation and implemented in terms of?

5. What is a friend function?

6. What is a friend class?

7. If Dog is a friend of Boy, is Boy a friend of Dog?

8. If Dog is a friend of Boy, and Terrier derives from Dog, is Terrier a friend of Boy?

9. If Dog is a friend of Boy and Boy is a friend of House, is Dog a friend of House?

10. Where must the declaration of a friend function appear?

Exercises
1. Show the declaration of a class, Animal, that contains a data member that is a

String object.

2. Show the declaration of a class, BoundedArray, that is an array.

3. Show the declaration of a class, Set, that is declared in terms of an array.

4. Modify Listing 16.1 to provide the String class with an extraction operator (>>).

5. BUG BUSTERS: What is wrong with this program?
0: Bug Busters
1: #include <iostream>
2: using namespace std;
3: class Animal;
4:
5: void setValue(Animal& , int);
6:
7: class Animal
8: {
9: public:
10: int GetWeight()const { return itsWeight; }
11: int GetAge() const { return itsAge; }
12: private:
13: int itsWeight;
14: int itsAge;

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 591

15: };
16:
17: void setValue(Animal& theAnimal, int theWeight)
18: {
19: friend class Animal;
20: theAnimal.itsWeight = theWeight;
21: }
22:
23: int main()
24: {
25: Animal peppy;
26: setValue(peppy,5);
27: return 0;
28: }

6. Fix the listing in Exercise 5 so that it compiles.

7. BUG BUSTERS: What is wrong with this code?
0: // Bug Busters
1: #include <iostream>
2: using namespace std;
3: class Animal;
4:
5: void setValue(Animal& , int);
6: void setValue(Animal& ,int, int);
7:
8: class Animal
9: {
10: friend void setValue(Animal& ,int); // here’s the change!
11: private:
12: int itsWeight;
13: int itsAge;
14: };
15:
16: void setValue(Animal& theAnimal, int theWeight)
17: {
18: theAnimal.itsWeight = theWeight;
19: }
20:
21: void setValue(Animal& theAnimal, int theWeight, int theAge)
22: {
23: theAnimal.itsWeight = theWeight;
24: theAnimal.itsAge = theAge;
25: }
26:
27: int main()
28: {
29: Animal peppy;
30: setValue(peppy,5);
31: setValue(peppy,7,9);
32: return 0;
33: }

8. Fix Exercise 7 so that it compiles.

592 Day 16

22 0672327112_ch16.qxd 11/19/04 12:28 PM Page 592

DAY 17

WEEK 3

Working with Streams
Until now, you’ve been using cout to write to the screen and cin to read from
the keyboard, without a full understanding of how they work. Today, you will
learn all about both of these.

Today, you will also learn

• What streams are and how they are used

• How to manage input and output using streams

• How to write to and read from files using streams

Overview of Streams
C++ does not define how data is written to the screen or to a file, nor how data
is read into a program. These are clearly essential parts of working with C++,
however, and the standard C++ library includes the iostream library, which
facilitates input and output (I/O).

The advantage of having the input and output kept apart from the language
and handled in libraries is that it is easier to make the language “platform-
independent.” That is, you can write C++ programs on a PC and then recompile

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 593

them and run them on a Sun Workstation, or you can take code created using a Windows
C++ compiler and recompile and run it on Linux. The compiler manufacturer supplies
the right library, and everything works. At least that’s the theory.

594 Day 17

A library is a collection of object (.obj or .o) files that can be linked to your
program to provide additional functionality. This is the most basic form of
code reuse and has been around since ancient programmers chiseled 1s and
0s into the walls of caves.

NOTE

Today, streams are generally less important for C++ programming—except, perhaps, for
flat file input. C++ programs have evolved to use operating system or compiler vendor-
provided graphical user interface (GUI) libraries for working with the screen, files, and
the user. This includes Windows libraries, X Windows libraries, and Borland’s Kylix
abstraction of both the Windows and X Windows user interfaces. Because these libraries
are specialized to the operating system and are not part of the C++ standard, they are not
discussed in this book.

Because streams are a part of the C++ standard, they are discussed today. In addition, it
is good to understand streams in order to understand the inner workings of input and out-
put. You should, however, quickly move to learning your operating system or vendor-
supplied GUI library as well.

Encapsulation of Data Flow
Text input and output can be accomplished using the iostream classes. The iostream
classes view the flow of data as being a stream of data, one byte following another. If the
destination of the stream is a file or the console screen, the source of the data that will be
flowing is usually some part of your program. If the stream is reversed, the data can
come from the keyboard or a disk file and can be “poured” into your data variables.

One principal goal of streams is to encapsulate the problems of getting the data to and
from the disk or the console screen. After a stream is created, your program works with
the stream and the stream takes care of the details. Figure 17.1 illustrates this fundamen-
tal idea.

Understanding Buffering
Writing to the disk (and to a lesser extent the console screen) is very “expensive.” It
takes a long time (relatively speaking) to write data to the disk or to read data from the
disk, and execution of the program can be blocked by disk writes and reads. To solve this

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 594

Working with Streams 595

17

problem, streams provide “buffering.” When buffering is used, data is written into the
stream, but is not written back out to the disk immediately. Instead, the stream’s buffer
fills and fills, and when it is full, it writes to the disk all at once.

FIGURE 17.1 Encapsulation through streams.

Stream
Monitor

Keyboard

Disk Disk

data

data

da
ta

data

Although data is technically a plural noun, we treat it as singular, as do
nearly all native speakers of English.

NOTE

Picture water trickling into the top of a tank and the tank filling and filling, but no water
running out of the bottom. Figure 17.2 illustrates this idea.

FIGURE 17.2
Filling the buffer.

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 595

When the water (data) reaches the top, the valve opens and all the water flows out in a
rush. Figure 17.3 illustrates this.

596 Day 17

FIGURE 17.3
Emptying the buffer.

After the buffer is empty, the bottom valve closes, the top valve opens, and more water
flows into the buffer tank. Figure 17.4 illustrates this.

FIGURE 17.4
Refilling the buffer.

Every once in a while, you need to get the water out of the tank even before it is full.
This is called “flushing the buffer.” Figure 17.5 illustrates this idea.

You should be aware that one of the risks of using buffering is the possibility that the
program will crash while data is still in the buffers. If this occurs, you might lose that
data.

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 596

Working with Streams 597

17

Streams and Buffers
As you might expect, C++ takes an object-oriented view toward implementing streams
and buffers. It does this with the use of a number of classes and objects:

• The streambuf class manages the buffer, and its member functions provide the
capability to fill, empty, flush, and otherwise manipulate the buffer.

• The ios class is the base class to the input and output stream classes. The ios class
has a streambuf object as a member variable.

• The istream and ostream classes derive from the ios class and specialize input
and output stream behavior, respectively.

• The iostream class is derived from both the istream and the ostream classes and
provides input and output methods for writing to the screen.

• The fstream classes provide input and output from files.

You’ll learn more about these classes throughout the rest of today’s lesson.

Standard I/O Objects
When a C++ program that includes the iostream classes starts, four objects are created
and initialized:

FIGURE 17.5
Flushing the buffer.

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 597

• cin (pronounced “see-in”) handles input from the standard input, the keyboard.

• cout (pronounced “see-out”) handles output to the standard output, the console
screen.

• cerr (pronounced “see-err”) handles unbuffered output to the standard error
device, the console screen. Because this is unbuffered, everything sent to cerr is
written to the standard error device immediately, without waiting for the buffer to
fill or for a flush command to be received.

• clog (pronounced “see-log”) handles buffered error messages that are output to the
standard error device, the console screen. It is common for this to be “redirected”
to a log file, as described in the following section.

Redirection of the Standard Streams
Each of the standard devices, input, output, and error, can be redirected to other devices.
The standard error stream (cerr) is often redirected to a file, and standard input (cin)
and output (cout) can be piped to files using operating system commands.

Redirecting refers to sending output (or input) to a place different than the default.
Redirection is more a function of the operating system than of the iostream libraries.
C++ just provides access to the four standard devices; it is up to the user to redirect the
devices to whatever alternatives are needed.

The redirection operators for DOS, the Windows command prompt, and Unix are (<)
redirect input and (>) redirect output. Unix provides more advanced redirection capabili-
ties than DOS or the standard Windows command prompt; however, the general idea is
the same: Take the output intended for the console screen and write it to a file, or pipe it
into another program. Alternatively, the input for a program can be extracted from a file
rather than from the keyboard.

598 Day 17

The iostream class library is added automatically to your program by the
compiler. All you need to do to use these functions is to put the appropriate
include statement at the top of your program listing:

#include <iostream>

This is something you have been doing in your programs already.

NOTE

Piping refers to using the output of one program as the input of another.NOTE

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 598

Working with Streams 599

17

Input Using cin
The global object cin is responsible for input and is made available to your program
when you include iostream. In previous examples, you used the overloaded extraction
operator (>>) to put data into your program’s variables. How does this work? The syntax,
as you might remember, is as follows:

int someVariable;
cout << “Enter a number: “;
cin >> someVariable;

The global object cout is discussed later today; for now, focus on the third line, cin >>
someVariable;. What can you guess about cin?

Clearly, it must be a global object because you didn’t define it in your own code. You
know from previous operator experience that cin has overloaded the extraction operator
(>>) and that the effect is to write whatever data cin has in its buffer into your local vari-
able, someVariable.

What might not be immediately obvious is that cin has overloaded the extraction opera-
tor for a great variety of parameters, among them int&, short&, long&, double&, float&,
char&, char*, and so forth. When you write cin >> someVariable;, the type of
someVariable is assessed. In the preceding example, someVariable is an integer, so the
following function is called:

istream & operator>> (int &)

Note that because the parameter is passed by reference, the extraction operator is able to
act on the original variable. Listing 17.1 illustrates the use of cin.

LISTING 17.1 cin Handles Different Data Types

0: //Listing 17.1 - character strings and cin
1:
2: #include <iostream>
3: using namespace std;
4:
5: int main()
6: {
7: int myInt;
8: long myLong;
9: double myDouble;
10: float myFloat;
11: unsigned int myUnsigned;
12:
13: cout << “Int: “;
14: cin >> myInt;

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 599

15: cout << “Long: “;
16: cin >> myLong;
17: cout << “Double: “;
18: cin >> myDouble;
19: cout << “Float: “;
20: cin >> myFloat;
21: cout << “Unsigned: “;
22: cin >> myUnsigned;
23:
24: cout << “\n\nInt:\t” << myInt << endl;
25: cout << “Long:\t” << myLong << endl;
26: cout << “Double:\t” << myDouble << endl;
27: cout << “Float:\t” << myFloat << endl;
28: cout << “Unsigned:\t” << myUnsigned << endl;
29: return 0;
30: }

int: 2
Long: 70000
Double: 987654321
Float: 3.33
Unsigned: 25

Int: 2
Long: 70000
Double: 9.87654e+008
Float: 3.33
Unsigned: 25

On lines 7–11, variables of various types are declared. On lines 13–22, the user
is prompted to enter values for these variables, and the results are printed (using

cout) on lines 24–28.

The output reflects that the variables were put into the right “kinds” of variables, and the
program works as you might expect.

Inputting Strings
cin can also handle character pointer (char*) arguments; thus, you can create a character
buffer and use cin to fill it. For example, you can write the following:

char YourName[50]
cout << “Enter your name: “;
cin >> YourName;

If you enter Jesse, the variable YourName is filled with the characters J, e, s, s, e, \0. The
last character is a null; cin automatically ends the string with a null character, and you

OUTPUT

600 Day 17

LISTING 17.1 continued

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 600

Working with Streams 601

17

must have enough room in the buffer to allow for the entire string plus the null. The null
signals the “end of string” to the cin object.

String Problems
After all this success with cin, you might be surprised when you try to enter a full name
into a string. cin has trouble getting the full name because it believes that any white-
space is a separator. When it sees a space or a new line, it assumes the input for the para-
meter is complete, and in the case of strings, it adds a null character right then and there.
Listing 17.2 illustrates this problem.

LISTING 17.2 Trying to Write More Than One Word to cin

0: //Listing 17.2 - character strings and cin
1:
2: #include <iostream>
3:
4: int main()
5: {
6: char YourName[50];
7: std::cout << “Your first name: “;
8: std::cin >> YourName;
9: std::cout << “Here it is: “ << YourName << std::endl;
10: std::cout << “Your entire name: “;
11: std::cin >> YourName;
12: std::cout << “Here it is: “ << YourName << std::endl;
13: return 0;
14: }

Your first name: Jesse
Here it is: Jesse
Your entire name: Jesse Liberty
Here it is: Jesse

On line 6, a character array called YourName is created to hold the user’s input.
On line 7, the user is prompted to enter one name, and that name is stored prop-

erly, as shown in the output.

On line 10, the user is again prompted, this time for a full name. cin reads the input, and
when it sees the space between the names, it puts a null character after the first word and
terminates input. This is not exactly what was intended.

To understand why this works this way, examine Listing 17.3, which shows input for
several fields.

OUTPUT

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 601

LISTING 17.3 Multiple Input

0: //Listing 17.3 - character strings and cin
1:
2: #include <iostream>
3: using namespace std;
4:
5: int main()
6: {
7: int myInt;
8: long myLong;
9: double myDouble;
10: float myFloat;
11: unsigned int myUnsigned;
12: char myWord[50];
13:
14: cout << “int: “;
15: cin >> myInt;
16: cout << “Long: “;
17: cin >> myLong;
18: cout << “Double: “;
19: cin >> myDouble;
20: cout << “Float: “;
21: cin >> myFloat;
22: cout << “Word: “;
23: cin >> myWord;
24: cout << “Unsigned: “;
25: cin >> myUnsigned;
26:
27: cout << “\n\nInt:\t” << myInt << endl;
28: cout << “Long:\t” << myLong << endl;
29: cout << “Double:\t” << myDouble << endl;
30: cout << “Float:\t” << myFloat << endl;
31: cout << “Word: \t” << myWord << endl;
32: cout << “Unsigned:\t” << myUnsigned << endl;
33:
34: cout << “\n\nInt, Long, Double, Float, Word, Unsigned: “;
35: cin >> myInt >> myLong >> myDouble;
36: cin >> myFloat >> myWord >> myUnsigned;
37: cout << “\n\nInt:\t” << myInt << endl;
38: cout << “Long:\t” << myLong << endl;
39: cout << “Double:\t” << myDouble << endl;
40: cout << “Float:\t” << myFloat << endl;
41: cout << “Word: \t” << myWord << endl;
42: cout << “Unsigned:\t” << myUnsigned << endl;
43:
44: return 0;
45: }

602 Day 17

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 602

Working with Streams 603

17

Int: 2
Long: 30303
Double: 393939397834
Float: 3.33
Word: Hello
Unsigned: 85

Int: 2
Long: 30303
Double: 3.93939e+011
Float: 3.33
Word: Hello
Unsigned: 85

Int, Long, Double, Float, Word, Unsigned: 3 304938 393847473 6.66 bye -2

Int: 3
Long: 304938
Double: 3.93847e+008
Float: 6.66
Word: bye
Unsigned: 4294967294

Again, several variables are created, this time including a char array. The user is
prompted for input and the output is faithfully printed.

On line 34, the user is prompted for all the input at once, and then each “word” of input
is assigned to the appropriate variable. It is to facilitate this kind of multiple assignment
that cin must consider each word in the input to be the full input for each variable. If cin
was to consider the entire input to be part of one variable’s input, this kind of concate-
nated input would be impossible.

Note that on line 42, the last object requested was an unsigned integer, but the user
entered -2. Because cin believes it is writing to an unsigned integer, the bit pattern of -2
was evaluated as an unsigned integer, and when written out by cout, the value
4294967294 was displayed. The unsigned value 4294967294 has the exact bit pattern of
the signed value -2.

Later today, you will see how to enter an entire string into a buffer, including multiple
words. For now, the question arises, “How does the extraction operator manage this trick
of concatenation?”

The cin Return Value
The return value of cin is a reference to an istream object. Because cin itself is an
istream object, the return value of one extraction operation can be the input to the next
extraction.

OUTPUT

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 603

int varOne, varTwo, varThree;
cout << “Enter three numbers: “
cin >> varOne >> varTwo >> varThree;

When you write cin >> varOne >> varTwo >> varThree;, the first extraction is evalu-
ated (cin >> varOne). The return value from this is another istream object, and that
object’s extraction operator gets the variable varTwo. It is as if you had written this:

((cin >> varOne) >> varTwo) >> varThree;

You’ll see this technique repeated later when cout is discussed.

Other Member Functions of cin
In addition to overloading operator>>, cin has a number of other member functions.
These are used when finer control over the input is required. These functions allow you
to do the following:

• Get a single character

• Get strings

• Ignore input

• Look at the next character in the buffer

• Put data back into the buffer

Single Character Input
operator>> taking a character reference can be used to get a single character from the
standard input. The member function get() can also be used to obtain a single character,
and can do so in two ways: get() can be used with no parameters, in which case the
return value is used, or it can be used with a reference to a character.

Using get() with No Parameters
The first form of get() is without parameters. This returns the value of the character
found and returns EOF (end of file) if the end of the file is reached. get() with no para-
meters is not often used.

Unlike using cin to get multiple values, it is not possible to concatenate this use of
get() for multiple input because the return value is not an iostream object. Thus, the
following doesn’t work:

cin.get() >>myVarOne >> myVarTwo; // illegal

The return value of cin.get() >> myVarOne is actually an integer, not an iostream
object.

604 Day 17

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 604

Working with Streams 605

17

A common use of get() with no parameters is illustrated in Listing 17.4.

LISTING 17.4 Using get() with No Parameters

0: // Listing 17.4 - Using get() with no parameters
1:
2: #include <iostream>
3:
4: int main()
5: {
6: char ch;
7: while ((ch = std::cin.get()) != EOF)
8: {
9: std::cout << “ch: “ << ch << std::endl;
10: }
11: std::cout << “\nDone!\n”;
12: return 0;
13: }

To exit this program, you must send end of file from the keyboard. On DOS
computers, use Ctrl+Z; on Unix workstations, use Ctrl+D.

TIP

Hello
ch: H
ch: e
ch: l
ch: l
ch: o
ch:

World
ch: W
ch: o
ch: r
ch: l
ch: d
ch:

^Z (ctrl-z)

Done!

On line 6, a local character variable, ch, is declared. The while loop assigns the
input received from cin.get() to ch, and if it is not EOF, the string is printed out.

OUTPUT

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 605

This output is buffered until an end of line is read, however. When EOF is encountered
(by pressing Ctrl+Z on a DOS machine, or Ctrl+D on a Unix machine), the loop exits.

Note that not every implementation of istream supports this version of get(), although
it is now part of the ANSI/ISO standard.

Using get() with a Character Reference Parameter
When a character variable is passed as input to get(), that character variable is filled
with the next character in the input stream. The return value is an iostream object, and
so this form of get() can be concatenated, as illustrated in Listing 17.5.

LISTING 17.5 Using get() with Parameters

0: // Listing 17.5 - Using get() with parameters
1:
2: #include <iostream>
3:
4: int main()
5: {
6: char a, b, c;
7:
8: std::cout << “Enter three letters: “;
9:
10: std::cin.get(a).get(b).get(c);
11:
12: std::cout << “a: “ << a << “\nb: “;
13: std::cout << b << “\nc: “ << c << std::endl;
14: return 0;
15: }

Enter three letters: one
a: o
b: n
c: e

On line 6, three character variables, a, b, and c, are created. On line 10,
cin.get() is called three times, concatenated. First, cin.get(a) is called. This

puts the first letter into a and returns cin so that when it is done, cin.get(b) is called,
putting the next letter into b. Finally, cin.get(c) is called and the third letter is put in c.

Because cin.get(a) evaluates to cin, you could have written this:

cin.get(a) >> b;

In this form, cin.get(a) evaluates to cin, so the second phrase is cin >> b;.

OUTPUT

606 Day 17

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 606

Working with Streams 607

17

Getting Strings from Standard Input
The extraction operator (>>) can be used to fill a character array, as can the third version
of the member functions get() and the member function getline().

This form of get() takes three parameters:

get(pCharArray, StreamSize, TermChar);

The first parameter (pCharArray) is a pointer to a character array, the second parameter
(StreamSize) is the maximum number of characters to read plus one, and the third para-
meter (TermChar) is the termination character.

If you enter 20 as the second parameter, get() reads 19 characters and then null-
terminates the string, which it stores in the first parameter. The third parameter, the ter-
mination character, defaults to newline (‘\n’). If a termination character is reached
before the maximum number of characters is read, a null is written and the termination
character is left in the buffer.

Listing 17.6 illustrates the use of this form of get().

LISTING 17.6 Using get() with a Character Array

0: // Listing 17.6 - Using get() with a character array
1:
2: #include <iostream>
3: using namespace std;
4:
5: int main()
6: {
7: char stringOne[256];
8: char stringTwo[256];
9:
10: cout << “Enter string one: “;
11: cin.get(stringOne,256);
12: cout << “stringOne: “ << stringOne << endl;
13:

DO use the extraction operator (>>)
when you need to skip over whitespace.

DO use get() with a character parameter
when you need to examine every charac-
ter, including whitespace.

DON’T stack cin statements to get multi-
ple input if it isn’t clear what you are
doing. It is better to use multiple com-
mands that are easier to understand
than to use one long command.

DO DON’T

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 607

14: cout << “Enter string two: “;
15: cin >> stringTwo;
16: cout << “StringTwo: “ << stringTwo << endl;
17: return 0;
18: }

Enter string one: Now is the time
stringOne: Now is the time
Enter string two: For all good
StringTwo: For

On lines 7 and 8, two character arrays are created. On line 10, the user is
prompted to enter a string, and cin.get() is called on line 11. The first parame-

ter is the buffer to fill, and the second is one more than the maximum number for get()
to accept (the extra position being given to the null character, [‘\0’]). There is not a third
parameter shown; however, this is defaulted. The defaulted third parameter is a newline.

The user enters “Now is the time.” Because the user ends the phrase with a newline,
that phrase is put into stringOne, followed by a terminating null.

The user is prompted for another string on line 14, and this time the extraction operator
is used. Because the extraction operator takes everything up to the first whitespace, only
the string For, with a terminating null character, is stored in the second string, which, of
course, is not what was intended.

Using get() with the three parameters is perfectly valid for obtaining strings; however, it
is not the only solution. Another way to solve this problem is to use getline(), as illus-
trated in Listing 17.7.

LISTING 17.7 Using getline()

0: // Listing 17.7 - Using getline()
1:
2: #include <iostream>
3: using namespace std;
4:
5: int main()
6: {
7: char stringOne[256];
8: char stringTwo[256];
9: char stringThree[256];
10:
11: cout << “Enter string one: “;
12: cin.getline(stringOne,256);

OUTPUT

608 Day 17

LISTING 17.6 continued

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 608

Working with Streams 609

17

13: cout << “stringOne: “ << stringOne << endl;
14:
15: cout << “Enter string two: “;
16: cin >> stringTwo;
17: cout << “stringTwo: “ << stringTwo << endl;
18:
19: cout << “Enter string three: “;
20: cin.getline(stringThree,256);
21: cout << “stringThree: “ << stringThree << endl;
22: return 0;
23: }

Enter string one: one two three
stringOne: one two three
Enter string two: four five six
stringTwo: four
Enter string three: stringThree: five six

This example warrants careful examination; some potential surprises exist. On
lines 7–9, three character arrays are declared this time.

On line 11, the user is prompted to enter a string, and that string is read by using get-
line(). Like get(), getline() takes a buffer and a maximum number of characters.
Unlike get(), however, the terminating newline is read and thrown away. With get(),
the terminating newline is not thrown away. It is left in the input buffer.

On line 15, the user is prompted for the second time, and this time the extraction opera-
tor is used. In the sample output, you can see that the user enters four five six; how-
ever, only the first word, four, is put in stringTwo. The string for the third prompt,
Enter string three, is then displayed, and getline() is called again. Because five
six is still in the input buffer, it is immediately read up to the newline; getline() termi-
nates and the string in stringThree is printed on line 21.

The user has no chance to enter the third string because the input buffer contained data
that fulfilled the request this prompt was making.

The call to cin on line 16 did not use everything that was in the input buffer. The extrac-
tion operator (>>) on line 16 reads up to the first whitespace and puts the word into the
character array.

OUTPUT

LISTING 17.7 continued

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 609

Using cin.ignore()
At times, you want to ignore the remaining characters on a line until you hit either end of
line (EOL) or end of file (EOF). The member function ignore() serves this purpose.
ignore() takes two parameters: the maximum number of characters to ignore and the
termination character. If you write ignore(80,’\n’), up to 80 characters will be thrown
away until a newline character is found. The newline is then thrown away and the
ignore() statement ends. Listing 17.8 illustrates the use of ignore().

LISTING 17.8 Using ignore()

0: // Listing 17.8 - Using ignore()
1: #include <iostream>
2: using namespace std;
3:
4: int main()
5: {
6: char stringOne[255];
7: char stringTwo[255];
8:
9: cout << “Enter string one:”;
10: cin.get(stringOne,255);
11: cout << “String one: “ << stringOne << endl;
12:
13: cout << “Enter string two: “;
14: cin.getline(stringTwo,255);
15: cout << “String two: “ << stringTwo << endl;
16:

610 Day 17

get() and getline()

The member function get() is overloaded. In one version, it takes no parameters and
returns the value of the character it receives. In the second version, it takes a single char-
acter reference and returns the istream object by reference.

In the third and final version, get() takes a character array, a number of characters to
get, and a termination character (which defaults to newline). This version of get() reads
characters into the array until it gets to one fewer than its maximum number of charac-
ters or it encounters the termination character, whichever comes first. If get() encounters
the termination character, it leaves that character in the input buffer and stops reading
characters.

The member function getline() also takes three parameters: the buffer to fill, one more
than the maximum number of characters to get, and the termination character. get-
line() functions the same as get() does with these parameters, except getline() throws
away the terminating character.

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 610

Working with Streams 611

17

17: cout << “\n\nNow try again...\n”;
18:
19: cout << “Enter string one: “;
20: cin.get(stringOne,255);
21: cout << “String one: “ << stringOne<< endl;
22:
23: cin.ignore(255,’\n’);
24:
25: cout << “Enter string two: “;
26: cin.getline(stringTwo,255);
27: cout << “String Two: “ << stringTwo<< endl;
28: return 0;
29: }

Enter string one:once upon a time
String one: once upon a time
Enter string two: String two:

Now try again...
Enter string one: once upon a time
String one: once upon a time
Enter string two: there was a
String Two: there was a

On lines 6 and 7, two character arrays are created. On line 9, the user is
prompted for input and types once upon a time, followed by pressing the Enter

key. On line 10, get() is used to read this string. get() fills stringOne and terminates
on the newline, but leaves the newline character in the input buffer.

On line 13, the user is prompted again, but the getline() on line 14 reads the input
buffer up to the newline. Because a newline was left in the buffer by the call to get(),
line 14 terminates immediately, before the user can enter any new input.

On line 19, the user is prompted again and puts in the same first line of input. This time,
however, on line 23, ignore() is used to empty the input stream by “eating” the newline
character. Thus, when the getline() call on line 26 is reached, the input buffer is empty,
and the user can input the next line of the story.

Peeking at and Returning Characters: peek() and
putback()
The input object cin has two additional methods that can come in rather handy: peek(),
which looks at but does not extract the next character, and putback(), which inserts a
character into the input stream. Listing 17.9 illustrates how these might be used.

OUTPUT

LISTING 17.8 continued

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 611

LISTING 17.9 Using peek() and putback()

0: // Listing 17.9 - Using peek() and putback()
1: #include <iostream>
2: using namespace std;
3:
4: int main()
5: {
6: char ch;
7: cout << “enter a phrase: “;
8: while (cin.get(ch) != 0)
9: {
10: if (ch == ‘!’)
11: cin.putback(‘$’);
12: else
13: cout << ch;
14: while (cin.peek() == ‘#’)
15: cin.ignore(1,’#’);
16: }
17: return 0;
18: }

enter a phrase: Now!is#the!time#for!fun#!
Now$isthe$timeforfun

On line 6, a character variable, ch, is declared, and on line 7, the user is
prompted to enter a phrase. The purpose of this program is to turn any exclama-

tion marks (!) into dollar signs ($) and to remove any pound symbols (#).

The program loops on lines 8–16 as long as it is getting characters other than the end of
file (Ctrl+C on Windows machines, Ctrl+Z or Ctrl+D on other operating systems).
(Remember that cin.get() returns 0 for end of file.) If the current character is an excla-
mation point, it is thrown away and the $ symbol is put back into the input buffer. This $
symbol is then read the next time through the loop. If the current item is not an exclama-
tion point, it is printed on line 13.

On line 14, the next character is “peeked” at, and when pound symbols are found, they
are removed using the ignore() method, as shown on line 15.

This is not the most efficient way to do either of these things (and it won’t find a pound
symbol if it is the first character), but it does illustrate how these methods work.

OUTPUT

612 Day 17

ANALYSIS

peek() and putback() are typically used for parsing strings and other data,
such as when writing a compiler.

TIP

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 612

Working with Streams 613

17

Outputting with cout
You have used cout along with the overloaded insertion operator (<<) to write strings,
integers, and other numeric data to the screen. It is also possible to format the data,
aligning columns and writing numeric data in decimal and hexadecimal. This section
shows you how.

Flushing the Output
You’ve already seen that using endl writes a newline and then flushes the output buffer.
endl calls cout’s member function flush(), which writes all the data it is buffering. You
can also call the flush() method directly, either by calling the flush() member method
or by writing the following:

cout << flush();

This can be convenient when you need to ensure that the output buffer is emptied and
that the contents are written to the screen.

Functions for Doing Output
Just as the extraction operator can be supplemented with get() and getline(), the inser-
tion operator can be supplemented with put() and write().

Writing Characters with put()
The function put() is used to write a single character to the output device. Because
put() returns an ostream reference and because cout is an ostream object, you can con-
catenate put() the same as you can stack the insertion operator. Listing 17.10 illustrates
this idea.

LISTING 17.10 Using put()

0: // Listing 17.10 - Using put()
1:
2: #include <iostream>
3:
4: int main()
5: {
6: std::cout.put(‘H’).put(‘e’).put(‘l’).put(‘l’).put(‘o’).put(‘\n’);
7: return 0;
8: }

Hello
OUTPUT

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 613

Line 6 is evaluated like this: std::cout.put(‘H’) writes the letter “H” to the
screen and returns a cout object. This leaves the following:

cout.put(‘e’).put(‘l’).put(‘l’).put(‘o’).put(‘\n’);

The letter “e” is written, and, again, a cout object is returned leaving:

cout.put(‘l’).put(‘l’).put(‘o’).put(‘\n’);

This process repeats, each letter being written and the cout object returned until the final
character (‘\n’) is written and the function returns.

Writing More with write()
The function write() works the same as the insertion operator (<<), except that it takes a
parameter that tells the function the maximum number of characters to write:

cout.write(Text, Size)

As you can see, the first parameter for write() is the text that will be printed. The sec-
ond parameter, Size, is the number of characters that will be printed from Text. Note
that this number might be smaller or larger than the actual size of the Text. If it is larger,
you will output the values that reside in memory after the Text value. Listing 17.11 illus-
trates its use.

LISTING 17.11 Using write()

0: // Listing 17.11 - Using write()
1: #include <iostream>
2: #include <string.h>
3: using namespace std;
4:
5: int main()
6: {
7: char One[] = “One if by land”;
8:
9: int fullLength = strlen(One);
10: int tooShort = fullLength -4;
11: int tooLong = fullLength + 6;
12:
13: cout.write(One,fullLength) << endl;
14: cout.write(One,tooShort) << endl;
15: cout.write(One,tooLong) << endl;
16: return 0;
17: }

614 Day 17

Some nonstandard compilers have trouble printing using this code. If your
compiler does not print the word Hello, you might want to skip this listing.

NOTE

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 614

Working with Streams 615

17

One if by land
One if by
One if by land i?!

OUTPUT

The final line of output might look different on your computer because it
accesses memory that is not part of an initialized variable.

NOTE

This listing prints from a phrase. Each time it prints a different amount of the
phrase. On line 7, one phrase is created. On line 9, the integer fullLength is set

to the length of the phrase using a global strlen() method that was included with the
string directive on line 2. Also set are two other length values that will be used; tooShort
is set to the length of the phrase (fullLength) minus four, and tooLong is set to the
length of the phrase plus six.

On line 13, the complete phrase is printed using write(). The length is set to the actual
length of the phrase, and the correct phrase is printed.

On line 14, the phrase is printed again, but it is four characters shorter than the full
phrase, and that is reflected in the output.

On line 15, the phrase is printed again, but this time write() is instructed to write an
extra six characters. After the phrase is written, the next six bytes of contiguous memory
are written. Anything could be in this memory, so your output might vary from what is
shown previously.

Manipulators, Flags, and Formatting Instructions
The output stream maintains a number of state flags, determining which base (decimal or
hexadecimal) to use, how wide to make the fields, and what character to use to fill in
fields. A state flag is a byte whose individual bits are each assigned a special meaning.
Manipulating bits in this way is discussed on Day 21, “What’s Next.” Each of ostream’s
flags can be set using member functions and manipulators.

Using cout.width()
The default width of your output will be just enough space to print the number, character,
or string in the output buffer. You can change this by using width().

Because width() is a member function, it must be invoked with a cout object. It only
changes the width of the very next output field and then immediately reverts to the
default. Listing 17.12 illustrates its use.

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 615

LISTING 17.12 Adjusting the Width of Output

0: // Listing 17.12 - Adjusting the width of output
1: #include <iostream>
2: using namespace std;
3:
4: int main()
5: {
6: cout << “Start >”;
7: cout.width(25);
8: cout << 123 << “< End\n”;
9:
10: cout << “Start >”;
11: cout.width(25);
12: cout << 123<< “< Next >”;
13: cout << 456 << “< End\n”;
14:
15: cout << “Start >”;
16: cout.width(4);
17: cout << 123456 << “< End\n”;
18:
19: return 0;
20: }

Start > 123< End
Start > 123< Next >456< End
Start >123456< End

The first output, on lines 6–8, prints the number 123 within a field whose width
is set to 25 on line 7. This is reflected in the first line of output.

The second line of output first prints the value 123 in the same field whose width is set to
25, and then prints the value 456. Note that 456 is printed in a field whose width is reset
to just large enough; as stated, the effect of width() lasts only as long as the very next
output.

The final output reflects that setting a width that is smaller than the output is the same as
setting a width that is just large enough. A width that is too small will not truncate what
is being displayed.

Setting the Fill Characters
Normally, cout fills the empty field created by a call to width() with spaces, as shown
previously. At times, you might want to fill the area with other characters, such as aster-
isks. To do this, you call fill() and pass in as a parameter the character you want used
as a fill character. Listing 17.13 illustrates this.

OUTPUT

616 Day 17

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 616

Working with Streams 617

17

LISTING 17.13 Using fill()

0: // Listing 17.13 - fill()
1:
2: #include <iostream>
3: using namespace std;
4:
5: int main()
6: {
7: cout << “Start >”;
8: cout.width(25);
9: cout << 123 << “< End\n”;
10:
11: cout << “Start >”;
12: cout.width(25);
13: cout.fill(‘*’);
14: cout << 123 << “< End\n”;
15:
16: cout << “Start >”;
17: cout.width(25);
18: cout << 456 << “< End\n”;
19:
20: return 0;
21: }

Start > 123< End
Start >******************123< End
Start >******************456< End

Lines 7–9 repeat the functionality from the previous example by printing the
value 123 in a width area of 25. Lines 11–14 repeat this again, but this time, on

line 13, the fill character is set to an asterisk, as reflected in the output. You should notice
that unlike the width() function, which only applies to the next output, the new fill()
character remains until you change it. You see this verified with the output from lines
16–18.

Managing the State of Output: Set Flags
Objects are said to have state when some or all of their data represents a condition that
can change during the course of the program. For example, you can set whether to show
trailing zeros (so that 20.00 is not truncated to 20).

The iostream objects keep track of their state by using flags. You can set these flags by
calling setf() and passing in one of the predefined enumerated constants. For example,
to turn trailing zeros on, you call setf(ios::showpoint).

The enumerated constants are scoped to the iostream class (ios) and thus when used
with setf(), they are called with the full qualification ios::flagname, such as

OUTPUT

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 617

ios::showpoint. TABLE 17.1 shows some of the flags you can use. When using these
flags, you need to include iostream in your listing. In addition, for those flags that
require parameters, you need to include iomanip.

TABLE 17.1 Some of the iostream Set Flags

Flag Purpose

showpoint Displays a decimal point and trailing zeros as required by precision

showpos Turns on the plus sign (+) before positive numbers

left Aligns output to the left

right Aligns output to the right

internal Aligns the sign for a number to the left and aligns the value to the right

showpoint Adds trailing zeros as required by the precision

showpos Displays a plus sign (+) if the number is positive

scientific Shows floating-point values in scientific notation

fixed Shows floating-point numbers in decimal notation

showbase Adds “0x” in front of hexadecimal numbers to indicate that it is a
hexadecimal value

Uppercase Shows hexadecimal and scientific numbers in uppercase

dec Sets the base of the numbers for display to decimal

oct Sets the base of the numbers for display to octal—base 8

hex Sets the base of the numbers for display to hexadecimal—base 16

The flags in Table 17.1 can also be concatenated into the insertion operator. Listing
17.14 illustrates these settings. As a bonus, Listing 17.14 also introduces the setw manip-
ulator, which sets the width but can also be concatenated with the insertion operator.

LISTING 17.14 Using setf

0: // Listing 17.14 - Using setf
1: #include <iostream>
2: #include <iomanip>
3: using namespace std;
4:
5: int main()
6: {
7: const int number = 185;
8: cout << “The number is “ << number << endl;
9:
10: cout << “The number is “ << hex << number << endl;

618 Day 17

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 618

Working with Streams 619

17

11:
12: cout.setf(ios::showbase);
13: cout << “The number is “ << hex << number << endl;
14:
15: cout << “The number is “ ;
16: cout.width(10);
17: cout << hex << number << endl;
18:
19: cout << “The number is “ ;
20: cout.width(10);
21: cout.setf(ios::left);
22: cout << hex << number << endl;
23:
24: cout << “The number is “ ;
25: cout.width(10);
26: cout.setf(ios::internal);
27: cout << hex << number << endl;
28:
29: cout << “The number is “ << setw(10) << hex << number << endl;
30: return 0;
31: }

The number is 185
The number is b9
The number is 0xb9
The number is 0xb9
The number is 0xb9
The number is 0x b9
The number is:0x b9

On line 7, the constant int number is initialized to the value 185. This is dis-
played normally on line 8.

The value is displayed again on line 10, but this time the manipulator hex is concate-
nated, causing the value to be displayed in hexadecimal as b9.

OUTPUT

LISTING 17.4 continued

ANALYSIS

The value b in hexadecimal represents 11. Eleven times 16 equals 176; add
the 9 for a total of 185.

NOTE

On line 12, the flag showbase is set. This causes the prefix 0x to be added to all hexadec-
imal numbers, as reflected in the output.

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 619

On line 16, the width is set to 10, and by default, the value is pushed to the extreme
right. On line 20, the width is again set to 10, but this time the alignment is set to the
left, and the number is printed flush left this time.

On line 25, again the width is set to 10, but this time the alignment is internal. Thus, the
0x is printed flush left, but the value, b9, is printed flush right.

Finally, on line 29, the concatenation operator setw() is used to set the width to 10, and
the value is printed again.

You should notice in this listing that if the flags are used within the cout list that they do
not need to be qualified; hex can be passed as hex. When you use the setf() function,
you need to qualify the flags to the class; hex is passed as ios::hex. You see this differ-
ence on line 17 versus 21.

Streams Versus the printf() Function
Most C++ implementations also provide the standard C I/O libraries, including the
printf() statement. Although printf() is in some ways easier to use than cout, it is
much less desirable.

printf() does not provide type safety, so it is easy to inadvertently tell it to display an
integer as if it were a character, and vice versa. printf() also does not support classes,
and so it is not possible to teach it how to print your class data; you must feed each class
member to printf() one by one.

Because there is a lot of legacy code using printf(), this section briefly reviews how
printf() is used. It is not, however, recommended that you use this function in your
C++ programs.

To use printf(), be certain to include the stdio.h header file. In its simplest form,
printf() takes a formatting string as its first parameter and then a series of values as its
remaining parameters.

The formatting string is a quoted string of text and conversion specifiers. All conversion
specifiers must begin with the percent symbol (%). The common conversion specifiers are
presented in Table 17.2.

TABLE 17.2 The Common Conversion Specifiers

Specifier Used For

%s strings

%d integers

620 Day 17

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 620

Working with Streams 621

17

%l long integer

%ld double

%f float

Each of the conversion specifiers can also provide a width statement and a precision
statement, expressed as a float, where the digits to the left of the decimal are used for
the total width, and the digits to the right of the decimal provide the precision for floats.
Thus, %5d is the specifier for a 5-digit-wide integer, and %15.5f is the specifier for a 15-
digit-wide float, of which the final five digits are dedicated to the decimal portion.
Listing 17.15 illustrates various uses of printf().

LISTING 17.15 Printing with printf()

0: //17.15 Printing with printf()
1: #include <stdio.h>
2:
3: int main()
4: {
5: printf(“%s”,”hello world\n”);
6:
7: char *phrase = “Hello again!\n”;
8: printf(“%s”,phrase);
9:
10: int x = 5;
11: printf(“%d\n”,x);
12:
13: char *phraseTwo = “Here’s some values: “;
14: char *phraseThree = “ and also these: “;
15: int y = 7, z = 35;
16: long longVar = 98456;
17: float floatVar = 8.8f;
18:
19: printf(“%s %d %d”, phraseTwo, y, z);
20: printf(“%s %ld %f\n”,phraseThree,longVar,floatVar);
21:
22: char *phraseFour = “Formatted: “;
23: printf(“%s %5d %10d %10.5f\n”,phraseFour,y,z,floatVar);
24:
25: return 0;
26: }

TABLE 17.2 continued

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 621

hello world
Hello again!
5
Here’s some values: 7 35 and also these: 98456 8.800000
Formatted: 7 35 8.800000

The first printf() statement, on line 5, uses the standard form: the term printf,
followed by a quoted string with a conversion specifier (in this case %s), followed

by a value to insert into the conversion specifier.

The %s indicates that this is a string, and the value for the string is, in this case, the
quoted string “hello world.”

The second printf() statement on line 8 is the same as the first, but this time a char
pointer is used, rather than quoting the string right in place in the printf() statement.
The result, however, is the same.

The third printf(), on line 11, uses the integer conversion specifier (%d), and for its
value the integer variable x is used. The fourth printf() statement, on line 19, is more
complex. Here, three values are concatenated. Each conversion specifier is supplied, and
then the values are provided, separated by commas. Line 20 is similar to line 19; how-
ever, different specifiers and values are used.

Finally, on line 23, format specifications are used to set the width and precision. As you
can see, all this is somewhat easier than using manipulators.

As stated previously, however, the limitation here is that no type checking occurs and
printf() cannot be declared a friend or member function of a class. So, if you want to
print the various member data of a class, you must call each accessor method in the argu-
ment list sent to the printf() statement.

OUTPUT

622 Day 17

ANALYSIS

FAQ

Can you summarize how to manipulate output?

Answer: (with special thanks to Robert Francis) To format output in C++, you use a com-
bination of special characters, output manipulators, and flags.

The following special characters are included in an output string being sent to cout using
the insertion operator:

\n—Newline

\r—Carriage return

\t—Tab

\\—Backslash

\ddd (octal number)—ASCII character

\a—Alarm (ring bell)

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 622

Working with Streams 623

17

For example,

cout << “\aAn error occured\t”

rings the bell, prints an error message, and moves to the next tab stop. Manipulators are
used with the cout operator. Those manipulators that take arguments require that you
include iomanip in your file.

The following is a list of manipulators that do not require iomanip:

flush—Flushes the output buffer

endl—Inserts newline and flushes the output buffer

oct—Sets output base to octal

dec—Sets output base to decimal

hex—Sets output base to hexadecimal

The following is a list of manipulators that do require iomanip:

setbase (base)—Sets output base (0 = decimal, 8 = octal, 10 = decimal, 16 = hex)

setw (width)—Sets minimum output field width

setfill (ch)—Fills character to be used when width is defined

setprecision (p)—Sets precision for floating-point numbers

setiosflags (f)—Sets one or more ios flags

resetiosflags (f)—Resets one or more ios flags

For example,

cout << setw(12) << setfill(‘#’) << hex << x << endl;

sets the field width to 12, sets the fill character to ‘#’, specifies hex output, prints the
value of ‘x’, puts a newline in the buffer, and flushes the buffer. All the manipulators
except flush, endl, and setw remain in effect until changed or until the end of the
program. setw returns to the default after the current cout.

A number of flags can be used with the setiosflags and resetiosflags manipulators.
These were listed in Table 17.1 earlier.

Additional information can be obtained from file ios and from your compiler’s
documentation.

File Input and Output
Streams provide a uniform way of dealing with data coming from the keyboard or the
hard disk and going out to the console screen or hard disk. In either case, you can use the
insertion and extraction operators or the other related functions and manipulators. To

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 623

open and close files, you create ifstream and ofstream objects as described in the next
few sections.

Using the ofstream
The particular objects used to read from or write to files are called ofstream objects.
These are derived from the iostream objects you’ve been using so far.

To get started with writing to a file, you must first create an ofstream object, and then
associate that object with a particular file on your disk. To use ofstream objects, you
must be certain to include fstream in your program.

624 Day 17

Because fstream includes iostream, you do not need to include iostream
explicitly.

NOTE

Condition States
The iostream objects maintain flags that report on the state of your input and output.
You can check each of these flags using the Boolean functions eof(), bad(), fail(),
and good(). The function eof() returns true if the iostream object has encountered
EOF, end of file. The function bad() returns true if you attempt an invalid operation.
The function fail() returns true anytime bad() is true or an operation fails. Finally, the
function good() returns true anytime all three of the other functions are false.

Opening Files for Input and Output
To use a file, you must first open it. To open the file myfile.cpp with an ofstream
object, declare an instance of an ofstream object and pass in the filename as a
parameter:

ofstream fout(“myfile.cpp”);

This attempts to open the file, myfile.cpp, for output. Opening this file for input works
the same way, except that it uses an ifstream object:

ifstream fin(“myfile.cpp”);

Note that fout and fin are names you define; here, fout has been used to reflect its sim-
ilarity to cout, and fin has been used to reflect its similarity to cin. These could also be
given names that reflect what is in the file they are accessing.

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 624

Working with Streams 625

17

One important file stream function that you will need right away is close(). Every file
stream object you create opens a file for reading (input), writing (output), or both. It is
important to close() the file after you finish reading or writing; this ensures that the file
won’t be corrupted and that the data you’ve written is flushed to the disk.

After the stream objects are associated with files, they can be used the same as any other
stream objects. Listing 17.16 illustrates this.

LISTING 17.16 Opening Files for Read and Write

0: //Listing 17.16 Opening Files for Read and Write
1: #include <fstream>
2: #include <iostream>
3: using namespace std;
4:
5: int main()
6: {
7: char fileName[80];
8: char buffer[255]; // for user input
9: cout << “File name: “;
10: cin >> fileName;
11:
12: ofstream fout(fileName); // open for writing
13: fout << “This line written directly to the file...\n”;
14: cout << “Enter text for the file: “;
15: cin.ignore(1,’\n’); // eat the newline after the file name
16: cin.getline(buffer,255); // get the user’s input
17: fout << buffer << “\n”; // and write it to the file
18: fout.close(); // close the file, ready for reopen
19:
20: ifstream fin(fileName); // reopen for reading
21: cout << “Here’s the contents of the file:\n”;
22: char ch;
23: while (fin.get(ch))
24: cout << ch;
25:
26: cout << “\n***End of file contents.***\n”;
27:
28: fin.close(); // always pays to be tidy
29: return 0;
30: }

File name: test1
Enter text for the file: This text is written to the file!
Here’s the contents of the file:
This line written directly to the file...
This text is written to the file!

End of file contents.

OUTPUT

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 625

On line 7, a buffer is created for the filename, and on line 8, another buffer is set
aside for user input. The user is prompted to enter a filename on line 9, and this

response is written to the fileName buffer. On line 12, an ofstream object is created,
fout, which is associated with the new filename. This opens the file; if the file already
exists, its contents are thrown away.

On line 13, a string of text is written directly to the file. On line 14, the user is prompted
for input. The newline character left over from the user’s input of the filename is eaten
on line 15 by using the ignore() function you learned about earlier. The user’s input for
the file is stored into buffer on line 16. That input is written to the file along with a
newline character on line 17, and then the file is closed on line 18.

On line 20, the file is reopened, this time in input mode by using the ifstream. The con-
tents are then read one character at a time on lines 23 and 24.

Changing the Default Behavior of ofstream on Open
The default behavior upon opening a file is to create the file if it doesn’t yet exist and to
truncate the file (that is, delete all its contents) if it does exist. If you don’t want this
default behavior, you can explicitly provide a second argument to the constructor of your
ofstream object.

Valid values for the second argument include

• ios::app—Appends to the end of existing files rather than truncating them.

• ios::ate—Places you at the end of the file, but you can write data anywhere in
the file.

• ios::trunc—Causes existing files to be truncated; the default.

• ios::nocreate—If the file does not exist, the open fails.

• ios::noreplace—If the file does already exist, the open fails.

Note that app is short for append, ate is short for at end, and trunc is short for truncate.
Listing 17.17 illustrates using append by reopening the file from Listing 17.16 and
appending to it.

LISTING 17.17 Appending to the End of a File

0: //Listing 17.17 Appending to the End of a File
1: #include <fstream>
2: #include <iostream>
3: using namespace std;
4:
5: int main() // returns 1 on error

626 Day 17

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 626

Working with Streams 627

17

6: {
7: char fileName[80];
8: char buffer[255];
9: cout << “Please reenter the file name: “;
10: cin >> fileName;
11:
12: ifstream fin(fileName);
13: if (fin) // already exists?
14: {
15: cout << “Current file contents:\n”;
16: char ch;
17: while (fin.get(ch))
18: cout << ch;
19: cout << “\n***End of file contents.***\n”;
20: }
21: fin.close();
22:
23: cout << “\nOpening “ << fileName << “ in append mode...\n”;
24:
25: ofstream fout(fileName,ios::app);
26: if (!fout)
27: {
28: cout << “Unable to open “ << fileName << “ for appending.\n”;
29: return(1);
30: }
31:
32: cout << “\nEnter text for the file: “;
33: cin.ignore(1,’\n’);
34: cin.getline(buffer,255);
35: fout << buffer << “\n”;
36: fout.close();
37:
38: fin.open(fileName); // reassign existing fin object!
39: if (!fin)
40: {
41: cout << “Unable to open “ << fileName << “ for reading.\n”;
42: return(1);
43: }
44: cout << “\nHere’s the contents of the file:\n”;
45: char ch;
46: while (fin.get(ch))
47: cout << ch;
48: cout << “\n***End of file contents.***\n”;
49: fin.close();
50: return 0;
51: }

LISTING 17.17 continued

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 627

Please reenter the file name: test1
Current file contents:
This line written directly to the file...
This text is written to the file!

End of file contents.

Opening test1 in append mode...

Enter text for the file: More text for the file!

Here’s the contents of the file:
This line written directly to the file...
This text is written to the file!
More text for the file!

End of file contents.

Like the preceding listing, the user is again prompted to enter the filename on
lines 9 and 10. This time, an input file stream object is created on line 12. That

open is tested on line 13, and if the file already exists, its contents are printed on lines
15–19. Note that if(fin) is synonymous with if (fin.good()).

The input file is then closed, and the same file is reopened, this time in append mode, on
line 25. After this open (and every open), the file is tested to ensure that the file was
opened properly. Note that if(!fout) is the same as testing if (fout.fail()). If the
file didn’t open, an error message is printed on line 28 and the program ends with the
return statement. If the open is successful, the user is then prompted to enter text, and
the file is closed again on line 36.

Finally, as in Listing 17.16, the file is reopened in read mode; however, this time fin
does not need to be redeclared. It is just reassigned to the same filename. Again, the open
is tested, on line 39, and if all is well, the contents of the file are printed to the screen
and the file is closed for the final time.

OUTPUT

628 Day 17

ANALYSIS

DO test each open of a file to ensure
that it opened successfully.

DO reuse existing ifstream and ofstream
objects.

DO close all fstream objects when you
are done using them.

DON’T try to close or reassign cin or
cout.

DON’T use printf() in your C++
programs if you don’t need to.

DO DON’T

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 628

Working with Streams 629

17

Binary Versus Text Files
Some operating systems distinguish between text files and binary files. Text files store
everything as text (as you might have guessed), so large numbers such as 54,325 are
stored as a string of numerals (‘5’, ‘4’, ‘,’, ‘3’, ‘2’, ‘5’). This can be inefficient, but has
the advantage that the text can be read using simple programs such as the DOS and
Windows command-line program type.

To help the file system distinguish between text and binary files, C++ provides the
ios::binary flag. On many systems, this flag is ignored because all data is stored in
binary format. On some rather prudish systems, the ios::binary flag is illegal and does-
n’t even compile!

Binary files can store not only integers and strings, but also entire data structures. You
can write all the data at one time by using the write() method of fstream.

If you use write(), you can recover the data using read(). Each of these functions
expects a pointer to character, however, so you must cast the address of your class to be a
pointer to character.

The second argument to these functions is the number of characters expected to be read
or written, which you can determine using sizeof(). Note that what is being written is
the data, not the methods. What is recovered is only data. Listing 17.18 illustrates writing
the contents of an object to a file.

LISTING 17.18 Writing a Class to a File

0: //Listing 17.18 Writing a Class to a File
1: #include <fstream>
2: #include <iostream>
3: using namespace std;
4:
5: class Animal
6: {
7: public:
8: Animal(int weight,long days):itsWeight(weight),DaysAlive(days){}
9: ~Animal(){}
10:
11: int GetWeight()const { return itsWeight; }
12: void SetWeight(int weight) { itsWeight = weight; }
13:
14: long GetDaysAlive()const { return DaysAlive; }
15: void SetDaysAlive(long days) { DaysAlive = days; }
16:
17: private:
18: int itsWeight;

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 629

19: long DaysAlive;
20: };
21:
22: int main() // returns 1 on error
23: {
24: char fileName[80];
25:
26:
27: cout << “Please enter the file name: “;
28: cin >> fileName;
29: ofstream fout(fileName,ios::binary);
30: if (!fout)
31: {
32: cout << “Unable to open “ << fileName << “ for writing.\n”;
33: return(1);
34: }
35:
36: Animal Bear(50,100);
37: fout.write((char*) &Bear,sizeof Bear);
38:
39: fout.close();
40:
41: ifstream fin(fileName,ios::binary);
42: if (!fin)
43: {
44: cout << “Unable to open “ << fileName << “ for reading.\n”;
45: return(1);
46: }
47:
48: Animal BearTwo(1,1);
49:
50: cout << “BearTwo weight: “ << BearTwo.GetWeight() << endl;
51: cout << “BearTwo days: “ << BearTwo.GetDaysAlive() << endl;
52:
53: fin.read((char*) &BearTwo, sizeof BearTwo);
54:
55: cout << “BearTwo weight: “ << BearTwo.GetWeight() << endl;
56: cout << “BearTwo days: “ << BearTwo.GetDaysAlive() << endl;
57: fin.close();
58: return 0;
59: }

Please enter the file name: Animals
BearTwo weight: 1
BearTwo days: 1
BearTwo weight: 50
BearTwo days: 100

OUTPUT

630 Day 17

LISTING 17.18 continued

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 630

Working with Streams 631

17

On lines 5–20, a stripped-down Animal class is declared. On lines 24–34, a file is
created and opened for output in binary mode. An animal whose weight is 50 and

who is 100 days old is created on line 36, and its data is written to the file on line 37.

The file is closed on line 39 and reopened for reading in binary mode on line 41. A sec-
ond animal is created, on line 48, whose weight is 1 and who is only one day old. The
data from the file is read into the new animal object on line 53, wiping out the existing
data and replacing it with the data from the file. The output confirms this.

Command-line Processing
Many operating systems, such as DOS and Unix, enable the user to pass parameters to
your program when the program starts. These are called command-line options and are
typically separated by spaces on the command line. For example,

SomeProgram Param1 Param2 Param3

These parameters are not passed to main() directly. Instead, every program’s main()
function is passed two parameters. The first is an integer count of the number of argu-
ments on the command line. The program name itself is counted, so every program has
at least one parameter. The sample command line shown previously has four. (The name
SomeProgram plus the three parameters make a total of four command-line arguments.)

The second parameter passed to main() is an array of pointers to character strings.
Because an array name is a constant pointer to the first element of the array, you can
declare this argument to be a pointer to a pointer to char, a pointer to an array of char,
or an array of arrays of char.

Typically, the first argument is called argc (argument count), but you can call it anything
you like. The second argument is often called argv (argument vector), but again this is
just a convention.

It is common to test argc to ensure you’ve received the expected number of arguments
and to use argv to access the strings themselves. Note that argv[0] is the name of the
program, and argv[1] is the first parameter to the program, represented as a string. If
your program takes two numbers as arguments, you need to translate these numbers to
strings. On Day 21, you will see how to use the Standard Library conversions. Listing
17.19 illustrates how to use the command-line arguments.

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 631

LISTING 17.19 Using Command-line Arguments

0: //Listing 17.19 Using Command-line Arguments
1: #include <iostream>
2: int main(int argc, char **argv)
3: {
4: std::cout << “Received “ << argc << “ arguments...\n”;
5: for (int i=0; i<argc; i++)
6: std::cout << “argument “ << i << “: “ << argv[i] << std::endl;
7: return 0;
8: }

TestProgram Teach Yourself C++ In 21 Days
Received 7 arguments...
argumnet 0: TestProgram
argument 1: Teach
argument 2: Yourself
argument 3: C++
argument 4: In
argument 5: 21
argument 6: Days

OUTPUT

632 Day 17

You must either run this code from the command line (that is, from a DOS
box) or you must set the command-line parameters in your compiler (see
your compiler documentation).

NOTE

The function main() declares two arguments: argc is an integer that contains the
count of command-line arguments, and argv is a pointer to the array of strings.

Each string in the array pointed to by argv is a command-line argument. Note that argv
could just as easily have been declared as char *argv[] or char argv[][]. It is a mat-
ter of programming style how you declare argv; even though this program declared it as
a pointer to a pointer, array offsets were still used to access the individual strings.

On line 4, argc is used to print the number of command-line arguments: seven in all,
counting the program name itself.

On lines 5 and 6, each of the command-line arguments is printed, passing the null-termi-
nated strings to cout by indexing into the array of strings.

A more common use of command-line arguments is illustrated by modifying Listing
17.18 to take the filename as a command-line argument, as shown in Listing 17.20.

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 632

Working with Streams 633

17

LISTING 17.20 Using Command-line Arguments To Get a Filename

0: //Listing 17.20 Using Command-line Arguments
1: #include <fstream>
2: #include <iostream>
3: using namespace std;
4:
5: class Animal
6: {
7: public:
8: Animal(int weight,long days):itsWeight(weight),DaysAlive(days){}
9: ~Animal(){}
10:
11: int GetWeight()const { return itsWeight; }
12: void SetWeight(int weight) { itsWeight = weight; }
13:
14: long GetDaysAlive()const { return DaysAlive; }
15: void SetDaysAlive(long days) { DaysAlive = days; }
16:
17: private:
18: int itsWeight;
19: long DaysAlive;
20: };
21:
22: int main(int argc, char *argv[]) // returns 1 on error
23: {
24: if (argc != 2)
25: {
26: cout << “Usage: “ << argv[0] << “ <filename>” << endl;
27: return(1);
28: }
29:
30: ofstream fout(argv[1],ios::binary);
31: if (!fout)
32: {
33: cout << “Unable to open “ << argv[1] << “ for writing.\n”;
34: return(1);
35: }
36:
37: Animal Bear(50,100);
38: fout.write((char*) &Bear,sizeof Bear);
39:
40: fout.close();
41:
42: ifstream fin(argv[1],ios::binary);
43: if (!fin)
44: {
45: cout << “Unable to open “ << argv[1] << “ for reading.\n”;
46: return(1);
47: }
48:

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 633

49: Animal BearTwo(1,1);
50:
51: cout << “BearTwo weight: “ << BearTwo.GetWeight() << endl;
52: cout << “BearTwo days: “ << BearTwo.GetDaysAlive() << endl;
53:
54: fin.read((char*) &BearTwo, sizeof BearTwo);
55:
56: cout << “BearTwo weight: “ << BearTwo.GetWeight() << endl;
57: cout << “BearTwo days: “ << BearTwo.GetDaysAlive() << endl;
58: fin.close();
59: return 0;
60: }

BearTwo weight: 1
BearTwo days: 1
BearTwo weight: 50
BearTwo days: 100

The declaration of the Animal class is the same as in Listing 17.18. This time,
however, rather than prompting the user for the filename, command-line argu-

ments are used. On line 22, main() is declared to take two parameters: the count of the
command-line arguments and a pointer to the array of command-line argument strings.

On lines 24–28 the program ensures that the expected number of arguments (exactly
two) is received. If the user fails to supply a single filename, an error message is printed:

Usage TestProgram <filename>

Then, the program exits. Note that by using argv[0] rather than hard-coding a program
name, you can compile this program to have any name, and this usage statement works
automatically. You can even rename the executable after it was compiled and the usage
statement will still be correct!

On line 30, the program attempts to open the supplied filename for binary output. No
reason exists to copy the filename into a local temporary buffer. It can be used directly
by accessing argv[1].

This technique is repeated on line 42 when the same file is reopened for input, and it is
used in the error condition statements when the files cannot be opened, on lines 33 and 45.

Summary
Today, streams were introduced, and the global objects cout and cin were described.
The goal of the istream and ostream objects is to encapsulate the work of writing to
device drivers and buffering input and output.

OUTPUT

634 Day 17

LISTING 17.20 continued

ANALYSIS

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 634

Working with Streams 635

17

Four standard stream objects are created in every program: cout, cin, cerr, and clog.
Each of these can be “redirected” by many operating systems.

The istream object cin is used for input, and its most common use is with the over-
loaded extraction operator (>>). The ostream object cout is used for output, and its most
common use is with the overloaded insertion operator (<<).

Each of these objects has a number of other member functions, such as get() and put().
Because the common forms of each of these methods returns a reference to a stream
object, it is easy to concatenate each of these operators and functions.

The state of the stream objects can be changed by using manipulators. These can set the
formatting and display characteristics and various other attributes of the stream objects.

File I/O can be accomplished by using the fstream classes, which derive from the stream
classes. In addition to supporting the normal insertion and extraction operators, these
objects also support read() and write() for storing and retrieving large binary objects.

Q&A
Q How do I know when to use the insertion and extraction operators and when

to use the other member functions of the stream classes?

A In general, it is easier to use the insertion and extraction operators, and they are
preferred when their behavior is what is needed. In those unusual circumstances
when these operators don’t do the job (such as reading in a string of words), the
other functions can be used.

Q What is the difference between cerr and clog?

A cerr is not buffered. Everything written to cerr is immediately written out. This is
fine for errors to be written to the console screen, but might have too high a perfor-
mance cost for writing logs to disk. clog buffers its output, and thus can be more
efficient, at the risk of losing part of the log if the program crashes.

Q Why were streams created if printf() works well?

A printf() does not support the strong type system of C++, and it does not support
user-defined classes. Support for printf() is really just a carryover from the C
programming language.

Q When would I ever use putback()?

A When one read operation is used to determine whether a character is valid, but a
different read operation (perhaps by a different object) needs the character to be in
the buffer. This is most often used when parsing a file; for example, the C++ com-
piler might use putback().

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 635

Q My friends use printf() in their C++ programs. Can I?

A No. At this point, printf() should properly be considered obsolete.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to tomorrow’s lesson.

Quiz
1. What is the insertion operator, and what does it do?

2. What is the extraction operator, and what does it do?

3. What are the three forms of cin.get(), and what are their differences?

4. What is the difference between cin.read() and cin.getline()?

5. What is the default width for outputting a long integer using the insertion operator?

6. What is the return value of the insertion operator?

7. What parameter does the constructor to an ofstream object take?

8. What does the ios::ate argument do?

Exercises
1. Write a program that writes to the four standard iostream objects: cin, cout, cerr,

and clog.

2. Write a program that prompts the user to enter her full name and then displays it
on the screen.

3. Rewrite Listing 17.9 to do the same thing, but without using putback() or
ignore().

4. Write a program that takes a filename as a parameter and opens the file for reading.
Read every character of the file and display only the letters and punctuation to the
screen. (Ignore all nonprinting characters.) Then close the file and exit.

5. Write a program that displays its command-line arguments in reverse order and
does not display the program name.

636 Day 17

23 0672327112_ch17.qxd 11/19/04 12:29 PM Page 636

DAY 18

WEEK 3

Creating and Using
Namespaces

Namespaces can be used to help you organize your classes. More importantly,
namespaces help programmers avoid name clashes when using more than one
library.

Today, you will learn

• How functions and classes are resolved by name

• How to create a namespace

• How to use a namespace

• How to use the standard namespace std

Getting Started
Name conflicts have been a source of aggravation to both C and C++ develop-
ers. A name clash happens when a duplicate name with matching scope is
found in two parts of your program. The most common occurrence can be

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 637

found in different library packages. For example, a container class library will almost
certainly declare and implement a List class. (You’ll learn more about container classes
when you learn about templates on Day 19, “Templates.”)

It is not a surprise to find a List class also being used in a windowing library. Suppose
that you want to maintain a list of windows for your application. Further assume that you
are using the List class found in the container class library. You declare an instance of
the window library’s List to hold your windows, and you discover that the member
functions you want to call are not available. The compiler has matched your List decla-
ration to the List container in the Standard Library, but what you really wanted is the
List found in the vendor-specific window library.

Namespaces are used to reduce the chance of name conflicts. Namespaces are similar in
some ways to classes, and the syntax is very similar.

Items declared within the namespace are owned by the namespace. All items within a
namespace have public visibility. Namespaces can be nested within other namespaces.
Functions can be defined within the body of the namespace or defined outside the body
of the namespace. If a function is defined outside the body of the namespace, it must be
qualified by the namespace’s name or the calling program must have imported the name-
space into its global namespace.

Resolving Functions and Classes by Name
As the compiler parses source code and builds a list of function and variable names, it
also checks for name conflicts. Those conflicts that it can’t resolve are left for the linker
to resolve.

The compiler cannot check for name clashes across object files or other translation units;
that is the purpose of the linker. Thus, the compiler does not even offer a warning in
those cases.

It is not uncommon for the linker to fail with the message

Identifier multiply defined

where identifier is some named type. You see this linker message if you have defined
the same name with the same scope in different translation units. You get a compiler
error if you redefine a name within a single file having the same scope. Listing 18.1a and
Listing 18.1b are an example, when compiled and linked together, that produces an error
message by the linker.

638 Day 18

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 638

Creating and Using Namespaces 639

18

LISTING 18.1A First Listing Using integerValue

0: // file first.cpp
1: int integerValue = 0 ;
2: int main() {
3: int integerValue = 0 ;
4: // . . .
5: return 0 ;
6: } ;

LISTING 18.1B Second Listing Using integerValue

0: // file second.cpp
1: int integerValue = 0 ;
2: // end of second.cpp

My linker announces the following diagnostic:

in second.obj: integerValue already defined in first.obj.

If these names were in a different scope, the compiler and linker would not complain
about the duplication.

It is also possible to receive a warning from the compiler concerning identifier hiding.
The compiler should warn, in first.cpp in Listing 18.1a, that integerValue in main()
is hiding the global variable with the same name.

To use the integerValue declared outside main(), you must explicitly scope the variable
to global scope. Consider this example in Listings 18.2a and 18.2b, which assigns the
value 10 to the integerValue outside main() and not to the integerValue declared
within main().

LISTING 18.2A First Listing for Identifier Hiding

0: // file first.cpp
1: int integerValue = 0 ;
2: int main()
3: {
4: int integerValue = 0 ;
5: ::integerValue = 10 ; //assign to global “integerValue”
6: // . . .
7: return 0 ;
8: } ;

ANALYSIS

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 639

LISTING 18.2B Second Listing for Identifier Hiding

0: // file second.cpp
1: int integerValue = 0 ;
2: // end of second.cpp

640 Day 18

Note the use of the scope resolution operator ::, indicating that the
integerValue being referred to is global, not local.

NOTE

The problem with the two global integers defined outside of any functions is that
they have the same name and visibility, and, thus, cause a linker error.

Visibility of Variables
The term visibility is used to designate the scope of a defined object, whether it is a vari-
able, a class, or a function. Although this was covered on Day 5, “Organizing into
Functions,” it is worth covering again here briefly.

As an example, a variable declared and defined outside any function has file, or global,
scope. The visibility of this variable is from the point of its definition through the end of
the file. A variable having a block, or local, scope is found within a block structure. The
most common examples are variables defined within functions. Listing 18.3 shows the
scope of variables.

LISTING 18.3 Working Variable Scope

0: // Listing 18.3
1: int globalScopeInt = 5 ;
2: void f()
3: {
4: int localScopeInt = 10 ;
5: }
6: int main()
7: {
8: int localScopeInt = 15 ;
9: {
10: int anotherLocal = 20 ;
11: int localScopeInt = 30 ;
12: }
13: return 0 ;
14: }

ANALYSIS

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 640

Creating and Using Namespaces 641

18

The first int definition, globalScopeInt, on line 1 is visible within the functions
f() and main(). The next definition is found on line 4 within the function f()

and is named localScopeInt. This variable has local scope, meaning that it is visible
only within the block defining it.

The main() function cannot access f()’s localScopeInt. When the f() function returns,
localScopeInt goes out of scope. The third definition, also named localScopeInt, is
found on line 8 of the main() function. This variable has block scope.

Note that main()’s localScopeInt does not conflict with f()’s localScopeInt. The next
two definitions on lines 10 and 11, anotherLocal and localScopeInt, both have block
scope. As soon as the closing brace is reached on line 12, these two variables lose their
visibility.

Notice that this localScopeInt is hiding the localScopeInt defined just before the
opening brace (the second localScopeInt defined in the program). When the program
moves past the closing brace, the second localScopeInt defined resumes visibility. Any
changes made to the localScopeInt defined within the braces does not affect the con-
tents of the outer localScopeInt.

Linkage
Names can have internal and external linkage. These two terms refer to the use or avail-
ability of a name across multiple translation units or within a single translation unit. Any
name having internal linkage can only be referred to within the translation unit in which it
is defined. For example, a variable defined to have internal linkage can be shared by func-
tions within the same translation unit. Names having external linkage are available to
other translation units. Listings 18.4a and 18.4b demonstrate internal and external linkage.

LISTING 18.4A Internal and External Linking

0: // file: first.cpp
1: int externalInt = 5 ;
2: const int j = 10 ;
3: int main()
4: {
5: return 0 ;
6: }

LISTING 18.4B Internal and External Linking

0: // file: second.cpp
1: extern int externalInt ;
2: int anExternalInt = 10 ;
3: const int j = 10 ;

ANALYSIS

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 641

The externalInt variable defined on line 1 of first.cpp (Listing 18.4a) has
external linkage. Although it is defined in first.cpp, second.cpp can also

access it. The two js found in both files are const, which, by default, have internal link-
age. You can override the const default by providing an explicit declaration, as shown in
Listings 18.5a and 18.5b.

LISTING 18.5A Overriding the const Default

0: // file: first.cpp
1: extern const int j = 10 ;

LISTING 18.5B Overriding the const Default

0: // file: second.cpp
1: extern const int j ;
2: #include <iostream>
3: int main()
4: {
5: std::cout << “j is “ << j << std::endl ;
6: return 0 ;
7: }

Note that cout is called on line 5 with the namespace designation of std. When built,
this example displays the following:

j is 10

Static Global Variables
The standards committee has deprecated the use of static global variables. Static global
variables are declared as follows:

static int staticInt = 10 ;
int main()
{

//...
}

The use of static to limit the scope of external variables is no longer recommended and
might become illegal in the future. You should now use namespaces instead of static.
Of course, to do this, you need to know how to create one.

642 Day 18

ANALYSIS

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 642

Creating and Using Namespaces 643

18

DO use namespaces instead of static
global variables.

DON’T apply the static keyword to a
variable defined at file scope.

DO DON’T

Creating a Namespace
The syntax for a namespace declaration is similar to the syntax for a struct or class dec-
laration: First apply the keyword namespace followed by an optional namespace name,
and then an opening curly brace. The namespace is concluded with a closing brace but
no terminating semicolon.

For example:

namespace Window
{

void move(int x, int y) ;

class List
{

// ...
}

}

The name Window uniquely identifies the namespace. You can have many occurrences of
a named namespace. These multiple occurrences can occur within a single file or across
multiple translation units. When this occurs, the separate instances are merged together
by the compiler into a single namespace. The C++ Standard Library namespace, std, is a
prime example of this feature. This makes sense because the Standard Library is a logical
grouping of functionality, but it is too large and complex to be kept in a single file.

The main concept behind namespaces is to group related items into a specified (named)
area. Listings 18.6a and 18.6b provide a brief example of a namespace that spans multi-
ple header files.

LISTING 18.6A Grouping Related Items

0: // header1.h
1: namespace Window
2: {
3: void move(int x, int y) ;
4: }

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 643

LISTING 18.6B Grouping Related Items

0: // header2.h
1: namespace Window
2: {
3: void resize(int x, int y) ;
4: }

As you can see, the Window namespace is spread across both header files. The
compiler treats both the move() function and the resize() function as part of the

Window namespace.

Declaring and Defining Types
You can declare and define types and functions within namespaces. Of course, this is a
design and maintenance issue. Good design dictates that you should separate interface
from implementation. You should follow this principle not only with classes but also with
namespaces. The following example demonstrates a cluttered and poorly defined name-
space:

namespace Window {
// . . . other declarations and variable definitions.
void move(int x, int y) ; // declarations
void resize(int x, int y) ;
// . . . other declarations and variable definitions.

void move(int x, int y)
{

if(x < MAX_SCREEN_X && x > 0)
if(y < MAX_SCREEN_Y && y > 0)

platform.move(x, y) ; // specific routine
}

void resize(int x, int y)
{

if(x < MAX_SIZE_X && x > 0)
if(y < MAX_SIZE_Y && y > 0)

platform.resize(x, y) ; // specific routine
}
// . . . definitions continue

}

You can see how quickly the namespace becomes cluttered! The previous example is
approximately 20 lines in length; imagine if this namespace were four times longer.

644 Day 18

ANALYSIS

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 644

Creating and Using Namespaces 645

18

Defining Functions Outside a Namespace
You should define namespace functions outside the namespace body. Doing so illustrates
a clear separation of the declaration of the function and its definition—and also keeps the
namespace body uncluttered. Separating the function definition from the namespace also
enables you to put the namespace and its embodied declarations within a header file; the
definitions can be placed into an implementation file. Listings 18.7a and 18.7b illustrate
this separation.

LISTING 18.7A Declaring a Header in a Namespace

0: // file header.h
1: namespace Window {
2: void move(int x, int y) ;
3: // other declarations ...
4: }

LISTING 18.7B Declaring the Implementation in the Source File

0: // file impl.cpp
1: void Window::move(int x, int y)
2: {
3: // code to move the window
4: }

Adding New Members
New members can be added to a namespace only within the namespace’s body. You can-
not define new members using qualifier syntax. The most you can expect from this style
of definition is a complaint from your compiler. The following example demonstrates
this error:

namespace Window
{

// lots of declarations
}
//...some code
int Window::newIntegerInNamespace ; // sorry, can’t do this

The preceding line of code is illegal. Your (conforming) compiler issues a diagnostic
reflecting the error. To correct the error—or avoid it altogether—move the declaration
within the namespace body.

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 645

When you add new members, you do not want to include access modifiers, such as pub-
lic or private. All members encased within a namespace are public. The following code
does not compile because you cannot specify private:

namespace Window
{

private:
void move(int x, int y) ;

}

Nesting Namespaces
A namespace can be nested within another namespace. The reason they can be nested is
because the definition of a namespace is also a declaration. As with any other name-
space, you must qualify a name using the enclosing namespace. If you have nested
namespaces, you must qualify each namespace in turn. For example, the following shows
a named namespace nested within another named namespace:

namespace Window
{

namespace Pane
{

void size(int x, int y) ;
}

}

To access the function size() outside of the Window namespace, you must qualify the
function with both enclosing namespace names. In this case, you need to use the follow-
ing line to access size:

Window::Pane::size(10, 20) ;

Using a Namespace
Let’s take a look at an example of using a namespace and the associated use of the scope
resolution operator. In the example, all types and functions for use within the namespace
Window are declared. After everything required is defined, any member functions that
were declared are defined. These member functions are defined outside of the name-
space; the names are explicitly identified using the scope resolution operator. Listing
18.8 illustrates using a namespace.

LISTING 18.8 Using a Namespace

0: #include <iostream>
1: // Using a Namespace
2:
3: namespace Window

646 Day 18

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 646

Creating and Using Namespaces 647

18

4: {
5: const int MAX_X = 30 ;
6: const int MAX_Y = 40 ;
7: class Pane
8: {
9: public:
10: Pane() ;
11: ~Pane() ;
12: void size(int x, int y) ;
13: void move(int x, int y) ;
14: void show() ;
15: private:
16: static int count ;
17: int x ;
18: int y ;
19: };
20: }
21:
22: int Window::Pane::count = 0 ;
23: Window::Pane::Pane() : x(0), y(0) { }
24: Window::Pane::~Pane() { }
25:
26: void Window::Pane::size(int x, int y)
27: {
28: if(x < Window::MAX_X && x > 0)
29: Pane::x = x ;
30: if(y < Window::MAX_Y && y > 0)
31: Pane::y = y ;
32: }
33: void Window::Pane::move(int x, int y)
34: {
35: if(x < Window::MAX_X && x > 0)
36: Pane::x = x ;
37: if(y < Window::MAX_Y && y > 0)
38: Pane::y = y ;
39: }
40: void Window::Pane::show()
41: {
42: std::cout << “x “ << Pane::x ;
43: std::cout << “ y “ << Pane::y << std::endl ;
44: }
45:
46: int main()
47: {
48: Window::Pane pane ;
49:
50: pane.move(20, 20) ;
51: pane.show() ;
52:
53: return 0 ;
54: }

LISTING 18.8 continued

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 647

x 20 y 20

Note that class Pane on lines 7–19 is nested inside the namespace Window, which
is on lines 3–20. This is the reason you have to qualify the name Pane with the

Window:: qualifier.

The static variable count, which is declared in Pane on line 16, is defined as usual.
Within the function Pane::size() on lines 26–32, notice that MAX_X and MAX_Y are fully
qualified. This is because Pane is in scope; otherwise, the compiler issues an error diag-
nostic. This also holds true for the function Pane::move().

Also interesting is the qualification of Pane::x and Pane::y inside both function defini-
tions. Why is this needed? Well, if the function Pane::move() were written like this, you
would have a problem:

void Window::Pane::move(int x, int y)
{

if(x < Window::MAX_X && x > 0)
x = x ;

if(y < Window::MAX_Y && y > 0)
y = y ;

Platform::move(x, y) ;
}

Can you spot the issue? You probably won’t get much of an answer from your compiler;
some don’t issue any kind of diagnostic message at all.

The source of the problem is the function’s arguments. Arguments x and y hide the pri-
vate x and y instance variables declared within class Pane. Effectively, the statements
assign both x and y to itself:

x = x ;
y = y ;

The using Keyword
The using keyword is used for both the using directive and the using declaration.
The syntax of the using keyword determines whether the context is a directive or a
declaration.

The using Directive
The using directive effectively exposes all names declared in a namespace to be in the
current scope. You can refer to the names without qualifying them with their respective
namespace name. The following example shows the using directive:

648 Day 18

OUTPUT

ANALYSIS

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 648

Creating and Using Namespaces 649

18

namespace Window
{

int value1 = 20 ;
int value2 = 40 ;

}
. . .
Window::value1 = 10 ;

using namespace Window ;
value2 = 30 ;

The scope of the using directive begins at its declaration and continues on to the end of
the current scope. Notice that value1 must be qualified to reference it. The variable
value2 does not require the qualification because the directive introduces all names in a
namespace into the current scope.

The using directive can be used at any level of scope. This enables you to use the direc-
tive within block scope; when that block goes out of scope, so do all the names within
the namespace. The following example shows this behavior:

namespace Window
{

int value1 = 20 ;
int value2 = 40 ;

}
//. . .
void f()
{

{
using namespace Window ;
value2 = 30 ;

}
value2 = 20 ; //error!

}

The final line of code in f(), value2 = 20 ; is an error because value2 is not defined.
The name is accessible in the previous block because the directive pulls the name into
that block. When that block goes out of scope, so do the names in namespace Window.
For value2 to work in the final line, you need to fully qualify it:

Window::value2 = 20 ;

Variable names declared within a local scope hide any namespace names introduced in
that scope. This behavior is similar to how a local variable hides a global variable. Even
if you introduce a namespace after a local variable, that local variable hides the name-
space name. Consider the following example:

namespace Window
{

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 649

int value1 = 20 ;
int value2 = 40 ;

}
//. . .
void f()
{

int value2 = 10 ;
using namespace Window ;
std::cout << value2 << std::endl ;

}

The output of this function is 10, not 40. The value2 in namespace Window is hidden by
the value2 in f(). If you need to use a name within a namespace, you must qualify the
name with the namespace name.

An ambiguity can arise using a name that is both globally defined and defined within a
namespace. The ambiguity surfaces only if the name is used, not just when a namespace
is introduced. This is demonstrated with the following code fragment:

namespace Window
{

int value1 = 20 ;
}
//. . .
using namespace Window ;
int value1 = 10 ;
void f()
{

value1 = 10 ;
}

The ambiguity occurs within function f(). The directive effectively brings
Window::value1 into the global namespace; because a value1 is already globally
defined, the use of value1 in f() is an error. Note that if the line of code in f() were
removed, no error would exist.

The using Declaration
The using declaration is similar to the using directive except that the declaration pro-
vides a finer level of control. More specifically, the using declaration is used to declare a
specific name (from a namespace) to be in the current scope. You can then refer to the
specified object by its name only. The following example demonstrates the use of the
using declaration:

namespace Window
{

int value1 = 20 ;
int value2 = 40 ;

650 Day 18

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 650

Creating and Using Namespaces 651

18

int value3 = 60 ;
}
//. . .
using Window::value2 ; //bring value2 into current scope
Window::value1 = 10 ; //value1 must be qualified
value2 = 30 ;
Window::value3 = 10 ; //value3 must be qualified

The using declaration adds the specified name to the current scope. The declaration does
not affect the other names within the namespace. In the previous example, value2 is ref-
erenced without qualification, but value1 and value3 require qualification. The using
declaration provides more control over namespace names that you bring into scope. This
is in contrast with the directive that brings all names in a namespace into scope.

After a name is brought into a scope, it is visible until the end of that scope. This behav-
ior is the same as any other declaration. A using declaration can be used in the global
namespace or within any local scope.

It is an error to introduce a duplicate name into a local scope in which a namespace
name has been declared. The reverse is also true. The following example shows this:

namespace Window
{

int value1 = 20 ;
int value2 = 40 ;

}
//. . .
void f()
{

int value2 = 10 ;
using Window::value2 ; // multiple declaration
std::cout << value2 << std::endl ;

}

The second line in function f() produces a compiler error because the name value2 is
already defined. The same error occurs if the using declaration is introduced before the
definition of the local value2.

Any name introduced at local scope with a using declaration hides any name outside
that scope. Consider the following code snippet:

namespace Window
{

int value1 = 20 ;
int value2 = 40 ;

}
int value2 = 10 ;
//. . .
void f()

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 651

{
using Window::value2 ;
std::cout << value2 << std::endl ;

}

The using declaration in f() hides the value2 defined in the global namespace.

As mentioned before, a using declaration gives you finer control over the names intro-
duced from a namespace. A using directive brings all names from a namespace into the
current scope. It is preferable to use a declaration over a directive because a directive
effectively defeats the purpose of the namespace mechanism. A declaration is more
definitive because you are explicitly identifying the names you want to introduce into a
scope. A using declaration does not pollute the global namespace, as is the case with a
using directive (unless, of course, you declare all names found in the namespace). Name
hiding, global namespace pollution, and ambiguity all are reduced to a more manageable
level by using the using declaration.

The Namespace Alias
A namespace alias is designed to provide another name for a named namespace. An alias
provides a shorthand term for you to use to refer to a namespace. This is especially true
if a namespace name is very long; creating an alias can help cut down on lengthy, repeti-
tive typing. Consider the following code:

namespace the_software_company
{

int value ;
// . . .

}
the_software_company::value = 10 ;
. . .
namespace TSC = the_software_company ;
TSC::value = 20 ;

A drawback, of course, is that your alias might collide with an existing name. If this is
the case, the compiler catches the conflict and you can resolve it by renaming the alias.

The Unnamed Namespace
An unnamed namespace is simply that—a namespace that does not have a name. A com-
mon use of unnamed spaces is to shield global data from potential name clashes between
object files and other translation units. Every translation unit has a unique, unnamed
namespace. All names defined within the unnamed namespace (within each translation
unit) can be referred to without explicit qualification. Listings 18.9a and 18.9b are exam-
ples of two unnamed namespaces found in two separate files.

652 Day 18

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 652

Creating and Using Namespaces 653

18

LISTING 18.9A An Unnamed Namespace

0: // file: one.cpp
1: namespace
2: {
3: int value ;
4: char p(char *p) ;
5: //. . .
6: }

LISTING 18.9B A Second Unnamed Namespace

0: // file: two.cpp
1: namespace
2: {
3: int value ;
4: char p(char *p) ;
5: //. . .
6: }
7: int main()
8: {
9: char c = p(char * ptr) ;
10: }

In the case in which these two listings are compiled into the same executable,
each of the names, value and function p(), is distinct to its respective file. To

refer to a (unnamed namespace) name within a translation unit, use the name without
qualification. This usage is demonstrated in the previous example with the call to func-
tion p() within each file.

This use implies a using directive for objects referred to from an unnamed namespace.
Because of this, you cannot access members of an unnamed namespace in another trans-
lation unit.

The behavior of an unnamed namespace is the same as a static object having external
linkage. Consider this example:

static int value = 10 ;

Remember that this use of the static keyword is deprecated by the standards commit-
tee. Namespaces now exist to replace code as this static declaration. Another way to
think of unnamed namespaces is that they are global variables with internal linkage.

ANALYSIS

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 653

The Standard Namespace std
The best example of namespaces is found in the C++ Standard Library. The Standard
Library is completely encased within the namespace named std. All functions, classes,
objects, and templates are declared within the namespace std.

You have seen code such as the following:

#include <iostream>
using namespace std ;

Now, you know that when you use the using directive in this manner that it is pulling
everything in from the named namespace.

Going forward, you should consider it bad form to employ the using directive when
using the Standard Library. Why? Because doing so pollutes the global namespace of
your applications with all the names found in the header. Keep in mind that all header
files use the namespace feature, so if you include multiple standard header files and spec-
ify the using directive, then everything declared in the headers is in the global name-
space.

You might be noting that most of the examples in this book violate this rule; this action
is not an intent to advocate violating the rule, but it is used for brevity of the examples.
You should use the using declaration instead, as in Listing 18.10.

LISTING 18.10 The Correct Way to Use std Namespace Items

0: #include <iostream>
1: using std::cin ;
2: using std::cout ;
3: using std::endl ;
4: int main()
5: {
6: int value = 0 ;
7: cout << “So, how many eggs did you say you wanted?” << endl ;
8: cin >> value ;
9: cout << value << “ eggs, sunny-side up!” << endl ;
10: return(0) ;
11: }

So, how many eggs did you say you wanted?
4
4 eggs, sunny-side up!

As you can see, three items from the std namespace are used. These are declared
on lines 1–3.

654 Day 18

OUTPUT

ANALYSIS

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 654

Creating and Using Namespaces 655

18

As an alternative, you could fully qualify the names that you use, as in Listing 18.11.

LISTING 18.11 Qualifying Namespace Items Inline

0: #include <iostream>
1: int main()
2: {
3: int value = 0 ;
4: std::cout << “How many eggs did you want?” << std::endl ;
5: std::cin >> value ;
6: std::cout << value << “ eggs, sunny-side up!” << std::endl ;
7: return(0) ;
8: }

How many eggs did you want?
4
4 eggs, sunny-side up!

Qualifying namespace items inline might be appropriate for shorter programs but
can become quite cumbersome for any significant amount of code. Imagine hav-

ing to prefix std:: for every name you use that is found in the Standard Library!

Summary
Today’s lesson expanded on information you have been previously exposed to throughout
this book.

Creating a namespace is very similar to a class declaration. A couple of differences are
worth noting. First, a semicolon does not follow a namespace’s closing brace. Second, a
namespace is open, whereas a class is closed. This means that you can continue to define
the namespace in other files or in separate sections of a single file.

Anything that can be declared can be inserted into a namespace. If you are designing
classes for a reusable library, you should be using the namespace feature. Functions
declared within a namespace should be defined outside of that namespace’s body. This
promotes a separation of interface from implementation and also keeps the namespace
from becoming cluttered.

The using directive is used to expose all names in a namespace into the current scope.
This effectively fills the global namespace with all names found in the named name-
space. It is generally bad practice to use the using directive, especially with respect to
the Standard Library. Use using declarations instead.

A using declaration is used to expose a specific namespace item into the current scope.
This allows you to refer to the object by its name only.

OUTPUT

ANALYSIS

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 655

A namespace alias is similar in nature to a typedef. A namespace alias enables you to
create another name for a named namespace. This can be quite useful when you are
using a namespace with a long name or nested namespaces.

Every file can contain an unnamed namespace. An unnamed namespace, as its name
implies, is a namespace without a name. An unnamed namespace allows you to use the
names within the namespace without qualification. It keeps the namespace names local
to the translation unit. Unnamed namespaces are the same as declaring a global variable
with the static keyword.

Q&A
Q Do I have to use namespaces?

A No, you can write simple programs and ignore namespaces altogether. Be certain
to use the old Standard Libraries (for example, #include <string.h>) rather than
the new libraries (for example, #include <cstring>. Because of the reasons you
learned in today’s lesson, it is recommended that you do use namespaces.

Q Is C++ the only language that uses namespaces?

A No. Other languages also use namespaces to help organize and separate values.
This includes languages such as Visual Basic 7 (.NET), C#, and more. Other lan-
guages have similar concepts. For example, Java has packages.

Q What are the unnamed namespaces? Why do I need unnamed namespaces?

A Unnamed namespaces are namespaces without names. They are used to wrap a col-
lection of declarations against possible name clashes. Names in an unnamed name-
space cannot be used outside of the translation unit where the namespace is
declared.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to tomorrow’s lesson.

Quiz
1. How do you access the function MyFunc() if it is in the Inner namespace within

the Outer namespace?

Outer::Inner::MyFunc();

656 Day 18

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 656

Creating and Using Namespaces 657

18

2. Consider the following code:
int x = 4;
int main()
{

for(y = 1; y < 10; y++)
{

cout << y << “:” << endl;
{

int x = 10 * y;
cout << “X = “ << x << endl

}
}
// *** HERE ***

}

What is the value of X when this program reaches “HERE” in the listing?

3. Can I use names defined in a namespace without using the using keyword?

4. What are the major differences between normal and unnamed namespaces?

5. What are the two forms of statements with the using keyword? What are the dif-
ferences between those two forms?

6. What are the unnamed namespaces? Why do we need unnamed namespaces?

7. What is the standard namespace?

Exercises
1. BUG BUSTERS: What is wrong in this program?

0: #include <iostream>
1: int main()
2: {
3: cout << “Hello world!” << endl;
4: return 0;
5: }

2. List three ways of fixing the problem found in Exercise 1.

3. Show the code for declaring a namespace called MyStuff. This namespace should
contain a class called MyClass.

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 657

24 0672327112_ch18.qxd 11/19/04 12:29 PM Page 658

DAY 19

WEEK 3

Templates
A powerful tool for C++ programmers is “parameterized types” or templates.
Templates are so useful that a library containing a number of routines using
templates has been adopted into the definition of the C++ language.

Today, you will learn

• What a template is and how templates can be used

• How to create class templates

• How to create function templates

• What the Standard Template Library (STL) is and how to use some of the
templates within it

What Are Templates?
At the end of Week 2, you saw how to build a PartsList object and how to use
it to create a PartsCatalog. If you want to build on the PartsList object to
make a list of cats, you have a problem: PartsList only knows about parts.

To solve this problem, you can create a List base class. You could then cut and
paste much of the PartsList class into the new CatsList declaration. Later,

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 659

when you want to make a list of Car objects, you would then have to make a new class,
and again you would cut and paste.

Needless to say, this is not a satisfactory solution. Over time, you can expect the List
class and its derived classes will need to be extended. The task of making certain that all
the needed changes are propagated to all the related classes could quickly become a
nightmare.

Alternatively, you could inherit Cat from Part, so that a cat could fit into the parts inher-
itance hierarchy, and so that a collection of parts could hold cats as well. Obviously, this
is a problem in terms of keeping a cleanly conceptual class hierarchy because cats are
not normally parts.

You could also create a List class that would contain something like “Object” and
inherit all objects from this base class. However, this relaxes strong typing and makes it
harder to have the compiler enforce correctness in your program. What you really want is
a way to create a family of related classes, whose only difference is the type of the thing
that they operate on; and you want to have only one place to make changes to that class
so that your maintenance effort can be kept low.

The creation and use of templates can solve these problems. Although templates were not
a part of the original C++ language, they are now a part of the standard and an integral
part of the language. Like all of C++, they are type-safe and very flexible. They can,
however, be intimidating to the newer C++ programmer. After you understand them,
however, you will see that they are a powerful feature of the language.

Templates enable you to create a class that can have the type of the things it works on be
changed. For example, you can use them to show the compiler how to make a list of any
type of thing, rather than creating a set of type-specific lists—a PartsList is a list of
parts; a CatsList is a list of cats. The only way in which they differ is the type of the
thing on the list. With templates, the type of the thing on the list becomes a parameter to
the definition of the class. You can create a family of classes from the template, each of
which is set up to work on a different type of thing.

A common component of virtually all C++ libraries is an array class. You know it would
be tedious and inefficient to create one array class for integers, another for doubles, and
yet another for an array of Animals. Templates let you declare a single, parameterized
array class. You can then specify the type that the object will be for each instance of the
array.

Although the Standard Template Library provides a standardized set of container classes,
including arrays, lists, and so forth, the best way to learn about templates is to create
your own! In the next few sections, you’ll explore what it takes to write your template

660 Day 19

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 660

Templates 661

19

class so that you fully understand how templates work. In a commercial program, how-
ever, you would almost certainly use the STL classes for this purpose rather than creating
your own. On the other hand, you will want to create templates for your own applica-
tions and leverage this powerful capability.

Instantiation is the act of creating a specific type from a template. The individual classes
are called instances of the template.

Instances of a template are distinct from instances of objects created using
the template. Most commonly, “instantiation” is used to refer to creating an
instance (object) from a class. Be certain to be clear about the context when
using or reading the word “instantiation.”

NOTE

Parameterized templates provide you with the ability to create a general class and pass
types as parameters to that class to build specific instances.

Before you can instantiate a template, however, you need to define one.

Building a Template Definition
You begin the basic declaration of a template using the template keyword followed by a
parameter for the type. The format of this is:

template <class T>

In this case, template and class are keywords that you use. T is a placeholder—like a
variable name. As such, it can be any name you desire; however, either T or Type is gen-
erally used. The value of T will be a data type.

Because the keyword class can be confusing when used in this context, you can alterna-
tively use the keyword typename:

template <typename T>

In today’s lesson, you will see the keyword class used because it is what you will see
more often in programs that have already been created. The keyword typename, however,
is clearer at indicating what you are defining when the parameter is a primitive type
rather than a class.

Going back to the example of creating your own array list, you can use the template
statement to declare a parameterized type for the Array class—you can use this to create
a template for an array as shown here:

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 661

template <class T> // declare the template and the parameter
class Array // the class being parameterized
{

public:
Array();

// full class declaration here
};

This code is the basics for declaring a template class called Array. The keyword
template is used at the beginning of every declaration and definition of a template
class. The parameters of the template are after the keyword template. Like with
functions, the parameters are the things that will change with each instance. In the
array template being created in the preceding example, you want the type of the objects
stored in the array to be changeable. One instance might store an array of integers and
another might store an array of Animals.

In this example, the keyword class is used, followed by the identifier T. As stated
before, the keyword class indicates that this parameter is a type. The identifier T is used
throughout the rest of the template definition to refer to the parameterized type. Because
this class is now a template, one instance could substitute int for T and one could substi-
tute the type Cat. If written correctly, the template should be able to accept any valid
data type (or class) as the value for T.

You set the type for your template when you declare a variable that will be an instance of
it. This can be done using the following format:

className<type> instance;

In this case, className is the name of your template class. instance is the name of the
instance, or object, you are creating. type is exactly that—the data type you want to use
for the instance you are creating.

For example, to declare an int and an Animals instance of the parameterized Array
class, you would write:

Array<int> anIntArray;
Array<Animal> anAnimalArray;

The object anIntArray is of the type array of integers; the object anAnimalArray is of
the type array of Animals. You can now use the type Array<int> anywhere you would
normally use a type—as the return value from a function, as a parameter to a function,
and so forth. To help bring some this together for you, Listing 19.1 provides the full dec-
laration of the stripped-down Array template. Be aware that this isn’t a complete pro-
gram, rather a listing focused on how the template is defined.

662 Day 19

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 662

Templates 663

19

LISTING 19.1 A Template of an Array Class

0: //Listing 19.1 A template of an array class
1: #include <iostream>
2: using namespace std;
3: const int DefaultSize = 10;
4:
5: template <class T> // declare the template and the parameter
6: class Array // the class being parameterized
7: {
8: public:
9: // constructors
10: Array(int itsSize = DefaultSize);
11: Array(const Array &rhs);
12: ~Array() { delete [] pType; }
13:
14: // operators
15: Array& operator=(const Array&);
16: T& operator[](int offSet) { return pType[offSet]; }
17:
18: // accessors
19: int getSize() { return itsSize; }
20:
21: private:
22: T *pType;
23: int itsSize;
24: };

There is no output, because this is not a complete program. Rather, this is the definition
of a scaled-down template.

The declaration of the template begins on line 5 with the keyword template fol-
lowed by the parameter. In this case, the parameter is identified to be a type by

the keyword class, and the identifier T is used to represent the parameterized type. As
mentioned earlier, you could also have used the word typename instead of class:

5: template <typename T> // declare the template and the parameter

You should use whichever word is clearer for you, although, it is recommended to use
class when the type is a class and typename when it is not a class.

From line 6 until the end of the template on line 24, the rest of the declaration is like any
other class declaration. The only difference is that wherever the type of the object would
normally appear, the identifier T is used instead. For example, operator[] would be
expected to return a reference to an object in the array, and, in fact, it is declared to
return a reference to a T.

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 663

When an instance of an integer array is defined, T is replaced with an integer, so the
operator= that is provided to that array returns a reference to an integer. This is equiva-
lent to the following:

int& operator[](int offSet) { return pType[offSet]; }

When an instance of an Animal array is declared, the operator= provided to the Animal
array returns a reference to an Animal:

Animal& operator[](int offSet) { return pType[offSet]; }

In a way, this is very much like how a macro works, and, in fact, templates were created
to reduce the need for macros in C++.

Using the Name
Within the class declaration, the word Array can be used without further qualification.
Elsewhere in the program, this class is referred to as Array<T>. For example, if you do
not write the constructor within the class declaration, then when you declare this func-
tion, you must write

template <class T>
Array<T>::Array(int size):
itsSize = size
{

pType = new T[size];
for (int i = 0; i < size; i++)
pType[i] = 0;

}

Because this is part of a template, the declaration on the first line of this code fragment is
required to identify the type for the function (class T). On the second line, you see that
the template name is Array<T>, and the function name is Array(int size). In addition,
you see that the function takes an integer parameter.

The remainder of the function is the same as it would be for a nontemplate function,
except that anywhere the array type would be used, the parameter T is used. You see this
on the line declaring a new array (new T[size]).

664 Day 19

It is a common and preferred method to get the class and its functions
working as a simple declaration before turning it into a template. This sim-
plifies development, allowing you first to concentrate on the programming
objective, and then later to generalize the solution with templates.

Also, you must define template functions in the file where the template
is declared. Unlike other classes, where the declaration of a class and its

TIP

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 664

Templates 665

19

Implementing the Template
After you have a template defined, you’ll want to use it. The full implementation of the
Array template class requires implementation of the copy constructor, operator=, and so
forth. Listing 19.2 provides the code for your Array template as well as a simple driver
program that uses the template.

member functions and the necessary member function definitions can be
split between a header and a .cpp file, templates require both to be in
either a header or .cpp file. If you are sharing the template with other parts
of your project, it is common to either define the member function inline to
the template class declaration, or to define them below the class declaration
in the header file.

Some older compilers do not support templates. Templates are, however,
part of the ANSI C++ standard. All major compiler vendors support tem-
plates in their current versions. If you have a very old compiler, you won’t be
able to compile and run the exercises in today’s lesson. It’s still a good idea
to read through the entire lesson, however, and return to this material
when you upgrade your compiler.

NOTE

LISTING 19.2 The Implementation of the Template Array

0: //Listing 19.2 The Implementation of the Template Array
1: #include <iostream>
2:
3: const int DefaultSize = 10;
4:
5: // declare a simple Animal class so that we can
6: // create an array of animals
7:
8: class Animal
9: {
10: public:
11: Animal(int);
12: Animal();
13: ~Animal() {}
14: int GetWeight() const { return itsWeight; }
15: void Display() const { std::cout << itsWeight; }
16: private:
17: int itsWeight;
18: };

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 665

19:
20: Animal::Animal(int weight):
21: itsWeight(weight)
22: {}
23:
24: Animal::Animal():
25: itsWeight(0)
26: {}
27:
28:
29: template <class T> // declare the template and the parameter
30: class Array // the class being parameterized
31: {
32: public:
33: // constructors
34: Array(int itsSize = DefaultSize);
35: Array(const Array &rhs);
36: ~Array() { delete [] pType; }
37:
38: // operators
39: Array& operator=(const Array&);
40: T& operator[](int offSet) { return pType[offSet]; }
41: const T& operator[](int offSet) const
42: { return pType[offSet]; }
43: // accessors
44: int GetSize() const { return itsSize; }
45:
46: private:
47: T *pType;
48: int itsSize;
49: };
50:
51: // implementations follow...
52:
53: // implement the Constructor
54: template <class T>
55: Array<T>::Array(int size):
56: itsSize(size)
57: {
58: pType = new T[size];
59: // the constructors of the type you are creating
60: // should set a default value
61: }
62:
63: // copy constructor
64: template <class T>
65: Array<T>::Array(const Array &rhs)
66: {

666 Day 19

LISTING 19.2 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 666

Templates 667

19

67: itsSize = rhs.GetSize();
68: pType = new T[itsSize];
69: for (int i = 0; i<itsSize; i++)
70: pType[i] = rhs[i];
71: }
72:
73: // operator=
74: template <class T>
75: Array<T>& Array<T>::operator=(const Array &rhs)
76: {
77: if (this == &rhs)
78: return *this;
79: delete [] pType;
80: itsSize = rhs.GetSize();
81: pType = new T[itsSize];
82: for (int i = 0; i<itsSize; i++)
83: pType[i] = rhs[i];
84: return *this;
85: }
86:
87: // driver program
88: int main()
89: {
90: Array<int> theArray; // an array of integers
91: Array<Animal> theZoo; // an array of Animals
92: Animal *pAnimal;
93:
94: // fill the arrays
95: for (int i = 0; i < theArray.GetSize(); i++)
96: {
97: theArray[i] = i*2;
98: pAnimal = new Animal(i*3);
99: theZoo[i] = *pAnimal;
100: delete pAnimal;
101: }
102: // print the contents of the arrays
103: for (int j = 0; j < theArray.GetSize(); j++)
104: {
105: std::cout << “theArray[“ << j << “]:\t”;
106: std::cout << theArray[j] << “\t\t”;
107: std::cout << “theZoo[“ << j << “]:\t”;
108: theZoo[j].Display();
109: std::cout << std::endl;
110: }
111:
112: return 0;
113: }

LISTING 19.2 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 667

theArray[0]: 0 theZoo[0]: 0
theArray[1]: 2 theZoo[1]: 3
theArray[2]: 4 theZoo[2]: 6
theArray[3]: 6 theZoo[3]: 9
theArray[4]: 8 theZoo[4]: 12
theArray[5]: 10 theZoo[5]: 15
theArray[6]: 12 theZoo[6]: 18
theArray[7]: 14 theZoo[7]: 21
theArray[8]: 16 theZoo[8]: 24
theArray[9]: 18 theZoo[9]: 27

This is a pretty basic program; however, it illustrates creating and using a tem-
plate. In this case, an Array template is defined and then used to instantiate to

Array objects of types int and Animal. The integer array is filled with integers that are
twice the value of the index to the array. The Array made of Animal objects is called
theZoo. It is filled with values that are equal to three times the index value.

Digging into the code, you see that lines 8–26 provide a stripped-down Animal class, cre-
ated here so that objects of a user-defined type are available to add to the array.

The statement on line 29 declares that what follows is a template and that the parameter
to the template is a type, designated as T. As previously mentioned, this line could have
also been declared using typename instead of class.

You can see on lines 34 and 35 that the Array template class has two constructors as
shown. The first takes a size and defaults to the constant integer DefaultSize.

The assignment and offset operators are declared, with the latter declaring both a const
and a non-const variant. The only accessor provided is GetSize() on line 44, which
returns the size of the array.

You can certainly imagine a fuller interface, and, for any serious Array program, what
has been supplied here would be inadequate. At a minimum, operators to remove ele-
ments, to expand the array, to pack the array, and so forth would be required. If you were
to use the Array class from the Standard Template Library, you would find that all this
functionality has been provided. You’ll learn more about that later in today’s lesson.

The private data in the Array template class consists of the size of the array and a pointer
to the actual in-memory array of objects.

Starting on line 53, you can see the code for the implementation of some of the member
functions from your template class. Because these are defined outside of the primary
class definition, you must once again state that these are a part of the template. You do
this with the same statement you placed before the class. You see this on line 54. You
also indicate that the Array is a template class by then including the type parameter after

OUTPUT

668 Day 19

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 668

Templates 669

19

the class name. You have declared your type parameter to be T on line 53, so for the
Array class, you use Array<T> with your member functions. You see this on line 55.

Within the member function, you can then use the T parameter anywhere you would have
ordinarily used the type of the array. For example, on line 58 the class’ pointer, pType, is
set to point to a new array of items. The items will be of type T, which is the type you
declare when instantiating an object with this template class. When each item of a given
type is created, its construction should initialize it.

You see this same process repeated with the declaration of the copy constructor on lines
64–71 and the overloading of the equals operator on lines 74–85.

Your Array template class is actually used on lines 90 and 91. On line 90, it is used to
instantiate an object called theArray that uses the template with ints. On line 91,
theZoo is instantiated to be an Array of type Animal.

The rest of the listing does what was described earlier and is pretty easy to follow.

Passing Instantiated Template Objects
to Functions

If you want to pass an Array object to a normal function, you must pass a particular
instance of the array, not a template. To create a function that can receive a specific
instance of an Array, you declare the type as follows:

void SomeFunction(Array<theType>&);

where SomeFunction is the name of the function you are passing the Array object to, and
theType is the type of the object you are creating. Therefore, if SomeFunction() takes an
integer array as a parameter, you can write

void SomeFunction(Array<int>&); // ok

but you cannot write

void SomeFunction(Array<T>&); // error!

because there is no way to know what a T& is. You also cannot write

void SomeFunction(Array &); // error!

because there is no class Array—only the template and the instances.

To create nonmember functions that have some of the advantages of templates, you can
declare a template function. This is accomplished in a similar manner to declaring a

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 669

template class and defining a template member function. First, you indicate that your
function is a template, and then you use the template parameter where you otherwise
would have used a type or class name:

template <class T>
void MyTemplateFunction(Array<T>&); // ok

In this example, the function MyTemplateFunction() is declared to be a template func-
tion by the declaration on the top line. Note that template functions can have any name,
the same as other functions can.

Template functions can also take instances of the template in addition to the parameter-
ized form. The following is an example:

template <class T>
void MyOtherFunction(Array<T>&, Array<int>&); // ok

Note that this function takes two arrays: a parameterized array and an array of integers.
The former can be an array of any object, but the latter is always an array of integers. A
little bit later today, you will see a template function in action.

Templates and Friends
You learned about friends on Day 16, “Advanced Inheritance.” Template classes can
declare three types of friends:

• A nontemplate friend class or function

• A general template friend class or function

• A type-specific template friend class or function

The following sections cover the first two of these.

Nontemplate Friend Classes and Functions
It is possible to declare any class or function to be a friend to your template class. Each
instance of the class will treat the friend properly, as if the declaration of friendship had
been made in that particular instance.

Listing 19.3 adds a trivial friend function, Intrude(), to the template definition of the
Array class. The driver program then invokes Intrude().

Because Intrude() is a friend, it can then access the private data of the Array. Because
Intrude() is not a template function, it can only be passed Arrays of type int.

670 Day 19

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 670

Templates 671

19

LISTING 19.3 Nontemplate Friend Function

0: // Listing 19.3 - Type specific friend functions in templates
1:
2: #include <iostream>
3: using namespace std;
4:
5: const int DefaultSize = 10;
6:
7: // declare a simple Animal class so that we can
8: // create an array of animals
9:
10: class Animal
11: {
12: public:
13: Animal(int);
14: Animal();
15: ~Animal() {}
16: int GetWeight() const { return itsWeight; }
17: void Display() const { cout << itsWeight; }
18: private:
19: int itsWeight;
20: };
21:
22: Animal::Animal(int weight):
23: itsWeight(weight)
24: {}
25:
26: Animal::Animal():
27: itsWeight(0)
28: {}
29:
30: template <class T> // declare the template and the parameter
31: class Array // the class being parameterized
32: {
33: public:
34: // constructors
35: Array(int itsSize = DefaultSize);
36: Array(const Array &rhs);
37: ~Array() { delete [] pType; }
38:
39: // operators
40: Array& operator=(const Array&);
41: T& operator[](int offSet) { return pType[offSet]; }
42: const T& operator[](int offSet) const
43: { return pType[offSet]; }
44: // accessors
45: int GetSize() const { return itsSize; }
46:
47: // friend function

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 671

48: friend void Intrude(Array<int>);
49:
50: private:
51: T *pType;
52: int itsSize;
53: };
54:
55: // friend function. Not a template, can only be used
56: // with int arrays! Intrudes into private data.
57: void Intrude(Array<int> theArray)
58: {
59: cout << endl << “*** Intrude ***” << endl;
60: for (int i = 0; i < theArray.itsSize; i++)
61: cout << “i: “ << theArray.pType[i] << endl;
62: cout << endl;
63: }
64:
65: // implementations follow...
66:
67: // implement the Constructor
68: template <class T>
69: Array<T>::Array(int size):
70: itsSize(size)
71: {
72: pType = new T[size];
73: // the constructors of the type you are creating
74: // should set a default value
75: }
76:
77: // copy constructor
78: template <class T>
79: Array<T>::Array(const Array &rhs)
80: {
81: itsSize = rhs.GetSize();
82: pType = new T[itsSize];
83: for (int i = 0; i < itsSize; i++)
84: pType[i] = rhs[i];
85: }
86:
87: // operator=
88: template <class T>
89: Array<T>& Array<T>::operator=(const Array &rhs)
90: {
91: if (this == &rhs)
92: return *this;
93: delete [] pType;
94: itsSize = rhs.GetSize();
95: pType = new T[itsSize];

672 Day 19

LISTING 19.3 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 672

Templates 673

19

96: for (int i = 0; i < itsSize; i++)
97: pType[i] = rhs[i];
98: return *this;
99: }
100:
101: // driver program
102: int main()
103: {
104: Array<int> theArray; // an array of integers
105: Array<Animal> theZoo; // an array of Animals
106: Animal *pAnimal;
107:
108: // fill the arrays
109: for (int i = 0; i < theArray.GetSize(); i++)
110: {
111: theArray[i] = i*2;
112: pAnimal = new Animal(i*3);
113: theZoo[i] = *pAnimal;
114: }
115:
116: int j;
117: for (j = 0; j < theArray.GetSize(); j++)
118: {
119: cout << “theZoo[“ << j << “]:\t”;
120: theZoo[j].Display();
121: cout << endl;
122: }
123: cout << “Now use the friend function to “;
124: cout << “find the members of Array<int>”;
125: Intrude(theArray);
126:
127: cout << endl <<”Done.” << endl;
128: return 0;
129: }

theZoo[0]: 0
theZoo[1]: 3
theZoo[2]: 6
theZoo[3]: 9
theZoo[4]: 12
theZoo[5]: 15
theZoo[6]: 18
theZoo[7]: 21
theZoo[8]: 24
theZoo[9]: 27
Now use the friend function to find the members of Array<int>
*** Intrude ***

OUTPUT

LISTING 19.3 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 673

i: 0
i: 2
i: 4
i: 6
i: 8
i: 10
i: 12
i: 14
i: 16
i: 18

Done.

The declaration of the Array template has been extended to include the friend
function Intrude(). This addition on line 48 declares that every instance of an

int Array considers Intrude() to be a friend function; thus, Intrude() has access to
the private member data and functions of the Array instance.

The Intrude() function is defined on lines 57–63. On line 60, Intrude() accesses
itsSize directly, and on line 61, it accesses pType directly. This trivial use of these
members was unnecessary because the Array class provides public accessors for this
data, but it serves to demonstrate how friend functions can be declared with templates.

General Template Friend Class or Function
It would be helpful to add a display operator to the Array class so that values could be
sent to an output steam and treated appropriately based on their type. One approach is to
declare a display operator for each possible type of Array, but this undermines the whole
point of having made Array a template.

What is needed is an insertion operator that works for any possible type of Array:

ostream& operator<< (ostream&, Array<T>&);

To make this work, operator<< needs to be declared to be a template function:

template <class T>
ostream& operator<< (ostream&, Array<T>&)

Now that operator<< is a template function, you need only to provide an implementa-
tion. Listing 19.4 shows the Array template extended to include this declaration and pro-
vides the implementation for the operator<<.

LISTING 19.4 Using Operator ostream

0: //Listing 19.4 Using Operator ostream
1: #include <iostream>
2: using namespace std;

674 Day 19

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 674

Templates 675

19

3:
4: const int DefaultSize = 10;
5:
6: class Animal
7: {
8: public:
9: Animal(int);
10: Animal();
11: ~Animal() {}
12: int GetWeight() const { return itsWeight; }
13: void Display() const { cout << itsWeight; }
14: private:
15: int itsWeight;
16: };
17:
18: Animal::Animal(int weight):
19: itsWeight(weight)
20: {}
21:
22: Animal::Animal():
23: itsWeight(0)
24: {}
25:
26: template <class T> // declare the template and the parameter
27: class Array // the class being parameterized
28: {
29: public:
30: // constructors
31: Array(int itsSize = DefaultSize);
32: Array(const Array &rhs);
33: ~Array() { delete [] pType; }
34:
35: // operators
36: Array& operator=(const Array&);
37: T& operator[](int offSet) { return pType[offSet]; }
38: const T& operator[](int offSet) const
39: { return pType[offSet]; }
40: // accessors
41: int GetSize() const { return itsSize; }
42: // template <class T>
43: friend ostream& operator<< (ostream&, Array<T>&);
44:
45: private:
46: T *pType;
47: int itsSize;
48: };
49:
50: template <class T>
51: ostream& operator<< (ostream& output, Array<T>& theArray)

LISTING 19.4 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 675

52: {
53: for (int i = 0; i < theArray.itsSize; i++)
54: output << “[“ << i << “] “ << theArray[i] << endl;
55: return output;
56: }
57:
58: // implementations follow...
59:
60: // implement the Constructor
61: template <class T>
62: Array<T>::Array(int size):
63: itsSize(size)
64: {
65: pType = new T[size];
66: for (int i = 0; i < size; i++)
67: pType[i] = 0;
68: }
69:
70: // copy constructor
71: template <class T>
72: Array<T>::Array(const Array &rhs)
73: {
74: itsSize = rhs.GetSize();
75: pType = new T[itsSize];
76: for (int i = 0; i < itsSize; i++)
77: pType[i] = rhs[i];
78: }
79:
80: // operator=
81: template <class T>
82: Array<T>& Array<T>::operator=(const Array &rhs)
83: {
84: if (this == &rhs)
85: return *this;
86: delete [] pType;
87: itsSize = rhs.GetSize();
88: pType = new T[itsSize];
89: for (int i = 0; i < itsSize; i++)
90: pType[i] = rhs[i];
91: return *this;
92: }
93:
94: int main()
95: {
96: bool Stop = false; // flag for looping
97: int offset, value;
98: Array<int> theArray;
99:
100: while (Stop == false)

676 Day 19

LISTING 19.4 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 676

Templates 677

19

101: {
102: cout << “Enter an offset (0-9) “;
103: cout << “and a value. (-1 to stop): “;
104: cin >> offset >> value;
105:
106: if (offset < 0)
107: break;
108:
109: if (offset > 9)
110: {
111: cout << “***Please use values between 0 and 9.***\n”;
112: continue;
113: }
114:
115: theArray[offset] = value;
116: }
117:
118: cout << “\nHere’s the entire array:\n”;
119: cout << theArray << endl;
120: return 0;
121: }

LISTING 19.4 continued

If you are using a Microsoft compiler, uncomment line 42. Based on the C++
standards, this line should not be necessary; however, it is needed to com-
pile with the Microsoft C++ compiler.

NOTE

Enter an offset (0-9) and a value. (-1 to stop): 1 10
Enter an offset (0-9) and a value. (-1 to stop): 2 20
Enter an offset (0-9) and a value. (-1 to stop): 3 30
Enter an offset (0-9) and a value. (-1 to stop): 4 40
Enter an offset (0-9) and a value. (-1 to stop): 5 50
Enter an offset (0-9) and a value. (-1 to stop): 6 60
Enter an offset (0-9) and a value. (-1 to stop): 7 70
Enter an offset (0-9) and a value. (-1 to stop): 8 80
Enter an offset (0-9) and a value. (-1 to stop): 9 90
Enter an offset (0-9) and a value. (-1 to stop): 10 10
Please use values between 0 and 9.
Enter an offset (0-9) and a value. (-1 to stop): -1 -1

Here’s the entire array:
[0] 0
[1] 10
[2] 20
[3] 30
[4] 40

OUTPUT

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 677

[5] 50
[6] 60
[7] 70
[8] 80
[9] 90

On line 43, the function template operator<<() is declared to be a friend of the
Array class template. Because operator<<() is implemented as a template func-

tion, every instance of this parameterized array type automatically has an operator<<().

The implementation for this operator starts on line 50. Using a simple loop on lines 53
and 54, every member of an array is called in turn. This only works if an operator<<()
is defined for every type of object stored in the array.

It is worth pointing out that this listing also required that the overloading of operator[].
You can see on line 37 that this was done using the template type as well.

Using Template Items
You can treat template items as you would any other type. You can pass them as parame-
ters, either by reference or by value, and you can return them as the return values of
functions, also by value or by reference. Listing 19.5 demonstrates how to pass template
objects.

LISTING 19.5 Passing Template Objects to and from Functions

0: //Listing 19.5 Passing Template Objects to and from Functions
1: #include <iostream>
2: using namespace std;
3:
4: const int DefaultSize = 10;
5:
6: // A trivial class for adding to arrays
7: class Animal
8: {
9: public:
10: // constructors
11: Animal(int);
12: Animal();
13: ~Animal();
14:
15: // accessors
16: int GetWeight() const { return itsWeight; }
17: void SetWeight(int theWeight) { itsWeight = theWeight; }
18:
19: // friend operators
20: friend ostream& operator<< (ostream&, const Animal&);

678 Day 19

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 678

Templates 679

19

21:
22: private:
23: int itsWeight;
24: };
25:
26: // extraction operator for printing animals
27: ostream& operator<<
28: (ostream& theStream, const Animal& theAnimal)
29: {
30: theStream << theAnimal.GetWeight();
31: return theStream;
32: }
33:
34: Animal::Animal(int weight):
35: itsWeight(weight)
36: {
37: // cout << “Animal(int)” << endl;
38: }
39:
40: Animal::Animal():
41: itsWeight(0)
42: {
43: // cout << “Animal()” << endl;
44: }
45:
46: Animal::~Animal()
47: {
48: // cout << “Destroyed an animal...” << endl;
49: }
50:
51: template <class T> // declare the template and the parameter
52: class Array // the class being parameterized
53: {
54: public:
55: Array(int itsSize = DefaultSize);
56: Array(const Array &rhs);
57: ~Array() { delete [] pType; }
58:
59: Array& operator=(const Array&);
60: T& operator[](int offSet) { return pType[offSet]; }
61: const T& operator[](int offSet) const
62: { return pType[offSet]; }
63: int GetSize() const { return itsSize; }
64: // friend function:
65: // template <class T>
66: friend ostream& operator<< (ostream&, const Array<T>&);
67:
68: private:
69: T *pType;

LISTING 19.5 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 679

70: int itsSize;
71: };
72:
73: template <class T>
74: ostream& operator<< (ostream& output, const Array<T>& theArray)
75: {
76: for (int i = 0; i < theArray.itsSize; i++)
77: output << “[“ << i << “] “ << theArray[i] << endl;
78: return output;
79: }
80:
81: // implementations follow...
82:
83: // implement the Constructor
84: template <class T>
85: Array<T>::Array(int size):
86: itsSize(size)
87: {
88: pType = new T[size];
89: for (int i = 0; i < size; i++)
90: pType[i] = 0;
91: }
92:
93: // copy constructor
94: template <class T>
95: Array<T>::Array(const Array &rhs)
96: {
97: itsSize = rhs.GetSize();
98: pType = new T[itsSize];
99: for (int i = 0; i < itsSize; i++)
100: pType[i] = rhs[i];
101: }
102:
103: void IntFillFunction(Array<int>& theArray);
104: void AnimalFillFunction(Array<Animal>& theArray);
105:
106: int main()
107: {
108: Array<int> intArray;
109: Array<Animal> animalArray;
110: IntFillFunction(intArray);
111: AnimalFillFunction(animalArray);
112: cout << “intArray...\n” << intArray;
113: cout << “\nanimalArray...\n” << animalArray << endl;
114: return 0;
115: }
116:
117: void IntFillFunction(Array<int>& theArray)
118: {

680 Day 19

LISTING 19.5 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 680

Templates 681

19

119: bool Stop = false;
120: int offset, value;
121: while (Stop == false)
122: {
123: cout << “Enter an offset (0-9) “;
124: cout << “and a value. (-1 to stop): “ ;
125: cin >> offset >> value;
126: if (offset < 0)
127: break;
128: if (offset > 9)
129: {
130: cout << “***Please use values between 0 and 9.***\n”;
131: continue;
132: }
133: theArray[offset] = value;
134: }
135: }
136:
137:
138: void AnimalFillFunction(Array<Animal>& theArray)
139: {
140: Animal * pAnimal;
141: for (int i = 0; i < theArray.GetSize(); i++)
142: {
143: pAnimal = new Animal;
144: pAnimal->SetWeight(i*100);
145: theArray[i] = *pAnimal;
146: delete pAnimal; // a copy was put in the array
147: }
148: }

LISTING 19.5 continued

If you are using a Microsoft compiler, uncomment line 65. Based on the C++
standards, this line should not be necessary; however, it is needed to com-
pile with the Microsoft compiler.

NOTE

Enter an offset (0-9) and a value. (-1 to stop): 1 10
Enter an offset (0-9) and a value. (-1 to stop): 2 20
Enter an offset (0-9) and a value. (-1 to stop): 3 30
Enter an offset (0-9) and a value. (-1 to stop): 4 40
Enter an offset (0-9) and a value. (-1 to stop): 5 50
Enter an offset (0-9) and a value. (-1 to stop): 6 60
Enter an offset (0-9) and a value. (-1 to stop): 7 70
Enter an offset (0-9) and a value. (-1 to stop): 8 80
Enter an offset (0-9) and a value. (-1 to stop): 9 90
Enter an offset (0-9) and a value. (-1 to stop): 10 10

OUTPUT

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 681

Please use values between 0 and 9.
Enter an offset (0-9) and a value. (-1 to stop): -1 -1

intArray:...
[0] 0
[1] 10
[2] 20
[3] 30
[4] 40
[5] 50
[6] 60
[7] 70
[8] 80
[9] 90

animalArray:...
[0] 0
[1] 100
[2] 200
[3] 300
[4] 400
[5] 500
[6] 600
[7] 700
[8] 800
[9] 900

Most of the Array class implementation is left out to save space. The Animal
class is declared on lines 7–24. Although this is a stripped-down and simplified

class, it does provide its own insertion operator (<<) to allow the printing of Animals. As
you can see in the definition of the insertion operator on lines 27–32, printing simply
prints the current weight of the Animal.

Note that Animal has a default constructor. This is necessary because, when you add an
object to an array, the object’s default constructor is used to create the object. This cre-
ates some difficulties, as you’ll see.

On line 103, the function IntFillFunction() is declared. The prototype indicates that
this function takes an integer Array. Note that this is not a template function.
IntFillFunction() expects only one type of an Array—an integer array. Similarly, on
line 104, AnimalFillFunction() is declared to take an Array of Animal.

The implementations for these functions are different from one another because filling an
array of integers does not have to be accomplished in the same way as filling an array of
Animals.

682 Day 19

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 682

Templates 683

19

Using Specialized Functions
If you uncomment the print statements in Animal’s constructors and destructor in Listing
19.5, you’ll find unanticipated extra constructions and destructions of Animals.

When an object is added to an array, the object’s default constructor is called. The Array
constructor, however, goes on to assign 0 to the value of each member of the array, as
shown on lines 89 and 90 of Listing 19.5.

When you write someAnimal = (Animal) 0;, you call the default operator= for
Animal. This causes a temporary Animal object to be created, using the constructor,
which takes an integer (zero). That temporary is used as the right-hand side of the oper-
ator= and then is destroyed.

This is an unfortunate waste of time because the Animal object was already properly ini-
tialized. However, you can’t remove this line because integers are not automatically ini-
tialized to a value of 0. The solution is to teach the template not to use this constructor
for Animals, but to use a special Animal constructor.

You can provide an explicit implementation for the Animal class, as indicated in Listing
19.6. This type of specification is called specialization of the template.

LISTING 19.6 Specializing Template Implementations

0: #include <iostream>
1: using namespace std;
2:
3: const int DefaultSize = 3;
4:
5: // A trivial class for adding to arrays
6: class Animal
7: {
8: public:
9: // constructors
10: Animal(int);
11: Animal();
12: ~Animal();
13:
14: // accessors
15: int GetWeight() const { return itsWeight; }
16: void SetWeight(int theWeight) { itsWeight = theWeight; }
17:
18: // friend operators
19: friend ostream& operator<< (ostream&, const Animal&);
20:
21: private:
22: int itsWeight;

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 683

23: };
24:
25: // extraction operator for printing animals
26: ostream& operator<<
27: (ostream& theStream, const Animal& theAnimal)
28: {
29: theStream << theAnimal.GetWeight();
30: return theStream;
31: }
32:
33: Animal::Animal(int weight):
34: itsWeight(weight)
35: {
36: cout << “animal(int) “;
37: }
38:
39: Animal::Animal():
40: itsWeight(0)
41: {
42: cout << “animal() “;
43: }
44:
45: Animal::~Animal()
46: {
47: cout << “Destroyed an animal...”;
48: }
49:
50: template <class T> // declare the template and the parameter
51: class Array // the class being parameterized
52: {
53: public:
54: Array(int itsSize = ::DefaultSize);
55: Array(const Array &rhs);
56: ~Array() { delete [] pType; }
57:
58: // operators
59: Array& operator=(const Array&);
60: T& operator[](int offSet) { return pType[offSet]; }
61: const T& operator[](int offSet) const
62: { return pType[offSet]; }
63:
64: // accessors
65: int GetSize() const { return itsSize; }
66: // friend function
67: // template <class T>
68: friend ostream& operator<< (ostream&, const Array<T>&);
69:
70: private:
71: T *pType;

684 Day 19

LISTING 19.6 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 684

Templates 685

19

72: int itsSize;
73: };
74:
75: template <class T>
76: Array<T>::Array(int size = DefaultSize):
77: itsSize(size)
78: {
79: pType = new T[size];
80: for (int i = 0; i < size; i++)
81: pType[i] = (T)0;
82: }
83:
84: template <class T>
85: Array<T>& Array<T>::operator=(const Array &rhs)
86: {
87: if (this == &rhs)
88: return *this;
89: delete [] pType;
90: itsSize = rhs.GetSize();
91: pType = new T[itsSize];
92: for (int i = 0; i < itsSize; i++)
93: pType[i] = rhs[i];
94: return *this;
95: }
96:
97: template <class T>
98: Array<T>::Array(const Array &rhs)
99: {
100: itsSize = rhs.GetSize();
101: pType = new T[itsSize];
102: for (int i = 0; i < itsSize; i++)
103: pType[i] = rhs[i];
104: }
105:
106:
107: template <class T>
108: ostream& operator<< (ostream& output, const Array<T>& theArray)
109: {
110: for (int i = 0; i<theArray.GetSize(); i++)
111: output << “[“ << i << “] “ << theArray[i] << endl;
112: return output;
113: }
114:
115:
116: Array<Animal>::Array(int AnimalArraySize):
117: itsSize(AnimalArraySize)
118: {
119: pType = new Animal[AnimalArraySize];
120: }

LISTING 19.6 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 685

121:
122:
123: void IntFillFunction(Array<int>& theArray);
124: void AnimalFillFunction(Array<Animal>& theArray);
125:
126: int main()
127: {
128: Array<int> intArray;
129: Array<Animal> animalArray;
130: IntFillFunction(intArray);
131: AnimalFillFunction(animalArray);
132: cout << “intArray...\n” << intArray;
133: cout << “\nanimalArray...\n” << animalArray << endl;
134: return 0;
135: }
136:
137: void IntFillFunction(Array<int>& theArray)
138: {
139: bool Stop = false;
140: int offset, value;
141: while (Stop == false)
142: {
143: cout << “Enter an offset (0-2) and a value. “;
144: cout << “(-1 to stop): “ ;
145: cin >> offset >> value;
146: if (offset < 0)
147: break;
148: if (offset > 2)
149: {
150: cout << “***Please use values between 0 and 2.***\n”;
151: continue;
152: }
153: theArray[offset] = value;
154: }
155: }
156:
157:
158: void AnimalFillFunction(Array<Animal>& theArray)
159: {
160: Animal * pAnimal;
161: for (int i = 0; i<theArray.GetSize(); i++)
162: {
163: pAnimal = new Animal(i*10);
164: theArray[i] = *pAnimal;
165: delete pAnimal;
166: }
167: }

686 Day 19

LISTING 19.6 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 686

Templates 687

19

If you are using a Microsoft compiler, uncomment line 67. Based on the C++
standards, this line should not be necessary; however, it is needed to com-
pile with the Microsoft compiler.

NOTE

Line numbers have been added to the output to make analysis easier. Line
numbers will not appear in your output.

NOTE

First run

1: animal() animal() animal() Enter an offset (0-2) and a value.
➥(-1 to stop): 0 0

2: Enter an offset (0-2) and a value. (-1 to stop): 0 1
3: Enter an offset (0-2) and a value. (-1 to stop): 1 2
4: Enter an offset (0-2) and a value. (-1 to stop): 2 3
5: Enter an offset (0-2) and a value. (-1 to stop): -1 -1
6: animal(int) Destroyed an animal...animal(int) Destroyed an

➥animal...animal(int) Destroyed an animal...initArray...
7: [0] 0
8: [1] 1
9: [2] 2

10:
11: animal array...
12: [0] 0
13: [1] 10
14: [2] 20
15:
16: Destroyed an animal...Destroyed an animal...Destroyed an animal...

Second run

1: animal(int) Destroyed an animal...
2: animal(int) Destroyed an animal...
3: animal(int) Destroyed an animal...
4: Enter an offset (0-9) and a value. (-1 to stop): 0 0
5: Enter an offset (0-9) and a value. (-1 to stop): 1 1
6: Enter an offset (0-9) and a value. (-1 to stop): 2 2
7: Enter an offset (0-9) and a value. (-1 to stop): 3 3
8: animal(int)
9: Destroyed an animal...

10: animal(int)
11: Destroyed an animal...
12: animal(int)
13: Destroyed an animal...
14: initArray...

OUTPUT

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 687

15: [0] 0
16: [1] 1
17: [2] 2
18:
19: animal array...
20: [0] 0
21: [1] 10
22: [2] 20
23:
24: Destroyed an animal...
25: Destroyed an animal...
26: Destroyed an animal...

Listing 19.6 reproduces both classes in their entirety so that you can see the cre-
ation and destruction of temporary Animal objects. The value of DefaultSize

has been reduced from 10 to 3 to simplify the output.

The Animal constructors and destructors on lines 33–48 each print a statement indicating
that they are called.

On lines 75–82, the template behavior of an Array constructor is declared. On lines
116–120, the specialized constructor for an Array of Animals is demonstrated. Note that
in this special constructor, the default constructor is allowed to set the initial value for
each Animal, and no explicit assignment is done.

The first time this program is run, the first set of output is shown. Line 1 of the output
shows the three default constructors called by creating the array. The user enters four
numbers for the array, and these are entered into the integer array.

Execution jumps to AnimalFillFunction(). Here, a temporary Animal object is created
on the heap on line 163, and its value is used to modify the Animal object in the array on
line 164. On line 165, the temporary Animal is destroyed. This is repeated for each mem-
ber of the array and is reflected in the output on line 6.

At the end of the program, the arrays are destroyed, and when their destructors are
called, all their objects are destroyed as well. This is reflected in the output on line 16.

For the second set of output, the special implementation of the array of character con-
structor, shown on lines 116–120 of the program, is commented out. When the program
is run again, the template constructor, shown on lines 75–82 of the program, is run when
the Animal array is constructed. This causes temporary Animal objects to be called for
each member of the array on lines 80 and 81 of the program, and is reflected in the sec-
ond set of output on lines 1–3.

In all other respects, the output for the two runs is identical, as you would expect.

688 Day 19

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 688

Templates 689

19

Static Members and Templates
A template can declare static data members. A unique set of static data is created for
each class type that can be created from the template. That is, if you add a static member
to the Array class (for example, a counter of how many arrays have been created), you
have one such member per type: one for all the arrays of Animals and another for all the
arrays of integers. Listing 19.7 adds a static member and a static function to the Array
class.

LISTING 19.7 Using Static Member Data and Functions with Templates

0: #include <iostream>
1: using namespace std;
2:
3: const int DefaultSize = 3;
4:
5: // A trivial class for adding to arrays
6: class Animal
7: {
8: public:
9: // constructors
10: Animal(int);
11: Animal();
12: ~Animal();
13:
14: // accessors
15: int GetWeight() const { return itsWeight; }
16: void SetWeight(int theWeight) { itsWeight = theWeight; }
17:
18: // friend operators
19: friend ostream& operator<< (ostream&, const Animal&);
20:
21: private:
22: int itsWeight;
23: };
24:
25: // extraction operator for printing animals
26: ostream& operator<<
27: (ostream& theStream, const Animal& theAnimal)
28: {
29: theStream << theAnimal.GetWeight();
30: return theStream;
31: }
32:
33: Animal::Animal(int weight):
34: itsWeight(weight)
35: {

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 689

36: //cout << “animal(int) “;
37: }
38:
39: Animal::Animal():
40: itsWeight(0)
41: {
42: //cout << “animal() “;
43: }
44:
45: Animal::~Animal()
46: {
47: //cout << “Destroyed an animal...”;
48: }
49:
50: template <class T> // declare the template and the parameter
51: class Array // the class being parameterized
52: {
53: public:
54: // constructors
55: Array(int itsSize = DefaultSize);
56: Array(const Array &rhs);
57: ~Array() { delete [] pType; itsNumberArrays--; }
58:
59: // operators
60: Array& operator=(const Array&);
61: T& operator[](int offSet) { return pType[offSet]; }
62: const T& operator[](int offSet) const
63: { return pType[offSet]; }
64: // accessors
65: int GetSize() const { return itsSize; }
66: static int GetNumberArrays() { return itsNumberArrays; }
67:
68: // friend function
69: friend ostream& operator<< (ostream&, const Array<T>&);
70:
71: private:
72: T *pType;
73: int itsSize;
74: static int itsNumberArrays;
75: };
76:
77: template <class T>
78: int Array<T>::itsNumberArrays = 0;
79:
80: template <class T>
81: Array<T>::Array(int size = DefaultSize):
82: itsSize(size)
83: {

690 Day 19

LISTING 19.7 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 690

Templates 691

19

84: pType = new T[size];
85: for (int i = 0; i < size; i++)
86: pType[i] = (T)0;
87: itsNumberArrays++;
88: }
89:
90: template <class T>
91: Array<T>& Array<T>::operator=(const Array &rhs)
92: {
93: if (this == &rhs)
94: return *this;
95: delete [] pType;
96: itsSize = rhs.GetSize();
97: pType = new T[itsSize];
98: for (int i = 0; i < itsSize; i++)
99: pType[i] = rhs[i];
100: }
101:
102: template <class T>
103: Array<T>::Array(const Array &rhs)
104: {
105: itsSize = rhs.GetSize();
106: pType = new T[itsSize];
107: for (int i = 0; i < itsSize; i++)
108: pType[i] = rhs[i];
109: itsNumberArrays++;
110: }
111:
112: template <class T>
113: ostream& operator<< (ostream& output, const Array<T>& theArray)
114: {
115: for (int i = 0; i < theArray.GetSize(); i++)
116: output << “[“ << i << “] “ << theArray[i] << endl;
117: return output;
118: }
119:
120: int main()
121: {
122: cout << Array<int>::GetNumberArrays() << “ integer arrays\n”;
123: cout << Array<Animal>::GetNumberArrays();
124: cout << “ animal arrays” << endl << endl;
125: Array<int> intArray;
126: Array<Animal> animalArray;
127:
128: cout << intArray.GetNumberArrays() << “ integer arrays\n”;
129: cout << animalArray.GetNumberArrays();
130: cout << “ animal arrays” << endl << endl;
131:

LISTING 19.7 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 691

132: Array<int> *pIntArray = new Array<int>;
133:
134: cout << Array<int>::GetNumberArrays() << “ integer arrays\n”;
135: cout << Array<Animal>::GetNumberArrays();
136: cout << “ animal arrays” << endl << endl;
137:
138: delete pIntArray;
139:
140: cout << Array<int>::GetNumberArrays() << “ integer arrays\n”;
141: cout << Array<Animal>::GetNumberArrays();
142: cout << “ animal arrays” << endl << endl;
143: return 0;
144: }

0 integer arrays
0 animal arrays

1 integer arrays
1 animal arrays

2 integer arrays
1 animal arrays

1 integer arrays
1 animal arrays

The Array class has added the static variable tsNumberArrays on line 74, and
because this data is private, the static public accessor GetNumberArrays() was

added on line 66.

Initialization of the static data is accomplished with a full template qualification, as
shown on lines 77 and 78. The constructors of Array and the destructor are each modi-
fied to keep track of how many arrays exist at any moment.

Accessing the static members is the same as accessing the static members of any class:
You can do so with an existing object, as shown on lines 134 and 135, or by using the
full class specification, as shown on lines 128 and 129. Note that you must use a specific
type of array when accessing the static data. One variable exists for each type.

692 Day 19

LISTING 19.7 continued

ANALYSIS

OUTPUT

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 692

Templates 693

19

The Standard Template Library
As it is said, there is no point in reinventing the wheel. The same is true in creating pro-
grams with C++. This is why the Standard Template Library (STL) became popular. As
with other components of the Standard C++ Library, the STL is portable between various
operating systems.

All the major compiler vendors now offer the STL as part of their compilers. The STL is
a library of template-based container classes, including vectors, lists, queues, and stacks.
The STL also includes a number of common algorithms, including sorting and searching.

The goal of the STL is to give you an alternative to reinventing the wheel for these com-
mon requirements. The STL is tested and debugged, offers high performance, and is free.
Most important, the STL is reusable; after you understand how to use an STL container,
you can use it in all your programs without reinventing it.

Using Containers
A container is an object that holds other objects. The Standard C++ Library provides a
series of container classes that are powerful tools that help C++ developers handle com-
mon programming tasks.

Two types of Standard Template Library container classes are sequence and associative.
Sequence containers are designed to provide sequential and random access to their mem-
bers, or elements. Associative containers are optimized to access their elements by key
values. All of the STL container classes are defined in namespace std.

DO use templates whenever you have a
concept that can operate across objects
of different classes or across different
primitive data types.

DO use the parameters to template func-
tions to narrow their instances to be
type-safe.

DO use statics with templates as needed.

DO specialize template behavior by over-
riding template functions by type.

DON’T stop learning about templates.
Today’s lesson has covered only some of
what you can do with templates.
Detailed coverage of templates is
beyond the scope of this book.

DON’T fret if you don’t yet fully under-
stand how to create your own templates.
It is more immediately important to
know how to use them. As you’ll see in
the next section, there are lots of exist-
ing templates for you to use in the STL.

DO DON’T

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 693

Understanding Sequence Containers
The Standard Template Library sequence containers provide efficient sequential access to
a list of objects. The Standard C++ Library provides five sequence containers: vector,
list, stack, deque, and queue.

The Vector Container
You often use arrays to store and access a number of elements. Elements in an array are
of the same type and are accessed with an index. The STL provides a container class
vector that behaves like an array but that is more powerful and safer to use than the
standard C++ array.

A vector is a container optimized to provide fast access to its elements by an index. The
container class vector is defined in the header file <vector> in namespace std (see Day
18, “Creating and Using Namespaces,” for more information on the use of namespaces).

A vector can grow itself as necessary. Suppose that you have created a vector to contain
10 elements. After you have filled the vector with 10 objects, the vector is full. If you
then add another object to the vector, the vector automatically increases its capacity so
that it can accommodate the eleventh object. Here is how the vector class is defined:

template <class T, class Allocator = allocator<T>> class vector
{

// class members
};

The first argument (class T) is the type of the elements in the vector. The second argu-
ment (class Allocator) is an allocator class. Allocators are memory managers respon-
sible for the memory allocation and deallocation of elements for the containers. The
concept and implementation of allocators are advanced topics that are beyond the scope
of this book.

By default, elements are created using the operator new() and are freed using the opera-
tor delete(). That is, the default constructor of class T is called to create a new element.
This provides another argument in favor of explicitly defining a default constructor for
your own classes. If you do not, you cannot use the standard vector container to hold a
set of instances of your class.

You can define vectors that hold integers and floats as follows:

vector<int> vInts; // vector holding int elements
vector<float> vFloats; // vector holding float elements

Usually, you would have some idea as to how many elements a vector will contain. For
instance, suppose that in your school, the maximum number of students is 50. To create a
vector of students in a class, you will want the vector to be large enough to contain 50

694 Day 19

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 694

Templates 695

19

elements. The standard vector class provides a constructor that accepts the number of
elements as its parameter. So, a vector of 50 students can be defined as follows:

vector<Student> MathClass(50);

A compiler allocates enough memory spaces for 50 Students; each element is created
using the default constructor Student::Student().

The number of elements in a vector can be retrieved using a member function size().
For the Student vector MathClass that was just defined, Student.size()returns 50.

Another member function capacity() tells us exactly how many elements a vector can
accommodate before its size needs to be increased. You will see more on this later.

A vector is said to be empty if no element is in a vector; that is, the vector’s size is zero.
To make it easier to test whether a vector is empty, the vector class provides a member
function empty() that evaluates to true if the vector is empty.

To assign a Student object Harry to the MathClass, the subscripting operator [] is used:

MathClass[5] = Harry;

The subscript starts at 0. As you might have noticed, the overloaded assignment operator
of the Student class is used here to assign Harry to the sixth element in MathClass.
Similarly, to find out Harry’s age, access his record using:

MathClass[5].GetAge();

As mentioned earlier, vectors can grow automatically when you add more elements than
they can handle. For instance, suppose one class in your school has become so popular
that the number of students exceeds 50. Well, it might not happen to our math class, but
who knows, strange things do happen. When the fifty-first student, Sally, is added to the
MathClass, the vector can expand to accommodate her.

You can add an element into a vector in several ways; one of them is push_back():

MathClass.push_back(Sally);

This member function appends the new Student object Sally to the end of the vector
MathClass. Now, MathClass has 51 elements, and Sally is placed at MathClass[50].

For this function to work, our Student class must define a copy constructor. Otherwise,
this push_back() function will not be able to make a copy of object Sally.

STL does not specify the maximum number of elements in a vector; the compiler ven-
dors are in better positions to make this decision. The vector class provides a member
function that tells you what this magic number is in your compiler: max_size().

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 695

Listing 19.8 demonstrates the members of the vector class that have been discussed so
far. You will see that the standard string class is used in this listing to simplify the
handling of strings. For more details about the string class, check your compiler’s
documentation.

LISTING 19.8 Vector Creation and Element Access

0: #include <iostream>
1: #include <string>
2: #include <vector>
3: using namespace std;
4:
5: class Student
6: {
7: public:
8: Student();
9: Student(const string& name, const int age);
10: Student(const Student& rhs);
11: ~Student();
12:
13: void SetName(const string& name);
14: string GetName() const;
15: void SetAge(const int age);
16: int GetAge() const;
17:
18: Student& operator=(const Student& rhs);
19:
20: private:
21: string itsName;
22: int itsAge;
23: };
24:
25: Student::Student()
26: : itsName(“New Student”), itsAge(16)
27: {}
28:
29: Student::Student(const string& name, const int age)
30: : itsName(name), itsAge(age)
31: {}
32:
33: Student::Student(const Student& rhs)
34: : itsName(rhs.GetName()), itsAge(rhs.GetAge())
35: {}
36:
37: Student::~Student()
38: {}
39:
40: void Student::SetName(const string& name)
41: {

696 Day 19

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 696

Templates 697

19

42: itsName = name;
43: }
44:
45: string Student::GetName() const
46: {
47: return itsName;
48: }
49:
50: void Student::SetAge(const int age)
51: {
52: itsAge = age;
53: }
54:
55: int Student::GetAge() const
56: {
57: return itsAge;
58: }
59:
60: Student& Student::operator=(const Student& rhs)
61: {
62: itsName = rhs.GetName();
63: itsAge = rhs.GetAge();
64: return *this;
65: }
66:
67: ostream& operator<<(ostream& os, const Student& rhs)
68: {
69: os << rhs.GetName() << “ is “ << rhs.GetAge() << “ years old”;
70: return os;
71: }
72:
73: template<class T>
74: // display vector properties
75: void ShowVector(const vector<T>& v);
76:
77: typedef vector<Student> SchoolClass;
78:
79: int main()
80: {
81: Student Harry;
82: Student Sally(“Sally”, 15);
83: Student Bill(“Bill”, 17);
84: Student Peter(“Peter”, 16);
85:
86: SchoolClass EmptyClass;
87: cout << “EmptyClass:” << endl;
88: ShowVector(EmptyClass);
89:
90: SchoolClass GrowingClass(3);

LISTING 19.8 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 697

91: cout << “GrowingClass(3):” << endl;
92: ShowVector(GrowingClass);
93:
94: GrowingClass[0] = Harry;
95: GrowingClass[1] = Sally;
96: GrowingClass[2] = Bill;
97: cout << “GrowingClass(3) after assigning students:” << endl;
98: ShowVector(GrowingClass);
99:
100: GrowingClass.push_back(Peter);
101: cout << “GrowingClass() after added 4th student:” << endl;
102: ShowVector(GrowingClass);
103:
104: GrowingClass[0].SetName(“Harry”);
105: GrowingClass[0].SetAge(18);
106: cout << “GrowingClass() after Set\n:”;
107: ShowVector(GrowingClass);
108:
109: return 0;
110: }
111:
112: //
113: // Display vector properties
114: //
115: template<class T>
116: void ShowVector(const vector<T>& v)
117: {
118: cout << “max_size() = “ << v.max_size();
119: cout << “\tsize() = “ << v.size();
120: cout << “\tcapacity() = “ << v.capacity();
121: cout << “\t” << (v.empty()? “empty”: “not empty”);
122: cout << endl;
123:
124: for (int i = 0; i < v.size(); ++i)
125: cout << v[i] << endl;
126:
127: cout << endl;
128: }

EmptyClass:
max_size() = 214748364 size() = 0 capacity() = 0 empty

GrowingClass(3):
max_size() = 214748364 size() = 3 capacity() = 3 not empty
New Student is 16 years old
New Student is 16 years old
New Student is 16 years old

OUTPUT

698 Day 19

LISTING 19.8 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 698

Templates 699

19

GrowingClass(3) after assigning students:
max_size() = 214748364 size() = 3 capacity() = 3 not empty
New Student is 16 years old
Sally is 15 years old
Bill is 17 years old

GrowingClass() after added 4th student:
max_size() = 214748364 size() = 4 capacity() = 6 not empty
New Student is 16 years old
Sally is 15 years old
Bill is 17 years old
Peter is 16 years old

GrowingClass() after Set:
max_size() = 214748364 size() = 4 capacity() = 6 not empty
Harry is 18 years old
Sally is 15 years old
Bill is 17 years old
Peter is 16 years old

Our Student class is defined on lines 5–23. Its member function implementa-
tions are on lines 25–65. It is simple and vector-container friendly. For the rea-

sons discussed earlier, a default constructor, a copy constructor, and an overloaded
assignment operator are all defined. Note that its member variable itsName is defined as
an instance of the string class. As you can see here, it is much easier to work with a
STL C++ string than with a C-style string char*.

The template function ShowVector() is declared on lines 73 and 75 and defined on lines
115–128. It demonstrates the usage of some of the vector member functions:
max_size(), size(), capacity(), and empty(). As you can see from the output, the
maximum number of Student objects a vector can accommodate is 214,748,364 in
Visual C++. This number might be different for other types of elements. For instance, a
vector of integers can have up to 1,073,741,823 elements. If you are using other compil-
ers, you might have a different value for the maximum number of elements.

On lines 124 and 125, the value of each element in the vector is displayed using the
overloaded insertion operator <<, which is defined on lines 67–71.

In the main routine for this program, four students are created on lines 81–84. On line
86, an empty vector, properly named EmptyClass, is defined using the default construc-
tor of the vector class. When a vector is created in this way, no space is allocated for it
by the compiler. As you can see in the output produced by ShowVector(EmptyClass), its
size and capacity are both zero.

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 699

On line 90, a vector of three Student objects is defined. Its size and capacity are both
three. Elements in the GrowingClass are assigned with the Student objects on lines
94–96 using the subscripting operator [].

The fourth student, Peter, is added to the vector on line 100. This increases the size of
the vector to four. Interestingly, its capacity is now set to six. This means that the com-
piler has allocated enough space for up to six Student objects.

Because vectors must be allocated to a continuous block of memory, expanding them
requires a set of operations. First, a new block of memory large enough for all four
Student objects is allocated. Second, the three elements are copied to this newly allo-
cated memory and the fourth element is appended after the third element. Finally, the
original memory block is returned to the memory. When a large number of elements are
in a vector, this deallocation and reallocation process can be time-consuming. Therefore,
the compiler employs an optimization strategy to reduce the possibility of such expensive
operations. In this example, if you append one or two more objects to the vector, no need
exists to deallocate and reallocate memory.

On lines 104 and 105, the subscripting operator [] is again used to change the member
variables for the first object in the GrowingClass.

700 Day 19

DO define a default constructor for a
class if its instances are likely to be held
in a vector.

DO define a copy constructor for such a
class.

DO define an overloaded assignment
operator for such a class.

DON’T create your own vector class! You
can use the one in the STL. Because this
is a part of the C++ standard, any stan-
dard compliant compiler should have this
class!

DO DON’T

The vector container class has other member functions. The front() function returns a
reference to the first element in a list. The back() function returns a reference to the last
element. The at() function works like the subscript operator []. It is safer than the vec-
tor implementation of [] because it checks whether the subscript passed to it is within
the range of available elements (although, of course, you could code a subscript operator
to perform the same check). If the index is out of range, it throws an out_of_range
exception. (Exceptions are covered tomorrow.)

The insert() function inserts one or more nodes into a given position in a vector. The
pop_back() function removes the last element from a vector. And finally, a remove()
function removes one or more elements from a vector.

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 700

Templates 701

19

The List Container
A list is a container designed to be optimal when you are frequently inserting and delet-
ing elements. The list STL container class is defined in the header file <list> in the
namespace std. The list class is implemented as a doubly-linked list, where each node
has links to both the previous node and the next node in the list.

The list class has all the member functions provided by the vector class. As you have
seen in “Week 2 in Review,” you can traverse a list by following the links provided in
each node. Typically, the links are implemented using pointers. The standard list con-
tainer class uses a mechanism called the iterator for the same purpose.

An iterator is a generalization of a pointer and attempts to avoid some of the dangers of a
pointer.

You can dereference an iterator to retrieve the node to which it points. Listing 19.9
demonstrates the use of iterators in accessing nodes in a list.

LISTING 19.9 Traverse a List Using an Iterator

0: #include <iostream>
1: #include <list>
2: using namespace std;
3:
4: typedef list<int> IntegerList;
5:
6: int main()
7: {
8: IntegerList intList;
9:
10: for (int i = 1; i <= 10; ++i)
11: intList.push_back(i * 2);
12:
13: for (IntegerList::const_iterator ci = intList.begin();
14: ci != intList.end(); ++ci)
15: cout << *ci << “ “;
16:
17: return 0;
18: }

2 4 6 8 10 12 14 16 18 20

Listing 19.9 uses the STL’s list template. On line 1, the necessary include file is
#included. This pulls in the code for the list template from the STL.

OUTPUT

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 701

On line 4, you see the use of the typedef commend. In this case, instead of using
list<int> throughout the listing, the typedef lets you use IntegerList. This is much
easier to read.

On line 8, intList is defined as a list of integers using the typedef that was just created.
The first 10 positive even numbers are added to the list using the push_back() function
on lines 10 and 11.

On lines 13–15, each node in the list is accessed using a constant iterator. This indicates
that there is no intent to change the nodes with this iterator. If you want to change a node
pointed to be an iterator, you need to use a non-const iterator instead:

intList::iterator

The begin() member function returns an iterator pointing to the first node of the list. As
can be seen here, the increment operator ++ can be used to point an iterator to the next
node. The end() member function is kind of strange—it returns an iterator pointing to
one-pass-last node of a list. You must be certain that your iterator doesn’t reach end()!

The iterator is dereferenced the same as a pointer, to return the node pointed to, as shown
on line 15.

Although iterators are introduced here with the list class, the vector class also provides
iterators. In addition to functions introduced in the vector class, the list class also pro-
vides the push_front() and pop_front() functions that work just like push_back() and
pop_back(). Instead of adding and removing elements at the back of the list, they add
and remove elements in the front of the list.

The Stacks Container
One of the most commonly used data structures in computer programming is the stack.
The stack, however, is not implemented as an independent container class. Instead, it is
implemented as a wrapper of a container. The template class stack is defined in the
header file <stack> in the namespace std.

A stack is a continuously allocated block that can grow or shrink at the back end.
Elements in a stack can only be accessed or removed from the back. You have seen simi-
lar characteristics in the sequence containers, notably vector and deque. In fact, any
sequence container that supports the back(), push_back(), and pop_back() operations
can be used to implement a stack. Most of the other container methods are not required
for the stack and are, therefore, not exposed by the stack.

The STL stack template class is designed to contain any type of objects. The only
restriction is that all elements must be of the same type.

702 Day 19

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 702

Templates 703

19

A stack is a LIFO (last in, first out) structure. The classic analogy for a stack is this: A
stack is like a stack of dishes at a salad bar. You add to the stack by placing a dish on top
(pushing the stack down), and you take from the stack by “popping” the top dish (the
one most recently added to the stack) off the top.

By convention, the open end of a stack is often called the top of the stack, and operations
carried out to a stack are often called push and pop. The stack class inherits these con-
ventional terms.

The STL stack class is not the same as the stack mechanism used by compil-
ers and operating systems, in which stacks can contain different types of
objects. The underlying functionality, however, is very similar.

NOTE

The Deque Container
A deque is like a double-ended vector—it inherits the vector container class’s efficiency
in sequential read and write operations. But, in addition, the deque container class pro-
vides optimized front-end and back-end operations. These operations are implemented
similarly to the list container class, where memory allocations are engaged only for
new elements. This feature of the deque class eliminates the need to reallocate the whole
container to a new memory location, as the vector class has to do. Therefore, deques are
ideally suited for applications in which insertions and deletions take place at either one
or both ends, and for which sequential access of elements is important. An example of
such an application is a train-assembly simulator, in which carriages can join the train at
both ends.

The Queues Container
A queue is another commonly used data structure in computer programming. Elements
are added to the queue at one end and taken out at the other.

A queue is like a line at the theater. You enter the queue at the back, and you leave the
queue at the front. This is known as a FIFO (first in, first out) structure; a stack is a
LIFO (last in, first out) structure. Of course, every once in a while, you’re second-to-last
in a long line at the supermarket when someone opens a new register and grabs the last
person in line—turning what should be a FIFO queue into a LIFO stack, and making you
grind your teeth in frustration.

Like the stack, the queue is implemented as a wrapper class to a container. The con-
tainer must support front(), back(), push_back(), and pop_front() operations.

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 703

Understanding Associative Containers
You have seen that a vector is like an enhanced version of an array. It has all the charac-
teristics of an array and some additional features. Unfortunately, the vector also suffers
from one of the significant weaknesses of arrays: You cannot find an element using any
index other than its offset in the container. Associative containers, on the other hand, pro-
vide fast random access based on keys that are associated with values.

The sequence containers are designed for sequential and random access of elements
using the index or an iterator, the associative containers are designed for fast random
access of elements using keys. The Standard C++ Library provides five associative con-
tainers: map, multimap, set, multiset, and bitset.

The Map Container
The first associate container you will learn about is the map. The name comes from the
idea that they contain “maps,” which are the key to the associated value, just as a point
on a paper map corresponds to a real place on earth. In the following example (Listing
19.10), a map is used to implement the school class example shown in Listing 19.8.

LISTING 19.10 A Map Container Class

0: #include <iostream>
1: #include <string>
2: #include <map>
3: using namespace std;
4:
5: class Student
6: {
7: public:
8: Student();
9: Student(const string& name, const int age);
10: Student(const Student& rhs);
11: ~Student();
12:
13: void SetName(const string& name);
14: string GetName() const;
15: void SetAge(const int age);
16: int GetAge() const;
17:
18: Student& operator=(const Student& rhs);
19:
20: private:
21: string itsName;
22: int itsAge;
23: };
24:

704 Day 19

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 704

Templates 705

19

25: Student::Student()
26: : itsName(“New Student”), itsAge(16)
27: {}
28:
29: Student::Student(const string& name, const int age)
30: : itsName(name), itsAge(age)
31: {}
32:
33: Student::Student(const Student& rhs)
34: : itsName(rhs.GetName()), itsAge(rhs.GetAge())
35: {}
36:
37: Student::~Student()
38: {}
39:
40: void Student::SetName(const string& name)
41: {
42: itsName = name;
43: }
44:
45: string Student::GetName() const
46: {
47: return itsName;
48: }
49:
50: void Student::SetAge(const int age)
51: {
52: itsAge = age;
53: }
54:
55: int Student::GetAge() const
56: {
57: return itsAge;
58: }
59:
60: Student& Student::operator=(const Student& rhs)
61: {
62: itsName = rhs.GetName();
63: itsAge = rhs.GetAge();
64: return *this;
65: }
66:
67: ostream& operator<<(ostream& os, const Student& rhs)
68: {
69: os << rhs.GetName() << “ is “ << rhs.GetAge() << “ years old”;
70: return os;
71: }
72:
73: template<class T, class A>

LISTING 19.10 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 705

74: void ShowMap(const map<T, A>& v); // display map properties
75:
76: typedef map<string, Student> SchoolClass;
77:
78: int main()
79: {
80: Student Harry(“Harry”, 18);
81: Student Sally(“Sally”, 15);
82: Student Bill(“Bill”, 17);
83: Student Peter(“Peter”, 16);
84:
85: SchoolClass MathClass;
86: MathClass[Harry.GetName()] = Harry;
87: MathClass[Sally.GetName()] = Sally;
88: MathClass[Bill.GetName()] = Bill;
89: MathClass[Peter.GetName()] = Peter;
90:
91: cout << “MathClass:” << endl;
92: ShowMap(MathClass);
93:
94: cout << “We know that “ << MathClass[“Bill”].GetName()
95: << “ is “ << MathClass[“Bill”].GetAge()
96: << “ years old” << endl;
97: return 0;
98: }
99:
100: //
101: // Display map properties
102: //
103: template<class T, class A>
104: void ShowMap(const map<T, A>& v)
105: {
106: for (map<T, A>::const_iterator ci = v.begin();
107: ci != v.end(); ++ci)
108: cout << ci->first << “: “ << ci->second << endl;
109:
110: cout << endl;
111: }

MathClass:
Bill: Bill is 17 years old
Harry: Harry is 18 years old
Peter: Peter is 16 years old
Sally: Sally is 15 years old

We know that Bill is 17 years old

OUTPUT

706 Day 19

LISTING 19.10 continued

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 706

Templates 707

19

In this example, a class is created and four students are added. The list of stu-
dents is then printed. After printing this list, Bill is printed along with his age;

however, rather than using a numeric indexer like previous example, Bill’s name is used
to find his age. This is made possible using the map template.

Digging into the code, you see that most of the listing is the Student class. This is code
you should be able to understand at this point.

The unique items in this listing start on line 2, where the header file <map> is included
because the standard map container class is being used. On line 73, you can see that a
prototype is provided for the ShowMap function. You can also see that this is a template
function. It is used to display the elements in a map.

On line 76, typedef is used to define SchoolClass as a map of elements; each consists
of a (key, value) pair. The first value in the pair is a string that is the key value. In this
example, for SchoolClass, the students’ names are this key value. The key value of ele-
ments in the map container must be unique; that is, no two elements can have the same
key value. The second value in the pair is the actual object, a Student object in the
example. The pair data type is implemented in the STL as a struct of two members:
namely, first and second. These members can be used to access a node’s key and value.

You can take a look at the ShowMap() function on lines 103–111. The ShowMap() func-
tion uses a constant iterator to access a map object. On line 108, ci->first points to the
key, or a student’s name. ci->second points to the Student object.

All that remains to review in this listing is the main() function on lines 78–98. Back on
lines 80–83, four Student objects are created. The MathClass is defined as an instance
of our SchoolClass on line 85. On lines 86–89, the four students (actually the Student
objects) are added to the MathClass using the following syntax:

map_object[key_value] = object_value;

On line 86, you can see that the key_value being used is the name from a Student
object. This name is obtained using the GetName() method from the Student object. The
object_value is a Student object.

The push_back() or insert() functions could also have been used to add a (key, value)
pair to the map; you can look up your compiler’s documentation for more details.

After all Student objects have been added to the map, you can access any of them using
their key values. On lines 94–96, MathClass[“Bill”] is used to retrieve Bill’s record.
Bill is the key value. You could just as easily have used any of the other student’s names
to access their records.

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 707

Other Associative Containers
The multimap container class is a map class without the restriction of unique keys. More
than one element can have the same key value.

The set container class is also similar to the map class. The only difference is that its ele-
ments are not (key, value) pairs. An element is only the key. The multiset container
class is a set class that allows duplex key values.

Finally, the bitset container class is a template for storing a sequence of bits.

Working with the Algorithm Classes
A container is a useful place to store a sequence of elements. All standard containers
define operations that manipulate the containers and their elements. Implementing all
these operations in your own sequences, however, can be laborious and prone to error.
Because most of those operations are likely to be the same in most sequences, a set of
generic algorithms can reduce the need to write your own operations for each new con-
tainer. The standard library provides approximately 60 standard algorithms that perform
the most basic and commonly used operations of containers.

Standard algorithms are defined in <algorithm> in namespace std.

To understand how the standard algorithms work, you need to understand the concept of
function objects. A function object is an instance of a class that defines the overloaded
operator(). Therefore, it can be called as a function. Listing 19.11 demonstrates a func-
tion object.

LISTING 19.11 A Function Object

0: #include <iostream>
1: using namespace std;
2:
3: template<class T>
4: class Print
5: {
6: public:
7: void operator()(const T& t)
8: {
9: cout << t << “ “;
10: }
11: };
12:
13: int main()
14: {
15: Print<int> DoPrint;
16: for (int i = 0; i < 5; ++i)

708 Day 19

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 708

Templates 709

19

17: DoPrint(i);
18: return 0;
19: }

0 1 2 3 4

On lines 3–11, a template class named Print is defined. As you can see, this is a
standard template class. On lines 6–9, the operator () is overloaded to take an

object and outputs it to the standard output. On line 15, DoPrint is defined as an instance
of the Print class using an int value. With this, you can now use DoPrint just like a
function to print any integer values, as shown on line 17. The standard algorithm classes
work just like DoPrint. They have overloaded the operator() so you can use them like
functions.

Nonmutating Sequence Operations
Nonmutating sequence operations are components from the algorithm library that per-
form operations that don’t change the elements in a sequence. These include operators
such as for_each(), find(), search(), and count(). Listing 19.12 shows how to use a
function object and the for_each algorithm to print elements in a vector.

LISTING 19.12 Using the for_each() Algorithm

0: #include <iostream>
1: #include <vector>
2: #include <algorithm>
3: using namespace std;
4:
5: template<class T>
6: class Print
7: {
8: public:
9: void operator()(const T& t)
10: {
11: cout << t << “ “;
12: }
13: };
14:
15: int main()
16: {
17: Print<int> DoPrint;
18: vector<int> vInt(5);
19:
20: for (int i = 0; i < 5; ++i)

OUTPUT

LISTING 19.11 continued

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 709

21: vInt[i] = i * 3;
22:
23: cout << “for_each()” << endl;
24: for_each(vInt.begin(), vInt.end(), DoPrint);
25: cout << endl;
26:
27: return 0;
28: }

for_each()
0 3 6 9 12

Note that all C++ standard algorithms are defined in <algorithm>, so it is
included on line 2 of the listing. Although most of the program should be easy

for you, one line, however, is worth reviewing. On line 24, the for_each() function is
called to go through each element in the vector vInt. For each element in the vector, it
invokes the DoPrint function object and passes the element to DoPrint.operator().
This results in the value of the element to be printed on the screen.

Mutating Sequence Operations
Mutating sequence operations perform operations that change the elements in a
sequence, including operations that fill or reorder collections. Listing 19.13 shows the
fill() algorithm.

LISTING 19.13 A Mutating Sequence Algorithm

0: #include <iostream>
1: #include <vector>
2: #include <algorithm>
3: using namespace std;
4:
5: template<class T>
6: class Print
7: {
8: public:
9: void operator()(const T& t)
10: {
11: cout << t << “ “;
12: }
13: };
14:
15: int main()
16: {
17: Print<int> DoPrint;
18: vector<int> vInt(10);

OUTPUT

710 Day 19

LISTING 19.12 continued

ANALYSIS

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 710

Templates 711

19

19:
20: fill(vInt.begin(), vInt.begin() + 5, 1);
21: fill(vInt.begin() + 5, vInt.end(), 2);
22:
23: for_each(vInt.begin(), vInt.end(), DoPrint);
24: cout << endl << endl;
25:
26: return 0;
27: }

1 1 1 1 1 2 2 2 2 2

The only new content in this listing is on lines 20 and 21, where the fill() algo-
rithm is used. The fill algorithm fills the elements in a sequence with a given

value. On line 20, it assigns an integer value 1 to the first five elements in vInt. The last
five elements of vInt are assigned with integer 2 on line 21.

Sorting and Related Operations
The third category of algorithms is the sorting and related operations subclass. Within
this set of operations, you find merging, partial sorts, partial sorts with copying, binary
searches, lower and upper bounds checks, set intersections, set differencing, minimums,
maximums, permutations, and more. You can check your compiler’s documentation or
the C++ standards documentation for specific information on each of these operations.

OUTPUT

LISTING 19.13 continued

ANALYSIS

It is beyond the scope of this book to go into details on all the operations in
the algorithm and other Standard Template Library classes. You can check
your compiler’s documentation or the C++ standards to get more details on
the classes and operations available as well as the details on their parame-
ters and usage. In addition, entire books are available on the STL and its
usage.

NOTE

Summary
Today, you learned how to create and use templates. Templates are a key part of the C++
standard and a built-in facility of C++. Templates are used to create parameterized
types—types that change their behavior based on parameters passed in at creation. They
are a way to reuse code safely and effectively.

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 711

The definition of the template determines the parameterized type. Each instance of the
template is an actual object, which can be used like any other object—as a parameter to a
function, as a return value, and so forth.

Template classes can also declare three types of friend functions: nontemplate, general
template, and type-specific template. A template can declare static data members, in
which case each instance of the template has its own set of static data.

If you need to specialize behavior for some template functions based on the actual type,
you can override a template function with a particular type. This works for member func-
tions as well.

In the second half of today’s lesson, you learned that the C++ standard includes informa-
tion on the Standard Template Library (STL). The STL includes numerous template and
operations for you to use.

Q&A
Q Why use templates when macros will do?

A Templates are type-safe and built in to the language, so they are checked by the
compiler—at least when you instantiate the class to create a particular variable.

Q What is the difference between the parameterized type of a template function
and the parameters to a normal function?

A A regular function (nontemplate) takes parameters on which it can take action. A
template function enables you to parameterize the type of a particular parameter to
the function. That is, you can pass an Array of Type to a function and then have
the Type determined by the definition of the variable that is an instance of the class
for a specific type.

Q When do I use templates and when do I use inheritance?

A Use templates when all the behavior, or virtually all the behavior, is unchanged,
except in regard to the type of the item on which your class acts. If you find your-
self copying a class and changing only the type of one or more of its members, it
might be time to consider using a template. Also, use a template when you are
tempted to change a class to operate on a higher-level ancestor class (reducing
type-safety) of its operands, or to make two unrelated classes share a common
ancestor so that your class can work with both of them (again, reducing type-
safety).

712 Day 19

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 712

Templates 713

19

Q When do I use general template friend classes?

A When every instance, regardless of type, should be a friend to this class or
function.

Q When do I use type-specific template friend classes or functions?

A When you want to establish a one-to-one relationship between two classes. For
example, array<int> should match iterator<int>, but not iterator<Animal>.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson.

Quiz
1. What is the difference between a template and a macro?

2. What is the difference between the parameter in a template and the parameter in a
function?

3. What is the difference between a type-specific template friend class and a general
template friend class?

4. Is it possible to provide special behavior for one instance of a template but not for
other instances?

5. How many static variables are created if you put one static member into a template
class definition?

6. What attributes must your class have to be used with the standard containers?

7. What does STL stand for and why is the STL important?

Exercises
1. Create a template based on this List class:

class List
{
private:

public:
List():head(0),tail(0),theCount(0) {}
virtual ~List();
void insert(int value);

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 713

void append(int value);
int is_present(int value) const;
int is_empty() const { return head == 0; }
int count() const { return theCount; }

private:
class ListCell
{
public:

ListCell(int value, ListCell *cell = 0):val(value),
next(cell){}

int val;
ListCell *next;

};
ListCell *head;
ListCell *tail;
int theCount;

};

2. Write the implementation for the List class (nontemplate) version.

3. Write the template version of the implementations.

4. Declare three list objects: a list of Strings, a list of Cats, and a list of ints.

5. BUG BUSTERS: What is wrong with the following code? (Assume the List tem-
plate is defined and Cat is the class defined earlier in the book.)
List<Cat> Cat_List;
Cat Felix;
CatList.append(Felix);
cout << “Felix is “

<< (Cat_List.is_present(Felix)) ? “” : “not “
<< “present” << endl;

Hint (this is tough): What makes Cat different from int?

6. Declare friend operator== for List.

7. Implement friend operator== for List.

8. Does operator== have the same problem as in Exercise 5?

9. Implement a template function for swap that exchanges two variables.

714 Day 19

25 0672327112_ch19.qxd 11/19/04 12:29 PM Page 714

DAY 20

WEEK 3

Handling Errors
and Exceptions

The code you’ve seen in this book has been created for illustration purposes. It
has not dealt with errors so that you would not be distracted from the central
issues being presented. Real-world programs must take error conditions into
consideration.

Today, you will learn

• What exceptions are

• How exceptions are used and what issues they raise

• How to build exception hierarchies

• How exceptions fit into an overall error-handling approach

• What a debugger is

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 715

Bugs, Errors, Mistakes, and Code Rot
It is rare for a real-world-sized program not to have some sort of error, or bug. The big-
ger the program, the more likely there will be bugs. In fact, in larger programs, it is often
the case that many bugs actually “get out the door” and into final, released software. That
this is true does not make it okay. Making robust, bug-free programs should be the num-
ber-one priority of anyone serious about programming.

The single biggest problem in the software industry is buggy, unstable code. One of the
biggest expenses in many major programming efforts is testing and fixing. The person
who solves the problem of producing good, solid, bulletproof programs at low cost and
on time will revolutionize the software industry.

A number of discrete kinds of errors can trouble a program. The first is poor logic: The
program does just what you asked, but you haven’t thought through the algorithms
properly. The second is syntactic: You used the wrong idiom, function, or structure.
These two are the most common, and they are the ones most programmers are on the
lookout for.

Research and real-world experience have shown that the later in the development process
you find a logic problem, the more it costs to fix it. The least expensive problems or bugs
to fix are the ones you manage to avoid creating. The next cheapest are those spotted by
the compiler. The C++ standards force compilers to put a lot of energy into making more
and more bugs show up at compile time.

Errors that get compiled in your program, but are caught at the first test—those that crash
every time—are less expensive to find and fix than those that are flaky and only crash
once in a while.

A more common runtime problem than logic or syntactic bugs is fragility: Your program
works just fine if the user enters a number when you ask for one, but it crashes if the
user enters letters. Other programs crash if they run out of memory, if the floppy disk is
left out of the drive, or if an Internet connection is lost.

To combat this kind of fragility, programmers strive to make their programs bulletproof.
A bulletproof program is one that can handle anything that comes up at runtime, from
bizarre user input to running out of memory.

It is important to distinguish between bugs, which arise because the programmer made a
mistake; logic errors, which arise because the programmer misunderstood the problem or
how to solve it; and exceptions, which arise because of unusual but predictable problems
such as running out of resources (memory or disk space).

716 Day 20

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 716

Handling Errors and Exceptions 717

20

Exceptional Circumstances
You can’t eliminate exceptional circumstances; you can only prepare for them. What
happens if your program requests memory to dynamically allocate an object, and there
isn’t any available? How will your program respond? Or, what will your program do if
you cause one of the most common math errors by dividing by zero? Your choices
include

• Crash.

• Inform the user and exit gracefully.

• Inform the user and allow the user to try to recover and continue.

• Take corrective action and continue without disturbing the user.

Consider Listing 20.1, which is extremely simple and ready to crash; however, it illus-
trates a problem that makes it into many programs and that is extremely serious!

LISTING 20.1 Creating an Exceptional Situation

0: // This program will crash
1: #include <iostream>
2: using namespace std;
3:
4: const int DefaultSize = 10;
5:
6: int main()
7: {
8: int top = 90;
9: int bottom = 0;
10:
11: cout << “top / 2 = “ << (top/ 2) << endl;
12:
13: cout << “top divided by bottom = “;
14: cout << (top / bottom) << endl;
15:
16: cout << “top / 3 = “ << (top/ 3) << endl;
17:
18: cout << “Done.” << endl;
19: return 0;
20: }

top / 2 = 45
top divided by bottom = OUTPUT

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 717

Listing 20.1 was actually designed to crash; however, if you had asked the user
to enter two numbers, he could have encountered the same results.

In lines 8 and 9, two integer variables are declared and given values. You could just as
easily have prompted the user for these two numbers or read them from a file. In lines
11, 14, and 16, these numbers are used in math operations. Specifically, they are used for
division. In lines 11 and 16, there are no issues; however, line 14 has a serious problem.
Division by zero causes an exceptional problem to occur—a crash. The program ends
and most likely an exception is displayed by the operating system.

Although it is not always necessary (or even desirable) to automatically and silently
recover from all exceptional circumstances, it is clear that you must do better than this
program. You can’t simply let your program crash.

C++ exception handling provides a type-safe, integrated method for coping with the pre-
dictable but unusual conditions that arise while running a program.

The Idea Behind Exceptions
The basic idea behind exceptions is fairly straightforward:

• The computer tries to run a piece of code. This code might try to allocate resources
such as memory, might try to lock a file, or any of a variety of tasks.

• Logic (code) is included to be prepared in case the code you are trying to execute
fails for some exceptional reason. For example, you would include code to catch
any issues, such as memory not being allocated, a file being unable to be locked, or
any of a variety of other issues.

• In case your code is being used by other code (for instance, one function calling
another), you also need a mechanism to pass information about any problems
(exceptions) from your level, up to the next. There should be a path from the code
where an issue occurs to the code that can handle the error condition. If intervening
layers of functions exist, they should be given an opportunity to clean the issue but
should not be required to include code whose only purpose is to pass along the
error condition.

Exception handling makes all three of these points come together, and they do it in a rel-
atively straightforward manner.

718 Day 20

This program might display the preceding output to the console; however, it
will most likely immediately crash afterward.

CAUTION

ANALYSIS

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 718

Handling Errors and Exceptions 719

20

The Parts of Exception Handling
To handle exceptions, you have to first identify that you want a particular piece of code
to be watched for any exceptions. This is accomplished by using a try block.

You should create a try block around any area of code that you believe has the potential
to cause a problem. The basic format of the try block is:

try
{

SomeDangerousFunction();
}
catch (...)
{
}

In this case, when SomeDangerousFunction() executes, if any exception occurs, it is
noted and caught. Adding the keyword try and the braces is all that is required to have
your program start watching for exceptions. Of course, if an exception occurs, then you
need to act upon it.

When the code within a try block is executed, if an exception occurs, the exception is
said to be “thrown.” Thrown exceptions can then be caught, and as shown previously,
you catch an exception with a catch block! When an exception is thrown, control trans-
fers to the appropriate catch block following the current try block. In the previous
example, the ellipse (...) refers to any exception. But you can also catch specific types
of exceptions. To do this, you use one or more catch blocks following your try block.
For example,

try
{

SomeDangerousFunction();
}
catch(OutOfMemory)
{

// take some actions
}
catch(FileNotFound)
{

// take other action
}
catch (...)
{
}

In this example, when SomeDangerousFunction() is executed, there will be handling in
case there is an exception. If an exception is thrown, it is sent to the first catch block
immediately following the try block. If that catch block has a type parameter, like those

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 719

in the previous example, the exception is checked to see if it matches the indicated type.
If not, the next catch statement is checked, and so on, until either a match is found or
something other than a catch block is found. When the first match is found, that catch
block is executed. Unless you really intended to let other types of exceptions through, it
is always a good idea to have the last catch use the ellipse parameter.

720 Day 20

A catch block is also called a handler because it can handle an exception.NOTE

You can look at the catch blocks as being like overloaded functions. When
the matching signature is found, that function is executed.

NOTE

The basic steps in handling exceptions are

1. Identify those areas of the program in which you begin an operation that might
raise an exception, and put them in try blocks.

2. Create catch blocks to catch the exceptions if they are thrown. You can either cre-
ate a catch for a specific type of exception (by specifying a typed parameter for
the catch block) or all exceptions (by using an ellipses (...) as the parameter).

Listing 20.2 adds basic exception handling to Listing 20.1. You can see this with the use
of both a try block and a catch block.

Some very old compilers do not support exceptions. Exceptions are part of
the ANSI C++ standard, however, and every compiler vendor’s latest edition
fully supports exceptions. If you have an older compiler, you won’t be able
to compile and run the exercises in today’s lesson. It’s still a good idea to
read through the entire chapter, however, and return to this material when
you upgrade your compiler.

NOTE

LISTING 20.2 Catching an Exception

0: // trying and catching
1: #include <iostream>
2: using namespace std;
3:
4: const int DefaultSize = 10;
5:

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 720

Handling Errors and Exceptions 721

20

6: int main()
7: {
8: int top = 90;
9: int bottom = 0;
10:
11: try
12: {
13: cout << “top / 2 = “ << (top/ 2) << endl;
14:
15: cout << “top divided by bottom = “;
16: cout << (top / bottom) << endl;
17:
18: cout << “top / 3 = “ << (top/ 3) << endl;
19: }
20: catch(...)
21: {
22: cout << “something has gone wrong!” << endl;
23: }
24:
25: cout << “Done.” << endl;
26: return 0;
27: }

top / 2 = 45
top divided by bottom = something has gone wrong!
Done.

Unlike the prior listing, executing Listing 20.2 doesn’t cause a crash. Rather, the
program is able to report an issue and exit gracefully.

This time, a try block was added around the code where a potential issue could occur. In
this case, it is around the division operations (lines 11 to 19). In case an exception does
occur, a catch block is included in lines 20–23 after the try block.

The catch on line 20 contains three dots, or an ellipsis. As mentioned previously, this is
a special case for catch, and indicates that all exceptions that occur in the preceding
try’s code should be handled by this catch statement, unless a prior catch block han-
dled the exception. In this listing, that will most likely only be a division by zero error.
As you will see later, it is often better to look for more specific types of exceptions so
that you can customize the handling of each.

You should notice that this listing does not crash when it is run. In addition, you can see
from the output that the program continued to line 25 right after the catch statement.
This is confirmed by the fact that the word “Done” was printed to the console.

OUTPUT

LISTING 20.2 continued

ANALYSIS

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 721

722 Day 20

try Blocks

A try block is a series of statements that begins with the keyword try; it is followed by
an opening brace and ends with a closing brace.

Example

try
{

Function();
};

catch Blocks

A catch block is a piece of code that begins with the keyword catch, followed by an
exception type in parentheses, followed by an opening brace, and ending with a closing
brace. catch blocks are only allowed to follow a try block.

Example

try
{

Function();
};
catch (OutOfMemory)
{

// take action
}

Causing Your Own Exceptions
Listing 20.2 illustrated two of the aspects of exception handling—marking the code to be
watched and specifying how the exception is to be handled. However, only predefined
exceptions were handled. The third part of exception handling is the ability for you to
create your own types of exceptions to be handled. By creating your own exceptions, you
gain the ability to have customized handlers (catch blocks) for exceptions that are mean-
ingful to your application.

To create an exception that causes the try statement to react, the keyword, throw, is
used. In essence, you throw the exception and, hopefully, a handler (catch block) catches
it. The basic format of the throw statement is:

throw exception;

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 722

Handling Errors and Exceptions 723

20

With this statement, exception is thrown. This causes control to be passed to a handler.
If a handler can’t be found, the program terminates.

The value that you throw in the exception can be of virtually any type. As mentioned ear-
lier, you can set up corresponding handlers for each different type of object your pro-
gram might throw. Listing 20.3 illustrates how to throw a basic exception by modifying
Listing 20.2.

LISTING 20.3 Throwing an Exception

0: //Throwing
1: #include <iostream>
2:
3: using namespace std;
4:
5: const int DefaultSize = 10;
6:
7: int main()
8: {
9: int top = 90;
10: int bottom = 0;
11:
12: try
13: {
14: cout << “top / 2 = “ << (top/ 2) << endl;
15:
16: cout << “top divided by bottom = “;
17: if (bottom == 0)
18: throw “Division by zero!”;
19:
20: cout << (top / bottom) << endl;
21:
22: cout << “top / 3 = “ << (top/ 3) << endl;
23: }
24: catch(const char * ex)
25: {
26: cout << “\n*** “ << ex << “ ***” << endl;
27: }
28:
29: cout << “Done.” << endl;
30: return 0;
31: }

top / 2 = 45
top divided by bottom = *** Division by zero! ***
Done.

OUTPUT

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 723

Unlike the prior listing, this listing takes more control of its exceptions.
Although this isn’t the best use of exceptions, it clearly illustrates using the

throw statement.

In line 17, a check is done to see if the value of bottom is equal to zero. If it is, an excep-
tion is thrown. In this case, the exception is a string value.

On line 24, a catch statement starts a handler. This handler is looking for a constant
character pointer. With exceptions, strings are matched to a constant character pointer, so
the handler starting in line 24 catches the throw in line 18. In line 26, the string that was
passed is displayed between asterisks. Line 27 is the closing brace, which indicates the
end of the handler, so control goes to the first line following the catch statements and
the program continues to the end.

If your exception had been a more serious problem, you could have exited the applica-
tion after printing the message in line 26. If you throw your exception in a function that
was called by another function, you could have passed the exception up. To pass on an
exception, you can simply call the throw command without any parameter. This causes
the existing exception to be rethrown from the current location.

Creating an Exception Class
You can create much more complex classes for throwing an exception. Listing 20.4 pre-
sents a somewhat stripped-down Array class, based on the template developed on Day
19, “Templates.”

LISTING 20.4 Throwing an Exception

0: #include <iostream>
1: using namespace std;
2:
3: const int DefaultSize = 10;
4:
5: class Array
6: {
7: public:
8: // constructors
9: Array(int itsSize = DefaultSize);
10: Array(const Array &rhs);
11: ~Array() { delete [] pType;}
12:
13: // operators
14: Array& operator=(const Array&);
15: int& operator[](int offSet);
16: const int& operator[](int offSet) const;
17:

724 Day 20

ANALYSIS

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 724

Handling Errors and Exceptions 725

20

18: // accessors
19: int GetitsSize() const { return itsSize; }
20:
21: // friend function
22: friend ostream& operator<< (ostream&, const Array&);
23:
24: class xBoundary {}; // define the exception class
25:
26: private:
27: int *pType;
28: int itsSize;
29: };
30:
31: Array::Array(int size):
32: itsSize(size)
33: {
34: pType = new int[size];
35: for (int i = 0; i < size; i++)
36: pType[i] = 0;
37: }
38:
39: Array& Array::operator=(const Array &rhs)
40: {
41: if (this == &rhs)
42: return *this;
43: delete [] pType;
44: itsSize = rhs.GetitsSize();
45: pType = new int[itsSize];
46: for (int i = 0; i < itsSize; i++)
47: {
48: pType[i] = rhs[i];
49: }
50: return *this;
51: }
52:
53: Array::Array(const Array &rhs)
54: {
55: itsSize = rhs.GetitsSize();
56: pType = new int[itsSize];
57: for (int i = 0; i < itsSize; i++)
58: {
59: pType[i] = rhs[i];
60: }
61: }
62:
63: int& Array::operator[](int offSet)
64: {
65: int size = GetitsSize();

LISTING 20.4 continued

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 725

66: if (offSet >= 0 && offSet < GetitsSize())
67: return pType[offSet];
68: throw xBoundary();
69: return pType[0]; // appease MSC
70: }
71:
72: const int& Array::operator[](int offSet) const
73: {
74: int mysize = GetitsSize();
75: if (offSet >= 0 && offSet < GetitsSize())
76: return pType[offSet];
77: throw xBoundary();
78: return pType[0]; // appease MSC
79: }
80:
81: ostream& operator<< (ostream& output, const Array& theArray)
82: {
83: for (int i = 0; i<theArray.GetitsSize(); i++)
84: output << “[“ << i << “] “ << theArray[i] << endl;
85: return output;
86: }
87:
88: int main()
89: {
90: Array intArray(20);
91: try
92: {
93: for (int j = 0; j< 100; j++)
94: {
95: intArray[j] = j;
96: cout << “intArray[“ << j << “] okay...” << endl;
97: }
98: }
99: catch (Array::xBoundary)
100: {
101: cout << “Unable to process your input!” << endl;
102: }
103: cout << “Done.” << endl;
104: return 0;
105: }

intArray[0] okay...
intArray[1] okay...
intArray[2] okay...
intArray[3] okay...
intArray[4] okay...
intArray[5] okay...
intArray[6] okay...

OUTPUT

726 Day 20

LISTING 20.4 continued

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 726

Handling Errors and Exceptions 727

20

intArray[7] okay...
intArray[8] okay...
intArray[9] okay...
intArray[10] okay...
intArray[11] okay...
intArray[12] okay...
intArray[13] okay...
intArray[14] okay...
intArray[15] okay...
intArray[16] okay...
intArray[17] okay...
intArray[18] okay...
intArray[19] okay...
Unable to process your input!
Done.

Listing 20.4 presents a somewhat stripped-down Array class; however, this time
exception handling is added in case the array goes out of bounds.

On line 24, a new class, xBoundary, is declared within the declaration of the outer class
Array.

This new class is not in any way distinguished as an exception class. It is just a class the
same as any other. This particular class is incredibly simple; it has no data and no meth-
ods. Nonetheless, it is a valid class in every way.

In fact, it is incorrect to say it has no methods because the compiler automatically
assigns it a default constructor, destructor, copy constructor, and the assignment operator
(operator equals); so it actually has four class functions, but no data.

Note that declaring it from within Array serves only to couple the two classes together.
As discussed on Day 16, “Advanced Inheritance,” Array has no special access to
xBoundary, nor does xBoundary have preferential access to the members of Array.

On lines 63–70 and 72–79, the offset operators are modified to examine the offset
requested, and if it is out of range, to throw the xBoundary class as an exception. The
parentheses are required to distinguish between this call to the xBoundary constructor
and the use of an enumerated constant.

In line 90, the main part of the program starts by declaring an Array object that can hold
20 values. On line 91, the keyword try begins a try block that ends on line 98. Within
that try block, 101 integers are added to the array that was declared on line 90.

On line 99, the handler has been declared to catch any xBoundary exceptions.

In the driver program on lines 88–105, a try block is created in which each member of
the array is initialized. When j (line 93) is incremented to 20, the member at offset 20 is

ANALYSIS

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 727

accessed. This causes the test on line 66 to fail, and operator[] raises an xBoundary
exception on line 67.

Program control switches to the catch block on line 99, and the exception is caught or
handled by the catch on the same line, which prints an error message. Program flow
drops through to the end of the catch block on line 102.

Placing try Blocks and catch Blocks
Figuring out where to put your try blocks can be hard: It is not always obvious which
actions might raise an exception. The next question is where to catch the exception. It
might be that you’ll want to throw all memory exceptions where the memory is allo-
cated, but you’ll want to catch the exceptions high in the program where you deal with
the user interface.

When trying to determine try block locations, look to where you allocate memory or use
resources. Other things to look for are out-of-bounds errors, illegal input, and so forth. At
the very least, put a try/catch around all of the code in main(). try/catch usually
belongs in high-level functions, particularly those that know about the program’s user
interface. For instance, a utility class should not generally catch exceptions that need to
be reported to the user because it might be used in windowed programs or console pro-
grams, or even in programs that communicate with users via the Web or messaging.

How Catching Exceptions Work
Here’s how it works: When an exception is thrown, the call stack is examined. The call
stack is the list of function calls created when one part of the program invokes another
function.

The call stack tracks the execution path. If main() calls the function
Animal::GetFavoriteFood(), and GetFavoriteFood() calls
Animal::LookupPreferences(), which, in turn, calls fstream::operator>>(), all these
are on the call stack. A recursive function might be on the call stack many times.

The exception is passed up the call stack to each enclosing block. This is called
“unwinding the stack.” As the stack is unwound, the destructors for local objects on the
stack are invoked, and the objects are destroyed.

One or more catch statements follow each try block. If the exception matches one of
the catch statements, it is considered to be handled by having that statement execute. If
it doesn’t match any, the unwinding of the stack continues.

728 Day 20

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 728

Handling Errors and Exceptions 729

20

If the exception reaches all the way to the beginning of the program (main()) and is still
not caught, a built-in handler is called that terminates the program.

It is important to note that the exception unwinding of the stack is a one-way street. As it
progresses, the stack is unwound and objects on the stack are destroyed. There is no
going back: After the exception is handled, the program continues after the try block of
the catch statement that handled the exception.

Thus, in Listing 20.4, execution continues on line 101, the first line after the try block of
the catch statement that handled the xBoundary exception. Remember that when an
exception is raised, program flow continues after the catch block, not after the point
where the exception was thrown.

Using More Than One catch Specification
It is possible for more than one condition to cause an exception. In this case, the catch
statements can be lined up one after another, much like the conditions in a switch state-
ment. The equivalent to the default statement is the “catch everything” statement, indi-
cated by catch(...). Listing 20.5 illustrates multiple exception conditions.

LISTING 20.5 Multiple Exceptions

0: #include <iostream>
1: using namespace std;
2:
3: const int DefaultSize = 10;
4:
5: class Array
6: {
7: public:
8: // constructors
9: Array(int itsSize = DefaultSize);
10: Array(const Array &rhs);
11: ~Array() { delete [] pType;}
12:
13: // operators
14: Array& operator=(const Array&);
15: int& operator[](int offSet);
16: const int& operator[](int offSet) const;
17:
18: // accessors
19: int GetitsSize() const { return itsSize; }
20:
21: // friend function
22: friend ostream& operator<< (ostream&, const Array&);
23:
24: // define the exception classes

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 729

25: class xBoundary {};
26: class xTooBig {};
27: class xTooSmall{};
28: class xZero {};
29: class xNegative {};
30: private:
31: int *pType;
32: int itsSize;
33: };
34:
35: int& Array::operator[](int offSet)
36: {
37: int size = GetitsSize();
38: if (offSet >= 0 && offSet < GetitsSize())
39: return pType[offSet];
40: throw xBoundary();
41: return pType[0]; // appease MFC
42: }
43:
44:
45: const int& Array::operator[](int offSet) const
46: {
47: int mysize = GetitsSize();
48: if (offSet >= 0 && offSet < GetitsSize())
49: return pType[offSet];
50: throw xBoundary();
51:
52: return pType[0]; // appease MFC
53: }
54:
55:
56: Array::Array(int size):
57: itsSize(size)
58: {
59: if (size == 0)
60: throw xZero();
61: if (size < 10)
62: throw xTooSmall();
63: if (size > 30000)
64: throw xTooBig();
65: if (size < 1)
66: throw xNegative();
67:
68: pType = new int[size];
69: for (int i = 0; i < size; i++)
70: pType[i] = 0;
71: }
72:

730 Day 20

LISTING 20.5 continued

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 730

Handling Errors and Exceptions 731

20

73: int main()
74: {
75: try
76: {
77: Array intArray(0);
78: for (int j = 0; j < 100; j++)
79: {
80: intArray[j] = j;
81: cout << “intArray[“ << j << “] okay...” << endl;
82: }
83: }
84: catch (Array::xBoundary)
85: {
86: cout << “Unable to process your input!” << endl;
87: }
88: catch (Array::xTooBig)
89: {
90: cout << “This array is too big...” << endl;
91: }
92: catch (Array::xTooSmall)
93: {
94: cout << “This array is too small...” << endl;
95: }
96: catch (Array::xZero)
97: {
98: cout << “You asked for an array”;
99: cout << “ of zero objects!” << endl;
100: }
101: catch (...)
102: {
103: cout << “Something went wrong!” << endl;
104: }
105: cout << “Done.” << endl;
106: return 0;
107: }

You asked for an array of zero objects!
Done.

Four new classes are created in lines 25–29: xTooBig, xTooSmall, xZero, and
xNegative. In the constructor, on lines 56–71, the size passed to the constructor

is examined. If it’s too big, too small, negative, or zero, an exception is thrown.

The try block is changed to include catch statements for each condition other than
negative, which is caught by the “catch everything” statement catch(...), shown on
line 101.

OUTPUT

LISTING 20.5 continued

ANALYSIS

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 731

Try this with a number of values for the size of the array. Then try putting in –5. You
might have expected xNegative to be called, but the order of the tests in the constructor
prevented this: size < 10 was evaluated before size < 1. To fix this, swap lines 61 and
62 with lines 65 and 66 and recompile.

732 Day 20

After the constructor has been invoked, memory has been allocated for the
object. Therefore, throwing any exception from the constructor can leave
the object allocated but unusable. Generally, you should wrap the construc-
tor in a try/catch, and if an exception occurs, mark the object (internally) as
unusable. Each member function should check this “valid” flag to be certain
additional errors won’t occur when someone uses an object whose initializa-
tion was interrupted.

TIP

Exception Hierarchies
Exceptions are classes, and as such, they can be derived from. It might be advantageous
to create a class xSize, and to derive from it xZero, xTooSmall, xTooBig, and
xNegative. Thus, some functions might just catch xSize errors, and other functions
might catch the specific type of xSize error. Listing 20.6 illustrates this idea.

LISTING 20.6 Class Hierarchies and Exceptions

0: #include <iostream>
1: using namespace std;
2:
3: const int DefaultSize = 10;
4:
5: class Array
6: {
7: public:
8: // constructors
9: Array(int itsSize = DefaultSize);
10: Array(const Array &rhs);
11: ~Array() { delete [] pType;}
12:
13: // operators
14: Array& operator=(const Array&);
15: int& operator[](int offSet);
16: const int& operator[](int offSet) const;
17:
18: // accessors
19: int GetitsSize() const { return itsSize; }
20:

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 732

Handling Errors and Exceptions 733

20

21: // friend function
22: friend ostream& operator<< (ostream&, const Array&);
23:
24: // define the exception classes
25: class xBoundary {};
26: class xSize {};
27: class xTooBig : public xSize {};
28: class xTooSmall : public xSize {};
29: class xZero : public xTooSmall {};
30: class xNegative : public xSize {};
31: private:
32: int *pType;
33: int itsSize;
34: };
35:
36:
37: Array::Array(int size):
38: itsSize(size)
39: {
40: if (size == 0)
41: throw xZero();
42: if (size > 30000)
43: throw xTooBig();
44: if (size <1)
45: throw xNegative();
46: if (size < 10)
47: throw xTooSmall();
48:
49: pType = new int[size];
50: for (int i = 0; i < size; i++)
51: pType[i] = 0;
52: }
53:
54: int& Array::operator[](int offSet)
55: {
56: int size = GetitsSize();
57: if (offSet >= 0 && offSet < GetitsSize())
58: return pType[offSet];
59: throw xBoundary();
60: return pType[0]; // appease MFC
61: }
62:
63: const int& Array::operator[](int offSet) const
64: {
65: int mysize = GetitsSize();
66:
67: if (offSet >= 0 && offSet < GetitsSize())
68: return pType[offSet];
69: throw xBoundary();

LISTING 20.6 continued

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 733

70:
71: return pType[0]; // appease MFC
72: }
73:
74: int main()
75: {
76: try
77: {
78: Array intArray(0);
79: for (int j = 0; j < 100; j++)
80: {
81: intArray[j] = j;
82: cout << “intArray[“ << j << “] okay...” << endl;
83: }
84: }
85: catch (Array::xBoundary)
86: {
87: cout << “Unable to process your input!” << endl;
88: }
89: catch (Array::xTooBig)
90: {
91: cout << “This array is too big...” << endl;
92: }
93:
94: catch (Array::xTooSmall)
95: {
96: cout << “This array is too small...” << endl;
97: }
98: catch (Array::xZero)
99: {
100: cout << “You asked for an array”;
101: cout << “ of zero objects!” << endl;
102: }
103: catch (...)
104: {
105: cout << “Something went wrong!” << endl;
106: }
107: cout << “Done.” << endl;
108: return 0;
109: }

This array is too small...
Done.

The significant change is on lines 27–30, where the class hierarchy is estab-
lished. Classes xTooBig, xTooSmall, and xNegative are derived from xSize, and

xZero is derived from xTooSmall.

OUTPUT

734 Day 20

LISTING 20.6 continued

ANALYSIS

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 734

Handling Errors and Exceptions 735

20

The Array is created with size zero, but what’s this? The wrong exception appears to be
caught! Examine the catch block carefully, however, and you will find that it looks for
an exception of type xTooSmall before it looks for an exception of type xZero. Because
an xZero object is thrown and an xZero object is an xTooSmall object, it is caught by the
handler for xTooSmall. After being handled, the exception is not passed on to the other
handlers, so the handler for xZero is never called.

The solution to this problem is to carefully order the handlers so that the most specific
handlers come first and the less specific handlers come later. In this particular example,
switching the placement of the two handlers xZero and xTooSmall fixes the problem.

Data in Exceptions and Naming Exception
Objects

Often, you will want to know more than just what type of exception was thrown so you
can respond properly to the error. Exception classes are the same as any other class. You
are free to provide data, initialize that data in the constructor, and read that data at any
time. Listing 20.7 illustrates how to do this.

LISTING 20.7 Getting Data Out of an Exception Object

0: #include <iostream>
1: using namespace std;
2:
3: const int DefaultSize = 10;
4:
5: class Array
6: {
7: public:
8: // constructors
9: Array(int itsSize = DefaultSize);
10: Array(const Array &rhs);
11: ~Array() { delete [] pType;}
12:
13: // operators
14: Array& operator=(const Array&);
15: int& operator[](int offSet);
16: const int& operator[](int offSet) const;
17:
18: // accessors
19: int GetitsSize() const { return itsSize; }
20:
21: // friend function
22: friend ostream& operator<< (ostream&, const Array&);

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 735

23:
24: // define the exception classes
25: class xBoundary {};
26: class xSize
27: {
28: public:
29: xSize(int size):itsSize(size) {}
30: ~xSize(){}
31: int GetSize() { return itsSize; }
32: private:
33: int itsSize;
34: };
35:
36: class xTooBig : public xSize
37: {
38: public:
39: xTooBig(int size):xSize(size){}
40: };
41:
42: class xTooSmall : public xSize
43: {
44: public:
45: xTooSmall(int size):xSize(size){}
46: };
47:
48: class xZero : public xTooSmall
49: {
50: public:
51: xZero(int size):xTooSmall(size){}
52: };
53:
54: class xNegative : public xSize
55: {
56: public:
57: xNegative(int size):xSize(size){}
58: };
59:
60: private:
61: int *pType;
62: int itsSize;
63: };
64:
65:
66: Array::Array(int size):
67: itsSize(size)
68: {
69: if (size == 0)
70: throw xZero(size);

736 Day 20

LISTING 20.7 continued

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 736

Handling Errors and Exceptions 737

20

71: if (size > 30000)
72: throw xTooBig(size);
73: if (size < 1)
74: throw xNegative(size);
75: if (size < 10)
76: throw xTooSmall(size);
77:
78: pType = new int[size];
79: for (int i = 0; i < size; i++)
80: pType[i] = 0;
81: }
82:
83:
84: int& Array::operator[] (int offSet)
85: {
86: int size = GetitsSize();
87: if (offSet >= 0 && offSet < size)
88: return pType[offSet];
89: throw xBoundary();
90: return pType[0];
91: }
92:
93: const int& Array::operator[] (int offSet) const
94: {
95: int size = GetitsSize();
96: if (offSet >= 0 && offSet < size)
97: return pType[offSet];
98: throw xBoundary();
99: return pType[0];
100: }
101:
102: int main()
103: {
104: try
105: {
106: Array intArray(9);
107: for (int j = 0; j < 100; j++)
108: {
109: intArray[j] = j;
110: cout << “intArray[“ << j << “] okay...” << endl;
111: }
112: }
113: catch (Array::xBoundary)
114: {
115: cout << “Unable to process your input!” << endl;
116: }
117: catch (Array::xZero theException)
118: {

LISTING 20.7 continued

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 737

119: cout << “You asked for an Array of zero objects!” << endl;
120: cout << “Received “ << theException.GetSize() << endl;
121: }
122: catch (Array::xTooBig theException)
123: {
124: cout << “This Array is too big...” << endl;
125: cout << “Received “ << theException.GetSize() << endl;
126: }
127: catch (Array::xTooSmall theException)
128: {
129: cout << “This Array is too small...” << endl;
130: cout << “Received “ << theException.GetSize() << endl;
131: }
132: catch (...)
133: {
134: cout << “Something went wrong, but I’ve no idea what!\n”;
135: }
136: cout << “Done.” << endl;
137: return 0;
138: }

This array is too small...
Received 9
Done.

The declaration of xSize has been modified to include a member variable,
itsSize, on line 33 and a member function, GetSize(), on line 31. In addition, a

constructor has been added that takes an integer and initializes the member variable, as
shown on line 29.

The derived classes declare a constructor that does nothing but initialize the base class.
No other functions were declared, in part to save space in the listing.

The catch statements on lines 113–135 are modified to name the exception they catch,
theException, and to use this object to access the data stored in itsSize.

OUTPUT

738 Day 20

LISTING 20.7 continued

ANALYSIS

Keep in mind that if you are constructing an exception, it is because an
exception has been raised: Something has gone wrong, and your exception
should be careful not to kick off the same problem. Therefore, if you are
creating an OutOfMemory exception, you probably don’t want to allocate
memory in its constructor.

NOTE

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 738

Handling Errors and Exceptions 739

20

It is tedious and error-prone to have each of these catch statements individually print the
appropriate message. This job belongs to the object, which knows what type of object it
is and what value it received. Listing 20.8 takes a more object-oriented approach to this
problem, using virtual functions so that each exception “does the right thing.”

LISTING 20.8 Passing by Reference and Using Virtual Functions in Exceptions

0: #include <iostream>
1: using namespace std;
2:
3: const int DefaultSize = 10;
4:
5: class Array
6: {
7: public:
8: // constructors
9: Array(int itsSize = DefaultSize);
10: Array(const Array &rhs);
11: ~Array() { delete [] pType;}
12:
13: // operators
14: Array& operator=(const Array&);
15: int& operator[](int offSet);
16: const int& operator[](int offSet) const;
17:
18: // accessors
19: int GetitsSize() const { return itsSize; }
20:
21: // friend function
22: friend ostream& operator<<
23: (ostream&, const Array&);
24:
25: // define the exception classes
26: class xBoundary {};
27: class xSize
28: {
29: public:
30: xSize(int size):itsSize(size) {}
31: ~xSize(){}
32: virtual int GetSize() { return itsSize; }
33: virtual void PrintError()
34: {
35: cout << “Size error. Received: “;
36: cout << itsSize << endl;
37: }
38: protected:
39: int itsSize;
40: };
41:

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 739

42: class xTooBig : public xSize
43: {
44: public:
45: xTooBig(int size):xSize(size){}
46: virtual void PrintError()
47: {
48: cout << “Too big! Received: “;
49: cout << xSize::itsSize << endl;
50: }
51: };
52:
53: class xTooSmall : public xSize
54: {
55: public:
56: xTooSmall(int size):xSize(size){}
57: virtual void PrintError()
58: {
59: cout << “Too small! Received: “;
60: cout << xSize::itsSize << endl;
61: }
62: };
63:
64: class xZero : public xTooSmall
65: {
66: public:
67: xZero(int size):xTooSmall(size){}
68: virtual void PrintError()
69: {
70: cout << “Zero!!. Received: “ ;
71: cout << xSize::itsSize << endl;
72: }
73: };
74:
75: class xNegative : public xSize
76: {
77: public:
78: xNegative(int size):xSize(size){}
79: virtual void PrintError()
80: {
81: cout << “Negative! Received: “;
82: cout << xSize::itsSize << endl;
83: }
84: };
85:
86: private:
87: int *pType;
88: int itsSize;
89: };

740 Day 20

LISTING 20.8 continued

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 740

Handling Errors and Exceptions 741

20

90:
91: Array::Array(int size):
92: itsSize(size)
93: {
94: if (size == 0)
95: throw xZero(size);
96: if (size > 30000)
97: throw xTooBig(size);
98: if (size < 0)
99: throw xNegative(size);
100: if (size < 10)
101: throw xTooSmall(size);
102:
103: pType = new int[size];
104: for (int i = 0; i < size; i++)
105: pType[i] = 0;
106: }
107:
108: int& Array::operator[] (int offSet)
109: {
110: int size = GetitsSize();
111: if (offSet >= 0 && offSet < GetitsSize())
112: return pType[offSet];
113: throw xBoundary();
114: return pType[0];
115: }
116:
117: const int& Array::operator[] (int offSet) const
118: {
119: int size = GetitsSize();
120: if (offSet >= 0 && offSet < GetitsSize())
121: return pType[offSet];
122: throw xBoundary();
123: return pType[0];
124: }
125:
126: int main()
127: {
128: try
129: {
130: Array intArray(9);
131: for (int j = 0; j < 100; j++)
132: {
133: intArray[j] = j;
134: cout << “intArray[“ << j << “] okay...” << endl;
135: }
136: }
137: catch (Array::xBoundary)

LISTING 20.8 continued

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 741

138: {
139: cout << “Unable to process your input!” << endl;
140: }
141: catch (Array::xSize& theException)
142: {
143: theException.PrintError();
144: }
145: catch (...)
146: {
147: cout << “Something went wrong!” << endl;
148: }
149: cout << “Done.” << endl;
150: return 0;
151: }

Too small! Received: 9
Done.

Listing 20.8 declares a virtual method on lines 33–37 in the xSize class,
PrintError(), that prints an error message and the actual size of the class. This

is overridden in each of the derived classes.

On line 141 in the exception handler, the exception object is declared to be a reference.
When PrintError() is called with a reference to an object, polymorphism causes the
correct version of PrintError() to be invoked. The code is cleaner, easier to understand,
and easier to maintain.

Exceptions and Templates
When creating exceptions to work with templates, you have a choice: You can create an
exception for each instance of the template, or you can use exception classes declared
outside the template declaration. Listing 20.9 illustrates both approaches.

LISTING 20.9 Using Exceptions with Templates

0: #include <iostream>
1: using namespace std;
2:
3: const int DefaultSize = 10;
4: class xBoundary {};
5:
6: template <class T>
7: class Array
8: {

OUTPUT

742 Day 20

LISTING 20.8 continued

ANALYSIS

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 742

Handling Errors and Exceptions 743

20

9: public:
10: // constructors
11: Array(int itsSize = DefaultSize);
12: Array(const Array &rhs);
13: ~Array() { delete [] pType;}
14:
15: // operators
16: Array& operator=(const Array<T>&);
17: T& operator[](int offSet);
18: const T& operator[](int offSet) const;
19:
20: // accessors
21: int GetitsSize() const { return itsSize; }
22:
23: // friend function
24: friend ostream& operator<< (ostream&, const Array<T>&);
25:
26: // define the exception classes
27:
28: class xSize {};
29:
30: private:
31: int *pType;
32: int itsSize;
33: };
34:
35: template <class T>
36: Array<T>::Array(int size):
37: itsSize(size)
38: {
39: if (size <10 || size > 30000)
40: throw xSize();
41: pType = new T[size];
42: for (int i = 0; i<size; i++)
43: pType[i] = 0;
44: }
45:
46: template <class T>
47: Array<T>& Array<T>::operator=(const Array<T> &rhs)
48: {
49: if (this == &rhs)
50: return *this;
51: delete [] pType;
52: itsSize = rhs.GetitsSize();
53: pType = new T[itsSize];
54: for (int i = 0; i < itsSize; i++)
55: pType[i] = rhs[i];
56: }

LISTING 20.9 continued

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 743

57: template <class T>
58: Array<T>::Array(const Array<T> &rhs)
59: {
60: itsSize = rhs.GetitsSize();
61: pType = new T[itsSize];
62: for (int i = 0; i < itsSize; i++)
63: pType[i] = rhs[i];
64: }
65:
66: template <class T>
67: T& Array<T>::operator[](int offSet)
68: {
69: int size = GetitsSize();
70: if (offSet >= 0 && offSet < GetitsSize())
71: return pType[offSet];
72: throw xBoundary();
73: return pType[0];
74: }
75:
76: template <class T>
77: const T& Array<T>::operator[](int offSet) const
78: {
79: int mysize = GetitsSize();
80: if (offSet >= 0 && offSet < GetitsSize())
81: return pType[offSet];
82: throw xBoundary();
83: }
84:
85: template <class T>
86: ostream& operator<< (ostream& output, const Array<T>& theArray)
87: {
88: for (int i = 0; i < theArray.GetitsSize(); i++)
89: output << “[“ << i << “] “ << theArray[i] << endl;
90: return output;
91: }
92:
93:
94: int main()
95: {
96: try
97: {
98: Array<int> intArray(9);
99: for (int j = 0; j < 100; j++)
100: {
101: intArray[j] = j;
102: cout << “intArray[“ << j << “] okay...” << endl;
103: }
104: }

744 Day 20

LISTING 20.9 continued

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 744

Handling Errors and Exceptions 745

20

105: catch (xBoundary)
106: {
107: cout << “Unable to process your input!” << endl;
108: }
109: catch (Array<int>::xSize)
110: {
111: cout << “Bad Size!” << endl;
112: }
113:
114: cout << “Done.” << endl;
115: return 0;
116: }

Bad Size!
Done.

The first exception, xBoundary, is declared outside the template definition on line
4. The second exception, xSize, is declared from within the definition of the

template on line 28.

The exception xBoundary is not tied to the template class, but it can be used the same as
any other class. xSize is tied to the template and must be called based on the instantiated
Array. You can see the difference in the syntax for the two catch statements. Line 105
shows catch (xBoundary), but line 109 shows catch (Array<int>::xSize). The latter
is tied to the instantiation of an integer Array.

Exceptions Without Errors
When C++ programmers get together for a virtual beer in the cyberspace bar after work,
talk often turns to whether exceptions should be used for routine conditions. Some main-
tain that by their nature, exceptions should be reserved for those predictable but excep-
tional circumstances (hence the name!) that a programmer must anticipate, but that are
not part of the routine processing of the code.

Others point out that exceptions offer a powerful and clean way to return through many
layers of function calls without danger of memory leaks. A frequent example is this: The
user requests an action in a graphical user interface (GUI) environment. The part of the
code that catches the request must call a member function on a dialog manager, which, in
turn, calls code that processes the request, which calls code that decides which dialog
box to use, which, in turn, calls code to put up the dialog box, which finally calls code
that processes the user’s input. If the user clicks Cancel, the code must return to the very
first calling method where the original request was handled.

OUTPUT

LISTING 20.9 continued

ANALYSIS

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 745

One approach to this problem is to put a try block around the original call and catch
CancelDialog as an exception, which can be raised by the handler for the Cancel button.
This is safe and effective, but clicking Cancel is a routine circumstance, not an excep-
tional one.

This frequently becomes something of a religious argument, but a reasonable way to
decide the question is to ask the following: Does use of exceptions in this way make the
code easier or harder to understand? Are there fewer risks of errors and memory leaks, or
more? Will it be harder or easier to maintain this code? These decisions, like so many
others, require an analysis of the trade-offs; no single, obvious right answer exists.

A Word About Code Rot
Code rot is a well-known phenomenon in which software deteriorates due to being
neglected. A perfectly well-written, fully debugged program will turn bad on your cus-
tomer’s shelf just weeks after you deliver it. After a few months, your customer will
notice that a green mold has covered your logic, and many of your objects have begun to
flake apart.

Besides shipping your source code in air-tight containers, your only protection is to write
your programs so that when you go back to fix the spoilage, you can quickly and easily
identify where the problems are.

746 Day 20

Code rot is a programmer’s joke, which teaches an important lesson.
Programs are enormously complex, and bugs, errors, and mistakes can hide
for a long time before turning up. Protect yourself by writing easy-to-
maintain code.

NOTE

This means that your code must be written to be understood, and commented where
tricky. Six months after you deliver your code, you will read it with the eyes of a total
stranger, bewildered by how anyone could ever have written such convoluted and twisty
logic.

Bugs and Debugging
Nearly all modern development environments include one or more high-powered debug-
gers. The essential idea of using a debugger is this: You run the debugger, which loads
your source code, and then you run your program from within the debugger. This enables
you to see each instruction in your program as it executes and to examine your variables
as they change during the life of your program.

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 746

Handling Errors and Exceptions 747

20

All compilers let you compile with or without symbols. Compiling with symbols tells the
compiler to create the necessary mapping between your source code and the generated
program; the debugger uses this to point to the line of source code that corresponds to
the next action in the program.

Full-screen symbolic debuggers make this chore a delight. When you load your debug-
ger, it reads through all your source code and shows the code in a window. You can step
over function calls or direct the debugger to step into the function, line by line.

With most debuggers, you can switch between the source code and the output to see the
results of each executed statement. More powerfully, you can examine the current state
of each variable, look at complex data structures, examine the value of member data
within classes, and look at the actual values in memory of various pointers and other
memory locations. You can execute several types of control within a debugger that
include setting breakpoints, setting watch points, examining memory, and looking at the
assembler code.

Breakpoints
Breakpoints are instructions to the debugger that when a particular line of code is ready
to be executed, the program should stop. This allows you to run your program unim-
peded until the line in question is reached. Breakpoints help you analyze the current con-
dition of variables just before and after a critical line of code.

Watch Points
It is possible to tell the debugger to show you the value of a particular variable or to
break when a particular variable is read or written to. Watch points enable you to set
these conditions, and, at times, even to modify the value of a variable while the program
is running.

Examining Memory
At times, it is important to see the actual values held in memory. Modern debuggers can
show values in the form of the actual variable; that is, strings can be shown as characters,
longs as numbers rather than as four bytes, and so forth. Sophisticated C++ debuggers
can even show complete classes and provide the current value of all the member vari-
ables, including the this pointer.

Assembler
Although reading through the source can be all that is required to find a bug, when all
else fails, it is possible to instruct the debugger to show you the actual assembly code

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 747

generated for each line of your source code. You can examine the memory registers and
flags, and generally delve as deep into the inner workings of your program as required.

Learn to use your debugger. It can be the most powerful weapon in your holy war against
bugs. Runtime bugs are the hardest to find and squash, and a powerful debugger can
make it possible, if not easy, to find nearly all of them.

Summary
Today, you learned the basics for creating and using exceptions. Exceptions are objects
that can be created and thrown at points in the program where the executing code cannot
handle the error or other exceptional condition that has arisen. Other parts of the pro-
gram, higher in the call stack, implement catch blocks that catch the exception and take
appropriate action.

Exceptions are normal, user-created objects, and as such can be passed by value or by
reference. They can contain data and methods, and the catch block can use that data to
decide how to deal with the exception.

It is possible to create multiple catch blocks, but after an exception matches a catch
block’s signature, it is considered to be handled and is not given to the subsequent catch
blocks. It is important to order the catch blocks appropriately so that more specific
catch blocks have first chance, and more general catch blocks handle those not other-
wise handled.

Today’s lesson also mentioned the fundamentals of symbolic debuggers, including using
watch points, breakpoints, and so forth. These tools can help you zero in on the part of
your program that is causing the error and let you see the value of variables as they
change during the course of the execution of the program.

Q&A
Q Why bother with raising exceptions? Why not handle the error right where it

happens?

A Often, the same error can be generated in different parts of the code. Exceptions let
you centralize the handling of errors. In addition, the part of the code that gener-
ates the error might not be the best place to determine how to handle the error.

Q Why generate an object? Why not just pass an error code?

A Objects are more flexible and powerful than error codes. They can convey more
information, and the constructor/destructor mechanisms can be used for the

748 Day 20

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 748

Handling Errors and Exceptions 749

20

creation and removal of resources that might be required to properly handle the
exceptional condition.

Q Why not use exceptions for nonerror conditions? Isn’t it convenient to be able
to express-train back to previous areas of the code, even when nonexceptional
conditions exist?

A Yes, some C++ programmers use exceptions for just that purpose. The danger is
that exceptions might create memory leaks as the stack is unwound and some
objects are inadvertently left in the free store. With careful programming tech-
niques and a good compiler, this can usually be avoided. Otherwise, it is a matter
of personal aesthetic; some programmers feel that, by their nature, exceptions
should not be used for routine conditions.

Q Does an exception have to be caught in the same place where the try block
created the exception?

A No, it is possible to catch an exception anywhere in the call stack. As the stack is
unwound, the exception is passed up the stack until it is handled.

Q Why use a debugger when I can use cout and other such statements?

A The debugger provides a much more powerful mechanism for stepping through
your code and watching values change without having to clutter your code with
thousands of debugging statements. In addition, there is a significant risk each time
you add or remove lines from your code. If you have just removed problems by
debugging, and you accidentally delete a real code line when deleting your use of
cout, you haven’t helped the situation.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to tomorrow’s lesson.

Quiz
1. What is an exception?

2. What is a try block?

3. What is a catch statement?

4. What information can an exception contain?

5. When are exception objects created?

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 749

6. Should you pass exceptions by value or by reference?

7. Will a catch statement catch a derived exception if it is looking for the base class?

8. If two catch statements are used, one for base and one for derived, which should
come first?

9. What does catch(...) mean?

10. What is a breakpoint?

Exercises
1. Create a try block, a catch statement, and a simple exception.

2. Modify the answer from Exercise 1, put data into the exception along with an
accessor function, and use it in the catch block.

3. Modify the class from Exercise 2 to be a hierarchy of exceptions. Modify the
catch block to use the derived objects and the base objects.

4. Modify the program from Exercise 3 to have three levels of function calls.

5. BUG BUSTERS: What is wrong with the following code?
#include “stringc.h” // our string class

class xOutOfMemory
{
public:

xOutOfMemory(const String& where) : location(where){}
~xOutOfMemory(){}
virtual String where(){ return location };

private:
String location;

}

int main()
{

try
{

char *var = new char;
if (var == 0)

throw xOutOfMemory();
}
catch(xOutOfMemory& theException)
{

cout << “Out of memory at “ << theException.location() << endl;
}
return 0;

}

This listing shows exception handling for handling an out-of-memory error.

750 Day 20

26 0672327112_ch20.qxd 11/19/04 12:29 PM Page 750

DAY 21

WEEK 3

What’s Next
Congratulations! You are nearly done with a full three-week intensive introduc-
tion to C++. By now, you should have a solid understanding of C++, but in
modern programming there is always more to learn. This final day’s lesson fills
in some missing details and then sets the course for continued study.

Most of what you write in your source code files is C++. This is interpreted
by the compiler and turned into your program. Before the compiler runs, how-
ever, the preprocessor runs, and this provides an opportunity for conditional
compilation.

Today, you will learn

• What conditional compilation is and how to manage it

• How to write macros using the preprocessor

• How to use the preprocessor in finding bugs

• How to manipulate individual bits and use them as flags

• What the next steps are in learning to use C++ effectively

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 751

The Preprocessor and the Compiler
Every time you run your compiler, your preprocessor runs first. The preprocessor looks
for preprocessor instructions, each of which begins with a pound symbol (#). The effect
of each of these instructions is a change to the text of the source code. The result is a
new source code file—a temporary file that you normally don’t see, but that you can
instruct the compiler to save so you can examine it if you want to.

The compiler does not read your original source code file; it reads the output of the pre-
processor and compiles that file. You’ve seen the effect of this already with the #include
directive. This instructs the preprocessor to find the file whose name follows the
#include directive and to write it into the intermediate file at that location. It is as if you
had typed that entire file right into your source code, and by the time the compiler sees
the source code, the included file is there.

752 Day 21

Nearly every compiler has a switch that you can set either in the Integrated
Development Environment (IDE) or at the command line, which instructs the
compiler to save the intermediate file. Check your compiler manual for the
right switches to set for your compiler if you want to examine this file.

TIP

The #define Preprocessor Directive
You can create string substitutions using the #define command you write

#define BIG 512

you have instructed the precompiler to substitute the string 512 wherever it sees the
string BIG. This is not a string in the C++ sense. The characters “512” are substituted in
your source code wherever the word “BIG” is seen. Thus, if you write

#define BIG 512
int myArray[BIG];

the intermediate file produced by the precompiler looks like this:

int myArray[512];

Note that the #define statement is gone. Precompiler statements are all removed from
the intermediate file; they do not appear in the final source code at all.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 752

What’s Next 753

21

Using #define for Constants
One way to use #define is as a substitute for constants. This is almost never a good idea,
however, because #define merely makes a string substitution and does no type checking.
As explained in the section on constants, tremendous advantages exist in using the const
keyword rather than #define.

Using #define for Tests
A second way to use #define is simply to declare that a particular character string is
defined. Therefore, you could write

#define DEBUG

Later in your listing, you can test to determine whether BIG has been defined and take
action accordingly. To check if it is defined, you can use the preprocessor #if command
followed by the defined command:

#if defined DEBUG
cout << Debug defined”;
#endif

The defined expression evaluates to true if the name it tests—DEBUG in this case—has
been defined already. Keep in mind that this happens in the preprocessor, not in the com-
piler or in the executing program.

When the preprocessor reads the #if defined, it checks a table it has built to see
whether you’ve defined the value that follows. If you have, defined evaluates to true,
and everything between the #if defined DEBUG and its #endif is written into the inter-
mediate file for compiling. If it evaluates to false, nothing between #if defined DEBUG
and #endif is written into the intermediate file; it is as if it were never in the source code
in the first place.

A shortcut directive also exists for checking defined values. This is the #ifdef directive:

#ifdef DEBUG
cout << “Debug defined”;
#endif

You can also test to see if a value is not defined. This is done by using the not operator
with the defined directive:

#if !defined DEBUG
cout << “Debug is not defined”;
#endif

There is also a shortcut version for this as well, #ifndef:

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 753

#ifndef DEBUG
cout << “Debug is not defined.”;
#endif

Note that #ifndef is the logical reverse of #ifdef. #ifndef evaluates to true if the string
has not been defined up to that point in the file.

You should notice that all of these checks required that #endif also be included to indi-
cate the end of the code impacted by the check.

The #else Precompiler Command
As you might imagine, the term #else can be inserted between either #ifdef or #ifndef
and the closing #endif. Listing 21.1 illustrates how these terms are used.

LISTING 21.1 Using #define

0: #define DemoVersion
1: #define SW_VERSION 5
2: #include <iostream>
3:
4: using std::endl;
5: using std::cout;
6:
7: int main()
8: {
9: cout << “Checking on the definitions of DemoVersion,”;
10: cout << “SW_VERSION, and WINDOWS_VERSION...” << endl;
11:
12: #ifdef DemoVersion
13: cout << “DemoVersion defined.” << endl;
14: #else
15: cout << “DemoVersion not defined.” << endl;
16: #endif
17:
18: #ifndef SW_VERSION
19: cout << “SW_VERSION not defined!” << endl;
20: #else
21: cout << “SW_VERSION defined as: “
22: << SW_VERSION << endl;
23: #endif
24:
25: #ifdef WINDOWS_VERSION
26: cout << “WINDOWS_VERSION defined!” << endl;
27: #else
28: cout << “WINDOWS_VERSION was not defined.” << endl;
29: #endif
30:
31: cout << “Done.” << endl;
32: return 0;
33: }

754 Day 21

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 754

What’s Next 755

21

Checking on the definitions of DemoVersion, NT_VERSION,_and
WINDOWS_VERSION...
DemoVersion defined.
NT_VERSION defined as: 5
WINDOWS_VERSION was not defined.
Done.

On lines 0 and 1, DemoVersion and NT_VERSION are defined, with SW_VERSION
defined with the string 5. On line 12, the definition of DemoVersion is tested, and

because DemoVersion is defined (albeit with no value), the test is true and the string on
line 11 is printed.

On line 18 is the test that SW_VERSION is not defined. Because SW_VERSION is defined, this
test fails and execution jumps to line 21. Here the string 5 is substituted for the word
SW_VERSION; this is seen by the compiler as

cout << “SW_VERSION defined as: “ << 5 << endl;

Note that the first word SW_VERSION is not substituted because it is in a quoted string.
The second SW_VERSION is substituted, however, and thus the compiler sees 5 as if you
had typed 5 there.

Finally, on line 25, the program tests for WINDOWS_VERSION. Because you did not define
WINDOWS_VERSION, the test fails and the message on line 28 is printed.

Inclusion and Inclusion Guards
You will create projects with many different files. You will probably organize your direc-
tories so that each class has its own header file (for example, .hpp) with the class decla-
ration and its own implementation file (for example, .cpp) with the source code for the
class methods.

Your main() function will be in its own .cpp file, and all the .cpp files will be compiled
into .obj files, which will then be linked into a single program by the linker.

Because your programs will use methods from many classes, many header files will be
included in each file. Also, header files often need to include one another. For example,
the header file for a derived class’s declaration must include the header file for its base
class.

Imagine that the Animal class is declared in the file ANIMAL.hpp. The Dog class (which
derives from Animal) must include the file ANIMAL.hpp in DOG.hpp, or Dog will not be
able to derive from Animal. The Cat header also includes ANIMAL.hpp for the same
reason.

OUTPUT

ANALYSIS

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 755

If you create a program that uses both a Cat and a Dog, you will be in danger of includ-
ing ANIMAL.hpp twice. This generates a compile-time error because it is not legal to
declare a class (Animal) twice, even though the declarations are identical.

You can solve this problem with inclusion guards. At the top of your ANIMAL header file,
you write these lines:

#ifndef ANIMAL_HPP
#define ANIMAL_HPP
... // the whole file goes here
#endif

This says, if you haven’t defined the term ANIMAL_HPP, go ahead and define it now.
Between the #define statement and the closing #endif are the entire contents of the file.

The first time your program includes this file, it reads the first line and the test evaluates
to true; that is, you have not yet defined ANIMAL_HPP. So, it defines it and then includes
the entire file.

The second time your program includes the ANIMAL.hpp file, it reads the first line and the
test evaluates to false because you have already included ANIMAL.hpp. The preprocessor,
therefore, doesn’t process any lines until it reaches the next #else (in this case, there
isn’t one) or the next #endif (at the end of the file). Thus, it skips the entire contents of
the file, and the class is not declared twice.

The actual name of the defined symbol (ANIMAL_HPP) is not important, although it is cus-
tomary to use the filename in all uppercase with the dot (.) changed to an underscore.
This is purely convention; however, because you won’t be able to give two files the same
name, this convention works.

756 Day 21

It never hurts to use inclusion guards. Often, they will save you hours of
debugging time.

NOTE

Macro Functions
The #define directive can also be used to create macro functions. A macro function is a
symbol created using #define that takes an argument, much like a function does. The
preprocessor substitutes the substitution string for whatever argument it is given. For
example, you can define the macro TWICE as

#define TWICE(x) ((x) * 2)

and then in your code you write

TWICE(4)

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 756

What’s Next 757

21

The entire string TWICE(4) is removed, and the value ((4) * 2) is substituted. When
the precompiler sees the 4, it substitutes ((4) * 2), which then evaluates to 4 * 2,
or 8.

A macro can have more than one parameter, and each parameter can be used repeatedly
in the replacement text. Two common macros are MAX and MIN:

#define MAX(x,y) ((x) > (y) ? (x) : (y))
#define MIN(x,y) ((x) < (y) ? (x) : (y))

Note that in a macro function definition, the opening parenthesis for the parameter list
must immediately follow the macro name, with no spaces. The preprocessor is not as for-
giving of whitespace as is the compiler. If there is a space, a standard substitution is used
like you saw earlier in today’s lesson.

For example, if you write:

#define MAX (x,y) ((x) > (y) ? (x) : (y))

and then try to use MAX like this:

int x = 5, y = 7, z;
z = MAX(x,y);

the intermediate code is

int x = 5, y = 7, z;
z = (x,y) ((x) > (y) ? (x) : (y))(x,y)

A simple text substitution is done, rather than invoking the macro function. Thus, the
token MAX has substituted for it (x,y) ((x) > (y) ? (x) : (y)), and then that is
followed by the (x,y), which follows MAX.

By removing the space between MAX and (x,y), however, the intermediate code becomes:

int x = 5, y = 7, z;
a = ((5) > (7) ? (5) : (7));

This, of course, then evaluates to 7.

Why All the Parentheses?
You might be wondering why so many parentheses are in many of the macros presented
so far. The preprocessor does not demand that parentheses be placed around the argu-
ments in the substitution string, but the parentheses help you to avoid unwanted side
effects when you pass complicated values to a macro. For example, if you define MAX as

#define MAX(x,y) x > y ? x : y

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 757

and pass in the values 5 and 7, the macro works as intended. But, if you pass in a more
complicated expression, you receive unintended results, as shown in Listing 21.2.

LISTING 21.2 Using Parentheses in Macros

0: // Listing 21.2 Macro Expansion
1: #include <iostream>
2: using namespace std;
3:
4: #define CUBE(a) ((a) * (a) * (a))
5: #define THREE(a) a * a * a
6:
7: int main()
8: {
9: long x = 5;
10: long y = CUBE(x);
11: long z = THREE(x);
12:
13: cout << “y: “ << y << endl;
14: cout << “z: “ << z << endl;
15:
16: long a = 5, b = 7;
17: y = CUBE(a+b);
18: z = THREE(a+b);
19:
20: cout << “y: “ << y << endl;
21: cout << “z: “ << z << endl;
22: return 0;
23: }

y: 125
z: 125
y: 1728
z: 82

On line 4, the macro CUBE is defined, with the argument x put into parentheses
each time it is used. On line 5, the macro THREE is defined, without using paren-

theses.

In the first use of these macros on lines 10 and 11, the value 5 is given as the parameter,
and both macros work fine. CUBE(5) expands to ((5) * (5) * (5)), which evaluates
to 125, and THREE(5) expands to 5 * 5 * 5, which also evaluates to 125.

In the second use, on lines 16 to 18, the parameter is 5 + 7. In this case, CUBE(5+7)
evaluates to

((5+7) * (5+7) * (5+7))

OUTPUT

758 Day 21

ANALYSIS

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 758

What’s Next 759

21

which evaluates to

((12) * (12) * (12))

which, in turn, evaluates to 1728. THREE(5+7), however, evaluates to

5 + 7 * 5 + 7 * 5 + 7

Because multiplication has a higher precedence than addition, this becomes

5 + (7 * 5) + (7 * 5) + 7

which evaluates to

5 + (35) + (35) + 7

which finally evaluates to 82. As you can see, without the parenthesis, an error occurs—
three of 5+7 is really 36!

String Manipulation
The preprocessor provides two special operators for manipulating strings in macros. The
stringizing operator (#) substitutes a quoted string for whatever follows the stringizing
operator. The concatenation operator bonds two strings into one.

Stringizing
The stringizing operator puts quotes around any characters following the operator, up to
the next whitespace. Thus, if you write

#define WRITESTRING(x) cout << #x

and then call

WRITESTRING(This is a string);

the precompiler turns it into

cout << “This is a string”;

Note that the string This is a string is put into quotes, as required by cout.

Concatenation
The concatenation operator allows you to bond more than one term into a new word. The
new word is actually a token that can be used as a class name, a variable name, an offset
into an array, or anywhere else a series of letters might appear.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 759

Assume for a moment that you have five functions named fOnePrint, fTwoPrint,
fThreePrint, fFourPrint, and fFivePrint. You can then declare

#define fPRINT(x) f ## x ## Print

and then use it with fPRINT(Two) to generate fTwoPrint and with fPRINT(Three) to
generate fThreePrint.

At the conclusion of Week 2, a PartsList class was developed. This list could only han-
dle objects of type List. Suppose that this list works well, and you want to be able to
make lists of animals, cars, computers, and so forth.

One approach is to create AnimalList, CarList, ComputerList, and so on, cutting and
pasting the code in place. This quickly becomes a nightmare because every change to
one list must be written to all the others.

An alternative is to use macros and the concatenation operator. For example, you could
define

#define Listof(Type) class Type##List \
{ \
public: \
Type##List(){} \
private: \
int itsLength; \
};

This example is overly sparse, but the idea is to put in all the necessary methods and
data. When you are ready to create an AnimalList, you write

Listof(Animal)

and this is turned into the declaration of the AnimalList class. Some problems occur
with this approach, all of which were discussed in detail on Day 19, “Templates.”

Predefined Macros
Many compilers predefine a number of useful macros, including __DATE__, __TIME__,
__LINE__, and __FILE__. Each of these names is surrounded by two underscore charac-
ters to reduce the likelihood that the names will conflict with names you’ve used in your
program.

When the precompiler sees one of these macros, it makes the appropriate substitutes.
For __DATE__, the current date is substituted. For __TIME__, the current time is substi-
tuted. __LINE__ and __FILE__ are replaced with the source code line number and file-
name, respectively. You should note that this substitution is made when the source is

760 Day 21

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 760

What’s Next 761

21

precompiled, not when the program is run. If you ask the program to print __DATE__,
you do not get the current date; instead, you receive the date the program was compiled.
These defined macros are very useful in debugging, as mentioned on Day 20, “Handling
Errors and Exceptions,” during the discussion of exceptions.

The assert() Macro
Many compilers offer an assert() macro. The assert() macro returns true if its para-
meter evaluates to true and takes some kind of action if it evaluates false. Many compil-
ers abort the program on an assert() that fails; others throw an exception (see Day 20).

The assert() macro is used for debugging your program before you release it. In fact, if
DEBUG is not defined, the preprocessor collapses the assert() so that no code from it is
included in the generated source for the compiler. This is a great help during develop-
ment, and when the final product ships, there is no performance penalty or increase in
the size of the executable version of the program.

Rather than depending on the compiler-provided assert(), you are free to write your
own assert() macro. Listing 21.3 provides a simple custom assert() macro and shows
its use.

LISTING 21.3 A Simple assert() Macro

0: // Listing 21.3 ASSERTS
1: #define DEBUG
2: #include <iostream>
3: using namespace std;
4:
5: #ifndef DEBUG
6: #define ASSERT(x)
7: #else
8: #define ASSERT(x) \
9: if (! (x)) \
10: { \
11: cout << “ERROR!! Assert “ << #x << “ failed << endl; \
12: cout << “ on line “ << __LINE__ << endl; \
13: cout << “ in file “ << __FILE__ << endl; \
14: }
15: #endif
16:
17: int main()
18: {
19: int x = 5;
20: cout << “First assert: “ << endl;
21: ASSERT(x==5);

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 761

22: cout << “\nSecond assert: “ << endl;
23: ASSERT(x != 5);
24: cout << “\nDone. << endl”;
25: return 0;
26: }

First assert:

Second assert:
ERROR!! Assert x !=5 failed
on line 24
in file List2104.cpp

Done.

On line 1, the term DEBUG is defined. Typically, this is done from the command
line (or the IDE) at compile time, so you can turn this on and off at will. On lines

8–14, the ASSERT() macro is defined. Typically, this is done in a header file, and that
header (assert.hpp) is included in all your implementation files.

On line 5, the term DEBUG is tested. If it is not defined, ASSERT() is defined to create no
code at all. If DEBUG is defined, the functionality defined on lines 8–14 is applied.

The ASSERT() itself is one long statement split across seven source code lines as far as
the precompiler is concerned. On line 9, the value passed in as a parameter is tested; if it
evaluates false, the statements on lines 11–13 are invoked, printing an error message. If
the value passed in evaluates true, no action is taken.

Debugging with assert()
When writing your program, you will often know deep down in your soul that something
is true: A function has a certain value, a pointer is valid, and so forth. It is the nature of
bugs that what you know to be true might not be so under some conditions. For example,
you know that a pointer is valid, yet the program crashes. assert() can help you find
this type of bug, but only if you make it a regular practice to use assert() liberally in
your code. Every time you assign or are passed a pointer as a parameter or function
return value, be certain to assert that the pointer is valid. Any time your code depends on
a particular value being in a variable, assert() that that is true.

No penalty is assessed for frequent use of assert(); it is removed from the code when
you undefine debugging. It also provides good internal documentation, reminding the
reader of what you believe is true at any given moment in the flow of the code.

OUTPUT

762 Day 21

LISTING 21.3 continued

ANALYSIS

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 762

What’s Next 763

21

Using assert() Versus Exceptions
Yesterday, you saw how to work with exceptions to handle error conditions. It is impor-
tant to note that assert() is not intended to handle runtime error conditions such as bad
data, out-of-memory conditions, unable to open file, and so forth. assert() is created to
catch programming errors only. That is, if an assert() “fires,” you know you have a bug
in your code.

This is critical because when you ship your code to your customers, instances of
assert() are removed. You can’t depend on an assert() to handle a runtime problem
because the assert() won’t be there.

It is a common mistake to use assert() to test the return value from a memory
assignment:

Animal *pCat = new Cat;
Assert(pCat); // bad use of assert
pCat->SomeFunction();

This is a classic programming error; every time the programmer runs the program,
enough memory is available and the assert() never fires. After all, the programmer is
running with lots of extra RAM to speed up the compiler, debugger, and so forth. The
programmer then ships the executable, and the poor user, who has less memory, reaches
this part of the program and the call to new fails and returns NULL. The assert(), how-
ever, is no longer in the code and nothing indicates that the pointer points to NULL. As
soon as the statement pCat->SomeFunction() is reached, the program crashes.

Getting NULL back from a memory assignment is not a programming error, although it
is an exceptional situation. Your program must be able to recover from this condition, if
only by throwing an exception. Remember: The entire assert() statement is gone when
DEBUG is undefined. Exceptions are covered in detail on Day 20.

Side Effects
It is not uncommon to find that a bug appears only after the instances of assert() are
removed. This is almost always due to the program unintentionally depending on side
effects of things done in assert() and other debug-only code. For example, if you write

ASSERT (x = 5)

when you mean to test whether x == 5, you create a particularly nasty bug.

Suppose that just prior to this assert(), you called a function that set x equal to 0. With
this assert(), you think you are testing whether x is equal to 5; in fact, you are setting x
equal to 5. The test returns true because x = 5 not only sets x to 5, but returns the value
5, and because 5 is nonzero, it evaluates as true.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 763

When you pass the assert() statement, x really is equal to 5 (you just set it!). Your pro-
gram runs just fine. You’re ready to ship it, so you turn off debugging. Now, the
assert() disappears, and you are no longer setting x to 5. Because x was set to 0 just
before this, it remains at 0 and your program breaks.

In frustration, you turn debugging back on, but hey! Presto! The bug is gone. Again, this
is rather funny to watch, but not to live through, so be very careful about side effects in
debugging code. If you see a bug that only appears when debugging is turned off, take a
look at your debugging code with an eye out for nasty side effects.

Class Invariants
Most classes have some conditions that should always be true whenever you are finished
with a class member function. These class invariants are the sine qua non of your class.
For example, it might be true that your CIRCLE object should never have a radius of zero
or that your ANIMAL should always have an age greater than zero and less than 100.

It can be very helpful to declare an Invariants() method that returns true only if each
of these conditions is still true. You can then ASSERT(Invariants()) at the start and at
the completion of every class method. The exception would be that your Invariants()
would not expect to return true before your constructor runs or after your destructor
ends. Listing 21.4 demonstrates the use of the Invariants() method in a trivial class.

LISTING 21.4 Using Invariants()

0: #define DEBUG
1: #define SHOW_INVARIANTS
2: #include <iostream>
3: #include <string.h>
4: using namespace std;
5:
6: #ifndef DEBUG
7: #define ASSERT(x)
8: #else
9: #define ASSERT(x) \
10: if (! (x)) \
11: { \
12: cout << “ERROR!! Assert “ << #x << “ failed” << endl; \
13: cout << “ on line “ << __LINE__ << endl; \
14: cout << “ in file “ << __FILE__ << endl; \
15: }
16: #endif
17:
18:
19: const int FALSE = 0;
20: const int TRUE = 1;

764 Day 21

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 764

What’s Next 765

21

21: typedef int BOOL;
22:
23:
24: class String
25: {
26: public:
27: // constructors
28: String();
29: String(const char *const);
30: String(const String &);
31: ~String();
32:
33: char & operator[](int offset);
34: char operator[](int offset) const;
35:
36: String & operator= (const String &);
37: int GetLen()const { return itsLen; }
38: const char * GetString() const { return itsString; }
39: BOOL Invariants() const;
40:
41: private:
42: String (int); // private constructor
43: char * itsString;
44: // unsigned short itsLen;
45: int itsLen;
46: };
47:
48: // default constructor creates string of 0 bytes
49: String::String()
50: {
51: itsString = new char[1];
52: itsString[0] = ‘\0’;
53: itsLen=0;
54: ASSERT(Invariants());
55: }
56:
57: // private (helper) constructor, used only by
58: // class methods for creating a new string of
59: // required size. Null filled.
60: String::String(int len)
61: {
62: itsString = new char[len+1];
63: for (int i = 0; i <= len; i++)
64: itsString[i] = ‘\0’;
65: itsLen=len;
66: ASSERT(Invariants());
67: }
68:

LISTING 21.4 continued

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 765

69: // Converts a character array to a String
70: String::String(const char * const cString)
71: {
72: itsLen = strlen(cString);
73: itsString = new char[itsLen+1];
74: for (int i = 0; i < itsLen; i++)
75: itsString[i] = cString[i];
76: itsString[itsLen]=’\0’;
77: ASSERT(Invariants());
78: }
79:
80: // copy constructor
81: String::String (const String & rhs)
82: {
83: itsLen=rhs.GetLen();
84: itsString = new char[itsLen+1];
85: for (int i = 0; i < itsLen;i++)
86: itsString[i] = rhs[i];
87: itsString[itsLen] = ‘\0’;
88: ASSERT(Invariants());
89: }
90:
91: // destructor, frees allocated memory
92: String::~String ()
93: {
94: ASSERT(Invariants());
95: delete [] itsString;
96: itsLen = 0;
97: }
98:
99: // operator equals, frees existing memory
100: // then copies string and size
101: String& String::operator=(const String & rhs)
102: {
103: ASSERT(Invariants());
104: if (this == &rhs)
105: return *this;
106: delete [] itsString;
107: itsLen=rhs.GetLen();
108: itsString = new char[itsLen+1];
109: for (int i = 0; i < itsLen;i++)
110: itsString[i] = rhs[i];
111: itsString[itsLen] = ‘\0’;
112: ASSERT(Invariants());
113: return *this;
114: }
115:
116: //non constant offset operator

766 Day 21

LISTING 21.4 continued

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 766

What’s Next 767

21

117: char & String::operator[](int offset)
118: {
119: ASSERT(Invariants());
120: if (offset > itsLen)
121: {
122: ASSERT(Invariants());
123: return itsString[itsLen-1];
124: }
125: else
126: {
127: ASSERT(Invariants());
128: return itsString[offset];
129: }
130: }
131:
132: // constant offset operator
133: char String::operator[](int offset) const
134: {
135: ASSERT(Invariants());
136: char retVal;
137: if (offset > itsLen)
138: retVal = itsString[itsLen-1];
139: else
140: retVal = itsString[offset];
141: ASSERT(Invariants());
142: return retVal;
143: }
144:
145: BOOL String::Invariants() const
146: {
147: #ifdef SHOW_INVARIANTS
148: cout << “String Tested OK “;
149: #endif
150: return ((itsLen && itsString) || (!itsLen && !itsString));
151: }
152:
153: class Animal
154: {
155: public:
156: Animal():itsAge(1),itsName(“John Q. Animal”)
157: {ASSERT(Invariants());}
158: Animal(int, const String&);
159: ~Animal(){}
160: int GetAge() { ASSERT(Invariants()); return itsAge;}
161: void SetAge(int Age)
162: {
163: ASSERT(Invariants());
164: itsAge = Age;

LISTING 21.4 continued

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 767

165: ASSERT(Invariants());
166: }
167: String& GetName()
168: {
169: ASSERT(Invariants());
170: return itsName;
171: }
172: void SetName(const String& name)
173: {
174: ASSERT(Invariants());
175: itsName = name;
176: ASSERT(Invariants());
177: }
178: BOOL Invariants();
179: private:
180: int itsAge;
181: String itsName;
182: };
183:
184: Animal::Animal(int age, const String& name):
185: itsAge(age),
186: itsName(name)
187: {
188: ASSERT(Invariants());
189: }
190:
191: BOOL Animal::Invariants()
192: {
193: #ifdef SHOW_INVARIANTS
194: cout << “Animal Tested OK”;
195: #endif
196: return (itsAge > 0 && itsName.GetLen());
197: }
198:
199: int main()
200: {
201: Animal sparky(5,”Sparky”);
202: cout << endl << sparky.GetName().GetString() << “ is “;
203: cout << sparky.GetAge() << “ years old.”;
204: sparky.SetAge(8);
205: cout << endl << sparky.GetName().GetString() << “ is “;
206: cout << sparky.GetAge() << “ years old.”;
207: return 0;
208: }

768 Day 21

LISTING 21.4 continued

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 768

What’s Next 769

21

String Tested OK String Tested OK String Tested OK String Tested OK
String Tested OK String Tested OK String Tested OK String Tested OK
String Tested OK StringTested OK String Tested OK String Tested OK
String Tested OK String Tested OK Animal Tested OK String Tested OK
Animal Tested OK
Sparky is Animal Tested OK 5 years old.Animal Tested OK Animal Tested OK
Animal
Tested OK
Sparky is Animal Tested OK 8 years old.String Tested OK

On lines 9–15, the ASSERT() macro is defined. If DEBUG is defined, this writes out
an error message when the ASSERT() macro evaluates false.

On line 39, the String class member function Invariants() is declared; it is defined on
lines 143–150. The constructor is declared on lines 49–55; on line 54, after the object is
fully constructed, Invariants() is called to confirm proper construction.

This pattern is repeated for the other constructors, and the destructor calls Invariants()
only before it sets out to destroy the object. The remaining class functions call
Invariants() before taking any action and then again before returning. This both
affirms and validates a fundamental principle of C++: Member functions other than con-
structors and destructors should work on valid objects and should leave them in a valid
state.

On line 176, class Animal declares its own Invariants() method, implemented on lines
189–195. Note on lines 155, 158, 161, and 163 that inline functions can call the
Invariants() method.

Printing Interim Values
In addition to asserting that something is true using the ASSERT() macro, you might want
to print the current value of pointers, variables, and strings. This can be very helpful in
checking your assumptions about the progress of your program and in locating off-by-
one bugs in loops. Listing 21.5 illustrates this idea.

LISTING 21.5 Printing Values in DEBUG Mode

0: // Listing 21.5 - Printing values in DEBUG mode
1: #include <iostream>
2: using namespace std;
3: #define DEBUG
4:
5: #ifndef DEBUG
6: #define PRINT(x)

OUTPUT

ANALYSIS

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 769

7: #else
8: #define PRINT(x) \
9: cout << #x << “:\t” << x << endl;
10: #endif
11:
12: enum BOOL { FALSE, TRUE } ;
13:
14: int main()
15: {
16: int x = 5;
17: long y = 73898l;
18: PRINT(x);
19: for (int i = 0; i < x; i++)
20: {
21: PRINT(i);
22: }
23:
24: PRINT (y);
25: PRINT(“Hi.”);
26: int *px = &x;
27: PRINT(px);
28: PRINT (*px);
29: return 0;
30: }

x: 5
i: 0
i: 1
i: 2
i: 3
i: 4
y: 73898
“Hi.”: Hi.
px: OO12FEDC
*px: 5

The PRINT() macro on lines 6 and 8–9 provides printing of the current value of
the supplied parameter. Note that the first thing fed to cout on line 9 is the

stringized version of the parameter; that is, if you pass in x, cout receives “x”.

Next, cout receives the quoted string “:\t”, which prints a colon and then a tab. Third,
cout receives the value of the parameter (x), and then finally, endl, which writes a new
line and flushes the buffer.

Note that you might receive a value other than 0012FEDC.

OUTPUT

770 Day 21

LISTING 21.5 continued

ANALYSIS

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 770

What’s Next 771

21

Macros Versus Functions and Templates
Macros suffer from four problems in C++. The first is that they can be confusing if they
get large because all macros must be defined on one line. You can extend that line by
using the backslash character (\), but large macros quickly become difficult to manage.

The second problem is that macros are expanded inline each time they are used. This
means that if a macro is used a dozen times, the substitution appears a dozen times in
your program, rather than appearing once as a function call does. On the other hand, they
are usually quicker than a function call because the overhead of a function call is
avoided.

The fact that they are expanded inline leads to the third problem, which is that the macro
does not appear in the intermediate source code used by the compiler; therefore, it is
unavailable in most debuggers. This makes debugging macros tricky.

The final problem, however, is the biggest: Macros are not type-safe. Although it is con-
venient that absolutely any argument can be used with a macro, this completely under-
mines the strong typing of C++ and so is an anathema to C++ programmers. Of course,
the right way to solve this is with templates, as you saw on Day 19.

Inline Functions
It is often possible to declare an inline function rather than a macro. For example, Listing
21.6 creates an inline Cube() function, which accomplishes the same thing as the CUBE
macro in Listing 21.2, but it does so in a type-safe way.

LISTING 21.6 Using Inline Rather than a Macro

0: #include <iostream>
1: using namespace std;
2:
3: inline unsigned long Square(unsigned long a) { return a * a; }
4: inline unsigned long Cube(unsigned long a)
5: { return a * a * a; }
6: int main()
7: {
8: unsigned long x=1 ;
9: for (;;)
10: {
11: cout << “Enter a number (0 to quit): “;
12: cin >> x;
13: if (x == 0)
14: break;
15: cout << “You entered: “ << x;

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 771

16: cout << “. Square(“ << x << “): “;
17: cout << Square(x);
18: cout<< “. Cube(“ << x << “): “;
19: cout << Cube(x) << “.” << endl;
20: }
21: return 0;
22: }

Enter a number (0 to quit): 1
You entered: 1. Square(1): 1. Cube(1): 1.
Enter a number (0 to quit): 2
You entered: 2. Square(2): 4. Cube(2): 8.
Enter a number (0 to quit): 3
You entered: 3. Square(3): 9. Cube(3): 27.
Enter a number (0 to quit): 4
You entered: 4. Square(4): 16. Cube(4): 64.
Enter a number (0 to quit): 5
You entered: 5. Square(5): 25. Cube(5): 125.
Enter a number (0 to quit): 6
You entered: 6. Square(6): 36. Cube(6): 216.

On lines 3 and 4, two inline functions are defined: Square() and Cube(). Each is
declared to be inline, so like a macro function, these are expanded in place for

each call, and no function call overhead occurs.

As a reminder, expanded inline means that the content of the function is placed into the
code wherever the function call is made (for example, on line 17). Because the function
call is never made, there is no overhead of putting the return address and the parameters
on the stack.

On line 17, the function Square is called, as is the function Cube on line 19. Again,
because these are inline functions, it is exactly as if this line had been written like this:

16: cout << “. Square(“ << x << “): “ ;
17: cout << x * x ;
18: cout << “. Cube(“ << x << “): “ ;
19: cout << x * x * x << “.” << endl;

OUTPUT

772 Day 21

LISTING 21.6 continued

ANALYSIS

DO use CAPITALS for your macro names.
This is a pervasive convention, and other
programmers will be confused if you
don’t.

DO surround all arguments with paren-
theses in macro functions.

DON’T allow your macros to have side
effects. Don’t increment variables or
assign values from within a macro.

DON’T use #define values when a con-
stant variable will work.

DO DON’T

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 772

What’s Next 773

21

Bit Twiddling
Often, you will want to set flags in your objects to keep track of the state of your object.
(Is it in AlarmState? Has this been initialized yet? Are you coming or going?)

You can do this with user-defined Booleans, but some applications—particularly those
with low-level drivers and hardware devices—require you to be able to use the individual
bits of a variable as flags.

Each byte has eight bits, so in a four-byte long you can hold 32 separate flags. A bit is
said to be “set” if its value is 1 and clear if its value is 0. When you set a bit, you make
its value 1, and when you clear it, you make its value 0. (Set and clear are both adjectives
and verbs.) You can set and clear bits by changing the value of the long, but that can be
tedious and confusing.

Appendix A, “Working with Numbers: Binary and Hexadecimal,”
provides valuable additional information about binary and hexadecimal
manipulation.

NOTE

C++ provides bitwise operators that act upon the individual bits of a variable. These look
like, but are different from, the logical operators, so many novice programmers confuse
them. The bitwise operators are presented in Table 21.1.

TABLE 21.1 The Bitwise Operators

Symbol Operator

& AND

| OR

^ exclusive OR

~ complement

Operator AND
The AND operator (&) is a single ampersand, in contrast to the logical AND, which is
two ampersands. When you AND two bits, the result is 1 if both bits are 1, but 0 if either
or both bits are 0. The way to think of this is the following: The result is 1 if bit 1 is set
and if bit 2 is set; otherwise, the result is 0.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 773

Operator OR
The second bitwise operator is OR (|). Again, this is a single vertical bar, in contrast to
the logical OR, which is two vertical bars. When you OR two bits, the result is 1 if either
bit is set or if both are. If neither bit is set, the value is 0.

Operator Exclusive OR
The third bitwise operator is exclusive OR (^). When you exclusive OR two bits, the
result is 1 if the two bits are different. The result is 0 if both bits are the same—if both
bits are set or neither bit is set.

The Complement Operator
The complement operator (~) clears every bit in a number that is set and sets every bit
that is clear. If the current value of the number is 1010 0011, the complement of that
number is 0101 1100.

Setting Bits
When you want to set or clear a particular bit, you use masking operations. If you have a
four-byte flag and you want to set bit 8 so that it is true (on), you need to OR the flag
with the value 128.

Why? 128 is 1000 0000 in binary; thus, the value of the eighth bit is 128. Whatever the
current value of that bit (set or clear), if you OR it with the value 128, you will set that
bit and not change any of the other bits. Assume that the current value of the eight bits is
1010 0110 0010 0110. ORing 128 to it looks like this:

9 8765 4321
1010 0110 0010 0110 // bit 8 is clear

| 0000 0000 1000 0000 // 128
_ _ _ _ _ _ _ _ _ _ _
1010 0110 1010 0110 // bit 8 is set

You should note a few more things. First, as usual, bits are counted from right to left.
Second, the value 128 is all zeros except for bit 8, the bit you want to set. Third, the
starting number 1010 0110 0010 0110 is left unchanged by the OR operation, except that
bit 8 was set. Had bit 8 already been set, it would have remained set, which is what you
want.

Clearing Bits
If you want to clear bit 8, you can AND the bit with the complement of 128. The com-
plement of 128 is the number you get when you take the bit pattern of 128 (1000 0000),

774 Day 21

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 774

What’s Next 775

21

set every bit that is clear, and clear every bit that is set (0111 1111). When you AND
these numbers, the original number is unchanged, except for the eighth bit, which is
forced to zero.

1010 0110 1010 0110 // bit 8 is set
& 1111 1111 0111 1111 // ~128
_ _ _ _ _ _ _ _ _ _ _
1010 0110 0010 0110 // bit 8 cleared

To fully understand this solution, do the math yourself. Each time both bits are 1, write 1
in the answer. If either bit is 0, write 0 in the answer. Compare the answer with the origi-
nal number. It should be the same except that bit 8 was cleared.

Flipping Bits
Finally, if you want to flip bit 8, no matter what its state, you exclusive OR the number
with 128. If you do this twice, you end up back with the original setting. Thus,

1010 0110 1010 0110 // number
^ 0000 0000 1000 0000 // 128
_ _ _ _ _ _ _ _ _ _ _
1010 0110 0010 0110 // bit flipped

^ 0000 0000 1000 0000 // 128
_ _ _ _ _ _ _ _ _ _ _
1010 0110 1010 0110 // flipped back

DO set bits by using masks and the OR
operator.

DO clear bits by using masks and the
AND operator.

DO flip bits using masks and the exclu-
sive OR operator.

DON’T confuse the different bit opera-
tors.

DON’T forget to consider bits to the left
of the bit(s) you are flipping. One byte is
eight bits; you need to know how many
bytes are in the variable you are using.

DO DON’T

Bit Fields
Under some circumstances, every byte counts, and saving six or eight bytes in a class
can make all the difference. If your class or structure has a series of Boolean variables or
variables that can have only a very small number of possible values, you might save
some room using bit fields.

Using the standard C++ data types, the smallest type you can use in your class is a type
char, which might be just one byte. You will usually end up using an int, which is most

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 775

often four bytes on a machine with a 32-bit processor. By using bit fields, you can store
eight binary values in a char and 32 such values in a four-byte integer.

Here’s how bit fields work: Bit fields are named and accessed the same as any class
member. Their type is always declared to be unsigned int. After the bit field name,
write a colon followed by a number.

The number is an instruction to the compiler as to how many bits to assign to this vari-
able. If you write 1, the bit represents either the value 0 or 1. If you write 2, two bits are
used to represent numbers; thus, the field would be able to represent 0, 1, 2, or 3, a total
of four values. A three-bit field can represent eight values, and so forth. Appendix A
reviews binary numbers. Listing 21.7 illustrates the use of bit fields.

LISTING 21.7 Using Bit Fields

0: #include <iostream>
1: using namespace std;
2: #include <string.h>
3:
4: enum STATUS { FullTime, PartTime } ;
5: enum GRADLEVEL { UnderGrad, Grad } ;
6: enum HOUSING { Dorm, OffCampus };
7: enum FOODPLAN { OneMeal, AllMeals, WeekEnds, NoMeals };
8:
9: class student
10: {
11: public:
12: student():
13: myStatus(FullTime),
14: myGradLevel(UnderGrad),
15: myHousing(Dorm),
16: myFoodPlan(NoMeals)
17: {}
18: ~student(){}
19: STATUS GetStatus();
20: void SetStatus(STATUS);
21: unsigned GetPlan() { return myFoodPlan; }
22:
23: private:
24: unsigned myStatus : 1;
25: unsigned myGradLevel: 1;
26: unsigned myHousing : 1;
27: unsigned myFoodPlan : 2;
28: };
29:
30: STATUS student::GetStatus()
31: {
32: if (myStatus)

776 Day 21

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 776

What’s Next 777

21

33: return FullTime;
34: else
35: return PartTime;
36: }
37:
38: void student::SetStatus(STATUS theStatus)
39: {
40: myStatus = theStatus;
41: }
42:
43: int main()
44: {
45: student Jim;
46:
47: if (Jim.GetStatus()== PartTime)
48: cout << “Jim is part-time” << endl;
49: else
50: cout << “Jim is full-time” << endl;
51:
52: Jim.SetStatus(PartTime);
53:
54: if (Jim.GetStatus())
55: cout << “Jim is part-time” << endl;
56: else
57: cout << “Jim is full-time” << endl;
58:
59: cout << “Jim is on the “ ;
60:
61: char Plan[80];
62: switch (Jim.GetPlan())
63: {
64: case OneMeal: strcpy(Plan,”One meal”); break;
65: case AllMeals: strcpy(Plan,”All meals”); break;
66: case WeekEnds: strcpy(Plan,”Weekend meals”); break;
67: case NoMeals: strcpy(Plan,”No Meals”);break;
68: default : cout << “Something bad went wrong! “<< endl;
69: break;
70: }
71: cout << Plan << “ food plan.” << endl;
72: return 0;
73: }

Jim is part-time
Jim is full-time
Jim is on the No Meals food plan.

On lines 4–7, several enumerated types are defined. These serve to define the
possible values for the bit fields within the student class.

OUTPUT

LISTING 21.7 continued

ANALYSIS

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 777

student is declared on lines 9–28. Although this is a trivial class, it is interesting
because all the data is packed into five bits on lines 24–27. The first bit on line 24 repre-
sents the student’s status, full-time or part-time. The second bit on line 25 represents
whether this is an undergraduate. The third bit on line 25 represents whether the student
lives in a dorm. The final two bits represent the four possible food plans.

The class methods are written as for any other class and are in no way affected by the
fact that these are bit fields and not integers or enumerated types.

The member function GetStatus() on lines 30–36 reads the Boolean bit and returns an
enumerated type, but this is not necessary. It could just as easily have been written to
return the value of the bit field directly. The compiler would have done the translation.

To prove that to yourself, replace the GetStatus() implementation with this code:

STATUS student::GetStatus()
{

return myStatus;
}

No change whatsoever should occur in the functioning of the program. It is a matter of
clarity when reading the code; the compiler isn’t particular.

Note that the code on line 47 must check the status and then print the meaningful mes-
sage. It is tempting to write this:

cout << “Jim is “ << Jim.GetStatus() << endl;

that simply prints this:

Jim is 0

The compiler has no way to translate the enumerated constant PartTime into meaningful
text.

On line 62, the program switches on the food plan, and for each possible value, it puts a
reasonable message into the buffer, which is then printed on line 71. Note again that the
switch statement could have been written as follows:

case 0: strcpy(Plan,”One meal”); break;
case 1: strcpy(Plan,”All meals”); break;
case 2: strcpy(Plan,”Weekend meals”); break;
case 3: strcpy(Plan,”No Meals”);break;

The most important thing about using bit fields is that the client of the class need not
worry about the data storage implementation. Because the bit fields are private, you can
feel free to change them later and the interface will not need to change.

778 Day 21

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 778

What’s Next 779

21

Programming Style
As stated elsewhere in this book, it is important to adopt a consistent coding style,
although in many ways it doesn’t matter which style you adopt. A consistent style makes
it easier to guess what you meant by a particular part of the code, and you avoid having
to look up whether you spelled the function with an initial cap the last time you
invoked it.

The following guidelines are arbitrary; they are based on the guidelines used in projects
done in the past, and they’ve worked well. You can just as easily make up your own, but
these will get you started.

As Emerson said, “Foolish consistency is the hobgoblin of small minds,” but having
some consistency in your code is a good thing. Make up your own, but then treat it as if
it were dispensed by the programming gods.

Indenting
If you use tabs, they should be three spaces. Be certain your editor converts each tab to
three spaces.

Braces
How to align braces can be the most controversial topic between C++ programmers.
Here are a few suggested tips:

• Matching braces should be aligned vertically.

• The outermost set of braces in a definition or declaration should be at the left mar-
gin. Statements within should be indented. All other sets of braces should be in line
with their leading statements.

• No code should appear on the same line as a brace. For example,

if (condition==true)
{

j = k;
SomeFunction();

}
m++;

As stated, the alignment of braces can be controversial. Many C++ program-
mers believe you should put the opening brace on the same line as the com-
mand it is associated with and the closing brace lines up with the command:

NOTE

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 779

Long Lines and Function Length
Keep lines to the width displayable on a single screen. Code that is off to the right is eas-
ily overlooked, and scrolling horizontally is annoying.

When a line is broken, indent the following lines. Try to break the line at a reasonable
place, and try to leave the intervening operator at the end of the previous line (instead of
at the beginning of the following line) so that it is clear that the line does not stand alone
and that more is coming.

In C++, functions tend to be much shorter than they were in C, but the old, sound advice
still applies. Try to keep your functions short enough to print the entire function on one
page.

Structuring switch Statements
Indent switches as follows to conserve horizontal space:

switch(variable)
{

case ValueOne:
ActionOne();
break;

case ValueTwo:
ActionTwo();
break;

default:
assert(“bad Action”);
break;

}

As you can see, the case statements are slightly indented and lined up. In addition, the
statements within each case are lined up. With this layout, it is generally easy to find a
case statement and easy to then follow its code.

Program Text
You can use several tips to create code that is easy to read. Code that is easy to read is
generally easier to maintain.

780 Day 21

if (condition==true) {
j = k;
SomeFunction();

}

This format is considered harder to read because the braces don’t line up.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 780

What’s Next 781

21

• Use whitespace to help readability.

• Don’t use spaces between object and array names and their operators (., ->, []).

• Unary operators are associated with their operands, so don’t put a space between
them. Do put a space on the side away from the operand. Unary operators include
!, ~, ++, --, -, * (for pointers), & (casts), and sizeof.

• Binary operators should have spaces on both sides: +, =, *, /, %, >>, <<, <, >, ==, !=,
&, |, &&, ||, ?:, =, +=, and so on.

• Don’t use lack of spaces to indicate precedence:

(4+ 3*2).

• Put a space after commas and semicolons, not before.

• Parentheses should not have spaces on either side.

• Keywords, such as if, should be set off by a space: if (a == b).

• The body of a single-line comment should be set off from the // with a space.

• Place the pointer or reference indicator next to the type name, not the variable
name:
char* foo;
int& theInt;

rather than
char *foo;
int &theInt;

• Do not declare more than one variable on the same line.

Naming Identifiers
The following are guidelines for working with identifier names:

• Identifier names should be long enough to be descriptive.

• Avoid cryptic abbreviations.

• Take the time and energy to spell things out.

• Do not use Hungarian notation. C++ is strongly typed and there is no reason to put
the type into the variable name. With user-defined types (classes), Hungarian nota-
tion quickly breaks down. The exceptions to this might be to use a prefix for point-
ers (p) and references (r), as well as for class member variables (its).

• Short names (i, p, x, and so on) should be used only where their brevity makes the
code more readable and where the usage is so obvious that a descriptive name is
not needed. In general, however, you should avoid this. Also, avoid the use of the
letters i, l, and o as variable names because they are easy to confuse with numbers.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 781

• The length of a variable’s name should be proportional to its scope.

• Be certain identifiers look and sound different from one another to minimize
confusion.

• Function (or method) names are usually verbs or verb-noun phrases: Search(),
Reset(), FindParagraph(), ShowCursor(). Variable names are usually abstract
nouns, possibly with an additional noun: count, state, windSpeed, windowHeight.
Boolean variables should be named appropriately: windowIconized, fileIsOpen.

Spelling and Capitalization of Names
Spelling and capitalization should not be overlooked when creating your own style.
Some tips for these areas include the following:

• Use all uppercase and underscore to separate the logical words of #defined names,
such as SOURCE_FILE_TEMPLATE. Note, however, that these are rare in C++.
Consider using constants and templates in most cases.

• All other identifiers should use mixed case—no underscores. Function names,
methods, class, typedef, and struct names should begin with a capitalized letter.
Elements such as data members or locals should begin with a lowercase letter.

• Enumerated constants should begin with a few lowercase letters as an abbreviation
for the enum. For example,

enum TextStyle
{

tsPlain,
tsBold,
tsItalic,
tsUnderscore,

};

Comments
Comments can make it much easier to understand a program. Sometimes, you will not
work on a program for several days or even months. In that time, you can forget what
certain code does or why it has been included. Problems in understanding code can also
occur when someone else reads your code. Comments that are applied in a consistent,
well-thought-out style can be well worth the effort. Several tips to remember concerning
comments include the following:

• Wherever possible, use C++ single-line // comments rather than the /* */ style.
Reserve the multiline style (/* */) for commenting out blocks of code that might
include C++ single-line comments.

782 Day 21

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 782

What’s Next 783

21

• Higher-level comments are infinitely more important than process details. Add
value; do not merely restate the code.

n++; // n is incremented by one

This comment isn’t worth the time it takes to type it in. Concentrate on the seman-
tics of functions and blocks of code. Say what a function does. Indicate side
effects, types of parameters, and return values. Describe all assumptions that are
made (or not made), such as “assumes n is nonnegative” or “will return –1 if x is
invalid.” Within complex logic, use comments to indicate the conditions that exist
at that point in the code.

• Use complete English sentences with appropriate punctuation and capitalization.
The extra typing is worth it. Don’t be overly cryptic and don’t abbreviate. What
seems exceedingly clear to you as you write code will be amazingly obtuse in a
few months.

• Use blank lines freely to help the reader understand what is going on. Separate
statements into logical groups.

Setting Up Access
The way you access portions of your program should also be consistent. Some tips for
access include the following:

• Always use public:, private:, and protected: labels; don’t rely on the defaults.

• List the public members first, then protected, then private. List the data members in
a group after the methods.

• Put the constructor(s) first in the appropriate section, followed by the destructor.
List overloaded methods with the same name adjacent to each other. Group acces-
sor functions together whenever possible.

• Consider alphabetizing the method names within each group and alphabetizing the
member variables. Be certain to alphabetize the filenames in include statements.

• Even though the use of the virtual keyword is optional when overriding, use it
anyway; it helps to remind you that it is virtual, and it also keeps the declaration
consistent.

Class Definitions
Try to keep the definitions of methods in the same order as the declarations. It makes
things easier to find.

When defining a function, place the return type and all other modifiers on a previous line
so that the class name and function name begin at the left margin. This makes it much
easier to find functions.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 783

include Files
Try as hard as you can to minimize the use of #include, and thus minimize the number
of files being included in header files. The ideal minimum is the header file for the class
from which this one derives. Other mandatory includes are those for objects that are
members of the class being declared. Classes that are merely pointed to or referenced
only need forward references of the form.

Don’t leave out an include file in a header just because you assume that whatever .cpp
file includes this one will also have the needed include. And don’t add extra ones to try
to “help out” other included files.

784 Day 21

All header files should use inclusion guards.TIP

Using assert()
You learned about assert() earlier today. Use assert() freely. It helps find errors, but it
also greatly helps a reader by making it clear what the assumptions are. It also helps to
focus the writer’s thoughts around what is valid and what isn’t.

Making Items Constant with const
Use const wherever appropriate: for parameters, variables, and methods. Often, there is
a need for both a const and a non-const version of a method; don’t use this as an excuse
to leave one out. Be very careful when explicitly casting from const to non-const and
vice versa (at times, this is the only way to do something), but be certain that it makes
sense, and include a comment.

Next Steps in Your C++ Development
You’ve spent three long, hard weeks working at C++, and you are likely to have the
basics needed to be a competent C++ programmer, but you are by no means finished.
There is much more to learn and many more places you can get valuable information as
you move from novice C++ programmer to expert.

The following sections recommend a number of specific sources of information, and
these recommendations reflect only personal experience and opinions. Dozens of books
and thousands of articles are available on each of these topics, however, so be certain to
get other opinions before purchasing.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 784

What’s Next 785

21

Where to Get Help and Advice
The very first thing you will want to do as a C++ programmer will be to tap into one or
more of the C++ communities on the Internet. These groups supply immediate contact
with hundreds or thousands of C++ programmers who can answer your questions, offer
advice, and provide a sounding board for your ideas.

The C++ Internet newsgroups (comp.lang.c++ and comp.lang.c++.moderated) are recom-
mended as excellent sources of information and support. There are also sites such as
http://www.CodeGuru.com and http://www.CodeProject.com. These two sites have hun-
dreds of thousands of C++ developers come to them every month. They offer resources
such as articles, tutorials, news, and discussions on C++. Numerous other such commu-
nities are available as well.

Also, you might want to look for local user groups. Many cities have C++ interest groups
where you can meet other programmers and exchange ideas.

Finally, compiler vendors such as Borland and Microsoft have newsgroups that can be
invaluable sources of information about their development environments and the C++
language.

Related C++ Topics: Managed C++, C#, and
Microsoft’s .NET
Microsoft’s new .NET platform is radically changing the way many of us develop for the
Internet. A key component of .NET is the new language, C#, as well as a number of seri-
ous extensions to C++ called Managed Extensions.

C# is a natural extension of C++, and is an easy bridge to .NET for C++ programmers. A
number of good books on C# are available, including Programming C# (O’Reilly Press),
and of course, there is Sams Teach Yourself the C# Language in 21 Days, which follows
a similar structure to the one used in this book.

As a programming language, C# has some differences from C++. For example, multiple
inheritance is not allowed in C#; though the use of interfaces provides similar capabili-
ties. In addition, C# avoids the use of pointers. This removes issues with dangling point-
ers and other such problems, at the price of making the language less capable of
low-level, real-time programming. The final item worth mentioning on C# is that it uses
a runtime and a garbage collector (GC). The GC takes care of freeing resources when
they are needed so you, the programmer, don’t have to.

Managed C++ is also from Microsoft and a part of .NET. In very simple terms, this is an
extension to C++ that gives C++ the ability to use all the features of .NET, including the
garbage collector and more.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 785

Staying in Touch
If you have comments, suggestions, or ideas about this book or other books, I’d love to
hear them. Please contact me through my Web site: www.libertyassociates.com. I look
forward to hearing from you.

786 Day 21

DO look at other books. There’s plenty
to learn and no single book can teach
you everything you need to know.

DO join a good C++ user group.

DON’T just read code! The best way to
learn C++ is to write C++ programs.

DO DON’T

Summary
Today, you learned more details about working with the preprocessor. Each time you run
the compiler, the preprocessor runs first and translates your preprocessor directives such
as #define and #ifdef.

The preprocessor does text substitution, although with the use of macros these can be
somewhat complex. By using #ifdef, #else, and #ifndef, you can accomplish condi-
tional compilation, compiling in some statements under one set of conditions and in
another set of statements under other conditions. This can assist in writing programs
for more than one platform and is often used to conditionally include debugging
information.

Macro functions provide complex text substitution based on arguments passed at compile
time to the macro. It is important to put parentheses around every argument in the macro
to ensure the correct substitution takes place.

Macro functions, and the preprocessor in general, are less important in C++ than they
were in C. C++ provides a number of language features, such as const variables and
templates, that offer superior alternatives to use of the preprocessor.

You also learned how to set and test individual bits and how to allocate a limited number
of bits to class members.

Finally, C++ style issues were addressed, and resources were provided for further study.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 786

What’s Next 787

21

Q&A
Q If C++ offers better alternatives than the preprocessor, why is this option still

available?

A First, C++ is backward-compatible with C, and all significant parts of C must be
supported in C++. Second, some uses of the preprocessor are still used frequently
in C++, such as inclusion guards.

Q Why use macro functions when I can use a regular function?

A Macro functions are expanded inline and are used as a substitute for repeatedly
typing the same commands with minor variations. Again, however, templates usu-
ally offer a better alternative.

Q How do I know when to use a macro versus an inline function?

A Use inline functions whenever possible. Although macros offer character substitu-
tion, stringizing, and concatenation, they are not type-safe and can make code that
is more difficult to maintain.

Q What is the alternative to using the preprocessor to print interim values dur-
ing debugging?

A The best alternative is to use watch statements within a debugger. For information
on watch statements, consult your compiler or debugger documentation.

Q How do I decide when to use an assert() and when to throw an exception?

A If the situation you’re testing can be true without your having committed a pro-
gramming error, use an exception. If the only reason for this situation to ever be
true is a bug in your program, use an assert().

Q When would I use bit structures rather than simply using integers?

A When the size of the object is crucial. If you are working with limited memory or
with communications software, you might find that the savings offered by these
structures is essential to the success of your product.

Q Can I assign a pointer to a bit field?

A No. Memory addresses usually point to the beginning of a byte. A bit field might
be in the middle of a byte.

Q Why do style wars generate so much emotion?

A Programmers become very attached to their habits. If you are used to the following
indentation:
if (SomeCondition){

// statements
} // closing brace

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 787

it is a difficult transition to give it up. New styles look wrong and create confusion.
If you get bored, try logging in to a popular online service and asking which inden-
tation style works best, which editor is best for C++, or which product is the best
word processor. Then sit back and watch as ten thousand messages are generated,
all contradicting one another.

Q Is that it?

A Yes! You’ve learned C++, but… there is always more to learn! Ten years ago, it
was possible for one person to learn all there was to know about a computer pro-
gramming language, or at least to feel pretty confident about being close. Today, it
is out of the question. You can’t possibly catch up, and even as you try, the industry
is changing. Be certain to keep reading, and stay in touch with the resources—
magazines and online services—that will keep you current with the latest changes.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to the final
Week in Review.

Quiz
1. What is an inclusion guard?

2. How do you instruct your compiler to print the contents of the intermediate file
showing the effects of the preprocessor?

3. What is the difference between #define debug 0 and #undef debug?

4. Consider the following macro:

#define HALVE(x) x / 2

What is the result if this is called with 4?

5. What is the result if the HALVE macro in Question 5 is called with 10+10?

6. How would you modify the HALVE macro to avoid erroneous results?

7. How many bit values could be stored in a two-byte variable?

8. How many values can be stored in five bits?

9. What is the result of 0011 1100 | 1111 1111?

10. What is the result of 0011 1100 & 1111 1111?

788 Day 21

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 788

What’s Next 789

21

Exercises
1. Write the inclusion guard statements for the header file STRING.H.

2. Write an assert() macro that prints an error message and the file and line number
if debug level is 2, that prints a message (without file and line number) if the level
is 1, and that does nothing if the level is 0.

3. Write a macro DPrint that tests whether DEBUG is defined and, if it is, prints the
value passed in as a parameter.

4. Write the declaration for creating a month, day, and year variable all stored within
a single unsigned int variable.

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 789

27 0672327112_ch21.qxd 11/19/04 12:29 PM Page 790

In Review
The following program (as shown in Listing R3.1) brings
together many of the advanced techniques you’ve learned
during the past three weeks of hard work. Week 3 in Review
provides a template-based linked list with exception handling.
Examine it in detail; if you understand it fully, you are a C++
programmer.

WEEK 3 15

16

17

18

19

20

21

If your compiler does not support templates, or
if your compiler does not support try and
catch, you will not be able to compile or run
this listing.

CAUTION

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 791

792 Week 3

LISTING R3.1 Week 3 in Review Listing

0: // **
1: //
2: // Title: Week 3 in Review
3: //
4: // File: Week3
5: //
6: // Description: Provide a template-based linked list
7: // demonstration program with exception handling
8: //
9: // Classes: PART - holds part numbers and potentially other
10: // information about parts. This will be the
11: // example class for the list to hold.
12: // Note use of operator<< to print the
13: // information about a part based on its
14: // runtime type.
15: //
16: // Node - acts as a node in a List
17: //
18: // List - template-based list that provides the
19: // mechanisms for a linked list
20: //
21: //
22: // Author: Jesse Liberty (jl)
23: //
24: // Developed: Pentium 200 Pro. 128MB RAM MVC 5.0
25: //
26: // Target: Platform independent
27: //
28: // Rev History: 9/94 - First release (jl)
29: // 4/97 - Updated (jl)
30: // 9/04 – Updated (blj)
31: // **

32: #include <iostream>

33: using namespace std;
34:
35: // exception classes

36: class Exception {};
37: class OutOfMemory : public Exception{};
38: class NullNode : public Exception{};
39: class EmptyList : public Exception {};
40: class BoundsError : public Exception {};
41:
42:

DAY 20

DAY 18

DAY 21

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 792

In Review 793

43: // **************** Part ************
44: // Abstract base class of parts
45: class Part
46: {
47: public:
48: Part():itsObjectNumber(1) {}
49: Part(int ObjectNumber):itsObjectNumber(ObjectNumber){}
50: virtual ~Part(){};
51: int GetObjectNumber() const { return itsObjectNumber; }
52: virtual void Display() const =0; // must be overridden
53:
54: private:
55: int itsObjectNumber;
56: };
57:
58: // implementation of pure virtual function so that
59: // derived classes can chain up
60: void Part::Display() const
61: {
62: cout << “\nPart Number: “ << itsObjectNumber << endl;
63: }
64:
65: // this one operator<< will be called for all part objects.
66: // It need not be a friend as it does not access private data
67: // It calls Display(), which uses the required polymorphism
68: // We’d like to be able to override this based on the real type
69: // of thePart, but C++ does not support contravariance

70: ostream& operator<<(ostream& theStream,Part& thePart)
71: {
72: thePart.Display(); // virtual contravariance!

73: return theStream;
74: }
75:
76: // **************** Car Part ************
77: class CarPart : public Part
78: {
79: public:
80: CarPart():itsModelYear(94){}
81: CarPart(int year, int partNumber);
82: int GetModelYear() const { return itsModelYear; }
83: virtual void Display() const;
84: private:
85: int itsModelYear;
86: };
87:
88: CarPart::CarPart(int year, int partNumber):

DAY 20

DAY 17

LISTING R3.1 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 793

794 Week 3

89: itsModelYear(year),
90: Part(partNumber)
91: {}
92:
93: void CarPart::Display() const
94: {
95: Part::Display();
96: cout << “Model Year: “ << itsModelYear << endl;
97: }
98:
99: // **************** AirPlane Part ************
100: class AirPlanePart : public Part
101: {
102: public:
103: AirPlanePart():itsEngineNumber(1){};
104: AirPlanePart(int EngineNumber, int PartNumber);
105: virtual void Display() const;
106: int GetEngineNumber()const { return itsEngineNumber; }
107: private:
108: int itsEngineNumber;
109: };
110:
111: AirPlanePart::AirPlanePart(int EngineNumber, int PartNumber):
112: itsEngineNumber(EngineNumber),
113: Part(PartNumber)
114: {}
115:
116: void AirPlanePart::Display() const
117: {
118: Part::Display();
119: cout << “Engine No.: “ << itsEngineNumber << endl;
120: }
121:
122: // forward declaration of class List
123: template <class T>
124: class List;
125:
126: // **************** Node ************
127: // Generic node, can be added to a list
128: // ************************************
129:

130: template <class T>
131: class Node
132: {
133: public:

DAY 19

LISTING R3.1 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 794

In Review 795

134: friend class List<T>;
135: Node (T*);
136: ~Node();
137: void SetNext(Node * node) { itsNext = node; }
138: Node * GetNext() const;

139: T * GetObject() const;
140: private:
141: T* itsObject;
142: Node * itsNext;
143: };
144:
145: // Node Implementations...
146:

147: template <class T>
148: Node<T>::Node(T* pOjbect):
149: itsObject(pOjbect),
150: itsNext(0)
151: {}
152:
153: template <class T>
154: Node<T>::~Node()
155: {
156: delete itsObject;
157: itsObject = 0;
158: delete itsNext;
159: itsNext = 0;
160: }
161:
162: // Returns NULL if no next Node
163: template <class T>
164: Node<T> * Node<T>::GetNext() const
165: {
166: return itsNext;
167: }
168:

169: template <class T>
170: T * Node<T>::GetObject() const
171: {
172: if (itsObject)
173: return itsObject;
174: else
175: throw NullNode();

DAY 19

DAY 19

DAY 19

DAY 16

LISTING R3.1 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 795

796 Week 3

176: }
177:
178: // **************** List ************
179: // Generic list template
180: // Works with any numbered object
181: // ***********************************
182: template <class T>
183: class List
184: {
185: public:
186: List();
187: ~List();
188:

189: T* Find(int & position, int ObjectNumber) const;
190: T* GetFirst() const;
191: void Insert(T *);
192: T* operator[](int) const;
193: int GetCount() const { return itsCount; }
194: private:

195: Node<T> * pHead;
196: int itsCount;
197: };
198:
199: // Implementations for Lists...
200: template <class T>
201: List<T>::List():
202: pHead(0),
203: itsCount(0)
204: {}
205:

206: template <class T>
207: List<T>::~List()
208: {
209: delete pHead;
210: }
211:
212: template <class T>
213: T* List<T>::GetFirst() const
214: {
215: if (pHead)
216: return pHead->itsObject;

DAY 19

DAY 19

DAY 19

LISTING R3.1 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 796

In Review 797

217: else
218: throw EmptyList();
219: }
220:

221: template <class T>
222: T * List<T>::operator[](int offSet) const
223: {
224: Node<T>* pNode = pHead;
225:
226: if (!pHead)
227: throw EmptyList();
228:
229: if (offSet > itsCount)
230: throw BoundsError();
231:
232: for (int i=0;i<offSet; i++)
233: pNode = pNode->itsNext;
234:
235: return pNode->itsObject;
236: }
237:
238: // find a given object in list based on its unique number (id)

239: template <class T>
240: T* List<T>::Find(int & position, int ObjectNumber) const
241: {
242: Node<T> * pNode = 0;
243: for (pNode = pHead, position = 0;
244: pNode!=NULL;
245: pNode = pNode->itsNext, position++)
246: {
247: if (pNode->itsObject->GetObjectNumber() == ObjectNumber)
248: break;
249: }
250: if (pNode == NULL)
251: return NULL;
252: else
253: return pNode->itsObject;
254: }
255:
256: // insert if the number of the object is unique

257: template <class T>
258: void List<T>::Insert(T* pObject)
259: {
260: Node<T> * pNode = new Node<T>(pObject);

DAY 19

DAY 19

DAY 19

LISTING R3.1 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 797

798 Week 3

261: Node<T> * pCurrent = pHead;
262: Node<T> * pNext = 0;
263:
264: int New = pObject->GetObjectNumber();
265: int Next = 0;
266: itsCount++;
267:
268: if (!pHead)
269: {
270: pHead = pNode;
271: return;
272: }
273:
274: // if this one is smaller than head
275: // this one is the new head
276: if (pHead->itsObject->GetObjectNumber() > New)
277: {
278: pNode->itsNext = pHead;
279: pHead = pNode;
280: return;
281: }
282:
283: for (;;)
284: {
285: // if there is no next, append this new one
286: if (!pCurrent->itsNext)
287: {
288: pCurrent->itsNext = pNode;
289: return;
290: }
291:
292: // if this goes after this one and before the next
293: // then insert it here, otherwise get the next
294: pNext = pCurrent->itsNext;
295: Next = pNext->itsObject->GetObjectNumber();
296: if (Next > New)
297: {
298: pCurrent->itsNext = pNode;
299: pNode->itsNext = pNext;
300: return;
301: }
302: pCurrent = pNext;
303: }
304: }
305:
306:
307: int main()
308: {

LISTING R3.1 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 798

In Review 799

309: List<Part> theList;
310: int choice = 99;
311: int ObjectNumber;
312: int value;
313: Part * pPart;
314: while (choice != 0)
315: {
316: cout << “(0)Quit (1)Car (2)Plane: “;
317: cin >> choice;
318:
319: if (choice != 0)
320: {
321:
322: cout << “New PartNumber?: “;
323: cin >> ObjectNumber;
324:
325: if (choice == 1)
326: {
327: cout << “Model Year?: “;
328: cin >> value;

329: try
330: {
331: pPart = new CarPart(value,ObjectNumber);
332: }

333: catch (OutOfMemory)
334: {
335: cout << “Not enough memory; Exiting...” << endl;
336: return 1;
337: }
338: }
339: else
340: {
341: cout << “Engine Number?: “;
342: cin >> value;

343: try
344: {
345: pPart = new AirPlanePart(value,ObjectNumber);
346: }

DAY 20

DAY 20

DAY 20

DAY 20

DAY 19

LISTING R3.1 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 799

800 Week 3

347: catch (OutOfMemory)
348: {
349: cout << “Not enough memory; Exiting...” << endl;
350: return 1;
351: }
352: }

353: try
354: {
355: theList.Insert(pPart);
356: }

357: catch (NullNode)
358: {
359: cout << “The list is broken, and the node is null!” << endl;
360: return 1;
361: }

362: catch (EmptyList)
363: {
364: cout << “The list is empty!” << endl;
365: return 1;
366: }
367: }
368: }

369: try
370: {
371: for (int i = 0; i < theList.GetCount(); i++)
372: cout << *(theList[i]);
373: }

374: catch (NullNode)
375: {
376: cout << “The list is broken, and the node is null!” << endl;
377: return 1;
378: }

DAY 20

DAY 20

DAY 20

DAY 20

DAY 20

DAY 20

LISTING R3.1 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 800

In Review 801

379: catch (EmptyList)
380: {
381: cout << “The list is empty!” << endl;
382: return 1;
383: }

384: catch (BoundsError)
385: {
386: cout << “Tried to read beyond the end of the list!” << endl;
387: return 1;
388: }
389: return 0;
390: }

(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 2837
Model Year? 90

(0)Quit (1)Car (2)Plane: 2
New PartNumber?: 378
Engine Number?: 4938

(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 4499
Model Year? 94

(0)Quit (1)Car (2)Plane: 1
New PartNumber?: 3000
Model Year? 93

(0)Quit (1)Car (2)Plane: 0

Part Number: 378
Engine No. 4938

Part Number: 2837
Model Year: 90

Part Number: 3000
Model Year: 93

Part Number 4499
Model Year: 94

The Week 3 in Review listing modifies the program provided in Week 2 to add
templates, ostream processing, and exception handling. The output is identical.

On lines 36–40, a number of exception classes are declared. In the somewhat primitive
exception handling provided by this program, no data or methods are required of these

DAY 20

OUTPUT

ANALYSIS

LISTING R3.1 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 801

802 Week 3

exceptions; they serve as flags to the catch statements, which print out a very simple
warning and then exit. A more robust program might pass these exceptions by reference
and then extract context or other data from the exception objects in an attempt to recover
from the problem.

On line 45, the abstract base class Part is declared exactly as it was in Week 2. The only
interesting change here is in the nonclass member operator<<(), which is declared on
lines 70–74. Note that this is neither a member of Part nor a friend of Part, it simply
takes a Part reference as one of its arguments.

You might want to have operator<< take a CarPart and an AirPlanePart in the hopes
that the correct operator<< would be called, based on whether a car part or an airplane
part is passed. Because the program passes a pointer to a part, however, and not a pointer
to a car part or an airplane part, C++ would have to call the right function based on the
real type of one of the arguments to the function. This is called contravariance and is not
supported in C++.

You can only achieve polymorphism in C++ in two ways: function polymorphism and
virtual functions. Function polymorphism won’t work here because in every case you are
matching the same signature: the one taking a reference to a Part.

Virtual functions won’t work here because operator<< is not a member function of
Part. You can’t make operator<< a member function of Part because you want to
invoke

cout << thePart

and that means that the actual call would be to cout.operator<<(Part&), and cout does
not have a version of operator<< that takes a Part reference!

To get around this limitation, the Week 3 program uses just one operator<<, taking a
reference to a Part. This then calls Display(), which is a virtual member function, and
thus the right version is called.

On lines 130–143, Node is defined as a template. It serves the same function as Node did
in the Week 2 Review program, but this version of Node is not tied to a Part object. It
can, in fact, be the node for any type of object.

Note that if you try to get the object from Node, and there is no object, this is considered
an exception, and the exception is thrown on line 175.

On lines 182 and 183, a generic List class template is defined. This List class can hold
nodes of any objects that have unique identification numbers, and it keeps them sorted in
ascending order. Each of the list functions checks for exceptional circumstances and
throws the appropriate exceptions as required.

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 802

In Review 803

On lines 307 and 308, the driver program creates a list of two types of Part objects and
then prints out the values of the objects in the list by using the standard streams
mechanism.

FAQ

In the comment above line 70, you mention that C++ does not support contravariance. What is
contravariance?

Answer: Contravariance is the ability to assign a pointer to a base class to a pointer to a
derived class.

If C++ did support contravariance, you could override the function based on the real type
of the object at runtime. Listing R3.2 won’t compile in C++, but if it supported contra-
variance, it would…

This listing will not compile!CAUTION

LISTING R3.2 Contravariance

0: #include <iostream>
1: using namespace std;
2: class Animal
3: {
4: public:
5: virtual void Speak()
6: { cout << “Animal Speaks” << endl; }
7: };
8:
9: class Dog : public Animal
10: {
11: public:
12: void Speak() { cout << “Dog Speaks” << endl; }
13: };
14:
15:
16: class Cat : public Animal
17: {
18: public:
19: void Speak() { cout << “Cat Speaks” << endl; }

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 803

804 Week 3

20: };
21:
22: void DoIt(Cat*);
23: void DoIt(Dog*);
24:
25: int main()
26: {
27: Animal * pA = new Dog;
28: DoIt(pA);
29: return 0;
30: }
31:
32: void DoIt(Cat * c)
33: {
34: cout << “They passed a cat!” << endl << endl;
35: c->Speak();
36: }
37:
38: void DoIt(Dog * d)
39: {
40: cout << “They passed a dog!” << endl << endl;
41: d->Speak();
42: }

What you can do, of course, is to use a virtual function as shown in Listing R3.3, which
partially solves the problem.

LISTING R3.3 Using Virtual Functions

0: #include<iostream>
1: using namespace std;
2:
3: class Animal
4: {
5: public:
6: virtual void Speak() { cout << “Animal Speaks” << endl; }
7: };
8:
9: class Dog : public Animal
10: {
11: public:
12: void Speak() { cout << “Dog Speaks” << endl; }
13: };
14:
15:
16: class Cat : public Animal

LISTING R3.2 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 804

In Review 805

17: {
18: public:
19: void Speak() { cout << “Cat Speaks” << endl; }
20: };
21:
22: void DoIt(Animal*);
23:
24: int main()
25: {
26:
27: Animal * pA = new Dog;
28: DoIt(pA);
29: return 0;
30: }
31:
32: void DoIt(Animal * c)
33: {
34: cout << “They passed some kind of animal” << endl << endl;
35: c->Speak();
36: }

LISTING R3.3 continued

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 805

28 0672327112_w3_wir.qxd 11/19/04 12:30 PM Page 806

APPENDIX A
Working with Numbers:
Binary and Hexadecimal

You learned the fundamentals of arithmetic so long ago, it is hard to imagine
what it would be like without that knowledge. When you look at the number
145, you instantly see “one hundred forty-five” without much reflection.

You generally see numbers in what is called the decimal format. There are,
however, other formats that can be used for numbering. When working with
computers, the two systems that come up the most are binary and hexadecimal.
Understanding binary and hexadecimal requires that you reexamine the number
145 and see it not as a number, but as a code for a number.

Start small: Examine the relationship between the number three and “3.” The
numeral “3” is a squiggle on a piece of paper; the number three is an idea. The
numeral is used to represent the number.

The distinction can be made clear by realizing that three, 3, |||, III, and *** all
can be used to represent the same idea of three.

29 0672327112_app_a.qxd 11/19/04 12:30 PM Page 807

In base 10 (decimal) math, you use ten symbols—the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9—to represent all numbers. How is the number ten represented?

You can imagine that a strategy could have evolved of using the letter A to represent ten;
or IIIIIIIIII could have been used to represent that idea. The Romans used X. The Arabic
system, which we use, makes use of position in conjunction with numerals to represent
values. The first (rightmost) column is used for ones, and the next column (to the left) is
used for tens. Thus, the number fifteen is represented as 15 (read “one, five”); that is, 1
ten and 5 ones.

Certain rules emerge, from which some generalizations can be made:

1. Base 10 uses ten digits—the digits 0–9.

2. The columns are powers of ten: 1s, 10s, 100s, and so on.

3. If the third column is 100, the largest number you can make with two columns is
99. More generally, with n columns you can represent from 0 to (10n-1). Thus, with
three columns, you can represent from 0 to (103-1) or 0-999.

Using Other Bases
It is not a coincidence that we use base 10; we have 10 fingers. You can imagine a differ-
ent base, however. Using the rules found in base 10, you can describe base 8:

1. There are eight digits used in base 8—the digits 0–7.

2. The columns are powers of 8: 1s, 8s, 64s, and so on.

3. With n columns, you can represent 0 to 8n-1.

To distinguish numbers written in each base, write the base as a subscript next to the
number. The number fifteen in base 10 would be written as 15

10
and read as “one, five,

base ten.”

Thus, to represent the number 15
10

in base 8, you would write 17
8
. This is read “one,

seven, base eight.” Note that it can also be read “fifteen” as that is the number it contin-
ues to represent.

Why 17? The 1 means 1 eight, and the 7 means 7 ones. One eight plus seven ones equals
fifteen. Consider fifteen asterisks:

********** *****

The natural tendency is to make two groups, a group of ten asterisks and another of five.
This would be represented in decimal as 15 (1 ten and 5 ones). You can also group the
asterisks as

******** *******

808 Appendix A

29 0672327112_app_a.qxd 11/19/04 12:30 PM Page 808

Working with Numbers: Binary and Hexadecimal 809

A
That is, eight asterisks and seven. That would be represented in base 8 as 17

8
. That is,

one eight and seven ones.

Converting to Different Bases
You can represent the number fifteen in base 10 as 15, in base 9 as 16

9
, in base 8 as 17

8
,

in base 7 as 21
7
. Why 21

7
? In base 7, there is no numeral 8. To represent fifteen, you

need two sevens and one 1.

How do you generalize the process? To convert a base 10 number to base 7, think about
the columns: In base 7 they are ones, sevens, forty-nines, three-hundred forty-threes, and
so on. Why these columns? They represent 70, 71, 72, 74, and so forth.

Remember, any number to the 0th power (for example, 70) is 1, any number to the first
power (for example, 71) is the number itself, any number to the second power is that
number times itself (72 = 7*7 = 49), and any number to the third power is that number
times itself and then times itself again (73 = 7*7*7 = 343).

Create a table for yourself:

Column 4 3 2 1

Power 73 72 71 70

Value 343 49 7 1

The first row represents the column number. The second row represents the power of 7.
The third row represents the decimal value of each number in that row.

To convert from a decimal value to base 7, here is the procedure: Examine the number
and decide which column to use first. If the number is 200, for example, you know that
column 4 (343) is 0, and you don’t have to worry about it.

To find out how many 49s there are, divide 200 by 49. The answer is 4, so put 4 in col-
umn 3 and examine the remainder: 4. There are no 7s in 4, so put a zero in the 7s col-
umn. There are 4 ones in 4, so put a 4 in the 1s column. The answer is 404

7
.

Column 4 3 2 1

Power 73 72 71 70

Value 343 49 7 1

200 in base 7 0 4 0 4

Decimal value 0 4*49 = 196 0 4*1 = 4

29 0672327112_app_a.qxd 11/19/04 12:30 PM Page 809

In this example, the 4 in the third column represents the decimal value 196, and the 4 in
the first column represents the value 4. 196+4 = 200. Thus, 404

7
= 200

10
.

Try another example. Convert the number 968 to base 6:

Column 5 4 3 2 1

Power 64 63 62 61 60

Value 1296 216 36 6 1

Be certain you are comfortable with why these are the column values. Remember that
63 = 6*6*6 = 216.

To determine the base 6 representation of 968, you start at column 5. How many 1296s
are there in 968? There are none, so column 5 has 0. Dividing 968 by 216 yields 4 with a
remainder of 104. Column 4 is 4. That is, column 4 represents 4*216 (864).

You must now represent the remaining value (968-864 = 104). Dividing 104 by 36 yields
2 with a remainder of 32. Column 3 is 2. Dividing 32 by 6 yields 5 with a remainder of
2. The answer therefore is 4252

6
.

Column 5 4 3 2 1

Power 64 63 62 61 60

Value 1296 216 36 6 1

968 in 0 4 2 5 2
base 6

Decimal 0 4*216=864 2*36=72 5*6=30 2*1=2
value

864+72+30+2 = 968.

Binary
Base 2 is the ultimate extension of this idea. In base 2, also called binary, there are only
two digits: 0 and 1. The columns are

Column 8 7 6 5 4 3 2 1

Power 27 26 25 24 23 22 21 20

Value 128 64 32 16 8 4 2 1

To convert the number 88 to base 2, you follow the same procedure: There are no 128s,
so column 8 is 0.

810 Appendix A

29 0672327112_app_a.qxd 11/19/04 12:30 PM Page 810

Working with Numbers: Binary and Hexadecimal 811

A
There is one 64 in 88, so column 7 is 1 and 24 is the remainder. There are no 32s in 24
so column 6 is 0.

There is one 16 in 24 so column 5 is 1. The remainder is 8. There is one 8 in 8, and so
column 4 is 1. There is no remainder, so the rest of the columns are 0.

Column 8 7 6 5 4 3 2 1

Power 27 26 25 24 23 22 21 20

Value 128 64 32 16 8 4 2 1

88
2

0 1 0 1 1 0 0 0

Value 0 64 0 16 8 0 0 0

To test this answer, convert it back:

1 * 64 = 64
0 * 32 = 0
1 * 16 = 16
1 * 8 = 8
0 * 4 = 0
0 * 2 = 0
0 * 1 = 0

88

Why Base 2?
Base 2 is important in programming because it corresponds so cleanly to what a com-
puter needs to represent. Computers do not really know anything at all about letters,
numerals, instructions, or programs. At their core they are just circuitry, and at a given
juncture there either is a lot of power or there is very little.

To keep the logic clean, engineers do not treat this as a relative scale (a little power,
some power, more power, lots of power, tons of power), but rather as a binary scale
(“enough power” or “not enough power”). Rather than saying “enough” or “not enough,”
they simplify it to “yes” or “no.” Yes or no, or true or false, can be represented as 1 or 0.
By convention, 1 means true or Yes, but that is just a convention; it could just as easily
have meant false or no.

After you make this great leap of intuition, the power of binary becomes clear: With 1s
and 0s, you can represent the fundamental truth of every circuit (there is power or there
isn’t). All a computer ever knows is, “Is you is, or is you ain’t?” Is you is = 1; is you
ain’t = 0.

29 0672327112_app_a.qxd 11/19/04 12:30 PM Page 811

Bits, Bytes, and Nybbles
After the decision is made to represent truth and falsehood with 1s and 0s, binary digits
(or bits) become very important. Because early computers could send eight bits at a time,
it was natural to start writing code using 8-bit numbers—called bytes.

812 Appendix A

With eight binary digits, you can represent up to 256 different values. Why? Examine the
columns: If all 8 bits are set (1), the value is 255. (128+64+32+16+8+4+2+1) If none is
set (all the bits are clear or zero), the value is 0. 0–255 is 256 possible states.

What’s a KB?
It turns out that 210 (1,024) is roughly equal to 103 (1,000). This coincidence was too
good to miss, so computer scientists started referring to 210 bytes as 1K or 1 kilobyte,
based on the scientific prefix of kilo for thousand.

Similarly, 1024*1024 (1,048,576) is close enough to one million to receive the designa-
tion 1MB or 1 megabyte, and 1,024 megabytes is called 1 gigabyte (giga implies thou-
sand-million or billion). Finally, 1,024 gigabytes is called a terabyte.

Binary Numbers
Computers use patterns of 1s and 0s to encode everything they do. Machine instructions
are encoded as a series of 1s and 0s and interpreted by the fundamental circuitry.
Arbitrary sets of 1s and 0s can be translated back into numbers by computer scientists,
but it would be a mistake to think that these numbers have intrinsic meaning.

For example, the Intel 8086 chipset interprets the bit pattern 1001 0101 as an instruction.
You certainly can translate this into decimal (149), but that number per se has no meaning.

Sometimes, the numbers are instructions, sometimes they are values, and sometimes they
are codes. One important standardized code set is ASCII. In ASCII, every letter and
punctuation is given a seven-digit binary representation. For example, the lowercase let-
ter “a” is represented by 0110 0001. This is not a number, although you can translate it
to the number 97 in base 10 (64+32+1). It is in this sense that people say that the letter
“a” is represented by 97 in ASCII; but the truth is that the binary representation of 97,
01100001, is the encoding of the letter “a,” and the decimal value 97 is a human conve-
nience.

Half a byte (4 bits) is called a nybble!NOTE

29 0672327112_app_a.qxd 11/19/04 12:30 PM Page 812

Working with Numbers: Binary and Hexadecimal 813

A
Hexadecimal

Because binary numbers are difficult to read, a simpler way to represent the same values
is sought. Translating from binary to base 10 involves a fair bit of manipulation of num-
bers; but it turns out that translating from base 2 to base 16 is very simple, because there
is a very good shortcut.

To understand this, you must first understand base 16, which is known as hexadecimal.
In base 16, there are sixteen numerals: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.
The last six are arbitrary; the letters A–F were chosen because they are easy to represent
on a keyboard. The columns in hexadecimal are

Column 4 3 2 1

Power 163 162 161 160

Value 4096 256 16 1

To translate from hexadecimal to decimal, you can multiply. Thus, the number F8C
represents:

F * 256 = 15 * 256 = 3840
8 * 16 = 128
C * 1 = 12 * 1 = 12
3980

(Remember that F in Hexadecimal is equal to 15
10
.)

Translating the number FC to binary is best done by translating first to base 10, and then
to binary:

F * 16 = 15 * 16 = 240
C * 1 = 12 * 1 = 12
252

Converting 252
10

to binary requires the chart:

Column 9 8 7 6 5 4 3 2 1

Power 28 27 26 25 24 23 22 21 20

Value 256 128 64 32 16 8 4 2 1

There are no 256s.

1*128 = 128. 252-128 = 124

1*64 = 64. 124-64 = 60

1*32 = 32. 60-32 = 28

29 0672327112_app_a.qxd 11/19/04 12:30 PM Page 813

1*16 = 16. 28-16 = 12

1*8 = 8. 12-8 = 4

1*4 = 4. 4-4 = 0

0*2 = 0

0*1 = 0

124+60+28+12+4 = 252.

Thus, the answer in binary is 11111100.

Now, it turns out that if you treat this binary number as two sets of four digits (1111
1100), you can do a magical transformation.

The right set is 1100. In decimal that is 12, or in hexadecimal it is C. (1*8 + 1*4 + 0*2 +
0*1)

The left set is 1111, which in base 10 is 15, or in hex is F.

Thus, you have:

1111 1100
F C

Putting the two hex numbers together is FC, which is the real value of 1111 1100. This
shortcut always works! You can take any binary number of any length, and reduce it to
sets of four, translate each set of four to hex, and put the hex numbers together to get the
result in hex. Here’s a much larger number:

1011 0001 1101 0111

To check this assumption, first convert this number to decimal.

You can find the value of the columns by doubling. The rightmost column is 1, the next
is 2, then 4, 8, 16, and so forth.

Start with the rightmost column, which is worth 1 in decimal. You have a 1 there so that
column is worth 1. The next column to the left is 2. Again, you have a 1 in that column,
so add 2 and for a total of 3.

The next column to the left is worth 4 (you double for each column). Thus, you have
4+2+1 = 7.

Continue this for each column:

814 Appendix A

29 0672327112_app_a.qxd 11/19/04 12:30 PM Page 814

Working with Numbers: Binary and Hexadecimal 815

A
1×1 1

1×2 2

1×4 4

0×8 0

1×16 16

0×32 0

1×64 64

1×128 128

1×256 256

0×512 0

0×1024 0

0×2048 0

1×4096 4,096

1×8192 8,192

0×16384 0

1×32768 32,768

Total 45,527

Converting this to hexadecimal requires a chart with the hexadecimal values.

Column 5 4 3 2 1

Power 164 163 162 161 160

Value 65536 4096 256 16 1

The number is less than 65,536, so you can start with the fourth column. There are
eleven 4096s (45,056), with a remainder of 471. There is one 256 in 471 with a remain-
der of 215. There are thirteen 16s (208) in 215 with a remainder of 7. Thus, the hexadec-
imal number is B1D7.

Checking the math:

B (11) * 4096 = 45,056
1 * 256 = 256
D (13) * 16 = 208
7 * 1 = 7
Total 45,527

29 0672327112_app_a.qxd 11/19/04 12:30 PM Page 815

The shortcut version is to take the original binary number, 1011000111010111, and
break it into groups of four: 1011 0001 1101 0111. Each of the four then is evaluated as
a hexadecimal number:

1011 =
1 x 1 = 1
1 x 2 = 2
0 x 4 = 0
1 x 8 = 8
Total 11
Hex: B

0001 =
1 x 1 = 1
0 x 2 = 0
0 x 4 = 0
0 x 8 = 0
Total 1
Hex: 1

1101 =
1 x 1 = 1
0 x 2 = 0
1 x 4 = 4
1 x 8 = 8
Total 13
Hex = D

0111 =
1 x 1 = 1
1 x 2 = 2
1 x 4 = 4
0 x 8 = 0
Total 7
Hex: 7

Total Hex: B1D7

Hey! Presto! The shortcut conversion from binary to hexadecimal gives us the same
answer as the longer version.

You will find that programmers use hexadecimal fairly frequently in advanced program-
ming; but you’ll also find that you can work quite effectively in programming for a long
time without ever using any of this!

816 Appendix A

One common place to see the use of hexadecimal is when working with
color values. This is true in your C++ programs or even in other areas such as
HTML.

NOTE

29 0672327112_app_a.qxd 11/19/04 12:30 PM Page 816

APPENDIX B
C++ Keywords

Keywords are reserved to the compiler for use by the language. You cannot
define classes, variables, or functions that have these keywords as their names.

asm
auto
bool
break
case
catch
char
class
const
const_cast
continue
default
delete
do
double
dynamic_cast
else
enum
explicit
export
extern

false
float
for
friend
goto
if
inline
int
long
mutable
namespace
new
operator
private
protected
public
register
reinterpret_cast
return
short
signed

sizeof
static
static_cast
struct
switch
template
this
throw
true
try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while

30 0672327112_app_b.qxd 11/19/04 12:30 PM Page 817

In addition, the following words are reserved:

818 Appendix B

and
and_eq
bitand
bitor

compl
not
not_eq
or

or_eq
xor
xor_eq

30 0672327112_app_b.qxd 11/19/04 12:30 PM Page 818

APPENDIX C
Operator Precedence

It is important to understand that operators have a precedence, but it is not
essential to memorize the precedence.

Precedence is the order in which a program performs the operations in a for-
mula. If one operator has precedence over another operator, it is evaluated first.

Higher precedence operators “bind tighter” than lower precedence operators;
thus, higher precedence operators are evaluated first. The lower the rank in
Table C.1, the higher the precedence.

31 0672327112_app_c.qxd 11/19/04 12:30 PM Page 819

TABLE C.1 The Precedence of Operators

Rank Name Operator

1 Scope resolution ::

2 Member selection, subscripting, function calls, . ->

postfix increment and decrement ()

++ --

3 Sizeof, prefix increment and decrement, complement, ++ --

and, not, unary minus and plus, address-of and dereference, ^ !

new, new[], delete, delete[], casting, sizeof() - +

& *

()

4 Member selection for pointer .* ->*

5 Multiply, divide, modulo * / %

6 Add, subtract + -

7 Shift (shift left, shift right) << >>

8 Inequality relational < <= > >=

9 Equality, inequality == !=

10 Bitwise AND &

11 Bitwise exclusive OR ^

12 Bitwise OR |

13 Logical AND &&

14 Logical OR ||

15 Conditional ?:

16 Assignment operators = *= /= %=

+= -= <<=

>>=

&= |= ^=

17 Comma ,

820 Appendix C

31 0672327112_app_c.qxd 11/19/04 12:30 PM Page 820

APPENDIX D
Answers
Day 1

Quiz
1. Interpreters read through source code and translate a program, turning the

programmer’s “code,” or program instructions, directly into actions.
Compilers translate source code into an executable program that can be
run at a later time.

2. Every compiler is different. Be certain to check the documentation that
came with your compiler.

3. The linker’s job is to tie together your compiled code with the libraries
supplied by your compiler vendor and other sources. The linker lets you
build your program in “pieces” and then link together the pieces into one
big program.

4. Edit source code, compile, link, test (run), repeat if necessary.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 821

Exercises
1. This program initializes two integer variables (numbers) and then prints out their

sum, 12, and their product, 35.

2. See your compiler manual.

3. You must put a # symbol before the word include on the first line.

4. This program prints the words Hello World to the console, followed by a new line
(carriage return).

Day 2
Quiz

1. Each time you run your compiler, the preprocessor runs first. It reads through your
source code and includes the files you’ve asked for, and performs other housekeep-
ing chores. The compiler is then run to convert your preprocessed source code to
object code.

2. main() is special because it is called automatically each time your program is
executed. It might not be called by any other function and it must exist in every
program.

3. C++-style, single-line comments are started with two slashes (//) and they com-
ment out any text until the end of the line. Multiline, or C-style, comments are
identified with marker pairs (/* */), and everything between the matching pairs is
commented out. You must be careful to ensure you have matched pairs.

4. C++-style, single-line comments can be nested within multiline, C-style comments:
/* This marker starts a comment. Everything including
// this single line comment,
is ignored as a comment until the end marker */

You can, in fact, nest slash-star style comments within double-slash, C++-style
comments as long as you remember that the C++-style comments end at the end of
the line.

5. Multiline, C-style comments can be longer than one line. If you want to extend
C++-style, single-line comments to a second line, you must put another set of dou-
ble slashes (//).

822 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 822

Answers 823

D

Exercises
1. The following is one possible answer:

1: #include <iostream>
2: using namespace std;
3: int main()
4: {
5: cout << “I love C++\n”;
6: return 0;
7: }

2. The following program contains a main() function that does nothing. This is, how-
ever, a complete program that can be compiled, linked, and run. When run, it
appears that nothing happens because the program does nothing!

int main(){}

3. Line 4 is missing an opening quote for the string.

4. The following is the corrected program:
1: #include <iostream>
2: main()
3: {
4: std::cout << “Is there a bug here?”;
5: }

This listing prints the following to the screen:

Is there a bug here?

5. The following is one possible solution:
1: #include <iostream>
2: int Add (int first, int second)
3: {
4: std::cout << “In Add(), received “ << first << “ and “ << second

➥<< “\n”;
5: return (first + second);
6: }
7:
8: int Subtract (int first, int second)
9: {
10: std::cout << “In Subtract(), received “ << first << “ and “

➥<< second << “\n”;
11: return (first - second);
12: }
13:
14: int main()
15: {
16: using std::cout;
17: using std::cin;
18:
19: cout << “I’m in main()!\n”;

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 823

20: int a, b, c;
21: cout << “Enter two numbers: “;
22: cin >> a;
23: cin >> b;
24:
25: cout << “\nCalling Add()\n”;
26: c=Add(a,b);
27: cout << “\nBack in main().\n”;
28: cout << “c was set to “ << c;
29:
30: cout << “\n\nCalling Subtract()\n”;
31: c=Subtract(a,b);
32: cout << “\nBack in main().\n”;
33: cout << “c was set to “ << c;
34:
35: cout << “\nExiting...\n\n”;
36: return 0;
37: }

Day 3
Quiz

1. Integer variables are whole numbers; floating-point variables are “reals” and have a
“floating” decimal point. Floating-point numbers can be represented using a man-
tissa and exponent.

2. The keyword unsigned means that the integer will hold only positive numbers. On
most computers with 32-bit processors, short integers are two bytes and long inte-
gers are four. The only guarantee, however, is that a long integer is at least as big
or bigger than a regular integer, which is at least as big as a short integer.
Generally, a long integer is twice as large as a short integer.

3. A symbolic constant explains itself; the name of the constant tells what it is for.
Also, symbolic constants can be redefined at one location in the source code, rather
than the programmer having to edit the code everywhere the literal is used.

4. const variables are “typed,” and, thus, the compiler can check for errors in how
they are used. Also, they survive the preprocessor, and, thus, the name is available
in the debugger. Most importantly, using #define to declare constants is no longer
supported by the C++ standard.

5. A good variable name tells you what the variable is for; a bad variable name has
no information. myAge and PeopleOnTheBus are good variable names, but x, xjk,
and prndl are probably less useful.

6. BLUE = 102

824 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 824

Answers 825

D

7. a. Good

b. Not legal

c. Legal, but a bad choice

d. Good

e. Legal, but a bad choice

Exercises
1. The following are appropriate answers for each:

a. unsigned short int

b. unsigned long int or unsigned float

c. unsigned double

d. unsigned short int

2. The following are possible answers:

a. myAge

b. backYardArea

c. StarsInGalaxy

d. averageRainFall

3. The following is a declaration for pi:

const float PI = 3.14159;

4. The following declares and initializes the variable:

float myPi = PI;

Day 4
Quiz

1. An expression is any statement that returns a value.

2. Yes, x = 5 + 7 is an expression with a value of 12.

3. The value of 201 / 4 is 50.

4. The value of 201 % 4 is 1.

5. Their values are myAge: 41, a: 39, b: 41.

6. The value of 8+2*3 is 14.

7. if(x = 3) assigns 3 to x and returns the value 3, which is interpreted as true.
if(x == 3) tests whether x is equal to 3; it returns true if the value of x is equal to
3 and false if it is not.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 825

8. The answers are

a. False

b. True

c. True

d. False

e. True

Exercises
1. The following is one possible answer:

if (x > y)
x = y;

else // y > x || y == x
y = x;

2. See exercise 3.

3. Entering 20, 10, 50 gives back a: 20, b: 30, c: 10.

Line 14 is assigning, not testing for equality.

4. See Exercise 5.

5. Because line 6 is assigning the value of a-b to c, the value of the assignment is a
(2) minus b (2), or 0. Because 0 is evaluated as false, the if fails and nothing is
printed.

Day 5
Quiz

1. The function prototype declares the function; the definition defines it. The proto-
type ends with a semicolon; the definition need not. The declaration can include
the keyword inline and default values for the parameters; the definition cannot.
The declaration need not include names for the parameters; the definition must.

2. No. All parameters are identified by position, not name.

3. Declare the function to return void.

4. Any function that does not explicitly declare a return type returns int. You should
always declare the return type as a matter of good programming practice.

5. A local variable is a variable passed into or declared within a block, typically a
function. It is visible only within the block.

826 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 826

Answers 827

D

6. Scope refers to the visibility and lifetime of local and global variables. Scope is
usually established by a set of braces.

7. Recursion generally refers to the ability of a function to call itself.

8. Global variables are typically used when many functions need access to the same
data. Global variables are very rare in C++; after you know how to create static
class variables, you will almost never create global variables.

9. Function overloading is the ability to write more than one function with the same
name, distinguished by the number or type of the parameters.

Exercises
1. unsigned long int Perimeter(unsigned short int, unsigned short int);

2. The following is one possible answer:
unsigned long int Perimeter(unsigned short int length, unsigned short int
➥width)
{
return (2*length) + (2*width);

}

3. The function tries to return a value even though it is declared to return void and,
thus, cannot return a value.

4. The function would be fine, but there is a semicolon at the end of the myFunc()
function’s definition header.

5. The following is one possible answer:
short int Divider(unsigned short int valOne, unsigned short int valTwo)
{

if (valTwo == 0)
return -1;

else
return valOne / valTwo;

}

6. The following is one possible solution:
1: #include <iostream>
2: using namespace std;
3:
4: short int Divider(
5: unsigned short int valone,
6: unsigned short int valtwo);
7:
8: int main()
9: {
10: unsigned short int one, two;
11: short int answer;

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 827

12: cout << “Enter two numbers.\n Number one: “;
13: cin >> one;
14: cout << “Number two: “;
15: cin >> two;
16: answer = Divider(one, two);
17: if (answer > -1)
18: cout << “Answer: “ << answer;
19: else
20: cout << “Error, can’t divide by zero!”;
21: return 0;
22: }
23:
24: short int Divider(unsigned short int valOne, unsigned short int

➥valTwo)
25: {
26: if (valTwo == 0)
27: return -1;
28: else
29: return valOne / valTwo;
30: }

7. The following is one possible solution:
1: #include <iostream>
2: using namespace std;
3: typedef unsigned short USHORT;
4: typedef unsigned long ULONG;
5:
6: ULONG GetPower(USHORT n, USHORT power);
7:
8: int main()
9: {
10: USHORT number, power;
11: ULONG answer;
12: cout << “Enter a number: “;
13: cin >> number;
14: cout << “To what power? “;
15: cin >> power;
16: answer = GetPower(number,power);
17: cout << number << “ to the “ << power << “th power is “ <<
18: answer << endl;
19: return 0;
20: }
21:
22: ULONG GetPower(USHORT n, USHORT power)
23: {
24: if(power == 1)
25: return n;
26: else
27: return (n * GetPower(n,power-1));
28: }

828 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 828

Answers 829

D

Day 6
Quiz

1. The dot operator is the period (.). It is used to access the members of a class or
structure.

2. Definitions of variables set aside memory. Declarations of classes don’t set aside
memory.

3. The declaration of a class is its interface; it tells clients of the class how to interact
with the class. The implementation of the class is the set of member functions—
usually in a related CPP file.

4. Public data members can be accessed by clients of the class. Private data members
can be accessed only by member functions of the class.

5. Yes, member functions can be private. Although not shown in this chapter, a mem-
ber function can be private. Only other member functions of the class will be able
to use the private function.

6. Although member data can be public, it is good programming practice to make it
private and to provide public accessor functions to the data.

7. Yes. Each object of a class has its own data members.

8. Declarations end with a semicolon after the closing brace; function definitions
do not.

9. The header for a Cat function, Meow(), that takes no parameters and returns void
looks like this:

void Cat::Meow()

10. The constructor is called to initialize a class. This special function has the same
name as the class.

Exercises
1. The following is one possible solution:

class Employee
{

int Age;
int YearsOfService;
int Salary;

};

2. The following is one possible answer. Notice that the Get... accessor methods
were also made constant because they won’t change anything in the class.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 829

// Employee.hpp
class Employee
{
public:
int GetAge() const;
void SetAge(int age);
int GetYearsOfService() const;
void SetYearsOfService(int years);
int GetSalary() const;
void SetSalary(int salary);

private:
int itsAge;
int itsYearsOfService;
int itsSalary;

};

3. The following is one possible solution:
1: // Employee.cpp
2: #include <iostream>
3: #include “Employee.hpp”
4:
5: int Employee::GetAge() const
6: {
7: return itsAge;
8: }
9: void Employee::SetAge(int age)
10: {
11: itsAge = age;
12: }
13: int Employee::GetYearsOfService() const
14: {
15: return itsYearsOfService;
16: }
17: void Employee::SetYearsOfService(int years)
18: {
19: itsYearsOfService = years;
20: }
21: int Employee::GetSalary()const
22: {
23: return itsSalary;
24: }
25: void Employee::SetSalary(int salary)
26: {
27: itsSalary = salary;
28: }
29:
30: int main()
31: {
32: using namespace std;
33:

830 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 830

Answers 831

D

34: Employee John;
35: Employee Sally;
36:
37: John.SetAge(30);
38: John.SetYearsOfService(5);
39: John.SetSalary(50000);
40:
41: Sally.SetAge(32);
42: Sally.SetYearsOfService(8);
43: Sally.SetSalary(40000);
44:
45: cout << “At AcmeSexist company, John and Sally have “;
46: cout << “the same job.\n\n”;
47:
48: cout << “John is “ << John.GetAge() << “ years old.” << endl;
49: cout << “John has been with the firm for “ ;
50: cout << John.GetYearsOfService() << “ years.” << endl;
51: cout << “John earns $” << John.GetSalary();
52: cout << “ dollars per year.\n\n”;
53:
54: cout << “Sally, on the other hand is “ << Sally.GetAge();
55: cout << “ years old and has been with the company “;
56: cout << Sally.GetYearsOfService();
57: cout << “ years. Yet Sally only makes $” << Sally.GetSalary();
58: cout << “ dollars per year! Something here is unfair.”;
59: }

4. The following is one possible answer:
float Employee::GetRoundedThousands() const
{

return Salary / 1000;
}

5. The following is one possible answer:
class Employee
{
public:

Employee(int age, int years, int salary);
int GetAge() const;
void SetAge(int age);
int GetYearsOfService() const;
void SetYearsOfService(int years);
int GetSalary() const;
void SetSalary(int salary);

private:
int itsAge;
int itsYearsOfService;
int itsSalary;

};

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 831

6. Class declarations must end with a semicolon.

7. The accessor GetAge() is private. Remember: All class members are private unless
you say otherwise.

8. You can’t access itsStation directly. It is private.

You can’t call SetStation() on the class. You can call SetStation() only on
objects.

You can’t initialize myOtherTV because there is no matching constructor.

Day 7
Quiz

1. Separate the initializations with commas, such as

for (x = 0, y = 10; x < 100; x++, y++).

2. goto jumps in any direction to any arbitrary line of code. This makes for source
code that is difficult to understand and, therefore, difficult to maintain.

3. Yes, if the condition is false after the initialization, the body of the for loop will
never execute. Here’s an example:

for (int x = 100; x < 100; x++)

4. The variable x is out of scope; thus, it has no valid value.

5. Yes. Any loop can be nested within any other loop.

6. Yes. Following are examples for both a for loop and a while loop:
for(;;)
{

// This for loop never ends!
}
while(true)
{

// This while loop never ends!
}

7. Your program appears to “hang” because it never quits running. This causes you to
have to reboot the computer or to use advanced features of your operating system
to end the task.

Exercises
1. The following is one possible answer:

for (int i = 0; i< 10; i++)
{

for (int j = 0; j< 10; j++)

832 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 832

Answers 833

D

cout << “0”;
cout << endl;

}

2. The following is one possible answer:

for (int x = 100; x<=200; x+=2)

3. The following is one possible answer:
int x = 100;
while (x <= 200)

x+= 2;

4. The following is one possible answer:
int x = 100;
do
{

x+=2;
} while (x <= 200);

5. counter is never incremented and the while loop will never terminate.

6. There is a semicolon after the loop and the loop does nothing. The programmer
might have intended this, but if counter was supposed to print each value, it won’t.
Rather, it will only print out the value of the counter after the for loop has com-
pleted.

7. counter is initialized to 100, but the test condition is that if it is less than 10, the
test will fail and the body will never be executed. If line 1 were changed to int
counter = 5;, the loop would not terminate until it had counted down past the
smallest possible int. Because int is signed by default, this would not be what
was intended.

8. Case 0 probably needs a break statement. If not, it should be documented with a
comment.

Day 8
Quiz

1. The address-of operator (&) is used to determine the address of any variable.

2. The dereference operator (*) is used to access the value at an address in a pointer.

3. A pointer is a variable that holds the address of another variable.

4. The address stored in the pointer is the address of another variable. The value
stored at that address is any value stored in any variable. The indirection operator
(*) returns the value stored at the address, which itself is stored in the pointer.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 833

5. The indirection operator returns the value at the address stored in a pointer. The
address-of operator (&) returns the memory address of the variable.

6. The const int * ptrOne declares that ptrOne is a pointer to a constant integer.
The integer itself cannot be changed using this pointer.

The int * const ptrTwo declares that ptrTwo is a constant pointer to integer.
After it is initialized, this pointer cannot be reassigned.

Exercises
1. a. int * pOne; declares a pointer to an integer.

b. int vTwo; declares an integer variable.

c. int * pThree = &vTwo; declares a pointer to an integer and initializes it
with the address of another variable, vTwo.

2. unsigned short *pAge = &yourAge;

3. *pAge = 50;

4. The following is one possible answer:
1: #include <iostream>
2:
3: int main()
4: {
5: int theInteger;
6: int *pInteger = &theInteger;
7: *pInteger = 5;
8:
9: std::cout << “The Integer: “
10: << *pInteger << std::endl;
11:
12: return 0;
13: }

5. pInt should have been initialized. More importantly, because it was not initialized
and was not assigned the address of any memory, it points to a random place in
memory. Assigning a literal (9) to that random place is a dangerous bug.

6. Presumably, the programmer meant to assign 9 to the value at pVar, which would
be an assignment to SomeVariable. Unfortunately, 9 was assigned to be the value
of pVar because the indirection operator (*) was left off. This will lead to disaster
if pVar is used to assign a value because it is pointing to whatever is at the address
of 9 and not at SomeVariable.

834 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 834

Answers 835

D

Day 9
Quiz

1. A reference is an alias, and a pointer is a variable that holds an address. References
cannot be null and cannot be assigned to.

2. When you need to reassign what is pointed to, or when the pointer might be null.

3. A null pointer (0).

4. This is a shorthand way of saying a reference to a constant object.

5. Passing by reference means not making a local copy. It can be accomplished by
passing a reference or by passing a pointer.

6. All three are correct; however, you should pick one style and then use it
consistently.

Exercises
1. The following is one possible answer:

1: //Exercise 9.1 -
2: #include <iostream>
3:
4: int main()
5: {
6: int varOne = 1; // sets varOne to 1
7: int& rVar = varOne;
8: int* pVar = &varOne;
9: rVar = 5; // sets varOne to 5
10: *pVar = 7; // sets varOne to 7
11:
12: // All three of the following will print 7:
13: std::cout << “variable: “ << varOne << std::endl;
14: std::cout << “reference: “ << rVar << std::endl;
15: std::cout << “pointer: “ << *pVar << std::endl;
16:
17: return 0;
18: }

2. The following is one possible answer.
1: int main()
2: {
3: int varOne;
4: const int * const pVar = &varOne;
5: varOne = 6;
6: *pVar = 7;
7: int varTwo;
8: pVar = &varTwo;
9: return 0;
10: }

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 835

3. You can’t assign a value to a constant object, and you can’t reassign a constant
pointer. This means that lines 6 and 8 are problems.

4. The following is one possible answer. Note that this is a dangerous program to run
because of the stray pointer.
1: int main()
2: {
3: int * pVar;
4: *pVar = 9;
5: return 0;
6: }

5. The following is one possible answer:
1: int main()
2: {
3: int VarOne;
4: int * pVar = &varOne;
5: *pVar = 9;
6: return 0;
7: }

6. The following is one possible answer. Note that you should avoid memory leaks in
your programs.
1: #include <iostream>
2: int FuncOne();
3: int main()
4: {
5: int localVar = FunOne();
6: std::cout << “The value of localVar is: “ << localVar;
7: return 0;
8: }
9:
10: int FuncOne()
11: {
12: int * pVar = new int (5);
13: return *pVar;
14: }

7. The following is one possible answer:
1: #include <iostream>
2: void FuncOne();
3: int main()
4: {
5: FuncOne();
6: return 0;
7: }
8:
9: void FuncOne()
10: {

836 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 836

Answers 837

D

11: int * pVar = new int (5);
12: std::cout << “The value of *pVar is: “ << *pVar ;
13: delete pVar;
14: }

8. MakeCat returns a reference to the CAT created on the free store. There is no way to
free that memory, and this produces a memory leak.

9. The following is one possible answer:
1: #include <iostream>
2: using namespace std;
3: class CAT
4: {
5: public:
6: CAT(int age) { itsAge = age; }
7: ~CAT(){}
8: int GetAge() const { return itsAge;}
9: private:
10: int itsAge;
11: };
12:
13: CAT * MakeCat(int age);
14: int main()
15: {
16: int age = 7;
17: CAT * Boots = MakeCat(age);
18: cout << “Boots is “ << Boots->GetAge() << “ years old”;
19: delete Boots;
20: return 0;
21: }
22:
23: CAT * MakeCat(int age)
24: {
25: return new CAT(age);
26: }

Day 10
Quiz

1. Overloaded member functions are functions in a class that share a name but differ
in the number or type of their parameters.

2. A definition sets aside memory; a declaration does not. Almost all declarations are
definitions; the major exceptions are class declarations, function prototypes, and
typedef statements.

3. Whenever a temporary copy of an object is created. This also happens every time
an object is passed by value.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 837

4. The destructor is called each time an object is destroyed, either because it goes out
of scope or because you call delete on a pointer pointing to it.

5. The assignment operator acts on an existing object; the copy constructor creates a
new one.

6. The this pointer is a hidden parameter in every member function that points to the
object itself.

7. The prefix operator takes no parameters. The postfix operator takes a single int
parameter, which is used as a signal to the compiler that this is the postfix variant.

8. No, you cannot overload any operator for built-in types.

9. It is legal, but it is a bad idea. Operators should be overloaded in a way that is
likely to be readily understood by anyone reading your code.

10. None. Like constructors and destructors, they have no return values.

Exercises
1. The following is one possible answer:

class SimpleCircle
{

public:
SimpleCircle();
~SimpleCircle();
void SetRadius(int);
int GetRadius();

private:
int itsRadius;

};

2. The following is one possible answer:
SimpleCircle::SimpleCircle():
itsRadius(5)
{}

3. The following is one possible answer:
SimpleCircle::SimpleCircle(int radius):
itsRadius(radius)
{}

4. The following is one possible answer:
const SimpleCircle& SimpleCircle::operator++()
{

++(itsRadius);
return *this;

}

// Operator ++(int) postfix.

838 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 838

Answers 839

D

// Fetch then increment
const SimpleCircle SimpleCircle::operator++ (int)
{

// declare local SimpleCircle and initialize to value of *this
SimpleCircle temp(*this);
++(itsRadius);
return temp;

}

5. The following is one possible answer:
class SimpleCircle
{

public:
SimpleCircle();
SimpleCircle(int);
~SimpleCircle();
void SetRadius(int);
int GetRadius();
const SimpleCircle& operator++();
const SimpleCircle operator++(int);

private:
int *itsRadius;

};

SimpleCircle::SimpleCircle()
{

itsRadius = new int(5);
}

SimpleCircle::SimpleCircle(int radius)
{

itsRadius = new int(radius);
}

const SimpleCircle& SimpleCircle::operator++()
{

++(*itsRadius);
return *this;

}

// Operator ++(int) postfix.
// Fetch then increment
const SimpleCircle SimpleCircle::operator++ (int)
{

// declare local SimpleCircle and initialize to value of *this
➥SimpleCircle temp(*this);

++(*itsRadius);
return temp;

}

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 839

6. The following is one possible answer:
SimpleCircle::SimpleCircle(const SimpleCircle & rhs)
{

int val = rhs.GetRadius();
itsRadius = new int(val);

}

7. The following is one possible answer:
SimpleCircle& SimpleCircle::operator=(const SimpleCircle & rhs)
{

if (this == &rhs)
return *this;

delete itsRadius;
itsRadius = new int;
*itsRadius = rhs.GetRadius();
return *this;

}

8. The following is one possible answer:
1: #include <iostream>
2: using namespace std;
3:
4: class SimpleCircle
5: {
6: public:
7: // constructors
8: SimpleCircle();
9: SimpleCircle(int);
10: SimpleCircle(const SimpleCircle &);
11: ~SimpleCircle() {}
12:
13: // accessor functions
14: void SetRadius(int);
15: int GetRadius()const;
16:
17: // operators
18: const SimpleCircle& operator++();
19: const SimpleCircle operator++(int);
20: SimpleCircle& operator=(const SimpleCircle &);
21:
22: private:
23: int *itsRadius;
24: };
25:
26:
27: SimpleCircle::SimpleCircle()
28: {itsRadius = new int(5);}
29:
30: SimpleCircle::SimpleCircle(int radius)
31: {itsRadius = new int(radius);}

840 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 840

Answers 841

D

32:
33: SimpleCircle::SimpleCircle(const SimpleCircle & rhs)
34: {
35: int val = rhs.GetRadius();
36: itsRadius = new int(val);
37: }
38:
39: SimpleCircle& SimpleCircle::operator=(const SimpleCircle & rhs)
40: {
41: if (this == &rhs)
42: return *this;
43: *itsRadius = rhs.GetRadius();
44: return *this;
45: }
46:
47: const SimpleCircle& SimpleCircle::operator++()
48: {
49: ++(*itsRadius);
50: return *this;
51: }
52:
53: // Operator ++(int) postfix.
54: // Fetch then increment
55: const SimpleCircle SimpleCircle::operator++ (int)
56: {
57: // declare local SimpleCircle and initialize to value of *this
58: SimpleCircle temp(*this);
59: ++(*itsRadius);
60: return temp;
61: }
62: int SimpleCircle::GetRadius() const
63: {
64: return *itsRadius;
65: }
66: int main()
67: {
68: SimpleCircle CircleOne, CircleTwo(9);
69: CircleOne++;
70: ++CircleTwo;
71: cout << “CircleOne: “ << CircleOne.GetRadius() << endl;
72: cout << “CircleTwo: “ << CircleTwo.GetRadius() << endl;
73: CircleOne = CircleTwo;
74: cout << “CircleOne: “ << CircleOne.GetRadius() << endl;
75: cout << “CircleTwo: “ << CircleTwo.GetRadius() << endl;
76: return 0;
77: }

9. You must check to see whether rhs equals this, or the call to a = a will crash
your program.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 841

10. This operator+ is changing the value in one of the operands, rather than creating a
new VeryShort object with the sum. The correct way to do this is as follows:
VeryShort VeryShort::operator+ (const VeryShort& rhs)
{

return VeryShort(itsVal + rhs.GetItsVal());
}

Day 11
Quiz

1. Procedural programming focuses on functions separate from data. Object-oriented
programming ties data and functionality together into objects, and focuses on the
interaction among the objects.

2. The phases of object-oriented analysis and design include conceptualization, which
is the single sentence that describes the great idea; analysis, which is the process of
understanding the requirements; and design, which is the process of creating the
model of your classes, from which you will generate your code.

These are followed by implementation, testing, and rollout.

3. Encapsulation refers to the (desirable) trait of bringing together in one class all the
data and functionality of one discrete entity.

4. A domain is an area of the business for which you are creating a product.

5. An actor is any person or system that is external to the system you are developing
and interacts with the system you are developing.

6. A use case is a description of how the software will be used. It is a description of
an interaction between an actor and the system itself.

7. A is true and B is not.

Exercises
1. The following diagram provides one possible answer:

842 Appendix D

Computer
System

Keyboard Mouse Monitor CPU

1 1 1..2 1..8

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 842

Answers 843

D

2. Cars, motorcycles, trucks, bicycles, pedestrians, and emergency vehicles all use the
intersection. In addition, there is a traffic signal with Walk/Don’t Walk lights.

Should the road surface be included in the simulation? Certainly, road quality can
have an effect on the traffic, but for a first design, it might be simpler to leave this
consideration aside.

The first object is probably the intersection itself. Perhaps the intersection object
maintains lists of cars waiting to pass through the signal in each direction, as well
as lists of people waiting to cross at the crosswalks. It will need methods to choose
which and how many cars and people go through the intersection.

There will only be one intersection, so you might want to consider how you will
ensure that only one object is instantiated. (Hint: Think about static methods and
protected access.)

People and cars are both clients of the intersection. They share a number of charac-
teristics: They can appear at any time, there can be any number of them, and they
both wait at the signal (although in different lines). This suggests that you will
want to consider a common base class for pedestrians and cars.

The classes could, therefore, include the following:
class Entity; // a client of the intersection
class Vehicle : Entity ...; // the root of
➥all cars, trucks, bicycles and emergency vehicles.
class Pedestrian : Entity...; // the root of all People
class Car : public Vehicle...;
class Truck : public Vehicle...;
class Motorcycle : public Vehicle...;
class Bicycle : public Vehicle...;
class Emergency_Vehicle : public Vehicle...;
class Intersection; // contains lists of
➥cars and people waiting to pass

3. Two discrete programs could be written for this project: the client, which the users
run, and the server, which would run on a separate machine. In addition, the client
machine would have an administrative component to enable a system administrator
to add new people and rooms.

If you decide to implement this as a client/server model, the client would accept
input from users and generate a request to the server. The server would service the
request and send back the results to the client. With this model, many people can
schedule meetings at the same time.

On the client’s side, there are two major subsystems in addition to the administra-
tive module: the user interface and the communications subsystem. The server’s
side consists of three main subsystems: communications, scheduling, and a mail
interface, which would announce to the user when changes have occurred in the
schedule.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 843

4. A meeting is defined as a group of people reserving a room for a certain amount of
time. The person making the schedule might desire a specific room, or a specified
time; however, the scheduler must always be told how long the meeting will last
and who is required.

The objects will probably include the users of the system as well as the conference
rooms. Remember to include classes for the calendar, and perhaps a class Meeting

that encapsulates all that is known about a particular event.

The prototypes for the classes might include
class Calendar_Class; // forward reference
class Meeting; // forward reference
class Configuration
{
public:

Configuration();
~Configuration();
Meeting Schedule(ListOfPerson&,

Delta Time duration);
Meeting Schedule(ListOfPerson&,

Delta Time duration, Time);
Meeting Schedule(ListOfPerson&,

Delta Time duration, Room);
ListOfPerson& People(); // public accessors
ListOfRoom& Rooms(); // public accessors

protected:
ListOfRoom rooms;
ListOfPerson people;

};
typedef long Room_ID;
class Room
{
public:

Room(String name, Room_ID id, int capacity,
String directions = “”, String description = “”);

~Room();
Calendar_Class Calendar();

protected:
Calendar_Class calendar;
int capacity;
Room_ID id;
String name;
String directions; // where is this room?
String description;

};
typedef long Person_ID;
class Person

844 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 844

Answers 845

D

{
public:

Person(String name, Person_ID id);
~Person();
Calendar_Class Calendar(); // the access point to add

➥meetings
protected:

Calendar_Class calendar;
Person_ID id;
String name;

};
class Calendar_Class
{
public:

Calendar_Class();
~Calendar_Class();

void Add(const Meeting&); // add a meeting to the calendar
void Delete(const Meeting&);
Meeting* Lookup(Time); // see if there is a meeting at the

// given time

Block(Time, Duration, String reason = “”);
// allocate time to yourself...

protected:
OrderedListOfMeeting meetings;

};
class Meeting
{
public:

Meeting(ListOfPerson&, Room room,
Time when, Duration duration, String purpose

= “”);
~Meeting();

protected:
ListOfPerson people;
Room room;
Time when;
Duration duration;
String purpose;

};

You might have used private instead of protected. Protected members are cov-
ered on Day 12, “Implementing Inheritance.”

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 845

Day 12
Quiz

1. A v-table, or virtual function table, is a common way for compilers to manage vir-
tual functions in C++. The table keeps a list of the addresses of all the virtual func-
tions, and depending on the runtime type of the object pointed to, invokes the right
function.

2. A destructor of any class can be declared to be virtual. When the pointer is deleted,
the runtime type of the object will be assessed and the correct derived destructor
invoked.

3. This was a trick question—there are no virtual constructors.

4. By creating a virtual method in your class, which itself calls the copy constructor.

5. Base::FunctionName();

6. FunctionName();

7. Yes, the virtuality is inherited and cannot be turned off.

8. protected members are accessible to the member functions of derived objects.

Exercises
1. virtual void SomeFunction(int);

2. Because you are showing a declaration of Square, you don’t need to worry about
Shape. Shape is automatically included as a part of Rectangle.
class Square : public Rectangle
{};

3. Just as with Exercise 2, you don’t need to worry about Shape.
Square::Square(int length):

Rectangle(length, width){}

4. The following is one possible answer:
class Square
{

public:
// ...
virtual Square * clone() const { return new Square(*this); }
// ...

};

5. Perhaps nothing. SomeFunction expects a Shape object. You’ve passed it a
Rectangle “sliced” down to a Shape. As long as you don’t need any of the

846 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 846

Answers 847

D

Rectangle parts, this will be fine. If you do need the Rectangle parts, you’ll need
to change SomeFunction to take a pointer or a reference to a Shape.

6. You can’t declare a copy constructor to be virtual.

Day 13
Quiz

1. SomeArray[0], SomeArray[24]

2. Write a set of subscripts for each dimension. For example, SomeArray[2][3][2] is
a three-dimensional array. The first dimension has two elements, the second has
three, and the third has two.

3. SomeArray[2][3][2] = { { {1,2},{3,4},{5,6} } , { {7,8},{9,10},{11,12}

➥} };

4. 10*5*20=1,000

5. Both arrays and linked lists are containers for storing information; however, linked
lists are designed to link together as needed.

6. This string contains 16 characters—the fifteen you see and the null character that
ends the string.

7. The null character.

Exercises
1. The following is one possible solution. Your array might have a different name, but

should be followed by [3][3] in order to hold a 3 by 3 board.

int GameBoard[3][3];

2. int GameBoard[3][3] = { {0,0,0},{0,0,0},{0,0,0} }

3. The following is one possible solution. This uses the strcpy() and strlen()
functions.
#include <iostream>
#include <string.h>
using namespace std;

int main()
{

char firstname[] = “Alfred”;
char middlename[] = “E”;
char lastname[] = “Numan”;
char fullname[80];
int offset = 0;

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 847

strcpy(fullname,firstname);
offset = strlen(firstname);
strcpy(fullname+offset,” “);
offset += 1;
strcpy(fullname+offset,middlename);
offset += strlen(middlename);
strcpy(fullname+offset,”. “);
offset += 2;
strcpy(fullname+offset,lastname);

cout << firstname << “-” << middlename << “-”
<< lastname << endl;

cout << “Fullname: “ << fullname << endl;

return 0;
}

4. The array is five elements by four elements, but the code initializes 4×5.

5. You wanted to write i<5, but you wrote i<=5 instead. The code will run when i ==
5 and j == 4, but there is no such element as SomeArray[5][4].

Day 14
Quiz

1. A down cast (also called “casting down”) is a declaration that a pointer to a base
class is to be treated as a pointer to a derived class.

2. This refers to the idea of moving shared functionality upward into a common base
class. If more than one class shares a function, it is desirable to find a common
base class in which that function can be stored.

3. If neither class inherits using the keyword virtual, two Shapes are created, one
for Rectangle and one for Shape. If the keyword virtual is used for both classes,
only one shared Shape is created.

4. Both Horse and Bird initialize their base class, Animal, in their constructors.
Pegasus does as well, and when a Pegasus is created, the Horse and Bird initial-
izations of Animal are ignored.

5. The following is one possible answer:
class Vehicle
{

virtual void Move() = 0;
}

6. None must be overridden unless you want to make the class nonabstract, in which
case all three must be overridden.

848 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 848

Answers 849

D

Exercises
1. class JetPlane : public Rocket, public Airplane

2. class Seven47: public JetPlane

3. The following is one possible answer:
class Vehicle
{

virtual void Move() = 0;
virtual void Haul() = 0;

};

class Car : public Vehicle
{

virtual void Move();
virtual void Haul();

};

class Bus : public Vehicle
{

virtual void Move();
virtual void Haul();

};

4. The following is one possible answer:
class Vehicle
{

virtual void Move() = 0;
virtual void Haul() = 0;

};

class Car : public Vehicle
{

virtual void Move();
};

class Bus : public Vehicle
{

virtual void Move();
virtual void Haul();

};

class SportsCar : public Car
{

virtual void Haul();
};

class Coupe : public Car
{

virtual void Haul();
};

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 849

Day 15
Quiz

1. Yes. They are member variables and their access can be controlled like any other.
If they are private, they can be accessed only by using member functions or, more
commonly, static member functions.

2. static int itsStatic;

3. static int SomeFunction();

4. long (* function)(int);

5. long (Car::*function)(int);

6. long (Car::*function)(int) theArray [10];

Exercises
1. The following is one possible answer:

0: // Ex1501.cpp
1: class myClass
2: {
3: public:
4: myClass();
5: ~myClass();
6: private:
7: int itsMember;
8: static int itsStatic;
9: };
10:
11: myClass::myClass():
12: itsMember(1)
13: {
14: itsStatic++;
15: }
16:
17: myClass::~myClass()
18: {
19: itsStatic--;
20: }
21:
22: int myClass::itsStatic = 0;
23:
24: int main()
25: {
26: // do something
27: return 0;
28: }

850 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 850

Answers 851

D

2. The following is one possible answer:
0: // Ex1502.cpp
1: #include <iostream>
2: using namespace std;
3: class myClass
4: {
5: public:
6: myClass();
7: ~myClass();
8: void ShowMember();
9: void ShowStatic();
10: private:
11: int itsMember;
12: static int itsStatic;
13: };
14:
15: myClass::myClass():
16: itsMember(1)
17: {
18: itsStatic++;
19: }
20:
21: myClass::~myClass()
22: {
23: itsStatic--;
24: cout << “In destructor. ItsStatic: “ << itsStatic << endl;
25: }
26:
27: void myClass::ShowMember()
28: {
29: cout << “itsMember: “ << itsMember << endl;
30: }
31:
32: void myClass::ShowStatic()
33: {
34: cout << “itsStatic: “ << itsStatic << endl;
35: }
36: int myClass::itsStatic = 0;
37:
38: int main()
39: {
40: myClass obj1;
41: obj1.ShowMember();
42: obj1.ShowStatic();
43:
44: myClass obj2;
45: obj2.ShowMember();
46: obj2.ShowStatic();
47:
48: myClass obj3;

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 851

49: obj3.ShowMember();
50: obj3.ShowStatic();
51: return 0;
52: }

3. The following is one possible answer:
0: // Ex1503.cpp
1: #include <iostream>
2: using namespace std;
3: class myClass
4: {
5: public:
6: myClass();
7: ~myClass();
8: void ShowMember();
9: static int GetStatic();
10: private:
11: int itsMember;
12: static int itsStatic;
13: };
14:
15: myClass::myClass():
16: itsMember(1)
17: {
18: itsStatic++;
19: }
20:
21: myClass::~myClass()
22: {
23: itsStatic--;
24: cout << “In destructor. ItsStatic: “ << itsStatic << endl;
25: }
26:
27: void myClass::ShowMember()
28: {
29: cout << “itsMember: “ << itsMember << endl;
30: }
31:
32: int myClass::itsStatic = 0;
33:
34: int myClass::GetStatic()
35: {
36: return itsStatic;
37: }
38:
39: int main()
40: {
41: myClass obj1;
42: obj1.ShowMember();
43: cout << “Static: “ << myClass::GetStatic() << endl;
44:

852 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 852

Answers 853

D

45: myClass obj2;
46: obj2.ShowMember();
47: cout << “Static: “ << myClass::GetStatic() << endl;
48:
49: myClass obj3;
50: obj3.ShowMember();
51: cout << “Static: “ << myClass::GetStatic() << endl;
52: return 0;
53: }

4. The following is one possible answer:
0: // Ex1504.cpp
1: #include <iostream>
2: using namespace std;
3: class myClass
4: {
5: public:
6: myClass();
7: ~myClass();
8: void ShowMember();
9: static int GetStatic();
10: private:
11: int itsMember;
12: static int itsStatic;
13: };
14:
15: myClass::myClass():
16: itsMember(1)
17: {
18: itsStatic++;
19: }
20:
21: myClass::~myClass()
22: {
23: itsStatic--;
24: cout << “In destructor. ItsStatic: “ << itsStatic << endl;
25: }
26:
27: void myClass::ShowMember()
28: {
29: cout << “itsMember: “ << itsMember << endl;
30: }
31:
32: int myClass::itsStatic = 0;
33:
34: int myClass::GetStatic()
35: {
36: return itsStatic;
37: }
38:
39: int main()

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 853

40: {
41: void (myClass::*PMF) ();
42:
43: PMF=myClass::ShowMember;
44:
45: myClass obj1;
46: (obj1.*PMF)();
47: cout << “Static: “ << myClass::GetStatic() << endl;
48:
49: myClass obj2;
50: (obj2.*PMF)();
51: cout << “Static: “ << myClass::GetStatic() << endl;
52:
53: myClass obj3;
54: (obj3.*PMF)();
55: cout << “Static: “ << myClass::GetStatic() << endl;
56: return 0;
57: }

5. The following is one possible answer:
0: // Ex1505.cpp
1: #include <iostream>
2: using namespace std;
3: class myClass
4: {
5: public:
6: myClass();
7: ~myClass();
8: void ShowMember();
9: void ShowSecond();
10: void ShowThird();
11: static int GetStatic();
12: private:
13: int itsMember;
14: int itsSecond;
15: int itsThird;
16: static int itsStatic;
17: };
18:
19: myClass::myClass():
20: itsMember(1),
21: itsSecond(2),
22: itsThird(3)
23: {
24: itsStatic++;
25: }
26:
27: myClass::~myClass()
28: {
29: itsStatic--;
30: cout << “In destructor. ItsStatic: “ << itsStatic << endl;

854 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 854

Answers 855

D

31: }
32:
33: void myClass::ShowMember()
34: {
35: cout << “itsMember: “ << itsMember << endl;
36: }
37:
38: void myClass::ShowSecond()
39: {
40: cout << “itsSecond: “ << itsSecond << endl;
41: }
42:
43: void myClass::ShowThird()
44: {
45: cout << “itsThird: “ << itsThird << endl;
46: }
47: int myClass::itsStatic = 0;
48:
49: int myClass::GetStatic()
50: {
51: return itsStatic;
52: }
53:
54: int main()
55: {
56: void (myClass::*PMF) ();
57:
58: myClass obj1;
59: PMF=myClass::ShowMember;
60: (obj1.*PMF)();
61: PMF=myClass::ShowSecond;
62: (obj1.*PMF)();
63: PMF=myClass::ShowThird;
64: (obj1.*PMF)();
65: cout << “Static: “ << myClass::GetStatic() << endl;
66:
67: myClass obj2;
68: PMF=myClass::ShowMember;
69: (obj2.*PMF)();
70: PMF=myClass::ShowSecond;
71: (obj2.*PMF)();
72: PMF=myClass::ShowThird;
73: (obj2.*PMF)();
74: cout << “Static: “ << myClass::GetStatic() << endl;
75:
76: myClass obj3;
77: PMF=myClass::ShowMember;
78: (obj3.*PMF)();
79: PMF=myClass::ShowSecond;
80: (obj3.*PMF)();
81: PMF=myClass::ShowThird;

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 855

82: (obj3.*PMF)();
83: cout << “Static: “ << myClass::GetStatic() << endl;
84:
85: return 0;
86: }

Day 16
Quiz

1. An is-a relationship is established with public inheritance.

2. A has-a relationship is established with aggregation (containment); that is, one
class has a member that is an object of another type.

3. Aggregation describes the idea of one class having a data member that is an object
of another type. Delegation expresses the idea that one class uses another class to
accomplish a task or goal.

4. Delegation expresses the idea that one class uses another class to accomplish a task
or goal. Implemented in terms of expresses the idea of inheriting implementation
from another class.

5. A friend function is a function declared to have access to the protected and private
members of your class.

6. A friend class is a class declared so that all of its member functions are friend
functions of your class.

7. No, friendship is not commutative.

8. No, friendship is not inherited.

9. No, friendship is not associative.

10. A declaration for a friend function can appear anywhere within the class declara-
tion. It makes no difference whether you put the declaration within the public:,
protected:, or private: access areas.

Exercises
1. The following is one possible answer:

class Animal:
{

private:
String itsName;

};

856 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 856

Answers 857

D

2. The following is one possible answer:
class boundedArray : public Array
{

//...
}

3. The following is one possible answer:
class Set : private Array
{

// ...
}

4. The following is one possible answer:
0: #include <iostream.h>
1: #include <string.h>
2:
3: class String
4: {
5: public:
6: // constructors
7: String();
8: String(const char *const);
9: String(const String &);
10: ~String();
11:
12: // overloaded operators
13: char & operator[](int offset);
14: char operator[](int offset) const;
15: String operator+(const String&);
16: void operator+=(const String&);
17: String & operator= (const String &);
18: friend ostream& operator<<(ostream&
19: theStream,String& theString);
20: friend istream& operator>>(istream&
21: theStream,String& theString);
22: // General accessors
23: int GetLen()const { return itsLen; }
24: const char * GetString() const { return itsString; }
25: // static int ConstructorCount;
26:
27: private:
28: String (int); // private constructor
29: char * itsString;
30: unsigned short itsLen;
31:
32: };
33:
34: ostream& operator<<(ostream& theStream,String& theString)
35: {
36: theStream << theString.GetString();

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 857

37: return theStream;
38: }
39:
40: istream& operator>>(istream& theStream,String& theString)
41: {
42: theStream >> theString.GetString();
43: return theStream;
44: }
45:
46: int main()
47: {
48: String theString(“Hello world.”);
49: cout << theString;
50: return 0;
51: }

5. You can’t put the friend declaration into the function. You must declare the func-
tion to be a friend in the class.

6. The following is the fixed listing:
0: Bug Busters
1: #include <iostream>
2: using namespace std;
3: class Animal;
4:
5: void setValue(Animal& , int);
6:
7: class Animal
8: {
9: public:
10: friend void setValue(Animal&, int);
11: int GetWeight()const { return itsWeight; }
12: int GetAge() const { return itsAge; }
13: private:
14: int itsWeight;
15: int itsAge;
16: };
17:
18: void setValue(Animal& theAnimal, int theWeight)
19: {
20: theAnimal.itsWeight = theWeight;
21: }
22:
23: int main()
24: {
25: Animal peppy;
26: setValue(peppy,5);
27: return 0;
28: }

858 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 858

Answers 859

D

7. The function setValue(Animal&,int) was declared to be a friend, but the over-
loaded function setValue(Animal&,int,int) was not declared to be a friend.

8. The following is the fixed listing:
0: // Bug Busters
1: #include <iostream>
2: using namespace std;
3: class Animal;
4:
5: void setValue(Animal& , int);
6: void setValue(Animal& ,int,int); // here’s the change!
7:
8: class Animal
9: {
10: friend void setValue(Animal& ,int);
11: friend void setValue(Animal& ,int,int);
12: private:
13: int itsWeight;
14: int itsAge;
15: };
16:
17: void setValue(Animal& theAnimal, int theWeight)
18: {
19: theAnimal.itsWeight = theWeight;
20: }
21:
22: void setValue(Animal& theAnimal, int theWeight, int theAge)
23: {
24: theAnimal.itsWeight = theWeight;
25: theAnimal.itsAge = theAge;
26: }
27:
28: int main()
29: {
30: Animal peppy;
31: setValue(peppy,5);
32: setValue(peppy,7,9);
33: return 0;
34: }

Day 17
Quiz

1. The insertion operator (<<) is a member operator of the ostream object and is used
for writing to the output device.

2. The extraction operator (>>) is a member operator of the istream object and is
used for writing to your program’s variables.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 859

3. The first form of get() is without parameters. This returns the value of the charac-
ter found, and will return EOF (end of file) if the end of the file is reached.

The second form of get() takes a character reference as its parameter; that charac-
ter is filled with the next character in the input stream. The return value is an
iostream object.

The third form of get() takes an array, a maximum number of characters to get,
and a terminating character. This form of get() fills the array with up to one fewer
characters than the maximum (appending null) unless it reads the terminating char-
acter, in which case it immediately writes a null and leaves the terminating charac-
ter in the buffer.

4. cin.read() is used for reading binary data structures.

getline() is used to read from the istream’s buffer.

5. Wide enough to display the entire number.

6. A reference to an istream object.

7. The filename to be opened.

8. ios::ate places you at the end of the file, but you can write data anywhere in the
file.

Exercises
1. The following is one possible solution:

0: // Ex1701.cpp
1: #include <iostream>
2: int main()
3: {
4: int x;
5: std::cout << “Enter a number: “;
6: std::cin >> x;
7: std::cout << “You entered: “ << x << std::endl;
8: std::cerr << “Uh oh, this to cerr!” << std::endl;
9: std::clog << “Uh oh, this to clog!” << std::endl;
10: return 0;
11: }

2. The following is one possible solution:
0: // Ex1702.cpp
1: #include <iostream>
2: int main()
3: {
4: char name[80];
5: std::cout << “Enter your full name: “;
6: std::cin.getline(name,80);
7: std::cout << “\nYou entered: “ << name << std::endl;
8: return 0;
9: }

860 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 860

Answers 861

D

3. The following is one possible solution:
0: // Ex1703.cpp
1: #include <iostream>
2: using namespace std;
3:
4: int main()
5: {
6: char ch;
7: cout << “enter a phrase: “;
8: while (cin.get(ch))
9: {
10: switch (ch)
11: {
12: case ‘!’:
13: cout << ‘$’;
14: break;
15: case ‘#’:
16: break;
17: default:
18: cout << ch;
19: break;
20: }
21: }
22: return 0;
23: }

4. The following is one possible solution:
0: // Ex1704.cpp
1: #include <fstream>
2: #include <iostream>
3: using namespace std;
4:
5: int main(int argc, char**argv) // returns 1 on error
6: {
7: if (argc != 2)
8: {
9: cout << “Usage: argv[0] <infile>\n”;
10: return(1);
11: }
12:
13: // open the input stream
14: ifstream fin (argv[1],ios::binary);
15: if (!fin)
16: {
17: cout << “Unable to open “ << argv[1] <<” for reading.\n”;
18: return(1);
19: }
20:
21: char ch;
22: while (fin.get(ch))

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 861

23: if ((ch > 32 && ch < 127) || ch == ‘\n’|| ch == ‘\t’)
24: cout << ch;
25: fin.close();
26: }

5. The following is one possible solution:
0: // Ex1705.cpp
1: #include <iostream>
2:
3: int main(int argc, char**argv) // returns 1 on error
4: {
5: for (int ctr = argc-1; ctr>0 ; ctr--)
6: std::cout << argv[ctr] << “ “;
7: }

Day 18
Quiz

1. Outer::Inner::MyFunc();

2. At the point the listing reaches HERE, the global version of X will be used, so it will
be 4.

3. Yes, you can use names defined in a namespace by prefixing them with the name-
space qualifier.

4. Names in a normal namespace can be used outside of the translation unit where the
namespace is declared. Names in an unnamed namespace can only be used within
the translation unit where the namespace is declared.

5. The using keyword can be used for the using directives and the using declara-
tions. A using directive allows all names in a namespace to be used as if they are
normal names. A using declaration, on the other hand, enables the program to use
an individual name from a namespace without qualifying it with the namespace
qualifier.

6. Unnamed namespaces are namespaces without names. They are used to wrap a col-
lection of declarations against possible name clashes. Names in an unnamed name-
space cannot be used outside of the translation unit where the namespace is
declared.

7. The standard namespace std is defined by the C++ Standard Library. It includes
declarations of all names in the Standard Library.

862 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 862

Answers 863

D

Exercises
1. The C++ standard iostream header file declares cout and endl in namespace std.

They cannot be used outside of the standard namespace std without a namespace
qualifier.

2. You can add the following line between lines 0 and 1.

using namespace std;

You can add the following two lines between 0 and 1:
using std::cout;

using std::endl;

You can change line 3 to the following:
std::cout << “Hello world!” << std::endl;

3. The following is one possible answer:
Namespace MyStuff
{

class MyClass
{

//MyClass stuff
}

}

Day 19
Quiz

1. Templates are built in to the C++ language and are type-safe. Macros are imple-
mented by the preprocessor and are not type-safe.

2. The parameter to the template creates an instance of the template for each type. If
you create six template instances, six different classes or functions are created. The
parameters to the function change the behavior or data of the function, but only
one function is created.

3. The general template friend function creates one function for every type of the
parameterized class; the type-specific function creates a type-specific instance for
each instance of the parameterized class.

4. Yes, create a specialized function for the particular instance. In addition to creating
Array<t>::SomeFunction(), also create Array<int>::SomeFunction() to change
the behavior for integer arrays.

5. One for each instance type of the class.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 863

6. The class must define a default constructor, a copy constructor, and an overloaded
assignment operator.

7. STL stands for the Standard Template Library. This library is important because it
contains a number of template classes that have already been created and are ready
for you to use. Because these are a part of the C++ standard, any compiler support-
ing the standard will also support these classes. This means you don’t have to
“reinvent the wheel!”

Exercises
1. One way to implement this template:

0: //Exercise 19.1
1: template <class Type>
2: class List
3: {
4:
5: public:
6: List():head(0),tail(0),theCount(0) { }
7: virtual ~List();
8:
9: void insert(Type value);
10: void append(Type value);
11: int is_present(Type value) const;
12: int is_empty() const { return head == 0; }
13: int count() const { return theCount; }
14:
15: private:
16: class ListCell
17: {
18: public:
19: ListCell(Type value, ListCell *cell =

➥0):val(value),next(cell){}
20: Type val;
21: ListCell *next;
22: };
23:
24: ListCell *head;
25: ListCell *tail;
26: int theCount;
27: };

2. The following is one possible answer:
0: // Exercise 19.2
1: void List::insert(int value)
2: {
3: ListCell *pt = new ListCell(value, head);
4:

864 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 864

Answers 865

D

5: // this line added to handle tail
6: if (head == 0) tail = pt;
7:
8: head = pt;
9: theCount++;
10: }
11:
12: void List::append(int value)
13: {
14: ListCell *pt = new ListCell(value);
15: if (head == 0)
16: head = pt;
17: else
18: tail->next = pt;
19:
20: tail = pt;
21: theCount++;
22: }
23:
24: int List::is_present(int value) const
25: {
26: if (head == 0) return 0;
27: if (head->val == value || tail->val == value)
28: return 1;
29:
30: ListCell *pt = head->next;
31: for (; pt != tail; pt = pt->next)
32: if (pt->val == value)
33: return 1;
34:
35: return 0;
36: }

3. The following is one possible answer:
0: // Exercise 19.3
1: template <class Type>
2: List<Type>::~List()
3: {
4: ListCell *pt = head;
5:
6: while (pt)
7: {
8: ListCell *tmp = pt;
9: pt = pt->next;
10: delete tmp;
11: }
12: head = tail = 0;
13: }
14:
15: template <class Type>

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 865

16: void List<Type>::insert(Type value)
17: {
18: ListCell *pt = new ListCell(value, head);
19: assert (pt != 0);
20:
21: // this line added to handle tail
22: if (head == 0) tail = pt;
23:
24: head = pt;
25: theCount++;
26: }
27:
28: template <class Type>
29: void List<Type>::append(Type value)
30: {
31: ListCell *pt = new ListCell(value);
32: if (head == 0)
33: head = pt;
34: else
35: tail->next = pt;
36:
37: tail = pt;
38: theCount++;
39: }
40:
41: template <class Type>
42: int List<Type>::is_present(Type value) const
43: {
44: if (head == 0) return 0;
45: if (head->val == value || tail->val == value)
46: return 1;
47:
48: ListCell *pt = head->next;
49: for (; pt != tail; pt = pt->next)
50: if (pt->val == value)
51: return 1;
52:
53: return 0;
54: }

4. The following declare the three objects:
List<String> string_list;
List<Cat> Cat_List;
List<int> int_List;

5. Cat doesn’t have operator == defined; all operations that compare the values in the
List cells, such as is_present, will result in compiler errors. To reduce the chance
of this, put copious comments before the template definition stating what opera-
tions must be defined for the instantiation to compile.

866 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 866

Answers 867

D

6. The following is one possible answer:

friend int operator==(const Type& lhs, const Type& rhs);

7. The following is one possible answer:
0: Exercise 19.7
1: template <class Type>
2: int List<Type>::operator==(const Type& lhs, const Type& rhs)
3: {
4: // compare lengths first
5: if (lhs.theCount != rhs.theCount)
6: return 0; // lengths differ
7:
8: ListCell *lh = lhs.head;
9: ListCell *rh = rhs.head;
10:
11: for(; lh != 0; lh = lh.next, rh = rh.next)
12: if (lh.value != rh.value)
13: return 0;
14:
15: return 1; // if they don’t differ, they must match
16: }

8. Yes, because comparing the array involves comparing the elements, operator!=
must be defined for the elements as well.

9. The following is one possible answer:
0: // Exercise 19.9
1: // template swap:
2: // must have assignment and the copy constructor defined for the Type.
3: template <class Type>
4: void swap(Type& lhs, Type& rhs)
5: {
6: Type temp(lhs);
7: lhs = rhs;
8: rhs = temp;
9: }

Day 20
Quiz

1. An exception is an object that is created as a result of invoking the keyword throw.
It is used to signal an exceptional condition, and is passed up the call stack to the
first catch statement that handles its type.

2. A try block is a set of statements that might generate an exception.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 867

3. A catch statement is a routine that has a signature of the type of exception it han-
dles. It follows a try block and acts as the receiver of exceptions raised within the
try block.

4. An exception is an object and can contain any information that can be defined
within a user-created class.

5. Exception objects are created when the program invokes the keyword throw.

6. In general, exceptions should be passed by reference. If you don’t intend to modify
the contents of the exception object, you should pass a const reference.

7. Yes, if you pass the exception by reference.

8. catch statements are examined in the order they appear in the source code. The
first catch statement whose signature matches the exception is used. In general, it
is best to start with the most specific exception and work toward the most general.

9. catch(...) catches any exception of any type.

10. A breakpoint is a place in the code where the debugger stops execution.

Exercises
1. The following is one possible answer:

0: #include <iostream>
1: using namespace std;
2: class OutOfMemory {};
3: int main()
4: {
5: try
6: {
7: int *myInt = new int;
8: if (myInt == 0)
9: throw OutOfMemory();
10: }
11: catch (OutOfMemory)
12: {
13: cout << “Unable to allocate memory!” << endl;
14: }
15: return 0;
16: }

2. The following is one possible answer:
1: #include <iostream>
2: #include <stdio.h>
3: #include <string.h>
4: using namespace std;
5: class OutOfMemory
6: {
7: public:
8: OutOfMemory(char *);

868 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 868

Answers 869

D

9: char* GetString() { return itsString; }
10: private:
11: char* itsString;
12: };
13:
14: OutOfMemory::OutOfMemory(char * theType)
15: {
16: itsString = new char[80];
17: char warning[] = “Out Of Memory! Can’t allocate room for: “;
18: strncpy(itsString,warning,60);
19: strncat(itsString,theType,19);
20: }
21:
22: int main()
23: {
24: try
25: {
26: int *myInt = new int;
27: if (myInt == 0)
28: throw OutOfMemory(“int”);
29: }
30: catch (OutOfMemory& theException)
31: {
32: cout << theException.GetString();
33: }
34: return 0;
35: }

3. The following is one possible answer:
0: // Exercise 20.3
1: #include <iostream>
2: using namespace std;
3: // Abstract exception data type
4: class Exception
5: {
6: public:
7: Exception(){}
8: virtual ~Exception(){}
9: virtual void PrintError() = 0;
10: };
11:
12: // Derived class to handle memory problems.
13: // Note no allocation of memory in this class!
14: class OutOfMemory : public Exception
15: {
16: public:
17: OutOfMemory(){}
18: ~OutOfMemory(){}
19: virtual void PrintError();
20: private:
21: };

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 869

22:
23: void OutOfMemory::PrintError()
24: {
25: cout << “Out of Memory!!” << endl;
26: }
27:
28: // Derived class to handle bad numbers
29: class RangeError : public Exception
30: {
31: public:
32: RangeError(unsigned long number){badNumber = number;}
33: ~RangeError(){}
34: virtual void PrintError();
35: virtual unsigned long GetNumber() { return badNumber; }
36: virtual void SetNumber(unsigned long number) {badNumber =

➥number;}
37: private:
38: unsigned long badNumber;
39: };
40:
41: void RangeError::PrintError()
42: {
43: cout << “Number out of range. You used “ ;
44: cout << GetNumber() << “!!” << endl;
45: }
46:
47: void MyFunction(); // func. prototype
48:
49: int main()
50: {
51: try
52: {
53: MyFunction();
54: }
55: // Only one catch required, use virtual functions to do the
56: // right thing.
57: catch (Exception& theException)
58: {
59: theException.PrintError();
60: }
61: return 0;
62: }
63:
64: void MyFunction()
65: {
66: unsigned int *myInt = new unsigned int;
67: long testNumber;
68:
69: if (myInt == 0)
70: throw OutOfMemory();
71:

870 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 870

Answers 871

D

72: cout << “Enter an int: “;
73: cin >> testNumber;
74:
75: // this weird test should be replaced by a series
76: // of tests to complain about bad user input
77:
78: if (testNumber > 3768 || testNumber < 0)
79: throw RangeError(testNumber);
80:
81: *myInt = testNumber;
82: cout << “Ok. myInt: “ << *myInt;
83: delete myInt;
84: }

4. The following is one possible answer:
0: // Exercise 20.4
1: #include <iostream>
2: using namespace std;
3: // Abstract exception data type
4: class Exception
5: {
6: public:
7: Exception(){}
8: virtual ~Exception(){}
9: virtual void PrintError() = 0;
10: };
11:
12: // Derived class to handle memory problems.
13: // Note no allocation of memory in this class!
14: class OutOfMemory : public Exception
15: {
16: public:
17: OutOfMemory(){}
18: ~OutOfMemory(){}
19: virtual void PrintError();
20: private:
21: };
22:
23: void OutOfMemory::PrintError()
24: {
25: cout << “Out of Memory!!\n”;
26: }
27:
28: // Derived class to handle bad numbers
29: class RangeError : public Exception
30: {
31: public:
32: RangeError(unsigned long number){badNumber = number;}
33: ~RangeError(){}
34: virtual void PrintError();
35: virtual unsigned long GetNumber() { return badNumber; }

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 871

36: virtual void SetNumber(unsigned long number) {badNumber =
➥number;}

37: private:
38: unsigned long badNumber;
39: };
40:
41: void RangeError::PrintError()
42: {
43: cout << “Number out of range. You used “;
44: cout << GetNumber() << “!!” << endl;
45: }
46:
47: // func. prototypes
48: void MyFunction();
49: unsigned int * FunctionTwo();
50: void FunctionThree(unsigned int *);
51:
52: int main()
53: {
54: try
55: {
56: MyFunction();
57: }
58: // Only one catch required, use virtual functions to do the
59: // right thing.
60: catch (Exception& theException)
61: {
62: theException.PrintError();
63: }
64: return 0;
65: }
66:
67: unsigned int * FunctionTwo()
68: {
69: unsigned int *myInt = new unsigned int;
70: if (myInt == 0)
71: throw OutOfMemory();
72: return myInt;
73: }
74:
75: void MyFunction()
76: {
77: unsigned int *myInt = FunctionTwo();
78: FunctionThree(myInt);
79: cout << “Ok. myInt: “ << *myInt;
80: delete myInt;
81: }
82:
83: void FunctionThree(unsigned int *ptr)
84: {
85: long testNumber;
86: cout << “Enter an int: “;

872 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 872

Answers 873

D

87: cin >> testNumber;
88: // this weird test should be replaced by a series
89: // of tests to complain about bad user input
90: if (testNumber > 3768 || testNumber < 0)
91: throw RangeError(testNumber);
92: *ptr = testNumber;
93: }

5. In the process of handling an “out of memory” condition, a string object is cre-
ated by the constructor of xOutOfMemory. This exception can only be raised when
the program is out of memory, and so this allocation must fail.

It is possible that trying to create this string will raise the same exception, creating
an infinite loop until the program crashes. If this string is really required, you can
allocate the space in a static buffer before beginning the program, and then use it as
needed when the exception is thrown.

You can test this program by changing the line if (var == 0) to if (1), which
forces the exception to be thrown.

Day 21
Quiz

1. Inclusion guards are used to protect a header file from being included into a pro-
gram more than once.

2. This quiz question must be answered by you, depending on the compiler you are
using.

3. #define debug 0 defines the term debug to equal 0 (zero). Everywhere the word
“debug” is found, the character 0 is substituted. #undef debug removes any defini-
tion of debug; when the word debug is found in the file, it is left unchanged.

4. The answer is 4 / 2, which is 2.

5. The result is 10 + 10 / 2, which is 10 + 5, or 15. This is obviously not the result
desired.

6. You should add parentheses:

HALVE (x) ((x)/2)

7. Two bytes is 16 bits, so up to 16 bit values could be stored.

8. Five bits can hold 32 values (0 to 31).

9. The result is 1111 1111.

10. The result is 0011 1100.

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 873

Exercises
1. The inclusion guard statements for the header file STRING.H would be:

#ifndef STRING_H
#define STRING_H
...
#endif

2. The following is one possible answer:
0: #include <iostream>
1:
2: using namespace std;
3: #ifndef DEBUG
4: #define ASSERT(x)
5: #elif DEBUG == 1
6: #define ASSERT(x) \
7: if (! (x)) \
8: { \
9: cout << “ERROR!! Assert “ << #x << “ failed” << endl; \
10: }
11: #elif DEBUG == 2
12: #define ASSERT(x) \
13: if (! (x)) \
14: { \
15: cout << “ERROR!! Assert “ << #x << “ failed” << endl; \
16: cout << “ on line “ << __LINE__ << endl; \
17: cout << “ in file “ << __FILE__ << endl; \
18: }
19: #endif

3. The following is one possible answer:
#ifndef DEBUG
#define DPRINT(string)
#else
#define DPRINT(STRING) cout << #STRING ;
#endif

4. The following is one possible answer:
class myDate
{
public:
// stuff here...

private:
unsigned int Month : 4;
unsigned int Day : 8;
unsigned int Year : 12;

}

874 Appendix D

32 0672327112_app_d.qxd 11/19/04 12:30 PM Page 874

APPENDIX E
A Look at Linked Lists

On Day 13, “Managing Arrays and Strings,” you learned about arrays. You also
learned what a linked list is. A linked list is a data structure that consists of
small containers that are designed to link together as needed. The idea is to
write a class that holds one object of your data that can point at the next con-
tainer of the same type. You create one container for each object that you need
to store, and you chain them together as needed.

The containers are called nodes. The first node in the list is called the head, and
the last node in the list is called the tail.

Lists come in three fundamental forms. From simplest to most complex, they are

• Singly linked

• Doubly linked

• Trees

In a singly linked list, each node points forward to the next one, but not back-
ward. To find a particular node, start at the top and go from node to node, as in
a treasure hunt (“The next node is under the sofa”). A doubly linked list enables
you to move backward and forward in the chain. A tree is a complex structure
built from nodes, each of which can point in two or more directions. Figure E.1
shows these three fundamental structures.

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 875

In this appendix, you examine a linked list in detail as a case study of how you create
complex structures and, more importantly, how you use them.

The Component Parts of Your Linked List
The linked lists you create will consist of nodes. The node class itself will be abstract;
you’ll use three subtypes to accomplish the work. There will be a head node whose job is
to manage the head of the list, a tail node (guess what its job is!), and zero or more inter-
nal nodes. The internal nodes will keep track of the actual data to be held in the list.

Note that the data and the list are quite distinct. You can, in theory, save any type of data
you like in a list. It isn’t the data that is linked together; it is the node that holds the data.

The driver program doesn’t know about the nodes; it works with the list. The list, how-
ever, does little work; it simply delegates to the nodes.

Listing E.1 shows the code; you’ll examine it in excruciating detail in the rest of this
appendix.

876 Appendix E

FIGURE E.1
Linked lists.

Data
Singly
linked

Doubly
linked

Trees
Data

Data Data Data Data

Data Data Data

fl

fl

fl fl fl fl fl fl fl

fl

Data

Data Data

fl fl

Data Data

Data

Data

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 876

A Look at Linked Lists 877

E

LISTING E.1 Linked List

1: // ***
2: // FILE: Listing E.1
3: // PURPOSE: Demonstrate a linked list
4: // NOTES:
5: //
6: // COPYRIGHT: Copyright (C) 2000-04 Liberty Associates, Inc.
7: // All Rights Reserved
8: //
9: // Demonstrates an object-oriented approach to
10: // linked lists. The list delegates to the node.
11: // The node is an abstract data type. Three types of
12: // nodes are used, head nodes, tail nodes and internal
13: // nodes. Only the internal nodes hold data.
14: //
15: // The Data class is created to serve as an object to
16: // hold in the linked list.
17: //
18: // ***
19:
20:
21: #include <iostream>
22: using namespace std;
23:
24: enum { kIsSmaller, kIsLarger, kIsSame};
25:
26: // Data class to put into the linked list
27: // Any class in this linked list must support two methods:
28: // Show (displays the value) and
29: // Compare (returns relative position)
30: class Data
31: {
32: public:
33: Data(int val):myValue(val){}
34: ~Data(){}
35: int Compare(const Data &);
36: void Show() { cout << myValue << endl; }
37: private:
38: int myValue;
39: };
40:
41: // Compare is used to decide where in the list
42: // a particular object belongs.
43: int Data::Compare(const Data & theOtherData)
44: {
45: if (myValue < theOtherData.myValue)
46: return kIsSmaller;
47: if (myValue > theOtherData.myValue)
48: return kIsLarger;

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 877

49: else
50: return kIsSame;
51: }
52:
53: // forward declarations
54: class Node;
55: class HeadNode;
56: class TailNode;
57: class InternalNode;
58:
59: // ADT representing the node object in the list
60: // Every derived class must override Insert and Show
61: class Node
62: {
63: public:
64: Node(){}
65: virtual ~Node(){}
66: virtual Node * Insert(Data * theData)=0;
67: virtual void Show() = 0;
68: private:
69: };
70:
71: // This is the node that holds the actual object
72: // In this case the object is of type Data
73: // We’ll see how to make this more general when
74: // we cover templates
75: class InternalNode: public Node
76: {
77: public:
78: InternalNode(Data * theData, Node * next);
79: ~InternalNode(){ delete myNext; delete myData; }
80: virtual Node * Insert(Data * theData);
81: // delegate!
82: virtual void Show() { myData->Show(); myNext->Show(); }
83:
84: private:
85: Data * myData; // the data itself
86: Node * myNext; // points to next node in the linked list
87: };
88:
89: // All the constructor does is to initialize
90: InternalNode::InternalNode(Data * theData, Node * next):
91: myData(theData),myNext(next)
92: {
93: }
94:
95: // the meat of the list
96: // When you put a new object into the list

878 Appendix E

LISTING E.1 continued

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 878

A Look at Linked Lists 879

E

97: // it is passed to the node, which figures out
98: // where it goes and inserts it into the list
99: Node * InternalNode::Insert(Data * theData)
100: {
101:
102: // is the new guy bigger or smaller than me?
103: int result = myData->Compare(*theData);
104:
105:
106: switch(result)
107: {
108: // by convention if it is the same as me it comes first
109: case kIsSame: // fall through
110: case kIsLarger: // new data comes before me
111: {
112: InternalNode * dataNode = new InternalNode(theData, this);
113: return dataNode;
114: }
115:
116: // it is bigger than I am so pass it on to the next
117: // node and let HIM handle it.
118: case kIsSmaller:
119: myNext = myNext->Insert(theData);
120: return this;
121: }
122: return this; // appease MSC
123: }
124:
125:
126: // Tail node is just a sentinel
127:
128: class TailNode : public Node
129: {
130: public:
131: TailNode(){}
132: ~TailNode(){}
133: virtual Node * Insert(Data * theData);
134: virtual void Show() { }
135:
136: private:
137:
138: };
139:
140: // If data comes to me, it must be inserted before me
141: // as I am the tail and NOTHING comes after me
142: Node * TailNode::Insert(Data * theData)
143: {
144: InternalNode * dataNode = new InternalNode(theData, this);
145: return dataNode;
146: }
147:

LISTING E.1 continued

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 879

148: // Head node has no data, it just points
149: // to the very beginning of the list
150: class HeadNode : public Node
151: {
152: public:
153: HeadNode();
154: ~HeadNode() { delete myNext; }
155: virtual Node * Insert(Data * theData);
156: virtual void Show() { myNext->Show(); }
157: private:
158: Node * myNext;
159: };
160:
161: // As soon as the head is created
162: // it creates the tail
163: HeadNode::HeadNode()
164: {
165: myNext = new TailNode;
166: }
167:
168: // Nothing comes before the head so just
169: // pass the data on to the next node
170: Node * HeadNode::Insert(Data * theData)
171: {
172: myNext = myNext->Insert(theData);
173: return this;
174: }
175:
176: // I get all the credit and do none of the work
177: class LinkedList
178: {
179: public:
180: LinkedList();
181: ~LinkedList() { delete myHead; }
182: void Insert(Data * theData);
183: void ShowAll() { myHead->Show(); }
184: private:
185: HeadNode * myHead;
186: };
187:
188: // At birth, I create the head node
189: // It creates the tail node
190: // So an empty list points to the head which
191: // points to the tail and has nothing between
192: LinkedList::LinkedList()
193: {
194: myHead = new HeadNode;
195: }

880 Appendix E

LISTING E.1 continued

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 880

A Look at Linked Lists 881

E

196:
197: // Delegate, delegate, delegate
198: void LinkedList::Insert(Data * pData)
199: {
200: myHead->Insert(pData);
201: }
202:
203: // test driver program
204: int main()
205: {
206: Data * pData;
207: int val;
208: LinkedList ll;
209:
210: // ask the user to produce some values
211: // put them in the list
212: for (;;)
213: {
214: cout << “What value? (0 to stop): “;
215: cin >> val;
216: if (val == 0)
217: break;
218: pData = new Data(val);
219: ll.Insert(pData);
220: }
221:
222: // now walk the list and show the data
223: ll.ShowAll();
224: return 0; // ll falls out of scope and is destroyed!
225: }

What value? (0 to stop): 5
What value? (0 to stop): 8
What value? (0 to stop): 3
What value? (0 to stop): 9
What value? (0 to stop): 2
What value? (0 to stop): 10
What value? (0 to stop): 0
2
3
5
8
9
10

The first thing to note is the enumerated constant defined on line 24, which pro-
vides three constant values: kIsSmaller, kIsLarger, and kIsSame. Every object

that might be held in this linked list must support a Compare() method. These constants
will be the result value returned by the Compare() method.

OUTPUT

ANALYSIS

LISTING E.1 continued

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 881

For illustration purposes, the class Data is created on lines 30–39, and the Compare()
method is implemented on lines 43–51. A Data object holds a value and can compare
itself with other Data objects. It also supports a Show() method to display the value of
the Data object.

The easiest way to understand the workings of the linked list is to step through an exam-
ple of using one. On line 203, a driver program is declared; on line 206, a pointer to a
Data object is declared; and on line 208, a local linked list is defined.

You can see the LinkList class on lines 177–186. When the linked list is created, the
constructor on line 192 is called. The only work done in the constructor is to allocate a
HeadNode object and to assign that object’s address to the pointer held in the linked list
on line 185.

This allocation of a HeadNode invokes the HeadNode constructor shown on lines 163–166.
This, in turn, allocates a TailNode and assigns its address to the head node’s myNext
pointer. The creation of the TailNode calls the TailNode constructor shown on line 131,
which is inline and which does nothing.

Thus, by the simple act of allocating a linked list on the stack, the list is created, a head and
a tail node are created, and their relationship is established, as illustrated in Figure E.2.

882 Appendix E

FIGURE E.2
The linked list after it
is created.

Linked List

Head Node Tail Node

myHead myNext

Back in the driver program, line 212 begins an infinite loop. The user is prompted for
values to add to the linked list. He can add as many values as he likes, entering 0 when
he is finished. The code on line 216 evaluates the value entered; if it is 0, it breaks out of
the loop.

If the value is not 0, a new Data object is created on line 218, and that is inserted into the
list on line 219. For illustration purposes, assume the user enters the value 15. This
invokes the Insert method on line 198.

The linked list immediately delegates responsibility for inserting the object to its head
node. This invokes the method Insert on line 170. The head node immediately passes
the responsibility to whatever node its myNext is pointing to. In this (first) case, it is
pointing to the tail node (remember, when the head node was born, it created a link to a
tail node). This, therefore, invokes the method Insert on line 142.

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 882

A Look at Linked Lists 883

E

TailNode::Insert knows that the object it has been handed must be inserted immedi-
ately before itself—that is, the new object will be in the list right before the tail node.
Therefore, on line 144 it creates a new InternalNode object, passing in the data and a
pointer to itself. This invokes the constructor for the InternalNode object, shown on
line 90.

The InternalNode constructor does nothing more than initialize its Data pointer with the
address of the Data object it was passed and its myNext pointer with the node’s address it
was passed. In this case, the node it points to is the tail node (remember, the tail node
passed in its own this pointer).

Now that the InternalNode has been created, the address of that internal node is
assigned to the pointer dataNode on line 144, and that address is in turn returned from
the TailNode::Insert() method. This returns us to HeadNode::Insert(), where the
address of the InternalNode is assigned to the HeadNode’s myNext pointer (on line 172).
Finally, the HeadNode’s address is returned to the linked list where, on line 200, it is
thrown away (nothing is done with it because the linked list already knows the address of
the head node).

Why bother returning the address if it is not used? Insert is declared in the base class,
Node. The return value is needed by the other implementations. If you change the return
value of HeadNode::Insert(), you receive a compiler error; it is simpler just to return
the HeadNode and let the linked list throw its address on the floor.

So what happened? The data was inserted into the list. The list passed it to the head. The
head, blindly, passed the data to whatever the head happened to be pointing to. In this
(first) case, the head was pointing to the tail. The tail immediately created a new internal
node, initializing the new node to point to the tail. The tail then returned the address of
the new node to the head, which reassigned its myNext pointer to point to the new node.
Hey! Presto! The data is in the list in the right place, as illustrated in Figure E.3.

FIGURE E.3
The linked list after the
first node is inserted.

Linked List

Head Node Tail Node

myHead myNext

Internal Node

myNext

myData Data

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 883

After inserting the first node, program control resumes at line 214. Once again, the value
is evaluated. For illustration purposes, assume that the value 3 is entered. This causes a
new Data object to be created on line 218 and to be inserted into the list on line 219.

Once again, on line 200, the list passes the data to its HeadNode. The
HeadNode::Insert() method, in turn, passes the new value to whatever its myNext hap-
pens to be pointing to. As you know, it is now pointing to the node that contains the Data
object whose value is 15. This invokes the InternalNode::Insert() method on line 99.

On line 103, the InternalNode uses its myData pointer to tell its Data object (the one
whose value is 15) to call its Compare() method, passing in the new Data object (whose
value is 3). This invokes the Compare() method shown on line 43.

The two values are compared, and, because myValue will be 15 and
theOtherData.myValue will be 3, the returned value will be kIsLarger. This causes pro-
gram flow to jump to the kIsLarger case on line 110.

A new InternalNode is created for the new Data object. The new node points to the cur-
rent InternalNode object, and the new InternalNode’s address is returned from the
InternalNode::Insert() method to the HeadNode. Thus, the new node, whose object’s
value is smaller than the current node’s object’s value, is inserted into the list, and the list
now looks like Figure E.4.

884 Appendix E

FIGURE E.4
The linked list after the
second node is
inserted.

Data

Linked List

Head Node Tail Node

myHead myNext

Internal Node

myNext

myData Data

Internal Node

myNext

myData

In the third invocation of the loop, the customer adds the value 8. This is larger than 3 but
smaller than 15, and so it should be inserted between the two existing nodes. Progress is
like the previous example, except that when the node whose object’s value is 3 does the
compare, rather than returning kIsLarger, it returns kIsSmaller (meaning that the object
whose value is 3 is smaller than the new object, whose value is 8). This causes the
InternalNode::Insert() method to branch to the kIsSmaller case on line 118. Rather
than creating a new node and inserting it, the InternalNode just passes the new data on to
the Insert method of whatever its myNext pointer happens to be pointing to. In this case,
it invokes InsertNode on the InternalNode whose Data object’s value is 15.

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 884

A Look at Linked Lists 885

E

The comparison is done again, and a new InternalNode is created. This new
InternalNode points to the InternalNode whose Data object’s value is 15, and its
address is passed back to the InternalNode whose Data object’s value is 3, as shown on
line 119.

The net effect is that the new node is inserted into the list at the right location.

If at all possible, you’ll want to step through the insertion of a number of nodes in your
debugger. You should be able to watch these methods invoke one another and the point-
ers be properly adjusted.

What Have You Learned?

In a well-designed object-oriented program, no one is in charge. Each object does its own little
job, and the net effect is a well-running machine.

The linked list has the single job of maintaining the head node. The head node immediately
passes new data to whatever it points to, without regard to what that might be.

The tail node creates a new node and inserts it whenever it is handed data. It knows only one
thing: If this came to me, it gets inserted right before me.

Internal nodes are marginally more complicated; they ask their existing object to compare itself
with the new object. Depending on the result, they then insert or they just pass it along.

Note that the internal node (InternalNode in the preceding listing) has no idea how to do the
comparison; that is properly left to the object itself. All the internal node knows is to ask the
objects to compare themselves and to expect one of three possible answers. Given one answer,
it inserts; otherwise, it just passes it along, not knowing or caring where it will end up.

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 885

33 0672327112_app_e.qxd 11/19/04 12:30 PM Page 886

* (indirection) operator,
226, 280

<< (insertion) operator,
585-589

< (less than) operator, 28, 80
<= (less than or equal to)

operator, 80
&& (logical AND)

operator, 91
! (logical NOT) operator, 92
|| (logical OR) operator, 91
% (modulus) operator, 73
!= (not equal) operator, 80
= 0 notation, 478
0 (null character), 600
() (parentheses), 96

macro syntax, 757-759
nesting, 78

-> (points-to) operator,
240-241

(pound symbol), 26
++ (prefix) operator

compared to postfix
operator, 311-313

overloading, 304-306
“ (quotation marks), 759
< (redirect input)

operator, 598
<< (redirection) operator,

17, 28
& (reference) operator, 256,

280-281
:: (scope resolution) opera-

tor, 640
+= (self-assigned

addition) operator, 74
; (semicolon), 68, 83
- (subtraction) operator,

71-72
~ (tilde), 154, 774

A
\a escape code, 58
abstract classes, 486
abstract data types (ADTs),

476-477
advantages, 488
declaring, 478
deriving from other ADTs,

482-486
example, 477-478
pure virtual functions, 477

abstraction in
programming, 129

access control keywords,
150

access labels, 783
accessing

arrays, 415
contained classes, 545
data members, 143-146

on the free store,
239-241

nonstatic methods,
510-511

private members, 144,
147

public members,
145-146

static member data,
508-509, 513, 692

derived objects,
377-378

memory addresses,
229-231

accessor methods,
147-148

actors (use cases), 337
Add() function, 38,

313-314

Symbols
+ (addition) operator,

314-316
& (address of) operator,

222-223, 257-258
= (assignment) operator, 50,

71, 317-320
& (bitwise AND)

operator, 773
| (bitwise OR) operator, 774
{ } (braces), 27, 68

aligning, 779
nested if statements,

88-89
/* comment notation, 33
// comment notation, 33
?: (conditional) operator,

94-95
[] (brackets), 429
. (dot) operator, 150, 239
== (equal) operator,

79-80
\’ escape code, 58
\” escape code, 59
\? escape code, 59
\\ escape code, 59
\000 escape code, 59
- (decrement) operator,

74-76
^ (exclusive OR)

operator, 774
>> (extraction) operator,

599, 603-604
> (greater than) operator,

80
>= (greater than or equal

to) operator, 80
++ (increment) operator,

74-76

INDEX

34 0672327112 index.qxd 11/19/04 12:31 PM Page 887

adding increment
operators, 303-304

adding to two lists
(inheritance), 456

addition operator (+)
overloading, 314-316
self-assigned operator

(+=), 74
address of operator (&),

222-223, 257-258
addresses

memory addresses,
227-228

determining,
222-223

examining, 229-231
retrieving, 226
storing in pointers,

224-225
target addresses,

257-260
ADTs (abstract data types),

473, 476-477
advantages, 488
declaring, 478
deriving from other ADTs,

482-486
example, 477-478
pure virtual functions, 477

algorithms, for_each(),
709-710

aliases, 652
aligning braces ({ }), 779
allocating

memory, 234
pointers, 236

allocators, 694
ambiguity resolution,

463-464
American National

Standards Institute
(ANSI) C++ Standard,
12-13

ampersand (&)
address of operator,

222-223, 257-258
bitwise AND operator, 773

logical AND operator, 91
reference operator, 256,

280-281
analysis (use-case),

335-337
actors, 337
customer roles, 337-339
domain models,

339-343
guidelines, 344-346
interaction diagrams,

346-347
packages, 347
scenarios, 343-344

AND operators
bitwise (&), 773
logical (&&), 91

ANSI (American National
Standards Institute) C++
Standard, 12-13

anthropomorphic CRC
card, 355-356

appending files, 626-628
application analysis, 347
applications. See

programs
Area() function, 104
argc (argument count), 631
arguments, 36, 101, 113

command-line
processing, 631-634

defaults, 116-118
passing

to base constructors,
381-385

by reference,
262-265, 271-274

by value, 109-110, 134,
263-264

argv (argument vector), 631
arithmetic operators

combining with assign-
ment operator, 73-74

modulus (%), 73
pointers, 423-426
subtraction (-), 71-72

arrays, 407-408
Array class templates, 663
bugs, 410
char, 432-434
classes, 444-445
combining, 446
declaring, 408,

414-415, 426
defined, 407
deleting from free store,

429
dictionary arrays, 444
elements, 408-409

accessing, 415
uninitialized, 445

fence post errors, 413
filling, 433-434
initializing, 413-414
integer arrays, 409
memory, 421
multidimensional,

417-419
names, 427-428
object arrays, 416-417
pointer arrays, 421-423,

426-428
function pointers,

521-523
method pointers, 532

resizing at runtime,
429-432

sets, 444
sizes, 415
storing

on free store, 421-423
on stack, 421

writing past the end of,
410-413

artifacts, 349-350
ASCII character sets, 46
assemblers, 747
assert() macro, 784

debugging functions,
762-764

exceptions, 763
source code, 761-762

888 adding increment operators

34 0672327112 index.qxd 11/19/04 12:31 PM Page 888

assigning
addresses to references,

259-260
values to variables, 50-52,

143
variables to user-defined

classes, 320-321
assignment operator (=), 50,

71, 317-320
combining with math

operators, 73-74
association (domain

models), 343
asterisk (*), 226, 280
at() function, 700

B
\b escape code, 58
back() function, 700
backslash (\), 59
backspaces, 58
base 2 numbers, 810-812
base 7 numbers, 809
base 8 numbers, 808-809
base 10 numbers, 808

converting to base 2,
813-814

converting to base 6, 810
converting to base 7,

809-810
converting to binary,

810-811
base 16 numbers,

813-816
base classes, 372

inheritance, 464-468
methods

calling, 389-390
constructors, 378,

381-385
destructors, 378
hiding, 387-389
overriding, 386-387

begin() function, 702
binary files, 629-631

binary numbers, 810-812
binding, dynamic, 395
bits, 773, 812

clearing, 774-775
fields, 775-778
flipping, 775
setting, 774

bitwise operators,
773-774

blocks, 68-69
catch, 719, 729-732
try, 719-722

body of functions, 36
bool data type, 46, 79
braces ({ }), 27, 68

aligning, 779
nested if statements, 88-89

brackets ([]), 429
branching

programs, 132-133
relational operators, 81-82

break statement, 180-183
breaking while loops, 180
breakpoints, 747
budgets (design projects),

348
buffers, 594-596

copying strings to,
435-436

flushing, 596
implementing, 597
uninitialized, 433-434

bugs, 716. See also
troubleshooting

debugging, 746-747
assemblers, 747
assert() macro,

762-764
breakpoints, 747
examining memory,

747
inclusion guards,

755-756
printing interim

values, 769-771
watch points, 747

fence post errors, 413
stray pointers, 247

built-in functions, 100
built-in text editors, 22
bulletproof programs, 716
bytes, 812

C
.c filename extension, 14
C language, 11-12, 33
calling

functions, 35-36, 129, 133
base methods, 389-390
constructors, 460-463
recursion, 124-125,

128
static methods,

511-513
pointers to methods, 528

cannot find file error
messages, 17

capabilities classes, 473
capacity() function, 695
capitalization, 782
cards (CRC)

anthropomorphic,
355-356

CRC sessions, 354-355
limitations of, 356-357
responsibilities, 355
transforming to UML, 357

caret (^), 774
carriage return escape

character (\r), 58
case-sensitivity, 48
case values (switch

statements), 199
casting down, 453-455, 487
Cat class

accessor functions, 159
Cat object, initializing,

156-157
data members, 145-146
declaring, 141, 164-165
implementing, 165

Cat class 889

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 889

methods
accessor methods,

147-148
GetAge(), 153
GetWeight(), 164
implementing, 151-152
Meow(), 148, 153
SetAge(), 153

Cat object, initializing,
156-157

Cat.cpp, 165
Cat.hpp, 164
catch blocks, 719, 729-732
catching exceptions,

728-732
Celsius, converting to

Fahrenheit, 106
cerr object, 598, 635
char arrays, 432-434
char variables, 43, 46

character encoding, 57
escape characters, 58-59
sizes, 56

character reference
parameters (get()
method), 606

characters, 56-57
ASCII character sets, 46
character strings,

parsing, 423-425
encoding, 57
escape characters, 58-59
fill characters, 616-617
null, 432, 601
sizes, 56

cin object, 598-600
input

extraction operator,
603-604

multiple input,
601-603

strings, 600-601
methods

get(), 604-608
getline(), 608-610
ignore(), 610-611

peek(), 611-612
putback(), 611-612

class keyword, 141,
149-151, 662

class, responsibility, and
collaboration cards.
See CRC cards

classes, 150. See also
specific class names

abstract, 486
array classes, 444-445,

663
base classes, 372
compared to objects, 142
compared to structures,

171
contained classes, 537

accessing members of,
545

compared to
delegation, 553-561

constructors, 546-549
costs, 546-549
Employee class,

542-544
filtering access to, 545
implementing,

552-553
passing by value,

549-552
String class, 538-542

data members, 140
accessing, 143-146
other classes as,

166-171
private, 144-145, 172,

376-377
protected, 376-377
public, 144-146

declaring, 141, 159-163,
374-376, 783

defined, 140
derived classes, 372-376,

473, 476-477
friend classes, 571-572

declaring, 580
sample program

listing, 572-579
usage tips, 579

inheritance
casting down,

453-455, 487
limitations, 449-452
percolating shared

functions, 452
invariants, 764-769
methods, 140

constants, 158-159
default values, 292-294
defining, 143-144
implementing, 151-154
inline, 163-166
overloading, 289-294
public accessor

methods, 147-148
mixins, 473
naming conventions,

141-142
object-oriented design,

350
CRC cards, 354-357
data manipulation, 353
device protocols, 354
dynamic model,

363-366
preliminary classes,

351-352
relationships, 358-363
static model, 354
transformations,

352-353
views, 353

polymorphism, 11
resolving by name,

638-642
security, 148-149
shared base classes,

464-468
subclasses, 166-171
writing to files, 629-631

clearing bits, 774-775
clients, 159
clog object, 598, 635
code

code rot, 746
code space, 130
compiling, 15
reusing, 10-11

890 Cat class

34 0672327112 index.qxd 11/19/04 12:31 PM Page 890

collaboration diagrams, 364
combining

arrays, 446
math operators with

assignment operators,
73-74

references and pointers,
280

command-line
processing, 631-634

comments, 32-33, 38
/* (C-style), 33
// (C++-style), 33
cautions, 34
example, 33-34
readability, 782-783
writing, 39

Compare() method, 881
compile time, 22
compile-time errors, 162
compilers, 6, 19, 752

assert() macro, 761-762
compiling with symbols,

747
errors, 20-21
intermediate files, saving,

752
troubleshooting, 20

compiling
errors, 20-21
Hello World program,

17-18
source code, 15
with symbols, 747

complement operator, 774
compound statements, 68-69
concatenating

strings, 759-760
values, 30

concatenation operator,
759-760

conditional operator,
94-95

conflict resolution, 637-642
const default, overriding,

642

const methods, 158-159,
249-251

const pointers, 248-251
declaring, 248-249
methods, 249-250
passing, 274-277

const statement, 60, 158,
172-173, 784

const this pointers, 251
constants, 59. See also

variables
in arrays, 415
changing, 60
defining, 60
enumerated, 61-63
literals, 59
substitutions, 753
symbolic, 59-60, 64

constructors, 154
base constructors,

passing arguments to,
381-385

contained classes, 546-549
copy constructors,

298-302
deep copies, 298,

301-302
member-wise copies,

298
parameters, 298
virtual, 400-403

defaults, 154-158, 295
inheritance, 378-381
initializing, 297
member variables, 297
multiple constructors,

calling, 460-463
overloading, 294-296, 381,

384
specialized, 688

containment, 342-343, 537,
693

compared to delegation,
553-561

compared to private
inheritance, 590

contained classes
accessing members of,

545
class design, 358-359
compared to

delegation, 553-561
constructors, 546-549
costs, 546-549
Employee class,

542-544
filtering access to, 545
implementing, 552-553
passing by value,

549-552
String class, 538-542

costs, 546-549
implementing, 552-553

continue statements,
180-182

contravariance, 803-804
conversion operators

creating, 321-323
sample program, 323-324

conversion specifiers,
620-621

Convert() function, 106
converting

base 10 to base 6, 810
base 10 to base 7, 809-810
base 10 to binary, 810-811
data types, 320-324
decimals to binary,

813-814
Fahrenheit/Celsius, 106

copy constructors, 298-302
deep copies, 298, 301-302
member-wise copies, 298
parameters, 298
virtual, 400-403

copying strings, 435-436
Counter class

Counter object
converting int to,

321-322
converting to unsigned

short, 324

Counter class 891

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 891

declaring, 302-303
increment functions,

303-304
counting

numbers, 183-184
variables, 195

cout object, 28-30, 598
example, 28-29
fill characters, 616-617
flags, 617-620
methods

fill(), 616-617
flush(), 613
put(), 613-614
setf(), 617-620
width(), 615-616
write(), 614-615

output width, 615-616
passing values to, 29

.cp filename extension, 14

.cpp filename extension, 14,
162

CRC (class,
responsibility, and
collaboration) cards

anthropomorphic, 355-356
CRC sessions, 354-355
limitations of, 356-357
responsibilities, 355
transforming to UML, 357

customer roles (use cases),
337-339

D
%d conversion specifier, 620
dangling pointers, 245-248
data hiding, 10
data members

accessing, 143-146
classes, 166-171
free store

accessing, 239-241
pointers, 241-243

private, 144-145, 172,
376-377

protected, 376-377
public, 144-146
security, 148-149
static

accessing, 508-511
advantages, 533
defining, 507
example, 506-507

data slicing, 397-399
data types, 46

abstract, 473, 476-477
advantages, 488
declaring, 478
deriving from other

ADTs, 482-486
example, 477-478
pure virtual

functions, 477
bool, 79
converting, 320-324
creating, 139, 644

deallocating memory,
235-237

DEBUG mode, 769-771
debuggers, 746-747
debugging, 746-747.

See also troubleshooting
assemblers, 747
assert() macro, 762-764
breakpoints, 747
examining memory, 747
inclusion guards,

755-756
printing interim values,

769-771
watch points, 747

dec flag, 618
decimal numbers, 808

converting to base 6, 810
converting to base 7,

809-810
converting to binary,

810-814

declaring
abstract data types, 478
arrays, 408, 414-415

object arrays, 416-417
on free store, 426
two-dimensional, 420

classes, 163, 783
Cat, 141, 164-165
Counter, 302-303
derived classes,

374-376
errors, 159-162
friend classes, 580
Point, 166-167
Rectangle, 168-170,

296
Rectangle class,

210-216
String, 437-443

constants
#define statement, 60
const statement, 60
constant substitutions,

753
data types, 644
functions, 101-103,

143-144
Add(), 313-314
const, 158
example, 104-105
file locations,

162-163
friends, 585
inline, 122-124,

771-772
namespace

functions, 645
macros, 756-757
method default values,

292-294
multiple inheritance, 459
namespaces, 643-644
objects, 142, 150
pointers, 224, 248-249,

231, 528

892 Counter class

34 0672327112 index.qxd 11/19/04 12:31 PM Page 892

references, 256-257, 262
static data members, 507,

689-692
string substitutions, 752
structures, 171
templates, 661-664
variables, 42-43, 47-48

case-sensitivity, 48
Hungarian notation,

48-49
local variables, 106
multiple variables, 50
reserved words, 49

virtual inheritance, 472
decrement operator (- -),

74-76
deep copies, 298, 301-302,

318
default constructors,

154-158, 295
default destructors, 154-158
default parameters

(functions), 116-118
default statement, 200
default values, 292-294
deferencing pointers to

functions, 520
#define statement, 60,

753-754
defining. See declaring
delegation, 553-561
delete statement, 235-237,

429
delete() function, 694
deleting

arrays on free store, 429
pointers, 235-236

Demonstration-
Function() function, 36

dereference operator (*),
226

dereferencing pointers, 232
derived classes, 372-376,

404, 473, 476-477
ADTs, 482-486
constructors, over-

loading, 381-385

data members, accessing,
377-378

declaring, 374-376
design, 13-14, 329

classes, 350
CRC cards, 354-357
data manipulation, 353
device protocols, 354
dynamic model,

363-366
preliminary classes,

351-352
relationships, 358-363
static model, 354
transformations,

352-353
views, 353

models, 329-330
process, 331-333

controversies, 335
iterative development,

332
methods, 332
Rational Unified

Process, 332
requirements documents,

335-336
application analysis,

347
artifacts, 349-350
project budgets and

timelines, 348
systems analysis,

347-348
use-case analysis,

336-347
visualizations, 349

UML (Unified Modeling
Language), 330-331

vision statements, 335
destructors

defaults, 154-158
inheritance, 378-381
virtual, 399-400, 488

development cycle, 16
development environments,

14

diagrams
collaboration, 364
interaction diagrams,

346-347
sequence, 363-364
state transition

end states, 364
start states, 364
super states, 365-366

dictionary arrays, 444
discriminators, 360-363
Display() function, 500
division of integers, 73
do...while loops

compared to while loops,
205

example, 186
syntax, 187

DoChangeDimensions()
function, 217

documents (design)
requirements documents,

335-336
application analysis,

347
artifacts, 349-350
project budgets and

timelines, 348
systems analysis,

347-348
use-case analysis,

336-347
visualizations, 349

vision statements, 335
Dog class

constructors, 378-381
declaring, 374-376
destructors, 378-381

domain models (use cases),
339-341

association, 343
containment, 342-343
generalization, 341

DOS commands, 598
dot operator (.), 150, 239
DoTaskOne() function, 204
double data type, 46

double data type 893

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 893

double quote (“), 59
Double() function, 123
Doubler() function, 115
doubly linked lists, 875
DrawShape() function,

290-291
dynamic binding, 395
dynamic_cast operator, 453
dynamic model (classes)

collaboration diagrams,
364

sequence diagrams,
363-364

state transition diagrams,
364-366

E
editors, text, 14

built-in editors, 22
compared to word

processors, 21
elements of arrays, 408-409,

415
#else precompiler

command, 754-755
else keyword, 84-85
Employee class, 542-544
empty for loops, 191-193
empty() function, 695
encapsulation, 10, 594
end() function, 702
endl object, 30
endless loops

exiting, 202
switch statement, 201-204
while (true), 183-184

enum keyword, 61
enumerated constants

example, 62-63
syntax, 61
values, 61-62

enumerations in arrays, 415
environments, 14
equal sign (=)

assignment operator (=),
50, 71, 317-320

equality operator (= =),
79-80

errors. See also bugs
cannot find file, 17
class declarations,

159-162
compile errors, 20-21, 162
fence post errors, 413
referencing nonexistent

objects, 281-283
stray pointers, 247
warning messages, 22

escape characters, 58-59
eternal loops

exiting, 202
switch statement, 201-204
while (true), 183-184

evaluating
expressions, 70
logical operators, 92

examining memory,
229-231, 747

exceptions, 717-720
advantages, 748
assert() macro, 763
catching, 728-729

multiple exceptions,
729-732

try...catch blocks,
719-722

class hierarchies,
732-735

compiler support, 720
data

passing by reference,
739-742

reading, 735
disadvantages, 749
multiple, 729-732
programming tips,

745-746
sample program, 717-718
templates, 742-745
throwing, 722-728
virtual functions, 739-742

exclamation point (!), 92
exclusive OR bitwise

operator, 774
executable files, 15

executing
functions, 105
Hello World program, 18

exiting loops
break statement, 180
endless loops, 202

expressions, 69. See also
operators

branching, 200-201
evaluating, 70
nested parentheses, 78

external linkage, 641-642
extraction operator (>>),

599, 603-604

F
%f conversion specifier, 621
\f escape code, 58
Factor() function

pointers, 268-269
references, 270-271

Fahrenheit, converting to
Celsius, 106

false/true operations,
93-94

fence post errors, 413
fib() function, 197
Fibonacci series

recursion, 124-128
solving with iteration,

196-198
fields, bit, 775-778
FIFO (first in, first out), 703
files. See also specific

filenames
appending, 626-628
binary files, 629-631
executable files, 15
filename extensions

.c, 14

.cp, 14

.cpp, 14, 162

.h, 163

.hp, 163

.hpp, 163

.obj, 15

894 double quote (“)

34 0672327112 index.qxd 11/19/04 12:31 PM Page 894

function header files,
267-268

object files, 15
opening for input/output,

624-626
source files, 14
text files, 629-631
writing classes to, 629-630

fill characters, 616-617
fill() method, 616-617
filling arrays, 433-434
filtering access to contained

classes, 545
Find() function, 500
finding memory addresses,

222-223
first in, first out (FIFO), 703
fixed flag, 618
flags, 618-620
flipping bits, 775
float data type, 46
floating-point variables, 46
flush() method, 613
flushing

buffers, 596
output, 613

for_each() algorithm,
709-710

for loops, 188-190
compared to while loops,

205
empty loops, 191-193
example, 188-189
initialization, 188
multiple initialization, 190
nesting, 193-195
null statements, 191-193
scope, 195-196
syntax, 189

forever loops
exiting, 202
switch statement, 201-204
while (true), 183-184

form feeds, 58
formatting output, 622-623

flags, 617-620
width, 615-616

free store, 252
advantages, 233-234
data members

accessing, 239-241
pointers, 241-243

declaring arrays on, 426
deleting arrays from, 429
memory

allocating, 234
restoring, 235-237

objects
creating, 238
deleting, 238-239

storing arrays on, 421-423
freeing memory, 235-237
friend keyword, 585
friends, 670

friend classes, 571-572
declaring, 580
sample program

listing, 572-579
usage tips, 579

friend functions
declaring, 585
operator overloading,

580-585
friend keyword, 585
general template friends,

674-678
non-template friends,

670-674
front() function, 700
fstream classes, 597
FUNC.cpp file, 37-38
FunctionOne() function,

274
functions, 8, 36-37, 100.

See also macros; methods
accessor functions,

147-148
Add(), 38, 313-314
Area(), 104
arguments, 36, 101

defaults, 116-118
passing by reference,

262-265, 271-274
passing by value,

109-110, 134, 263-264

at(), 700
back(), 700
begin(), 702
body, 36
built-in, 100
capacity(), 695
compared to macros, 771
Compare(), 881
Convert(), 106
declaring, 101-105,

143-144, 162-163
default values, 292-294
delete(), 694
Demonstration-

Function(), 36
Display(), 500
DoChange-Dimensions(),

217
DoTaskOne(), 204
Double(), 123
Doubler(), 115
DrawShape(), 290-291
empty(), 695
end(), 702
executing, 105
Factor(), 268-271
fib(), 197
fill(), 616-617
Find(), 500
flush(), 613
friend functions, 580-585
front(), 700
FUNC.cpp example, 37-38
FunctionOne(), 274
get(), 434

character arrays,
607-608

character reference
parameters, 606

with no parameters,
604-606

overloading, 610
GetAge(), 153, 241
GetArea(), 169
GetCount(), 500
GetFirst(), 500
getline(), 608-610

functions 895

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 895

GetString(), 443, 544
GetUpperLeft(), 169
GetWeight(), 164
GetWord(), 425
header files, 267-268
headers, 36
ignore(), 610-611
increment functions,

303-304
inheritance

casting down,
453-455, 487

percolating shared
functions, 452

inline functions, 122-124,
163-166, 771-772

Insert(), 501, 700
IntFillFunction(), 682
Intrude(), 670
Invariants(), 764-769
invoking, 35-36, 129, 133
Iterate(), 501
main(), 27, 100
max_size(), 695
menu(), 204
Meow(), 148, 153
new(), 694
overloading, 118-121, 387

example, 289-292
when to use, 294

overriding, 385-387
p(), 653
parameters, 36, 101, 113
peek(), 611-612
pointers

advantages, 517-520
arrays, 521-523
assigning, 517
declaring, 514
dereferencing, 520
example, 514-517
passing, 523-525
typedef statement,

525-528
polymorphism, 11,

118-121
pop_back(), 700

pop_front(), 702
printf(), 620-622,

635-636
prototypes, 101-104,

267-268
push_back(), 695
push_front(), 702
put(), 613-614
putback(), 611-612, 635
recursion, 124-128
remove(), 700
resolving by name,

638-642
return values, 36, 100-101,

114-115
returning multiple values

pointers, 268-270
references, 270-271

SetAge(), 153, 241
setf(), 617-620
SetFirstName(), 544
SetLastName(), 544
ShowMap, 707
ShowVector(), 699
sizeof(), 45
sizes, 112
statements, 112
static member functions,

511-513, 534
strcpy(), 435
strncpy(), 435-436
swap(), 110

pointers, 264-265
references, 265-267

syntax, 27
template functions,

669-670, 683-688
virtual, 404, 487

destructors, 488
pure virtual functions,

477-482
width(), 615-616
write(), 614-615

G
general template friends,

674-678
generalization (domain

models), 341
get() method, 434

character arrays, 607-608
character reference

parameters, 606
overloading, 610
with no parameters,

604-606
GetAge() function, 153, 241
GetArea() function, 169
GetCount() function, 500
GetFirst() function, 500
getline() method, 608-610
GetString() function, 443,

544
GetUpperLeft() function,

169
GetWeight() function, 164
GetWord() function, 425
global variables

example, 110-112
limitations, 112, 134

goto statement, 176-177
greater than operator (>),

80
greater than or equal to

operator (>=), 80
guidelines (use cases),

344-346

H
.h filename extension, 163
has-a relationships.

See containment
headers

functions, 36, 267-268
namespaces, 645

heap. See free store
Hello World program

compiling, 17-18
creating, 19-20

896 functions

34 0672327112 index.qxd 11/19/04 12:31 PM Page 896

running, 18
source code, 17, 25-26
testing, 19-20

Hello.cpp file, 17, 26
hex flag, 618
hexadecimal numbers,

813-816
converting to decimals,

813
escape characters, 59

hiding
compared to overriding,

389
methods, 387-389

history of C++, 5-7, 11
.hp filename extension, 163
.hpp filename extension, 163
Hungarian notation, 49

I
I/O objects, 597-598.

See also streams
cerr, 598
cin, 598-600

extraction operator,
603-604

get() method, 604-608
getline() method,

608-610
ignore() method,

610-611
multiple input, 601-603
peek() method,

611-612
putback() method,

611-612
strings, 600-601

clog, 598
cout, 598

fill characters, 616-617
fill() method, 616-617
flags, 617-620
flush() method, 613
output width, 615-616
put() method, 613-614
setf() method, 617-620

width() method,
615-616

write() method,
614-615

identifiers
hiding, 639
naming, 781-782

If Horses Could Fly
(code listing), 450-451

if statements, 80-82
branching, 81-82
else keyword, 84-85
indentation styles, 83-84
nesting

braces ({ }), 88-89
example, 86-87

semicolon notation, 83
syntax, 85

#ifndef command, 754
ignore() method, 610-611
imitating RTTI (Run Time

Type Identification), 453
implementing

buffers, 597
classes, 165
containment, 552-553
methods, 151-154

const methods, 159
inline, 163-166, 326

pure virtual functions,
478-482

streams, 597
swap() function

pointers, 264-265
references, 265-267

include files, 784
include statement, 26, 38
inclusion guards, 755-756
increment functions,

303-304
increment operator (++),

74-76, 303-304
indenting code, 779

if statements, 83-84
switch statements, 780

indirection operator (*),
225-226, 280

inheritance, 10-11, 371-373
adding to two lists, 456
casting down, 453-455,

487
compared to templates,

712
constructors, 378-385
containment, 537

accessing members of,
545

compared to
delegation, 553-561

constructors,
546-549

costs, 546-549
Employee class,

542-544
filtering access to, 545
implementing, 552-553
passing by value,

549-552
String class, 538-542

derivation, 372-376, 404
destructors, 378-381
limitations, 449-452
mixins, 473
multiple, 456-459

ambiguity resolution,
463-464

class design, 358-359
constructors, 460-463
declaring, 459
example, 457-459
limitations, 472
objects, 460
shared base classes,

464-468
virtual methods, 459

private, 562-563
compared to

containment, 590
methods, 562
sample program

listing, 563-570
usage tips, 571

inheritance 897

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 897

shared functions, 452
virtual inheritance,

468-472
virtual methods, 391-397

copy constructors,
400-403

destructors, 399-400
invoking multiple,

393-395
memory costs, 403
slicing, 397-399
v-pointers, 396
v-tables, 396

initialization statement, 189
initializing

arrays, 413-414, 419
constructors, 297
for loops, 188-190
objects, 297

Cat, 156-157
constructor methods,

154
pointers, 224, 232
references, 257
static data members, 692
variables, 51

inline functions, 122-124,
163-166, 326, 771-772

inline statement, 122, 134,
163-164

input. See I/O (input/
output)

Insert() function, 501, 700
insertion operator (<<), 28,

585-589
instantiating templates, 661
int data type, 46
integers

arrays, 409
division operations, 73
integer overflow, 72
long, 43, 53-54, 64
short, 43, 53-54
signed, 45, 55-56
sizes, 43-45
unsigned, 45, 54-55

interaction diagrams,
346-347

collaboration diagrams,
364

sequence diagrams,
363-364

state transition diagrams
end states, 364
start states, 364
super states, 365-366

interim values, printing,
769-771

intermediate files
(compiler), 752

internal flag, 618
internal linkage, 641
internal nodes (linked lists),

885
International Standards

Organization (ISO)
Standard, 12

interpreters, 6
IntFillFunction() function,

682
Intrude() function, 670
invariants, 764-769
Invariants() method,

764-769
invoking methods, 35-36,

129, 133
base methods, 389-390
pointers to methods, 528
recursion, 124-125, 128
static, 511-513

ios class, 597
iostream class, 597
iostream library, 593
is-a relationships.

See inheritance
ISO (International

Standards Organization)
Standard, 12

istream class, 597
Iterate() function, 501
iteration. See loops

J-K
Jacobson, Ivar, 332
jumps, 176

KB (kilobytes), 812
keywords, 49-50, 171, 817.

See also statements
class, 141, 149-151, 662
const, 158, 172-173
delete, 235-237
else, 84-85
enum, 61
friend, 585
goto, 176-177
inline, 122, 134, 163-164
namespace, 31-32
new, 234
protected, 376
public, 152
return, 114-115
static, 642-643, 653
struct, 171
template, 662
typedef, 52-53, 525-528
using, 30-31

using declaration,
650-652

using directive,
648-650

kilobytes (KB), 812

L
%l conversion specifier, 621
%ld conversion specifier,

621
l-values, 71
labels, 176
last in, first out (LIFO), 703
leaks (memory), 235-237,

283-285
left flag, 618
less than operator (<), 80
less than or equal to

operator (<=), 80

898 inheritance

34 0672327112 index.qxd 11/19/04 12:31 PM Page 898

less than symbol (<), 28
less than operator, 80
less than or equal

operator, 80
redirection symbol, 17

libraries, 594
defined, 15
iostream, 593
STL (Standard Template

Library), 693
algorithms, 708-711
deque containers, 703
list containers, 701-702
map containers,

704-707
multimap containers,

708
multiset containers,

708
queues, 703
set containers, 708
stacks, 702-703
std namespace,

654-655
vector containers,

694-700
LIFO (last in, first out), 703
linkage

external, 641-642
internal, 641
linked lists, 444

advantages, 446
contravariance,

803-804
doubly linked, 875
example of, 876-884
nodes, 875, 885
sample program

listing, 491-502
singly linked, 875
template-based,

791-803
trees, 875
virtual functions,

804-805

linkers, 6
lists, linked, 444

advantages, 446
contravariance, 803-804
doubly linked, 875
example of, 876-884
nodes, 875, 885
sample program listing,

491-502
singly linked, 875
template-based (code

listing), 791-803
trees, 875
virtual functions, 804-805

literals, 59
local variables, 105-107

defining, 106
example, 106-107
persistence, 233
scope, 105-109

logic errors, 413
logical operators

AND (&&), 91
NOT (!), 92
OR (||), 91
order of evaluation, 92
precedence, 92-93

long data type, 53-54, 64
long integers, 43, 46, 64
loops, 175

do...while
compared to while

loops, 205
example, 186
syntax, 187

endless
exiting, 202
switch statement,

201-204
while (true), 183-184

existing, 180-182
exiting, 180-182
Fibonacci series

application, 196-198

for, 188-190
compared to while

loops, 205
empty loops, 191-193
example, 188-189
initialization, 188
multiple initialization,

190
nesting, 193-195
null statements,

191-193
scope, 195-196
syntax, 189

goto keyword, 176-177
returning to top of,

180-182
while, 177

break statement,
180-183

compared to do...while
loops, 205

compared to for loops,
205

complex loops,
179-180

continue statement,
180-182

exiting, 180-182
returning to top of,

180-182
simple example,

177-178
skipping body of,

184-185
starting conditions,

187-188
syntax, 178
while (true), 183-184

M
macros, 756-757

assert(), 761-762, 784
debugging functions,

762
exceptions, 763

macros 899

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 899

limitations, 763-764
source code,

761-762
compared to functions,

771
compared to templates,

771
defining, 757
disadvantages, 771
parentheses (), 757-759
predefined, 760
syntax, 757
when to use, 787

main() function, 27, 100
Managed Extensions to

C++, 12
mathematical operators

combining with
assignment operator,
73-74

modulus (%), 73
subtraction (-), 71-72

mathematical pointers,
423-426

max_size() function, 695
member functions.

See methods
member variables. See data

members
member-wise copies, 298,

318
memory, 130. See also

pointers
addresses, 227-228

determining, 222-223
examining, 229-231
retrieving, 226
storing in pointers,

224-225
arrays, 421
code space, 130
examining, 747
free store

accessing, 239-241
advantages, 233-234
memory allocation,

234

objects, 238-239
pointers, 241-243
restoring, 235-237

leaks, 235-237, 283-285
RAM (random access

memory), 42, 130-132
registers, 130
stack

clearing, 233
pulling data from,

132-133
pushing data onto,

130-133
virtual methods, 403

menu() function, 204
Meow() function, 148, 153
methodologists, 332
methods, 140. See also

functions
base methods, 389-390
constructors, 154

calling multiple,
460-463

copy constructors,
298-302

defaults, 154-158, 295
initializing, 297
overloading, 294-296

declaring, 162-163
default values, 292-294
defining, 143-144
destructors, 154-158
friends, 580-585
get(), 434

character arrays,
607-608

character reference
parameters, 606

with no parameters,
604-606

overloading, 610
header files, 267-268
hiding, 387-389
implementing, 151-154
inline, 163-166, 326

overloading, 387
example, 289-292
when to use, 294

overriding, 385-387
pointers

arrays, 531-532
declaring, 528
example, 528-530
invoking, 528

public accessor methods,
147-148

static, 511-512
accessing, 513
advantages, 534
calling, 511-513
sample listing, 512

virtual, 391-397
calling multiple,

393-395
copy constructors,

400-403
destructors, 399-400
memory costs, 403
slicing, 397-399
v-pointers, 396
v-tables, 396

mimicking RTTI (Run Time
Type Identification), 453

mixins, 473
models, 329-330. See also

UML (Unified Modeling
Language)

domain models, 339-341
association, 343
containment, 342-343
generalization, 341

dynamic models
collaboration

diagrams, 364
sequence diagrams,

363-364
state transition

diagrams, 364-366
static models, 354

modulus operator (%), 73
multidimensional arrays,

417-419

900 macros

34 0672327112 index.qxd 11/19/04 12:31 PM Page 900

multiple base classes
ambiguity resolution,

463-464
constructors, 460-463
objects, 460

multiple exceptions, 729-732
multiple inheritance,

456-459
ambiguity resolution,

463-464
class design, 358-359
constructors, 460-463
declaring, 459
example, 457-459
limitations, 472
objects, 460
shared base classes,

464-468
virtual inheritance,

468-472
virtual methods, 459

multiple initialization, 190
multiple input (cin),

601-603
multiple values (functions),

268-271
multiple variables, defining,

50

N
\n escape code, 28-29, 58
name conflicts, 637-642
nameless temporary objects,

307-309
names

arrays, 427-428
capitalization, 782
classes, 141-142
counting variables, 195
filename extensions

.c, 14

.cpp, 14, 162

.h, 163

.hp, 163

.hpp, 163

.obj, 15

identifiers, 781-782
name conflicts, 637-642
pointers, 224
references, 256
spelling, 782
templates, 664
variables, 47-48

case-sensitivity, 48
Hungarian notation,

48-49
reserved words,

49-50, 817
namespace keyword,

31-32
namespaces, 637-638

adding members to,
645-646

aliases, 652
creating, 643-644
designating

namespace keyword,
31-32

std:: notation, 30
using keyword, 30-31

function definitions, 645
headers, 645
nesting, 646
sample program listing,

646-648
std, 654-655
type definitions, 644
unnamed, 652-653
unnamed namespaces, 656

NCITS (National
Committee for
Information Technology
Standards), 12

negative numbers, 96
nesting

for loops, 193-195
if statements

braces ({ }), 88-89
example, 86-87

namespaces, 646
parentheses, 78

.Net platform, 785
new operator, 279

new statement, 234
new() function, 694
newline delimiter, 434
newline escape characters

(\n), 28-29, 58
newsgroups, 785
nodes, 875, 885
nonexistent objects,

referencing, 281, 283
nontemplate friends,

670-674
nonzero values, 96
not equal operator (!=), 80
NOT operator (!), 92
notation, Hungarian, 49
null character, 432, 601
null pointers, 224, 248, 262
null references, 262
null statement, 191-193
numbers

base 7, 809
base 8, 808-809
base 10, 808

converting to base 6,
810

converting to base 7,
809-810

binary, 811-812
counting, 183-184
Fibonacci series, 124-128,

196-198
hexadecimal, 813-816
negative numbers, 96
nonzero values, 96

nybbles, 812

O
object files, 15
object-oriented design

classes, 350
CRC cards, 354-357
data manipulation, 353
device protocols, 354
dynamic model,

363-366

object-oriented design 901

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 901

preliminary classes,
351-352

relationships, 358-363
static model, 354
transformations,

352-353
views, 353

models, 329-330
process, 331-333

controversies, 335
iterative development,

332
methods, 332
Rational Unified

Process, 332
requirements documents,

335-336
application analysis,

347
artifacts, 349-350
project budgets and

timelines, 348
systems analysis,

347-348
use-case analysis,

336-347
visualizations, 349

UML (Unified Modeling
Language), 330-331

vision statements, 335
object-oriented

programming (OOP),
9, 137-138

data hiding, 10
encapsulation, 10
inheritance, 10-11
polymorphism, 11,

118-121
objects. See also specific

object names
arrays, 416-417
compared to classes, 142
defining, 142, 150
derived, 377-378
free store objects, 238-239
initializing, 154, 297
passing, 397-399

passing references to,
277-279

referencing, 260-261
nonexistent objects,

281-283
objects on heap,

283-285
size of, 172
states, 617
template objects, 678-682
temporary

nameless, 307-309
returning, 306-307

values, assigning, 143
oct flag, 618
octal notation, 59
ofstream objects

arguments, 626
condition states, 624
default behavior,

626-628
opening files, 624-626

.ojb filename extension, 15
OOD. See object-oriented

design
OOP. See object-oriented

programming
opening files, 624-626
operators, 70-71

address of, 222-223,
257-258

assignment, 50, 71,
317-320

bitwise, 773-774
concatenation, 759-760
conditional, 94-95
conversion

creating, 321-323
sample program,

323-324
decrement, 74-76
dot, 150, 239
dynamic_cast, 453
extraction, 599, 603-604
increment, 74-76, 303-304
indirection, 226, 280

insertion, 585-589
logical, 91-92
mathematical

addition, 314-316
modulus, 73
self-assigned, 74
subtraction, 71-72

new, 279
ostream, 674
overloading, 302-303

addition, 314-316
friend functions,

580-585
guidelines, 317
limitations, 316-317
prefix operators,

304-306
temporary objects,

306-309
this pointer, 309-310

points-to, 240-241
postfix, 311-313
precedence, 77, 92-93,

819-820
redirection, 28, 598
reference, 256, 280-281
relational, 79-82
scope resolution, 640
true/false operations,

93-94
OR operators

bitwise, 774
logical, 91

ostream class, 597
ostream operator, 674-678
output. See also I/O

(input/output)
flushing, 613
formatting, 622-623

fill characters,
616-617

flags, 617-620
width, 615-616

output devices, writing to,
613-614

output redirection operator
(<<), 28

902 object-oriented design

34 0672327112 index.qxd 11/19/04 12:31 PM Page 902

overloading
compared to overriding,

387
functions/methods,

118-121
constructors, 294-296,

381, 384
example, 289-292
when to use, 294

operators, 302-303
addition, 314-316
friend functions,

580-585
guidelines, 317
insertion, 585-589
limitations, 316-317
postfix, 311
prefix, 304-306
temporary objects,

306-309
this pointer, 309-310

overriding
compared to hiding, 389
compared to over-loading,

387
const default, 642
methods, 385-387

ownership of pointers, 285

P
p() function, 653
packages, 347
Pane class, 648
parameterized templates,

661
parameterized types.

See templates
parameters, 36, 101, 113

command-line processing,
631-634

copy constructors, 298
defaults, 116-118
get() method, 606
macros, 757

passing
to base constructors,

381-385
by reference, 262-265,

271-274
by value, 109-110, 134,

263-264, 549-552
parentheses (), 96

macro syntax, 757-759
nesting, 78

parsing character strings,
423-425

partitioning RAM
(random access memory),
130-132

PartsList class, 554-561
passing

exceptions, 739-742
objects, 397-399
parameters

by reference, 262-265,
271-274

by value, 109-110, 134,
263-264, 549-552

to base constructors,
381-385

pointers
const pointers, 274-277
pointers to functions,

523-525
references to objects,

277-279
template objects, 678-682

peek() method, 611-612
percolating shared

functions, 452
period (.), 150, 239
persistence of variables, 233
pipe character (|), 91
piping, 598
plus sign (+)

addition operator, 314-316
increment operator, 74-76
prefix operator, 304-306,

311-313
Point class, 166-167

pointers, 221-224, 227-228
advantages, 232
allocating, 236
arrays, 421-423, 426-428
combining with

references, 280
compared to references,

279-280
const, 248-251

declaring, 248-249
methods, 249-250
passing, 274-277

const this, 251
current values, printing,

769-771
data manipulation,

228-229
as data members on free

store, 241-243
declaring, 224, 231
deleting, 235-236
dereferencing, 226, 232
function pointers

advantages, 517-520
arrays, 521-523
assigning, 517
declaring, 514
dereferencing, 520
example, 514-517
passing, 523-525
typedef statement,

525-528
indirection, 225
initializing, 224, 232
memory addresses

assigning, 224-225
examining, 229-231
retrieving, 226

memory leaks, 237
method pointers

arrays, 531-532
declaring, 528
example, 528-530
invoking, 528

naming, 224
null, 224, 248, 262

pointers 903

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 903

ownership, 285
passing by reference,

264-265
reassigning, 237
returning multiple values,

268-270
RTTI (Run Time Type

Identification), 453
“stomping” on, 247
stray/dangling, 245-248

cautions, 247
compared to null

pointers, 248
creating, 246-247

subtracting, 423-426
this, 243-245, 309-310
v-pointers (virtual

function pointers), 396,
487

wild, 224
points-to operator (->),

240-241
polymorphism, 11, 118-121,

391, 449
pop_back() function, 700
pop_front() function, 702
postfix operator, 75-76,

311-313
pound symbol (#), 26
powertypes, 360-363
precedence of operators, 77,

92-93, 819-820
predefined macros, 760
prefix operators, 75-76

compared to postfix
operator, 311-313

overloading, 304-306
preliminary classes,

designing, 351-352
preprocessor, 26

class invariants, 764-769
commands

#define, 752-754
#else, 754-755
#ifndef, 754

inclusion guards, 755-756
inline functions, 771-772

interim values, printing,
769, 771

macros
assert(), 761-764
compared to functions,

771
compared to templates,

771
defining, 756-757
parameters, 757
parentheses (),

757-759
predefined, 760
syntax, 757

string manipulation,
759-760

substitutions
constants, 753
strings, 752

tests, 753-754
printf() function, 636

compared to streams,
620-622

limitations, 620, 635
printing

characters, 57-58
interim values, 769-771
printf() function, 620-622
to screen, 28-30

private classes, 144-146
private data members,

376-377
accessing, 144, 147
advantages, 172
security, 148-149

private inheritance, 562-563
compared to containment,

590
methods, 562
sample program listing,

563-570
usage tips, 571

problem solving, 7-8
procedures, 8, 138. See also

functions; methods

process of software design,
331-333

controversies, 335
iterative development, 332
methods, 332
Rational Unified Process,

332
program design, 329

classes, 350
CRC cards, 354-357
data manipulation, 353
device protocols, 354
dynamic model,

363-366
preliminary classes,

351-352
relationships, 358-363
static model, 354
transformations,

352-353
views, 353

models, 329-330
process, 331-333

controversies, 335
iterative development,

332
methods, 332
Rational Unified

Process, 332
requirements documents,

335-336
application analysis,

347
artifacts, 349-350
project budgets and

timelines, 348
systems analysis,

347-348
use-case analysis,

336-347
visualizations, 349

UML (Unified Modeling
Language), 330-331

vision statements, 335

904 pointers

34 0672327112 index.qxd 11/19/04 12:31 PM Page 904

programming. See also
program design

comments, 32-33, 38
/* (C-style), 33
// (C++-style), 33
cautions, 34
example, 33-34
writing, 39

development cycle, 16
development

environments, 14
executable files, 15
levels of abstraction, 129
object files, 15
object-oriented, 9,

137-138
data hiding, 10
encapsulation, 10
inheritance, 10-11
polymorphism, 11,

118-121
problem solving, 7-8
program branching,

132-133
program design, 13-14
program structure,

25-28
(pound) symbol, 26
include statements, 26,

38
main() function, 27

resources, 785
structured, 8-9
style guidelines

access labels, 783
assert() macro, 784
capitalization, 782
class definitions, 783
comments, 782-783
const statement, 784
identifier names,

781-782
include files, 784
readability of code,

780-781
spelling, 782

programs. See also
program design;
programming

branching, 132-133
comments, 32-33, 38

/* (C-style), 33
// (C++-style), 33
cautions, 34
example, 33-34
writing, 39

compilers, 6, 19, 752
assert() macro,

761-762
compiling with

symbols, 747
errors, 20-21
intermediate files,

saving, 752
troubleshooting, 20

debugging, 746-747
assemblers, 747
assert() macro,

762-764
breakpoints, 747
examining memory,

747
inclusion guards,

755-756
printing interim

values, 769-771
watch points, 747

defined, 7
designing, 13-14
Hello World

compiling, 17-18
creating, 19-20
running, 18
source code, 17, 25-26
testing, 19-20

interpreters, 6
linkers, 6
structure of, 25-28

(pound) symbol, 26
include statements, 26,

38
main() function, 27

protected data members,
376-377

protected keyword, 376
prototypes, 101-104

defined, 101
parameters, 267-268
return types, 103

public accessor methods,
147-148

public classes, 144-146
public keyword, 152
pulling data from stack, 133
pure virtual functions,

477-482
push_back() function, 695
push_front() function, 702
pushing data onto stack,

132-133
put() method, 613-614
putback() function, 635
putback() method, 611-612

Q-R
question mark (?), 59
quotation marks (“), 759

\r escape code, 58
r-values, 71
RAM (random access

memory), 42, 130-132
Rational Unified Process,

332
readability of code, 780-781
reading data in exceptions,

735
reassigning

pointers, 237
references, 259

Rect.cpp, 168-169
Rectangle class

declaring, 168-170,
210-216, 296

DrawShape() method,
290-291

Rectangle class 905

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 905

recursion, 124-128
Fibonacci series example,

125-128
stop conditions, 124-125

redirect input command (<),
598

redirect output command
(>), 598

redirection (streams), 598
redirection operators, 17,

28, 598
reference operator (&), 256,

280-281
references, 255-257

combining with pointers,
280

compared to pointers,
279-280

const pointers, 274-277
creating, 256-257, 262
errors

nonexistent objects,
281-283

referencing objects on
heap, 283-285

initializing, 257
naming, 256
null, 262
objects, 260-261

nonexistent objects,
281-283

objects on heap,
283-285

passing by reference,
262-265, 271-274

passing to objects,
277-279

reassigning, 259
returning multiple values,

270-271
swap() function, 265-267
target addresses

assigning, 259-260
returning, 257-258

relational operators, 79-80
branching, 81-82
precedence, 92-93

relationships (classes)
containment, 358-359
discriminators, 360-363
multiple inheritance,

358-359
powertypes, 360-363

remove() function, 700
requirements documents,

335-336
application analysis, 347
artifacts, 349-350
project budgets and time-

lines, 348
systems analysis, 347-348
use-case analysis, 336-337

actors, 337
customer roles,

337-339
domain models,

339-343
guidelines, 344-346
interaction diagrams,

346-347
packages, 347
scenarios, 343-344

visualizations, 349
reserved words, 49-50, 817
resizing arrays at runtime,

429-432
resolving name conflicts,

638-642
resources, 785
responsibilities (CRC

sessions), 355
restoring memory to free

space, 235-237
retrieving data in

exceptions, 735
return statements, 36,

114-115
return values (functions),

36, 100-103, 114-115
returning

multiple values
pointers, 268-270
references, 270-271

temporary objects,
306-309

reusing source code, 10-11
right flag, 618
RTTI (Run Time Type

Identification), 453
Rumbaugh, James, 332
Run Time Type

Identification (RTTI), 453
run-time binding, 395
running

functions, 105
Hello World program, 18

runtime, resizing arrays at,
429-432

S
%s conversion specifier, 620
scenarios (use cases),

343-344
scientific flag, 618
scope

for loops, 195-196
variables, 105-109,

640-641
visibility, 640

scope resolution operator
(::), 640

screens, printing to, 28-30
security, 148-149
self-assigned addition

operator (+=), 74
semicolon (;), 68, 83
sequence diagrams, 363-364
sessions (CRC), 354-355
SetAge() method, 153, 241
setf() method, 617-618, 620
SetFirstName() function,

544
SetLastName() function,

544
sets, 444
setw manipulator, 618
shallow copies, 298, 318
Shape classes, 474-476
shared base classes, 464-468
short data type, 53-54, 64
short int data type, 46

906 recursion

34 0672327112 index.qxd 11/19/04 12:31 PM Page 906

short integers, 43, 46
showbase flag, 618
ShowMap() function, 707
showpoint flag, 618
showpos flag, 618
ShowVector() function, 699
signed integers, 45, 55-56
Simonyi, Charles, 49
single character input, 604
single quote (‘), 58
singly linked lists, 875
sizeof() operator, 45
sizes

arrays, 415, 429-432
class objects, 172
functions, 112
variables, 43-46

slash (/), 33
slicing virtual methods,

397-399
software. See programs
solving problems, 7-8
solving the nth Fibonacci

number (listing), 196
source code. See code
source files, 14
spaces, 96
specialized constructors,

688
specialized functions,

683-688
stack (memory), 130-132,

233
clearing, 233
pulling data from, 132-133
pushing data onto,

130-133
standard I/O objects,

597-598
cerr, 598
cin, 598-600

extraction operator,
603-604

get() method, 604-608
getline() method,

608-610

ignore() method,
610-611

multiple input, 601-603
peek() method,

611-612
putback() method,

611-612
strings, 600-601

clog, 598
cout, 598, 613-620

fill characters, 616-617
flags, 617-620
flush() method, 613
output width, 615-616
put() method, 613-614
write() method,

614-615
standard namespace,

654-655
namespace keyword,

31-32
std:: notation, 30
using keyword, 30-31

state flags, 615-617
state member data, 533
state transition diagrams

end states, 364
start states, 364
super states, 365-366

statements, 68. See also
keywords

blocks, 68-69
catch, 719
try, 719-722

break, 180-183
catch, 719, 722, 729-732
class, 141, 149-151, 662
compound, 68-69
const, 60, 158, 172-173,

784
continue, 180-182
default, 200
#define, 60

constant substitutions,
753

string substitutions,
752

tests, 753-754

delete, 235-237, 429
do...while, 187
#else, 754-755
expressions, 69-70, 78
friend, 585
function prototypes, 104
goto, 176-177
if, 80-82

branching, 81-82
else keyword, 84-85
indentation styles,

83-84
nesting, 86-89
semicolon notation, 83
syntax, 85

include, 26, 38
initialization, 189
inline, 122, 134, 163-164
new, 234
null, 191-193
protected, 376
return, 36, 114-115
statements in functions,

112
struct, 171
switch

case values, 199
example, 199-200
forever loops, 201-204
guidelines, 204
syntax, 198-200

syntax, 68
template, 662
try, 719-722
typedef, 525-528
watch, 787
while

complex loops,
179-180

simple example,
177-178

syntax, 178
whitespace, 68

states (objects), 617
state transition diagrams,

364-366

states (objects) 907

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 907

static keyword, 642-643, 653
static member data, 506-508

accessing, 692
nonstatic methods,

510-511
without objects,

508-509
declaring in templates,

689-692
defining, 507
example, 506-507
initializing, 692
static member functions

accessing, 513
advantages, 534
calling, 511-513
sample listing, 512

static model, 354
std namespaces, 654-655
STL (Standard Template

Library), 693
algorithms

function objects,
708-709

mutating sequence
operations, 710-711

nonmutating sequence
operations, 709-710

deque containers, 703
list containers, 701-702
map containers, 704-707
multimap containers, 708
multiset containers, 708
queues, 703
set containers, 708
stacks, 702-703
vector containers

adding elements to,
695

creating, 694
defined, 694
empty vectors, 695
sample program listing,

696-700
“stomping” on pointers, 247
stop conditions, 124-125

storing
arrays

on free store, 421-423
on stack, 421

memory addresses in
pointers, 224-225

stray pointers, 245-248
cautions, 247
compared to null pointers,

248
creating, 246-247

strcpy() function, 435
streambuf class, 597
streams, 593-594

buffers, 594-596
flushing, 596
implementing, 597

compared to printf()
function, 620-622

encapsulation, 594
ofstream class, 624

condition states, 624
default behavior,

626-628
opening files, 624-626

redirection, 598
standard I/O objects,

597-598
cerr, 598
cin, 598-612
clog, 598
cout, 598, 613-620

String classes, 436-441,
538-542, 545

constructors, 441
declaring, 437-443
destructor, 442
operators

implement, 442
offset, 442-443
overloaded operators,

441
strings

concatenating, 759-760
copying, 435-436
current values, printing,

769-771

defined, 28
null character, 601
parsing, 423, 425
placing in quotes, 759
String classes, 436-441,

538-542, 545
constructors, 441
declaring, 437-443
destructor, 442
operators, 441-443

stringizing, 759
substitutions, 752
testing, 753-754

strncpy() function, 435-436
strong typing, 159
Stroustrup, Bjarne, 11
struct keyword, 171
structured programming,

8-9
structures, 138, 171-173
style guidelines (code)

access labels, 783
assert() macro, 784
braces, 779
capitalization, 782
class definitions, 783
comments, 782-783
const statement, 784
identifier names, 781-782
include files, 784
indents, 779-780
long lines, 780
readability of code,

780-781
spelling, 782

subclasses, 166-171
subtracting pointers,

423-426
subtraction operator (-),

71-72
supersets, 372
swap() function, 110

pointers, 264-265
references, 265-267

switch statement
case values, 199
example, 199-200

908 static keyword

34 0672327112 index.qxd 11/19/04 12:31 PM Page 908

forever loops, 201-204
guidelines, 204
indenting, 780
syntax, 198-200

symbolic constants, 59-60,
64

systems analysis, 347-348

T
\t escape code, 30, 58
tables, v-tables, 396
tabs, 30, 58, 96
tail nodes (linked lists), 885
target addresses

assigning, 259-260
returning, 257-258

temperatures,
Fahrenheit/Celsius
conversions, 106

template keyword, 662
templates, 659-661

compared to inheritance,
712

compared to macros, 771
compiler support, 665
defining, 661-664
exceptions, 742-745
friends

general, 674, 678
general template

friends, 674-678
nontemplate, 670-674

functions, 669-670,
683-688

implementing, 665-669
instantiating, 661
naming, 664
parameterized, 661
passing template objects,

678-682
static data members,

689-692
STL (Standard Template

Library), 693
algorithms, 708-711
deque containers, 703

list containers, 701-702
map containers,

704-707
multimap containers,

708
multiset containers,

708
queues, 703
set containers, 708
stacks, 702-703
vector containers,

694-700
template-based linked

lists, 791-803
temporary objects

nameless, 307-309
returning, 306-307

ternary operator (?:), 94-95
testing

Hello World program,
19-20

strings, 753-754
text editors, 14

built-in editors, 22
compared to word

processors, 21
text files, 629-631
text strings, 28
this pointer, 243-245, 251,

309-310
throwing exceptions,

722-728
tilde (~), 154, 774
timelines (design projects),

348
trailing zeros, displaying,

617
transformations, 352-353
transforming CRC cards to

UML, 357
trees, 875
troubleshooting. See also

debugging
bugs, 716
code rot, 746
compile-time errors, 162
compilers, 20

exceptions, 717-718
advantages, 748
catching, 728-732
class hierarchies,

732-735
disadvantages, 749
hierarchies, 733
multiple, 729-732
programming tips,

745-746
sample program,

717-718
templates, 742-745
throwing, 722-728
try...catch blocks,

719-722
logic errors, 159-162

true/false operations,
93-94

try blocks, 719-722
two-dimensional arrays,

418-420
type definition, 52-53
typedef statement, 52-53,

525-528
types. See data types
typing, strong, 159

U
UML (Unified Modeling

Language), 330-331, 357
uninitialized array

elements, 445
uninitialized buffers,

433-434
uninitialized character

arrays, 433
unnamed namespaces,

652-653, 656
unsigned int data type, 46
unsigned integers, 45-46,

54-55
unsigned long int data type,

46
unsigned short int data

type, 46

unsigned short int data type 909

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 909

Uppercase flag, 618
use-case analysis,

336-337
actors, 337
customer roles, 337-339
domain models, 339-341

association, 343
containment, 342-343
generalization, 341

guidelines, 344-346
interaction diagrams,

346-347
packages, 347
scenarios, 343-344

Usenet newsgroups, 785
user-defined classes,

320-321
using keyword, 30-31

using declaration,
650-652

using directive, 648-650

V
\v escape code, 58
v-pointers, 396
v-ptr (virtual function

pointer), 396, 487
v-tables, 396
value, passing by, 109-110,

134, 549-552
values

assigning to variables,
50-52, 143

concatenating, 30
enumerated constants, 61
function return values, 36
multiple

returning with pointers,
268-270

returning with
references, 270-271

passing
by reference, 262-265,

271-274
by value, 263-264
to cout, 29

variable values
assigning, 50-52
defined, 47

variables, 41-42. See also
constants; pointers

assigning, 320-321
char, 43

character encoding, 57
escape characters,

58-59
sizes, 56

counting variables, 195
current values, printing,

769-771
data members, 140
data types, 46, 139
defining, 42-43, 47-50
example, 51-52
floating-point, 46
function pointers, 514
global

example, 110-112
limitations, 112, 134

initializing, 51
integers

long, 53-54
short, 53-54
signed, 45, 55-56
sizes, 43-45
unsigned, 45, 54-55

local, 105-107
example, 106-107
persistence, 233
scope, 107-109

names, 47-48
case-sensitivity, 48
Hungarian notation,

48-49
reserved words,

49-50, 817
scope, 105, 640-641
sizes, 43-46
type definition, 52-53
values

assigning, 50-52, 143
defined, 47

vertical bar (|), 91
vertical tab escape

characters (\v), 58
views, 353
virtual functions, 391-397,

404, 487
copy constructors,

400-403
destructors, 399-400, 488
exceptions, 739-742
linked lists, 804-805
memory costs, 403
multiple, calling, 393-395
pointers, 396, 487
pure, 477-482
slicing, 397-399
v-pointers, 396
v-tables, 396

virtual inheritance, 468-472
declaring, 472
example, 469-471

visibility, 640
vision statements, 335
visualizations, 349
void value, 114

W-Z
warning messages, 22
watch points, 747
watch statements, 787
while (true) loops, 183-184
while loops, 177

break statement, 180-183
compared to do...while

loops, 205
compared to for loops,

205
complex loops, 179-180
continue statement,

180-182
do...while, 186-187
exiting, 180-182
returning to top of,

180-182
simple example,

177-178

910 Uppercase flag

34 0672327112 index.qxd 11/19/04 12:31 PM Page 910

skipping body of, 184-185
starting conditions,

187-188
syntax, 178
while (true), 183-184

whitespace, 68, 96
width() method, 615-616
wild pointers, 224
Window namespace,

646-648
word processors, 14, 21
wrapping

signed integers, 55-56
unsigned integers,

54-55
write() method, 614-615
writing

classes to files, 629-631
comments, 39
increment functions,

303-304
to output devices, 613-614
past the end of arrays,

410-413

\xhhh escape characters, 59

\xhhh escape characters 911

How can we make this index more useful? Email us at indexes@samspublishing.com

34 0672327112 index.qxd 11/19/04 12:31 PM Page 911

Operator precedence and associativity
Level Operators Evaluation Order
1 (high) () . [] –> :: left-to-right
2 * & ! ~ ++ –– + – sizeof new delete right-to-left
3 .* –> * left-to-right
4 * / % left-to-right
5 + – left-to-right
6 << >> left-to-right
7 < <= > >= left-to-right
8 == != left-to-right
9 & left-to-right
10 ^ left-to-right
11 | left-to-right
12 && left-to-right
13 || left-to-right
14 ?: right-to-left
15 = *= /= += –= %= <<= >>= &= ^= |= right-to-left
16 (low) , left-to-right

Operators at the top of the table have higher precedence
than operators below. In expressions beginning with
arguments in the innermost set of parentheses (if any),
programs evaluate operators of higher precedence before
evaluating operators of lower precedence.

Unary plus (+) and unary minus (–) are at level 2, and
have precedence over arithmetic plus and minus at level
5. The & symbol at level 2 is the address-of operator; the
& symbol at level 9 is the bitwise AND operator. The *
symbol at level 2 is the pointer-dereference operator; the
* symbol at level 4 is the multiplication operator. In the
absence of clarifying parentheses, operators on the same
level are evaluated according to their left-to-right or
right-to-left evaluation order.

Visual database components

TDBCheckBox A data-aware TCheckBox component.
TDBComboBox A data-aware TComboBox component.
TDBEdit A data-aware TEdit single-line text entry

component.
SSView A data-aware text-only TGrid component.
TDBImage A data-aware graphical TImage component.
TDBListBox A data-aware TListBox component.
TDBLookupCombo A data-aware TComboBox component with the

capability to search a lookup table.
TDBLookupList A data-aware TListBox component with the

capability to search a lookup table.

Operators that may be overloaded
* / + - % ^ & | ~ ! , = < >
<= >= ++ –– << >> == != && || *= /= %= ^=
&= |= += -= <<= >>= -> ->* [] () new delete

Operators +, -, *, and & may be overloaded for binary and unary expressions. Operators ., .*, ::, ?:, and sizeof may not be overloaded.
In addition, =, (), [], and -> must be implemented as nonstatic member functions.

TDBMemo A data-aware TMemo multiple-line text-entry component.
TDBNavigator A sophisticated database browsing and editing tool.

This component is to database programming what a
remote control is to a video recorder. Users click the
control’s buttons to move through database records,
insert new records, delete records, and perform other
navigational operations.

TDBRadioGroup A data-aware TRadioGroup component.
TDBText A data-aware read-only text component for displaying

database information that you don’t want users to be
able to edit.

Nonvisual database components
TBatchMove Performs operations on records and tables, such as updating all records that match a specified argument.
TBlobField A field of indefinite size of a record in a dataset that consists of an arbitrary set of bytes—typically a graphical image

such as a bitmap.
TDatabase Provides additional database services such as server log-ins and local aliases.
TDataSet The immediate ancestor of TDBDataSet.
TDataSource Connects dataset components such as TTable and TQuery with data-aware components such as TDBEdit and TDBMenu.

Every database application needs at least one TDataSource object.
TDBDataSet The direct ancestor of TTable, TQuery, and TStoredProc. Most applications use the derived classes TTable, TQuery,

and TStoredProc for dataset access rather than TDBDataSet. However, functions may pass parameters of this type to
operate on all types of datasets and the results of queries.

TField Provides access to fields in a record.
TFieldDef Defines the structure of physical fields in records. All TField objects do not necessarily have corresponding TFieldDef

objects. For example, calculated TField objects have no physical record fields, and therefore no TFieldDef objects.
TFieldDefs Holds the TFieldDef objects that define the physical fields in a data set.
TIndexDef Describes the index of a table.
TIndexDefs Holds the set of all TIndexDef objects for a table.
TParam Defines parameters for TQuery and TStoredProc objects.
TParams Holds all parameters for TQuery and TStoredProc objects.

35 0672327112 Last page 11/19/04 12:31 PM Page 912

	Sams C++ Teach Yourself in 21 Days, Fifth Edition
	Copyright © 2005 by Sams Publishing
	Contents at a Glance
	Contents
	About the Authors
	We Want to Hear from You!

	Introduction
	Who Should Read This Book
	Conventions Used in This Book
	Sample Code for This Book

	WEEK 1 At a Glance
	A Note to C Programmers
	Where You Are Going
	DAY 1 Getting Started
	A Brief History of C++
	How C++ Evolved
	Should I Learn C First?
	C++, Java, and C#
	Microsoft’s Managed Extensions to C++
	The ANSI Standard
	Preparing to Program
	Your Development Environment
	The Process of Creating the Program
	The Development Cycle
	HELLO.cpp—Your First C++ Program
	Getting Started with Your Compiler
	Compile Errors
	Summary
	Q&A
	Workshop

	DAY 2 The Anatomy of a C++ Program
	A Simple Program
	A Brief Look at cout
	Using the Standard Namespace
	Commenting Your Programs
	Functions
	Summary
	Q&A
	Workshop

	DAY 3 Working with Variables and Constants
	What Is a Variable?
	Defining a Variable
	Creating More Than One Variable at a Time
	Assigning Values to Your Variables
	Creating Aliases with typedef
	When to Use short and When to Use long
	Working with Characters
	Constants
	Enumerated Constants
	Summary
	Q&A
	Workshop

	DAY 4 Creating Expressions and Statements
	Starting with Statements
	Expressions
	Working with Operators
	Combining the Assignment and Mathematical Operators
	Incrementing and Decrementing
	Understanding Operator Precedence
	Nesting Parentheses
	The Nature of Truth
	The if Statement
	Using Braces in Nested if Statements
	Using the Logical Operators
	Short Circuit Evaluation
	Relational Precedence
	More About Truth and Falsehood
	The Conditional (Ternary) Operator
	Summary
	Q&A
	Workshop

	DAY 5 Organizing into Functions
	What Is a Function?
	Return Values, Parameters, and Arguments
	Declaring and Defining Functions
	Execution of Functions
	Determining Variable Scope
	Parameters Are Local Variables
	Considerations for Creating Function Statements
	More About Function Arguments
	More About Return Values
	Default Parameters
	Overloading Functions
	Special Topics About Functions
	How Functions Work—A Peek Under the Hood
	Summary
	Q&A
	Workshop

	DAY 6 Understanding Object- Oriented Programming
	Is C++ Object-Oriented?
	Creating New Types
	Introducing Classes and Members
	Accessing Class Members
	Private Versus Public Access
	Implementing Class Methods
	Adding Constructors and Destructors
	Including const Member Functions
	Interface Versus Implementation
	Where to Put Class Declarations and Method Definitions
	Inline Implementation
	Classes with Other Classes as Member Data
	Exploring Structures
	Summary
	Q&A
	Workshop

	DAY 7 More on Program Flow
	Looping
	Using while Loops
	Implementing do...while Loops
	Using do...while
	Looping with the for Statement
	Summing Up Loops
	Controlling Flow with switch Statements
	Summary
	Q&A
	Workshop

	WEEK 1 In Review
	WEEK 2 At a Glance
	Where You Are Going
	DAY 8 Understanding Pointers
	What Is a Pointer?
	Why Would You Use Pointers?
	The Stack and the Free Store (Heap)
	Another Look at Memory Leaks
	Creating Objects on the Free Store
	Deleting Objects from the Free Store
	Accessing Data Members
	Creating Member Data on the Free Store
	The this Pointer
	Stray, Wild, or Dangling Pointers
	Using const Pointers
	Summary
	Q&A
	Workshop

	DAY 9 Exploiting References
	What Is a Reference?
	Using the Address-Of Operator (&) on References
	Referencing Objects
	Null Pointers and Null References
	Passing Function Arguments by Reference
	Understanding Function Headers and Prototypes
	Returning Multiple Values
	Passing by Reference for Efficiency
	Knowing When to Use References Versus Pointers
	Mixing References and Pointers
	Returning Out-of-Scope Object References
	Pointer, Pointer, Who Has the Pointer?
	Summary
	Q&A
	Workshop

	DAY 10 Working with Advanced Functions
	Overloaded Member Functions
	Using Default Values
	Choosing Between Default Values and Overloaded Functions
	The Default Constructor
	Overloading Constructors
	Initializing Objects
	The Copy Constructor
	Operator Overloading
	Handling Data Type Conversion
	Conversion Operators
	Summary
	Q&A
	Workshop

	DAY 11 Object-Oriented Analysis and Design
	Building Models
	Software Design: The Modeling Language
	Software Design: The Process
	Step 1: The Conceptualization Phase: Starting with The Vision
	Step 2: The Analysis Phase: Gathering Requirements
	Step 3: The Design Phase
	Steps 4–6: Implementation, Testing, and Rollout?
	Iterations
	Summary
	Q&A
	Workshop

	DAY 12 Implementing Inheritance
	What Is Inheritance?
	Private Versus Protected
	Inheritance with Constructors and Destructors
	Overriding Base Class Functions
	Virtual Methods
	Summary
	Q&A
	Workshop

	DAY 13 Managing Arrays and Strings
	What Is an Array?
	Using Arrays of Objects
	Building Arrays of Pointers
	A Look at Pointer Arithmetic—An Advanced Topic
	Declaring Arrays on the Free Store
	char Arrays and Strings
	Using the strcpy() and strncpy() Methods
	String Classes
	Linked Lists and Other Structures
	Creating Array Classes
	Summary
	Q&A
	Workshop

	DAY 14 Polymorphism
	Problems with Single Inheritance
	Multiple Inheritance
	Abstract Data Types
	Summary
	Q&A
	Workshop

	WEEK 2 In Review
	WEEK 3 At a Glance
	Where You Are Going
	DAY 15 Special Classes and Functions
	Sharing Data Among Objects of the Same Type: Static Member Data
	Using Static Member Functions
	Pointers to Functions
	Pointers to Member Functions
	Summary
	Q&A
	Workshop

	DAY 16 Advanced Inheritance
	Aggregation
	Implementation in Terms of Inheritance Versus Aggregation/Delegation
	Private Inheritance
	Adding Friend Classes
	Friend Functions
	Friend Functions and Operator Overloading
	Overloading the Insertion Operator
	Summary
	Q&A
	Workshop

	DAY 17 Working with Streams
	Overview of Streams
	Streams and Buffers
	Standard I/O Objects
	Redirection of the Standard Streams
	Input Using cin
	Other Member Functions of cin
	Outputting with cout
	Streams Versus the printf() Function
	File Input and Output
	Using the ofstream
	Binary Versus Text Files
	Command-line Processing
	Summary
	Q&A
	Workshop

	DAY 18 Creating and Using Namespaces
	Getting Started
	Resolving Functions and Classes by Name
	Creating a Namespace
	Using a Namespace
	The using Keyword
	The Namespace Alias
	The Unnamed Namespace
	The Standard Namespace std
	Summary
	Q&A
	Workshop

	DAY 19 Templates
	What Are Templates?
	Building a Template Definition
	Passing Instantiated Template Objects to Functions
	Templates and Friends
	Using Template Items
	The Standard Template Library
	Summary
	Q&A
	Workshop

	DAY 20 Handling Errors and Exceptions
	Bugs, Errors, Mistakes, and Code Rot
	The Idea Behind Exceptions
	Placing try Blocks and catch Blocks
	How Catching Exceptions Work
	Data in Exceptions and Naming Exception Objects
	Exceptions and Templates
	Exceptions Without Errors
	A Word About Code Rot
	Bugs and Debugging
	Summary
	Q&A
	Workshop

	DAY 21 What’s Next
	The Preprocessor and the Compiler
	The #define Preprocessor Directive
	Inclusion and Inclusion Guards
	Macro Functions
	String Manipulation
	Predefined Macros
	The assert() Macro
	Inline Functions
	Bit Twiddling
	Programming Style
	Next Steps in Your C++ Development
	Summary
	Q&A
	Workshop

	WEEK 3 In Review
	APPENDIX A Working with Numbers: Binary and Hexadecimal
	Using Other Bases
	Converting to Different Bases
	Hexadecimal

	APPENDIX B C++ Keywords
	APPENDIX C Operator Precedence
	APPENDIX D Answers
	Day 1
	Day 2
	Day 3
	Day 4
	Day 5
	Day 6
	Day 7
	Day 8
	Day 9
	Day 10
	Day 11
	Day 12
	Day 13
	Day 14
	Day 15
	Day 16
	Day 17
	Day 18
	Day 19
	Day 20
	Day 21

	APPENDIX E A Look at Linked Lists

	INDEX

