FIFTH EDITION Jesse Liberty and Bradley Jones

*each Yourself

C++

SAMS in 21 Days

Jesse Liberty
Bradley Jones

AM
Teach Yourself

C++

in 271 Days

FIFTH EDITION

SAM s 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself C++ in 21 Days,
Fifth Edition
Copyright © 2005 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32711-2
Library of Congress Catalog Card Number: 2004096713
Printed in the United States of America

First Printing: December 2004

07 06 05 04 4 3 21

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales. For more information, please
contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales @pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international @pearsoned.com

ASSOCIATE PUBLISHER
Michael Stephens

AcQuIsITIONS EDITOR
Loretta Yates

DEVELOPMENT EDITOR
Songlin Qiu

MANAGING EDITOR
Charlotte Clapp

PrOJECT EDITOR
Seth Kerney

Cory EDITOR
Karen Annett

INDEXER
Erika Millen

PROOFREADER
Paula Lowell

TECHNICAL EDITORS
Mark Cashman
David V. Corbin

PuBLISHING COORDINATOR
Cindy Teeters

MuLTiIMEDIA DEVELOPER
Dan Scherf

Book DESIGNER
Gary Adair

PAGE LAYouT
Eric S. Miller
Julie Parks

Contents at a Glance

Introduction 1

Week 1 At a Glance 3
Day 1 Getting Started

2 The Anatomy of a C++ Program 25

3 Working with Variables and Constants 41

4 Creating Expressions and Statements 67

5 Organizing into Functions 99

6 Understanding Object-Oriented Programming 137

7 More on Program Flow 175

Week 1 In Review 209

Week 2 At a Glance 219

Day 8 Understanding Pointers 221

9 Exploiting References 255

10 Working with Advanced Functions 289

11 Object-Oriented Analysis and Design 329

12 Implementing Inheritance 371

13 Managing Arrays and Strings 407

14 Polymorphism 449

Week 2 In Review 491

Week 3 At a Glance 503

Day 15 Special Classes and Functions 505

16 Advanced Inheritance 537

17 Working with Streams 593

18 Creating and Using Namespaces 637

19 Templates 659

20 Handling Errors and Exceptions 715

21 What’s Next 751

Week 3 In Review

Appendixes
Appendix A Working with Numbers: Binary and Hexadecimal
B C++ Keywords
C Operator Precedence
D Answers
E A Look at Linked Lists
Index

791

807
817
819
821
875
887

Contents

Introduction 1

Who Should Read This BOOKccceiriiiiiiiiiiiiiieiieciesieceseeee e

Conventions Used in This Book

Sample Code for This BOOKcccceiiiiiiniininiiiiiiiiccececee

Week 1 At a Glance 3

A Note t0 C ProZramimersc..coceeeeeeierienieniineeienieeieeeeeetestesee st eeseenees 3

Where You Are Going

1 Getting Started 5

A Brief HiStory Of C+ oottt 5
The Need for Solving Problemscccceviiviiiiiiiiiieiieiiereeesececeee 7
Procedural, Structured, and Object-Oriented Programming............cccccceevennnen. 8
Object-Oriented Programming (OOP)cccccevvviiiiieninnne. .9
C++ and Object-Oriented Programming...... .9

HOW CA4 EVOIVEA .ot 11
Should I Learn C First? ...cc.oooioiiiiiiiieieiieeiertesesieee et 11
C+, Java, and CH..oooiiie et 12
Microsoft’s Managed EXtensions t0 CA.....cocuevveiierienienieneeneenieeieeee e 12
The ANST Standard.........cccoeceeieieieieiesieseeeeeee ettt 12

2 The Anatomy of a C++ Program 25

A Simple Program
A Brief Look at cout

Vi

Sams Teach Yourself C++ in 21 Days, Fifth Edition

Using the Standard Namespacec.ccccevereririirieieieiieienesieseee ettt 30
Commenting YOUur Programs...........cccoevererininiieieieieieesiesie et 32
TYPES Of COMIMENESeuviviiieiieiieiieierieste ettt ettt ettt ettt e sae e 33
USING COMIMENES ...ttt ettt estest ettt be bt bt et et essesaenee e 33
A Final Word of Caution About COMMENLScceerueruerrenrenrinieieieienienenienee 34
FUNCHONS ...ttt sttt ettt 35
Using Functions..... .36
Methods Versus FUNCHIONS........cc.ccueririiririnieieieieieeesee e 38
SUITIMIATY ..ottt ettt ettt eb et et et et be bt e bt ebe e st et et e b ebenbe e 38
QEA ettt 38
WOTKSROD ettt 39
QUIZ ettt ettt b bt ettt ne st e 39
EXETCISES ..euvteutintetiteetiet ettt ettt ettt ettt b e bt ettt et e bt e 39
Working with Variables and Constants 41
What Is a Variable?...........cccoiiiiiiiiiiiicc 41
Storing Data in MEMOTYcccoviviiriinininiiieicrctcesene sttt 42
Setting Aside MEMOTYccveiiiiiiiiiiniinieeet ettt 42
S1Z€ Of INEEZETS ...venviiiiiiiieiieicicee et 43
SigNed and UNSIGNEA cuvviiiieiieee ettt eee e e et e e e eaaee e e eeaaaeeeeas 45
Fundamental Variable TYPESccccovreriririiiiiiiiieiiceeeeeeeer e 45

Defining a Variable

Case Sensitivity
Naming CONVENTIONS ...c..eeuieuieiieiieieieienierierie ettt ettt snesre e
KEYWOTTS ...ttt
Creating More Than One Variable at a Time
Assigning Values to Your Variablesc.coccocevievieviiiiiniinininiinienecieieicnencnnenn
Creating Aliases With typedefccccoiriririnininieiecceee e
When to Use short and When to Use long....
Wrapping Around an unsigned INtEZET......cccceceeveieiiniiniinininicieicrcrceiee
Wrapping Around a signed INtEeT.........cocevevieiiiiniiniiniininieieeerceereiee
Working with CRaraCterscouevierierininininieieictctetese ettt
Characters and NUMDETScc.ccuevueriririniniiieieceetese et
Special Printing Charactersc..coceeeeeirieieienienieniencseneeeeeeeeeeeseesnenes
CONSTANLES ...t
Literal COnStantsccccoiuiviiiiiiiiiiii i
SymbOlic CONSLANLSc..evueeuiiiiiiiiiiiiteeteete ettt
Enumerated Constants

Contents vii

4 Creating Expressions and Statements 67
Starting With StAeMENTSccoocveiiiiriirininieece et 68
USING WRILESPACE ...ttt 68
Blocks and Compound Statementsceceerveerieeieeierienienieneeneeieeseeneenns 68
EXPIESSIONS ...tiieeiieeiie ettt ettt sttt et e e e bt et enseeatesnnesaeenneen 69
Working With OPETAtOLScoeeuieuiiiiriiniiniiiintetetet ettt 70
ASSIZNMENE OPETALOTS ..ottt ettt ettt ettt enesnesnesae e 71
Mathematical OPEIatOrScceeierierierierieeite ettt eee e see e e ae e enee 71
Combining the Assignment and Mathematical Operatorsc..c.ccoceveveeeenennns 73
Incrementing and Decrementing........c..coccvevevieieieieienieninene e 74
Prefixing Versus POSHIXINGooveiiiiiirieieeieeieeieee et 75
Understanding Operator Precedenceccocveverierienienieneeneeieeieeee e 77
NesSting PareNthesesoovevierieriieieieeieee ettt 78
The Nature of Truthccccoiiiiiiiiiiiic e 79
Evaluating with the Relational Operatorsccoceevveriervenienienienieneeeene 79
The if STACIMENT ..c.oooviiiiiiiiiiriiiieictctc ettt 80
INAENLAtION SEYIES eovvieiiiiiieeieeee ettt e 83
The €158 STAEIMENTecvieuieiiiiiiiiiiieiererere ettt 84
Advanced 1f StAtCMENLSc..ocveveiiriirieriinirietetet ettt 86
Using Braces in Nested if Statementscocceeeieieienieniinenieneneeeereienienennens 88
Using the Logical Operators..................
The Logical AND Operator
The Logical OR OPETALOTcccveruierieriieriieieeie e et eteseteseesee st e e eiee e eneenee
The Logical NOT Operator

Short Circuit EVAIUALIONcooviiiiiieiiiecieeeiie ettt e e e ns

5 Organizing into Functions 99
What IS @ FUNCHON?ooiiiiiiiiiciie ettt 100
Return Values, Parameters, and ArgUmentsc.ccoererverreneneeienienienenenenenne 100

Declaring and Defining Functions
FUNCHON PrOtOLYPES..c..eviiieiieiiiieiesieetesie ettt
Defining the FUNCHONcc.eoiiiiiiiiiiiiieinieteeeeee e

Execution Of FUNCHONS ..c..coueiiiiiiiiieicniesie e

Determining Variable SCOPEccuevueririreriiiiieieieeteeteeeee e
Local Variablescccceceeuenenne.

Local Variables Within Blocks

viii

Sams Teach Yourself C++ in 21 Days, Fifth Edition

Parameters Are Local Variablesccocveviiiieiieiieiieseee e 109
GILODAl VariabIes.........ecvieiieiieeiieeiiesieecie ettt sae e e e e eeaans 110
Global Variables: A Word of Cautioncceevverieeeenieneesieesieeie e eee e 112

Considerations for Creating Function Statementscccceceeceeeveveenerenienienenne 112

More About FUnction ATrgUMENLSc..evuereruerieieieieienteeteeteeie et 113

More About Return VAIUESc.cecuieieriieiieiieciiesieeie e sae e 114

Default Parameters

Overloading Functions

Special Topics About FUNCHIONScc.eeiriiriiiiiieieieniesieie e 121
INliNe FUNCHONSveiuiieeiiciieeiieceeeeeee ettt e e s eeaeas 122
RECUTISION ..ttt ettt et a e e e e e essesseeseaans 124

Understanding Object-Oriented Programming 137
IS C4+4 ODbjJect-Oriented?ccoooveiiiiiniinininiieteeeieeteteeteee et 137
Creating New Typesccccoceeveevevennenn. ...139
Introducing Classes and MemDbersccccoceeieieiiniiniinininieeercrcrenienene e 140
Declaring @ Class...c..coueeeeieieiiiiieneeene ettt 141
A Word on Naming CONVENLIONSccceerueeieieienieneninineeeeeererenesresneenes 141
Defining an ODbBJECTccieiiiiiiiiiinieiineeeeteect ettt 142
Classes Versus ODBJECLSccuecvivvirieririririeiereienteneste sttt 142
Accessing Class MEMDETSccoeouiviiriirinininieieieictctcetceie et 142
Assigning to Objects, Not to Classes143
If You Don’t Declare It, Your Class Won’t Have It.......c.ccococeviniinicniininnnnne. 143
Private Versus PUDIIC ACCESS ...c..coveviiriirininiiiiieieiciciceceeeeeceee et 144
Making Member Data Privatecoccecevvieieniininininininieieeiccieeeeene 146
Implementing Class Methodsccccoceviririniiiiniiiiiiieeeeerccccneseee 150
Adding Constructors and DeStrucCtors.........coeeeeieienieriinininieierereieseneseneene 153
Getting a Default Constructor and Destructorc..co.ceceeeeeceeevenienrenrenenenne. 153
Using the Default ConStruCtOr.........coeviririeieiiicnicnicnceceeeeeeeeereere e 154
Including const Member FUNCHONSc..cocevirieieiiniiniiniininieiercrcrcncnesienee 157
Interface Versus Implementationccccceeeeeieirennennnn. ...158
Where to Put Class Declarations and Method Definitions...........ccecveeverencnnenne 161
Inline IMplementation...........cocuecieriiiiininininieteicecctce et 162
Classes with Other Classes as Member Datac..ccceeeeieinieciinicncncninicnenne 165

EXPlOring SIUCTUIESccvouiiiiiiiiiiiiiiiii e 169

Contents ix
SUIMIMATY ...ttt ettt et st b ettt et et e b ebeeaes 170
QEA bbbkttt 171
WOTKSHOD ettt st 172
QUIZ ettt b bbbt ettt b e b eas 172
EXEICISES ..evteutenieieteetteteet ettt ettt ettt ettt ettt ettt b e ebe s 173
More on Program Flow 175
LLOOPING -ttt 175
The Roots of LOOPING: GOTO ...eeviiiriiriiriiriiiieicictcrertestesieeeee et 176
Why goto Is Shunnedccooevinininiiiiiiiiicccce e 176
USING WNile LOOPS .eeuiiiiiiiiiiiiciictctctcreres ettt 177
Exploring More Complicated while Statements........c..coceeveeeevevvenvenvenrennenne. 179

Introducing continue and break

Examining while (true) Loops
Implementing do. . .while LOOPS ...ccccocmimiminiiiiiiiiiiiieeeeececesese e
USING A0+ cWRILE ittt ettt ettt
Looping with the for Statement........c..coccveriririeienieniiniieeeeeeeeecrcene e

Advanced For LOOPS ...cc.ooeeiiiiiiriinininineeteeetetesest sttt

EMPLY FOr LOOPS . ..covioiieiieiieieiicieteeeeneeteteetenese sttt

INESING LLOOPS vttt

Scoping in For LOOPS ...coeeiiiiniiiiniiiieieeeeececeee et
Summing Up Loops

Week 1 In Review 209
Week 2 At a Glance 219
Where YOu Are GOING.......c.ccoiuiiiiiiiiiiiiiiiiiiiciee e 219
Understanding Pointers 221
WHhat IS @ POINIET?.....ccuiiiiiiiiiiiieeieeieee et 222
A Bit ADOUE METNOTY ..ottt ettt 222
Getting a Variable’s Memory Address.........ccevererereneneninieieeneseseenenes 222
Storing a Variable’s Address in a Pointer224
POINLEr NAMESeuvitiiiiieiieieiee ettt 224
Getting the Value from a Variablecceoevieneneninininieeeeeeee 225
Dereferencing with the Indirection Operatorc..coccvcevverereeieenierieneneene. 226

Pointers, Addresses, and Variablescoccoiiviviiiiiiiiieiiiiiieeeeeieee e 227

X

Sams Teach Yourself C++ in 21 Days, Fifth Edition

Manipulating Data by Using POINtersccevererenineninieieieeesieenene 228
Examining the Addressc.oeoiiiririiiiineniiiceeeeeeeee e 229
Why Would You Use POINErs?..........ceceeieieieiienienienienienieeieeieeieeieeeeeesie e 232
The Stack and the Free Store (Heap)coceeeeeeievienienieniniieieieeeeeseseiee 232
Allocating Space with the new Keyword..........cccceoevenininininieniecccee, 234
Putting Memory Back: The delete Keyword........ccocovvevinininiinienienieniinne, 235
Another Look at Memory Leakscccccocevenuennen.
Creating Objects on the Free Store
Deleting Objects from the Free Store.........coceoeevievierenenininieieieeesesenenee 238
Accessing Data MEMDETSc..oerueiriiieiiniiieieieieeecteeieie et 239
Creating Member Data on the Free Store.........cccoveverinininininieieenenenenee 241
The this POINLETc.couiiiiiiiiiieieiec e 243
Stray, Wild, or Dangling POINtersccceeveeiiieienienienieniee e 245
USING CONST POINLETS ..cuvitiiiiiieiieiieieieriesesee ettt 248
const Pointers and const Member Functions.............cccoceeveencininccncnnnne. 249

Exploiting References 255
What Is a Reference? ..o 255
Using the Address-Of Operator (&) on References...........cccceceeveeeriecienicncnicnenne 257
Attempting to Reassign References (NOt!)c..cocveninininiiniiiiiininiiiiieee, 259
Referencing ODBJECScoiririiiiiiiiiniinrereeteeeeeeeeer et
Null Pointers and Null Referencescccccocoviiiiiiiiiiiniiiiics
Passing Function Arguments by Reference
Making swap () Work with POINEErsccccceevievieninininininieicicciceceee
Implementing swap () with Referencescccocvevininininniiinicncnincnene,
Understanding Function Headers and Prototypesc..coccecevveecveviivencnicnicnenne 267
Returning Multiple ValUesccccciririnininiiiiiiiciciceeeeeeeeccese e 268
Returning Values by Referencec..coceevvevieiiinininininniiiciciccceceee, 270
Passing by Reference for Efficiency........ccccocevieieiiniinininiininiiiciccnicncncnee 271
Passing a const POINLETcceviiviniiiiiiiiiciciciccc e 274
References as an AIMErNAtiVecccoiviiiiiiiiiiiiiiieccccee 271
Knowing When to Use References Versus Pointers.... 279
Mixing References and POINLETS........coccviveririeiiiiniiniiineeeeeecccsesesesee 280
Returning Out-of-Scope Object Referencesc.ccceveeeeirerieviiencncncnenenne 281
Returning a Reference to an Object on the Heapccccocevveiiiiniinincnene. 283

Pointer, Pointer, Who Has the Pointer?ccccoooviiiiiiiiiiiiciiecieeeeeeee e, 285

Contents Xi
SUIMIMATY ...ttt ettt et st b ettt et et e b ebeeaes 286
QEA ettt 286
WOTKSHOD ittt st 287
QUIZ .ottt ettt ettt e et e ae e s ae e teebeebeebeenaeenaeeaaeeraans 287
EXEICISES ..evteutenieieteetteteet ettt ettt ettt ettt ettt ettt b e ebe s 287
10 Working with Advanced Functions 289
Overloaded Member FUNCHONSc..cocviririiiiiiiiiiiiiineeeeeeececccsesie e 289
Using Default ValUEscccoociiiiiiiiiiniininiiciecccceeeeeeccecee et 292
Choosing Between Default Values and Overloaded Functionscc.ccccecceuene 294
The Default CONSIUCTOTcoueruiiiiiiiinieriirerieeteteeeeteteere ettt 294
Overloading CONSIUCTOTScc.eeuveiiiiriiririinieeitetetetetenteere ettt 295
Initializing Objects

1

The Copy Constructor
Operator Overloading

Writing an Increment FUNCHONcc.eviiiiieiiiiiniiniinincccccccccrcece 303
Overloading the Prefix Operatorcocceceevieiienienininininieieeicciceceee 304
Returning Types in Overloaded Operator Functions...........ccccccvevvevveeuennennenne. 306
Returning Nameless TempOTrariescecvecvevvereneninineneeieieierercereeenes 307
Using the this POINETcccociiviiiiiiiiniiiiicicicccccececce e 309
Overloading the PostfiX Operatorcccecvevierienenininininieieiccrceceee 311
Difference Between Prefix and Postfix.............. 311
Overloading Binary Mathematical Operatorsc..cocceceeeeverienienrenenennene. 313
Issues in Operator OVerloading...........cceceeeeverienieneninineniieeieieercereeeee 316
Limitations on Operator Overloadingc.ccoccoeveveninenienienieniencnenenene, 316
What to Overload ..o 317
The Assignment OPETALOLcc.eoereriririeieienienienenteeee ettt 317
Handling Data Type CONVETSION.....c..cccvireririeieieieiitinreeteee e naeae 320
Conversion Operators
SUIMIMATY ..ottt ettt ettt sb e
QELA s
WOTKSROPD ettt
QUIZ <ottt ettt e e et e e et e et e e e e eabe e e e e e treeeabeeeteeeaneas
EXEICISES ...ttt
Object-Oriented Analysis and Design 329
Building Modelsc.cccevevenenenencnennee.

Software Design: The Modeling Language
Software Design: The ProCesscccoeeviririeieiienieneneseseeeeeeeeesie e
Waterfall Versus Iterative Development

The Process of Iterative Developmentc.ccccovevereneninienienienenceeeee
Step 1: The Conceptualization Phase: Starting with The Visionccccc.e..e. 335

Xii

Sams Teach Yourself C++ in 21 Days, Fifth Edition

12

Step 2: The Analysis Phase: Gathering Requirementsc.cceceeeeieieieniennenne. 336
USE CaSLS . euttieenienieteteetee ettt ettt b et b ettt ettt st s b e bttt e et e b e b eaes 336
APPLICAtION ANALYSIS ..euveeieiieiieieiesieeieeie ettt 347
SYSEMS ANALYSIS ..euveviiieiieiieieiesieste ettt ettt sttt ettt sbe e 347
Planning DOCUMENLSc.coveiiiiiriiniiniinieeietee et 348
VISUAZALIONS. ..ottt 349
Artifacts...........349

Step 3: The Design Phaseccccoceviiiiiiiiniiiiicieieeeee e 350
What Are the CLaSSES7.....ceuveieieierierierieeieeieeteeete ettt ene 350
TranSTOrMALIONS ..c..evvertirtieiieiieieieteet ettt 352
Other TranSformations...........cc.eeererereririeieteese e 353
Building the Static MOdelcccooiiiiiriiieieieeeseceeee e 354
Dynamic MOdelco.iiiiiiiiiiiiiieeeeeeeee s 363

Steps 4-6: Implementation, Testing, and Rollout?.............ccceeveeieienienenencnenne. 366

TEETALIONS ..ttt bbbttt s nbeene 367

Summary.... ..367

QEA ettt 367

WOTKSHOD ettt 368
QUIZ ettt ettt b e bbbt b e eas 368
EXEICISES .vtententeniitiettette ettt ettt ettt ettt ettt ettt et et b e b eaes 369

Implementing Inheritance 371

What Is Inheritance?............cccooiiiiiiiiiiiiiiic e 371
Inheritance and Derivationcccccocoiiiiiiiiiiiiiiiiicccce 372
The Animal Kingdomccccceoivininiininiiiiiiiicccceeccceee e 373
The Syntax of Derivationc..ccccoceeveriiieiienieneninnneeeeeeeeereee e 374

Private Versus Protectedccoooiiiiiiiiiiiiiiiiciis 376

Inheritance with Constructors and DeStructorscoceeveeeeeeveiencnicnenienenne 378
Passing Arguments to Base Constructors

Overriding Base Class FUNCHONScccoeviriiiiieiiniiiiiinieeeeecrceceeenesieniee
Hiding the Base Class Methodcccoceevieieiininininininiciccccreceee
Calling the Base Methodccccoeviiiniiiiiiiiiiinneeeeeceee e

Virtual Methodscccociiiiiiiiiiiiiiici e
How Virtual Functions Work...........ccccoccoiiiiiiiiiiciice
Trying to Access Methods from a Base Class......c..coccvevevirenieienicniincnnenne. 396
SHCING ettt sttt ettt
Creating Virtual Destructors
Virtual Copy Constructors.........

The Cost of Virtual Methods
SUIMIMATY ..ottt ettt ettt s
QELA s

Contents Xiii

13 Managing Arrays and Strings 407

WHhat IS @n ATTAY? ..ceeeiiiiiiieieeee et s 407
Accessing Array Elements.............
Writing Past the End of an Arraycoceceevieviinininnnniccccceceee
Fence Post BITOTS........ccooiiiiiiiiiiiicccc e
INitialiZING ATTAYS .evevvieiieiieieiiteeeeeee ettt
Declaring ATITAYS ...cc.evveeieieieieieieeeeeeeee ettt

USINg AITaYS Of ODJECLS ..veviriiiiiiiiiiiiiriinieriteteeetet ettt
Declaring Multidimensional Arrays
Initializing Multidimensional Arrays

Building Arrays of POINIETScccoiririniriniiieieiciccceeeeeeececese s

A Look at Pointer Arithmetic—An Advanced TOpPiCcoceevrirveiecicncnincnee 423

Declaring Arrays on the Free Storecccoceveviiviiiininininiiicciccnicncnenee 426
A Pointer to an Array Versus an Array of PoIntersc..coceveevveevevicciinicnnenne. 426
Pointers and Array NAMES........cccoeririririiieieicnteneeeeee e 427
Deleting Arrays on the Free Store........c.cocvevievieninininininiiiccicciceceee 429
Resizing Arrays at RUNUME.cccooiririiiiiiiiiiicncceccrcee e 429

char Arrays and STHNZScccecveviiiiiriiniininneeecee ettt 432

Using the strcpy () and strncpy () Methods... ...435

SHING CIASSES ..vvintiniiiietieteeitete ettt ettt ettt ettt 436

Linked Lists and Other StrucCturescc.cocveeeeieeiiieiiee e 444

14 Polymorphism 449
Problems with Single INheritance............ccocovveriiniciininiiiiceeecceecees 449
Percolating UpWardcocueieriiriinininieeieteeeie e 452
CaSting DOWI ...couiiiiiiiieiieieeee ettt 453
Adding t0 TWO LISES c..eouieuieiieiieierienieeieeieeieetet ettt 456
Multiple Inheritancecccceceeveeveneenenenennens456
The Parts of a Multiply Inherited ODbjectccoceveriniririnieeienieeeeee 460
Constructors in Multiply Inherited ObJects.........cccceverereririeieneneiereeee 460
Ambiguity RESOIUHONcueiiieiiiiiiiiieiiieeete s 463
Inheriting from Shared Base Classcccevierenereneneninieieeeeieeeeee 464
Virtual INheritanceccooeoveiirieiiiiniiiiceeeceeecee e 468
Problems with Multiple INheritancecooceveveneninenenieeeseeeeeee 472

Mixins and Capabilities Classes

Xiv

Sams Teach Yourself C++ in 21 Days, Fifth Edition

15

16

ADSIIaCt Data TYPES .uveveruiriiriieiieieieriesie sttt ettt 473
Pure Virtual FUNCHONScc.ccoiiiiiiiiiriciceceeeeeee e 477
Implementing Pure Virtual FUNCHONScccueiieriereninininiiieeeeeee 478
Complex Hierarchies of ADStractionccecevierererienenieieieieesieseeiene 482
Which Classes Are ADSIIact?ccoevieireininiiinicieenee e 486

Week 2 In Review 491
Week 3 At a Glance 503
WHhere YOU ATe GOINE......coueiiiiriieiieiieiieiteitet ettt ettt e 503

Special Classes and Functions

Sharing Data Among Objects of the Same Type: Static Member Data

Using Static Member FUNCHIONSc..ccccoiviriiiiiiiiiiiiniineceeeeececcnieseneniee
Pointers to FUNCHONSccociiiiiiiiiiiiiiic e
Why Use Function POINErs?.......ccccocevivirieieieniiniininincneeeeeeececvcenenes 517
Arrays of Pointers to FUNCHONS.........coccviriiiiiininininiccccccee 521
Passing Pointers to Functions to Other Functionsc..cccocecvvevveviinicnnenne. 523
Using typedef with Pointers to FUnctionsc.ccocveveveivienienicncnincnene. 525
Pointers to Member FUnCtionsccccooiiiiiiiiiiiiiiiicccccciece 528
Arrays of Pointers to Member FUnctionsc..ccccevevevenineeieniencnencnene. 531
Summary533
QELA s 533
WOTKSROPD ettt 534
QUIZ <ottt ettt ettt e e e et e e ta e et e e e beeeaae e treeebeeeaeeetneas 534
EXEICISES ...t 534
Advanced Inheritance 537
AGETCZALION ...ttt ettt ettt ettt b e bt ebe et e ittt e st ae st et 537
Accessing Members of the Aggregated Class.........coceverereeierienienenienenene, 545
Controlling Access to Aggregated Members........c.coeverererieienienenienennene 545
COSt Of AZEIEZALION.....eeeitieiieiieieteeteeteete ettt ettt 546
Copying by ValUeccccoviiiiiniiiiiiiiiicieeeere et 549
Implementation in Terms of Inheritance Versus Aggregation/Delegation 552
Using Delegation
Private INKETILANCEccoeriiriiiiiiiieieere e e
Adding Friend CIaSSESsceceeieierierierienieniieiteteie ettt 571

Friend FUNCHONScc.oooiuiiiiieiceeceee ettt e 580

Contents

XV

17

Working with Streams 593
OVEIVIEW Of STIEAIMS ..c.veiviriiiiiiiiiiiiiiitirerteriee ettt ettt 593
Encapsulation of Data FIOWccccocoviriiiiiiiiiininiinnnieccccccee 594
Understanding Bufferingccccoeveiviniiiiiiiiinnnnccccccrceceee 594
Streams and Buffers
Standard I/O Objects
Redirection of the Standard Streamsccccoceveevievinininininiiereecccncnenee
INPUL USING CoLN ettt st
INPULHING SIINES ettt
String Problemsc..coeeeiiiiiiiiniiiiniiieeececeee e
The cin Return Valuecccociviiiiiininiiiiicicicc e
Other Member Functions of Cin.....c..coccviiiriiiniiiinieniiineneeeeeeeeeenese e
Single Character INPUL..........cccoiririninirieieciceeeee e
Getting Strings from Standard Input.... .
USING CIN.EIGNOFE () torterierieiieiieietenteeteeie ettt ettt ettt n e
Peeking at and Returning Characters: peek() and putback()cccceveeuenne. 611
OUtPULtING WIth COUT .eeviriiriiriiiiiicicererer ettt 613
Flushing the OULPUL........cccieiiiiiiiiiiineetec ettt 613
Functions for Doing OULPULccceeriririiieiiieicncnreeeceeeeeerereee e 613
Manipulators, Flags, and Formatting Instructionsccccccceeiiiiiiininnns 615
Streams Versus the printf () Function
File Input and OULPULcc.eeuirieiiiiiiientcniereetetetecetere et
USING the 0FSTrEaM ...etiiiiiiiiiiiieiieec ettt
CONAION STALES......evirirrietieiieiieteteteete ettt ettt sttt ettt
Opening Files for Input and OUPULccceceevierieninininininieeiccrcecee 624
Changing the Default Behavior of ofstream on Openc.ccccocvevveevinrennenne. 626
Binary Versus TeXt FIlesccceoueiiiiininininiiiicieicicicceeeeeececese e 629
Command-1ine Processingccccoeviririninieiienienieniininieeeeeeeeeesese e 631

SUIMIMATY ..ottt ettt ettt ettt sb e 634

XVi

Sams Teach Yourself C++ in 21 Days, Fifth Edition

18

19

Creating and Using Namespaces 637
Getting STATTEAoeuviiiiiiiiriieiiee ettt 637
Resolving Functions and Classes by Namecccccceveeininininiiiicncnencncnenne 638
Visibility of Variablesccooceiieiiiiieiiiieeese e 640
LINKAZE vttt 641
Static Global Variables ..o 642
Creating a NamMESPACEcoueruieuiiiiiiiriiniiniinitetetetetctere ettt 643
Declaring and Defining Types........c.ccocceenuene644
Defining Functions Outside a NamesSpaceccccevevevereeeevenienenrenennenne. 645
Adding New MEMDEISccoccviviiriiniininiinieieieicntesresteere ettt 645
Nesting NAMESPACES ...c..eeueeureuiiiiienieiiniieieeitetetenteste sttt 646
USING @ NAMESPACE.......cveiiiiiiieiieiieieiesteste sttt ettt 646
The using KeYWOrdccccovieiiiiiiiicieeeece et 648
The USING DITECHIVE....eeiiiieiie ettt eerre e eeareee s 648

Templates 659

What Are Templates?c.coociiiiiiniicieenee et 659
Building a Template Definitionc.ccocvvereririienienienenineeeeeeeeese e
USING the NAME ..c..oiviiiiiiieeeee e
Implementing the Templatecccoeeriririiieiienenieeeeeee e
Passing Instantiated Template Objects to Functions
Templates and Friendsccooieieierinininneeeeeieeee e
Nontemplate Friend Classes and FUNCHONSccceveveverinieienieneicecee,
General Template Friend Class or FUnNCtionc.cccccocevevenenininnicnienenene.
UsSing Template TtemScc.eeueruiiiiieieienieseee et
Using Specialized FUNCHONSccueviriririeieieieiesesicsieeeeeeeee s
Static Members and Templatescoceevveieienienenenineneeeeeeeeseseseeeean
The Standard Template Librarycccocooeveriiriienieneneninieeeeeeeeeeseseseniee
USING CONLAINETS ...ttt ettt ettt ettt et sbe bt ettt et e b e b b eaes
Understanding Sequence Containers..........
Understanding Associative Containers
Working with the Algorithm Classesccoevuevereninininieieieeresenenene
SUIMIMATY ..ottt ettt ettt b ettt et et e b b eaes

Contents Xvii
QEA ettt 712
WOTKSHOD ittt 713
QUIZ ettt ettt b ettt b e b s 713
EXEICISES .vtentenieniitiettet ettt ettt ettt sttt ettt ettt beebe s 713
20 Handling Errors and Exceptions 715
Bugs, Errors, Mistakes, and Code ROtc..cocecieiiiiiniinininiiiiiiiciccncncnee 716
Exceptional CIrCUMSIANCEScc.ccverueruiririeieieientenienteeeeeieeeeeeeeresre e 717
The Idea Behind EXCEPLIONS.....c..coueviiriirininiriiicicicictctceeeeeeeesese et 718
The Parts of Exception Handlingccecvevievininininnnieicccceee, 719
Causing Your OwWn EXCEPHONS ...cc.cceviririiiiiiienieniniinteecceeeeeereveee e 722
Creating an EXception Classcccceveririeieienicninininieeeceeeeeereeveee e 724
Placing try Blocks and catch Blocks ... 128
How Catching Exceptions WOrK........c.ccoccveririiieniiniiniininineeeereecresieneneniene 728
Using More Than One catch Specificationc..coccecevevereeieienicnienenene. 729
Exception HIierarchiescccoeeevinirinieiiniinicnicncn e 732
Data in Exceptions and Naming Exception Objectsc..cccecevcvevievencnicnienenne 735
Exceptions and Templatesccccoeviriririnieieiinieieeeeeeee e 742
Exceptions Without EITOTSccocoeviirininininiiiiiciciciceceeeeeeccce e 745
A Word About Code ROt..........cccciiiiiiiiiiiiiiiiicccee 746
Bugs and Debug@ing..........coceeeeieieiiniinininiinieeeteeteteeee e 746
Breakpoints
Watch Points
EXamining MEMOTYcc.cocveiiiiiiriiniininieeieeteeeeentestest ettt 747
ASSEMDIET ... 747

21

What's Next

The Preprocessor and the COMPILETccceoerieierieniinininiieeeeeeeesese e
The #define Preprocessor DIr€Ctive........oieriririeierienieniinieeieeieeee e
Using #define fOr CONSIANLSecuereririirieieieietesiese e
USIng #define fOr TESLS ..eeieieiiiiirieeerieeeetet et
The #else Precompiler Command
Inclusion and Inclusion GUArdscccccooeoireririnieineniiieceee e

MACTO FUNCHONSoueiiiiiiieiieitei ettt ettt
Why All the Parentheses?cooveririniiiiieieeieeeeeeeeee e 757

String Manipulationcccoceoveieieiiinieineieeete et 759
SHINZIZING ..ottt aee 759
CONCALENATION .ueutintititietieiietetet ettt ettt et et ettt ettt be st et et et e b esbeebeeaes 759

Xviii

Sams Teach Yourself C++ in 21 Days, Fifth Edition

Predefined MACTOS ...c..ooveeiiriiiiieiieieiesieste ettt 760

The asSert () IMACIO.....cccuiieitiieiie ettt ettt et eaae e eaae s 761
Debugging With @SSt () .eeeerererereririeeiieietet ettt 762
Using assert () Versus EXCEPONSccevieieierienienenienienieeceeeeeeieeveene s 763
SIA@ EFFECLS ..ttt

Class INVATIANLS ..o..evvirtiriieiieiieieeeseeee ettt
Printing Interim Values ...

Inline FUNCHONScoueiiiiiiiiiciiieeecee et

Bit TWAAAIING .ottt
OPerator ANDc.oiiiiiiiieeee et
OPErator OR ..ottt
Operator EXClusive ORc.ccoiiiiiiiiiiiieeieeieeees s
The Complement OPEIatorccceeeeeriirieierienierienie ettt 774
SEHUNG BILS .uviutiiiiiriieieeitet ettt 774
CLearing BitS ...cc.ecuevuiriiriieiieieieetese sttt 774
Flipping Bits
Bit FIEIAS ...ttt

Programming SEYIEcooueiiiiiiiniiice e 779
INAENTING ..o 779
Bracesccoooiiiiiiiiii 779
Long Lines and Function Lengthc..cceoieiieienenininininieeeeeee 780
Structuring switch StateMENtScccceeeieiieiierierienienienene ettt 780
Program TexXtc.cccovveveeneenuennncne
Naming Identifiers
Spelling and Capitalization of Names...........ccceeeverirererieienieneneneseseeen 782
COMMENLSniiiiieteeeie sttt sttt ettt 782
SEUNG UP ACCESS .verviiieiienieieiesieete sttt sttt sttt ettt sbeeaeas 783
Class DEfINItIONSc.eoveuiriiieiirieiieieiee ettt 783
AiNCLIude FIIES .o 784

Week 3 In Review 791

Contents XiX

A Working with Numbers: Binary and Hexadecimal 807
USING Other BASES ...c..ooviiiiriiiiiiiiciiiciencneeteeeeceee et 808
Converting to Different Basescccoveriiieiiiniiniiniininininicrcecccsenenee 809

BINATY oo 810
WRY BASE 27 ettt 811
Bits, Bytes, and Nybbles
What's @ KB?...o.oooiiiiiiiiiccetec et
Binary Numbers
Hexadecimalccooiiiiiiiiiiiiiiece e
B C++ Keywords 817
C Operator Precedence 819

D Answers 821

XX Sams Teach Yourself C++ in 21 Days, Fifth Edition

E A Look at Linked Lists 875
The Component Parts of Your Linked LiSt.......ccccovevieniininininiiniiiiiincncncnene 876

Index 887

About the Authors

JESSE LIBERTY is the author of numerous books on software development, including
best-selling titles in C++ and .NET. He is the president of Liberty Associates, Inc.
(http://www.Liberty Associates.com) where he provides custom programming, consulting,
and training.

BRADLEY JONES, Microsoft MVP, Visual C++, can be referred to as a webmaster, man-
ager, coding grunt, executive editor, and various other things. His time and focus are on a
number of software development sites and channels, including Developer.com,
CodeGuru.com, DevX, VBForums, Gamelan, and other Jupitermedia-owned sites. This
influence expands over sites delivering content to over 2.5 million unique developers a
month.

His expertise is in the area of the big “C”’s—C, C++, and C#—however, his experience
includes development in PowerBuilder, VB, some Java, ASP, COBOL I/II, and various
other technologies too old to even mention now. He has also been a consultant, analyst,
project lead, associate publisher for major technical publishers, and author. His recent
authoring credits include Sams Teach Yourself the C# Language in 21 Days, a 6th edition
of Sams Teach Yourself C in 21 Days, and now this edition of Sams Teach Yourself C++
in 21 Days. He is also the cofounder and president of the Indianapolis .NET Developers
Association, which is a charter INETA group with membership of over 700. You can
often hear his ramblings on the CodeGuru.com or VBForums.com discussion forums,
and he also does the weekly CodeGuru newsletter that goes out to tens of thousands of
developers.

Dedication

Jesse Liberty: This book is dedicated to the living memory of David Levine.

Bradley Jones: Dedicated to my wife and our future family.

Acknowledgments

JESSE LIBERTY: A fifth edition is another chance to acknowledge and to thank those
folks without whose support and help this book literally would have been impossible.
First among them remain Stacey, Robin, and Rachel Liberty.

I must also thank my editors at Sams for being professionals of the highest quality; and I
must especially acknowledge and thank Michael Stephens, Loretta Yates, Songlin Qiu,
Seth Kerney, and Karen Annett.

I would like to acknowledge the folks who taught me how to program: Skip Gilbrech and
David McCune, and those who taught me C++, including Stephen Zagieboylo. I would
like to thank the many readers who helped me find errors and typos in the earlier editions
of this book.

Finally, I’d like to thank Mrs. Kalish, who taught my sixth-grade class how to do binary
arithmetic in 1965, when neither she nor we knew why.

BRADLEY JONES: I would also like to thank Mark Cashman, David Corbin, Songlin Qiu,
and a number of readers from the previous editions.

In this fifth edition, we made an extra effort to ensure accuracy; we focused on honing
the content of this book for technical accuracy with an eye on the latest specifications for
the C++ language. Although we still might have missed something, chances are good
that we didn’t thanks to Mark and David and their close scrutiny of the technical details.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can email
or write me directly to let me know what you did or didn’t like about this book—as well
as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this
book. We do have a User Services group, however, where I will forward specific technical
questions related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Email: feedback @samspublishing.com
Mail: Michael Stephens
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our website
at www.samspublishing.com. Type the ISBN (excluding hyphens) or the title of a book
in the Search field to find the page you’re looking for.

Introduction

This book is designed to help you teach yourself how to program with C++. No one can
learn a serious programming language in just three weeks, but each of the lessons in this
book has been designed so that you can read the entire lesson in just a few hours on a
single day.

In just 21 days, you’ll learn about such fundamentals as managing input and output,
loops and arrays, object-oriented programming, templates, and creating C++
applications—all in well-structured and easy-to-follow lessons. Lessons provide sample
listings—complete with sample output and an analysis of the code—to illustrate the top-
ics of the day.

To help you become more proficient, each lesson ends with a set of common questions
and answers, a quiz, and exercises. You can check your progress by examining the quiz
and exercise answers provided in Appendix D, “Answers.”

Who Should Read This Book

You don’t need any previous experience in programming to learn C++ with this book.
This book starts you from the beginning and teaches you both the language and the con-
cepts involved with programming C++. You’ll find the numerous examples of syntax and
detailed analysis of code an excellent guide as you begin your journey into this reward-
ing environment. Whether you are just beginning or already have some experience pro-
gramming, you will find that this book’s clear organization makes learning C++ fast and
easy.

Conventions Used in This Book

TIP These boxes highlight information that can make your C++ programming

more efficient and effective.

NOTE These boxes provide additional information related to material you just

read.

| 2

Sams Teach Yourself C++ in 21 Days

FAQ
What do FAQs do?

Answer: These Frequently Asked Questions provide greater insight into the use of the language
and clarify potential areas of confusion.

CAUTION These focus your attention on problems or side effects that can occur in spe-
cific situations.

These boxes provide clear definitions of essential terms.

o

DO use the “Do/Don’t” boxes to find a ‘ DON'T overlook the useful information

quick summary of a fundamental princi- offered in these boxes.
ple in a lesson.

This book uses various typefaces to help you distinguish C++ code from regular English.
Actual C++ code is typeset in a special monospace font. Placeholders—words or charac-
ters temporarily used to represent the real words or characters you would type in code—
are typeset in italic monospace. New or important terms are typeset in italic.

In the listings in this book, each real code line is numbered. If you see an unnumbered
line in a listing, you’ll know that the unnumbered line is really a continuation of the pre-
ceding numbered code line (some code lines are too long for the width of the book). In
this case, you should type the two lines as one; do not divide them.

Sample Code for This Book

The sample code described throughout this book and Appendix D, “Answers,” are avail-
able on the Sams website at http://www.samspublishing.com. Enter this book’s ISBN
(without the hyphens) in the Search box and click Search. When the book’s title is dis-
played, click the title to go to a page where you can download the code and Appendix D.

WEEK 1

At a Glance

As you prepare for your first week of learning how to pro-
gram in C++, you will need a few things: a compiler, an edi-
tor, and this book. If you don’t have a C++ compiler and an
editor, you can still use this book, but you won’t get as much
out of it as you would if you were to do the exercises.

The best way to learn to program is by writing programs! At
the end of each day, you will find a workshop containing a
quiz and some exercises. Be certain to take the time to answer
all the questions, and to evaluate your work as objectively as
you can. The later lessons build on what you learn in the ear-
lier days, so be certain you fully understand the material
before moving on.

A Note to C Programmers

The material in the first five days will be familiar to you;
however, there are a few minor differences if you want to fol-
low the C++ standards. Be certain to skim the material and to
do the exercises, to ensure you are fully up to speed before
going on to Day 6, “Understanding Object-Oriented
Programming.”

Where You Are Going

The first week covers the material you need to get started
with programming in general, and with C++ in particular. On
Day 1, “Getting Started,” and Day 2, “The Anatomy of a C++
Program,” you will be introduced to the basic concepts of
programming and program flow. On Day 3, “Working with
Variables and Constants,” you will learn about variables and

Week 1

constants and how to use data in your programs. On Day 4, “Creating Expressions and
Statements,” you will learn how programs branch based on the data provided and the
conditions encountered when the program is running. On Day 5, “Organizing into
Functions,” you will learn what functions are and how to use them, and on Day 6 you
will learn about classes and objects. On Day 7, “More on Program Flow,” you will learn
more about program flow, and by the end of the first week, you will be writing real
object-oriented programs.

WEEK 1

DAY 1

Getting Started

Welcome to Sams Teach Yourself C++ in 21 Days! Today, you will get started
on your way to becoming a proficient C++ programmer.

Today, you will learn

* Why C++ is a standard in software development
* The steps to develop a C++ program

* How to enter, compile, and link your first working C++ program

A Brief History of C++

Computer languages have undergone dramatic evolution since the first elec-
tronic computers were built to assist in artillery trajectory calculations during
World War II. Early on, programmers worked with the most primitive computer
instructions: machine language. These instructions were represented by long
strings of ones and zeros. Soon, assemblers were invented to map machine
instructions to human-readable and -manageable mnemonics, such as ADD

and MOV.

Day 1

In time, higher-level languages evolved, such as BASIC and COBOL. These languages
let people work with something approximating words and sentences (referred to as
source code), such as Let I = 100. These instructions were then translated into machine
language by interpreters and compilers.

An interpreter translates and executes a program as it reads it, turning the program
instructions, or source code, directly into actions.

A compiler translates source code into an intermediary form. This step is called compil-
ing, and it produces an object file. The compiler then invokes a linker, which combines
the object file into an executable program.

Because interpreters read the source code as it is written and execute the code on the
spot, interpreters can be easier for the programmer to work with. Today, most interpreted
programs are referred to as scripts, and the interpreter itself is often called a “script
engine.”

Some languages, such as Visual Basic 6, call the interpreter the runtime library. Other
languages, such as the Visual Basic .NET and Java have another component, referred to
as a “Virtual Machine” (VM) or a runtime. The VM or runtime is also an interpreter.
However, it is not a source code interpreter that translates human-readable language into
computer-dependent machine code. Rather, it interprets and executes a compiled
computer-independent “virtual machine language” or intermediary language.

Compilers introduce the extra steps of compiling the source code (which is readable by
humans) into object code (which is readable by machines). This extra step might seem
inconvenient, but compiled programs run very fast because the time-consuming task of
translating the source code into machine language has already been done once, at com-
pile time. Because the translation is already done, it is not required when you execute the
program.

Another advantage of compiled languages such as C++ is that you can distribute the exe-
cutable program to people who don’t have the compiler. With an interpreted language,
you must have the interpreter to run the program.

C++ is typically a compiled language, though there are some C++ interpreters. Like
many compiled languages, C++ has a reputation for producing fast but powerful
programs.

In fact, for many years, the principal goal of computer programmers was to write short
pieces of code that would execute quickly. Programs needed to be small because memory
was expensive, and needed to be fast because processing power was also expensive. As
computers have become smaller, cheaper, and faster, and as the cost of memory has

Getting Started 7 |

fallen, these priorities have changed. Today, the cost of a programmer’s time far out-
weighs the cost of most of the computers in use by businesses. Well-written, easy-to-
maintain code is at a premium. Easy to maintain means that as requirements change for
what the program needs to do, the program can be extended and enhanced without great
expense.

NOTE The word program is used in two ways: to describe individual instructions
(or source code) created by the programmer, and to describe an entire piece
of executable software. This distinction can cause enormous confusion, so
this book tries to distinguish between the source code, on one hand, and
the executable, on the other.

The Need for Solving Problems

The problems programmers are asked to solve today are totally different from the prob-
lems they were solving twenty years ago. In the 1980s, programs were created to manage
and process large amounts of raw data. The people writing the code and the people using
the program were computer professionals. Today, computers are in use by far more peo-
ple, and most know very little about how computers and programs really work.
Computers are tools used by people who are more interested in solving their business
problems than struggling with the computer.

Ironically, as programs are made easier for this new audience to use, the programs them-
selves become far more sophisticated and complex. Gone are the days when users typed
in cryptic commands at esoteric prompts, only to see a stream of raw data. Today’s pro-
grams use sophisticated “user-friendly interfaces” involving multiple windows, menus,
dialog boxes, and the myriad of metaphors with which we’ve all become familiar.

With the development of the Web, computers entered a new era of market penetration;
more people are using computers than ever before, and their expectations are very high.
The ease at which people can use the Web has also increased the expectations. It is not
uncommon for people to expect that programs take advantage of the Web and what it has
to offer.

In the past few years, applications have expanded to different devices as well. No longer
is a desktop PC the only serious target for applications. Rather, mobile phones, personal
digital assistants (PDAs), Tablet PCs, and other devices are valid targets for modern
applications.

Day 1

In the few years since the first edition of this book, programmers have responded to the
demands of users, and, thus, their programs have become larger and more complex. The
need for programming techniques to help manage this complexity has become manifest.

As programming requirements change, both languages and the techniques used for writ-
ing programs evolve to help programmers manage complexity. Although the complete
history is fascinating, this book only focuses briefly on the key part of this evolution: the
transformation from procedural programming to object-oriented programming.

Procedural, Structured, and Object-Oriented
Programming

Until recently, computer programs were thought of as a series of procedures that acted
upon data. A procedure, also called a function or a method, is a set of specific instruc-
tions executed one after the other. The data was quite separate from the procedures, and
the trick in programming was to keep track of which functions called which other func-
tions, and what data was changed. To make sense of this potentially confusing situation,
structured programming was created.

The principal idea behind structured programming is the idea of divide and conquer. A
computer program can be thought of as consisting of a set of tasks. Any task that is too
complex to be described simply is broken down into a set of smaller component tasks,

until the tasks are sufficiently small and self-contained enough that they are each easily
understood.

As an example, computing the average salary of every employee of a company is a rather
complex task. You can, however, break it down into the following subtasks:

1. Count how many employees you have.

2. Find out what each employee earns.

3. Total all the salaries.

4. Divide the total by the number of employees you have.
Totaling the salaries can be broken down into the following steps:
Get each employee’s record.
Access the salary.

1.
2.
3. Add the salary to the running total.
4.

Get the next employee’s record.

Getting Started 9 |

In turn, obtaining each employee’s record can be broken down into the following:

1. Open the file of employees.
2. Go to the correct record.
3. Read the data.

Structured programming remains an enormously successful approach for dealing with
complex problems. By the late 1980s, however, some of the deficiencies of structured
programming had become all too clear.

First, a natural desire is to think of data (employee records, for example) and what you
can do with that data (sort, edit, and so on) as a single idea. Unfortunately, structured
programs separate data structures from the functions that manipulate them, and there is
no natural way to group data with its associated functions within structured program-
ming. Structured programming is often called procedural programming because of its
focus on procedures (rather than on “objects”).

Second, programmers often found themselves needing to reuse functions. But functions
that worked with one type of data often could not be used with other types of data, limit-
ing the benefits gained.

Object-Oriented Programming (OOP)

Object-oriented programming responds to these programming requirements, providing
techniques for managing enormous complexity, achieving reuse of software components,
and coupling data with the tasks that manipulate that data.

The essence of object-oriented programming is to model “objects” (that is, things or con-
cepts) rather than “data.” The objects you model might be onscreen widgets, such as but-
tons and list boxes, or they might be real-world objects, such as customers, bicycles,
airplanes, cats, and water.

Objects have characteristics, also called properties or attributes, such as age, fast, spa-
cious, black, or wet. They also have capabilities, also called operations or functions, such
as purchase, accelerate, fly, purr, or bubble. It is the job of object-oriented programming
to represent these objects in the programming language.

C++ and Object-Oriented Programming

C++ fully supports object-oriented programming, including the three pillars of object-
oriented development: encapsulation, inheritance, and polymorphism.

|1O

Day 1

Encapsulation

When an engineer needs to add a resistor to the device she is creating, she doesn’t typi-
cally build a new one from scratch. She walks over to a bin of resistors, examines the
colored bands that indicate the properties, and picks the one she needs. The resistor is a
“black box” as far as the engineer is concerned—she doesn’t much care how it does its
work, as long as it conforms to her specifications. She doesn’t need to look inside the
box to use it in her design.

The property of being a self-contained unit is called encapsulation. With encapsulation,
you can accomplish data hiding. Data hiding is the highly valued characteristic that an
object can be used without the user knowing or caring how it works internally. Just as
you can use a refrigerator without knowing how the compressor works, you can use a
well-designed object without knowing about its internal workings. Changes can be made
to those workings without affecting the operation of the program, as long as the specifi-
cations are met; just as the compressor in a refrigerator can be replaced with another one
of similar design.

Similarly, when the engineer uses the resistor, she need not know anything about the
internal state of the resistor. All the properties of the resistor are encapsulated in the
resistor object; they are not spread out through the circuitry. It is not necessary to under-
stand how the resistor works to use it effectively. Its workings are hidden inside the resis-
tor’s casing.

C++ supports encapsulation through the creation of user-defined types, called classes.
You’ll see how to create classes on Day 6, “Understanding Object-Oriented
Programming.” After being created, a well-defined class acts as a fully encapsulated
entity—it is used as a whole unit. The actual inner workings of the class can be hidden.
Users of a well-defined class do not need to know how the class works; they just need to
know how to use it.

Inheritance and Reuse

When the engineers at Acme Motors want to build a new car, they have two choices:
They can start from scratch, or they can modify an existing model. Perhaps their Star
model is nearly perfect, but they want to add a turbocharger and a six-speed transmis-
sion. The chief engineer prefers not to start from the ground up, but rather to say, “Let’s
build another Star, but let’s add these additional capabilities. We’ll call the new model a
Quasar.” A Quasar is a kind of Star, but a specialized one with new features. (According
to NASA, quasars are extremely luminous bodies that emit an astonishing amount of

energy.)

Getting Started 11 |

C++ supports inheritance. With inheritance, you can declare a new type that is an exten-
sion of an existing type. This new subclass is said to derive from the existing type and is
sometimes called a derived type. If the Quasar is derived from the Star and, thus, inherits
all of the Star’s qualities, then the engineers can add to them or modify them as needed.
Inheritance and its application in C++ are discussed on Day 12, “Implementing
Inheritance,” and Day 16, “Advanced Inheritance.”

Polymorphism

A new Quasar might respond differently than a Star does when you press down on the
accelerator. The Quasar might engage fuel injection and a turbocharger, whereas the Star
simply lets gasoline into its carburetor. A user, however, does not have to know about
these differences. He can just “floor it,” and the right thing happens, depending on which
car he’s driving.

C++ supports the idea that different objects do “the right thing” through what is called
function polymorphism and class polymorphism. Poly means many, and morph means
form. Polymorphism refers to the same name taking many forms, and it is discussed on
Day 10, “Working with Advanced Functions,” and Day 14, “Polymorphism.”

How C++ Evolved

As object-oriented analysis, design, and programming began to catch on, Bjarne
Stroustrup took the most popular language for commercial software development, C, and
extended it to provide the features needed to facilitate object-oriented programming.

Although it is true that C++ is a superset of C and that virtually any legal C program is a
legal C++ program, the leap from C to C++ is very significant. C++ benefited from its
relationship to C for many years because C programmers could ease into their use of
C++. To really get the full benefit of C++, however, many programmers found they had
to unlearn much of what they knew and learn a new way of conceptualizing and solving
programming problems.

Should | Learn C First?

The question inevitably arises: “Because C++ is a superset of C, should you learn C
first?” Stroustrup and most other C++ programmers agree that not only is it unnecessary
to learn C first, it might be advantageous not to do so.

C programming is based on structured programming concepts; C++ is based on object-
oriented programming. If you learn C first, you’ll have to “unlearn” the bad habits fos-
tered by C.

|12

Day 1

This book does not assume you have any prior programming experience. If you are a C
programmer, however, the first few days of this book will largely be review. Starting on
Day 6, you will begin the real work of object-oriented software development.

C++, Java, and C#

C++ is one of the predominant languages for the development of commercial software.
In recent years, Java has challenged that dominance; however, many of the programmers
who left C++ for Java have recently begun to return. In any case, the two languages are
so similar that to learn one is to learn 90 percent of the other.

C# is a newer language developed by Microsoft for the .NET platform. C# uses essen-
tially the same syntax as C++, and although the languages are different in a few impor-
tant ways, learning C++ provides a majority of what you need to know about C#. Should
you later decide to learn C#, the work you do on C++ will be an excellent investment.

Microsoft's Managed Extensions to C++

With .NET, Microsoft introduced Managed Extensions to C++ (“Managed C++"). This is
an extension of the C++ language to allow it to use Microsoft’s new platform and
libraries. More importantly, Managed C++ allows a C++ programmer to take advantage
of the advanced features of the .NET environment. Should you decide to develop specifi-
cally for the .NET platform, you will need to extend your knowledge of standard C++ to
include these extensions to the language.

The ANSI Standard

The Accredited Standards Committee, operating under the procedures of the American
National Standards Institute (ANSI), has created an international standard for C++.

The C++ Standard is also referred to as the ISO (International Organization for
Standardization) Standard, the NCITS (National Committee for Information Technology
Standards) Standard, the X3 (the old name for NCITS) Standard, and the ANSI/ISO
Standard. This book continues to refer to ANSI standard code because that is the more
commonly used term.

NOTE ANSI is usually pronounced “antsy” with a silent “t.”

Getting Started

The ANSI standard is an attempt to ensure that C++ is portable—ensuring, for example,
that ANSI-standard-compliant code you write for Microsoft’s compiler will compile
without errors using a compiler from any other vendor. Further, because the code in this
book is ANSI compliant, it should compile without errors on a Macintosh, a Windows
box, or an Alpha.

For most students of C++, the ANSI standard is invisible. The most recent version of the
standard is ISO/IEC 14882-2003. The previous version, ISO/IEC 14882-1998, was stable
and all the major manufacturers support it. All of the code in this edition of this book has
been compared to the standard to ensure that it is compliant.

Keep in mind that not all compilers are fully compliant with the standard. In addition,
some areas of the standard have been left open to the compiler vendor, which cannot be
trusted to compile or operate in the same fashion when compiled with various brands of
compilers.

NOTE Because the Managed Extensions to C++ only apply to the .NET platform
and are not ANSI standard, they are not covered in this book.

Preparing to Program

C++, perhaps more than other languages, demands that the programmer design the pro-
gram before writing it. Trivial problems, such as the ones discussed in the first few days
of this book, don’t require much design. Complex problems, however, such as the ones
professional programmers are challenged with every day, do require design, and the more
thorough the design, the more likely it is that the program will solve the problems it is
designed to solve, on time and on budget. A good design also makes for a program that
is relatively bug-free and easy to maintain. It has been estimated that fully 90 percent of
the cost of software is the combined cost of debugging and maintenance. To the extent
that good design can reduce those costs, it can have a significant impact on the bottom-
line cost of the project.

The first question you need to ask when preparing to design any program is, “What is the
problem I’m trying to solve?” Every program should have a clear, well-articulated goal,
and you’ll find that even the simplest programs in this book do so.

The second question every good programmer asks is, “Can this be accomplished without
resorting to writing custom software?” Reusing an old program, using pen and paper,
or buying software off the shelf is often a better solution to a problem than writing

|14

Day 1

something new. The programmer who can offer these alternatives will never suffer from
lack of work; finding less-expensive solutions to today’s problems always generates new
opportunities later.

Assuming you understand the problem and it requires writing a new program, you are
ready to begin your design.

The process of fully understanding the problem (analysis) and creating a plan for a
solution (design) is the necessary foundation for writing a world-class commercial
application.

Your Development Environment

This book makes the assumption that your compiler has a mode in which you can write

directly to a “console” (for instance, an MS-DOS/Command prompt or a shell window),
without worrying about a graphical environment, such as the ones in Windows or on the
Macintosh. Look for an option such as console or easy window or check your compiler’s
documentation.

Your compiler might be part of an Integrated Development Environment (IDE) or might
have its own built-in source code text editor, or you might be using a commercial text
editor or word processor that can produce text files. The important thing is that whatever
you write your program in, it must save simple, plain-text files, with no word processing
commands embedded in the text. Examples of safe editors include Windows Notepad,
the DOS Edit command, Brief, Epsilon, Emacs, and vi. Many commercial word proces-
sors, such as WordPerfect, Word, and dozens of others, also offer a method for saving
simple text files.

The files you create with your editor are called source files, and for C++ they typically
are named with the extension .cpp, .cp, or .c. This book names all the source code files
with the . cpp extension, but check your compiler for what it needs.

NOTE Most C++ compilers don't care what extension you give your source code,

but if you don’t specify otherwise, many use .cpp by default. Be careful,
however; some compilers treat .c files as C code and .cpp files as C++ code.
Again, please check your compiler’s documentation. In any event, it is easier
for other programmers who need to understand your programs if you con-
sistently use .cpp for C++ source code files.

Getting Started 15 |

o

DO use a simple text editor to create DON'T use a word processor that saves
your source code, or use the built-in edi- special formatting characters. If you do
tor that comes with your compiler. use a word processor, save the file as

DO save your files with the .c, .cp, or ASCII text.

.cpp extension. The .cpp extension is DON'T use a .c extension if your com-
recommended. piler treats such files as C code instead of
DO check your documentation for C++ code.

specifics about your compiler and linker

to ensure that you know how to compile

and link your programs.

The Process of Creating the Program

The first step in creating a new program is to write the appropriate commands (state-
ments) into a source file. Although the source code in your file is somewhat cryptic, and
anyone who doesn’t know C++ will struggle to understand what it is for, it is still in
what we call human-readable form. Your source code file is not a program and it can’t be
executed, or run, as an executable program file can.

Creating an Object File with the Compiler

To turn your source code into a program, you use a compiler. How you invoke your com-
piler and how you tell it where to find your source code varies from compiler to com-
piler; check your documentation.

After your source code is compiled, an object file is produced. This file is often named
with the extension .obj or .o. This is still not an executable program, however. To turn
this into an executable program, you must run your linker.

Creating an Executable File with the Linker

C++ programs are typically created by linking one or more object files (.obj or .o files)
with one or more libraries. A library is a collection of linkable files that were supplied with
your compiler, that you purchased separately, or that you created and compiled. All C++
compilers come with a library of useful functions and classes that you can include in your
program. You’ll learn more about functions and classes in great detail in the next few days.

The steps to create an executable file are

1. Create a source code file with a .cpp extension.
2. Compile the source code into an object file with the .obj or .o extension.

3. Link your object file with any needed libraries to produce an executable program.

|16

Day 1

The Development Cycle

If every program worked the first time you tried it, this would be the complete develop-
ment cycle: Write the program, compile the source code, link the program, and run it.
Unfortunately, almost every program, no matter how trivial, can and will have errors.
Some errors cause the compile to fail, some cause the link to fail, and some show up
only when you run the program (these are often called “bugs”).

Whatever type of error you find, you must fix it, and that involves editing your source
code, recompiling and relinking, and then rerunning the program. This cycle is repre-
sented in Figure 1.1, which diagrams the steps in the development cycle.

FiGure 1.1

The steps in the

development of a
C++ program.

Edit
Source
Code

v

lv L

Compile

Link

No

Run
Program

Getting Started 17 |

HELLO.cpp—Your First C++ Program

Traditional programming books begin by writing the words “Hello World” to the screen,
or a variation on that statement. This time-honored tradition is carried on here.

Type the source code shown in Listing 1.1 directly into your editor, exactly as shown
(excluding the line numbering). After you are certain you have entered it correctly, save
the file, compile it, link it, and run it. If everything was done correctly, it prints the words
Hello World to your screen. Don’t worry too much about how it works; this is really just

to get you comfortable with the development cycle. Every aspect of this program is cov-
ered over the next couple of days.

CAUTION The following listing contains line numbers on the left. These numbers are
for reference within the book. They should not be typed into your editor.
For example, on line 1 of Listing 1.1, you should enter:

#include <iostream>

LisTING 1.1 HELLO.cpp, the Hello World Program

#include <iostream>

int main()

{
std::cout << "Hello World!\n";
return 0;

NOoO O~ WD =

}

Be certain you enter this exactly as shown. Pay careful attention to the punctuation. The
<< on line 5 is the redirection symbol, produced on most keyboards by holding the Shift
key and pressing the comma key twice. Between the letters std and cout on line 5 are
two colons (:). Lines 5 and 6 each end with semicolon (;).

Also check to ensure you are following your compiler directions properly. Most compil-
ers link automatically, but check your documentation to see whether you need to provide
a special option or execute a command to cause the link to occur.

If you receive errors, look over your code carefully and determine how it is different
from the preceding listing. If you see an error on line 1, such as cannot find file
iostream, you might need to check your compiler documentation for directions on set-
ting up your include path or environment variables.

|18

Day 1

If you receive an error that there is no prototype for main, add the line int main(); just
before line 3 (this is one of those pesky compiler variations). In that case, you need to
add this line before the beginning of the main function in every program in this book.
Most compilers don’t require this, but a few do. If yours does, your finished program
needs to look like this:

#include <iostream>

int main(); // most compilers don't need this line
int main()
{
std::cout <<"Hello World!\n";
return 0;
}
NOTE It is difficult to read a program to yourself if you don’t know how to pro-

nounce the special characters and keywords. You read the first line “Pound
include (some say hash-include, others say sharp-include) eye-oh-stream.”
You read the fifth line “ess-tee-dee-see-out Hello World.”

On a Windows system, try running HELLO.exe (or whatever the name of an executable is
on your operating system; for instance, on a Unix system, you run HELLO, because exe-
cutable programs do not have extensions in Unix). The program should write

Hello World!

directly to your screen. If so, congratulations! You’ve just entered, compiled, and run
your first C++ program. It might not look like much, but almost every professional C++
programmer started out with this exact program.

Some programmers using IDEs (such as Visual Studio or Borland C++ Builder) will find
that running the program flashes up a window that promptly disappears with no chance
to see what result the program produces. If this happens, add these lines to your source
code just prior to the “return” statement:

char response;

std::cin >> response;

These lines cause the program to pause until you type a character (you might also need
to press the Enter key). They ensure you have a chance to see the results of your test run.
If you need to do this for hello.cpp, you will probably need to do it for most of the pro-
grams in this book.

Getting Started 19 |

Using the Standard Libraries

If you have a very old compiler, the program shown previously will not work—the new
ANSI standard libraries will not be found. In that case, please change your program to
look like this:

#include <iostream.h>

1
2

3: int main()

4: {

5: cout << "Hello World!\n";
6 return 0;

7

}

Notice that the library name now ends in .h (dot-h) and that we no longer use std:: in
front of cout on line 5. This is the old, pre-ANSI style of header files. If your compiler
works with this and not with the earlier version, you have an antiquated compiler. Your
compiler will be fine for the early days of this book, but when you get to templates and
exceptions, your compiler might not work.

Getting Started with Your Compiler

This book is not compiler specific. This means that the programs in this book should
work with any ANSI-compliant C++ compiler on any platform (Windows, Macintosh,
Unix, Linux, and so on).

That said, the vast majority of programmers are working in the Windows environment,
and the vast majority of professional programmers use the Microsoft compilers. The
details of compiling and linking with every possible compiler is too much to show here;
however, we can show you how to get started with Microsoft Visual C++ 6, and that
ought to be similar enough to whatever compiler you are using to be a good head start.

Compilers differ, however, so be certain to check your documentation.

Building the Hello World Project

To create and test the Hello World program, follow these steps:

1. Start the compiler.
2. Choose File, New from the menus.

3. Choose Win32 Console Application and enter a project name, such as hello, and
click OK.

4. Choose An Empty Project from the menu of choices and click Finish. A dialog box
is displayed with new project information.

|20

Day 1

5. Click OK. You are taken back to the main editor window.
6. Choose File, New from the menus.

7. Choose C++ Source File and give it a name, such as hello. You enter this name
into the File Name text box.

8. Click OK. You are taken back to the main editor window.
9. Enter the code as indicated previously.
10. Choose Build, Build hello.exe from the menus.

11. Check that you have no build errors. You can find this information near the bottom
of the editor.

12. Run the program by pressing Ctrl+F5 or by selecting Build, Execute hello from the
menus.

13. Press the spacebar to end the program.

FAQ
I can run the program but it flashes by so quickly I can’t read it. What is wrong?

Answer: Check your compiler documentation; there ought to be a way to cause your pro-
gram to pause after execution. With the Microsoft compilers, the trick is to use Ctrl+F5.
With any compiler, you can also add the following lines immediately before the return
statement (that is, between lines 5 and 6 in Listing 1.1):

char response;
std::cin >> response;

This causes the program to pause, waiting for you to enter a value. To end the program,
type any letter or number (for example, 1) and then press Enter (if necessary).

The meaning of std::cin and std: : cout will be discussed in coming days; for now, just
use it as if it were a magical incantation.

Compile Errors

Compile-time errors can occur for any number of reasons. Usually, they are a result of a
typo or other inadvertent minor error. Good compilers not only tell you what you did
wrong, they point you to the exact place in your code where you made the mistake. The
great ones even suggest a remedy!

You can see this by intentionally putting an error into your program. If HELLO.cpp ran
smoothly, edit it now and remove the closing brace on line 7 of Listing 1.1. Your pro-
gram now looks like Listing 1.2.

Getting Started 21 |

LisTING 1.2 Demonstration of Compiler Error

1: #include <iostream>

2:

3: int main()

4: {

5: std::cout << "Hello World!\n";
6: return 0;

Recompile your program and you should see an error that looks similar to the following:
Hello.cpp(7) : fatal error C1004: unexpected end of file found

This error tells you the file and line number of the problem and what the problem is
(although I admit it is somewhat cryptic). In this case, the compiler is telling you that it
ran out of source lines and hit the end of the source file without finding the closing
brace.

Sometimes, the error messages just get you to the general vicinity of the problem. If a
compiler could perfectly identify every problem, it would fix the code itself.

Summary

After reading today’s lesson, you should have a good understanding of how C++ evolved
and what problems it was designed to solve. You should feel confident that learning C++
is the right choice for anyone interested in programming. C++ provides the tools of
object-oriented programming and the performance of a systems-level language, which
makes C++ the development language of choice.

Today, you learned how to enter, compile, link, and run your first C++ program, and
what the normal development cycle is. You also learned a little of what object-oriented
programming is all about. You will return to these topics during the next three weeks.

Q&A

Q What is the difference between a text editor and a word processor?

A A text editor produces files with plain text in them. No formatting commands or
other special symbols are used that might be required by a particular word proces-
sor. Simple text editors do not have automatic word wrap, bold print, italic, and so
forth.

|22

Day 1

Q
A

> QO

If my compiler has a built-in editor, must I use it?

Almost all compilers will compile code produced by any text editor. The advan-
tages of using the built-in text editor, however, might include the capability to
quickly move back and forth between the edit and compile steps of the develop-
ment cycle. Sophisticated compilers include a fully integrated development
environment, enabling the programmer to access help files, edit, and compile the
code in place, and to resolve compile and link errors without ever leaving the
environment.

Can I ignore warning messages from my compiler?

Compilers generally give warnings and errors. If there are errors, the program will
not be completely built. If there are just warnings, the compiler will generally go
ahead and still create the program.

Many books hedge on this question. The appropriate answer is: No! Get into the
habit, from day one, of treating warning messages as errors. C++ uses the compiler
to warn you when you are doing something you might not intend. Heed those
warnings and do what is required to make them go away. Some compilers even
have a setting that causes all warnings to be treated like errors, and thus stop the
program from building an executable.

What is compile time?

Compile time is the time when you run your compiler, in contrast to link time
(when you run the linker) or runtime (when running the program). This is just pro-
grammer shorthand to identify the three times when errors usually surface.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson.

Quiz

1.

2
3.
4

What is the difference between an interpreter and a compiler?

. How do you compile the source code with your compiler?

What does the linker do?

. What are the steps in the normal development cycle?

Getting Started 23 |

Exercises

1. Look at the following program and try to guess what it does without running it.

1: #include <iostream>
2: int main()
3: {
4: int x = 5;

5: inty =7;

6: std::cout << endl;
7-

8

9

0:

std::cout << x +y << " " << x *y;
std::cout << end;

: return 0;

}

2. Type in the program from Exercise 1, and then compile and link it. What does it
do? Does it do what you guessed?

1

3. Type in the following program and compile it. What error do you receive?
1: include <iostream>
2: int main()
3: {
4: std::cout << "Hello World \n";
5 return 0;
6

©}

4. Fix the error in the program in Exercise 3 and recompile, link, and run it. What
does it do?

WEEK 1

DAY 2

The Anatomy of a C++
Program

C++ programs consist of classes, functions, variables, and other component
parts. Most of this book is devoted to explaining these parts in depth, but to
get a sense of how a program fits together, you must see a complete working
program.

Today, you will learn
* The parts of a C++ program
* How the parts work together

¢ What a function is and what it does

A Simple Program
Even the simple program HELLO.cpp from Day 1, “Getting Started,” had many

interesting parts. This section reviews this program in more detail. Listing 2.1
reproduces the original version of HELLO.cpp for your convenience.

| 26 Day 2

LISTING 2.1 HELLO.cpp Demonstrates the Parts of a C++ Program

1 #include <iostream>

2

3: int main()

4: {

5 std::cout << "Hello World!\n";
6 return 0;

7}

Hello World!
OuTPUT

On line 1, the file iostream is included into the current file.
ANALYSIS

Here’s how that works: The first character is the # symbol, which is a signal to a program
called the preprocessor. Each time you start your compiler, the preprocessor is run first.
The preprocessor reads through your source code, looking for lines that begin with the
pound symbol (#) and acts on those lines before the compiler runs. The preprocessor is
discussed in detail on Day 21, “What’s Next.”

The command #include is a preprocessor instruction that says, “What follows is a file-
name. Find that file, read it, and place it right here.” The angle brackets around the file-
name tell the preprocessor to look in all the usual places for this file. If your compiler is
set up correctly, the angle brackets cause the preprocessor to look for the file iostream
in the directory that holds all the include files for your compiler. The file iostream
(Input-Output-Stream) is used by cout, which assists with writing to the console. The
effect of line 1 is to include the file iostream into this program as if you had typed it in
yourself.

NOTE The preprocessor runs before your compiler each time the compiler is
invoked. The preprocessor translates any line that begins with a pound sym-
bol (#) into a special command, getting your code file ready for the compiler.

NOTE Not all compilers are consistent in their support for #includes that omit the
file extension. If you get error messages, you might need to change the
include search path for your compiler, or add the extension to the #include.

The Anatomy of a C++ Program 27 |

Line 3 begins the actual program with a function named main (). Every C++ program has
amain() function. A function is a block of code that performs one or more actions.
Usually, functions are invoked or called by other functions, but main() is special. When
your program starts, main() is called automatically.

main (), like all functions, must state what kind of value it returns. The return value type
for main() in HELLO.cpp is int, which means that this function returns an integer to the
operating system when it completes. In this case, it returns the integer value @, as shown
on line 6. Returning a value to the operating system is a relatively unimportant and little
used feature, but the C++ standard does require that main () be declared as shown.

CAUTION Some compilers let you declare main() to return void. This is no longer legal
C++, and you should not get into bad habits. Have main() return int, and
simply return @ as the last line in main().

NOTE Some operating systems enable you to test the value returned by a program.
The convention is to return 0 to indicate that the program ended normally.

All functions begin with an opening brace ({) and end with a closing brace (}). The
braces for the main () function are on lines 4 and 7. Everything between the opening and
closing braces is considered a part of the function.

The meat and potatoes of this program is on line 5.

The object cout is used to print a message to the screen. You’ll learn about objects in
general on Day 6, “Understanding Object-Oriented Programming,” and cout and its
related object cin in detail on Day 17, “Working with Streams.” These two objects, cin
and cout, are used in C++ to handle input (for example, from the keyboard) and output
(for example, to the console), respectively.

cout is an object provided by the standard library. A library is a collection of classes.
The standard library is the standard collection that comes with every ANSI-compliant
compiler.

You designate to the compiler that the cout object you want to use is part of the standard
library by using the namespace specifier std. Because you might have objects with the
same name from more than one vendor, C++ divides the world into “namespaces.” A
namespace is a way to say “when I say cout, I mean the cout that is part of the standard

|28

Day 2

namespace, not some other namespace.” You say that to the compiler by putting the char-
acters std followed by two colons before the cout. You’ll learn more about namespaces
in coming days.

Here’s how cout is used: Type the word cout, followed by the output redirection opera-
tor (<<). Whatever follows the output redirection operator is written to the console. If you
want a string of characters written, be certain to enclose them in double quotes ("), as
shown on line 5.

NOTE You should note that the redirection operator is two “greater-than” signs

with no spaces between them.

A text string is a series of printable characters.

The final two characters, \n, tell cout to put a new line after the words Hello World!
This special code is explained in detail when cout is discussed on Day 18, “Creating and
Using Namespaces.”

The main() function ends on line 7 with the closing brace.

A Brief Look at cout

On Day 17, you will see how to use cout to print data to the screen. For now, you can
use cout without fully understanding how it works. To print a value to the screen, write
the word cout, followed by the insertion operator (<<), which you create by typing the
less-than character (<) twice. Even though this is two characters, C++ treats it as one.

Follow the insertion character with your data. Listing 2.2 illustrates how this is used.
Type in the example exactly as written, except substitute your own name where you see
Jesse Liberty (unless your name is Jesse Liberty).

LISTING 2.2 Using cout

/] Listing 2.2 using std::cout

#include <iostream>

int main()

{
std::cout << "Hello there.\n";
std::cout << "Here is 5: " << 5 << "\n";
std::cout << "The manipulator std::endl ";
std::cout << "writes a new line to the screen.";
std::cout << std::endl;

© oo ~NOOO D WN =

The Anatomy of a C++ Program 29 |

LiSTING 2.2 continued

10: std::cout << "Here is a very big number:\t" << 70000;
11: std::cout << std::endl;

12: std::cout << "Here is the sum of 8 and 5:\t";

13: std::cout << 8+5 << std::endl;

14: std::cout << "Here's a fraction:\t\t";

15: std::cout << (float) 5/8 << std::endl;

16: std::cout << "And a very very big number:\t";

17: std::cout << (double) 7000 * 7000 << std::endl;

18: std::cout << "Don't forget to replace Jesse Liberty ";
19: std::cout << "with your name...\n";

20: std::cout << "Jesse Liberty is a C++ programmer!\n";
21: return 0;

22: }

o Hello there.
UTPUT Here is 5: 5

The manipulator endl writes a new line to the screen.

Here is a very big number: 70000
Here is the sum of 8 and 5: 13
Here's a fraction: 0.625
And a very very big number: 4.9e+007

Don't forget to replace Jesse Liberty with your name...
Jesse Liberty is a C++ programmer!

CAUTION Some compilers have a bug that requires that you put parentheses around
the addition before passing it to cout. Thus, line 13 would change to

13: cout << (8+5) << std::endl;

ANALYSIS On line 2, the statement #include <iostream> causes the iostreanm file to be
added to your source code. This is required if you use cout and its related
functions.

On line 5 is the simplest use of cout, printing a string or series of characters. The symbol
\n is a special formatting character. It tells cout to print a newline character to the
screen; it is pronounced “slash-n” or “new line.”

Three values are passed to cout on line 6, and each value is separated by the insertion
operator. The first value is the string "Here is 5: ". Note the space after the colon. The
space is part of the string. Next, the value 5 is passed to the insertion operator and then
the newline character (always in double quotes or single quotes) is passed. This causes
the line

Here is 5: 5

|3O

Day 2

to be printed to the console. Because no newline character is present after the first
string, the next value is printed immediately afterward. This is called concatenating the
two values.

On line 7, an informative message is printed, and then the manipulator std: :endl is
used. The purpose of end1 is to write a new line to the console. (Other uses for endl are
discussed on Day 16, “Advanced Inheritance.”) Note that end1 is also provided by the
standard library; thus, std: : is added in front of it just as std: : was added for cout.

NOTE endl stands for end fine and is end-ell rather than end-one. It is commonly

.

pronounced “end-el

Use of endl is preferable to the use of \n’, because endl is adapted to the
operating system in use, whereas ‘\n’ might not be the complete newline
character required on a particular OS or platform.

On line 10, a new formatting character, \t, is introduced. This inserts a tab character and
is used on lines 10 to 16 to line up the output. Line 10 shows that not only integers, but

long integers as well, can be printed. Lines 13 and 14 demonstrate that cout will do sim-
ple addition. The value of 8+5 is passed to cout on line 14, but the value of 13 is printed.

On line 15, the value 5/8 is inserted into cout. The term (float) tells cout that you
want this value evaluated as a decimal equivalent, and so a fraction is printed. On line
17, the value 7000 * 7000 is given to cout, and the term (double) is used to tell cout
that this is a floating-point value. All this will be explained on Day 3, “Working with
Variables and Constants,” when data types are discussed.

On lines 18 and 20, you should have substituted your name for Jesse Liberty. If you
do this, the output should confirm that you are indeed a C++ programmer. It must be
true, because the computer said so!

Using the Standard Namespace

You’ll notice that the use of std:: in front of both cout and endl becomes rather dis-
tracting after a while. Although using the namespace designation is good form, it is
tedious to type. The ANSI standard allows two solutions to this minor problem.

The first is to tell the compiler, at the beginning of the code listing, that you’ll be using
the standard library cout and endl, as shown on lines 5 and 6 of Listing 2.3.

The Anatomy of a C++ Program 31 |

LisTING 2.3 Using the using Keyword

1 /] Listing 2.3 - using the using keyword

2: #include <iostream>

3: int main()

4:

5: using std::cout;

6: using std::endl;

7

8: cout << "Hello there.\n";

9: cout << "Here is 5: " << 5 << "\n";

10: cout << "The manipulator endl ";

11: cout << "writes a new line to the screen.";

12: cout << endl;

13: cout << "Here is a very big number:\t" << 70000;
14: cout << endl;

15: cout << "Here is the sum of 8 and 5:\t";

16: cout << 8+5 << endl;

17: cout << "Here's a fraction:\t\t";

18: cout << (float) 5/8 << endl;

19: cout << "And a very very big number:\t";
20: cout << (double) 7000 * 7000 << endl;
21: cout << "Don't forget to replace Jesse Liberty ";
22: cout << "with your name...\n";
23: cout << "Jesse Liberty is a C++ programmer!\n";
24: return 0;
25: }

fo) Hello there.
UTPUT Here is 5: 5

The manipulator endl writes a new line to the screen.

Here is a very big number: 70000
Here is the sum of 8 and 5: 13
Here's a fraction: 0.625
And a very very big number: 4.9e+007

Don't forget to replace Jesse Liberty with your name...
Jesse Liberty is a C++ programmer!

You will note that the output is identical to the previous listing. The only differ-
ence between Listing 2.3 and Listing 2.2 is that on lines 5 and 6, additional state-
ments inform the compiler that two objects from the standard library will be used. This is
done with the keyword using. After this has been done, you no longer need to qualify
the cout and end1l objects.

The second way to avoid the inconvenience of writing std: : in front of cout and endl is
to simply tell the compiler that your listing will be using the entire standard namespace;
that is, any object not otherwise designated can be assumed to be from the standard

|32

Day 2

namespace. In this case, rather than writing using std::cout;, you would simply write
using namespace std;, as shown in Listing 2.4.

LisTING 2.4 Using the namespace Keyword

1: // Listing 2.4 - using namespace std

2: #include <iostream>

3: int main()

4: {

5: using namespace std;

6:

7: cout << "Hello there.\n";

8: cout << "Here is 5: " << 5 << "\n";

9: cout << "The manipulator endl ";

10: cout << "writes a new line to the screen.";

11: cout << endl;

12: cout << "Here is a very big number:\t" << 70000;
13: cout << endl;

14: cout << "Here is the sum of 8 and 5:\t";

15: cout << 8+5 << endl;

16: cout << "Here's a fraction:\t\t";

17: cout << (float) 5/8 << endl;

18: cout << "And a very very big number:\t";

19: cout << (double) 7000 * 7000 << endl;

20: cout << "Don't forget to replace Jesse Liberty ";
21: cout << "with your name...\n";

22: cout << "Jesse Liberty is a C++ programmer!\n";
23: return 0;

24: '}

Again, the output is identical to the earlier versions of this program. The advan-
tage to writing using namespace std; is that you do not have to specifically
designate the objects you’re actually using (for example, cout and endl;). The disadvan-
tage is that you run the risk of inadvertently using objects from the wrong library.

Purists prefer to write std: : in front of each instance of cout or endl. The lazy prefer to
write using namespace std; and be done with it. In this book, most often the individual
items being used are declared, but from time to time each of the other styles are pre-

sented just for fun.

Commenting Your Programs

When you are writing a program, your intent is always clear and self-evident to you.
Funny thing, though—a month later, when you return to the program, it can be quite con-
fusing and unclear. No one is ever certain how the confusion creeps into a program, but it

nearly always does.

The Anatomy of a C++ Program 33 |

To fight the onset of bafflement, and to help others understand your code, you need to
use comments. Comments are text that is ignored by the compiler, but that can inform
the reader of what you are doing at any particular point in your program.

Types of Comments

C++ comments come in two flavors: single-line comments and multiline comments.

Single-line comments are accomplished using a double slash (//) . The double slash tells
the compiler to ignore everything that follows, until the end of the line.

Multiline comments are started by using a forward slash followed by an asterisk (/*). This

“slash-star” comment mark tells the compiler to ignore everything that follows until it finds
a star-slash (*/) comment mark. These marks can be on the same line or they can have one
or more lines between them; however, every /* must be matched with a closing */.

Many C++ programmers use the double-slash, single-line comments most of the time
and reserve multiline comments for blocking out large blocks of a program. You can
include single-line comments within a block “commented out” by the multiline comment
marks; everything, including the double-slash comments, are ignored between the multi-
line comment marks.

NOTE The multiline comment style has been referred to as C-style because it was
introduced and used in the C programming language. The single-line com-
ments were originally a part of C++ and not a part of C; thus, they have
been referred to as C++-style. The current standards for both C and C++ now
include both styles of comments.

Using Comments

Some people recommend writing comments at the top of each function, explaining what
the function does and what values it returns.

Functions should be named so that little ambiguity exists about what they do, and con-
fusing and obscure bits of code should be redesigned and rewritten so as to be self-
evident. Comments should not be used as an excuse for obscurity in your code.

This is not to suggest that comments ought never be used, only that they should not be
relied upon to clarify obscure code; instead, fix the code. In short, you should write your
code well, and use comments to supplement understanding.

Listing 2.5 demonstrates the use of comments, showing that they do not affect the pro-
cessing of the program or its output.

| 34 Day 2

LISTING 2.5 HELP.cpp Demonstrates Comments

1 #include <iostream>

2

3 int main()

4: A

5: using std::cout;

6.

7 /* this is a comment

8: and it extends until the closing

9: star-slash comment mark */

10: cout << "Hello World!\n";

11: // this comment ends at the end of the line
12: cout << "That comment ended!\n";

13:

14: // double-slash comments can be alone on a line
15: /* as can slash-star comments */

16: return 0;

17: }

0 Hello World!
ALl That comment ended!

The comment on lines 7-9 is completely ignored by the compiler, as are the
comments on lines 11, 14, and 15. The comment on line 11 ended with the end

of the line. The comments on lines 7 and 15 required a closing comment mark.

NOTE There is a third style of comment that is supported by some C++ compilers.
These comments are referred to as document comments and are indicated
using three forward slashes (///). The compilers that support this style of
comment allow you to generate documentation about the program from
these comments. Because these are not currently a part of the C++ standard,
they are not covered here.

A Final Word of Caution About Comments

Comments that state the obvious are less than useful. In fact, they can be counterproduc-
tive because the code might change and the programmer might neglect to update the
comment. What is obvious to one person might be obscure to another, however, so judg-
ment is required when adding comments.

The bottom line is that comments should not say what is happening, they should say why
it is happening.

The Anatomy of a C++ Program

35|

Functions

Although main() is a function, it is an unusual one. To be useful, a function must be
called, or invoked, during the course of your program. main() is invoked by the operat-
ing system.

A program is executed line-by-line in the order it appears in your source code until a
function is reached. Then, the program branches off to execute the function. When the
function finishes, it returns control to the line of code immediately following the call to
the function.

A good analogy for this is sharpening your pencil. If you are drawing a picture and your
pencil point breaks, you might stop drawing, go sharpen the pencil, and then return to
what you were doing. When a program needs a service performed, it can call a function
to perform the service and then pick up where it left off when the function is finished
running. Listing 2.6 demonstrates this idea.

NOTE Functions are covered in more detail on Day 5, “Organizing into Functions.”
The types that can be returned from a function are covered in more detail
on Day 3, “Working with Variables and Constants.” The information pro-
vided today is to present you with an overview because functions will be
used in almost all of your C++ programs.

LisTING 2.6 Demonstrating a Call to a Function

#include <iostream>

/] function Demonstration Function
/] prints out a useful message
void DemonstrationFunction()

{
}

std::cout << "In Demonstration Function\n";

0N O~ WN =

10: // function main - prints out a message, then
11: // calls DemonstrationFunction, then prints out
12: // a second message.

13: int main()

14: {

15: std::cout << "In main\n" ;

16: DemonstrationFunction();

17: std::cout << "Back in main\n";
18: return 0;

|36

Day 2

o In main
UTPUT In Demonstration Function

Back in main

The function DemonstrationFunction() is defined on lines 6—8. When it is
ANALYSIS tonFunction()

called, it prints a message to the console screen and then returns.

Line 13 is the beginning of the actual program. On line 15, main() prints out a message
saying it is in main (). After printing the message, line 16 calls
DemonstrationFunction(). This call causes the flow of the program to go to

the DemonstrationFunction() function on line 5. Any commands in
DemonstrationFunction() are then executed. In this case, the entire function consists of
the code on line 7, which prints another message. When DemonstrationFunction()
completes (line 8), the program flow returns to from where it was called. In this case, the
program returns to line 17, where main () prints its final line.

Using Functions

Functions either return a value or they return void, meaning they do not return anything.
A function that adds two integers might return the sum, and thus would be defined to
return an integer value. A function that just prints a message has nothing to return and
would be declared to return void.

Functions consist of a header and a body. The header consists, in turn, of the return type,
the function name, and the parameters to that function. The parameters to a function
enable values to be passed into the function. Thus, if the function were to add two num-
bers, the numbers would be the parameters to the function. Here’s an example of a typi-
cal function header that declares a function named Sum that receives two integer values
(first and second) and also returns an integer value:

int Sum(int first, int second)

A parameter is a declaration of what type of value will be passed in; the actual value
passed in when the function is called is referred to as an argument. Many programmers
use the terms parameters and arguments as synonyms. Others are careful about the tech-
nical distinction. The distinction between these two terms is not critical to your program-
ming C++, so you shouldn’t worry if the words get interchanged.

The body of a function consists of an opening brace, zero or more statements, and a clos-
ing brace. The statements constitute the workings of the function.

A function might return a value using a return statement. The value returned must be of
the type declared in the function header. In addition, this statement causes the function to
exit. If you don’t put a return statement into your function, it automatically returns void

The Anatomy of a C++ Program 37 |

(nothing) at the end of the function. If a function is supposed to return a value but does
not contain a return statement, some compilers produce a warning or error message.

Listing 2.7 demonstrates a function that takes two integer parameters and returns an inte-
ger value. Don’t worry about the syntax or the specifics of how to work with integer val-
ues (for example, int first) for now; that is covered in detail on Day 3.

LISTING 2.7 FUNC.cpp Demonstrates a Simple Function

1: #include <iostream>

2: int Add (int first, int second)

3: {

4: std::cout << "In Add(), received " << first << " and

= " << second << "\n"

5: return (first + second);

6: 1}

7:

8: int main()

9: {

10: using std::cout;

11: using std::cin;

12:

13:

14: cout << "I'm in main()!\n";
15: int a, b, c;

16: cout << "Enter two numbers: ";
17: cin >> a;

18: cin >> by

19: cout << "\nCalling Add()\n";
20: c=Add(a,b);
21: cout << "\nBack in main().\n";
22: cout << "c was set to " << c;
23: cout << "\nExiting...\n\n";
24: return 0;
25: }

o I'm in main()!

Ll Enter two numbers: 3 5
Calling Add()
In Add(), received 3 and 5

Back in main().
c was set to 8
Exiting...

| 38 Day 2

The function Add () is defined on line 2. It takes two integer parameters and
returns an integer value. The program itself begins on line 8. The program
prompts the user for two numbers (line 16). The user types each number, separated by a
space, and then presses the Enter key. The numbers the user enters are placed in the vari-
ables a and b on lines 17 and 18. On line 20, the main() function passes the two num-
bers typed in by the user as arguments to the Add () function.

Processing branches to the Add () function, which starts on line 2. The values from a and
b are received as parameters first and second, respectively. These values are printed
and then added. The result of adding the two numbers is returned on line 5, at which
point the function returns to the function that called it—main (), in this case.

On lines 17 and 18, the cin object is used to obtain a number for the variables a and b.
Throughout the rest of the program, cout is used to write to the console. Variables and
other aspects of this program are explored in depth in the next few days.

Methods Versus Functions

A function by any other name is still just a function. It is worth noting here that different
programming languages and different programming methodologies might refer to func-
tions using a different term. One of the more common terms used is the term method.
Method is simply another term for functions that are part of a class.

Summary

The difficulty in learning a complex subject, such as programming, is that so much of
what you learn depends on everything else there is to learn. Today’s lesson introduced
the basic parts of a simple C++ program.

Q&A
Q What does #include do?

A This is a directive to the preprocessor, which runs when you call your compiler.
This specific directive causes the file in the “<>" named after the word #include
to be read in, as if it were typed in at that location in your source code.

(e

What is the difference between // comments and /* style comments?

A The double-slash comments (//) “expire” at the end of the line. Slash-star (/*)
comments are in effect until a closing comment mark (*/). The double-slash com-
ments are also referred to as single-line comments, and the slash-star comments
are often referred to as multiline comments. Remember, not even the end of the

The Anatomy of a C++ Program

function terminates a slash-star comment; you must put in the closing comment
mark, or you will receive a compile-time error.

Q What differentiates a good comment from a bad comment?

A A good comment tells the reader why this particular code is doing whatever it is
doing or explains what a section of code is about to do. A bad comment restates
what a particular line of code is doing. Lines of code should be written so that they
speak for themselves. A well-written line of code should tell you what it is doing
without needing a comment.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson.

Quiz
1. What is the difference between the compiler and the preprocessor?
2. Why is the function main() special?
3. What are the two types of comments, and how do they differ?
4. Can comments be nested?
5

. Can comments be longer than one line?

Exercises
1. Write a program that writes “I love C++” to the console.
2. Write the smallest program that can be compiled, linked, and run.

3. BUG BUSTERS: Enter this program and compile it. Why does it fail? How can

you fix it?

1: #include <iostream>

2: main()

3: {

4 std::cout << Is there a bug here?";
5: }

4. Fix the bug in Exercise 3 and recompile, link, and run it.

5. Modify Listing 2.7 to include a subtract function. Name this function Subtract()
and use it in the same way that the Add () function was called. You should also pass
the same values that were passed to the Add () function.

WEEK 1

DAY 3

Working with Variables
and Constants

Programs need a way to store the data they use or create so it can be used later
in the program’s execution. Variables and constants offer various ways to repre-
sent, store, and manipulate that data.

Today, you will learn

* How to declare and define variables and constants
* How to assign values to variables and manipulate those values

¢ How to write the value of a variable to the screen

What Is a Variable?

In C++, a variable is a place to store information. A variable is a location in
your computer’s memory in which you can store a value and from which you
can later retrieve that value.

|42

Day 3

Notice that variables are used for temporary storage. When you exit a program or turn
the computer off, the information in variables is lost. Permanent storage is a different
matter. Typically, the values from variables are permanently stored either to a database or
to a file on disk. Storing to a file on disk is discussed on Day 16, “Advanced
Inheritance.”

Storing Data in Memory

Your computer’s memory can be viewed as a series of cubbyholes. Each cubbyhole is
one of many, many such holes all lined up. Each cubbyhole—or memory location—is
numbered sequentially. These numbers are known as memory addresses. A variable
reserves one or more cubbyholes in which you can store a value.

Your variable’s name (for example, myvariable) is a label on one of these cubbyholes so
that you can find it easily without knowing its actual memory address. Figure 3.1 is a
schematic representation of this idea. As you can see from the figure, myvariable starts
at memory address 103. Depending on the size of myvariable, it can take up one or
more memory addresses.

FIGURE 3.1 Variable Name ——>» myVariable

A schematic represen-
tation of memory.

RAM —>

Address ——>» 100 101 102 103 104 105 106

NOTE RAM stands for random access memory. When you run your program, it is
loaded into RAM from the disk file. All variables are also created in RAM.
When programmers talk about memory, it is usually RAM to which they are
referring.

Setting Aside Memory

When you define a variable in C++, you must tell the compiler what kind of variable it is
(this is usually referred to as the variable’s “type”): an integer, a floating-point number, a
character, and so forth. This information tells the compiler how much room to set aside
and what kind of value you want to store in your variable. It also allows the compiler to

warn you or produce an error message if you accidentally attempt to store a value of the

Working with Variables and Constants 43 |

wrong type in your variable (this characteristic of a programming language is called
“strong typing”).

Each cubbyhole is one byte in size. If the type of variable you create is four bytes in size,
it needs four bytes of memory, or four cubbyholes. The type of the variable (for example,
integer) tells the compiler how much memory (how many cubbyholes) to set aside for the
variable.

There was a time when it was imperative that programmers understood bits and bytes;
after all, these are the fundamental units of storage. Computer programs have gotten bet-
ter at abstracting away these details, but it is still helpful to understand how data is
stored. For a quick review of the underlying concepts in binary math, please take a look
at Appendix A, “Working with Numbers: Binary and Hexadecimal.”

NOTE If mathematics makes you want to run from the room screaming, don't
bother with Appendix A; you won't really need it. The truth is that program-
mers no longer need to be mathematicians; though it is important to be
comfortable with logic and rational thinking.

Size of Integers

On any one computer, each variable type takes up a single, unchanging amount of room.
That is, an integer might be two bytes on one machine and four on another, but on either
computer it is always the same, day in and day out.

Single characters—including letters, numbers, and symbols—are stored in a variable of
type char. A char variable is most often one byte long.

NOTE There is endless debate about how to pronounce char. Some say it as “car,”
some say it as “char”(coal), others say it as “care.” Clearly, car is correct
because that is how / say it, but feel free to say it however you like.

For smaller integer numbers, a variable can be created using the short type. A short
integer is two bytes on most computers, a long integer is usually four bytes, and an inte-
ger (without the keyword short or long) is usually two or four bytes.

You’d think the language would specify the exact size that each of its types should be;
however, C++ doesn’t. All it says is that a short must be less than or equal to the size of
an int, which, in turn, must be less than or equal to the size of a long.

|44

Day 3

That said, you’re probably working on a computer with a two-byte short and a four-byte

int, with a four-byte long.

The size of an integer is determined by the processor (16 bit, 32 bit, or 64 bit) and the
compiler you use. On a 32-bit computer with an Intel Pentium processor, using modern
compilers, integers are four bytes.

CAUTION

When creating programs, you should never assume the amount of memory
that is being used for any particular type.

Compile and run Listing 3.1 and it will tell you the exact size of each of these types on

your computer.

LisTiING 3.1 Determining the Size of Variable Types on Your Computer

#include <iostream>

int main()

1
2

3

4: A

5: using std::cout;
6.

7 cout << "The size of
8: << sizeof(int)

9: cout << "The size of

10: << sizeof(short)
11: cout << "The size of
12: << sizeof(long)

13: cout << "The size of

14: << sizeof(char)

15: cout << "The size of
16: << sizeof(float)
17: cout << "The size of
18: << sizeof(double)
19: cout << "The size of

an int is:\t\t"

<< " bytes.\n";

a short int is:\t"

<< " bytes.\n";

a long int is:\t"

<< " bytes.\n";

a char is:\t\t"
<< " bytes.\n";

a float is:\t\t"
<< " bytes.\n";
a double is:\t"
<< " bytes.\n";

a bool is:\t"

20: << sizeof(bool) << " bytes.\n";

21:

22: return 0;

23: }
The size of an int is: 4 bytes.

The size of a short int is: 2 bytes.

The size of a long int is: 4 bytes.
The size of a char is: 1 bytes.
The size of a float is: 4 bytes.
The size of a double is: 8 bytes.
The size of a bool is: 1 bytes.

Working with Variables and Constants 45 |

NOTE On your computer, the number of bytes presented might be different.

Most of Listing 3.1 should be pretty familiar. The lines have been split to make them fit
for the book, so for example, lines 7 and 8 could really be on a single line. The compiler
ignores whitespace (spaces, tabs, line returns) and so you can treat these as a single line.

6,9

That’s why you need a ““;” at the end of most lines.

The new feature in this program to notice is the use of the sizeof operator on lines
7-20. The sizeof is used like a function. When called, it tells you the size of the item
you pass to it as a parameter. On line 8, for example, the keyword int is passed to
sizeof. You’ll learn later in today’s lesson that int is used to describe a standard integer
variable. Using sizeof on a Pentium 4, Windows XP machine, an int is four bytes,
which coincidentally also is the size of a long int on the same computer.

The other lines of Listing 3.1 show the sizes of other data types. You’ll learn about the
values these data types can store and the differences between each in a few minutes.

signed and unsigned

All integer types come in two varieties: signed and unsigned. Sometimes, you need neg-
ative numbers, and sometimes you don’t. Any integer without the word “unsigned” is
assumed to be signed. signed integers can be negative or positive. unsigned integers are
always positive.

Integers, whether signed or unsigned are stored in the same amount of space. Because
of this, part of the storage room for a signed integer must be used to hold information on
whether the number is negative or positive. The result is that the largest number you can
store in an unsigned integer is twice as big as the largest positive number you can store
in a signed integer.

For example, if a short integer is stored in two bytes, then an unsigned short integer
can handle numbers from 0 to 65,535. Alternatively, for a signed short, half the num-
bers that can be stored are negative; thus, a signed short can only represent positive
numbers up to 32,767. The signed short can also, however, represent negative numbers
giving it a total range from —32,768 to 32,767.

For more information on the precedence of operators, read Appendix C, “Operator

Precedence.”

Fundamental Variable Types

Several variable types are built in to C++. They can be conveniently divided into integer
variables (the type discussed so far), floating-point variables, and character variables.

| 46 Day 3

Floating-point variables have values that can be expressed as fractions—that is, they are
real numbers. Character variables hold a single byte and are generally used for holding
the 256 characters and symbols of the ASCII and extended ASCII character sets.

NOTE The ASCII character set is the set of characters standardized for use on com-
puters. ASCll is an acronym for American Standard Code for Information
Interchange. Nearly every computer operating system supports ASCII,
although many support other international character sets as well.

The types of variables used in C++ programs are described in Table 3.1. This table shows
the variable type, how much room the type generally takes in memory, and what kinds of
values can be stored in these variables. The values that can be stored are determined by
the size of the variable types, so check your output from Listing 3.1 to see if your vari-
able types are the same size. It is most likely that they are the same size unless you are
using a computer with a 64-bit processor.

TaBLE 3.1 Variable Types

Type Size Values
bool 1 byte true or false
unsigned short int 2 bytes 0 to 65,535
short int 2 bytes -32,768 to 32,767
unsigned long int 4 bytes 0 to 4,294,967,295
long int 4 bytes —2,147,483,648 to 2,147,483,647
int (16 bit) 2 bytes -32,768 to 32,767
int (32 bit) 4 bytes —2,147,483,648 to 2,147,483,647
unsigned int (16 bit) 2 bytes 0 to 65,535
unsigned int (32 bit) 4 bytes 0 to 4,294,967,295
char 1 byte 256 character values
float 4 bytes 1.2e-38 to 3.4e38
double 8 bytes 2.2e-308 to 1.8e308
NOTE The sizes of variables might be different from those shown in Table 3.1,

depending on the compiler and the computer you are using. If your com-
puter had the same output as was presented in Listing 3.1, Table 3.1 should

Working with Variables and Constants 47 |

apply to your compiler. If your output from Listing 3.1 was different, you
should consult your compiler’s manual for the values that your variable
types can hold.

Defining a Variable

Up to this point, you have seen a number of variables created and used. Now, it is time to
learn how to create your own.

You create or define a variable by stating its type, followed by one or more spaces, fol-
lowed by the variable name and a semicolon. The variable name can be virtually any
combination of letters, but it cannot contain spaces. Legal variable names include x,
J23qrsnf, and myAge. Good variable names tell you what the variables are for; using
good names makes it easier to understand the flow of your program. The following state-
ment defines an integer variable called myAge:

int myAge;

NOTE When you declare a variable, memory is allocated (set aside) for that vari-
able. The value of the variable will be whatever happened to be in that
memory at that time. You will see in a moment how to assign a new value
to that memory.

As a general programming practice, avoid such horrific names as J23qrsnf, and restrict
single-letter variable names (such as x or i) to variables that are used only very briefly.
Try to use expressive names such as myAge or howMany. Such names are easier to under-
stand three weeks later when you are scratching your head trying to figure out what you
meant when you wrote that line of code.

Try this experiment: Guess what these programs do, based on the first few lines of code:

Example 1

int main()

{
unsigned short x;
unsigned short y;
unsigned short z;
z=Xx*y;
return 0;

| 48 Day 3
Example 2
int main()
{
unsigned short Width;
unsigned short Length;
unsigned short Area;
Area = Width * Length;
return 0;
}
NOTE If you compile these programs, your compiler will warn that the values are

not initialized. You'll see how to solve this problem shortly.

Clearly, the purpose of the second program is easier to guess, and the inconvenience of
having to type the longer variable names is more than made up for by how much easier it
is to understand, and thus maintain, the second program.

Case Sensitivity

C++ is case sensitive. In other words, uppercase and lowercase letters are considered to
be different. A variable named age is different from Age, which is different from AGE.

CAUTION Some compilers allow you to turn case sensitivity off. Don’t be tempted to

do this; your programs won’t work with other compilers, and other C++ pro-
grammers will be very confused by your code.

Naming Conventions

Various conventions exist for how to name variables, and although it doesn’t much mat-
ter which method you adopt, it is important to be consistent throughout your program.
Inconsistent naming will confuse other programmers when they read your code.

Many programmers prefer to use all lowercase letters for their variable names. If the
name requires two words (for example, my car), two popular conventions are used:
my_car or myCar. The latter form is called camel notation because the capitalization
looks something like a camel’s hump.

Some people find the underscore character (my_car) to be easier to read, but others prefer
to avoid the underscore because it is more difficult to type. This book uses camel nota-
tion, in which the second and all subsequent words are capitalized: myCar,
theQuickBrownFox, and so forth.

Working with Variables and Constants 49 |

Many advanced programmers employ a notation style referred to as Hungarian notation.
The idea behind Hungarian notation is to prefix every variable with a set of characters
that describes its type. Integer variables might begin with a lowercase letter i. Variables
of type long might begin with a lowercase 1. Other notations indicate different constructs
within C++ that you will learn about later, such as constants, globals, pointers, and so
forth.

NOTE It is called Hungarian notation because the man who invented it, Charles
Simonyi of Microsoft, is Hungarian. You can find his original monograph at
http://www.strangecreations.com//library/c/naming.txt.

Microsoft has moved away from Hungarian notation recently, and the design recommen-
dations for C# strongly recommend not using Hungarian notation. Their reasoning for C#
applies equally well to C++.

Keywords

Some words are reserved by C++, and you cannot use them as variable names. These
keywords have special meaning to the C++ compiler. Keywords include if, while, for,
and main. A list of keywords defined by C++ is presented in Table 3.2 as well as in
Appendix B, “C++ Keywords.” Your compiler might have additional reserved words, so
you should check its manual for a complete list.

TaBLE 3.2 The C++ Keywords

asm else new this
auto enum operator throw
bool explicit private true
break export protected try

case extern public typedef
catch false register typeid
char float reinterpret_cast typename
class for return union
const friend short unsigned
const_cast goto signed using
continue if sizeof virtual

default inline static void

| 50 Day 3
TaBLE 3.2 continued
delete int static_cast volatile
do long struct wchar_t
double mutable switch while
dynamic_cast namespace template

In addition, the following words are reserved:

And bitor not_eq xor
and_eq compl or xor_eq
bitand not or_eq
Do Don'T
DO define a variable by writing the type, DON'T use C++ keywords as variable
then the variable name. names.
DO use meaningful variable names. DON'T make assumptions about how
DO remember that C++ is case sensitive. many bytes are used to store a variable.
DO understand the number of bytes DON'T use unsigned variables for nega-
each variable type consumes in memory tive numbers.
and what values can be stored in vari-
ables of that type.

Creating More Than One Variable at a Time

You can create more than one variable of the same type in one statement by writing the
type and then the variable names, separated by commas. For example:

unsigned int myAge, myWeight; // two unsigned int variables
long int area, width, length; // three long integers

As you can see, myAge and myWeight are each declared as unsigned integer variables.
The second line declares three individual long variables named area, width, and length.
The type (1ong) is assigned to all the variables, so you cannot mix types in one definition
statement.

Assigning Values to Your Variables

You assign a value to a variable by using the assignment operator (=). Thus, you would
assign 5 to width by writing

unsigned short width;
width = 5;

Working with Variables and Constants 51 |

NOTE long is a shorthand version of long int, and short is a shorthand version of
short int.

You can combine the steps of creating a variable and assigning a value to it. For exam-
ple, you can combine these two steps for the width variable by writing:

unsigned short width = 5;

This initialization looks very much like the earlier assignment, and when using integer
variables like width, the difference is minor. Later, when const is covered, you will see
that some variables must be initialized because they cannot be assigned a value at a later
time.

Just as you can define more than one variable at a time, you can initialize more than one
variable at creation. For example, the following creates two variables of type long and
initializes them:

long width = 5, length = 7;

This example initializes the long integer variable width to the value 5 and the long inte-
ger variable length to the value 7. You can even mix definitions and initializations:

int myAge = 39, yourAge, hisAge = 40;

This example creates three type int variables, and it initializes the first (myAge) and third
(hisAge).

Listing 3.2 shows a complete program, ready to compile, that computes the area of a rec-
tangle and writes the answer to the screen.

LisTING 3.2 A Demonstration of the Use of Variables

1: // Demonstration of variables

2: #include <iostream>

3:

4: int main()

5: {

6: using std::cout;

7: using std::endl;

8:

9: unsigned short int Width = 5, Length;
10: Length = 10;
11:
12: /| create an unsigned short and initialize with result
13: // of multiplying Width by Length

14: unsigned short int Area = (Width * Length);

| 52 Day 3

LisTING 3.2 continued

15:
16: cout << "Width:" << Width << endl;
17: cout << "Length: " << Length << endl;
18: cout << "Area: " << Area << endl;
19: return 0;
20: }
Width:5
Length: 10

Area: 50

ANALYSIS As you have seen in the previous listing, line 2 includes the required include
statement for the iostream’s library so that cout will work. Line 4 begins the

program with the main () function. Lines 6 and 7 define cout and endl as being part of
the standard (std) namespace.

On line 9, the first variables are defined. Width is defined as an unsigned short integer,
and its value is initialized to 5. Another unsigned short integer, Length, is also defined,
but it is not initialized. On line 10, the value 10 is assigned to Length.

On line 14, an unsigned short integer, Area, is defined, and it is initialized with the
value obtained by multiplying Width times Length. On lines 16—18, the values of the
variables are printed to the screen. Note that the special word end1l creates a new line.

Creating Aliases with typedef

It can become tedious, repetitious, and, most important, error-prone to keep writing
unsigned short int. C++ enables you to create an alias for this phrase by using the
keyword typedef, which stands for type definition.

In effect, you are creating a synonym, and it is important to distinguish this from creating
a new type (which you will do on Day 6, “Understanding Object-Oriented
Programming”). typedef is used by writing the keyword typedef, followed by the exist-
ing type, then the new name, and ending with a semicolon. For example,

typedef unsigned short int USHORT;

creates the new name USHORT that you can use anywhere you might have written
unsigned short int. Listing 3.3 is a replay of Listing 3.2, using the type definition
USHORT rather than unsigned short int.

Working with Variables and Constants 53 |

Listing 3.3 A Demonstration of typedef

1: // Demonstrates typedef keyword
2: #include <iostream>
3:
4: typedef unsigned short int USHORT; //typedef defined
5:
6: int main()
7: {
8:
9: using std::cout;
10: using std::endl;
11
12: USHORT Width = 5;
13: USHORT Length;
14: Length = 10;
15: USHORT Area = Width * Length;
16: cout << "Width:" << Width << endl;
17: cout << "Length: " << Length << endl;
18: cout << "Area: " << Area <<endl;
19: return 0;
20: }
Width:5
Length: 10

Area: 50

NOTE An asterisk (*) indicates multiplication.

RS On line 4, USHORT is typedefined (some programmers say “typedef’ed”) as a
synonym for unsigned short int. The program is very much like Listing 3.2,

and the output is the same.

When to Use short and When to Use long

One source of confusion for new C++ programmers is when to declare a variable to be
type long and when to declare it to be type short. The rule, when understood, is fairly
straightforward: If any chance exists that the value you’ll want to put into your variable
will be too big for its type, use a larger type.

As shown in Table 3.1, unsigned short integers, assuming that they are two bytes,
can hold a value only up to 65,535. signed short integers split their values between

|54

Day 3

positive and negative numbers, and thus their maximum value is only half that of the
unsigned.

Although unsigned long integers can hold an extremely large number (4,294,967,295),
that is still quite finite. If you need a larger number, you’ll have to go to float or
double, and then you lose some precision. Floats and doubles can hold extremely large
numbers, but only the first seven or nine digits are significant on most computers. This
means that the number is rounded off after that many digits.

Shorter variables use up less memory. These days, memory is cheap and life is short.
Feel free to use int, which is probably four bytes on your machine.

Wrapping Around an unsigned Integer

That unsigned long integers have a limit to the values they can hold is only rarely a
problem, but what happens if you do run out of room?

When an unsigned integer reaches its maximum value, it wraps around and starts over,
much as a car odometer might. Listing 3.4 shows what happens if you try to put too large
a value into a short integer.

LisTING 3.4 A Demonstration of Putting Too Large a Value in an unsigned short Integer

1 #include <iostream>

2: int main()

30

4 using std::cout;

5: using std::endl;

6:

7 unsigned short int smallNumber;

8: smallNumber = 65535;

9: cout << "small number:" << smallNumber << endl;
10: smallNumber++;

11: cout << "small number:" << smallNumber << endl;
12: smallNumber++;

13: cout << "small number:" << smallNumber << endl;
14: return 0;

15: }

o small number:65535
UTPUT small number:0Q

small number:1

On line 7, smallNumber is declared to be an unsigned short int, which on a
ANALYSIS

Pentium 4 computer running Windows XP is a two-byte variable, able to hold a
value between 0 and 65,535. On line 8, the maximum value is assigned to smallNumber,
and it is printed on line 9.

Working with Variables and Constants 55 |

On line 10, smallNumber is incremented; that is, 1 is added to it. The symbol for incre-
menting is ++ (as in the name C++—an incremental increase from C). Thus, the value in
smallNumber would be 65,536. However, unsigned short integers can’t hold a number
larger than 65,535, so the value is wrapped around to 0, which is printed on line 11.

On line 12 smallNumber is incremented again, and then its new value, 1, is printed.

Wrapping Around a signed Integer

A signed integer is different from an unsigned integer, in that half of the values you can
represent are negative. Instead of picturing a traditional car odometer, you might picture
a clock much like the one shown in Figure 3.2, in which the numbers count upward mov-
ing clockwise and downward moving counterclockwise. They cross at the bottom of the
clock face (traditional 6 o’clock).

FIGURE 3.2

If clocks used signed
numbers.

One number from 0 is either 1 (clockwise) or —1 (counterclockwise). When you run out
of positive numbers, you run right into the largest negative numbers and then count back
down to 0. Listing 3.5 shows what happens when you add 1 to the maximum positive
number in a short integer.

LisTING 3.5 A Demonstration of Adding Too Large a Number to a signed short Integer

1 #include <iostream>

2 int main()

3: {

4 short int smallNumber;

|56

Day 3

LisTING 3.5 continued

5: smallNumber = 32767;

6: std::cout << "small number:" << smallNumber << std::endl;
7: smallNumber++;

8: std::cout << "small number:" << smallNumber << std::endl;
9: smallNumber++;

10: std::cout << "small number:" << smallNumber << std::endl;
11: return 0;

12: }

fo) small number:32767
el small number:-32768
small number:-32767
FRANER On line 4, smallNumber is declared this time to be a signed short integer (if
you don’t explicitly say that it is unsigned, an integer variable is assumed to be
signed). The program proceeds much as the preceding one, but the output is quite differ-

ent. To fully understand this output, you must be comfortable with how signed numbers
are represented as bits in a two-byte integer.

The bottom line, however, is that just like an unsigned integer, the signed integer wraps
around from its highest positive value to its highest negative value.

Working with Characters

Character variables (type char) are typically 1 byte, enough to hold 256 values (see
Appendix C). A char can be interpreted as a small number (0-255) or as a member of
the ASCII set. The ASCII character set and its ISO equivalent are a way to encode all the
letters, numerals, and punctuation marks.

NOTE Computers do not know about letters, punctuation, or sentences. All they
understand are numbers. In fact, all they really know about is whether a suf-
ficient amount of electricity is at a particular junction of wires. These two
states are represented symbolically as a 1 and 0. By grouping ones and
zeros, the computer is able to generate patterns that can be interpreted as
numbers, and these, in turn, can be assigned to letters and punctuation.

In the ASCII code, the lowercase letter “a” is assigned the value 97. All the lower- and
uppercase letters, all the numerals, and all the punctuation marks are assigned values
between 1 and 128. An additional 128 marks and symbols are reserved for use by the

Working with Variables and Constants 57 |

computer maker, although the IBM extended character set has become something of a
standard.

NOTE ASCll is usually pronounced “Ask-ee.”

Characters and Numbers

When you put a character, for example, “a,” into a char variable, what really is there is a
number between 0 and 255. The compiler knows, however, how to translate back and
forth between characters (represented by a single quotation mark and then a letter,
numeral, or punctuation mark, followed by a closing single quotation mark) and the cor-
responding ASCII values.

The value/letter relationship is arbitrary; there is no particular reason that the lowercase
“a” is assigned the value 97. As long as everyone (your keyboard, compiler, and screen)
agrees, no problem occurs. It is important to realize, however, that a big difference exists
between the value 5 and the character ‘5. The character ‘5’ actually has an ASCII value

of 53, much as the letter “a” is valued at 97. This is illustrated in Listing 3.6.

LisTING 3.6 Printing Characters Based on Numbers

1 #include <iostream>

2: int main()

3: {

4: for (int i = 32; i<128; i++)
5: std::cout << (char) i;

6 return 0;

7

o 1" #$%8& "' ()*+, -. /0123456789 ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_“abcde-
UTPUT e 1
pgrstuvwxyz{|}~?

This simple program prints the character values for the integers 32 through 127.
This listing uses an integer variable, i, on line 4 to accomplish this task. On
line 5, the number in the variable i is forced to display as a character.

A character variable could also have been used as shown in Listing 3.7, which has the
same output.

|58

Day 3

LisTING 3.7 Printing Characters Based on Numbers, Take 2

1 #include <iostream>

2 int main()

2: {

4: for (unsigned char i = 32; 1<128; i++)
5: std::cout << 1i;

6 return 0;

7

As you can see, an unsigned character is used on line 4. Because a character variable is
being used instead of a numeric variable, the cout on line 5 knows to display the charac-
ter value.

Special Printing Characters

The C++ compiler recognizes some special characters for formatting. Table 3.3 shows
the most common ones. You put these into your code by typing the backslash (called the
escape character), followed by the character. Thus, to put a tab character into your code,
you enter a single quotation mark, the slash, the letter t, and then a closing single quota-
tion mark:

char tabCharacter = '\t';

This example declares a char variable (tabCharacter) and initializes it with the charac-
ter value \t, which is recognized as a tab. The special printing characters are used when
printing either to the screen or to a file or other output device.

The escape character (\) changes the meaning of the character that follows it. For exam-
ple, normally the character n means the letter n, but when it is preceded by the escape
character, it means new line.

TaBLE 3.3 The Escape Characters

Character What It Means
\a Bell (alert)

\b Backspace

\f Form feed

\n New line

\r Carriage return
\t Tab

\v Vertical tab

\' Single quote

Working with Variables and Constants 59 |

TaBLE 3.3 continued

Character

\" Double quote

\? Question mark

\\ Backslash

\000 Octal notation

\xhhh Hexadecimal notation
Constants

Like variables, constants are data storage locations. Unlike variables, and as the name
implies, constants don’t change—they remain constant. You must initialize a constant
when you create it, and you cannot assign a new value later.

C++ has two types of constants: literal and symbolic.

Literal Constants

A literal constant is a value typed directly into your program wherever it is needed. For
example:

int myAge = 39;

myAge is a variable of type int; 39 is a literal constant. You can’t assign a value to 39,
and its value can’t be changed.

Symbolic Constants

A symbolic constant is a constant that is represented by a name, just as a variable is rep-
resented. Unlike a variable, however, after a constant is initialized, its value can’t be
changed.

If your program has an integer variable named students and another named classes,
you could compute how many students you have, given a known number of classes, if
you knew each class consisted of 15 students:

students = classes * 15;

In this example, 15 is a literal constant. Your code would be easier to read, and easier to
maintain, if you substituted a symbolic constant for this value:

students = classes * studentsPerClass

|60

Day 3

If you later decided to change the number of students in each class, you could do so
where you define the constant studentsPerClass without having to make a change
every place you used that value.

Two ways exist to declare a symbolic constant in C++. The old, traditional, and now
obsolete way is with a preprocessor directive, #define. The second, and appropriate way
to create them is using the const keyword.

Defining Constants with #define

Because a number of existing programs use the preprocessor #define directive, it is
important for you to understand how it has been used. To define a constant in this obso-
lete manner, you would enter this:

#define studentsPerClass 15

Note that studentsPercClass is of no particular type (int, char, and so on). The pre-
processor does a simple text substitution. In this case, every time the preprocessor sees
the word studentsPerClass, it puts in the text 15.

Because the preprocessor runs before the compiler, your compiler never sees your con-
stant; it sees the number 15.

CAUTION Although #define looks very easy to use, it should be avoided as it has been

declared obsolete in the C++ standard.

Defining Constants with const

Although #define works, a much better way exists to define constants in C++:
const unsigned short int studentsPerClass = 15;

This example also declares a symbolic constant named studentsPerClass, but this time
studentsPerClass is typed as an unsigned short int.

This method of declaring constants has several advantages in making your code easier to
maintain and in preventing bugs. The biggest difference is that this constant has a type,
and the compiler can enforce that it is used according to its type.

NOTE Constants cannot be changed while the program is running. If you need to

change studentsPerClass, for example, you need to change the code and
recompile.

Working with Variables and Constants 61 |

o

DO watch for numbers overrunning the DON'T use keywords as variable names.
size of the integer and wrapping around
incorrect values.

DON'T use the #define preprocessor
directive to declare constants. Use const.
DO give your variables meaningful

names that reflect their use.

Enumerated Constants

Enumerated constants enable you to create new types and then to define variables of
those types whose values are restricted to a set of possible values. For example, you
could create an enumeration to store colors. Specifically, you could declare COLOR to be
an enumeration, and then you could define five values for COLOR: RED, BLUE, GREEN,
WHITE, and BLACK.

The syntax for creating enumerated constants is to write the keyword enum, followed by
the new type name, an opening brace, each of the legal values separated by a comma,
and finally, a closing brace and a semicolon. Here’s an example:

enum COLOR { RED, BLUE, GREEN, WHITE, BLACK };
This statement performs two tasks:

1. It makes COLOR the name of an enumeration; that is, a new type.

2. It makes RED a symbolic constant with the value @, BLUE a symbolic constant with
the value 1, GREEN a symbolic constant with the value 2, and so forth.

Every enumerated constant has an integer value. If you don’t specify otherwise, the first
constant has the value @, and the rest count up from there. Any one of the constants can
be initialized with a particular value, however, and those that are not initialized count
upward from the ones before them. Thus, if you write

enum Color { RED=100, BLUE, GREEN=500, WHITE, BLACK=700 };

then RED has the value 100; BLUE, the value 101; GREEN, the value 500; WHITE, the value
501; and BLACK, the value 700.

You can define variables of type COLOR, but they can be assigned only one of the enumer-
ated values (in this case, RED, BLUE, GREEN, WHITE, or BLACK. You can assign any color
value to your COLOR variable.

|62

Day 3

It is important to realize that enumerator variables are generally of type unsigned int,
and that the enumerated constants equate to integer variables. It is, however, very conve-
nient to be able to name these values when working with information such as colors,
days of the week, or similar sets of values. Listing 3.8 presents a program that uses an
enumerated type.

LisTING 3.8 A Demonstration of Enumerated Constants

1: #include <iostream>

2: int main()

3: {

4: enum Days { Sunday, Monday, Tuesday,

5: Wednesday, Thursday, Friday, Saturday };
6:

7: Days today;

8: today = Monday;

9:

10: if (today == Sunday || today == Saturday)

11: std::cout << "\nGotta' love the weekends!\n";
12: else

13: std::cout << "\nBack to work.\n";

14:

15: return 0;

16: }

Back to work.
OurtpuTt

n lines 4 and 5, the enumerated constant D is defined, with seven values.
AnaLysis [> ays ’

Each of these evaluates to an integer, counting upward from 0; thus, Monday’s
value is 1 (Sunday was 0).

On line 7, a variable of type Days is created—that is, the variable contains a valid value
from the list of enumerated constants defined on lines 4 and 5. The value Monday is
assigned to the variable on line 8. On line 10, a test is done against the value.

The enumerated constant shown on line 8 could be replaced with a series of constant
integers, as shown in Listing 3.9.

LisTING 3.9 Same Program Using Constant Integers

#include <iostream>
int main()
{
const int Sunday = 0;
const int Monday

g s WD =

1l
—_

Working with Variables and Constants 63 |

LisTING 3.9 continued

6: const int Tuesday = 2;

7: const int Wednesday = 3;

8: const int Thursday = 4;

9: const int Friday = 5;

10: const int Saturday = 6;

11:

12: int today;

13: today = Monday;

14:

15: if (today == Sunday || today == Saturday)
16: std::cout << "\nGotta' love the weekends!\n";
17: else

18: std::cout << "\nBack to work.\n";

19:

20: return 0;

21: }

Back to work.
OurtpuTt

CAUTION A number of the variables you declare in this program are not used. As such,
your compiler might give you warnings when you compile this listing.

The output of this listing is identical to Listing 3.8. Here, each of the constants
(Sunday, Monday, and so on) was explicitly defined, and no enumerated Days type
exists. Enumerated constants have the advantage of being self-documenting—the intent
of the Days enumerated type is immediately clear.

Summary

Today’s lesson discussed numeric and character variables and constants, which are used
by C++ to store data during the execution of your program. Numeric variables are either
integral (char, short, int, and long int) or they are floating point (float, double, and
long double). Numeric variables can also be signed or unsigned. Although all the
types can be of various sizes among different computers, the type specifies an exact size
on any given computer.

You must declare a variable before it can be used, and then you must store the type of
data that you’ve declared as correct for that variable. If you put a number that is too large
into an integral variable, it wraps around and produces an incorrect result.

|64

Day 3

Today’s lesson also presented literal and symbolic constants as well as enumerated con-
stants. You learned two ways to declare a symbolic constant: using #define and using
the keyword const; however, you learned that using const is the appropriate way.

Q&A
Q

A

If a short int can run out of room and wrap around, why not always use long
integers?

All integer types can run out of room and wrap around, but a long integer does so
with a much larger number. For example, a two-byte unsigned short int wraps
around after 65,535, whereas a four-byte unsigned long int does not wrap
around until 4,294,967,295. However, on most machines, a long integer takes up
twice as much memory every time you declare one (such as four bytes versus two
bytes), and a program with 100 such variables consumes an extra 200 bytes of
RAM. Frankly, this is less of a problem than it used to be because most personal
computers now come with millions (if not billions) of bytes of memory.

Using larger types than you need might also require additional time for your com-
puter’s processor to processes.

What happens if I assign a number with a decimal point to an integer rather
than to a float? Consider the following line of code:

int aNumber = 5.4;

A good compiler issues a warning, but the assignment is completely legal. The
number you’ve assigned is truncated into an integer. Thus, if you assign 5.4 to an
integer variable, that variable will have the value 5. Information will be lost, how-
ever, and if you then try to assign the value in that integer variable to a float vari-
able, the float variable will have only 5.

Why not use literal constants; why go to the bother of using symbolic
constants?

If you use a value in many places throughout your program, a symbolic constant
allows all the values to change just by changing the one definition of the constant.
Symbolic constants also speak for themselves. It might be hard to understand why
a number is being multiplied by 360, but it’s much easier to understand what’s
going on if the number is being multiplied by degreesInACircle.

What happens if I assign a negative number to an unsigned variable?
Consider the following line of code:
unsigned int aPositiveNumber = -1;

A good compiler issues a warning, but the assignment is legal. The negative num-
ber is assessed as a bit pattern and is assigned to the variable. The value of that

Working with Variables and Constants 65 |

variable is then interpreted as an unsigned number. Thus, —1, whose bit pattern is
11111111 11111111 (OxFF in hex), is assessed as the unsigned value 65,535.

Can I work with C++ without understanding bit patterns, binary arithmetic,
and hexadecimal?

Yes, but not as effectively as if you do understand these topics. C++ does not do as
good a job as some languages at “protecting” you from what the computer is really
doing. This is actually a benefit because it provides you with tremendous power
that other languages don’t. As with any power tool, however, to get the most out of
C++, you must understand how it works. Programmers who try to program in C++
without understanding the fundamentals of the binary system often are confused by
their results.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain that you understand the answers before continuing to tomor-
row’s lesson.

What is the difference between an integer variable and a floating-point variable?
What are the differences between an unsigned short int and a long int?
What are the advantages of using a symbolic constant rather than a literal constant?
What are the advantages of using the const keyword rather than #define?
What makes for a good or bad variable name?
Given this enum, what is the value of BLUE?
enum COLOR { WHITE, BLACK = 100, RED, BLUE, GREEN = 300 };
Which of the following variable names are good, which are bad, and which are
invalid?
a. Age
b. lex

R79J

&~ o

TotalIncome

€. _ Invalid

| 66 Day 3

Exercises

1. What would be the correct variable type in which to store the following
information?

a. Your age

b. The area of your backyard

c. The number of stars in the galaxy

d. The average rainfall for the month of January
2. Create good variable names for this information.
3. Declare a constant for pi as 3.14159.

4. Declare a float variable and initialize it using your pi constant.

WEEK 1

DAY 4

Creating Expressions
and Statements

At its heart, a program is a set of commands executed in sequence. The power
in a program comes from its capability to execute one or another set of com-
mands, based on whether a particular condition is true or false.

Today, you will learn

¢ What statements are
What blocks are

* What expressions are

* How to branch your code based on conditions

¢ What truth is, and how to act on it

| 68 Day 4

Starting with Statements

In C++, a statement controls the sequence of execution, evaluates an expression, or does
nothing (the null statement). All C++ statements end with a semicolon and nothing else.
One of the most common statements is the following assignment statement:

X =a+ b;

Unlike in algebra, this statement does not mean that x is equal to a+b. Rather, this is
read, “Assign the value of the sum of a and b to x,” or “Assign to x, a+b,” or “Set x equal
to a plus b.”

This statement is doing two things. It is adding a and b together, and it is assigning the
result to x using the assignment operator (=). Even though this statement is doing two
things, it is one statement, and thus has one semicolon.

NOTE The assignment operator assigns whatever is on the right side of the equal
sign to whatever is on the left side.

Using Whitespace

Whitespace is the invisible characters such as tabs, spaces, and new lines. These are
called “whitespace characters” because if they are printed on a piece of white paper, you
only see the white of the paper.

Whitespace is generally ignored in statements. For example, the assignment statement
previously discussed could be written as

x=ath;

or as

X =a
+ b ;

Although this last variation is perfectly legal, it is also perfectly foolish. Whitespace can
be used to make your programs more readable and easier to maintain, or it can be used to
create horrific and indecipherable code. In this, as in all things, C++ provides the power;
you supply the judgment.

Blocks and Compound Statements

Any place you can put a single statement, you can put a compound statement, also called
a block. A block begins with an opening brace ({) and ends with a closing brace (}).

Creating Expressions and Statements 69|

Although every statement in the block must end with a semicolon, the block itself does
not end with a semicolon, as shown in the following example:

{
temp = a;
a=b;
b = temp;
}

This block of code acts as one statement and swaps the values in the variables a and b.

o

DO end your statements with a semi- DON'T forget to use a closing brace any
colon. time you have an opening brace.

DO use whitespace judiciously to make
your code clearer.

Expressions

Anything that evaluates to a value is an expression in C++. An expression is said to
return a value. Thus, the statement 3+2; returns the value 5, so it is an expression. All
expressions are statements.

The myriad pieces of code that qualify as expressions might surprise you. Here are three

examples:

3.2 /] returns the value 3.2

PI /1 float constant that returns the value 3.14
SecondsPerMinute /1 int constant that returns 60

Assuming that PI is a constant created that is initialized to 3.14 and SecondsPerMinute
is a constant equal to 60, all three of these statements are expressions.

The slightly more complicated expression
X = a + by

not only adds a and b and assigns the result to x, but returns the value of that assignment
(the value of x) as well. Thus, this assignment statement is also an expression.

As a note, any expression can be used on the right side of an assignment operator. This
includes the assignment statement just shown. The following is perfectly legal in C++:

y =x=a+b;

|7O

Day 4

This line is evaluated in the following order:
Addatob.
Assign the result of the expression a + b to x.
Assign the result of the assignment expression x =a+ b toy.

If a, b, x, and y are all integers, and if a has the value 9 and b has the value 7, both x and
y will be assigned the value 16. This is illustrated in Listing 4.1.

LisTING 4.1 Evaluating Complex Expressions

1 #include <iostream>

2 int main()

CHE

4: using std::cout;

5: using std::endl;

6.

7 int a=0, b=0, x=0, y=35;

8: cout << "a: " << a << " b: " << by

9: cout << " x: " << x << " y: " <<y << endl;
10: a=29;

11: b =7;

12: y = X = atb;

13: cout << "a: " << a << " b: " << by

14: cout << " x: " << x << " y: " <<y << endl;
15: return 0;

16: }

a: 0 b:
OuTPUT NS

- On line 7, the four variables are declared and initialized. Their values are printed

ANALYSIS

on lines 8 and 9. On line 10, a is assigned the value 9. On line 11, b is assigned
the value 7. On line 12, the values of a and b are summed and the result is assigned to x.
This expression (x = a+b) evaluates to a value (the sum of a + b), and that value is, in
turn, assigned to y. On lines 13 and 14, these results are confirmed by printing out the
values of the four variables.

Working with Operators

An operator is a symbol that causes the compiler to take an action. Operators act on
operands, and in C++ any expression can be an operand. In C++, several categories of
operators exist. The first two categories of operators that you will learn about are

Creating Expressions and Statements

71|

* Assignment operators

* Mathematical operators

Assignment Operators

You saw the assignment operator (=) earlier. This operator causes the operand on the left
side of the assignment operator to have its value changed to the value of the expression
on the right side of the assignment operator. The expression

X

=a+ b;

assigns the value that is the result of adding a and b to the operand x.

|-values and r-values

An operand that legally can be on the left side of an assignment operator is called an
I-value. That which can be on the right side is called (you guessed it) an r-value.

You should note that all I-values are r-values, but not all r-values are |-values. An example
of an r-value that is not an |-value is a literal. Thus, you can write

X = 5;
but you cannot write
5 = Xj

x can be an I-value or an r-value, 5 can only be an r-value.

NOTE

Constants are r-values. Because they cannot have their values changed, they
are not allowed to be on the left side of the assignment operator, which
means they can't be Il-values.

Mathematical Operators

A second category of operators is the mathematical operators. Five mathematical opera-
tors are addition (+), subtraction (-), multiplication (*), division (/), and modulus (%).

Addition and subtraction work as you would expect: Two numbers separated by the plus

or minus sign are added or subtracted. Multiplication works in the same manner; how-
ever, the operator you use to do multiplication is an asterisk (*). Division is done using a
forward slash operator. The following are examples of expressions using each of these
operators. In each case, the result is assigned to the variable result. The comments to the
right show what the value of result would be

|72

Day 4

result
result
result
result

56 + 32 // result = 88
12 - 10 // result = 2
21 | 7 // result = 3
12 * 4 /] result = 48

Subtraction Troubles

Subtraction with unsigned integers can lead to surprising results if the result is a nega-
tive number. You saw something much like this yesterday, when variable overflow was
described. Listing 4.2 shows what happens when you subtract a large unsigned number
from a small unsigned number.

LisTING 4.2 A Demonstration of Subtraction and Integer Overflow

ONOO O~ WD =

// Listing 4.2 - demonstrates subtraction and
// integer overflow
#include <iostream>

int main()

{

using std::cout;
using std::endl;

unsigned int difference;
unsigned int bigNumber = 100;
unsigned int smallNumber = 50;

difference = bigNumber - smallNumber;
cout << "Difference is: " << difference;

difference = smallNumber - bigNumber;
cout << "\nNow difference is: " << difference <<endl;
return 0;

OuTPUT

Difference is: 50
Now difference is: 4294967246

The subtraction operator is invoked for the first time on line 14, and the result is
printed on line 15, much as you might expect. The subtraction operator is called
again on line 17, but this time a large unsigned number is subtracted from a small
unsigned number. The result would be negative, but because it is evaluated (and printed)
as an unsigned number, the result is an overflow, as described yesterday. This topic is
reviewed in detail in Appendix C, “Operator Precedence.”

Creating Expressions and Statements 73 |

Integer Division and Modulus

Integer division is the division you learned when you were in elementary school. When
you divide 21 by 4 (21 / 4), and you are doing integer division, the answer is 5 (with a
remainder).

The fifth mathematical operator might be new to you. The modulus operator (%) tells you
the remainder after an integer division. To get the remainder of 21 divided by 4, you take
21 modulus 4 (21 % 4). In this case, the result is 1.

Finding the modulus can be very useful. For example, you might want to print a state-
ment on every 10th action. Any number whose value is @ when you modulus 10 with that
number is an exact multiple of 10. Thus 1 % 10is 1, 2 % 10 is 2, and so forth, until 10
% 10, whose result is 0. 11 % 10 is back to 1, and this pattern continues until the next
multiple of 10, which is 20. 20%10 = 0 again. You’ll use this technique when looping is
discussed on Day 7, “More on Program Flow.”

FAQ
When | divide 5/3, | get 1. What is going wrong?
Answer: If you divide one integer by another, you get an integer as a result.

Thus, 5/3 is 1. (The actual answer is 1 with a remainder of 2. To get the remainder, try
5%3, whose value is 2.)

To get a fractional return value, you must use floating-point numbers (type float,
double, or long double).

5.0/ 3.0 gives you a fractional answer: 1.66667.

If either the divisor or the dividend is a floating point, the compiler generates a floating-
point quotient. However, if this is assigned to an |-value that is an integer, the value is
once again truncated.

Combining the Assignment and
Mathematical Operators

It is not uncommon to want to add a value to a variable and then to assign the result back
into the same variable. If you have a variable myAge and you want to increase the value
stored in it by two, you can write

int myAge = 5;

int temp;

temp = myAge + 2; // add 5 + 2 and put it in temp
myAge = temp; /] put it back in myAge

|74

Day 4

The first two lines create the myAge variable and a temporary variable. As you can see in
the third line, the value in myAge has two added to it. The resulting value is assigned to
temp. In the next line, this value is then placed back into myAge, thus updating it.

This method, however, is terribly convoluted and wasteful. In C++, you can put the same
variable on both sides of the assignment operator; thus, the preceding becomes

myAge = myAge + 2;

which is much clearer and much better. In algebra, this expression would be meaning-
less, but in C++ it is read as “add two to the value in myAge and assign the result to
myAge.”

Even simpler to write, but perhaps a bit harder to read is
myAge += 2;

This line is using the self-assigned addition operator (+=). The self-assigned addition
operator adds the r-value to the 1-value and then reassigns the result into the I-value. This
operator is pronounced “plus-equals.” The statement is read “myAge plus-equals two.” If
myAge had the value 24 to start, it would have 26 after this statement.

Self-assigned subtraction (-=), division (/=), multiplication (*=), and modulus (%=) opera-
tors exist as well.

Incrementing and Decrementing

The most common value to add (or subtract) and then reassign into a variable is 1. In
C++, increasing a value by 1 is called incrementing, and decreasing by 1 is called decre-
menting. Special operators are provided in C++ to perform these actions.

The increment operator (++) increases the value of the variable by 1, and the decrement
operator (--) decreases it by 1. Thus, if you have a variable, Counter, and you want to
increment it, you would use the following statement:

counter++; // Start with Counter and increment it.
This statement is equivalent to the more verbose statement

Counter = Counter + 1;

which is also equivalent to the moderately verbose statement

Counter += 1;

Creating Expressions and Statements 75|

NOTE As you might have guessed, C++ got its name by applying the increment
operator to the name of its predecessor language: C. The idea is that C++ is
an incremental improvement over C.

Prefixing Versus Postfixing

Both the increment operator (++) and the decrement operator(--) come in two varieties:
prefix and postfix. The prefix variety is written before the variable name (++myAge); the
postfix variety is written after the variable name (myAge++).

In a simple statement, it doesn’t matter which you use, but in a complex statement when
you are incrementing (or decrementing) a variable and then assigning the result to
another variable, it matters very much.

The prefix operator is evaluated before the assignment; the postfix is evaluated after the
assignment. The semantics of prefix is this: Increment the value in the variable and then
fetch or use it. The semantics of postfix is different: Fetch or use the value and then
increment the original variable.

This can be confusing at first, but if x is an integer whose value is 5 and using a prefix
increment operator you write

int a = ++x;

you have told the compiler to increment x (making it 6) and then fetch that value and
assign it to a. Thus, a is now 6 and x is now 6.

If, after doing this, you use the postfix operator to write
int b = xt++;

you have now told the compiler to fetch the value in x (6) and assign it to b, and then go
back and increment x. Thus, b is now 6, but x is now 7. Listing 4.3 shows the use and
implications of both types.

LisTING 4.3 A Demonstration of Prefix and Postfix Operators

/] Listing 4.3 - demonstrates use of
/] prefix and postfix increment and
// decrement operators

#include <iostream>

int main()

{

using std::cout;

No o~ wnNn =

| 76 Day 4

LisTING 4.3 continued

8:

9: int myAge = 39; // initialize two integers
10: int yourAge = 39;

11: cout << "I am: " << myAge << " years old.\n";

12: cout << "You are: " << yourAge << " years old\n";
13: myAge++; // postfix increment

14: ++yourAge; /] prefix increment

15: cout << "One year passes...\n";

16: cout << "I am: " << myAge << " years old.\n";

17: cout << "You are: " << yourAge << " years old\n";
18: cout << "Another year passes\n";

19: cout << "I am: " << myAge++ << " years old.\n";
20: cout << "You are: " << ++yourAge << " years old\n";
21: cout << "Let's print it again.\n";

22: cout << "I am: " << myAge << " years old.\n";

23: cout << "You are: " << yourAge << " years old\n";
24: return 0;

25: }

I am 39 years old
You are 39 years old

One year passes

I am 40 years old

You are 40 years old

Another year passes

I am 40 years old

You are 41 years old

Let's print it again

I am 41 years old

You are 41 years old

- On lines 9 and 10, two integer variables are declared, and each is initialized with
ANALYSIS . . .
the value 39. Their values are printed on lines 11 and 12.

On line 13, myAge is incremented using the postfix increment operator, and on line 14,
yourAge is incremented using the prefix increment operator. The results are printed on
lines 16 and 17, and they are identical (both 40).

On line 19, myAge is incremented as part of the printing statement, using the postfix
increment operator. Because it is postfix, the increment happens after the printing, and so
the value 40 is printed again, and then the myAge variable is incremented. In contrast, on
line 20, yourAge is incremented using the prefix increment operator. Thus, it is incre-
mented before being printed, and the value displays as 41.

Finally, on lines 22 and 23, the values are printed again. Because the increment statement
has completed, the value in myAge is now 41, as is the value in yourAge.

Creating Expressions and Statements 77 |

Understanding Operator Precedence
In the complex statement
Xx=5+3 * 8;
which is performed first, the addition or the multiplication? If the addition is performed

first, the answer is 8 * 8, or 64. If the multiplication is performed first, the answer is 5 +
24, or 29.

The C++ standard does not leave the order random. Rather, every operator has a prece-
dence value, and the complete list is shown in Appendix C. Multiplication has higher
precedence than addition; thus, the value of the expression is 29.

When two mathematical operators have the same precedence, they are performed in left-
to-right order. Thus,

X=5+3+8%9+6*4;

is evaluated multiplication first, left to right. Thus, 8*9 = 72, and 6%4 = 24. Now the
expression is essentially

X =5+ 3+ 72 + 24
Now, the addition, left to right, is 5 + 3 = 8; 8 + 72 = 80; 80 + 24 = 104.

Be careful with this. Some operators, such as assignment, are evaluated in right-to-left
order!

In any case, what if the precedence order doesn’t meet your needs? Consider the
expression

TotalSeconds = NumMinutesToThink + NumMinutesToType * 60

In this expression, you do not want to multiply the NumMinutesToType variable by 60 and
then add it to NumMinutesToThink. You want to add the two variables to get the total
number of minutes, and then you want to multiply that number by 60 to get the total
seconds.

You use parentheses to change the precedence order. Items in parentheses are evaluated
at a higher precedence than any of the mathematical operators. Thus, the preceding
example should be written as:

TotalSeconds = (NumMinutesToThink + NumMinutesToType) * 60

| 78 Day 4

Nesting Parentheses

For complex expressions, you might need to nest parentheses one within another. For
example, you might need to compute the total seconds and then compute the total num-
ber of people who are involved before multiplying seconds times people:

TotalPersonSeconds = (((NumMinutesToThink + NumMinutesToType) * 60) *
(PeopleInTheOffice + PeopleOnVacation))

This complicated expression is read from the inside out. First, NumMinutesToThink is
added to NumMinutesToType because these are in the innermost parentheses. Then, this
sum is multiplied by 60. Next, PeopleInTheOffice is added to PeopleOnVacation.
Finally, the total number of people found is multiplied by the total number of seconds.

This example raises an important related issue. This expression is easy for a computer to
understand, but very difficult for a human to read, understand, or modify. Here is the
same expression rewritten, using some temporary integer variables:

TotalMinutes = NumMinutesToThink + NumMinutesToType;

TotalSeconds = TotalMinutes * 60;

TotalPeople = PeopleInTheOffice + PeopleOnVacation;
TotalPersonSeconds = TotalPeople * TotalSeconds;

This example takes longer to write and uses more temporary variables than the preceding
example, but it is far easier to understand. If you add a comment at the top to explain
what this code does and change the 60 to a symbolic constant, you will have code that is
easy to understand and maintain.

b

DO remember that expressions have a DON'T nest too deeply because the
value. expression becomes hard to understand
DO use the prefix operator (++variable) and maintain.

to increment or decrement the variable DON'T confuse the postfix operator with
before it is used in the expression. the prefix operator.

DO use the postfix operator (variable++)
to increment or decrement the variable
after it is used.

DO use parentheses to change the order
of precedence.

Creating Expressions and Statements 79|

The Nature of Truth

Every expression can be evaluated for its truth or falsity. Expressions that evaluate math-
ematically to zero return false; all others return true.

In previous versions of C++, all truth and falsity was represented by integers, but the
ANSI standard introduced the type bool. A bool can only have one of two values: false
or true.

NOTE Many compilers previously offered a bool type, which was represented inter-
nally as a long int and, thus, had a size of four bytes. Now, ANSI-compliant
compilers often provide a one-byte bool.

Evaluating with the Relational Operators

The relational operators are used to compare two numbers to determine whether they are
equal or if one is greater or less than the other. Every relational statement evaluates to
either true or false. The relational operators are presented later, in Table 4.1.

NOTE All relational operators return a value of type bool, that is either true or
false. In previous versions of C++, these operators returned either 0 for
false or a nonzero value (usually 1) for true.

If the integer variable myAge has the value 45, and the integer variable yourAge has the
value 50, you can determine whether they are equal by using the relational “equals”
operator (==):

myAge == yourAge; // is the value in myAge the same as in yourAge?

This expression evaluates to false because the variables are not equal. You can check to
see if myAge is less than yourAge using the expression,

myAge < yourAge; // is myAge less than yourAge?

which evaluates to true because 45 is less than 50.

CAUTION Many novice C++ programmers confuse the assignment operator (=) with
the equals operator (==). This can create a nasty bug in your program.

|80

Day 4

The six relational operators are equals (==), less than (<), greater than (>), less than or
equal to (<=), greater than or equal to (>=), and not equals (!=). Table 4.1 shows each
relational operator and a sample code use.

TABLE 4.1 The Relational Operators

Name Operator Sample Evaluates
Equals == 100 == 50; false
50 == 50; true
Not equals 1= 100 !'=50; true
50 1= 50; false
Greater than > 100 > 50; true
50 > 50; false
Greater than or equal to >= 100 >= 50; true
50 >= 50; true
Less than < 100 < 50; false
50 < 50; false
Less than or equal to <= 100 <= 50; false
50 <= 50; true
Do
DO remember that relational operators DON'T confuse the assignment operator
return the value true or false. (=) with the equals relational operator

(==). This is one of the most common C++
programming mistakes—be on guard
for it.

The if Statement

Normally, your program flows along line-by-line in the order in which it appears in your
source code. The if statement enables you to test for a condition (such as whether two
variables are equal) and branch to different parts of your code, depending on the result.

The simplest form of an if statement is the following:

if (expression)
statement;

Creating Expressions and Statements 81 |

The expression in the parentheses can be any expression, but it usually contains one of
the relational expressions. If the expression has the value false, the statement is skipped.
If it evaluates true, the statement is executed. Consider the following example:

if (bigNumber > smallNumber)
bigNumber = smallNumber;

This code compares bigNumber and smallNumber. If bigNumber is larger, the second line
sets its value to the value of smallNumber. If bigNumber is not larger than smallNumber,
the statement is skipped.

Because a block of statements surrounded by braces is equivalent to a single statement,
the branch can be quite large and powerful:

if (expression)

{
statement1;
statement2;
statement3;
}

Here’s a simple example of this usage:

if (bigNumber > smallNumber)

{
bigNumber = smallNumber;
std::cout << "bigNumber: " << bigNumber << "\n";
std::cout << "smallNumber: " << smallNumber << "\n";
}

This time, if bigNumber is larger than smallNumber, not only is it set to the value of
smallNumber, but an informational message is printed. Listing 4.4 shows a more detailed
example of branching based on relational operators.

LisTiNnG 4.4 A Demonstration of Branching Based on Relational Operators

1: // Listing 4.4 - demonstrates if statement
2: // used with relational operators

3: #include <iostream>

4: int main()

5: {

6: using std::cout;

7: using std::cin;

8:

9: int MetsScore, YankeesScore;
10: cout << "Enter the score for the Mets: ";
11: cin >> MetsScore;
12:
13: cout << "\nEnter the score for the Yankees: ";

| 82 Day 4

LisTING 4.4 continued

14: cin >> YankeesScore;

15:

16: cout << "\n";

17:

18: if (MetsScore > YankeesScore)

19: cout << "Let's Go Mets!\n";

20:

21: if (MetsScore < YankeesScore)

22: {

23: cout << "Go Yankees!\n";

24: }

25:

26: if (MetsScore == YankeesScore)

27: {

28: cout << "A tie? Naah, can't be.\n";
29: cout << "Give me the real score for the Yanks: ";
30: cin >> YankeesScore;

31:

32: if (MetsScore > YankeesScore)

33: cout << "Knew it! Let's Go Mets!";
34:

35: if (YankeesScore > MetsScore)

36: cout << "Knew it! Go Yanks!";
37:

38: if (YankeesScore == MetsScore)

39: cout << "Wow, it really was a tie!";
40: }

41:

42: cout << "\nThanks for telling me.\n";
43: return 0;

44: }

Enter the score for the Mets: 10
OurtpuTt

Enter the score for the Yankees: 10

A tie? Naah, can't be

Give me the real score for the Yanks: 8
Knew it! Let's Go Mets!

Thanks for telling me.

This program asks for the user to input scores for two baseball teams; the scores
ANALYSIS

are stored in integer variables, MetsScore and YankeesScore. The variables are
compared in the if statement on lines 18, 21, and 26.

If one score is higher than the other, an informational message is printed. If the scores
are equal, the block of code that begins on line 27 and ends on line 40 is entered. The
second score is requested again, and then the scores are compared again.

Creating Expressions and Statements

Note that if the initial Yankees’ score is higher than the Mets score, the if statement on
line 18 evaluates as false, and line 19 is not invoked. The test on line 21 evaluates as

true, and the statement on line 23 is invoked. Then, the if statement on line 26 is tested

and this is false (if line 18 is true). Thus, the program skips the entire block, falling
through to line 41.

This example illustrates that getting a true result in one if statement does not stop other

if statements from being tested.

Note that the action for the first two if statements is one line (printing “Let’s Go Mets!”

or “Go Yankees!”). In the first example (on line 19), this line is not in braces; a single line

block doesn’t need them. The braces are legal, however, and are used on lines 22-24.

Avoiding Common Errors with if Statements
Many novice C++ programmers inadvertently put a semicolon after their if statements:

if (SomeValue < 10); // Oops! Notice the semicolon!
SomeValue = 10;

What was intended here was to test whether Somevalue is less than 10, and if so, to set it
to 10, making 10 the minimum value for Somevalue. Running this code snippet shows that
SomeValue is always set to 10! Why? The if statement terminates with the semicolon (the

do-nothing operator).

Remember that indentation has no meaning to the compiler. This snippet could more
accurately have been written as
if (SomeValue < 10) // test

; // do nothing
SomeValue = 10; // assign

Removing the semicolon makes the final line part of the if statement and makes this
code do what was intended.

To minimize the chances of this problem, you can always write your if statements with
braces, even when the body of the if statement is only one line:

if (SomeValue < 10)

{

SomeValue = 10;
s

Indentation Styles

Listing 4.4 shows one style of indenting if statements. Nothing is more likely to create a

religious war, however, than to ask a group of programmers what is the best style for
brace alignment. Although dozens of variations are possible, the following appear to be
the most popular three:

| 84 Day 4

¢ Putting the initial brace after the condition and aligning the closing brace under the
if to close the statement block:

if (expression){
statements

}

e Aligning the braces under the if and indenting the statements:
if (expression)

{

statements

}

* Indenting the braces and statements:

if (expression)
{

statements
}

This book uses the middle alternative because it is easy to understand where blocks of
statements begin and end if the braces line up with each other and with the condition
being tested. Again, it doesn’t matter which style you choose, so long as you are consis-
tent with it.

The else Statement

Often, your program needs to take one branch if your condition is true, or another if it is
false. In Listing 4.4, you wanted to print one message (Let's Go Mets!) if the first test
(MetsScore > YankeesScore) evaluated true, and another message (Go Yankees!) if it
evaluated false.

The method shown so far—testing first one condition and then the other—works fine but
is a bit cumbersome. The keyword else can make for far more readable code:

if (expression)
statement;
else
statement;

Listing 4.5 demonstrates the use of the keyword else.

LisTiNnG 4.5 Demonstrating the else Keyword

/] Listing 4.5 - demonstrates if statement
// with else clause

#include <iostream>

int main()

{

g s wnNn =

Creating Expressions and Statements 85|

LisTING 4.5 continued

6: using std::cout;

7: using std::cin;

8:

9: int firstNumber, secondNumber;

10: cout << "Please enter a big number: ";

11: cin >> firstNumber;

12: cout << "\nPlease enter a smaller number: ";
13: cin >> secondNumber;

14: if (firstNumber > secondNumber)

15: cout << "\nThanks!\n";

16: else

17: cout << "\nOops. The first number is not bigger!";
18:

19: return 0;

20: }

Please enter a big number: 10
Output

Please enter a smaller number: 12
Oops. The first number is not bigger!

The if statement on line 14 is evaluated. If the condition is true, the statement on
line 15 is run and then program flow goes to line 18 (after the else statement). If
the condition on line 14 evaluates to false, control goes to the else clause and so the
statement on line 17 is run. If the else clause on line 16 was removed, the statement on
line 17 would run regardless of whether the if statement was true.

Remember, the if statement ends after line 15. If the else was not there, line 17 would
just be the next line in the program. You should also note that either or both of the if and
the else statements could be replaced with a block of code in braces.

The if Statement
The syntax for the if statement is as follows:
Form 1

if (expression)
statement;
next_statement;

If the expression is evaluated as true, the statement is executed and the program contin-
ues with the next_statement. If the expression is not true, the statement is ignored and
the program jumps to the next_statement.

Remember that the statement can be a single statement ending with a semicolon or a
block enclosed in braces.

| 86 Day 4

Form 2
if (expression)
statement1;

else
statement2;
next_statement;

If the expression evaluates true, statementi is executed; otherwise, statement? is exe-
cuted. Afterward, the program continues with the next_statement.

Example 1

Example
if (SomeValue < 10)
cout << "SomeValue is less than 10");
else
cout << "SomeValue is not less than 10!");
cout << "Done." << endl;

Advanced if Statements

It is worth noting that any statement can be used in an if or else clause, even another if
or else statement. Thus, you might see complex if statements in the following form:

if (expressioni)

{
if (expression2)
statementi;
else
{
if (expression3)
statement2;
else
statement3;
}
}
else
statement4;

This cumbersome if statement says, “If expression1 is true and expression2 is true,
execute statementi. If expressiont is true but expression2 is not true, then if expres-
siong is true execute statement2. If expressioni is true but expression2 and expres-
siong are false, then execute statement3. Finally, if expressioni is not true, execute
statement4.” As you can see, complex if statements can be confusing!

Listing 4.6 gives an example of one such complex if statement.

Creating Expressions and Statements 87 |

LisTING 4.6 A Complex, Nested if Statement

1: // Listing 4.6 - a complex nested

2: /] if statement

3: #include <iostream>

4: 1int main()

5: {

6: /] Ask for two numbers

7: /] Assign the numbers to bigNumber and littleNumber
8: /] If bigNumber is bigger than littleNumber,

9: // see if they are evenly divisible

10: /] If they are, see if they are the same number
11

12: using namespace std;

13:

14: int firstNumber, secondNumber;

15: cout << "Enter two numbers.\nFirst: ";

16: cin >> firstNumber;

17: cout << "\nSecond: ";

18: cin >> secondNumber;

19: cout << "\n\n";

20:
21: if (firstNumber >= secondNumber)
22: {

23: if ((firstNumber % secondNumber) == @) // evenly divisible?
24:
25: if (firstNumber == secondNumber)

26: cout << "They are the same!\n";
27: else
28: cout << "They are evenly divisible!\n";
29: }
30: else
31: cout << "They are not evenly divisible!\n";
32: }
33: else
34: cout << "Hey! The second one is larger!\n";
35: return 0;
36: }

o Enter two numbers.
UTPUT First: 10

Second: 2
They are evenly divisible!
FRANER Two numbers are prompted for one at a time, and then compared. The first if
statement, on line 21, checks to ensure that the first number is greater than or
equal to the second. If not, the else clause on line 33 is executed.

| 88 Day 4

If the first if is true, the block of code beginning on line 22 is executed, and a second if
statement is tested on line 23. This checks to see whether the first number divided by the
second number yields no remainder. If so, the numbers are either evenly divisible or
equal. The if statement on line 25 checks for equality and displays the appropriate mes-
sage either way.

If the if statement on line 23 fails (evaluates to false), then the else statement on line 30
is executed.

Using Braces in Nested if Statements

Although it is legal to leave out the braces on if statements that are only a single state-
ment, and it is legal to nest if statements, doing so can cause enormous confusion. The
following is perfectly legal in C++, although it looks somewhat confusing:

if (x > y) // if x is bigger than y
if (x < z) // and if x is smaller than z
X = Y; /] set x to the value in vy
else // otherwise, if x isn't less than z
X = z; // set x to the value in z
else /1 otherwise if x isn't greater than y
y = X; // set y to the value in x

Remember, whitespace and indentation are a convenience for the programmer; they make
no difference to the compiler. It is easy to confuse the logic and inadvertently assign an
else statement to the wrong if statement. Listing 4.7 illustrates this problem.

LisTING 4.7 A Demonstration of Why Braces Help Clarify Which else Statement Goes
with Which if Statement

1: // Listing 4.7 - demonstrates why braces

2: // are important in nested if statements

3: #include <iostream>

4: int main()

5: {

6: int x;

7: std::cout << "Enter a number less than 10 or greater than 100: ";
8: std::cin >> x;

9: std::cout << "\n";

10:

11: if (x >= 10)

12: if (x > 100)

13: std::cout << "More than 100, Thanks!\n";

14: else // not the else intended!
15: std::cout << "Less than 10, Thanks!\n";

16:

17: return 0;

Creating Expressions and Statements 89|

Enter a number less than 10 or greater than 100: 20
Ourtput

Less than 10, Thanks!

- The programmer intended to ask for a number less than 10 or greater than 100,
ANALYSIS .
check for the correct value, and then print a thank-you note.

When the if statement on line 11 evaluates true, the following statement (line 12) is exe-
cuted. In this case, line 12 executes when the number entered is greater than 10. Line 12
contains an if statement also. This if statement evaluates true if the number entered is
greater than 100. If the number is greater than 100, the statement on line 13 is executed,
thus printing out an appropriate message.

If the number entered is less than 10, the if statement on line 11 evaluates false.
Program control goes to the next line following the if statement, in this case line 16. If
you enter a number less than 10, the output is as follows:

Enter a number less than 10 or greater than 100: 9

As you can see, there was no message printed. The else clause on line 14 was clearly
intended to be attached to the if statement on line 11, and thus is indented accordingly.
Unfortunately, the else statement is really attached to the if statement on line 12, and
thus this program has a subtle bug.

It is a subtle bug because the compiler will not complain. This is a legal C++ program,
but it just doesn’t do what was intended. Further, most of the times the programmer tests
this program, it will appear to work. As long as a number that is greater than 100 is
entered, the program will seem to work just fine. However, if you enter a number from
11 to 99, you’ll see that there is obviously a problem!

Listing 4.8 fixes the problem by putting in the necessary braces.

LisTING 4.8 A Demonstration of the Proper Use of Braces with an if Statement

1: // Listing 4.8 - demonstrates proper use of braces
2: // in nested if statements

3: #include <iostream>

4: int main()

5: {

6: int x;

7: std::cout << "Enter a number less than 10 or greater than 100: ";
8: std::cin >> x;

9: std::cout << "\n";

10:

11: if (x >= 10)

12: {

13: if (x > 100)

|90 Day 4

LisTING 4.8 continued
14: std::cout << "More than 100, Thanks!\n";
15: }
16: else /] fixed!
17: std::cout << "Less than 10, Thanks!\n";
18: return 0;
19: }

o Enter a number less than 10 or greater than 100: 9
UTPUT Less than 10, Thanks!

FRANER The braces on lines 12 and 15 make everything between them into one statement,
and now the else on line 16 applies to the if on line 11, as intended.

If the user types 9, the if statement on line 11 is true; however, the if statement on line
13 is false, so nothing would be printed. It would be better if the programmer put another
else clause after line 14 so that errors would be caught and a message printed.

TIP You can minimize many of the problems that come with if...else state-
ments by always using braces for the statements in the if and else clauses,
even when only one statement follows the condition.

if (SomeValue < 10)

{
SomeValue = 10;
}
else
{
SomeValue = 25;
H
NOTE The programs shown in this book are written to demonstrate the particular

issues being discussed. They are kept intentionally simple; no attempt is
made to “bulletproof” the code to protect against user error. Ideally, in
professional-quality code, every possible user error is anticipated and han-
dled gracefully.

Creating Expressions and Statements 91 |

Using the Logical Operators

Often, you want to ask more than one relational question at a time. “Is it true that x is
greater than y, and also true that y is greater than z?”” A program might need to determine
that both of these conditions are true—or that some other set of conditions is true—in
order to take an action.

Imagine a sophisticated alarm system that has this logic: “If the door alarm sounds AND
it is after 6:00 p.m. AND it is NOT a holiday, OR if it is a weekend, then call the police.”
C++’s three logical operators are used to make this kind of evaluation. These operators
are listed in Table 4.2.

TABLE 4.2 The Logical Operators

Operator Symbol Example

AND && expressioni && expression2
OR || expressioni || expression2
NOT ! lexpression

The Logical AND Operator

A logical AND statement uses the AND operator to connect and evaluates two expressions.

If both expressions are true, the logical AND statement is true as well. If it is true that you
are hungry, AND it is true that you have money, THEN it is true that you can buy lunch.
Thus,

if ((x == 5) & (y == 5))

evaluates true if both x and y are equal to 5, and it evaluates false if either one is not
equal to 5. Note that both sides must be true for the entire expression to be true.

Note that the logical AND is two && symbols. A single & symbol is a different operator,
which is discussed on Day 21, “What’s Next.”

The Logical 0R Operator

A logical OR statement evaluates two expressions. If either one is true, the expression is
true. If you have money OR you have a credit card, you can pay the bill. You don’t need
both money and a credit card; you need only one, although having both is fine as well.
Thus,

if ((x==5) [| (y==25))

evaluates true if either x or y is equal to 5, or if both are equal to 5.

|92

Day 4

Note that the logical OR is two | | symbols. A single | symbol is a different operator,
which is discussed on Day 21.

The Logical NOT Operator

A logical NOT statement evaluates true if the expression being tested is false. Again, if the
expression being tested is false, the value of the test is true! Thus,

if (!(x ==5))
is true only if x is not equal to 5. This is the same as writing

if (x 1= 5)

Short Circuit Evaluation

When the compiler is evaluating an AND statement, such as
if ((x == 5) & (y == 5))

the compiler evaluates the truth of the first statement (x==5), and if this fails (that is, if x
is not equal to 5), the compiler does NOT go on to evaluate the truth or falsity of the sec-
ond statement (y == 5) because AND requires both to be true.

Similarly, if the compiler is evaluating an OR statement, such as

if ((x ==5) || (y ==5))
if the first statement is true (x == 5), the compiler never evaluates the second statement
(y == 5) because the truth of either is sufficient in an OR statement.

Although this might not seem important, consider the following example:
if (((x==5)] (++ty ==3))

If x is not equal to 5, then (++y == 3) is not evaluated. If you are counting on y to be
incremented regardless, it might not happen.

Relational Precedence

Like all C++ expressions, the use of relational operators and logical operators each return
a value: true or false. Like all expressions, they also have a precedence order (see
Appendix C) that determines which relations are evaluated first. This fact is important
when determining the value of statements such as the following:

if (x>58& y>5 || z>5)

Creating Expressions and Statements 93 |

It might be that the programmer wanted this expression to evaluate true if both x and y
are greater than 5 or if z is greater than 5. On the other hand, the programmer might have
wanted this expression to evaluate true only if x is greater than 5 and if it is also true that
either y is greater than 5 or z is greater than 5.

If x is 3, and y and z are both 10, the first interpretation is true (z is greater than 5, so
ignore x and y), but the second is false (it isn’t true that x is greater than 5, and thus it
doesn’t matter what is on the right side of the && symbol because both sides must be
true).

Although precedence determines which relation is evaluated first, parentheses can both
change the order and make the statement clearer:

if ((x>5) && (y>5]] z>5))

Using the values from earlier, this statement is false. Because it is not true that x is
greater than 5, the left side of the AND statement fails, and thus the entire statement is
false. Remember that an AND statement requires that both sides be true—something isn’t
both “good tasting” AND “good for you” if it isn’t good tasting.

TIP It is often a good idea to use extra parentheses to clarify what you want to
group. Remember, the goal is to write programs that work and that are easy
to read and to understand. Using parentheses help to clarify your intent and
avoid errors that come from misunderstanding operator precedence.

More About Truth and Falsehood

In C++, zero evaluates to false, and all other values evaluate to true. Because an expres-
sion always has a value, many C++ programmers take advantage of this feature in their
if statements. A statement such as
if (x) // if x 1is true (nonzero)

X = 0;
can be read as “If x has a nonzero value, set it to 0.” This is a bit of a cheat; it would be
clearer if written
if (x 1= 0) /] if x is not zero

X =0;
Both statements are legal, but the latter is clearer. It is good programming practice to
reserve the former method for true tests of logic, rather than for testing for nonzero
values.

| 94 Day 4

These two statements also are equivalent:

if (!x) // if x is false (zero)
if (x == 0) /] if x 1is zero

The second statement, however, is somewhat easier to understand and is more explicit if
you are testing for the mathematical value of x rather than for its logical state.

o

DO put parentheses around your logical DON'T use if (x) as a synonym for
tests to make them clearer and to make if(x != 0); the latter is clearer.
the precedence explicit. DON'T use if(!x) as a synonym for
DO use braces in nested if statements to if(x == 0); the latter is clearer.
make the else statements clearer and to

avoid bugs.

The Conditional (Ternary) Operator

The conditional operator (?:) is C++’s only ternary operator; that is, it is the only opera-
tor to take three terms.

The conditional operator takes three expressions and returns a value:
(expressionl) ? (expression2) : (expression3)

This line is read as “If expression1 is true, return the value of expression2; otherwise,
return the value of expression3.” Typically, this value is assigned to a variable. Listing
4.9 shows an if statement rewritten using the conditional operator.

LisTING 4.9 A Demonstration of the Conditional Operator

1: // Listing 4.9 - demonstrates the conditional operator
2: /]

3: #include <iostream>

4: int main()

5: {

6: using namespace std;

7:

8: int x, y, z;

9: cout << "Enter two numbers.\n";
10: cout << "First: ";

11: cin >> x;

12: cout << "\nSecond: ";

13: cin >> vy;

14: cout << "\n";

Creating Expressions and Statements 95|

LisTING 4.9 continued

15:
16: if (x > y)
17: Z = X;
18: else
19: z=Y;
20:
21: cout << "After if test, z: " << z;
22: cout << "\n";
23:
24: z= (xX>y)?Xx:Yy;
25:
26: cout << "After conditional test, z: " << z;
27: cout << "\n";
28: return 0;
29: }
Enter two numbers.
First: 5

Second: 8

After if test, z: 8
After conditional test, z: 8

AT Three integer variables are created: x, y, and z. The first two are given values by
the user. The if statement on line 16 tests to see which is larger and assigns the
larger value to z. This value is printed on line 21.

The conditional operator on line 24 makes the same test and assigns z the larger value. It
is read like this: “If x is greater than y, return the value of x; otherwise, return the value
of y.” The value returned is assigned to z. That value is printed on line 26. As you can
see, the conditional statement is a shorter equivalent to the if...else statement.

Summary

In today’s lesson, you have learned what C++ statements and expressions are, what C++
operators do, and how C++ if statements work.

You have seen that a block of statements enclosed by a pair of braces can be used any-
where a single statement can be used.

You have learned that every expression evaluates to a value, and that value can be tested
in an if statement or by using the conditional operator. You’ve also seen how to evaluate
multiple statements using the logical operator, how to compare values using the rela-
tional operators, and how to assign values using the assignment operator.

|96

Day 4

You have explored operator precedence. And you have seen how parentheses can be used
to change the precedence and to make precedence explicit, and thus easier to manage.

Q&A
Q

A

Q
A

Q
A

Why use unnecessary parentheses when precedence will determine which
operators are acted on first?

It is true that the compiler will know the precedence and that a programmer can
look up the precedence order. Using parentheses, however, makes your code easier
to understand, and therefore easier to maintain.

If the relational operators always return true or false, why is any nonzero
value considered true?

This convention was inherited from the C language, which was frequently used for
writing low-level software, such as operating systems and real-time control soft-
ware. It is likely that this usage evolved as a shortcut for testing if all of the bits in
a mask or variable are 0.

The relational operators return true or false, but every expression returns a value,
and those values can also be evaluated in an if statement. Here’s an example:

if ((x=a+b) ==235)
This is a perfectly legal C++ statement. It evaluates to a value even if the sum of a

and b is not equal to 35. Also note that x is assigned the value that is the sum of a
and b in any case.

What effect do tabs, spaces, and new lines have on the program?

Tabs, spaces, and new lines (known as whitespace) have no effect on the program,
although judicious use of whitespace can make the program easier to read.

Are negative numbers true or false?

All nonzero numbers, positive and negative, are true.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain that you understand the answers before continuing to tomor-
row’s lesson on functions.

Creating Expressions and Statements 97 |

iz
What is an expression?
Is x =5 + 7 an expression? What is its value?
What is the value of 201 / 4?
What is the value of 201 % 4?

If myAge, a, and b are all int variables, what are their values after
myAge = 39;
a = myAge++;
b = ++myAge;

A A e =

6. What is the value of 8+2%37?
7. What is the difference between if (x = 3) and if(x == 3)?
8. Do the following values evaluate true or false?

a. 0

b. 1

d x=0

€. X == @ // assume that x has the value of 0

Exercises

1. Write a single if statement that examines two integer variables and changes the
larger to the smaller, using only one else clause.

2. Examine the following program. Imagine entering three numbers, and write what
output you expect.

1: #include <iostream>

2: using namespace std;

3: int main()

4: {

5: int a, b, c;

6: cout << "Please enter three numbers\n";
7: cout << "a: ";

8: cin >> a;

9: cout << "\nb: ";

10: cin >> by

11: cout << "\nc: ";

12: cin >> c;

13:

14: if (c = (a-b))

15: cout << "a: " << a << " minus b: " << b <<

16: _" equals c: " << c;

| 98 Day 4

17: else

18: cout << "a-b does not equal c: ";
19: return 0;

20: }

3. Enter the program from Exercise 2; compile, link, and run it. Enter the numbers
20, 10, and 50. Did you get the output you expected? Why not?

4. Examine this program and anticipate the output:

#include <iostream>
using namespace std;
int main()
{
inta=2, b=2, c;
if (¢ = (a-b))
cout << "The value of ¢ is:
return 0;

<< ¢;

© oO~NO O WN =

}

Enter, compile, link, and run the program from Exercise 4. What was the output? Why?

WEEK 1

DAY 5

Organizing into Functions

Although object-oriented programming has shifted attention from functions and
toward objects, functions nonetheless remain a central component of any pro-
gram. Global functions can exist outside of objects and classes, and member
functions (sometimes called member methods) exist within a class and do its
work.

Today, you will learn

* What a function is and what its parts are
¢ How to declare and define functions

* How to pass parameters into functions

* How to return a value from a function

You’ll start with global functions today, and tomorrow you’ll see how functions
work from within classes and objects as well.

| 100 Day 5

What Is a Function?

A function is, in effect, a subprogram that can act on data and return a value. Every C++
program has at least one function, main (). When your program starts, the main() func-

tion is called automatically. main () might call other functions, some of which might call
still others.

Because these functions are not part of an object, they are called “global”—that is, they
can be accessed from anywhere in your program. For today, you will learn about global
functions unless it is otherwise noted.

Each function has its own name, and when that name is encountered, the execution of the
program branches to the body of that function. This is referred to as calling the function.
When the function finishes (through encountering a return statement or the final brace
of the function), execution resumes on the next line of the calling function. This flow is
illustrated in Figure 5.1.

FIGURE 5.1 Program
When a program calls Main () et
. . . u
a function, execution { Statement;
switches to the func- funct (); —
. Statement _l func3

tion and then resumes func2 (): ——I F return

at the line after the Statement: < > _

function call. funca (): —_—
} Statement; return; Freturn;

—_
c
=]
Q
H

Y

=
@
Py
c
=
=}

Well-designed functions perform a single, specific, and easily understood task, identified
by the function name. Complicated tasks should be broken down into multiple functions,
and then each can be called in turn.

Functions come in two varieties: user-defined and built-in. Built-in functions are part of
your compiler package—they are supplied by the manufacturer for your use. User-
defined functions are the functions you write yourself.

Return Values, Parameters, and Arguments

As you learned on Day 2, “The Anatomy of a C++ Program,” functions can receive val-
ues and can return a value.

Organizing into Functions 101 |

When you call a function, it can do work and then send back a value as a result of that
work. This is called its refurn value, and the type of that return value must be declared.
Thus, if you write

int myFunction();

you are declaring a function called myFunction that will return an integer value. Now
consider the following declaration:

int myFunction(int someValue, float someFloat);

This declaration indicates that myFunction will still return an integer, but it will also take
two values.

When you send values into a function, these values act as variables that you can manipu-
late from within the function. The description of the values you send is called a parame-

ter list. In the previous example, the parameter list contains someValue that is a variable

of type integer and someFloat that is a variable of type float.

As you can see, a parameter describes the type of the value that will be passed into the
function when the function is called. The actual values you pass into the function are
called the arguments. Consider the following:

int thevalueReturned = myFunction(5,6.7);

Here, you see that an integer variable thevalueReturned is initialized with the value
returned by myFunction, and that the values 5 and 6.7 are passed in as arguments. The
type of the arguments must match the declared parameter types. In this case, the 5 goes
to an integer and the 6.7 goes to a float variable, so the values match.

Declaring and Defining Functions

Using functions in your program requires that you first declare the function and that you
then define the function. The declaration tells the compiler the name, return type, and
parameters of the function. The definition tells the compiler how the function works.

No function can be called from any other function if it hasn’t first been declared. A dec-
laration of a function is called a prototype.

Three ways exist to declare a function:
» Write your prototype into a file, and then use the #include directive to include it
in your program.
» Write the prototype into the file in which your function is used.

* Define the function before it is called by any other function. When you do this, the
definition acts as its own prototype.

|102

Day 5

Although you can define the function before using it, and thus avoid the necessity of cre-
ating a function prototype, this is not good programming practice for three reasons.

First, it is a bad idea to require that functions appear in a file in a particular order. Doing
so makes it hard to maintain the program when requirements change.

Second, it is possible that function A() needs to be able to call function B(), but function
B() also needs to be able to call function A() under some circumstances. It is not possi-
ble to define function A() before you define function B() and also to define function B()
before you define function A(), so at least one of them must be declared in any case.

Third, function prototypes are a good and powerful debugging technique. If your proto-
type declares that your function takes a particular set of parameters or that it returns a
particular type of value, and then your function does not match the prototype, the com-
piler can flag your error instead of waiting for it to show itself when you run the pro-
gram. This is like double-entry bookkeeping. The prototype and the definition check
each other, reducing the likelihood that a simple typo will lead to a bug in your program.

Despite this, the vast majority of programmers select the third option. This is because of
the reduction in the number of lines of code, the simplification of maintenance (changes
to the function header also require changes to the prototype), and the order of functions in
a file is usually fairly stable. At the same time, prototypes are required in some situations.

Function Prototypes

Many of the built-in functions you use will have their function prototypes already written
for you. These appear in the files you include in your program by using #include. For
functions you write yourself, you must include the prototype.

The function prototype is a statement, which means it ends with a semicolon. It consists of
the function’s return type and signature. A function signature is its name and parameter list.

The parameter list is a list of all the parameters and their types, separated by commas.
Figure 5.2 illustrates the parts of the function prototype.

FIGURE 5.2 Parameter type
Parts of a function Parameter name
prototype.
unsigned short int FindArea (int length, int width) ;
N—o—~— NV N4 N—~—~—
return type name parameters semicolon

The function prototype and the function definition must agree exactly about the return
type and signature. If they do not agree, you receive a compile-time error. Note, however,

Organizing into Functions 103 |

that the function prototype does not need to contain the names of the parameters, just
their types. A prototype that looks like this is perfectly legal:

long Area(int, int);

This prototype declares a function named Area() that returns a long and that has two
parameters, both integers. Although this is legal, it is not a good idea. Adding parameter
names makes your prototype clearer. The same function with named parameters might be

long Area(int length, int width);
It is now much more obvious what this function does and what the parameters are.

Note that all functions have a return type. If none is explicitly stated, the return type
defaults to int. Your programs will be easier to understand, however, if you explicitly
declare the return type of every function, including main().

If your function does not actually return a value, you declare its return type to be void,
as shown here:

void printNumber(int myNumber);
This declares a function called printNumber that has one integer parameter. Because

void is used as the return time, nothing is returned.

Defining the Function

The definition of a function consists of the function header and its body. The header is
like the function prototype except that the parameters must be named, and no terminating
semicolon is used.

The body of the function is a set of statements enclosed in braces. Figure 5.3 shows the

header and body of a function.

FIGURE 5.3 return type name parameters
/‘W\
The header and body

. int Area (int length, int width)
of a function.

{ - opening brace

// Statements

return (length » width);

\ keywor;\/—\<\/

return value
} - closing brace

|104

Day 5

Listing 5.1 demonstrates a program that includes a function prototype for the Area()

function.

LisTING 5.1 A Function Declaration and the Definition and Use of That Function
1: // Listing 5.1 - demonstrates the use of function prototypes
2:

3: #include <iostream>

4: 1int Area(int length, int width); //function prototype
5:

6: int main()

70 {

8: using std::cout;

9: using std::cin;

10:

11: int lengthOfYard;

12: int widthOfYard;

13: int areaOfYard;

14:

15: cout << "\nHow wide is your yard? ";
16: cin >> widthOfYard;

17: cout << "\nHow long is your yard? ";
18: cin >> lengthOfYard;

19:

20: areaOfYard= Area(lengthOfYard, widthOfYard);
21:

22: cout << "\nYour yard is ";

23: cout << areaOfYard;

24: cout << " square feet\n\n";

25: return 0;

26: }

27:

28: int Area(int len, int wid)

29: |

30: return len * wid;

31: }

OuTPUT

How wide is your yard? 100
How long is your yard? 200

Your yard is 20000 square feet

The prototype for the Area() function is on line 4. Compare the prototype with
the definition of the function on line 28. Note that the name, the return type, and

the parameter types are the same. If they were different, a compiler error would have
been generated. In fact, the only required difference is that the function prototype ends

with a

semicolon and has no body.

Organizing into Functions

Also note that the parameter names in the prototype are length and width, but the para-
meter names in the definition are len and wid. As discussed, the names in the prototype
are not used; they are there as information to the programmer. It is good programming
practice to match the prototype parameter names to the implementation parameter names,
but as this listing shows, this is not required.

The arguments are passed in to the function in the order in which the parameters are
declared and defined, but no matching of the names occurs. Had you passed in
widthOfYard, followed by lengthOfYard, the FindArea() function would have used the
value in widthOfYard for length and lengthOfYard for width.

NOTE The body of the function is always enclosed in braces, even when it consists
of only one statement, as in this case.

Execution of Functions

When you call a function, execution begins with the first statement after the opening
brace ({). Branching can be accomplished by using the if statement. (The if and other
related statements will be discussed on Day 7, “More on Program Flow.”) Functions can
also call other functions and can even call themselves (see the section “Recursion,” later
today).

When a function is done executing, control is returned to the calling function. When the
main () function finishes, control is returned to the operating system.

Determining Variable Scope

A variable has scope, which determines how long it is available to your program and
where it can be accessed. Variables declared within a block are scoped to that block; they
can be accessed only within that block’s braces and “go out of existence” when that
block ends. Global variables have global scope and are available anywhere within your
program.

Local Variables

Not only can you pass in variables to the function, but you also can declare variables
within the body of the function. Variables you declare within the body of the function are
called “local” because they exist only locally within the function itself. When the func-
tion returns, the local variables are no longer available; they are marked for destruction
by the compiler.

| 106 Day 5

Local variables are defined the same as any other variables. The parameters passed in to
the function are also considered local variables and can be used exactly as if they had
been defined within the body of the function. Listing 5.2 is an example of using parame-
ters and locally defined variables within a function.

LiSTING 5.2 The Use of Local Variables and Parameters

1: #include <iostream>

2:

3: float Convert(float);

4: int main()

5: {

6: using namespace std;

7:

8: float TempFer;

9: float TempCel;

10:

11: cout << "Please enter the temperature in Fahrenheit: ";
12: cin >> TempFer;

13: TempCel = Convert(TempFer);

14: cout << "\nHere's the temperature in Celsius: ";
15: cout << TempCel << endl;

16: return 0;

17: }

18:

19: float Convert(float TempFer)
20: |
21: float TempCel;
22: TempCel = ((TempFer - 32) * 5) / 9;
23: return TempCel;
24: }

Please enter the temperature in Fahrenheit: 212
Ourtput

Here's the temperature in Celsius: 100

Please enter the temperature in Fahrenheit: 32
Here's the temperature in Celsius: 0

Please enter the temperature in Fahrenheit: 85
Here's the temperature in Celsius: 29.4444

On lines 8 and 9, two float variables are declared, one to hold the temperature
in Fahrenheit and one to hold the temperature in degrees Celsius. The user is
prompted to enter a Fahrenheit temperature on line 11, and that value is passed to the
function Convert() on line 13.

Organizing into Functions 107 |

With the call of Convert () on line 13, execution jumps to the first line of the Convert()
function on line 21, where a local variable, also named TempCel, is declared. Note that
this local variable is not the same as the variable TempCel on line 9. This variable exists
only within the function Convert (). The value passed as a parameter, TempFer, is also
just a local copy of the variable passed in by main().

This function could have named the parameter and local variable anything else and the
program would have worked equally well. FerTemp instead of TempFer or CelTemp
instead of TempCel would be just as valid and the function would have worked the same.
You can enter these different names and recompile the program to see this work.

The local function variable TempCel is assigned the value that results from subtracting 32
from the parameter TempFer, multiplying by 5, and then dividing by 9. This value is then
returned as the return value of the function. On line 13, this return value is assigned to
the variable TempCel in the main() function. The value is printed on line 15.

The preceding output shows that the program was ran three times. The first time, the
value 212 is passed in to ensure that the boiling point of water in degrees Fahrenheit
(212) generates the correct answer in degrees Celsius (100). The second test is the freez-
ing point of water. The third test is a random number chosen to generate a fractional
result.

Local Variables Within Blocks

You can define variables anywhere within the function, not just at its top. The scope of
the variable is the block in which it is defined. Thus, if you define a variable inside a set
of braces within the function, that variable is available only within that block. Listing 5.3
illustrates this idea.

LisTING 5.3 Variables Scoped Within a Block

1: // Listing 5.3 - demonstrates variables
2: // scoped within a block

3:

4: #include <iostream>

5:

6: void myFunc();

7:

8: int main()

9: {

10: int x = 5;

11: std::cout << "\nIn main x is: " << x;
12:

13: myFunc();

| 108 Day 5

LisTING 5.3 continued

15: std::cout << "\nBack in main, x is:
16: return 0;

17: }

18:

19: void myFunc()

20: A

21: int x = 8;

22: std::cout << "\nIn myFunc, local x: " << x << std::endl;

23:

24: {

25: std::cout << "\nIn block in myFunc, x is: " << Xx;

26:

27: int x = 9;

28:

29: std::cout << "\nVery local x: " << X;

30: }

31:

32: std::cout << "\nOut of block, in myFunc, x: " << x << std::endl;
33: }

<< X;

o In main x is: 5
UTPUT iy myFunc, local x: 8
In block in myFunc, x is: 8
Very local x: 9
Out of block, in myFunc, x: 8
Back in main, x is: 5
ANALYeE This program begins with the initialization of a local variable, x, on line 10, in
main (). The printout on line 11 verifies that x was initialized with the value 5.
On line 13, MyFunc () is called.

On line 21 within MyFunc (), a local variable, also named x, is initialized with the value
8. Its value is printed on line 22.

The opening brace on line 24 starts a block. The variable x from the function is printed
again on line 25. A new variable also named x, but local to the block, is created on line
27 and initialized with the value 9. The value of this newest variable x is printed on
line 29.

The local block ends on line 30, and the variable created on line 27 goes “out of scope”
and is no longer visible.

When x is printed on line 32, it is the x that was declared on line 21 within myFunc ().
This x was unaffected by the x that was defined on line 27 in the block; its value is
still 8.

Organizing into Functions 109 |

On line 33, MyFunc () goes out of scope, and its local variable x becomes unavailable.
Execution returns to line 14. On line 15, the value of the local variable x, which was cre-
ated on line 10, is printed. It was unaffected by either of the variables defined in
MyFunc ().

Needless to say, this program would be far less confusing if these three variables were
given unique names!

Parameters Are Local Variables

The arguments passed in to the function are local to the function. Changes made to the
arguments do not affect the values in the calling function. This is known as passing by
value, which means a local copy of each argument is made in the function. These local
copies are treated the same as any other local variables. Listing 5.4 once again illustrates
this important point.

LisTING 5.4 A Demonstration of Passing by Value

1: // Listing 5.4 - demonstrates passing by value
2: #include <iostream>
3:
4: using namespace std;
5: void swap(int x, int y);
6:
7: int main()
8: {
9: int x = 5, y = 10;
10:
11: cout << "Main. Before swap, x: " << x << " y: " <<y << endl;
12: swap(x,y);
13: cout << "Main. After swap, x: " << x << " y: " <<y << endl;
14: return 0;
15: }
16:
17: void swap (int x, int vy)
18:
19: int temp;
20:
21: cout << "Swap. Before swap, x: " << x << " y: " <<y << endl;
22:
23: temp = x;
24: X =Y,
25: y = temp;
26:
27: cout << "Swap. After swap, x: " << x << " y: " <<y << endl;

|110

Day 5

Main. Before swap, x: 5 y: 10

Output Swap. Before swap, x: 5 y: 10

Swap. After swap, x: 10 y: 5
Main. After swap, x: 5 y: 10

ANALYSIS

- This program initializes two variables in main() and then passes them to the

swap () function, which appears to swap them. When they are examined again in
main (), however, they are unchanged!

The variables are initialized on line 9, and their values are displayed on line 11. The
swap () function is called on line 12, and the variables are passed in.

Execution of the program switches to the swap () function, where on line 21 the values
are printed again. They are in the same order as they were in main (), as expected. On
lines 23 to 25, the values are swapped, and this action is confirmed by the printout on
line 27. Indeed, while in the swap () function, the values are swapped.

Execution then returns to line 13, back in main (), where the values are no longer
swapped.

As you’ve figured out, the values passed in to the swap () function are passed by value,
meaning that copies of the values are made that are local to swap (). These local variables
are swapped on lines 23 to 25, but the variables back in main() are unaffected.

On Day 8, “Understanding Pointers,” and Day 10, “Working with Advanced Functions,”
you’ll see alternatives to passing by value that will allow the values in main() to be
changed.

Global Variables

Variables defined outside of any function have global scope, and thus are available from
any function in the program, including main().

Local variables with the same name as global variables do not change the global vari-
ables. A local variable with the same name as a global variable hides the global variable,
however. If a function has a variable with the same name as a global variable, the name
refers to the local variable—not the global—when used within the function. Listing 5.5
illustrates these points.

LisTINnG 5.5 Demonstrating Global and Local Variables

1: #include <iostream>

2: void myFunction(); /] prototype

3:

4: int x =5,y =7; /1 global variables
5:

H
int main()

Organizing into Functions 111 |

LISTING 5.5 continued

6: {

7: using namespacestd;

8:

9: cout << "x from main: " << x << endl;

10: cout << "y from main: " <<y << endl << endl;
11: myFunction();

12: cout << "Back from myFunction!" << endl << endl;
13: cout << "x from main: " << x << endl;

14: cout << "y from main: " <<y << endl;

15: return 0;

16: }

17:

18: void myFunction()

19: {

20: using std::cout;

21:

22: int y = 10;

23:

24: cout << "x from myFunction: " << x << endl;
25: cout << "y from myFunction: " << y << endl << endl;
26: }

o x from main: 5
UTPUT y from main: 7
x from myFunction: 5
y from myFunction: 10

Back from myFunction!

x from main: 5
y from main: 7

This simple program illustrates a few key, and potentially confusing, points about
local and global variables. On line 4, two global variables, x and y, are declared.

The global variable x is initialized with the value 5, and the global variable y is initial-
ized with the value 7.

On lines 9 and 10 in the function main (), these values are printed to the console. Note
that the function main() defines neither variable; because they are global, they are
already available to main().

When myFunction() is called on line 11, program execution passes to line 18, and on
line 22 a local variable, y, is defined and initialized with the value 10. On line 24,
myFunction() prints the value of the variable x, and the global variable x is used, just as

|112

Day 5

it was in main (). On line 25, however, when the variable name y is used, the local vari-
able y is used, hiding the global variable with the same name.

The function call ends, and control returns to main (), which again prints the values in
the global variables. Note that the global variable y was totally unaffected by the value
assigned to myFunction()’s local y variable.

Global Variables: A Word of Caution

In C++, global variables are legal, but they are almost never used. C++ grew out of C,
and in C global variables are a dangerous but necessary tool. They are necessary because
at times the programmer needs to make data available to many functions, and it is cum-
bersome to pass that data as a parameter from function to function, especially when
many of the functions in the calling sequence only receive the parameter to pass it on to
other functions.

Globals are dangerous because they are shared data, and one function can change a
global variable in a way that is invisible to another function. This can and does create
bugs that are very difficult to find.

On Day 15, “Special Classes and Functions,” you’ll see a powerful alternative to global
variables called static member variables.

Considerations for Creating Function
Statements

Virtually no limit exists to the number or types of statements that can be placed in the
body of a function. Although you can’t define another function from within a function,
you can call a function, and of course, main() does just that in nearly every C++ pro-
gram. Functions can even call themselves, which is discussed soon in the section on
recursion.

Although no limit exists to the size of a function in C++, well-designed functions tend to
be small. Many programmers advise keeping your functions short enough to fit on a sin-
gle screen so that you can see the entire function at one time. This is a rule of thumb,
often broken by very good programmers, but it is true that a smaller function is easier to
understand and maintain.

Each function should carry out a single, easily understood task. If your functions start
getting large, look for places where you can divide them into component tasks.

Organizing into Functions 113 |

More About Function Arguments

Any valid C++ expression can be a function argument, including constants, mathematical
and logical expressions, and other functions that return a value. The important thing is
that the result of the expression match the argument type that is expected by the function.

It is even valid for a function to be passed as an argument. After all, the function will
evaluate to its return type. Using a function as an argument, however, can make for code
that is hard to read and hard to debug.

As an example, suppose you have the functions myDouble (), triple(), square(), and
cube (), each of which returns a value. You could write

Answer = (myDouble(triple(square(cube(myvalue)))));

You can look at this statement in two ways. First, you can see that the function
myDouble () takes the function triple() as an argument. In turn, triple() takes the
function square (), which takes the function cube () as its argument. The cube () func-
tion takes the variable, myvalue, as its argument.

Looking at this from the other direction, you can see that this statement takes a variable,
myValue, and passes it as an argument to the function cube (), whose return value is
passed as an argument to the function square (), whose return value is in turn passed to
triple(), and that return value is passed to myDouble (). The return value of this dou-
bled, tripled, squared, and cubed number is now assigned to Answer.

It is difficult to be certain what this code does (was the value tripled before or after it
was squared?), and if the answer is wrong, it will be hard to figure out which function
failed.

An alternative is to assign each step to its own intermediate variable:

unsigned long myValue = 2;

unsigned long cubed = cube(myValue); /] cubed = 8
unsigned long squared = square(cubed); /1 squared = 64
unsigned long tripled = triple(squared); // tripled = 192
unsigned long Answer = myDouble(tripled); /] Answer = 384

Now, each intermediate result can be examined, and the order of execution is explicit.

CAUTION C++ makes it really easy to write compact code like the preceding example
used to combine the cube(), square(), triple(), and myDouble() functions.
Just because you can make compact code does not mean you should. It is
better to make your code easier to read, and thus more maintainable, than
to make it as compact as you can.

|114 Day 5

More About Return Values

Functions return a value or return void. Void is a signal to the compiler that no value will
be returned.

To return a value from a function, write the keyword return followed by the value you
want to return. The value might itself be an expression that returns a value. For example:
return 5;

return (x > 5);
return (MyFunction());

These are all legal return statements, assuming that the function MyFunction() itself
returns a value. The value in the second statement, return (x > 5), will be false if x is
not greater than 5, or it will be true. What is returned is the value of the expression,
false or true, not the value of x.

When the return keyword is encountered, the expression following return is returned
as the value of the function. Program execution returns immediately to the calling func-
tion, and any statements following the return are not executed.

It is legal to have more than one return statement in a single function. Listing 5.6 illus-
trates this idea.

LisTING 5.6 A Demonstration of Multiple Return Statements

1: // Listing 5.6 - demonstrates multiple return
2: /] statements

3: #include <iostream>

4:

5: int Doubler(int AmountToDouble);

6:

7: int main()

8: {

9: using std::cout;

10:

11: int result = 0;

12: int input;

13:

14: cout << "Enter a number between 0 and 10,000 to double: ";
15: std::cin >> input;

16:

17: cout << "\nBefore doubler is called... ";
18: cout << "\ninput: " << input << " doubled: " << result << "\n";
19:

20: result = Doubler(input);

21:

22: cout << "\nBack from Doubler...\n";

Organizing into Functions 115 |

LISTING 5.6 continued

23: cout << "\ninput: " << input << " doubled: " << result << "\n";
24:

25: return 0;

26: }

27:

28: 1int Doubler(int original)

29: {

30: if (original <= 10000)

31: return original * 2;

32: else

33: return -1;

34: std::cout << "You can't get here!\n";
35: }

Enter a number between @ and 10,000 to double: 9000
OuTPUT

Before doubler is called...
input: 9000 doubled: 0

Back from doubler...
input: 9000 doubled: 18000
Enter a number between 0 and 10,000 to double: 11000

Before doubler is called...
input: 11000 doubled: 0

Back from doubler...
input: 11000 doubled: -1

A number is requested on lines 14 and 15 and printed on lines 17 and 18, along
with the local variable result. The function Doubler() is called on line 20, and
the input value is passed as a parameter. The result will be assigned to the local variable,
result, and the values will be reprinted on line 23.

On line 30, in the function Doubler (), the parameter is tested to see whether it is less
than or equal to 10,000. If it is, then the function returns twice the original number. If the
value of original is greater than 10,000, the function returns -1 as an error value.

The statement on line 34 is never reached because regardless of whether the value is less
than or equal to 10,000 or greater than 10,000, the function returns on either line 31 or
line 33—before it gets to line 34. A good compiler warns that this statement cannot be
executed, and a good programmer takes it out!

|116

Day 5

FAQ

What is the difference between int main() and void main(); which one should |
use? | have used both and they both worked fine, so why do we need to use int
main(){ return 0;}?

Answer: Both will work on most compilers, but only int main() is ANSI compliant, and
thus only int main() is guaranteed to continue working.

Here's the difference: int main() returns a value to the operating system. When your
program completes, that value can be captured by, for example, batch programs.

You won't be using the return value in programs in this book (it is rare that you will oth-
erwise), but the ANSI standard requires it.

Default Parameters

For every parameter you declare in a function prototype and definition, the calling func-
tion must pass in a value. The value passed in must be of the declared type. Thus, if you
have a function declared as

long myFunction(int);

the function must, in fact, take an integer variable. If the function definition differs, or if
you fail to pass in an integer, you receive a compiler error.

The one exception to this rule is if the function prototype declares a default value for the
parameter. A default value is a value to use if none is supplied. The preceding declaration
could be rewritten as

long myFunction (int x = 50);

This prototype says, “myFunction() returns a long and takes an integer parameter. If an
argument is not supplied, use the default value of 50.” Because parameter names are not
required in function prototypes, this declaration could have been written as

long myFunction (int = 50);

The function definition is not changed by declaring a default parameter. The function
definition header for this function would be

long myFunction (int x)

If the calling function did not include a parameter, the compiler would fill x with the
default value of 50. The name of the default parameter in the prototype need not be the
same as the name in the function header; the default value is assigned by position, not
name.

Organizing into Functions 117 |

Any or all of the function’s parameters can be assigned default values. The one restric-
tion is this: If any of the parameters does not have a default value, no previous parameter
can have a default value.

If the function prototype looks like
long myFunction (int Parami, int Param2, int Param3);

you can assign a default value to Param2 only if you have assigned a default value to
Param3. You can assign a default value to Parami only if you’'ve assigned default values
to both Param2 and Param3. Listing 5.7 demonstrates the use of default values.

LisTING 5.7 A Demonstration of Default Parameter Values

1: // Listing 5.7 - demonstrates use

2: /] of default parameter values

3: #include <iostream>

4:

5: int AreaCube(int length, int width = 25, int height = 1);
6:

7: int main()

8: {

9: int length = 100;

10: int width = 50;

11: int height = 2;

12: int area;

13:

14: area = AreaCube(length, width, height);

15: std::cout << "First area equals: " << area << "\n";
16:

17: area = AreaCube(length, width);

18: std::cout << "Second time area equals: " << area << "\n";
19:
20: area = AreaCube(length);
21: std::cout << "Third time area equals: " << area << "\n";
22: return 0;
23: }
24:

25: AreaCube(int length, int width, int height)
26: {
27:

28: return (length * width * height);
29: }

o First area equals: 10000
bl Ssecond time area equals: 5000

Third time area equals: 2500

|118 Day 5

ANALYSIS On line 5, the AreaCube () prototype specifies that the AreaCube () function takes
three integer parameters. The last two have default values.

This function computes the area of the cube whose dimensions are passed in. If no width
is passed in, a width of 25 is used and a height of 1 is used. If the width but not the
height is passed in, a height of 1 is used. It is not possible to pass in the height without
passing in a width.

On lines 9—11, the dimension’s length, height, and width are initialized, and they are
passed to the AreaCube () function on line 14. The values are computed, and the result is
printed on line 15.

Execution continues to line 17, where AreaCube () is called again, but with no value for
height. The default value is used, and again the dimensions are computed and printed.

Execution then continues to line 20, and this time neither the width nor the height is
passed in. With this call to AreaCube (), execution branches for a third time to line 25.
The default values are used and the area is computed. Control returns to the main() func-
tion where the final value is then printed.

5

DO remember that function parameters DON'T try to create a default value for a
act as local variables within the function. first parameter if no default value exists
DO remember that changes to a global for the second.

variable in one function change that DON'T forget that arguments passed by
variable for all functions. value cannot affect the variables in the

calling function.

Overloading Functions

C++ enables you to create more than one function with the same name. This is called
function overloading. The functions must differ in their parameter list with a different
type of parameter, a different number of parameters, or both. Here’s an example:

int myFunction (int, int);

int myFunction (long, long);
int myFunction (long);

myFunction() is overloaded with three parameter lists. The first and second versions dif-
fer in the types of the parameters, and the third differs in the number of parameters.

The return types can be the same or different on overloaded functions.

Organizing into Functions 119 |

NOTE Two functions with the same name and parameter list, but different return
types, generate a compiler error. To change the return type, you must also
change the signature (name and/or parameter list).

Function overloading is also called function polymorphism. Poly means many, and morph
means form: A polymorphic function is many-formed.

Function polymorphism refers to the capability to “overload” a function with more than
one meaning. By changing the number or type of the parameters, you can give two or
more functions the same function name, and the right one will be called automatically by
matching the parameters used. This enables you to create a function that can average
integers, doubles, and other values without having to create individual names for each
function, such as AveragelInts(), AverageDoubles(), and so on.

Suppose you write a function that doubles whatever input you give it. You would like to
be able to pass in an int, a long, a float, or a double. Without function overloading,
you would have to create four function names:

int DoublelInt(int);

long DoubleLong(long);

float DoubleFloat(float);
double DoubleDouble(double);

With function overloading, you make this declaration:

int Double(int);

long Double(long);
float Double(float);
double Double(double);

This is easier to read and easier to use. You don’t have to worry about which one to call;
you just pass in a variable, and the right function is called automatically. Listing 5.8
illustrates the use of function overloading.

LisTING 5.8 A Demonstration of Function Polymorphism

// Listing 5.8 - demonstrates
/] function polymorphism
#include <iostream>

int Double(int);

long Double(long);
float Double(float);
double Double(double);

©oO~NOOOD»WN =

|120

Day 5

LisTING 5.8

continued

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

using namespace std;

int main()

{
int myInt = 6500;
long myLong = 65000,
float myFloat = 6.5F;
double myDouble = 6.5e20;
int doubledInt;
long doubledLong;
float doubledFloat;
double doubledDouble;

cout << "myInt:
cout << "myLong:
cout << "myFloat:
cout << "myDouble:

" << myInt << "\n";
" << myLong << "\n";
" << myFloat << "\n";
" << myDouble << "\n";

doubledInt = Double(myInt);
doubledLong = Double(myLong);
doubledFloat = Double(myFloat);
doubledDouble = Double(myDouble);

cout << "doubledInt: " << doubledInt << "\n";

cout << "doubledLong: " << doubledLong << "\n";
cout << "doubledFloat: " << doubledFloat << "\n";
cout << "doubledDouble: " << doubledDouble << "\n";

return 0;

}

int Double(int original)

{
cout << "In Double(int)\n";
return 2 * original;

}

long Double(long original)

{
cout << "In Double(long)\n";
return 2 * original;

}

float Double(float original)

{
cout << "In Double(float)\n";
return 2 * original;

Organizing into Functions 121 |

LisTING 5.8 continued

59:
60: double Double(double original)
61: {
62: cout << "In Double(double)\n";
63: return 2 * original;
64: }
myInt: 6500
Output myLong: 65000

myFloat: 6.5

myDouble: 6.5e+20

In Double(int)

In Double(long)

In Double(float)

In Double(double)
DoubledInt: 13000
DoubledLong: 130000
DoubledFloat: 13
DoubledDouble: 1.3e+21

The Double() function is overloaded with int, long, float, and double. The
ANALYSIS . . .
prototypes are on lines 5-8, and the definitions are on lines 42—64.

Note that in this example, the statement using namespace std; has been added on line
10, outside of any particular function. This makes the statement global to this file, and
thus the namespace is used in all the functions declared within this file.

In the body of the main program, eight local variables are declared. On lines 14—17, four
of the values are initialized, and on lines 29-32, the other four are assigned the results of
passing the first four to the Double () function. Note that when Double () is called, the
calling function does not distinguish which one to call; it just passes in an argument, and
the correct one is invoked.

The compiler examines the arguments and chooses which of the four Double() functions
to call. The output reveals that each of the four was called in turn, as you would expect.

Special Topics About Functions

Because functions are so central to programming, a few special topics arise that might be
of interest when you confront unusual problems. Used wisely, inline functions can help
you squeak out that last bit of performance. Function recursion is one of those wonder-
ful, esoteric bits of programming, which, every once in a while, can cut through a thorny
problem otherwise not easily solved.

|122

Day 5

Inline Functions

When you define a function, normally the compiler creates just one set of instructions in
memory. When you call the function, execution of the program jumps to those instruc-
tions, and when the function returns, execution jumps back to the next line in the calling
function. If you call the function 10 times, your program jumps to the same set of
instructions each time. This means only one copy of the function exists, not 10.

A small performance overhead occurs in jumping in and out of functions. It turns out
that some functions are very small, just a line or two of code, and an efficiency might be
gained if the program can avoid making these jumps just to execute one or two instruc-
tions. When programmers speak of efficiency, they usually mean speed; the program runs
faster if the function call can be avoided.

If a function is declared with the keyword inline, the compiler does not create a real
function; it copies the code from the inline function directly into the calling function. No
jump is made; it is just as if you had written the statements of the function right into the
calling function.

Note that inline functions can bring a heavy cost. If the function is called 10 times, the
inline code is copied into the calling functions each of those 10 times. The tiny improve-
ment in speed you might achieve might be more than swamped by the increase in size of
the executable program, which might in fact actually slow the program!

The reality is that today’s optimizing compilers can almost certainly do a better job of
making this decision than you can; and so it is generally a good idea not to declare a
function inline unless it is only one or at most two statements in length. When in doubt,
though, leave inline out.

NOTE Performance optimization is a difficult challenge, and most programmers

are not good at identifying the location of performance problems in their
programs without help. Help, in this case, involves specialized programs like
debuggers and profilers.

Also, it is always better to write code that is clear and understandable than
to write code that contains your guess about what will run fast or slow, but
is harder to understand. This is because it is easier to make understandable
code run faster.

Listing 5.9 demonstrates an inline function.

Organizing into Functions 123 |

LiSTING 5.9 A Demonstration of an Inline Function

1: // Listing 5.9 - demonstrates inline functions
2: #include <iostream>
3:
4: 1inline int Double(int);
5:
6: int main()
7: {
8: int target;
9: using std::cout;
10: using std::cin;
11: using std::endl;
12:
13: cout << "Enter a number to work with: ";
14: cin >> target;
15: cout << "\n";
16:
17: target = Double(target);
18: cout << "Target: " << target << endl;
19:
20: target = Double(target);
21: cout << "Target: " << target << endl;
22:
23: target = Double(target);
24: cout << "Target: " << target << endl;
25: return 0;
26: }
27:
28: 1int Double(int target)
29: {
30: return 2*target;
31: }
Enter a number to work with: 20
Target: 40
Target: 80
Target: 160

PTG On line 4, Double() is declared to be an inline function taking an int parameter
and returning an int. The declaration is just like any other prototype except that
the keyword inline is prepended just before the return value.

This compiles into code that is the same as if you had written the following:
target = 2 * target;
everywhere you entered

target = Double(target);

|124 Day 5

By the time your program executes, the instructions are already in place, compiled into
the .obj file. This saves a jump and return in the execution of the code at the cost of a
larger program.

NOTE The inline keyword is a hint to the compiler that you want the function to
be inlined. The compiler is free to ignore the hint and make a real function
call.

Recursion

A function can call itself. This is called recursion, and recursion can be direct or indirect.
It is direct when a function calls itself; it is indirect recursion when a function calls
another function that then calls the first function.

Some problems are most easily solved by recursion, usually those in which you act on
data and then act in the same way on the result. Both types of recursion, direct and indi-
rect, come in two varieties: those that eventually end and produce an answer, and those
that never end and produce a runtime failure. Programmers think that the latter is quite
funny (when it happens to someone else).

It is important to note that when a function calls itself, a new copy of that function is run.
The local variables in the second version are independent of the local variables in the
first, and they cannot affect one another directly, any more than the local variables in
main () can affect the local variables in any function it calls, as was illustrated in

Listing 5.3.

To illustrate solving a problem using recursion, consider the Fibonacci series:
1,1,2,3,5,8,13,21,34...

Each number, after the second, is the sum of the two numbers before it. A Fibonacci
problem might be to determine what the 12th number in the series is.

To solve this problem, you must examine the series carefully. The first two numbers are
1. Each subsequent number is the sum of the previous two numbers. Thus, the seventh
number is the sum of the sixth and fifth numbers. More generally, the nth number is the
sum of n-2 and n-1, as long as n > 2.

Recursive functions need a stop condition. Something must happen to cause the program
to stop recursing, or it will never end. In the Fibonacci series, n < 3 is a stop condition
(that is, when n is less than 3 the program can stop working on the problem).

Organizing into Functions 125 |

An algorithm is a set of steps you follow to solve a problem. One algorithm for the
Fibonacci series is the following:

1. Ask the user for a position in the series.
2. Call the fib() function with that position, passing in the value the user entered.

3. The fib() function examines the argument (n). If n < 3 it returns 1; otherwise,
fib() calls itself (recursively) passing in n-2. It then calls itself again passing in n-
1, and returns the sum of the first call and the second.

If you call fib(1), it returns 1. If you call fib(2), it returns 1. If you call fib(3), it
returns the sum of calling fib(2) and fib(1). Because fib(2) returns 1 and fib(1)
returns 1, fib(3) returns 2 (the sum of 1 + 1).

If you call fib(4), it returns the sum of calling fib(3) and fib(2). You just saw that
fib(3) returns 2 (by calling fib(2) and fib(1)) and that fib(2) returns 1, so fib(4)
sums these numbers and returns 3, which is the fourth number in the series.

Taking this one more step, if you call fib(5), it returns the sum of fib(4) and fib(3).
You’ve seen that fib(4) returns 3 and fib(3) returns 2, so the sum returned is 5.

This method is not the most efficient way to solve this problem (in fib(20) the fib()
function is called 13,529 times!), but it does work. Be careful—if you feed in too large a
number, you’ll run out of memory. Every time fib () is called, memory is set aside.
When it returns, memory is freed. With recursion, memory continues to be set aside
before it is freed, and this system can eat memory very quickly. Listing 5.10 implements
the fib () function.

CAUTION When you run Listing 5.10, use a small number (less than 15). Because this
uses recursion, it can consume a lot of memory.

LisTING 5.10 A Demonstration of Recursion Using the Fibonacci Series

/] Fibonacci series using recursion
#include <iostream>
int fib (int n);

int main()

{

int n, answer;
std::cout << "Enter number to find: ";
std::cin >> n;

- 0 WO NOOO»WN =

—_

|126 Day 5

LisTING 5.10 continued

12: std::cout << "\n\n";

13:

14: answer = fib(n);

15:

16: std::cout << answer << " is the " << n;

17: std::cout << "th Fibonacci number\n";
18: return 0;

19: }

20:

21: int fib (int n)

22: |

23: std::cout << "Processing fib(" << n << ")... "3
24:

25: if (n <3)

26: {

27: std::cout << "Return 1!\n";

28: return (1);

29: }

30: else

31: {

32: std::cout << "Call fib(" << n-2 << ") "3
33: std::cout << "and fib(" << n-1 << ").\n";
34: return(fib(n-2) + fib(n-1));

35: }

36: }

Enter number to find: 6
OuTPUT

Processing fib(6)... Call fib(4) and fib(5).
Processing fib(4)... Call fib(2) and fib(3).
Processing fib(2)... Return 1!
Processing fib(3)... Call fib(1) and fib(2).
Processing fib(1)... Return 1!
Processing fib(2)... Return 1!
Processing fib(5)... Call fib(3) and fib(4).
Processing fib(3)... Call fib(1) and fib(2).
Processing fib(1)... Return 1!
Processing fib(2)...
Processing fib(4)...
Processing fib(2)... Return 1!

Processing fib(3)... Call fib(1) and fib(2).
Processing fib(1)... Return 1!

Processing fib(2)... Return 1!

8 is the 6th Fibonacci number

Return 1!
Call fib(2) and fib(3).

Organizing into Functions 127 |

NOTE Some compilers have difficulty with the use of operators in a cout state-
ment. If you receive a warning on line 32, place parentheses around the sub-
traction operation so that lines 32 and 33 become:
std::cout << "Call fib(" << (n-2) << ") "3
std::cout << "and fib(" << (n-1) << ").\n";

ANALYSIS The program asks for a number to find on line 9 and assigns that number to n. It
then calls fib () with n. Execution branches to the fib () function, where, on line
23, it prints its argument.

The argument n is tested to see whether it is less than 3 on line 25; if so, fib() returns
the value 1. Otherwise, it returns the sum of the values returned by calling fib() on n-2
and n-1.

It cannot return these values until the call (to fib()) is resolved. Thus, you can picture
the program diving into fib repeatedly until it hits a call to fib that returns a value. The
only calls that return a value are the calls to fib(2) and fib(1). These values are then
passed up to the waiting callers, which, in turn, add the return value to their own, and
then they return. Figures 5.4 and 5.5 illustrate this recursion into fib().

int main() fib(6) fib(5
{
int x = fib(6) +—————>/ return fib(4) + f|b(5)/;7 return fib(3) + fib(4)
}
fib(4) fib(3) fib(4)
return fib(2) + f|b(3) return f|b(1) + f|b(2) return f|b(2) + fib(3)

/

fib(2) / f|b(3) fib(2) fib 3)\\
return 1 return f|b(1)+f|b(2)/ { return 1 / / return f|b(1)+f|b(2)
f|b(1)

fib(1) fib(2) fib(1) fib(2)

flb
/ return 1 / / return 1 / / return 1 / / return 1 / / return 1 /

FIGURE 5.4 Using recursion.

|128

Day 5

int main() fib(6) fib(5)

{ 8 5
int x = fib(6) return fib(4) + fig(5) return fib(3) + fib(4)
} /
3 2 3
fib(4) fib(3 fib(4)

return fib92) + fib(3) / return 9{)(1) + f|b(2)/ / return f|b(2) + fib(3)
1 2
fib(2) fib(3)

f|b(2) fiib(3)

/ return 1 // return fib(1)+fib(2)/
fib(1)

return f|b(1) + fib(2)/

1
fib(1) flb

/retum 1‘/ /retum 1./

return 1

FIGURE 5.5 Returning from recursion.

In the example, n is 6 so fib(6) is called from main (). Execution jumps to the fib()
function, and n is tested for a value less than 3 on line 25. The test fails, so fib(6)
returns on line 34 the sum of the values returned by fib(4) and fib(5). Look at line 34:

return(fib(n-2) + fib(n-1));

From this return statement a call is made to fib(4) (because n == 6, fib(n-2) is the
same as fib(4)) and another call is made to fib(5) (fib(n-1)), and then the function
you are in (fib(6)) waits until these calls return a Value. When these return a value, this
function can return the result of summing those two values.

Because fib(5) passes in an argument that is not less than 3, fib() is called again, this
time with 4 and 3. fib(4) in turn calls fib(3) and fib(2).

The output traces these calls and the return values. Compile, link, and run this program,
entering first 1, then 2, then 3, building up to 6, and watch the output carefully.

This would be a great time to start experimenting with your debugger. Put a break point
on line 21 and then trace into each call to fib, keeping track of the value of n as you
work your way into each recursive call to fib.

Recursion is not used often in C++ programming, but it can be a powerful and elegant
tool for certain needs.

Organizing into Functions 129 |

NOTE Recursion is a tricky part of advanced programming. It is presented here
because it can be useful to understand the fundamentals of how it works,
but don’t worry too much if you don’t fully understand all the details.

How Functions Work—A Peek Under the
Hood

When you call a function, the code branches to the called function, parameters are
passed in, and the body of the function is executed. When the function completes, a
value is returned (unless the function returns void), and control returns to the calling
function.

How is this task accomplished? How does the code know where to branch? Where are
the variables kept when they are passed in? What happens to variables that are declared
in the body of the function? How is the return value passed back out? How does the code
know where to resume?

Most introductory books don’t try to answer these questions, but without understanding
this information, you’ll find that programming remains a fuzzy mystery. The explanation
requires a brief tangent into a discussion of computer memory.

Levels of Abstraction

One of the principal hurdles for new programmers is grappling with the many layers of
intellectual abstraction. Computers, of course, are only electronic machines. They don’t
know about windows and menus, they don’t know about programs or instructions, and
they don’t even know about ones and zeros. All that is really going on is that voltage is
being measured at various places on an integrated circuit. Even this is an abstraction:
Electricity itself is just an intellectual concept representing the behavior of subatomic
particles, which arguably are themselves intellectual abstractions(!).

Few programmers bother with any level of detail below the idea of values in RAM. After
all, you don’t need to understand particle physics to drive a car, make toast, or hit a base-
ball, and you don’t need to understand the electronics of a computer to program one.

You do need to understand how memory is organized, however. Without a reasonably
strong mental picture of where your variables are when they are created and how values
are passed among functions, it will all remain an unmanageable mystery.

|130

Day 5

Partitioning RAM

When you begin your program, your operating system (such as DOS, Linux/Unix, or
Microsoft Windows) sets up various areas of memory based on the requirements of your
compiler. As a C++ programmer, you’ll often be concerned with the global namespace,
the free store, the registers, the code space, and the stack.

Global variables are in global namespace. You’ll learn more about global namespace and
the free store in coming days, but here, the focus is on the registers, code space, and
stack.

Registers are a special area of memory built right into the central processing unit (or
CPU). They take care of internal housekeeping. A lot of what goes on in the registers is
beyond the scope of this book, but what you should be concerned with is the set of regis-
ters responsible for pointing, at any given moment, to the next line of code. These regis-
ters, together, can be called the instruction pointer. It is the job of the instruction pointer
to keep track of which line of code is to be executed next.

The code itself is in the code space, which is that part of memory set aside to hold the
binary form of the instructions you created in your program. Each line of source code is
translated into a series of instructions, and each of these instructions is at a particular
address in memory. The instruction pointer has the address of the next instruction to exe-
cute. Figure 5.6 illustrates this idea.

FIGURE 5.6 Code Space

The instruction pointer.
100 Int x=5; 102 Instruction
101 Int y=7; Pointer

102 cont <cxe |

103 Func (x,y);
104 y=9;

105 return;

The stack is a special area of memory allocated for your program to hold the data
required by each of the functions in your program. It is called a stack because it is a last-
in, first-out queue, much like a stack of dishes at a cafeteria, as shown in Figure 5.7.

Last-in, first-out means that whatever is added to the stack last is the first thing taken off.
This differs from most queues in which the first in is the first out (like a line at a theater:
The first one in line is the first one off). A stack is more like a stack of coins: If you
stack 10 pennies on a tabletop and then take some back, the last three you put on top are
the first three you take off.

Organizing into Functions 131 |

FIGURE 5.7
A stack.

When data is pushed onto the stack, the stack grows; as data is popped off the stack, the
stack shrinks. It isn’t possible to pop a dish off the stack without first popping off all the
dishes placed on after that dish.

A stack of dishes is the common analogy. It is fine as far as it goes, but it is wrong in a
fundamental way. A more accurate mental picture is of a series of cubbyholes aligned top
to bottom. The top of the stack is whatever cubby the stack pointer (which is another reg-
ister) happens to be pointing to.

Each of the cubbies has a sequential address, and one of those addresses is kept in the
stack pointer register. Everything below that magic address, known as the top of the
stack, is considered to be on the stack. Everything above the top of the stack is consid-
ered to be off the stack and invalid. Figure 5.8 illustrates this idea.

FIGURE 5.8 Stack

The stack pointer. 100 stack pointer

theVariable 80 101 off the stack

102 /<

MyAge 50 103

104

105

YourAge 37 106
107
108

on the stack

109
110

|132

Day 5

When data is put on the stack, it is placed into a cubby above the stack pointer, and then
the stack pointer is moved to the new data. When data is popped off the stack, all that
really happens is that the address of the stack pointer is changed by moving it down the
stack. Figure 5.9 makes this rule clear.

The data above the stack pointer (off the stack) might or might not be changed at any
time. These values are referred to as “garbage” because their value is no longer reliable.

FIGURE 5.9 Stack
. stack pointer
Moving the stack 100 P
v |
pointer. theVariable 80 101
102

MyAge 50 103
104 off the stack

105

YourAge 37 106

107

108 <3

109
on the stack
110

The Stack and Functions

The following is an approximation of what happens when your program branches to a
function. (The details will differ depending on the operating system and compiler.)

1. The address in the instruction pointer is incremented to the next instruction past the
function call. That address is then placed on the stack, and it will be the return
address when the function returns.

2. Room is made on the stack for the return type you’ve declared. On a system with
two-byte integers, if the return type is declared to be int, another two bytes are
added to the stack, but no value is placed in these bytes (that means that whatever
“garbage” was in those two bytes remains until the local variable is initialized).

3. The address of the called function, which is kept in a special area of memory set
aside for that purpose, is loaded into the instruction pointer, so the next instruction
executed will be in the called function.

4. The current top of the stack is now noted and is held in a special pointer called the
stack frame. Everything added to the stack from now until the function returns will
be considered “local” to the function.

Organizing into Functions 133 |

5. All the arguments to the function are placed on the stack.

6. The instruction now in the instruction pointer is executed, thus executing the first
instruction in the function.

7. Local variables are pushed onto the stack as they are defined.

When the function is ready to return, the return value is placed in the area of the stack
reserved at step 2. The stack is then popped all the way up to the stack frame pointer,
which effectively throws away all the local variables and the arguments to the function.

The return value is popped off the stack and assigned as the value of the function call
itself, and the address stashed away in step 1 is retrieved and put into the instruction
pointer. The program thus resumes immediately after the function call, with the value of
the function retrieved.

Some of the details of this process change from compiler to compiler, or between com-
puter operating system or processors, but the essential ideas are consistent across envi-
ronments. In general, when you call a function, the return address and the parameters are
put on the stack. During the life of the function, local variables are added to the stack.
When the function returns, these are all removed by popping the stack.

In coming days, you will learn about other places in memory that are used to hold data
that must persist beyond the life of the function.

Summary

Today’s lesson introduced functions. A function is, in effect, a subprogram into which
you can pass parameters and from which you can return a value. Every C++ program
starts in the main () function, and main(), in turn, can call other functions.

A function is declared with a function prototype, which describes the return value, the
function name, and its parameter types. A function can optionally be declared inline. A
function prototype can also declare default values for one or more of the parameters.

The function definition must match the function prototype in return type, name, and
parameter list. Function names can be overloaded by changing the number or type of
parameters; the compiler finds the right function based on the argument list.

Local function variables, and the arguments passed in to the function, are local to the
block in which they are declared. Parameters passed by value are copies and cannot
affect the value of variables in the calling function.

|134

Day 5

Q Why not make all variables global?

A At one time, this was exactly how programming was done. As programs became
more complex, however, it became very difficult to find bugs in programs because
data could be corrupted by any of the functions—global data can be changed any-
where in the program. Years of experience have convinced programmers that data
should be kept as local as possible, and access to changing that data should be nar-
rowly defined.

[

When should the keyword inline be used in a function prototype?

A If the function is very small, no more than a line or two, and won’t be called from
many places in your program, it is a candidate for inlining.

Q Why aren’t changes to the value of function arguments reflected in the calling
function?

A Arguments passed to a function are passed by value. That means that the argument
in the function is actually a copy of the original value. This concept is explained in
depth in the section “How Functions Work—A Peek Under the Hood.”

Q If arguments are passed by value, what do I do if I need to reflect the changes
back in the calling function?

A On Day 8, pointers will be discussed and on Day 9, you’ll learn about references.
Use of pointers or references will solve this problem, as well as provide a way
around the limitation of returning only a single value from a function.

Q What happens if I have the following two functions?
int Area (int width, int length = 1); int Area (int size);

Will these overload? A different number of parameters exist, but the first one
has a default value.

A The declarations will compile, but if you invoke Area with one parameter, you will
receive an error: ambiguity between Area(int, int) and Area(int).

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain that you understand the answers before continuing to tomor-
row’s lesson.

Organizing into Functions 135 |

Quiz
1. What are the differences between the function prototype and the function

definition?

2. Do the names of parameters have to agree in the prototype, definition, and call to
the function?

If a function doesn’t return a value, how do you declare the function?

If you don’t declare a return value, what type of return value is assumed?
What is a local variable?

What is scope?

What is recursion?

When should you use global variables?

O X NN AW

What is function overloading?

Exercises

1. Write the prototype for a function named Perimeter (), which returns an unsigned
long int and takes two parameters, both unsigned short ints.

2. Write the definition of the function Perimeter () as described in Exercise 1. The
two parameters represent the length and width of a rectangle. Have the function
return the perimeter (twice the length plus twice the width).

3. BUG BUSTERS: What is wrong with the function in the following code?

#include <iostream>
void myFunc(unsigned short int x);
int main()

{

unsigned short int x, vy;
y = myFunc(int);

std::cout << "x: " << x << " y: " <<y << "\n";
return 0;

}

void myFunc(unsigned short int x)

{
return (4*x);

}

4. BUG BUSTERS: What is wrong with the function in the following code?

#include <iostream>
int myFunc(unsigned short int x);
int main()

|136

Day 5

{
unsigned short int x, y;
X =7,
y = myFunc(x);
std::cout << "x: " << x << "y " <<y << "\n";
return 0;
}
int myFunc(unsigned short int x);
{
return (4*x);
}

. Write a function that takes two unsigned short integer arguments and returns the

result of dividing the first by the second. Do not do the division if the second num-
ber is zero, but do return —1.

. Write a program that asks the user for two numbers and calls the function you

wrote in Exercise 5. Print the answer, or print an error message if you get —1.

. Write a program that asks for a number and a power. Write a recursive function

that takes the number to the power. Thus, if the number is 2 and the power is 4, the
function will return 16.

WEEK 1

DAY 6

Understanding Object-
Oriented Programming

Classes extend the built-in capabilities of C++ to assist you in representing and
solving complex, real-world problems.

Today, you will learn

* What classes and objects are
* How to define a new class and create objects of that class
¢ What member functions and member data are

¢ What constructors are and how to use them

Is C++ Object-Oriented?

At one point, C, the predecessor to C++, was the world’s most popular pro-
gramming language for commercial software development. It was used for cre-
ating operating systems (such as the Unix operating system), for real-time

|138

Day 6

programming (machine, device, and electronics control), and only later began to be used
as a language for programming conventional languages. Its intent was to provide an eas-
ier and safer way to program down close to the hardware.

C was developed as a middle ground between high-level business application languages
such as COBOL and the pedal-to-the-metal, high-performance, but difficult-to-use
Assembler language. C was to enforce “structured” programming, in which problems
were “decomposed” into smaller units of repeatable activities called procedures and data
was assembled into packages called structures.

But research languages such as Smalltalk and CLU had begun to pave a new direction—
object-orientation—which combined the data locked away in assemblies like structures
with the capabilities of procedures into a single unit: the object.

The world is filled with objects: cars, dogs, trees, clouds, flowers. Objects. Each object
has characteristics (fast, friendly, brown, puffy, pretty). Most objects have behavior
(move, bark, grow, rain, wilt). You don’t generally think about a car’s specifications and
how those specifications might be manipulated. Rather, a car is thought about as an
object that looks and acts a certain way. And the same should be true with any real-world
object that is brought into the domain of the computer.

The programs being written early in the twenty-first century are much more complex
than those written at the end of the twentieth century. Programs created in procedural
languages tend to be difficult to manage, hard to maintain, and expensive to extend.
Graphical user interfaces, the Internet, digital and wireless telephony, and a host of new
technologies have dramatically increased the complexity of our projects at the same time
that consumer expectations for the quality of the user interface are rising.

Object-oriented software development offers a tool to help with the challenges of soft-
ware development. Though there are no silver bullets for complex software development,
object-oriented programming languages build a strong link between the data structures
and the methods that manipulate that data and have a closer fit to the way humans (pro-
grammers and clients) think, improving communication and improving the quality of
delivered software. In object-oriented programming, you no longer think about data
structures and manipulating functions; you think instead about objects as if they were
their real-world counterparts: as things that look and act a certain way.

C++ was created as a bridge between object-oriented programming and C. The goal was
to provide object-oriented design to a fast, commercial software development platform,
with a special focus on high performance. Next, you’ll see more about how C++ meets
its objectives.

Understanding Object-Oriented Programming 139|

Creating New Types

Programs are usually written to solve real-world problems, such as keeping track of
employee records or simulating the workings of a heating system. Although it is possible
to solve complex problems by using programs written with only numbers and characters,
it is far easier to grapple with large, complex problems if you can create representations
of the objects that you are talking about. In other words, simulating the workings of a
heating system is easier if you can create variables that represent rooms, heat sensors,
thermostats, and boilers. The closer these variables correspond to reality, the easier it is
to write the program.

You’ve already learned about a number of variable types, including unsigned integers
and characters. The type of a variable tells you quite a bit about it. For example, if you
declare Height and Width to be unsigned short integers, you know that each one can
hold a number between 0 and 65,535, assuming an unsigned short integer is two bytes.
That is the meaning of saying they are unsigned integers; trying to hold anything else in
these variables causes an error. You can’t store your name in an unsigned short integer,
and you shouldn’t try.

Just by declaring these variables to be unsigned short integers, you know that it is pos-
sible to add Height to Width and to assign the result to another number.

The type of these variables tells you
 Their size in memory

* What information they can hold
e What actions can be performed on them
In traditional languages such as C, types were built in to the language. In C++, the pro-

grammer can extend the language by creating any type needed, and each of these new
types can have all the functionality and power of the built-in types.

Downsides of Creating Types with struct

Some capabilities to extend the C language with new types were provided by the ability
to combine related variables into structs, which could be made available as a new data
type through the typedef statement.

There were things lacking in this capability, however:

e Structs and the functions that operate on them aren’t cohesive wholes; functions
can only be found by reading the header files for the libraries available and looking
for those with the new type as a parameter.

|140

Day 6

e Coordinating the activities of groups of related functions on the struct is harder
because anything in the struct can be changed at any time by any piece of program
logic. There is no way to protect struct data from interference.

® The built-in operators don’t work on structs—it does not work to add two structs
with a plus sign (+), even when that might be the most natural way to represent the
solution to a problem (for instance, when each struct represents a complex piece of
text to be joined together).

Introducing Classes and Members

You make a new type in C++ by declaring a class. A class is just a collection of vari-
ables—often of different types—combined with a set of related functions.

One way to think about a car is as a collection of wheels, doors, seats, windows, and so
forth. Another way is to think about what a car can do: It can move, speed up, slow
down, stop, park, and so on. A class enables you to encapsulate, or bundle, these various
parts and various functions into one collection, which is called an object.

Encapsulating everything you know about a car into one class has a number of advan-
tages for a programmer. Everything is in one place, which makes it easy to refer to, copy,
and call on functions that manipulate the data. Likewise, clients of your class—that is,
the parts of the program that use your class—can use your object without worrying about
what is in it or how it works.

A class can consist of any combination of the variable types and also other class types.
The variables in the class are referred to as the member variables or data members. A Car
class might have member variables representing the seats, radio type, tires, and so forth.

Member variables, also known as data members, are the variables in your class. Member
variables are part of your class, just as the wheels and engine are part of your car.

A class can also contain functions called member functions or methods. Member func-
tions are as much a part of your class as the member variables. They determine what
your class can do.

The member functions in the class typically manipulate the member variables. For exam-
ple, methods of the Car class might include Start() and Brake(). A Cat class might
have data members that represent age and weight; its methods might include Sleep(),
Meow (), and ChaseMice().

Understanding Object-Oriented Programming 141 |

Declaring a Class

Declaring a class tells the compiler about the class. To declare a class, use the class key-
word followed by the class name, an opening brace, and then a list of the data members
and methods of that class. End the declaration with a closing brace and a semicolon.
Here’s the declaration of a class called Cat:

class Cat

{ unsigned int itsAge;

unsigned int itsWeight;

void Meow();
b
Declaring this class doesn’t allocate memory for a Cat. It just tells the compiler what a
Cat is, what data members it contains (itsAge and itsWeight), and what it can do
(Meow()). Although memory isn’t allocated, it does let the compiler know how big a Cat
is—that is, how much room the compiler must set aside for each Cat that you will create.
In this example, if an integer is four bytes, a Cat is eight bytes big: itsAge is four bytes,
and itsWeight is another four bytes. Meow() takes up only the room required for storing
information on the location of Meow (). This is a pointer to a function that can take four
bytes on a 32-bit platform.

A Word on Naming Conventions

As a programmer, you must name all your member variables, member functions, and
classes. As you learned on Day 3, “Working with Variables and Constants,” these should
be easily understood and meaningful names. Cat, Rectangle, and Employee are good
class names. Meow (), ChaseMice (), and StopEngine() are good function names because
they tell you what the functions do. Many programmers name the member variables with
the prefix “its,” as in itsAge, itsWeight, and itsSpeed. This helps to distinguish mem-
ber variables from nonmember variables.

Other programmers use different prefixes. Some prefer myAge, mywWeight, and mySpeed.
Still others simply use the letter m (for member), possibly with an underscore (_) such as
mAge or m_age, mWeight or m_weight, or mSpeed or m_speed.

Some programmers like to prefix every class name with a particular letter—for example,
cCat or cPerson—whereas others put the name in all uppercase or all lowercase. The
convention that this book uses is to name all classes with initial capitalization, as in Cat
and Person.

Similarly, many programmers begin all functions with capital letters and all variables
with lowercase. Words are usually separated with an underscore—as in Chase_Mice—
or by capitalizing each word—for example, ChaseMice or DrawCircle.

| 142 Day 6

The important idea is that you should pick one style and stay with it through each pro-
gram. Over time, your style will evolve to include not only naming conventions, but also
indentation, alignment of braces, and commenting style.

NOTE It's common for development companies to have house standards for many
style issues. This ensures that all developers can easily read one another’s
code. Unfortunately, this extends to the companies that develop operating
systems and libraries of reusable classes, which usually means that C++ pro-
grams must work with several different naming conventions at once.

CAUTION As stated before, C++ is case sensitive, so all class, function, and variable
names should follow the same pattern so that you never have to check how
to spell them—was it Rectangle, rectangle, or RECTANGLE?

Defining an Object

After you declare a class, you can then use it as a new type to declare variables of that
type. You declare an object of your new type the same as you declare an integer variable:

unsigned int GrossWeight; // define an unsigned integer
Cat Frisky; /| define a Cat

This code defines a variable called GrossWeight, whose type is an unsigned integer. It
also defines Frisky, which is an object whose class (or type) is Cat.

Classes Versus Objects

You never pet the definition of a cat; you pet individual cats. You draw a distinction
between the idea of a cat and the particular cat that right now is shedding all over your
living room. In the same way, C++ differentiates between the class Cat, which is the idea
of a cat, and each individual Cat object. Thus, Frisky is an object of type Cat in the
same way that GrossWeight is a variable of type unsigned int.

An object is an individual instance of a class.

Accessing Class Members

After you define an actual Cat object—for example,

Cat Frisky;

Understanding Object-Oriented Programming 143 |

you use the dot operator (.) to access the members of that object. Therefore, to assign 50
to Frisky’s Weight member variable, you would write

Frisky.itsWeight = 50;
In the same way, to call the Meow () function, you would write

Frisky.Meow();

When you use a class method, you call the method. In this example, you are calling
Meow () on Frisky.

Assigning to Objects, Not to Classes

In C++, you don’t assign values to types; you assign values to variables. For example,
you would never write

int = 5; // wrong
The compiler would flag this as an error because you can’t assign 5 to an integer. Rather,
you must define an integer variable and assign 5 to that variable. For example,

int x; // define x to be an int
X = 5; /] set x's value to 5

This is a shorthand way of saying, “Assign 5 to the variable x, which is of type int.” In
the same way, you wouldn’t write

Cat.itsAge=5; // wrong

The compiler would flag this as an error because you can’t assign 5 to the age part of a
class called Cat. Rather, you must define a specific Cat object and assign 5 to that object.
For example,

Cat Frisky; // just like int x;
Frisky.itsAge = 5; // just like x = 5;

If You Don’t Declare It, Your Class Won't Have It

Try this experiment: Walk up to a three-year-old and show her a cat. Then say, “This is
Frisky. Frisky knows a trick. Frisky, bark.” The child will giggle and say, “No, silly, cats
can’t bark.”

If you wrote

Cat Frisky; // make a Cat named Frisky
Frisky.Bark() // tell Frisky to bark

the compiler would say, “No, silly, Cats can’t bark.” (Your compiler’s wording will prob-
ably look more like “[531] Error: Member function Bark not found in class Cat”.) The

|144

Day 6

compiler knows that Frisky can’t bark because the Cat class doesn’t have a Bark()
method. The compiler wouldn’t even let Frisky meow if you didn’t define a Meow ()
function.

o

DO use the keyword class to declare a DON'T confuse a declaration with a defi-
class. nition. A declaration says what a class is.
DO use the dot operator (.) to access A definition sets aside memory for an
class members and functions. object.

DON'T confuse a class with an object.

DON'T assign values to a class. Assign val-
ues to the data members of an object.

Private Versus Public Access

Additional keywords are often used in the declaration of a class. Two of the most impor-
tant are public and private.

The private and public keywords are used with members of a class—both data mem-
bers and member methods. Private members can be accessed only within methods of the
class itself. Public members can be accessed through any object of the class. This distinc-
tion is both important and confusing. All members of a class are private, by default.

To make this a bit clearer, consider an example from earlier:

class Cat

{
unsigned int itsAge;
unsigned int itsWeight;
void Meow();

b

In this declaration, itsAge, itsWeight, and Meow() are all private because all members
of a class are private by default. Unless you specify otherwise, they are private. If you
create a program and try to write the following within main (for example):

int main()
{
Cat Boots;
Boots.itsAge=5; /] error! can't access private data!

the compiler flags this as an error. In effect, by leaving these members as private,
you’ve said to the compiler, “I’ll access itsAge, itsWeight, and Meow() only from

Understanding Object-Oriented Programming 145|

within member functions of the Cat class.” Yet, here, you’ve accessed the itsAge mem-
ber variable of the Boots object from outside a Cat method. Just because Boots is an
object of class Cat, that doesn’t mean that you can access the parts of Boots that are pri-
vate (even though they are visible in the declaration).

This is a source of endless confusion to new C++ programmers. I can almost hear you
yelling, “Hey! I just said Boots is a Cat. Why can’t Boots access his own age?” The
answer is that Boots can, but you can’t. Boots, in his own methods, can access all his
parts—public and private. Even though you’ve created a Cat, that doesn’t mean that you
can see or change the parts of it that are private.

The way to use Cat so that you can access the data members is to make some of the
members public:

class Cat

{
public:
unsigned int itsAge;
unsigned int itsWeight;
void Meow();

b

In this declaration, itsAge, itsWeight, and Meow() are all public. Boots.itsAge=5 from
the previous example will compile without problems.

NOTE The keyword public applies to all members in the declaration until the key-
word private is encountered—and vice versa. This lets you easily declare
sections of your class as public or private.

Listing 6.1 shows the declaration of a Cat class with public member variables.

LISTING 6.1 Accessing the Public Members of a Simple Class

1: // Demonstrates declaration of a class and

2: // definition of an object of the class

3:

4: #include <iostream>

5:

6: class Cat // declare the Cat class
7: {

8: public: // members that follow are public
9: int itsAge; // member variable
10: int itsWeight; // member variable
11: }; // note the semicolon

| 146 Day 6

LisTING 6.1 continued

12:

13: int main()

14: {

15: Cat Frisky;

16: Frisky.itsAge = 5; // assign to the member variable
17: std::cout << "Frisky is a cat who is " ;

18: std::cout << Frisky.itsAge << " years old.\n";

19: return 0;

20: }

Frisky is a cat who is 5 years old.
OuTPUT y

ANALYSES Line 6 contains the keyword class. This tells the compiler that what follows is a
declaration. The name of the new class comes after the keyword class. In this
case, the name is Cat.

The body of the declaration begins with the opening brace on line 7 and ends with a
closing brace and a semicolon on line 11. Line 8 contains the keyword public followed
by a colon, which indicates that everything that follows is public until the keyword
private or the end of the class declaration.

Lines 9 and 10 contain the declarations of the class members itsAge and itsWeight.

Line 13 begins the main() function of the program. Frisky is defined on line 15 as an
instance of a Cat—that is, as a Cat object. On line 16, Frisky’s age is set to 5. On lines
17 and 18, the itsAge member variable is used to print out a message about Frisky. You
should notice on lines 16 and 18 how the member of the Frisky object is accessed.
itsAge is accessed by using the object name (Frisky in this case) followed by period
and then the member name (itsAge in this case).

NOTE Try commenting out line 8 and try to recompile. You will receive an error on
line 16 because itsAge will no longer have public access. Rather, itsAge and
the other members go to the default access, which is private access.

Making Member Data Private

As a general rule of design, you should keep the data members of a class private. Of
course, if you make all of the data members private, you might wonder how you access
information about the class. For example, if itsAge is private, how would you be able to
set or get a Cat object’s age?

Understanding Object-Oriented Programming 147 |

To access private data in a class, you must create public functions known as accessor
methods. Use these methods to set and get the private member variables. These accessor
methods are the member functions that other parts of your program call to get and set
your private member variables.

A public accessor method is a class member function used either to read (get) the value
of a private class member variable or to set its value.

Why bother with this extra level of indirect access? Why add extra functions when it is
simpler and easier to use the data directly? Why work through accessor functions?

The answer to these questions is that accessor functions enable you to separate the
details of how the data is stored from how it is used. By using accessor functions, you
can later change how the data is stored without having to rewrite any of the other func-
tions in your programs that use the data.

If a function that needs to know a Cat’s age accesses itsAge directly, that function would
need to be rewritten if you, as the author of the Cat class, decided to change how that
data is stored. By having the function call GetAge (), your Cat class can easily return the
right value no matter how you arrive at the age. The calling function doesn’t need to
know whether you are storing it as an unsigned integer or a long, or whether you are
computing it as needed.

This technique makes your program easier to maintain. It gives your code a longer life
because design changes don’t make your program obsolete.

In addition, accessor functions can include additional logic, for instance, if a Cat’s age is
unlikely to be more than 100, or its weight is unlikely to be 1000. These values should
probably not be allowed. An accessor function can enforce these types of restrictions as
well as do other tasks.

Listing 6.2 shows the Cat class modified to include private member data and public
accessor methods. Note that this is not a listing that can be run if it is compiled.

LISTING 6.2 A Class with Accessor Methods

// public accessors
unsigned int GetAge();

1: // Cat class declaration

2: // Data members are private, public accessor methods

3: // mediate setting and getting the values of the private data
4:

4: class Cat

5: {

6: public:

7:

8:

| 148 Day 6

LISTING 6.2 continued

9: void SetAge(unsigned int Age);
10:

11: unsigned int GetWeight();

12: void SetWeight(unsigned int Weight);
13:

14: /] public member functions

15: void Meow();

16:

17: /] private member data

18: private:

19: unsigned int itsAge;

20: unsigned int itsWeight;

21: };

This class has five public methods. Lines 8 and 9 contain the accessor methods
for itsAge. You can see that on line § there is a method for getting the age and
on line 9 there is one for setting it. Lines 11 and 12 contain similar accessor methods for
itsWeight. These accessor functions set the member variables and return their values.

The public member function Meow () is declared on line 15. Meow() is not an accessor
function. It doesn’t get or set a member variable; it performs another service for the
class, printing the word “Meow.”

The member variables themselves are declared on lines 19 and 20.

To set Frisky’s age, you would pass the value to the SetAge () method, as in

Cat Frisky;
Frisky.SetAge(5); // set Frisky's age using the public accessor

Later today, you’ll see the specific code for making the SetAge and the other methods
work.

Declaring methods or data private enables the compiler to find programming mistakes
before they become bugs. Any programmer worth his consulting fees can find a way
around privacy if he wants to. Stroustrup, the inventor of C++, said, “The C++ access
control mechanisms provide protection against accident—not against fraud” (ARM,
1990).

The class Keyword

Syntax for the class keyword is as follows:
class class_name

{

Understanding Object-Oriented Programming

149|

/| access control keywords here
// class variables and methods declared here
}s

You use the class keyword to declare new types. A class is a collection of class member
data, which are variables of various types, including other classes. The class also contains
class functions—or methods—which are functions used to manipulate the data in the
class and to perform other services for the class.

You define objects of the new type in much the same way in which you define any vari-
able. State the type (class) and then the variable name (the object). You access the class
members and functions by using the dot (.) operator.

You use access control keywords to declare sections of the class as public or private. The
default for access control is private. Each keyword changes the access control from that
point on to the end of the class or until the next access control keyword. Class declara-

tions end with a closing brace and a semicolon.

Example 1
class Cat

{
public:
unsigned int Age;
unsigned int Weight;
void Meow();
}s

Cat Frisky;
Frisky.Age = 8;
Frisky.Weight = 18;
Frisky.Meow();

Example 2

class Car

{
public: /] the next five are public

void Start();

void Accelerate();
void Brake();

void SetYear(int year);
int GetYear();

private: /] the rest is private

int Year;

Char Model [255];
s /| end of class declaration
Car OldFaithful; // make an instance of car
int bought; // a local variable of type int
OldFaithful.SetYear(84) ; // assign 84 to the year
bought = OldFaithful.GetYear(); /| set bought to 84

0ldFaithful.Start(); // call the start method

|150 Day 6

o

DO use public accessor methods. DON'T declare member variables public
if you don’t need to.

DO access private member variables from
within class member functions. DON'T try to use private member vari-
ables from outside the class.

Implementing Class Methods

As you’ve seen, an accessor function provides a public interface to the private member
data of the class. Each accessor function, along with any other class methods that you
declare, must have an implementation. The implementation is called the function
definition.

A member function definition begins similarly to the definition of a regular function.
First, you state the return type that will come from the function, or void if nothing will
be returned. This is followed by the name of the class, two colons, the name of the func-
tion, and then the function’s parameters. Listing 6.3 shows the complete declaration of a
simple Cat class and the implementation of its accessor function and one general class
member function.

LisTING 6.3 Implementing the Methods of a Simple Class

1: // Demonstrates declaration of a class and

2: [/ definition of class methods

3: #include <iostream> /] for cout

4:

5: class Cat // begin declaration of the class
6: {

7: public: // begin public section
8: int GetAge(); /| accessor function

9: void SetAge (int age); // accessor function

10: void Meow(); // general function

11: private: // begin private section
12: int itsAge; // member variable

13: };

14:

15: // GetAge, Public accessor function
16: // returns value of itsAge member
17: int Cat::GetAge()

18: |
19: return itsAge;
20: }

Understanding Object-Oriented Programming 151 |

LiSTING 6.3 continued

22: /] definition of SetAge, public
23: // accessor function

24: /| sets itsAge member

25: void Cat::SetAge(int age)

26: {

27: /1 set member variable itsAge to
28: // value passed in by parameter age
29: itsAge = age;

30: }

31:

32: // definition of Meow method

33: // returns: void

34: // parameters: None

35: // action: Prints "meow" to screen
36: void Cat::Meow()

37: {

38: std::cout << "Meow.\n";
39: }

40:

41: // create a cat, set its age, have it
42: // meow, tell us its age, then meow again.
43: int main()

44: |
45: Cat Frisky;
46: Frisky.SetAge(5);
47: Frisky.Meow();
48: std::cout << "Frisky is a cat who is " ;
49: std::cout << Frisky.GetAge() << " years old.\n";
50: Frisky.Meow();
51: return 0;
52: }
Meow.
Frisky is a cat who is 5 years old.
Meow.

Lines 5-13 contain the definition of the Cat class. Line 7 contains the keyword
public, which tells the compiler that what follows is a set of public members.
Line 8 has the declaration of the public accessor method GetAge (). GetAge () provides
access to the private member variable itsAge, which is declared on line 12. Line 9 has
the public accessor function SetAge (). SetAge () takes an integer as an argument and
sets itsAge to the value of that argument.

Line 10 has the declaration of the class method Meow (). Meow() is not an accessor func-
tion. Here it is a general method that prints the word “Meow” to the screen.

|152

Day 6

Line 11 begins the private section, which includes only the declaration on line 12 of the
private member variable itsAge. The class declaration ends with a closing brace and
semicolon on line 13.

Lines 17-20 contain the definition of the member function GetAge (). This method takes
no parameters, and it returns an integer. Note on line 17 that class methods include the
class name followed by two colons and the function name. This syntax tells the compiler
that the GetAge () function you are defining here is the one that you declared in the Cat
class. With the exception of this header line, the GetAge () function is created the same
as any other function.

The GetAge () function takes only one line; it returns the value in itsAge. Note that the
main () function cannot access itsAge because itsAge is private to the Cat class. The
main () function has access to the public method GetAge ().

Because GetAge () is a member function of the Cat class, it has full access to the itsAge
variable. This access enables GetAge () to return the value of itsAge to main().

Line 25 contains the definition of the SetAge () member function. You can see that this
function takes one integer value, called age, and doesn’t return any values, as indicated
by void. SetAge () takes the value of the age parameter and assigns it to itsAge on line
29. Because SetAge () is a member of the Cat class, it has direct access to the private
member variable itsAge.

Line 36 begins the definition, or implementation, of the Meow () method of the Cat class.
It is a one-line function that prints the word “Meow” to the screen, followed by a new
line. Remember that the \n character prints a new line to the screen. You can see that
Meow is set up just like the accessor functions in that it begins with the return type, the
class name, the function name, and the parameters (none in this case).

Line 43 begins the body of the program with the familiar main () function. On line 45,
main() declares an object called Frisky of type Cat. Read a different way, you could say
that main () declares a Cat named Frisky.

On line 46, the value 5 is assigned to the itsAge member variable by way of the
SetAge () accessor method. Note that the method is called by using the object name
(Frisky) followed by the member operator (.) and the method name (SetAge()). In this
same way, you can call any of the other methods in a class.

NOTE The terms member function and method can be used interchangeably.

Understanding Object-Oriented Programming 153 |

Line 47 calls the Meow () member function, and line 48 prints a message using the
GetAge () accessor. Line 50 calls Meow() again. Although these methods are a part of a
class (Cat) and are being used through an object (Frisky), they operate just like the
functions you have seen before.

Adding Constructors and Destructors

Two ways exist to define an integer variable. You can define the variable and then assign
a value to it later in the program. For example:

int Weight; /| define a variable
/] other code here
Weight = 7; /] assign it a value

Or, you can define the integer and immediately initialize it. For example,
int Weight = 7; // define and initialize to 7

Initialization combines the definition of the variable with its initial assignment. Nothing
stops you from changing that value later. Initialization ensures that your variable is never
without a meaningful value.

How do you initialize the member data of a class? You can initialize the member data of
a class using a special member function called a constructor. The constructor can take
parameters as needed, but it cannot have a return value—not even void. The constructor
is a class method with the same name as the class itself.

Whenever you declare a constructor, you’ll also want to declare a destructor. Just as con-
structors create and initialize objects of your class, destructors clean up after your object
and free any resources or memory that you might have allocated (either in the construc-
tor, or throughout the lifespan of the object). A destructor always has the name of the
class, preceded by a tilde (~). Destructors take no arguments and have no return value.

If you were to declare a destructor for the Cat class, its declaration would look like the
following:

~Cat();

Getting a Default Constructor and Destructor

Many types of constructors are available; some take arguments, others do not. The one
that takes no arguments is called the default constructor. There is only one destructor.
Like the default constructor, it takes no arguments.

It turns out that if you don’t create a constructor or a destructor, the compiler provides
one for you. The constructor that is provided by the compiler is the default constructor.

|154

Day 6

The default constructor and destructor created by the compiler don’t have arguments. In
addition, they don’t appear to do anything! If you want them to do something, you must
create your own default constructor or destructor.

Using the Default Constructor

What good is a constructor that does nothing? In part, it is a matter of form. All objects
must be “constructed” and “destructed,” and these do-nothing functions are called as a
part of the process of constructing and destructing.

To declare an object without passing in parameters, such as
Cat Rags; // Rags gets no parameters

you must have a constructor in the form

Cat();

When you define an object of a class, the constructor is called. If the Cat constructor
took two parameters, you might define a Cat object by writing

Cat Frisky (5,7);

In this example, the first parameter might be its age and the second might be its weight.
If the constructor took one parameter, you would write

Cat Frisky (3);

In the event that the constructor takes no parameters at all (that is, that it is a default con-
structor), you leave off the parentheses and write

Cat Frisky;

This is an exception to the rule that states all functions require parentheses, even if they
take no parameters. This is why you are able to write

Cat Frisky;

This is interpreted as a call to the default constructor. It provides no parameters, and it
leaves off the parentheses.

Note that you don’t have to use the compiler-provided default constructor. You are
always free to write your own default constructor—that is, a constructor with no parame-
ters. You are free to give your default constructor a function body in which you might
initialize the object. As a matter of form, it is always recommended that you define a
constructor, and set the member variables to appropriate defaults, to ensure that the
object will always behave correctly.

Understanding Object-Oriented Programming 155|

Also as a matter of form, if you declare a constructor, be certain to declare a destructor,
even if your destructor does nothing. Although it is true that the default destructor would
work correctly, it doesn’t hurt to declare your own. It makes your code clearer.

Listing 6.4 rewrites the Cat class to use a nondefault constructor to initialize the Cat
object, setting its age to whatever initial age you provide, and it demonstrates where the
destructor is called.

LisTING 6.4 Using Constructors and Destructors

1: // Demonstrates declaration of constructors and

2: /| destructor for the Cat class

3: // Programmer created default constructor

4: #include <iostream> /] for cout

5:

6: class Cat // begin declaration of the class
7: {

8: public: // begin public section
9: Cat(int initialAge); // constructor

10: ~Cat(); // destructor

11: int GetAge(); // accessor function

12: void SetAge(int age); // accessor function

13: void Meow();

14: private: // begin private section
15: int itsAge; // member variable

16: };

17:

18: // constructor of Cat,
19: Cat::Cat(int initialAge)

20: {

21: itsAge = initialAge;

22: '}

23:

24: Cat::~Cat() /| destructor, takes no action
25: {

26: }

27:

28: // GetAge, Public accessor function
29: // returns value of itsAge member
30: 1int Cat::GetAge()

31 {

32: return itsAge;
33: }

34:

35: // Definition of SetAge, public

36: // accessor function

37: void Cat::SetAge(int age)

38: {

39: /| set member variable itsAge to

|156 Day 6

LiSTING 6.4 continued

40: /] value passed in by parameter age
41: itsAge = age;

42: '}

43:

44: [/ definition of Meow method

45: // returns: void

46: // parameters: None

47: // action: Prints "meow" to screen
48: void Cat::Meow()

49: {

50: std::cout << "Meow.\n";
51: }

52:

53: // create a cat, set its age, have it
54: /] meow, tell us its age, then meow again.
55: int main()

56: |

57: Cat Frisky(5);

58: Frisky.Meow();

59: std::cout << "Frisky is a cat who is " ;

60: std::cout << Frisky.GetAge() << " years old.\n";
61: Frisky.Meow();

62: Frisky.SetAge(7);

63: std::cout << "Now Frisky is " ;

64: std::cout << Frisky.GetAge() << " years old.\n";
65: return 0;

66: }

Meow.

Frisky is a cat who is 5 years old.
Meow.

Now Frisky is 7 years old.

ARG Listing 6.4 is similar to Listing 6.3, except that line 9 adds a constructor that
takes an integer. Line 10 declares the destructor, which takes no parameters.

Destructors never take parameters, and neither constructors nor destructors return a
value—not even void.

OuTPUT

Lines 19-22 show the implementation of the constructor. It is similar to the implementa-
tion of the SetAge () accessor function. As you can see, the class name precedes the con-
structor name. As mentioned before, this identifies the method, Cat () in this case as a
part of the Cat class. This is a constructor, so there is no return value—not even void.
This constructor does, however, take an initial value that is assigned to the data member,
itsAge, on line 21.

Understanding Object-Oriented Programming 157 |

Lines 24-26 show the implementation of the destructor ~Cat (). For now, this function
does nothing, but you must include the definition of the function if you declare it in the
class declaration. Like the constructor and other methods, this is also preceded by the
class name. Like the constructor, but differing from other methods, no return time or
parameters are included. This is standard for a destructor.

Line 57 contains the definition of a Cat object, Frisky. The value 5 is passed in to
Frisky’s constructor. No need exists to call SetAge () because Frisky was created with
the value 5 in its member variable itsAge, as shown on line 60. On line 62, Frisky’s
itsAge variable is reassigned to 7. Line 64 prints the new value.

5

DO use constructors to initialize your DON'T give constructors or destructors a
objects. return value.

DO add a destructor if you add a DON'T give destructors parameters.
constructor.

Including const Member Functions

You have used the const keyword to declare variables that would not change. You can
also use the const keyword with member functions within a class. If you declare a class
method const, you are promising that the method won’t change the value of any of the
members of the class.

To declare a class method constant, put the keyword const after the parentheses enclos-
ing any parameters, but before the semicolon ending the method declaration. For
example,

void SomeFunction() const;

This declares a constant member method called SomeFunction() that takes no arguments
and returns void. You know this will not change any of the data members within the
same class because it has been declared const.

Accessor functions that only get values are often declared as constant functions by using
the const modifier. Earlier, you saw that the Cat class has two accessor functions:

void SetAge(int anAge);
int GetAge();

SetAge () cannot be const because it changes the member variable itsAge. GetAge (), on
the other hand, can and should be const because it doesn’t change the class at all.

|158

Day 6

GetAge () simply returns the current value of the member variable itsAge. Therefore, the
declaration of these functions should be written like this:

void SetAge(int anAge);
int GetAge() const;

If you declare a function to be const, and the implementation of that function changes
the object by changing the value of any of its members, the compiler flags it as an error.
For example, if you wrote GetAge () in such a way that it kept count of the number of
times that the Cat was asked its age, it would generate a compiler error. This is because
you would be changing the Cat object when the method was called.

It is good programming practice to declare as many methods to be const as possible.
Each time you do, you enable the compiler to catch your errors instead of letting your
errors become bugs that will show up when your program is running.

Interface Versus Implementation

Clients are the parts of the program that create and use objects of your class. You can
think of the public interface to your class—the class declaration—as a contract with
these clients. The contract tells how your class will behave.

In the Cat class declaration, for example, you create a contract that every Cat’s age can
be initialized in its constructor, assigned to by its SetAge () accessor function, and read
by its GetAge () accessor. You also promise that every Cat will know how to Meow().
Note that you say nothing in the public interface about the member variable itsAge; that
is an implementation detail that is not part of your contract. You will provide an age
(GetAge()) and you will set an age (SetAge()), but the mechanism (itsAge) is invisible.

If you make GetAge () a const function—as you should—the contract also promises that
GetAge () won’t change the Cat on which it is called.

C++ is strongly typed, which means that the compiler enforces these contracts by giving
you a compiler error when you violate them. Listing 6.5 demonstrates a program that
doesn’t compile because of violations of these contracts.

CAUTION Listing 6.5 does not compile!

Understanding Object-Oriented Programming 159 |

LISTING 6.5 A Demonstration of Violations of the Interface

1: // Demonstrates compiler errors

2: // This program does not compile!

3: #include <iostream> /] for cout
4:

5: class Cat

6: {

7: public:

8: Cat(int initialAge);

9: ~Cat();

10: int GetAge() const; // const accessor function
11: void SetAge (int age);

12: void Meow();

13: private:

14: int itsAge;

15: };

16:

17: |/ constructor of Cat,
18: Cat::Cat(int initialAge)

19:

20: itsAge = initialAge;

21: std::cout << "Cat Constructor\n";

22: }

23:

24: Cat::~Cat() // destructor, takes no action
25: {

26: std::cout << "Cat Destructor\n";

27: }

28: // GetAge, const function
29: // but we violate const!
30: int Cat::GetAge() const

31: {

32: return (itsAge++); // violates const!
33: }

34:

35: // definition of SetAge, public
36: // accessor function

37:

38: void Cat::SetAge(int age)

39: {

40: /] set member variable its age to
41: // value passed in by parameter age
42: itsAge = age;

43: }

44:

45: // definition of Meow method

46: // returns: void

47: |/ parameters: None

48: // action: Prints "meow" to screen

|160 Day 6

LISTING 6.5 continued

49: void Cat::Meow()

50: |

51: std::cout << "Meow.\n";
52: }

53:

54: [/ demonstrate various violations of the
55: // interface, and resulting compiler errors
56: int main()

57: {

58: Cat Frisky; // doesn't match declaration
59: Frisky.Meow();

60: Frisky.Bark(); // No, silly, cat's can't bark.
61: Frisky.itsAge = 7; // itsAge is private

62: return 0;

63: }

As it is written, this program doesn’t compile. Therefore, there is no output.
ANALYSIS

This program was fun to write because so many errors are in it.

Line 10 declares GetAge () to be a const accessor function—as it should be. In the body
of GetAge (), however, on line 32, the member variable itsAge is incremented. Because
this method is declared to be const, it must not change the value of itsAge. Therefore, it
is flagged as an error when the program is compiled.

On line 12, Meow() is not declared const. Although this is not an error, it is poor pro-
gramming practice. A better design takes into account that this method doesn’t change
the member variables of Cat. Therefore, Meow() should be const.

Line 58 shows the creation of a Cat object, Frisky. Cat now has a constructor, which
takes an integer as a parameter. This means that you must pass in a parameter. Because
no parameter exists on line 58, it is flagged as an error.

NOTE If you provide any constructor, the compiler will not provide one at all. Thus,
if you create a constructor that takes a parameter, you then have no default
constructor unless you write your own.

Line 60 shows a call to a class method, Bark (). Bark() was never declared. Therefore, it
is illegal.

Understanding Object-Oriented Programming

161|

Line 61 shows itsAge being assigned the value 7. Because itsAge is a private data
member, it is flagged as an error when the program is compiled.

Why Use the Compiler to Catch Errors?

Although it would be wonderful to write 100 percent bug-free code, few programmers
have been able to do so. However, many programmers have developed a system to help
minimize bugs by catching and fixing them early in the process.

Although compiler errors are infuriating and are the bane of a programmer’s existence,
they are far better than the alternative. A weakly typed language enables you to violate
your contracts without a peep from the compiler, but your program crashes at runtime—
when, for example, your boss is watching. Worse yet, testing is of comparatively little
help in catching errors, because there are too many paths through real programs to have
any hope of testing them all.

Compile-time errors—that is, errors found while you are compiling—are far better than
runtime errors—that is, errors found while you are executing the program. This is
because compile-time errors can be found much more reliably. It is possible to run a pro-
gram many times without going down every possible code path. Thus, a runtime error
can hide for quite a while. Compile-time errors are found every time you compile. Thus,
they are easier to identify and fix. It is the goal of quality programming to ensure that
the code has no runtime bugs. One tried-and-true technique to accomplish this is to use
the compiler to catch your mistakes early in the development process.

Where to Put Class Declarations and Method
Definitions

Each function that you declare for your class must have a definition. The definition is
also called the function implementation. Like other functions, the definition of a class
method has a function header and a function body.

The definition must be in a file that the compiler can find. Most C++ compilers want that
file to end with .c or .cpp. This book uses .cpp, but check your compiler to see what it
prefers.

NOTE

Many compilers assume that files ending with .c are C programs, and that
C++ program files end with .cpp. You can use any extension, but .cpp mini-
mizes confusion.

|162

Day 6

You are free to put the declaration in this file as well, but that is not good programming
practice. The convention that most programmers adopt is to put the declaration into what
is called a header file, usually with the same name but ending in .h, .hp, or .hpp. This
book names the header files with . hpp, but check your compiler to see what it prefers.

For example, you put the declaration of the Cat class into a file named Cat.hpp, and you
put the definition of the class methods into a file called Cat.cpp. You then attach the
header file to the .cpp file by putting the following code at the top of Cat.cpp:

#include "Cat.hpp"

This tells the compiler to read Cat.hpp into the file, the same as if you had typed in its
contents at this point. Be aware that some compilers insist that the capitalization agree
between your #include statement and your file system.

Why bother separating the contents of your . hpp file and your . cpp file if you’re just
going to read the .hpp file back into the .cpp file? Most of the time, clients of your class
don’t care about the implementation specifics. Reading the header file tells them every-
thing they need to know; they can ignore the implementation files. In addition, you might
very well end up including the . hpp file into more than one .cpp file.

NOTE The declaration of a class tells the compiler what the class is, what data it

holds, and what functions it has. The declaration of the class is called its
interface because it tells the user how to interact with the class. The inter-
face is usually stored in an .hpp file, which is referred to as a header file.

The function definition tells the compiler how the function works. The func-
tion definition is called the implementation of the class method, and it is
kept in a .cpp file. The implementation details of the class are of concern
only to the author of the class. Clients of the class—that is, the parts of the
program that use the class—don’t need to know, and don’t care, how the
functions are implemented.

Inline Implementation

Just as you can ask the compiler to make a regular function inline, you can make class
methods inline. The keyword inline appears before the return type. The inline imple-
mentation of the GetWeight () function, for example, looks like this:

inline int Cat::GetWeight()
{

}

return itsWeight; // return the Weight data member

Understanding Object-Oriented Programming 163 |

You can also put the definition of a function into the declaration of the class, which auto-
matically makes that function inline. For example,

class Cat

{
public:
int GetWeight() { return itsWeight; } // inline
void SetWeight(int aWeight);

b

Note the syntax of the GetWeight () definition. The body of the inline function begins
immediately after the declaration of the class method; no semicolon is used after the
parentheses. Like any function, the definition begins with an opening brace and ends
with a closing brace. As usual, whitespace doesn’t matter; you could have written the
declaration as

class Cat

{
public:
int GetWeight() const
{
return itsWeight;

} // inline

void SetWeight(int aWeight);
b
Listings 6.6 and 6.7 re-create the Cat class, but they put the declaration in Cat.hpp and
the implementation of the functions in Cat.cpp. Listing 6.7 also changes the accessor
functions and the Meow () function to inline.

LISTING 6.6 cCat Class Declaration in Cat.hpp

1: #include <iostream>

2: class Cat

3: {

4: public:

5: Cat (int initialAge);

6: ~Cat();

7: int GetAge() const { return itsAge;} // inline!
8: void SetAge (int age) { itsAge = age;} /] inline!
9: void Meow() const { std::cout << "Meow.\n";} // inline!
10: private:

11: int itsAge;

12: }y

|164 Day 6

LISTING 6.7 cCat Implementation in Cat.cpp

1: // Demonstrates inline functions

2: // and inclusion of header files

3: // be sure to include the header files!

4: #include "Cat.hpp"

5:

6:

7: Cat::Cat(int initialAge) //constructor

8: {

9: itsAge = initialAge;

10: }

11:

12: Cat::~Cat() / /destructor, takes no action
131 {

14: }

15:

16: // Create a cat, set its age, have it

17: // meow, tell us its age, then meow again.

18: int main()

19 {

20: Cat Frisky(5);

21: Frisky.Meow();

22: std::cout << "Frisky is a cat who is " ;

23: std::cout << Frisky.GetAge() << " years old.\n";
24: Frisky.Meow();

25: Frisky.SetAge(7);

26: std::cout << "Now Frisky is " ;

27: std::cout << Frisky.GetAge() << " years old.\n";
28: return 0;

29: }

Meow.

Frisky is a cat who is 5 years old.
Meow.

Now Frisky is 7 years old.

OuTPUT

The code presented in Listing 6.6 and Listing 6.7 is similar to the code in Listing
6.4, except that three of the methods are written inline in the declaration file and
the declaration has been separated into Cat.hpp (Listing 6.6).

GetAge () is declared on line 6 of Cat.hpp, and its inline implementation is provided.
Lines 7 and 8 provide more inline functions, but the functionality of these functions is
unchanged from the previous “outline” implementations.

Line 4 of cat.cpp (Listing 6.7) shows #include "Cat.hpp", which brings in the listings
from Cat.hpp. By including Cat.hpp, you have told the precompiler to read Cat.hpp into
the file as if it had been typed there, starting on line 5.

Understanding Object-Oriented Programming 165|

This technique enables you to put your declarations into a different file from your imple-
mentation, yet have that declaration available when the compiler needs it. This is a very
common technique in C++ programming. Typically, class declarations are in an . hpp file
that is then #included into the associated .cpp file.

Lines 18-29 repeat the main function from Listing 6.4. This shows that making these
functions inline doesn’t change their performance.

Classes with Other Classes as Member Data

It is not uncommon to build up a complex class by declaring simpler classes and includ-
ing them in the declaration of the more complicated class. For example, you might
declare a wheel class, a motor class, a transmission class, and so forth, and then combine
them into a car class. This declares a has-a relationship. A car has a motor, it has wheels,
and it has a transmission.

Consider a second example. A rectangle is composed of lines. A line is defined by two
points. A point is defined by an x-coordinate and a y-coordinate. Listing 6.8 shows a
complete declaration of a Rectangle class, as might appear in Rectangle.hpp. Because
a rectangle is defined as four lines connecting four points, and each point refers to a
coordinate on a graph, you first declare a Point class to hold the x- and y-coordinates of
each point. Listing 6.9 provides the implementation for both classes.

LisTING 6.8 Declaring a Complete Class

1: // Begin Rectangle.hpp

2: #include <iostream>

3: class Point // holds x,y coordinates
4: {

5: // no constructor, use default

6: public:

7: void SetX(int x) { itsX = x; }

8: void SetY(int y) { itsY =vy; }

9: int GetX()const { return itsX;}

10: int GetY()const { return itsY;}

11: private:

12: int itsX;

13: int itsY;

14: }; // end of Point class declaration
15:

16:

17: class Rectangle

18: {

19: public:

20: Rectangle (int top, int left, int bottom, int right);

|166

Day 6

LisTING 6.8

continued

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:

h

~Rectangle () {}

int GetTop() const { return itsTop; }

int GetLeft() const { return itsLeft; }

int GetBottom() const { return itsBottom; }
int GetRight() const { return itsRight; }

Point GetUpperLeft(
Point GetLowerLeft(

const { return itsUpperLeft; }
const { return itsLowerLeft; }

)

)
Point GetUpperRight() const { return itsUpperRight; }
Point GetLowerRight() const { return itsLowerRight; }

void SetUpperLeft(Point Location) {itsUpperLeft
void SetLowerLeft(Point Location) {itsLowerLeft

void SetUpperRight(Point Location) {itsUpperRight
void SetLowerRight(Point Location) {itsLowerRight

void SetTop(int top) { itsTop = top;

}

void SetLeft (int left) { itsLeft = left; }

void SetBottom (int bottom) { itsBottom

void SetRight (int right) { itsRight
int GetArea() const;

private:

Point itsUpperLeft;
Point itsUpperRight;
Point itsLowerLeft;
Point itsLowerRight;
int itsTop;

int itsLeft;

int itsBottom;

int itsRight;

/] end Rectangle.hpp

= bottom; }

right; }

Location;}
Location;}

Location;}
Location;}

LISTING 6.9 Rect.cpp

ONOO O~ WD =

/] Begin Rect.cpp
#include "Rectangle.hpp"
Rectangle: :Rectangle(int top, int left, int bottom, int right)

{

itsTop = top;
itsLeft = left;
itsBottom = bottom;
itsRight = right;

Understanding Object-Oriented Programming

167|

LisTING 6.9

continued

9:
10: itsUpperLeft.SetX(left);
11: itsUpperLeft.SetY(top);
12:
13: itsUpperRight.SetX(right);
14: itsUpperRight.SetY(top);
15:
16: itsLowerLeft.SetX(left);
17: itsLowerLeft.SetY(bottom);
18:
19: itsLowerRight.SetX(right);
20: itsLowerRight.SetY(bottom);
21: }
22:
23:
24: [/ compute area of the rectangle by finding sides,
25: // establish width and height and then multiply
26: 1int Rectangle::GetArea() const
27: |
28: int Width = itsRight-itsLeft;
29: int Height = itsTop - itsBottom;
30: return (Width * Height);
31: }
32:
33: int main()
34: {
35: //initialize a local Rectangle variable
36: Rectangle MyRectangle (100, 20, 50, 80);
37:
38: int Area = MyRectangle.GetArea();
39:
40: std::cout << "Area: " << Area << "\n";
41: std::cout << "Upper Left X Coordinate: ";
42: std::cout << MyRectangle.GetUpperLeft().GetX();
43: return 0;
44: '}
Area: 3000

OuTPUT

Upper Left X Coordinate: 20

Lines 3—-14 in Rectangle.hpp (Listing 6.8) declare the class Point, which is
used to hold a specific x- and y-coordinate on a graph. As written, this program

doesn’t use Points much; however, other drawing methods require Points.

|168 Day 6

NOTE Some compilers report an error if you declare a class named Rectangle. This
is usually because of the existence of an internal class named Rectangle. If
you have this problem, simply rename your class to myRectangle.

Within the declaration of the class Point, you declare two member variables (itsX and
itsY) on lines 12 and 13. These variables hold the values of the coordinates. As the x-
coordinate increases, you move to the right on the graph. As the y-coordinate increases,
you move upward on the graph. Other graphs use different systems. Some windowing
programs, for example, increase the y-coordinate as you move down in the window.

The Point class uses inline accessor functions declared on lines 7-10 to get and set the x
and y points. The Points class uses the default constructor and destructor. Therefore, you
must set their coordinates explicitly.

Line 17 begins the declaration of a Rectangle class. A Rectangle consists of four points
that represent the corners of the Rectangle.

The constructor for the Rectangle (line 20) takes four integers, known as top, left,
bottom, and right. The four parameters to the constructor are copied into four member
variables (Listing 6.9), and then the four Points are established.

In addition to the usual accessor functions, Rectangle has a function GetArea() declared
on line 43. Instead of storing the area as a variable, the GetArea() function computes the
area on lines 28 and 29 of Listing 6.9. To do this, it computes the width and the height of
the rectangle, and then it multiplies these two values.

Getting the x-coordinate of the upper-left corner of the rectangle requires that you access
the UpperLeft point and ask that point for its x value. Because GetUpperLeft() is a
method of Rectangle, it can directly access the private data of Rectangle, including
itsUpperLeft. Because itsUpperLeft is a Point and Point’s itsX value is private,
GetUpperLeft() cannot directly access this data. Rather, it must use the public accessor
function GetX () to obtain that value.

Line 33 of Listing 6.9 is the beginning of the body of the actual program. Until line 36,
no memory has been allocated, and nothing has really happened. The only thing you’ve
done is tell the compiler how to make a point and how to make a rectangle, in case one is
ever needed.

On line 36, you define a Rectangle by passing in values for top, left, bottom, and
right.

Understanding Object-Oriented Programming 169|

On line 38, you make a local variable, Area, of type int. This variable holds the area of
the Rectangle that you’ve created. You initialize Area with the value returned by
Rectangle’s GetArea() function. A client of Rectangle could create a Rectangle object
and get its area without ever looking at the implementation of GetArea().

Rectangle.hpp is shown in Listing 6.8. Just by looking at the header file, which contains
the declaration of the Rectangle class, the programmer knows that GetArea() returns an
int. How GetArea() does its magic is not of concern to the user of class Rectangle. In
fact, the author of Rectangle could change GetArea() without affecting the programs
that use the Rectangle class as long as it still returned an integer.

Line 42 of Listing 6.9 might look a little strange, but if you think about what is happen-
ing, it should be clear. In this line of code, you are getting the x-coordinate from the
upper-left point of your rectangle. In this line of code, you are calling the

GetUpperLeft () method of your rectangle, which returns to you a Point. From this
Point, you want to get the x-coordinate. You saw that the accessor for an x-coordinate in
the Point class is GetX (). Line 42 simply puts the GetUpperLeft() and GetX() acces-
sors together:

MyRectangle.GetUpperLeft().GetX();

This gets the x-coordinate from the upper-left point coordinate that is accessed from the
MyRectangle object.

FAQ
What is the difference between declaring and defining?

Answer: A declaration introduces a name of something but does not allocate memory. A
definition allocates memory.

With a few exceptions, all declarations are also definitions. The most important excep-
tions are the declaration of a global function (a prototype) and the declaration of a class
(usually in a header file).

Exploring Structures

A very close cousin to the keyword class is the keyword struct, which is used to
declare a structure. In C++, a struct is the same as a class, except that its members are
public by default. You can declare a structure exactly as you declare a class, and you can
give it the same data members and functions. In fact, if you follow the good program-
ming practice of always explicitly declaring the private and public sections of your class,
no difference will exist whatsoever.

|170

Day 6

Try re-entering Listing 6.8 with these changes:

* On line 3, change class Point to struct Point.

e On line 17, change class Rectangle to struct Rectangle.
Now run the program again and compare the output. No change should have occurred.

You’re probably wondering why two keywords do the same thing. This is an accident of
history. When C++ was developed, it was built as an extension of the C language. C has
structures, although C structures don’t have class methods. Bjarne Stroustrup, the creator
of C++, built upon structs, but he changed the name to class to represent the new,
expanded functionality, and the change in the default visibility of members. This also
allowed the continued use of a vast library of C functions in C++ programs.

o

DO put your class declaration in an .hpp DON'T move on until you understand
(header) file and your member functions classes.
in a .cpp file.

DO use const whenever you can.

Summary

Today, you learned how to create new data types using classes. You learned how to
define variables of these new types, which are called objects.

A class can have data members, which are variables of various types, including other
classes. A class can also include member functions—also known as methods. You use
these member functions to manipulate the member data and to perform other services.

Class members, both data and functions, can be public or private. Public members are
accessible to any part of your program. Private members are accessible only to the mem-
ber functions of the class. Members of a class are private by default.

It is good programming practice to isolate the interface, or declaration, of the class in a
header file. You usually do this in a file with an . hpp extension and then use it in your
code files (.cpp) using an include statement. The implementation of the class methods
is written in a file with a .cpp extension.

Class constructors can be used to initialize object data members. Class destructors are
executed when an object is destroyed and are often used to free memory and other
resources that might be allocated by methods of the class.

Understanding Object-Oriented Programming

171|

Q&A

Q
A

(=)

How big is a class object?

A class object’s size in memory is determined by the sum of the sizes of its mem-
ber variables. Class methods take up just a small amount of memory, which is used
to store information on the location of the method (a pointer).

Some compilers align variables in memory in such a way that two-byte variables
actually consume somewhat more than two bytes. Check your compiler manual to
be certain, but at this point you do not need to be concerned with these details.

If I declare a class Cat with a private member itsAge and then define two Cat
objects, Frisky and Boots, can Boots access Frisky’s itsAge member variable?

No. Different instances of a class can access each other’s nonpublic data. In other
words, if Frisky and Boots are both instances of Cat, Frisky’s member functions
can access Frisky’s data and but not Boots’s data.

Why shouldn’t I make all the member data public?

Making member data private enables the client of the class to use the data without
being dependent on how it is stored or computed. For example, if the Cat class has
a method GetAge (), clients of the Cat class can ask for the Cat’s age without
knowing or caring if the Cat stores its age in a member variable or computes its
age on-the-fly. This means the programmer of the Cat class can change the design
of the Cat class in the future without requiring all of the users of Cat to change
their programs as well.

If using a const function to change the class causes a compiler error, why
shouldn’t I just leave out the word const and be certain to avoid errors?

If your member function logically shouldn’t change the class, using the keyword
const is a good way to enlist the compiler in helping you find mistakes. For exam-
ple, GetAge () might have no reason to change the Cat class, but your implementa-
tion has this line:

if (itsAge = 100) cout << "Hey! You're 100 years old\n";

Declaring GetAge () to be const causes this code to be flagged as an error. You
meant to check whether itsAge is equal to 100, but instead you inadvertently
assigned 100 to itsAge. Because this assignment changes the class—and you said
this method would not change the class—the compiler is able to find the error.

This kind of mistake can be hard to find just by scanning the code. The eye often
sees only what it expects to see. More importantly, the program might appear to
run correctly, but itsAge has now been set to a bogus number. This causes prob-
lems sooner or later.

|172

Day 6

Q Is there ever a reason to use a structure in a C++ program?

A Many C++ programmers reserve the struct keyword for classes that have no func-
tions. This is a throwback to the old C structures, which could not have functions.
Frankly, it is confusing and poor programming practice. Today’s methodless struc-
ture might need methods tomorrow. Then, you’ll be forced either to change the
type to class or to break your rule and end up with a structure with methods. If
you need to call a legacy C function that requires a particular struct, then you
would have the only good reason to use one.

Q Some people working with object-oriented programming use the term “instan-
tiation.” What is this?

A Instantiation is simply a fancy word for the process of creating an object from a
class. A specific object defined as being of the type of a class is a single instance
of a class.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson, where you will learn more about controlling the flow of your program.

Q

5

What is the dot operator, and what is it used for?

Which sets aside memory—a declaration or a definition?

Is the declaration of a class its interface or its implementation?
What is the difference between public and private data members?
Can member functions be private?

Can member data be public?

N ok w = a

If you declare two Cat objects, can they have different values in their itsAge mem-
ber data?

®©

Do class declarations end with a semicolon? Do class method definitions?

9. What would the header be for a Cat function, Meow, that takes no parameters and
returns void?

10. What function is called to initialize a class?

Understanding Object-Oriented Programming 173 |

Exercises

1. Write the code that declares a class called Employee with these data members:
itsAge, itsYearsOfService, and itsSalary.

2. Rewrite the Employee class declaration to make the data members private, and pro-
vide public accessor methods to get and set each of the data members.

3. Write a program with the Employee class that makes two employees; sets their
itsAge, itsYearsOfService, and itsSalary; and prints their values. You’ll need
to add the code for the accessor methods as well.

4. Continuing from Exercise 3, write the code for a method of Employee that reports
how many thousands of dollars the employee earns, rounded to the nearest 1,000.

5. Change the Employee class so that you can initialize itsAge, itsYearsOfService,
and itsSalary when you create the employee.

6. BUG BUSTERS: What is wrong with the following declaration?
class Square
{

public:
int Side;
}

7. BUG BUSTERS: Why isn’t the following class declaration very useful?
class Cat
{

int GetAge() const;
private:
int itsAge;
b

8. BUG BUSTERS: What three bugs in this code should the compiler find?
class TV
{

public:

void SetStation(int Station);

int GetStation() const;
private:

int itsStation;

h

int main()

{
TV myTV;
myTV.itsStation = 9;
TV.SetStation(10);
TV myOtherTv(2);

WEEK 1

DAY 7

More on Program Flow

Programs accomplish most of their work by branching and looping. On Day 4,
“Creating Expressions and Statements,” you learned how to branch your pro-
gram using the if statement.

Today, you will learn

¢ What loops are and how they are used
* How to build various loops

e An alternative to deeply nested if...else statements

Looping
Many programming problems are solved by repeatedly acting on the same data.
Two ways to do this are recursion (discussed on Day 5, “Organizing into
Functions”) and iteration. Iteration means doing the same thing again and
again. The principal method of iteration is the loop.

|176

Day 7

The Roots of Looping: goto

In the primitive days of early computer science, programs were nasty, brutish, and short.
Loops consisted of a label, some statements, and a jump that went to the label.

In C++, a label is just a name followed by a colon (:). The label is placed to the left of a
legal C++ statement. A jump is accomplished by writing goto followed by the name of a
label. Listing 7.1 illustrates this primitive way of looping.

LisTING 7.1 Looping with the Keyword goto

1: // Listing 7.1
2: [/ Looping with goto
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8: int counter = 0; // initialize counter
9: loop:
10: counter ++; // top of the loop
11: cout << "counter: " << counter << endl;
12: if (counter < 5) /] test the value
13: goto loop; // jump to the top
14:
15: cout << "Complete. Counter: " << counter << endl;
16: return 0;
17: }
counter: 1
counter: 2
counter: 3
counter: 4
counter: 5

Complete. Counter: 5.

ANALYSIS On line 8, counter is initialized to zero. A label called loop is on line 9, marking

the top of the loop. counter is incremented and its new value is printed on line
11. The value of counter is tested on line 12. If the value is less than 5, the if statement
is true and the goto statement is executed. This causes program execution to jump back
to the loop label on line 9. The program continues looping until counter is equal to 5, at
which time it “falls through” the loop and the final output is printed.

Why goto Is Shunned

As a rule, programmers avoid goto, and with good reason. goto statements can cause a
jump to any location in your source code, backward or forward. The indiscriminate use

More on Program Flow 177|

of goto statements has caused tangled, miserable, impossible-to-read programs known as
“spaghetti code.”

The goto Statement

To use the goto statement, you write goto followed by a label name. This causes an
unconditioned jump to the label.

Example

if (value > 10)
goto end;
if (value < 10)
goto end;
cout << "value is 10!";
end:
cout << "done";

To avoid the use of goto, more sophisticated, tightly controlled looping commands have
been introduced: for, while, and do...while.

Using while Loops

A while loop causes your program to repeat a sequence of statements as long as the
starting condition remains true. In the goto example in Listing 7.1, the counter was
incremented until it was equal to 5. Listing 7.2 shows the same program rewritten to take
advantage of a while loop.

LISTING 7.2 while Loops

1: // Listing 7.2

2: // Looping with while

3: #include <iostream>

4:

5: 1int main()

6: {

7: using namespace std;

8: int counter = 0; // initialize the condition
9:

10: while(counter < 5) // test condition still true
11: {

12: counter++; // body of the loop

13: cout << "counter: " << counter << endl;

14: }

15:

16: cout << "Complete. Counter: " << counter << endl;
17: return 0;

|178

Day 7

counter: 1
counter: 2
counter: 3
counter: 4
counter: 5

Complete. Counter: 5.

- This simple program demonstrates the fundamentals of the while loop. On line
ANALYSIS

8, an integer variable called counter is created and initialized to zero. This is
then used as a part of a condition. The condition is tested, and if it is true, the body of
the while loop is executed. In this case, the condition tested on line 10 is whether
counter is less than 5. If the condition is true, the body of the loop is executed; on line
12, the counter is incremented, and on line 13, the value is printed. When the conditional
statement on line 10 fails (when counter is no longer less than 5), the entire body of the
while loop (lines 11-14) is skipped. Program execution falls through to line 15.

It is worth noting here that it is a good idea to always use braces around the block exe-
cuted by a loop, even when it is just a single line of code. This avoids the common error
of inadvertently putting a semicolon at the end of a loop and causing it to endlessly
repeat—for instance,

int counter = 0;

while (counter < 5);
counter++;

In this example, the counter++ is never executed.

The while Statement
The syntax for the while statement is as follows:

while (condition)
statement;

condition is any C++ expression, and statement is any valid C++ statement or block of
statements. When condition evaluates true, statement is executed, and then condition
is tested again. This continues until condition tests false, at which time the while loop
terminates and execution continues on the first line below statement.
Example

// count to 10

int x = 0;

while (x < 10)

cout << "X: " << xt++;

More on Program Flow 179|

Exploring More Complicated while Statements

The condition tested by a while loop can be as complex as any legal C++ expression.
This can include expressions produced using the logical && (AND), | | (OR), and !
(NOT) operators. Listing 7.3 is a somewhat more complicated while statement.

LisTING 7.3 Complex while Loops

/] Listing 7.3
/] Complex while statements
#include <iostream>

int main()
{
using namespace std;
unsigned short small;
unsigned long large;
const unsigned short MAXSMALL=65535;

cout << "Enter a small number: ";
cin >> small;
cout << "Enter a large number: ";
cin >> large;

cout << "small: " << small << "...";

// for each iteration, test two conditions
while (small < large && small < MAXSMALL)

{
if (small % 5000 == @) // write a dot every 5k lines
cout << ".";
small++;
large-=2;
}

cout << "\nSmall: " << small << " Large: " << large << endl;
return 0;

Enter a small number: 2
Output Enter a large number: 100000
small: 2.........

Small: 33335 Large: 33334

This program is a game. Enter two numbers, one small and one large. The
smaller number will count up by ones, and the larger number will count down by
twos. The goal of the game is to guess when they’ll meet.

ANALYSIS

WWNMNDMNPDMNDNDNODMNDNDNDND S ==
2 0 WO N PAPWOUN -0 OONOODURARWN-2LO0OONOUGDNWN =

|180

Day 7

On lines 12-15, the numbers are entered. Line 20 sets up a while loop, which will con-
tinue only as long as two conditions are met:

1. Small is not bigger than large.

2. Small doesn’t overrun the size of a small integer (MAXSMALL).
On line 22, the value in small is calculated modulo 5,000. This does not change the
value in small; however, it only returns the value @ when small is an exact multiple of

5,000. Each time it is, a dot (.) is printed to the screen to show progress. On line 25,
small is incremented, and on line 26, large is decremented by 2.

When either of the two conditions in the while loop fails, the loop ends and execution of
the program continues after the while loop’s closing brace on line 27.

NOTE The modulus operator (%) and compound conditions were covered on Day 3,

“Working with Variables and Constants.”

Introducing continue and break

At times, you’ll want to return to the top of a while loop before the entire set of state-
ments in the while loop is executed. The continue statement jumps back to the top of
the loop.

At other times, you might want to exit the loop before the exit conditions are met. The
break statement immediately exits the while loop, and program execution resumes after
the closing brace.

Listing 7.4 demonstrates the use of these statements. This time, the game has become
more complicated. The user is invited to enter a small number and a large number, a skip
number, and a target number. The small number will be incremented by one, and the
large number will be decremented by 2. The decrement will be skipped each time the
small number is a multiple of the skip. The game ends if small becomes larger than
large. If the large number reaches the target exactly, a statement is printed and the game
stops.

The user’s goal is to put in a target number for the large number that will stop the game.

More on Program Flow 181 |

LISTING 7.4 break and continue

1: // Listing 7.4 - Demonstrates break and continue
2: #include <iostream>

3:

4: 1int main()

5: {

6: using namespace std;

7:

8: unsigned short small;

9: unsigned long large;

10: unsigned long skip;

11: unsigned long target;

12: const unsigned short MAXSMALL=65535;

13:

14: cout << "Enter a small number: ";

15: cin >> small;

16: cout << "Enter a large number: ";

17: cin >> large;

18: cout << "Enter a skip number: ";

19: cin >> skip;
20: cout << "Enter a target number: ";
21: cin >> target;
22:
23: cout << "\n";
24:
25: /] set up 2 stop conditions for the loop
26: while (small < large && small < MAXSMALL)
27: {
28: small++;
29:
30: if (small % skip == @) // skip the decrement?
31: {
32: cout << "skipping on " << small << endl;
33: continue;
34: }
35:
36: if (large == target) // exact match for the target?
37: {
38: cout << "Target reached!";
39: break;
40: }
41:
42: large-=2;
43: } // end of while loop
44:
45: cout << "\nSmall: " << small << " Large: " << large << endl;
46: return 0;

| 182 Day 7

Enter a small number: 2
Enter a large number: 20

Enter a skip number: 4

Enter a target number: 6

skipping on 4
skipping on 8

Small: 10 Large: 8

T In this play, the user lost; small became larger than large before the target num-
ber of 6 was reached.

On line 26, the while conditions are tested. If small continues to be smaller than large
and if small hasn’t overrun the maximum value for a small int, the body of the while
loop is entered.

On line 30, the small value is taken modulo the skip value. If small is a multiple of skip,
the continue statement is reached and program execution jumps to the top of the loop
back at line 26. This effectively skips over the test for the target and the decrement of
large.

On line 36, target is tested against the value for large. If they are the same, the user
has won. A message is printed and the break statement is reached and executed. This
causes an immediate break out of the while loop, and program execution resumes on
line 44.

NOTE Both continue and break should be used with caution. They are the next
most dangerous commands after goto, for much the same reason. Programs
that suddenly change direction are harder to understand, and liberal use of
continue and break can render even a small while loop unreadable.

A need for breaking within a loop often indicates that the terminating con-
dition of the loop has not been set up with the appropriate Boolean expres-
sion. It is often better to use an if statement within a loop to skip some
lines than to use a breaking statement.

The continue Statement
continue; causes a while, do...while, or for loop to begin again at the top of the loop.

See Listing 7.4 for an example of using continue.

More on Program Flow 183 |

The break Statement

break; causes the immediate end of a while, do...while, or for loop. Execution jumps to
the closing brace.

Example

while (condition)
{
if (condition2)
break;
/| statements;

Examining while (true) Loops

The condition tested in a while loop can be any valid C++ expression. As long as that
condition remains true, the while loop continues. You can create a loop that never ends
by using the value true for the condition to be tested. Listing 7.5 demonstrates counting
to 10 using this construct.

LISTING 7.5 while Loops

1: // Listing 7.5

2: /] Demonstrates a while true loop
3: #include <iostream>

4:

5: int main()

6: {

7: int counter = 0;

8:

9: while (true)

10: {

11: counter ++;

12: if (counter > 10)

13: break;

14: }

15: std::cout << "Counter: " << counter << std::endl;
16: return 0;

17: '}

Counter: 11
OuTPUT

INTANEE On line 9, a while loop is set up with a condition that can never be false. The
loop increments the counter variable on line 11, and then on line 12 it tests to see

| 184 Day 7

whether counter has gone past 10. If it hasn’t, the while loop iterates. If counter is
greater than 10, the break on line 13 ends the while loop, and program execution falls
through to line 15, where the results are printed.

This program works, but it isn’t pretty. This is a good example of using the wrong tool
for the job. The same thing can be accomplished by putting the test of counter’s value
where it belongs—in the while condition.

CAUTION Eternal loops such as while (true) can cause your computer to hang if
the exit condition is never reached. Use these with caution and test them
thoroughly.

C++ gives you many ways to accomplish the same task. The real trick is picking the
right tool for the particular job.

o

DO use while loops to iterate while a DON'T use the goto statement.
condition is true.

DON'T forget the difference between

DO exercise caution when using con- continue and break. continue goes to
tinue and break statements. the top; break goes to the bottom.
DO be certain your loop will eventually

end.

Implementing do...while Loops

It is possible that the body of a while loop will never execute. The while statement
checks its condition before executing any of its statements, and if the condition evaluates
false, the entire body of the while loop is skipped. Listing 7.6 illustrates this.

LISTING 7.6 Skipping the Body of the while Loop

/] Listing 7.6
// Demonstrates skipping the body of
// the while loop when the condition is false.

#include <iostream>

o0 WD =

More on Program Flow 185|

LisTING 7.6 continued

7: int main()

8: {
9: int counter;
10: std::cout << "How many hellos?: ";
11: std::cin >> counter;
12: while (counter > 0)
13: {
14: std::cout << "Hello!\n";
15: counter--;
16: }
17: std::cout << "Counter is OutPut: " << counter;
18: return 0;
19: }
How many hellos?: 2

Hello!
Counter is OutPut: 0

How many hellos?: ©
Counter is OutPut: 0

The user is prompted for a starting value on line 10. This starting value is stored
ANALYSIS

in the integer variable counter. The value of counter is tested on line 12 and
decremented in the body of the while loop. In the output, you can see that the first time
through, counter was set to 2, and so the body of the while loop ran twice. The second
time through, however, the @ was entered. The value of counter was tested on line 12
and the condition was false; counter was not greater than 0. The entire body of the
while loop was skipped, and Hello was never printed.

What if you want to ensure that Hello is always printed at least once? The while loop
can’t accomplish this because the if condition is tested before any printing is done. You
can force the issue with an if statement just before entering the while loop

if (counter < 1) // force a minimum value
counter = 1;

but that is what programmers call a “kludge” (pronounced klooj to rhyme with stooge),
an ugly and inelegant solution.

| 186 Day 7

Using do...while

The do...while loop executes the body of the loop before its condition is tested, thus
ensuring that the body always executes at least one time. Listing 7.7 rewrites Listing 7.6,
this time using a do. . .while loop.

LisTING 7.7 Demonstrates do...while Loop

1: // Listing 7.7

2: // Demonstrates do while

3:

4: #include <iostream>

5:

6: int main()

7: |

8: using namespace std;

9: int counter;

10: cout << "How many hellos? ";
11: cin >> counter;

12: do

13: {

14: cout << "Hello\n";

15: counter--;

16: } while (counter >0);

17: cout << "Counter is: " << counter << endl;
18: return 0;

19: }

How many hellos? 2
OUuTPUT EMSE

Hello
Counter is: 0

Like the previous program, Listing 7.7 prints the word “Hello” to the console a
specified number of times. Unlike the preceding program, however, this program
will always print at least once.

The user is prompted for a starting value on line 10, which is stored in the integer vari-
able counter. In the do. . .while loop, the body of the loop is entered before the condi-
tion is tested, and, therefore, the body of the loop is guaranteed to run at least once. On
line 14, the hello message is printed, on line 15 the counter is decremented, and then
finally, on line 16 the condition is tested. If the condition evaluates true, execution jumps
to the top of the loop on line 13; otherwise, it falls through to line 17.

The continue and break statements work in the do. . .while loop exactly as they do in
the while loop. The only difference between a while loop and a do...while loop is
when the condition is tested.

More on Program Flow 187 |

The do...while Statement

The syntax for the do...while statement is as follows:
do

statement
while (condition);

statement is executed, and then condition is evaluated. If condition is true, the loop is
repeated; otherwise, the loop ends. The statements and conditions are otherwise identi-
cal to the while loop.

Example 1

// count to 10
int x = 0;
do
cout << "X:i " << x++;
while (x < 10)

Example 2

// print lowercase alphabet.
char ch = 'a';
do
{
cout << ch << ' ';
ch++;
} while (ch <= 'z');

o

DO use do...while when you want to DON'T use break and continue with
ensure the loop is executed at least once. loops unless it is clear what your code is
DO use while loops when you want to doing. There are often clearer ways to
skip the loop if the condition is false. accomplish the same tasks.

DO test all loops to be certain they do DON'T use the goto statement.

what you expect.

Looping with the for Statement

When programming while loops, you’ll often find yourself going through three steps:
setting up a starting condition, testing to see whether the condition is true, and incre-
menting or otherwise changing a variable each time through the loop. Listing 7.8 demon-
strates this.

| 188 Day 7

LiSTING 7.8 while Reexamined

1: // Listing 7.8

2: // Looping with while

3:

4: #include <iostream>

5:

6: int main()

7: A

8: int counter = 0;

9:

10: while(counter < 5)

11: {

12: counter++;

13: std::cout << "Looping! ";
14: }

15:

16: std::cout << "\nCounter: " << counter << std::endl;
17: return 0;

18: }

Looping! Looping! Looping! Looping! Looping!
Output Counter: 5.

ANALYSIS In this listing, you can see that three steps are occurring. First, the starting condi-
tion is set on line 8: counter is initialized to 0. On line 10, the test of the condi-

tion occurs when counter is tested to see if it is less than 5. Finally, the counter variable
is incremented on line 12. This loop prints a simple message at line 13. As you can imag-
ine, more important work could be done for each increment of the counter.

A for loop combines the three steps into one statement. The three steps are initializing,
testing, and incrementing. A for statement consists of the keyword for followed by a
pair of parentheses. Within the parentheses are three statements separated by semicolons:
for(initialization; test ; action)

{
}

The first expression, initialization, is the starting conditions or initialization. Any
legal C++ statement can be put here, but typically this is used to create and initialize a
counting variable. The second expression, test, is the test, and any legal C++ expression
can be used here. This test serves the same role as the condition in the while loop. The
third expression, action, is the action that will take place. This action is typically the
increment or decrement of a value, though any legal C++ statement can be put here.
Listing 7.9 demonstrates a for loop by rewriting Listing 7.8.

More on Program Flow 189|

LISTING 7.9 Demonstrating the for Loop

1 /] Listing 7.9

2: // Looping with for

3

4: #include <iostream>

5:

6: int main()

70 A

8 int counter;

9: for (counter = @; counter < 5; counter++)
10: std::cout << "Looping! ";

11:

12: std::cout << "\nCounter: " << counter << std::endl;
13: return 0;

14: }

Looping! Looping! Looping! Looping! Looping!
Output Counter: 5.

ARG The for statement on line 9 combines the initialization of counter, the test that
counter is less than 5, and the increment of counter all into one line. The body
of the for statement is on line 10. Of course, a block could be used here as well.

The for Statement
The syntax for the for statement is as follows:

for (initialization; test; action)
statement;

The initialization statement is used to initialize the state of a counter, or to otherwise
prepare for the loop. test is any C++ expression and is evaluated each time through the
loop. If test is true, the body of the for loop is executed and then the action in the
header is executed (typically the counter is incremented).

Example 1

// print Hello ten times
for (int i = 0; i<10Q; i+t+)
cout << "Hello! ";

Example 2
for (int i = 0; i < 10; i++)
{

cout << "Hello!" << endl;
cout << "the value of 1 is: " << 1 << endl;

|190

Day 7

Advanced for Loops

for statements are powerful and flexible. The three independent statements (initial-
ization, test, and action) lend themselves to a number of variations.

Multiple Initialization and Increments

It is not uncommon to initialize more than one variable, to test a compound logical
expression, and to execute more than one statement. The initialization and the action can
be replaced by multiple C++ statements, each separated by a comma. Listing 7.10
demonstrates the initialization and increment of two variables.

LisTING 7.10 Demonstrating Multiple Statements in for Loops

1: //Listing 7.10

2: // Demonstrates multiple statements in

3: // for loops

4: #include <iostream>

5:

6: int main()

7: |

8:

9: for (int i=0, j=0; i<3; i++, j++)
10: std::cout << "i: " << i << " i " << j << std::endl;
11: return 0;

12: }

i:
OuTPUT

;!:
it
j:

N =
N =S

i:

- On line 9, two variables, i and j, are each initialized with the value 0. A comma

ANALYSIS

is used to separate the two separate expressions. You can also see that these ini-
tializations are separated from the test condition by the expected semicolon.

When this program executes, the test (i<3) is evaluated, and because it is true, the body
of the for statement is executed, where the values are printed. Finally, the third clause in
the for statement is executed. As you can see, two expressions are here as well. In this
case, both i and j are incremented.

After line 10 completes, the condition is evaluated again, and if it remains true, the
actions are repeated (i and j are again incremented), and the body of the loop is exe-
cuted again. This continues until the test fails, in which case the action statement is not
executed, and control falls out of the loop.

More on Program Flow 191 |

Null Statements in for Loops

Any or all the statements in a for loop can be left out. To accomplish this, you use a null
statement. A null statement is simply the use of a semicolon (;) to mark where the state-
ment would have been. Using a null statement, you can create a for loop that acts
exactly like a while loop by leaving out the first and third statements. Listing 7.11 illus-
trates this idea.

LisTING 7.11 Null Statements in for Loops

1: // Listing 7.11

2: [/ For loops with null statements
3:

4: #include <iostream>

5:

6: int main()

7: |

8: int counter = 0;

9:

10: for(; counter < 5;)

11: {

12: counter++;

13: std::cout << "Looping! ";
14: }

15:

16: std::cout << "\nCounter: " << counter << std::endl;
17: return 0;

18: }

Looping! Looping! Looping! Looping! Looping!
Output Counter: 5.

You might recognize this as exactly like the while loop illustrated in Listing 7.8.
On line 8, the counter variable is initialized. The for statement on line 10 does
not initialize any values, but it does include a test for counter < 5. No increment state-
ment exists, so this loop behaves exactly as if it had been written:

while (counter < 5)

You can once again see that C++ gives you several ways to accomplish the same thing.
No experienced C++ programmer would use a for loop in this way shown in Listing
7.11, but it does illustrate the flexibility of the for statement. In fact, it is possible, using
break and continue, to create a for loop with none of the three statements. Listing 7.12
illustrates how.

|192 Day 7

LisTING 7.12 Illustrating an Empty for Loop Statement

1: //Listing 7.12 illustrating

2: //empty for loop statement

3:

4: #include <iostream>

5:

6: int main()

7: A

8: int counter=0; // initialization
9: int max;

10: std::cout << "How many hellos? ";

11: std::cin >> max;

12: for (;3) /] a for loop that doesn't end
13: {

14: if (counter < max) /] test

15: {

16: std::cout << "Hello! " << std::endl;
17: counter++; /] increment
18: }

19: else

20: break;

21: }

22: return 0;

23: }

How many hellos? 3
OUuTPUT ST

Hello!
Hello!

The for loop has now been pushed to its absolute limit. Initialization, test, and
action have all been taken out of the for statement on line 12. The initialization
is done on line 8, before the for loop begins. The test is done in a separate if statement
on line 14, and if the test succeeds, the action, an increment to counter, is performed on
line 17. If the test fails, breaking out of the loop occurs on line 20.

Although this particular program is somewhat absurd, sometimes a for(;;) loop or a
while (true) loop is just what you’ll want. You’ll see an example of a more reasonable
use of such loops when switch statements are discussed later today.

Empty for Loops

Because so much can be done in the header of a for statement, at times you won’t need
the body to do anything at all. In that case, be certain to put a null statement (;) as the
body of the loop. The semicolon can be on the same line as the header, but this is easy to
overlook. Listing 7.13 illustrates an appropriate way to use a null body in a for loop.

More on Program Flow 193 |

LisTING 7.13 Illustrates the Null Statement in a for Loop

1: //Listing 7.13
2: //Demonstrates null statement
3: // as body of for loop
4:

5: #include <iostream>
6: int main()
7: {

8: for (int i = 0; i<5; std::cout << "i: " << i++ << std::endl)
9: H
10: return 0;
11: }

OuTPUT

[
ENRAN SRS

F The for loop on line 8 includes three statements: The initialization statement
establishes the counter i and initializes it to 0. The condition statement tests for
i<5, and the action statement prints the value in i and increments it.

Nothing is left to do in the body of the for loop, so the null statement (;) is used. Note
that this is not a well-designed for loop: The action statement is doing far too much.
This would be better rewritten as

8: for (int i = 0; i<5; i++)
9: cout << "i: " << i << endl;

Although both do the same thing, this example is easier to understand.

Nesting Loops

Any of the loop can be nested within the body of another. The inner loop will be exe-
cuted in full for every execution of the outer loop. Listing 7.14 illustrates writing marks
into a matrix using nested for loops.

LisTING 7.14 Illustrates Nested for Loops

1: //Listing 7.14

2: //Illustrates nested for loops
3: #include <iostream>

4:

5: int main()

6: {

7:

using namespace std;

|194 Day 7

LisTING 7.14 continued

8: int rows, columns;

9: char theChar;

10: cout << "How many rows? ";
11: cin >> rows;

12: cout << "How many columns? ";
13: cin >> columns;

14: cout << "What character? ";
15: cin >> theChar;

16: for (int i = 0; i<rows; i++)
17: {

18: for (int j = 0; j<columns; j++)
19: cout << theChar;

20: cout << endl;

21: }

22: return 0;

23: }

How many rows? 4
How many columns? 12
What character? X
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

XXXXXXXXXXXX

AR In this listing, the user is prompted for the number of rows and columns and for a
character to print. The first for loop, on line 16, initializes a counter (i) to @, and
then the body of the outer for loop is run.

On line 18, the first line of the body of the outer for loop, another for loop is estab-
lished. A second counter (j) is initialized to @, and the body of the inner for loop is exe-
cuted. On line 19, the chosen character is printed, and control returns to the header of the
inner for loop. Note that the inner for loop is only one statement (the printing of the
character). The condition is tested (j < columns) and if it evaluates true, j is incre-
mented and the next character is printed. This continues until j equals the number of
columns.

When the inner for loop fails its test, in this case after 12 Xs are printed, execution falls
through to line 20, and a new line is printed. The outer for loop now returns to its
header, where its condition (i < rows) is tested. If this evaluates true, i is incremented
and the body of the loop is executed.

In the second iteration of the outer for loop, the inner for loop is started over. Thus, j is
reinitialized to @ and the entire inner loop is run again.

More on Program Flow 195|

The important idea here is that by using a nested loop, the inner loop is executed for
each iteration of the outer loop. Thus, the character is printed columns times for
each row.

NOTE As an aside, many C++ programmers use the letters i and j as counting vari-
ables. This tradition goes all the way back to FORTRAN, in which the letters
i, j, k, 1, m, and n were the only counting variables.

Although this might seem innocuous, readers of your program can become
confused by the purpose of the counter, and might use it improperly. You
can even become confused in a complex program with nested loops. It is
better to indicate the use of the index variable in its name—for instance,
CustomerIndex or InputCounter.

Scoping in for Loops

In the past, variables declared in the for loop were scoped to the outer block. The
American National Standards Institute (ANSI) standard changes this to scope these vari-
ables only to the block of the for loop itself; however, not every compiler supports this
change. You can test your compiler with the following code:

#include <iostream>

int main()

{
/] i scoped to the for loop?
for (int i = 0; i<5; it+)

{
std::cout << "i: " << i << std::endl;

}

i =7; // should not be in scope!

return 0;
}
If this compiles without complaint, your compiler does not yet support this aspect of the
ANSI standard.

If your compiler complains that i is not yet defined (in the line i=7), your compiler does
support the new standard. You can write code that will compile on either compiler by
declaring i outside of the loop, as shown here:

#include <iostream>

int main()

{

|196

Day 7

int i; //declare outside the for loop
for (i = 0; i<5; i++)
{

std::cout << "i: " << i << std::endl;

}

i=17; // now this is in scope for all compilers
return 0;

Summing Up Loops
On Day 5, you learned how to solve the Fibonacci series problem using recursion. To
review briefly, a Fibonacci series starts with 1, 1, 2, 3, and all subsequent numbers are
the sum of the previous two:

1,1,2,3,5,8,13,21,34...

The nth Fibonacci number is the sum of the n-1 and the n-2 Fibonacci numbers. The
problem solved on Day 5 was finding the value of the nth Fibonacci number. This was
done with recursion. Listing 7.15 offers a solution using iteration.

LisTiING 7.15 Solving the nth Fibonacci Number Using Iteration

1: // Listing 7.15 - Demonstrates solving the nth
2: [/ Fibonacci number using iteration

3:

4: #include <iostream>

5:

6: unsigned int fib(unsigned int position);

7: int main()

8: {

9: using namespace std;

10: unsigned int answer, position;

11: cout << "Which position? ";

12: cin >> position;

13: cout << endl;

14:

15: answer = fib(position);

16: cout << answer << " is the ";

17: cout << position << "th Fibonacci number. " << endl;
18: return 0;

19: }

20:

21: unsigned int fib(unsigned int n)

22: |

23: unsigned int minusTwo=1, minusOne=1, answer=2;

More on Program Flow 197|

LisTING 7.15 continued

25: if (n < 3)

26: return 1;

27:

28: for (n -=3; n !I=0; n--)
29: {

30: minusTwo = minusOne;
31: minusOne = answer;

32: answer = minusOne + minusTwo;
33: }

34:

35: return answer;

36: }

o Which position? 4
ALl 3 is the 4th Fibonacci number.

Which position? 5

5 is the 5th Fibonacci number.

Which position? 20

6765 is the 20th Fibonacci number.

Which position? 100

3314859971 is the 100th Fibonacci number.

FRANER Listing 7.15 solves the Fibonacci series using iteration rather than recursion. This
approach is faster and uses less memory than the recursive solution.

On line 11, the user is asked for the position to check. The function fib () is called,
which evaluates the position. If the position is less than 3, the function returns the value
1. Starting with position 3, the function iterates using the following algorithm:

1. Establish the starting position: Fill variable answer with 2, minusTwo with 1, and
minusOne with 1. Decrement the position by 3 because the first two numbers are
handled by the starting position.

2. For every number, count up the Fibonacci series. This is done by
a. Putting the value currently in minusOne into minusTwo
b. Putting the value currently in answer into minusOne
c. Adding minusOne and minusTwo and putting the sum in answer
d. Decrementing n
3. When n reaches 0, return the answer.

This is exactly how you would solve this problem with pencil and paper. If you were
asked for the fifth Fibonacci number, you would write

1, 1,2,

|198

Day 7

and think, “two more to do.” You would then add 2+1 and write 3, and think, “one more
to find.” Finally, you would write 3+2 and the answer would be 5. In effect, you are
shifting your attention right one number each time through and decrementing the number
remaining to be found.

Note the condition tested on line 28 (n != 0). Many C++ programmers use the follow-
ing for line 28:

for (n-=3; n; n--)

You can see that instead of using a relational condition, just the value of n is used for the
condition in the for statement. This is a C++ idiom, and n is considered equivalent to n
1= 0. Using just n relies on the fact that when n reaches 0, it will evaluate false, because
0 has been considered as false in C++. In keeping with the current C++ standards, it is
better to rely on a condition to evaluate to the value of false than to use a numeric
value.

Compile, link, and run this program, along with the recursive solution offered on Day 5.
Try finding position 25 and compare the time it takes each program. Recursion is ele-
gant, but because the function call brings a performance overhead, and because it is
called so many times, its performance is noticeably slower than iteration. Microcom-
puters tend to be optimized for the arithmetic operations, so the iterative solution should
be blazingly fast.

Be careful how large a number you enter. fib grows quickly, and even unsigned long
integers will overflow after a while.

Controlling Flow with switch Statements

On Day 4, you saw how to write if and if...else statements. These can become quite
confusing when nested too deeply, and C++ offers an alternative. Unlike if, which eval-
uates one value, switch statements enable you to branch on any of several values. The
general form of the switch statement is

switch (expression)

{
case valueOne: statement;
break;
case valueTwo: statement;
break;

case valueN: statement;
break;
default: statement;

More on Program Flow 199|

expression is any legal C++ expression, and the statements are any legal C++ state-
ments or block of statements that evaluate (or can be unambiguously converted to) an
integer value. Note, however, that the evaluation is for equality only; relational operators
cannot be used here, nor can Boolean operations.

If one of the case values matches the expression, program execution jumps to those
statements and continues to the end of the switch block unless a break statement is
encountered. If nothing matches, execution branches to the optional default statement.
If no default and no matching case value exist, execution falls through the switch
statement and the statement ends.

TIP It is almost always a good idea to have a default case in switch statements.
If you have no other need for the default, use it to test for the supposedly
impossible case, and print out an error message; this can be a tremendous
aid in debugging.

It is important to note that if no break statement is at the end of a case statement, execu-
tion falls through to the next case statement. This is sometimes necessary, but usually is
an error. If you decide to let execution fall through, be certain to put a comment indicat-
ing that you didn’t just forget the break.

Listing 7.16 illustrates use of the switch statement.

LISTING 7.16 Demonstrating the switch Statement

1: //Listing 7.16

2: // Demonstrates switch statement

3: #include <iostream>

4:

5: int main()

6: {

7: using namespace std;

8: unsigned short int number;

9: cout << "Enter a number between 1 and 5: ";

10: cin >> number;

11: switch (number)

12: {

13: case 0: cout << "Too small, sorry!";

14: break;

15: case 5: cout << "Good job! " << endl; // fall through
16: case 4: cout << "Nice Pick!" << endl; // fall through
17: case 3: cout << "Excellent!" << endl; // fall through
18: case 2: cout << "Masterful!" << endl; // fall through

| 200

Day 7

LisTING 7.16 continued
19: case 1: cout << "Incredible!" << endl;
20: break;
21: default: cout << "Too large!" << endl;
22: break;
23: }
24: cout << endl << endl;
25: return 0;
26: }

OuTPUT

ANALYSIS

Enter a number between 1 and 5: 3
Excellent!
Masterful!
Incredible!

Enter a number between 1 and 5: 8
Too large!

The user is prompted for a number on lines 9 and 10. That number is given to the
switch statement on line 11. If the number is 0, the case statement on line 13

matches, the message Too small, sorry! is printed, and the break statement on line 14
ends the switch. If the value is 5, execution switches to line 15 where a message is

printed,
hitting t

The net

and then falls through to line 16, another message is printed, and so forth until
he break on line 20, at which time the switch ends.

effect of these statements is that for a number between 1 and 5, that many mes-

sages are printed. If the value of number is not O to 5, it is assumed to be too large, and
the default statement is invoked on line 21.

{

}

The switch Statement
The syntax for the switch statement is as follows:

switch (expression)

case valueOne: statement;
case valueTwo: statement;

case valueN: statement;
default: statement;

The switch statement allows for branching on multiple values of expression. The expres-
sion is evaluated, and if it matches any of the case values, execution jumps to that line.
Execution continues until either the end of the switch statement or a break statement is
encountered.

More on Program Flow 201 |

If expression does not match any of the case statements, and if there is a default state-
ment, execution switches to the default statement, otherwise the switch statement
ends.

Example 1

switch (choice)
{
case 0:
cout << "Zero!" << endl;
break;
case 1:
cout << "One!" << endl;
break;
case 2:
cout << "Two!" << endl;
default:
cout << "Default!" << endl;

}

Example 2

switch (choice)
{
case 0:
case 1:
case 2:
cout << "Less than 3!";
break;
case 3:
cout << "Equals 3!";
break;
default:
cout << "greater than 3!";

Using a switch Statement with a Menu

Listing 7.17 returns to the for(;;) loop discussed earlier. These loops are also called
forever loops, as they will loop forever if a break is not encountered. In Listing 7.17, the
forever loop is used to put up a menu, solicit a choice from the user, act on the choice,
and then return to the menu. This continues until the user chooses to exit.

| 202

Day 7

NOTE

A forever loop is a loop that does not have an exit condition. To exit the loop, a break
statement must be used. Forever loops are also known as eternal or infinite loops.

Some programmers like to write:
#define EVER ;;

for (EVER)

{

/] statements...

}

LisTING 7.17 Demonstrating a Forever Loop

O NOO O~ WND =

//Listing 7.17

//Using a forever loop to manage user interaction

#include <iostream>

/] prototypes

int menu();

void DoTaskOne();
void DoTaskMany(int);

using namespace std;

int main()

{

bool exit = false;
for (53)

int choice = menu();
switch(choice)

case (1):
DoTaskOne () ;
break;

case (2):
DoTaskMany(2);
break;

case (3):
DoTaskMany(3);
break;

case (4):
continue; // redundant!
break;

case (5):
exit=true;
break;

More on Program Flow 203 |

LisTING 7.17 continued

35: default:
36: cout << "Please select again! " << endl;
37: break;
38: } /] end switch
39:
40: if (exit == true)
41: break;
42: } // end forever
43: return 0;
44: '} // end main()
45:
46: int menu()
47: |
48: int choice;
49:
50: cout << " ***x Mepy **** ' << endl << endl;
51: cout << "(1) Choice one. " << endl;
52: cout << "(2) Choice two. " << endl;
53: cout << "(3) Choice three. " << endl;
54: cout << "(4) Redisplay menu. " << endl;
55: cout << "(5) Quit. " << endl << endl;
56: cout << ": "y
57: cin >> choice;
58: return choice;
59: }
60:
61: void DoTaskOne()
62: {
63: cout << "Task One! " << endl;
64: }
65:
66: void DoTaskMany(int which)
67: |
68: if (which == 2)
69: cout << "Task Two! " << endl;
70: else
71: cout << "Task Three! " << endl;
72: }
*kkk *kkk

(1) Choice one.

(2) Choice two.

(3) Choice three.
(4) Redisplay menu.
(5) Quit.

| 204

Day 7

R
Task One!
*kk*k Menu *kk*k
(1) Choice one.
) Choice two.
) Choice three.
(4) Redisplay menu.
) Quit.

3
Task Three!
*kk*k Menu *kk*k
(1) Choice one.
) Choice two.
) Choice three.
(4) Redisplay menu.
) Quit.

ANALYSIS This program brings together a number of concepts from today and previous

days. It also shows a common use of the switch statement.

The forever loop begins on line 15. The menu() function is called, which prints the menu
to the screen and returns the user’s selection. The switch statement, which begins on line
18 and ends on line 38, switches on the user’s choice.

If the user enters 1, execution jumps to the case (1): statement on line 20. Line 21
switches execution to the DoTaskOne () function, which prints a message and returns. On
its return, execution resumes on line 22, where the break ends the switch statement, and
execution falls through to line 39. On line 40, the variable exit is evaluated to see
whether it is true. If it evaluates true, the break on line 41 is executed and the for(;;)
loop ends; but if it evaluates false, execution resumes at the top of the loop on line 15.

Note that the continue statement on line 30 is redundant. If it were left out and the
break statement were encountered, the switch would end, exit would evaluate false, the
loop would reiterate, and the menu would be reprinted. The continue does, however,
bypass the test of exit.

o Coowr

DO carefully document all intentional DON'T use complex if...else state-
fall-through cases. ments if a clearer switch statement will
DO put a default case in switch state- work.

ments, if only to detect seemingly impos- DON'T forget break at the end of each

sible situations. case unless you want to fall through.

More on Program Flow 205|

Summary

Today’s lesson started with a look at the goto command that you were told to avoid
using. You were then shown different methods to cause a C++ program to loop that don’t
require a goto.

The while statement loops check a condition, and if it is true, execute the statements in
the body of the loop. do...while loops execute the body of the loop and then test the
condition. for loops initialize a value, then test an expression. If the expression is true,
the body of the loop is executed. The final expression in the for header is then executed
and the condition is then checked again. This process of checking the condition, execut-
ing the statements in the body, and executing the final expression in the for statement
continues until the conditional expression evaluates to false.

You also learned about continue, which causes while, do...while, and for loops to
start over, and break, which causes while, do...while, for, and switch statements
to end.

Q&A

Q How do I choose between if...else and switch?

A If more than just one or two else clauses are used, and all are testing the same
value, consider using a switch statement.

Q How do I choose between while and do...while?

A If the body of the loop should always execute at least once, consider a do. . .while
loop; otherwise, try to use the while loop.

Q How do I choose between while and for?

A If you are initializing a counting variable, testing that variable, and incrementing it
each time through the loop, consider the for loop. If your variable is already ini-
tialized and is not incremented on each loop, a while loop might be the better
choice. Experienced programmers look for this usage and will find your program
harder to understand if you violate this expectation.

Is it better to use while (true) or for (;;)?

No significant difference exists; however, it is best to avoid both.

Why shouldn’t a variable be used as a condition, such as while(n)?

o R

In the current C++ standard, an expression is evaluated to a Boolean value of true
or false. Although you can equate false to 0 and true to any other value, it is

| 206

Day 7

better—and more in line with the current standards—to use an expression that
evaluates to a Boolean value of true or false. However, a variable of type bool can
be used in a condition without any potential problems.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered as well as exercises to provide you with experience in using what
you’ve learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix D, and be certain you understand the answers before continuing to
tomorrow’s lesson.

e

How do you initialize more than one variable in a for loop?

Why is goto avoided?

Is it possible to write a for loop with a body that is never executed?
What is the value of x when the for loop completes?

for (int x = 0; x < 100; x++)

Is it possible to nest while loops within for loops?

6. Is it possible to create a loop that never ends? Give an example.

7. What happens if you create a loop that never ends?

Exercises

1.

2
3
4.
5

Write a nested for loop that prints a 10x10 pattern of Os.

. Write a for statement to count from 100 to 200 by twos.

. Write a while loop to count from 100 to 200 by twos.

Write a do. . .while loop to count from 100 to 200 by twos.

. BUG BUSTERS: What is wrong with this code?

int counter = 0;
while (counter < 10)

{

}

BUG BUSTERS: What is wrong with this code?

for (int counter = 0; counter < 10; counter++);
cout << counter << " ";

cout << "counter: " << counter;

More on Program Flow 207|

7. BUG BUSTERS: What is wrong with this code?

int counter = 100;

while (counter < 10)

{
cout << "counter now: " << counter;
counter--;

}
8. BUG BUSTERS: What is wrong with this code?

cout << "Enter a number between @ and 5: ";
cin >> theNumber;
switch (theNumber)

{

case 0:

doZero();
case 1: // fall through
case 2: /1 fall through
case 3: // fall through
case 4: // fall through
case 5:

doOneToFive();

break;
default:

doDefault();

break;

WEEK 1

In Review

You have finished your first week of learning how to program
in C++. You should feel comfortable entering programs and
using your editor and compiler. Now that you have some
experience using C++, it is time for a more robust program.
The following program pulls together many of the topics you
have learned over the previous seven days’ lessons.

After you look through Listing R1.1, you will see that analy-
sis has been included. You will find that every topic in this
listing has been covered in the preceding week’s lessons. You
will see similar Weeks in Review after Weeks 2 and 3.

|210 Week 1

ListinG R1.1 Week 1 in Review Listing

DAy 2

1: /* Listing: WRO1.cpp

2: * Description: Week in Review listing for week 1
3: *= ====================%
DAy 1

4: #include <iostream>

DAy 2

5: using namespace std;

6

7: enum CHOICE {

8: DrawRect = 1,

9: GetArea,

10: GetPerim,

11: ChangeDimensions,
12: Quit };

13:

14: // Rectangle class declaration

15: class Rectangle

16: {

17: public:

18: /] constructors

19: Rectangle(int width, int height);

20: ~Rectangle();

21:

22: /] accessors

23: int GetHeight() const { return itsHeight; }

24: int GetWidth() const { return itsWidth; }

25: int GetArea() const { return itsHeight * itsWidth; }
26: int GetPerim() const { return 2*itsHeight + 2*itsWidth; }
27: void SetSize(int newWidth, int newHeight);

28:

29: // Misc. methods

In Review 211 |

ListinG R1.1 continued

31: private:

32: int itsWidth;
33: int itsHeight;
34: };

36: // Class method implementations

37: void Rectangle::SetSize(int newWidth, int newHeight)
38: {

39: itsWidth = newWidth;

40: itsHeight = newHeight;

41: }

43: Rectangle::Rectangle(int width, int height)
44: {

45: itsWidth = width;

46: itsHeight = height;

DAy 6
49: Rectangle::~Rectangle() {}

a
S

DAy 2

51: int DoMenu();

52: void DoDrawRect(Rectangle);
53: void DoGetArea(Rectangle);
54: void DoGetPerim(Rectangle);
55:

DAy 2

56: /*= ====================%/
57: int main()

58: {

59: // initialize a rectangle to 30,5

DAy 6

60: Rectangle theRect(30,5);
61:
62: int choice = DrawRect;

DAy 3

63: int fQuit = false;
64:

|212 Week 1

ListinG R1.1 continued

Day 7

65: while (!fQuit)

66: {

DAy 5

67: choice = DoMenu();

DAy 4

68: if (choice < DrawRect || choice > Quit)
69: {

70: cout << "\nInvalid Choice, try again. ";
71: cout << endl << endl;
DAy 4

72: continue;

73: }

DAy 7

74: switch (choice)

75: {

Day 7

76: case DrawRect:

77: DoDrawRect (theRect);

78: break;

79: case GetArea:

DAy 5

80: DoGetArea(theRect);

81: break;

82: case GetPerim:

83: DoGetPerim(theRect);

84: break;

85: case ChangeDimensions:
Day 3

86: int newLength, newWidth;
87: cout << "\nNew width: ";
88: cin >> newWidth;

89: cout << "New height: ";
90: cin >> newLength;

DAy 6

91: theRect.SetSize (newWidth, newLength);
92: DoDrawRect (theRect);

In Review

213|

Listing R1.1 continued
93: break;
94: case Quit:
DAy 3
95: fQuit = true;
96: cout << "\nExiting... " << endl << endl;
97: break;
DAy 7
98: default:
99: cout << "Error in choice!" << endl;
100: fQuit = true;
101: break;
102 } // end switch
103 } // end while
DAy 5
104: return 0;
105: } // end main
106:
DAy 7
107: int DoMenu()
108: {
Day 3
109: int choice;
DAy 2
110: cout << endl << endl;
111 cout << " **x Menu *** " << endl;
112: cout << "(1) Draw Rectangle" << endl;
113: cout << "(2) Area" << endl;
114: cout << "(3) Perimeter" << endl;
115: cout << "(4) Resize" << endl;
116: cout << "(5) Quit" << endl;
117:
Day 3
118: cin >> choice;
119: return choice;
120: }
121:
122: void DoDrawRect(Rectangle theRect)
123: {

// create two new lines

|214 Week 1

ListinG R1.1 continued

124: int height = theRect.GetHeight();
125: int width = theRect.GetWidth();
126:

127: for (int i = 0; i<height; i++)
128: {

129: for (int j = 0; j< width; j++)
130: cout << "*";

131: cout << endl;

132: }

133: }

134
135:
D J\'A)

136: void DoGetArea(Rectangle theRect)

137: {
DAy 3
138: cout << "Area: " << theRect.GetArea() << endl;
139: }
140:

141: void DoGetPerim(Rectangle theRect)

142: {
143: cout << "Perimeter: " << theRect.GetPerim() << endl;
144: }
145 // ========== End of Llstlng ==========
* % % Menu * k%
Output (1) Draw Rectangle
(2) Area
(3) Perimeter
(4) Resize
(5) Quit

LR R R EEEEEEEEEEEEEEEEEEEEE]
EREE R R R R R R R EEEEEEEEEEEEEEEEE ST
LR EEEEEEEEEEEEEEEEEEEEEEEEEEEE]
LR R R EEEEEEEEEEEEEEEEEEEEE]

EEE R R R R R R R EEEEEEEEEEEEEEEEE ST

In Review

215|

* k% Menu * k%
1) Draw Rectangle
2) Area

3) Perimeter

4) Resize

5) Quit

Area: 150

* k% Menu * k%
1) Draw Rectangle
2) Area

3) Perimeter

4) Resize

5) Quit

erimeter: 70

*k %k Menu *k %k
(1) Draw Rectangle
(2) Area

(3) Perimeter
(4) Resize
(5) Quit

4
New Width: 10
New height: 8

*kkkkkkkkkk
kkkkkkhkkkkx
kkkkkkhkkhkkk*k
*kkkkkkkkkk
kkkkkkhkkkkx
kkkkkkhkkhkkk*k
*kkkkkkkkkk

kkkkkkhkkkkx

* k% Menu * k%
1) Draw Rectangle
2) Area

3) Perimeter

4) Resize

5) Quit

* k% Menu * k%
(1) Draw Rectangle
(2) Area
(3) Perimeter

|216

Week 1

4) Resize
5) Quit

T W~~~

erimeter: 36

* Kk Menu * k%
1) Draw Rectangle
2) Area

3) Perimeter

4) Resize

5) Quit

Exiting...

This program utilizes most of the skills you learned this week. You should not

only be able to enter, compile, link, and run this program, but also understand
what it does and how it works, based on the work you’ve done this week. If you are con-
fused by any of the lines in this listing, you should go back and review the previous
week’s material. To the left of many of the lines are references to which day that line’s
primary function is covered.

This program presents a text menu and waits for you to make a selection. The menu
works with a rectangle. You have options to print out a representation of the rectangle as
well as options to get its area and perimeter. You can also change the default values for
the rectangle. The menu does not do all of the error checking that a full-fledged program
should do; however, it does do some checking.

On lines 7-12, the program listing sets up the new types and definitions that will be used
throughout the program.

Lines 15-34 declare the Rectangle class. There are public accessor methods for obtain-
ing and setting the width and height of the rectangle, as well as for computing the area
and perimeter. Lines 37—47 contain the class function definitions that were not declared
inline. Because a constructor was created on lines 43—47, a destructor is also created on
line 49.

The function prototypes, for the nonclass member functions, are on lines 51-54, and the
entry point of the program begins on line 57. As stated, the essence of this program is to
generate a rectangle, and then to print out a menu offering five options: Draw the rectan-
gle, determine its area, determine its perimeter, resize the rectangle, or quit.

A flag is set on line 63, and as long as the flag is set to false, the menu loop continues.
The flag is only set to true if the user chooses Quit from the menu.

In Review 217|

Each of the other choices, with the exception of ChangeDimensions, calls a function.
This makes the switch statement on lines 74—102 cleaner. ChangeDimensions cannot
call out to a function because it must change the dimensions of the rectangle. If the rec-
tangle were passed (by value) to a function such as DoChangeDimensions (), the dimen-
sions would be changed on the local copy of the rectangle in DoChangeDimensions ()
and not on the rectangle in main (). On Day 8, “Understanding Pointers,” and Day 10,
“Working with Advanced Functions,” you’ll learn how to overcome this restriction, but
for now the change is made in the main () function.

Note how the use of an enumeration makes the switch statement much cleaner and eas-
ier to understand. Had the switch depended on the numeric choices (1-5) of the user, you
would have to constantly refer to the description of the menu to see which pick was
which.

On line 68, the user’s choice is checked to be certain it is in range. If not, an error mes-
sage is printed and the menu is reprinted. Note that the switch statement includes an
“impossible” default condition. This is an aid in debugging. If the program is working,
that statement can never be reached.

Congratulations! You’ve completed the first week! Now, you can create and understand
sophisticated C++ programs. Of course, there’s much more to do, and next week starts
with one of the most difficult concepts in C++: pointers. Don’t give up now, you’re about
to delve deeply into the meaning and use of object-oriented programming, virtual func-
tions, and many of the advanced features of this powerful language.

Take a break, bask in the glory of your accomplishment, and then turn the page to start
Week 2.

WEEK 2

At a Glance

You have finished the first week of learning how to program
in C++. By now, you should feel comfortable entering pro-
grams, using your compiler, and thinking about objects,
classes, and program flow.

Where You Are Going

Week 2 begins with pointers. Pointers are traditionally a diffi-
cult subject for new C++ programmers, but you will find
them explained fully and clearly, and they should not be a
stumbling block. On Day 9, “Exploiting References,” you
will learn about references, which are a close cousin to point-
ers. On Day 10, “Working with Advanced Functions,” you
will see how to overload functions.

Day 11, “Object-Oriented Analysis and Design,” is a depar-
ture: Rather than focusing on the syntax of the language, you
will take a day out to learn about object-oriented analysis and
design. On Day 12, “Implementing Inheritance,” you will be
introduced to inheritance, a fundamental concept in object-
oriented programming. On Day 13, “Managing Arrays and
Strings,” you will learn how to work with arrays and collec-
tions. Day 14, “Polymorphism,” extends the lessons of Day
12 to discuss polymorphism.

WEEK 2

DAY 8

Understanding Pointers

One of the powerful but low-level tools available to a C++ programmer is the
capability to manipulate computer memory directly by using pointers. This is
an advantage that C++ has over some other languages, such as C# and Visual
Basic.

Today, you will learn

* What pointers are

* How to declare and use pointers

* What the free store is and how to manipulate memory
Pointers present two special challenges when you’re learning C++: They can be
somewhat confusing, and it isn’t immediately obvious why they are needed.

Today’s lesson explains how pointers work, step-by-step. You will fully under-
stand the need for pointers, however, only as the book progresses.

| 222 Day 8

NOTE The ability to use pointers and manipulate memory at a low level is one of
the factors that makes C++ the language of choice for embedded and real-
time applications.

What Is a Pointer?

A pointer is a variable that holds a memory address. That’s it. If you understand this sim-
ple sentence, then you know the core of what there is to know about pointers.

A Bit About Memory

To understand pointers, you must know a little about computer memory. Computer mem-
ory is divided into sequentially numbered memory locations. Each variable is located at a
unique location in memory, known as its address. Figure 8.1 shows a schematic represen-
tation of the storage of an unsigned long integer variable named theAge.

FIGURE 8.1 Memory
A schematic

. theAge
representation
of theAge.

1011 o111 1111 1110
0101 0110 0110 1110

| | | | | | | | | |
100 101 102 103 104 105 106 107 108 109 110

each location = 1 byte

unsigned long int theAge = 4 bytes = 32 bits
variable name theAge points to 1st byte
the address of theAge is 102

Getting a Variable’s Memory Address

Different computers number this memory using different complex schemes. Usually, as a
programmer, you don’t need to know the particular address of any given variable because
the compiler handles the details. If you want this information, though, you can use the
address-of operator (&), which returns the address of an object in memory. Listing 8.1 is
used to illustrate the use of this operator.

Understanding Pointers

223 |

LisTING 8.1 Demonstrating the Address-of Operator

1: // Listing 8.1 Demonstrates address-of operator
2: // and addresses of local variables
3: #include <iostream>
4:
5: int main()
6: {
7: using namespace std;
8: unsigned short shortVar=5;
9: unsigned long longVar=65535;
10: long sVar = -65535;
11
12: cout << "shortvVar:\t" << shortVar;
13: cout << "\tAddress of shortVar:\t";
14: cout << &shortVar << endl;
15:
16: cout << "longVar:\t" << longVar;
17: cout << "\tAddress of longVar:\t" ;
18: cout << &longVar << endl;
19:
20: cout << "sVar:\t\t" << sVar;
21: cout << "\tAddress of svVar:\t" ;
22: cout << &sVar << endl;
23:
24: return 0;
25: }
shortvar: 5 Address of shortvar: 0012FF7C
longVar: 65535 Address of longVar: 0012FF78

sVar: -65535 Address of sVar: 0012FF74
(Your printout might look different, especially the last column.)

Three variables are declared and initialized: an unsigned short on line 8, an
unsigned long on line 9, and a long on line 10. Their values and addresses are
printed on lines 12-22. You can see on lines 14, 18, and 22 that the address-of operator
(&) is used to get the address of the variable. This operator is simply placed on the front
of the variable name in order to have the address returned.

Line 12 prints the value of shortVar as 5, which is expected. In the first line of the out-
put, you can see that its address is 0012FF7C when run on a Pentium (32-bit) computer.
This address is computer-specific and might change slightly each time the program is
run. Your results will be different.

When you declare a variable, the compiler determines how much memory to allow based
on the variable type. The compiler takes care of allocating memory and automatically

| 224 Day 8

assigns an address for it. For a 1long integer that is typically four bytes, for example, an
address to four bytes of memory is used.

NOTE Note that your compiler might insist on assigning new variables on four-byte
boundaries. (Thus, longvar was assigned an address four bytes after
shortvar even though shortvar only needed two bytes!)

Storing a Variable’s Address in a Pointer

Every variable has an address. Even without knowing the specific address, you can store
a variable’s address in a pointer.

Suppose, for example, that how01d is an integer. To declare a pointer called pAge to hold
its address, you write

int *pAge = 0;

This declares pAge to be a pointer to an int. That is, pAge is declared to hold the address
of an integer.

Note that pAge is a variable. When you declare an integer variable (type int), the com-

piler sets aside enough memory to hold an integer. When you declare a pointer variable
such as pAge, the compiler sets aside enough memory to hold an address (on most com-
puters, four bytes). A pointer, and thus pAge, is just a different type of variable.

Pointer Names

Because pointers are just another variable, you can use any name that is legal for other
variables. The same naming rules and suggestions apply. Many programmers follow the
convention of naming all pointers with an initial p, as in pAge or pNumber.

In the example,
int *pAge = 0;

pAge is initialized to zero. A pointer whose value is zero is called a null pointer. All
pointers, when they are created, should be initialized to something. If you don’t know
what you want to assign to the pointer, assign 0. A pointer that is not initialized is called
a wild pointer because you have no idea what it is pointing to—and it could be pointing
to anything! Wild pointers are very dangerous.

Understanding Pointers 225 |

NOTE Practice safe computing: Initialize all of your pointers!

For a pointer to hold an address, the address must be assigned to it. For the previous
example, you must specifically assign the address of how01ld to pAge, as shown in the fol-
lowing example:

unsigned short int how0Old = 50; // make a variable
unsigned short int * pAge = 0; // make a pointer
pAge = &how0ld; // put howOld's address in pAge

The first line creates a variable named how0ld—whose type is unsigned short int—
and initializes it with the value 50. The second line declares pAge to be a pointer to type
unsigned short int and initializes it to zero. You know that pAge is a pointer because
of the asterisk (*) after the variable type and before the variable name.

The third and final line assigns the address of how01d to the pointer pAge. You can tell
that the address of how01d is being assigned because of the address-of operator (&). If the
address-of operator had not been used, the value of how01ld would have been assigned.
That might, or might not, have been a valid address.

At this point, pAge has as its value the address of how01d. how01d, in turn, has the value
50. You could have accomplished this with one fewer step, as in

unsigned short int how0Old = 50; /1 make a variable
unsigned short int * pAge = &howOld; // make pointer to howOld

pAge is a pointer that now contains the address of the how01d variable.

Getting the Value from a Variable

Using pAge, you can actually determine the value of how01ld, which in this case is 50.
Accessing the value stored in a variable by using a pointer is called indirection because
you are indirectly accessing the variable by means of the pointer. For example, you can
use indirection with the pAge pointer to access the value in how01d.

Indirection means accessing the value at the address held by a pointer. The pointer pro-
vides an indirect way to get the value held at that address.

NOTE With a normal variable, the type tells the compiler how much memory is
needed to hold the value. With a pointer, the type does not do this; all
pointers are the same size—usually four bytes on a machine with a 32-bit
processor and eight bytes on a machine with a 64-bit processor.

| 226 Day 8

The type tells the compiler how much memory is needed for the object at
the address, which the pointer holds!

In the declaration
unsigned short int * pAge = 0; // make a pointer

pAge is declared to be a pointer to an unsigned short integer. This tells the
compiler that the pointer (which needs four bytes to hold an address) will
hold the address of an object of type unsigned short int, which itself
requires two bytes.

Dereferencing with the Indirection Operator

The indirection operator (*) is also called the dereference operator. When a pointer is
dereferenced, the value at the address stored by the pointer is retrieved.

Normal variables provide direct access to their own values. If you create a new variable
of type unsigned short int called yourAge, and you want to assign the value in how0ld
to that new variable, you write

unsigned short int yourAge;
yourAge = how0ld;

A pointer provides indirect access to the value of the variable whose address it stores. To
assign the value in how01d to the new variable yourAge by way of the pointer pAge, you
write

unsigned short int yourAge;

yourAge = *pAge;

The indirection operator (*) in front of the pointer variable pAge means “the value
stored at.” This assignment says, “Take the value stored at the address in pAge and
assign it to yourAge.” If you didn’t include the indirection operator:

yourAge = pAge; // bad!!

you would be attempting to assign the value in pAge, a memory address, to YourAge.
Your compiler would most likely give you a warning that you are making a mistake.

Different Uses of the Asterisk

The asterisk (*) is used in two distinct ways with pointers: as part of the pointer declara-
tion and also as the dereference operator.

When you declare a pointer, the * is part of the declaration and it follows the type of the
object pointed to. For example,

Understanding Pointers 227 |

/] make a pointer to an unsigned short
unsigned short * pAge = 0;

When the pointer is dereferenced, the dereference (or indirection) operator indicates
that the value at the memory location stored in the pointer is to be accessed, rather than
the address itself.

/] assign 5 to the value at pAge

*pAge = 5;
Also note that this same character (*) is used as the multiplication operator. The compiler
knows which operator to call based on how you are using it (context).

Pointers, Addresses, and Variables

It is important to distinguish between a pointer, the address that the pointer holds, and
the value at the address held by the pointer. This is the source of much of the confusion
about pointers.

Consider the following code fragment:

int theVariable = 5;
int * pPointer = &theVariable ;

thevariable is declared to be an integer variable initialized with the value 5. pPointer
is declared to be a pointer to an integer; it is initialized with the address of thevariable.
pPointer is the pointer. The address that pPointer holds is the address of thevariable.
The value at the address that pPointer holds is 5. Figure 8.2 shows a schematic repre-
sentation of thevariable and pPointer.

A schematic
representation

FIGURE 8.2 theVariable pPointer
of memory. I I I I I I I
0000 0000 0000 0000 0000 0110
0000 0101 0000 0000 0000 0101
%(_J - |
Y
5 101

| | | | | | | | |
100 101 102 103 104 105 106 107 108 109

Address location

In Figure 8.2, the value 5 is stored at address location 101. This is shown in the binary
number

0000 0000 0000 0101

| 228

Day 8

This is two bytes (16 bits) whose decimal value is 5.
The pointer variable is at location 106. Its value is
000 0000 0000 0000 0000 0000 0110 0101

This is the binary representation of the value 101, which is the address of thevariable,
whose value is 5.

The memory layout here is schematic, but it illustrates the idea of how pointers store an
address.

Manipulating Data by Using Pointers

In addition to using the indirection operator to see what data is stored at a location
pointed to by a variable, you can also manipulate that data. After the pointer is assigned
the address, you can use that pointer to access the data in the variable being pointed to.

Listing 8.2 pulls together what you have just learned about pointers. In this listing, you
see how the address of a local variable is assigned to a pointer and how the pointer can
be used along with the indirection operator to manipulate the values in that variable.

Listing 8.2 Manipulating Data by Using Pointers

1: // Listing 8.2 Using pointers

2: #include <iostream>

3:

4: typedef unsigned short int USHORT;

5:

6: int main()

7: |

8:

9: using namespace std;

10:

11: USHORT myAge; /] a variable

12: USHORT * pAge = 0; // a pointer

13:

14: myAge = 5;

15:

16: cout << "myAge: " << myAge << endl;

17: pAge = &myAge; // assign address of myAge to pAge
18: cout << "*pAge: " << *pAge << endl << endl;
19:

20: cout << "Setting *pAge = 7... " << endl;
21: *pAge = 7; // sets myAge to 7

22:

23: cout << "*pAge: " << *pAge << endl;

24: cout << "myAge: " << myAge << endl << endl;

Understanding Pointers 229 |

LisTING 8.2 continued

26: cout << "Setting myAge = 9.. " << endl;
27: myAge = 9;

28:

29: cout << "myAge: " << myAge << endl;
30: cout << "*pAge: " << *pAge << endl;
31:

32: return 0;

33: }

myAge: 5
OUTPUT it

Setting *pAge
*pAge: 7
myAge: 7

1}
~

1}
©

Setting myAge
myAge: 9
*pAge: 9

ANALYSIS This program declares two variables: an unsigned short, myAge, and a pointer
to an unsigned short, pAge. myAge is assigned the value 5 on line 14; this is ver-

ified by the printout on line 16.

On line 17, pAge is assigned the address of myAge. On line 18, pAge is dereferenced—
using the indirection operator (*)—and printed, showing that the value at the address that
pAge stores is the 5 stored in myAge.

On line 21, the value 7 is assigned to the variable at the address stored in pAge. This sets
myAge to 7, and the printouts on lines 23 and 24 confirm this. Again, you should notice
that the indirect access to the variable was obtained by using an asterisk—the indirection
operator in this context.

On line 27, the value 9 is assigned to the variable myAge. This value is obtained directly
on line 29 and indirectly (by dereferencing pAge) on line 30.

Examining the Address

Pointers enable you to manipulate addresses without ever knowing their real value. After
today, you’ll take it on faith that when you assign the address of a variable to a pointer, it
really has the address of that variable as its value. But just this once, why not check to be
certain? Listing 8.3 illustrates this idea.

| 230 Day 8

LisTING 8.3 Finding Out What Is Stored in Pointers

1: // Listing 8.3

2: // What is stored in a pointer.

3: #include <iostream>

4:

5: int main()

6: {

7: using namespace std;

8:

9: unsigned short int myAge = 5, yourAge = 10;

10:

11: // a pointer

12: unsigned short int * pAge = &myAge;

13:

14: cout << "myAge:\t" << myAge

15: << "\t\tyourAge:\t" << yourAge << endl;

16:

17: cout << "&myAge:\t" << &myAge

18: << "\t&yourAge:\t" << &yourAge << endl;

19:

20: cout << "pAge:\t" << pAge << endl;

21: cout << "*pAge:\t" << *pAge << endl;

22:

23:

24: cout << "\nReassigning: pAge = &yourAge..." << endl << endl;

25: pAge = &yourAge; // reassign the pointer

26:

27: cout << "myAge:\t" << myAge <<

28: "\t\tyourAge:\t" << yourAge << endl;

29:

30: cout << "&myAge:\t" << &myAge

31: << "\t&yourAge:\t" << &yourAge << endl;

32:

33: cout << "pAge:\t" << pAge << endl;

34: cout << "*pAge:\t" << *pAge << endl;

35:

36: cout << "\n&pAge:\t" << &pAge << endl;

37:

38: return 0;

39: }
myAge: 5 yourAge: 10

OUTPUT [P ts &yourAge: 0012FF78

pAge: 0012FF7C
*pAge: 5

Reassigning: pAge = &yourAge...

Understanding Pointers 231 |

myAge: 5 yourAge: 10
&myAge: 0012FF7C &yourAge: 0012FF78
pAge: 0012FF78

*pAge: 10

&pAge: 0012FF74

(Your output might look different.)

ARG On line 9, myAge and yourAge are declared to be variables of type unsigned
short integer. On line 12, pAge is declared to be a pointer to an unsigned short

integer, and it is initialized with the address of the variable myAge.

Lines 14—18 print the values and the addresses of myAge and yourAge. Line 20 prints the
contents of pAge, which is the address of myAge. You should notice that the output con-
firms that the value of pAge matches the value of myAge’s address. Line 21 prints the
result of dereferencing pAge, which prints the value at pAge—the value in myAge, or 5.

This is the essence of pointers. Line 20 shows that pAge stores the address of myAge, and
line 21 shows how to get the value stored in myAge by dereferencing the pointer pAge. Be
certain that you understand this fully before you go on. Study the code and look at the
output.

On line 25, pAge is reassigned to point to the address of yourAge. The values and
addresses are printed again. The output shows that pAge now has the address of the vari-
able yourAge and that dereferencing obtains the value in yourAge.

Line 36 prints the address of pAge itself. Like any variable, it has an address, and that
address can be stored in a pointer. (Assigning the address of a pointer to another pointer
will be discussed shortly.)

o

DO use the indirection operator (*) to DON'T confuse the address in a pointer
access the data stored at the address in a with the value at that address.
pointer.

DO initialize all pointers either to a valid
address or to null (0).

Using Pointers

To declare a pointer, write the type of the variable or object whose address will be stored
in the pointer, followed by the pointer operator (*) and the name of the pointer. For
example,

| 232

Day 8

unsigned short int * pPointer = 0;

To assign or initialize a pointer, prepend the name of the variable whose address is being
assigned with the address-of operator (&). For example,

unsigned short int theVariable = 5;

unsigned short int * pPointer = &theVariable;

To dereference a pointer, prepend the pointer name with the dereference operator (*).
For example:

unsigned short int theValue = *pPointer

Why Would You Use Pointers?

So far, you’ve seen step-by-step details of assigning a variable’s address to a pointer. In
practice, though, you would never do this. After all, why bother with a pointer when you
already have a variable with access to that value? The only reason for this kind of pointer
manipulation of an automatic variable is to demonstrate how pointers work. Now that
you are comfortable with the syntax of pointers, you can put them to good use. Pointers
are used, most often, for three tasks:

* Managing data on the free store
e Accessing class member data and functions
 Passing variables by reference to functions
The remainder of today’s lesson focuses on managing data on the free store and access-

ing class member data and functions. Tomorrow, you will learn about passing variables
using pointers, which is called passing by reference.

The Stack and the Free Store (Heap)

In the section “How Functions Work—A Peek Under the Hood” on Day 5, “Organizing
into Functions,” five areas of memory are mentioned:

* Global namespace

* The free store

e Registers

* Code space

* The stack

Understanding Pointers 233 |

Local variables are on the stack, along with function parameters. Code is in code space,
of course, and global variables are in the global namespace. The registers are used for
internal housekeeping functions, such as keeping track of the top of the stack and the
instruction pointer. Just about all of the remaining memory is given to the free store,
which is often referred to as the heap.

Local variables don’t persist; when a function returns, its local variables are destroyed.
This is good, because it means the programmer doesn’t have to do anything to manage
this memory space, but is bad because it makes it hard for functions to create objects for
use by other objects or functions without generating the extra overhead of copying
objects from stack to return value to destination object in the caller. Global variables
solve that problem at the cost of providing unrestricted access to those variables through-
out the program, which leads to the creation of code that is difficult to understand and
maintain. Putting data in the free store can solve both of these problems if that data is
managed properly.

You can think of the free store as a massive section of memory in which thousands of
sequentially numbered cubbyholes lie waiting for your data. You can’t label these cubby-
holes, though, as you can with the stack. You must ask for the address of the cubbyhole
that you reserve and then stash that address away in a pointer.

One way to think about this is with an analogy: A friend gives you the 800 number for
Acme Mail Order. You go home and program your telephone with that number, and then
you throw away the piece of paper with the number on it. If you push the button, a tele-
phone rings somewhere, and Acme Mail Order answers. You don’t remember the num-
ber, and you don’t know where the other telephone is located, but the button gives you
access to Acme Mail Order. Acme Mail Order is your data on the free store. You don’t
know where it is, but you know how to get to it. You access it by using its address—in
this case, the telephone number. You don’t have to know that number; you just have to
put it into a pointer (the button). The pointer gives you access to your data without both-
ering you with the details.

The stack is cleaned automatically when a function returns. All the local variables go out
of scope, and they are removed from the stack. The free store is not cleaned until your
program ends, and it is your responsibility to free any memory that you’ve reserved
when you are done with it. This is where destructors are absolutely critical, because they
provide a place where any heap memory allocated in a class can be reclaimed.

The advantage to the free store is that the memory you reserve remains available until
you explicitly state you are done with it by freeing it. If you reserve memory on the free
store while in a function, the memory is still available when the function returns.

| 234

Day 8

The disadvantage of the free store is also that the memory you reserve remains available
until you explicitly state you are done with it by freeing it. If you neglect to free that
memory, it can build up over time and cause the system to crash.

The advantage of accessing memory in this way, rather than using global variables, is
that only functions with access to the pointer (which has the appropriate address) have
access to the data. This requires the object containing the pointer to the data, or the
pointer itself, to be explicitly passed to any function making changes, thus reducing the
chances that a function can change the data without that change being traceable.

For this to work, you must be able to create a pointer to an area on the free store and to
pass that pointer among functions. The following sections describe how to do this.

Allocating Space with the new Keyword

You allocate memory on the free store in C++ by using the new keyword. new is followed
by the type of the object that you want to allocate, so that the compiler knows how much
memory is required. Therefore, new unsigned short int allocates two bytes in the free
store, and new long allocates four, assuming your system uses a two-byte unsigned
short int and a four-byte long.

The return value from new is a memory address. Because you now know that memory
addresses are stored in pointers, it should be no surprise to you that the return value from
new should be assigned to a pointer. To create an unsigned short on the free store, you
might write

unsigned short int * pPointer;
pPointer = new unsigned short int;

You can, of course, do this all on one line by initializing the pointer at the same time you
declare it:

unsigned short int * pPointer = new unsigned short int;

In either case, pPointer now points to an unsigned short int on the free store. You
can use this like any other pointer to a variable and assign a value into that area of mem-
ory by writing

*pPointer = 72;

This means “Put 72 at the value in pPointer,” or “Assign the value 72 to the area on the
free store to which pPointer points.”

Understanding Pointers 235 |

NOTE If new cannot create memory on the free store (memory is, after all, a limited
resource), it throws an exception (see Day 20, “Handling Errors and
Exceptions”).

Putting Memory Back: The delete Keyword

When you are finished with an area of memory, you must free it back to the system. You
do this by calling delete on the pointer. delete returns the memory to the free store.

It is critical to remember that memory allocated with new is not freed automatically. If a
pointer variable is pointing to memory on the free store and the pointer goes out of
scope, the memory is not automatically returned to the free store. Rather, it is considered
allocated and because the pointer is no longer available, you can no longer access the
memory. This happens, for instance, if a pointer is a local variable. When the function in
which that pointer is declared returns, that pointer goes out of scope and is lost. The
memory allocated with new is not freed—instead, it becomes unavailable.

This situation is called a memory leak. It’s called a memory leak because that memory
can’t be recovered until the program ends. It is as though the memory has leaked out of
your computer.

To prevent memory leaks, you should restore any memory you allocate back to the free
store. You do this by using the keyword delete. For example:

delete pPointer;

When you delete the pointer, you are really freeing up the memory whose address is
stored in the pointer. You are saying, “Return to the free store the memory that this
pointer points to.” The pointer is still a pointer, and it can be reassigned. Listing 8.4
demonstrates allocating a variable on the heap, using that variable, and deleting it.

Most commonly, you will allocate items from the heap in a constructor, and deallocate
them in the destructor. In other cases, you will initialize pointers in the constructor, allo-
cate memory for those pointers as the object is used, and, in the destructor, test the point-
ers for null and deallocate them if they are not null.

CAUTION When you call delete on a pointer, the memory it points to is freed. Calling
delete on that pointer again crashes your program! When you delete a
pointer, set it to zero (null). Calling delete on a null pointer is guaranteed
to be safe. For example:

| 236

Day 8

Animal *pDog = new Animal; // allocate memory
delete pDog; //frees the memory

pDog = 0; //sets pointer to null

/le..
delete pDog; //harmless

ListinG 8.4 Allocating, Using, and Deleting Pointers

/] Listing 8.4
// Allocating and deleting a pointer
#include <iostream>
int main()
{
using namespace std;
int localvVariable = 5;
int * pLocal= &localvariable;
int * pHeap = new int;
*pHeap = 7;
cout << "localvVariable: " << localVariable << endl;
cout << "*pLocal: " << *pLocal << endl;
cout << "*pHeap: " << *pHeap << endl;
delete pHeap;
pHeap = new int;
*pHeap = 9;
cout << "*pHeap: " << *pHeap << endl;
delete pHeap;
return 0;

localvariable: 5
*pLocal: 5
*pHeap: 7
*pHeap: 9

OuTPUT

Line 7 declares and initializes a local variable ironically called localvariable.
Line 8 declares a pointer called pLocal and initializes it with the address of the
local variable. On line 9, a second pointer called pHeap is declared; however, it is initial-
ized with the result obtained from calling new int. This allocates space on the free store
for an int, which can be accessed using the pHeap pointer. This allocated memory is
assigned the value 7 on line 10.

N — — = 4 bk
S WO NODUOPRWN—-00OONO”O»WN =

ANALYSIS

Lines 11-13 print a few values. Line 11 prints the value of the local variable
(localvariable), line 12 prints the value pointed to by the pLocal pointer, and line 13
prints the value pointed to by the pHeap pointer. You should notice that, as expected, the
values printed on lines 11 and 12 match. In addition, line 13 confirms that the value
assigned on line 10 is, in fact, accessible.

Understanding Pointers 237 |

On line 14, the memory allocated on line 9 is returned to the free store by a call to
delete. This frees the memory and disassociates the pointer from that memory. pHeap is
now free to be used to point to other memory. It is reassigned on lines 15 and 16, and
line 17 prints the result. Line 18 restores that memory to the free store.

Although line 18 is redundant (the end of the program would have returned that mem-
ory), it is a good idea to free this memory explicitly. If the program changes or is
extended, having already taken care of this step is beneficial.

Another Look at Memory Leaks

Memory leaks are one of the most serious issues and complaints about pointers. You
have seen one way that memory leaks can occur. Another way you might inadvertently
create a memory leak is by reassigning your pointer before deleting the memory to
which it points. Consider this code fragment:

unsigned short int * pPointer = new unsigned short int;

*pPointer = 72;

pPointer = new unsigned short int;

*pPointer = 84;

B WD =

Line 1 creates pPointer and assigns it the address of an area on the free store. Line 2
stores the value 72 in that area of memory. Line 3 reassigns pPointer to another area of
memory. Line 4 places the value 84 in that area. The original area—in which the value
72 is now held—is unavailable because the pointer to that area of memory has been reas-
signed. No way exists to access that original area of memory, nor is there any way to free
it before the program ends.

The code should have been written like this:

unsigned short int * pPointer = new unsigned short int;
*pPointer = 72;

delete pPointer;

pPointer = new unsigned short int;

*pPointer = 84;

a s~ wOND =

Now, the memory originally pointed to by pPointer is deleted, and thus freed, on line 3.

NOTE For every time in your program that you call new, there should be a call to
delete. It is important to keep track of which pointer owns an area of mem-
ory and to ensure that the memory is returned to the free store when you
are done with it.

| 238 Day 8

Creating Objects on the Free Store

Just as you can create a pointer to an integer, you can create a pointer to any data type,
including classes. If you have declared an object of type Cat, you can declare a pointer to
that class and instantiate a Cat object on the free store, just as you can make one on the
stack. The syntax is the same as for integers:

Cat *pCat = new Cat;

This calls the default constructor—the constructor that takes no parameters. The con-
structor is called whenever an object is created (on the stack or on the free store). Be
aware, however, that you are not limited to using only the default constructor when creat-
ing an object with new—any constructor can be used.

Deleting Objects from the Free Store

When you call delete on a pointer to an object on the free store, that object’s destructor
is called before the memory is released. This gives your class a chance to clean up (gen-
erally deallocating heap allocated memory), just as it does for objects destroyed on the
stack. Listing 8.5 illustrates creating and deleting objects on the free store.

LisTING 8.5 Creating and Deleting Objects on the Free Store

1: // Listing 8.5 - Creating objects on the free store
2: // using new and delete
3:

4: #include <iostream>

5:

6: using namespace std;

7:

8: class SimpleCat

9: {

10: public:

11: SimpleCat();

12: ~SimpleCat();

13: private:

14: int itsAge;

15: };

16:

17: SimpleCat::SimpleCat()
18: {

19: cout << "Constructor called. " << endl;
20: itsAge = 1;
21: 1}
22:

23: SimpleCat::~SimpleCat()
24: {

Understanding Pointers 239 |

LisTING 8.5 continued

25: cout << "Destructor called. " << endl;

26: }

27:

28: int main()

29: |

30: cout << "SimpleCat Frisky... " << endl;

31: SimpleCat Frisky;

32: cout << "SimpleCat *pRags = new SimpleCat..." << endl;
33: SimpleCat * pRags = new SimpleCat;

34: cout << "delete pRags... " << endl;

35: delete pRags;

36: cout << "Exiting, watch Frisky go... " << endl;
37: return 0;

38: }

SimpleCat Frisky...
Constructor called.
SimpleCat *pRags = new SimpleCat..
Constructor called.
delete pRags...
Destructor called.
Exiting, watch Frisky go...
Destructor called.

Lines 8—15 declare the stripped-down class SimpleCat. Line 11 declares
ANALYSIS IS , . .. i .
SimpleCat’s constructor, and lines 17-21 contain its definition. Line 12 declares

SimpleCat’s destructor, and lines 23-26 contain its definition. As you can see, both the
constructor and destructor simply print a simple message to let you know they have been
called.

On line 31, Frisky is created as a regular local variable, thus it is created on the stack.
This creation causes the constructor to be called. On line 33, the SimpleCat pointed to
by pRags is also created; however, because a pointer is being used, it is created on the
heap. Once again, the constructor is called.

On line 35, delete is called on the pointer, pRags. This causes the destructor to be called
and the memory that had been allocated to hold this SimpleCat object to be returned.
When the function ends on line 38, Frisky goes out of scope, and its destructor is called.

Accessing Data Members

You learned on Day 6, “Understanding Object-Oriented Programming,” that you
accessed data members and functions by using the dot (.) operator. As you should be
aware, this works for Cat objects created locally.

| 240

Day 8

Accessing the members of an object when using a pointer is a little more complex. To
access the Cat object on the free store, you must dereference the pointer and call the dot
operator on the object pointed to by the pointer. It is worth repeating this. You must first
dereference the pointer. You then use the dereferenced value—the value being pointed
to—along with the dot operator to access the members of the object. Therefore, to access
the GetAge member function of an object pointed to by pRags, you write

(*pRags) .GetAge();

As you can see, parentheses are used to ensure that pRags is dereferenced first—before
GetAge () is accessed. Remember, parentheses have a higher precedence than other
operators.

Because this is cumbersome, C++ provides a shorthand operator for indirect access: the
class member access operator (->), which is created by typing the dash (-) immediately
followed by the greater-than symbol (>). C++ treats this as a single symbol. Listing 8.6
demonstrates accessing member variables and functions of objects created on the free
store.

NOTE Because the class member access operator (->) can also be used for indirect

access to members of an object (through a pointer), it can also be referred
to as an indirection operator. Some people also refer to it as the points-to
operator because that is what it does.

LisTING 8.6 Accessing Member Data of Objects on the Free Store

1: // Listing 8.6 - Accessing data members of objects on the heap
2: // using the -> operator

3:

4: #include <iostream>

5:

6: class SimpleCat

7: |

8: public:

9: SimpleCat() {itsAge = 2; }

10: ~SimpleCat() {}

11: int GetAge() const { return itsAge; }
12: void SetAge(int age) { itsAge = age; }
13: private:

14: int itsAge;

15: };

16:

17: int main()
18:

Understanding Pointers 241 |

LisTING 8.6 continued

19: using namespace std;

20: SimpleCat * Frisky = new SimpleCat;

21: cout << "Frisky is " << Frisky->GetAge() << " years old " << endl;
22: Frisky->SetAge(5);

23: cout << "Frisky is " << Frisky->GetAge() << " years old " << endl;
24: delete Frisky;

25: return 0;

26: }

o Frisky is 2 years old
UTPUT Frisky is 5 years old
PTG On line 20, a SimpleCat object that is pointed to by the pointer Frisky is instan-
tiated (created) on the free store. The default constructor of the object sets its age
to 2, and the GetAge () method is called on line 21. Because Frisky is a pointer, the indi-

rection operator (->) is used to access the member data and functions. On line 22, the
SetAge () method is called, and GetAge () is accessed again on line 23.

Creating Member Data on the Free Store

In addition to creating objects on the free store, you can also create data members within
an object on the free store. One or more of the data members of a class can be a pointer
to an object on the free store. Using what you have already learned, you can allocate
memory on the free store for these pointers to use. The memory can be allocated in the
class constructor or in one of the class’ methods. When you are done using the member,
you can—and should—delete it in one of the methods or in the destructor, as Listing 8.7
illustrates.

LisTING 8.7 Pointers as Member Data

1: // Listing 8.7 - Pointers as data members
2: // accessed with -> operator

3:

4: #include <iostream>

5:

6: class SimpleCat

7: {

8: public:

9: SimpleCat();

10: ~SimpleCat();

11: int GetAge() const { return *itsAge; }
12: void SetAge(int age) { *itsAge = age; }

| 242

Day 8

LisTING 8.7

continued

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:

} .

int GetWeight() const { return *itsWeight; }
void setWeight (int weight) { *itsWeight = weight; }

private:
int * itsAge;
int * itsWeight;

b

SimpleCat::SimpleCat()

{

}

itsAge = new int(2

);
itsWeight = new int(5);

SimpleCat::~SimpleCat()

{

}

delete itsAge;
delete itsWeight;

int main()

{

using namespace std;

SimpleCat *Frisky = new SimpleCat;

cout << "Frisky is
<< " years
Frisky->SetAge(5);
cout << "Frisky is
<< " years
delete Frisky;
return 0;

<< Frisky->GetAge()
old " << endl;

<< Frisky->GetAge()
old " << endl;

OuTPUT

Frisky is 2 years old
Frisky is 5 years old

The class SimpleCat is declared to have two member variables—both of which
are pointers to integers—on lines 18 and 19. The constructor (lines 22-26) ini-
tializes the pointers to memory on the free store and to the default values.

Notice on lines 24 and 25 that a pseudoconstructor is called on the new integer, passing
in the value for the integer. This creates an integer on the heap and initializes its value
(on line 24 to the value 2 and on line 25 to the value 5).

Understanding Pointers 243 |

The destructor (lines 28-32) cleans up the allocated memory. Because this is the destruc-
tor, there is no point in assigning these pointers to null because they will no longer be
accessible. This is one of the safe places to break the rule that deleted pointers should be
assigned to null, although following the rule doesn’t hurt.

The calling function (in this case, main()) is unaware that itsAge and itsWeight are
pointers to memory on the free store. main() continues to call GetAge () and SetAge(),
and the details of the memory management are hidden in the implementation of the
class—as they should be.

When Frisky is deleted on line 41, its destructor is called. The destructor deletes each of
its member pointers. If these, in turn, point to objects of other user-defined classes, their
destructors are called as well.

Understanding What You Are Accomplishing

The use of pointers as was done in Listing 8.7 would be pretty silly in a real program
unless a good reason existed for the Cat object to hold its members by reference. In this
case, there is no good reason to use pointers to access itsAge and itsWeight, but in
other cases, this can make a lot of sense.

This brings up the obvious question: What are you trying to accomplish by using pointers
as references to variables instead of just using variables? Understand, too, that you must
start with design. If what you’ve designed is an object that refers to another object, but
the second object might come into existence before the first object and continue after
the first object is gone, then the first object must contain the second by reference.

For example, the first object might be a window and the second object might be a docu-
ment. The window needs access to the document, but it doesn’t control the lifetime of
the document. Thus, the window needs to hold the document by reference.

This is implemented in C++ by using pointers or references. References are covered on
Day 9, “Exploiting References.”

The this Pointer

Every class member function has a hidden parameter: the this pointer. this points to
“this” individual object. Therefore, in each call to GetAge () or SetAge (), each function
gets this for its object as a hidden parameter.

It is possible to use the pointer to this explicitly, as Listing 8.8 illustrates.

| 244

Day 8

LisTING 8.8 Using the this Pointer

NDMNOMNDMNNDMNOMNDMNDMNDN - — b b 4 4
ONOD U PR WOUN—LTO0CONOODOPRWON = O

W WWwWwowowowawaw
ONOOOPAWN =S

i i i o i i =
NoO OO~ OON =S

I
©

ONOO O~ WD =

n
©

w
©

N
©

/] Listing 8.8
// Using the this pointer

#include <iostream>

class Rectangle

{
public:
Rectangle();
~Rectangle();
void SetLength(int length)
{ this->itslLength = length; }
int GetLength() const
{ return this->itslLength; }
void SetWidth(int width)
{ itsWidth = width; }
int GetWidth() const
{ return itsWidth; }
private:
int itslLength;
int itsWidth;
b
Rectangle: :Rectangle()
{
itsWidth = 5;
itsLength = 10;
}
Rectangle: :~Rectangle()
{}
int main()
{

using namespace std;

Rectangle theRect;

cout << "theRect is " << theRect.GetLength()
<< " feet long." << endl;

cout << "theRect is " << theRect.GetWidth()
<< " feet wide." << endl;

theRect.SetLength(20);

theRect.SetWidth(10);

cout << "theRect is " << theRect.GetLength()
<< " feet long." << endl;

cout << "theRect is " << theRect.GetWidth()
<< " feet wide. " << endl;

return 0;

Understanding Pointers 245 |

theRect is 10 feet long.
Output theRect is 5 feet wide.
theRect is 20 feet long.
theRect is 10 feet wide.

The SetLength() accessor function on lines 11-12 and the GetLength() acces-
sor function on lines 13—14, both explicitly use the this pointer to access the
member variables of the Rectangle object. The Setwidth() and GetWidth() accessors
on lines 16—19 do not. No difference exists in their behavior, although the syntax is eas-
ier to understand.

If that were all there was to this, there would be little point in bothering you with it.
this, however, is a pointer; it stores the memory address of an object. As such, it can be
a powerful tool.

You’ll see a practical use for this on Day 10, “Working with Advanced Functions,”
when operator overloading is discussed. For now, your goal is to know about this and to
understand what it is: a pointer to the object that holds the function.

You don’t have to worry about creating or deleting the this pointer. The compiler takes
care of that.

Stray, Wild, or Dangling Pointers

Yet again, issues with pointers are being brought up. This is because errors you create in
your programs with pointers can be among the most difficult to find and among the most
problematic. One source of bugs that are especially nasty and difficult to find in C++ is
stray pointers. A stray pointer (also called a wild or dangling pointer) is created when
you call delete on a pointer—thereby freeing the memory that it points to—and then
you don’t set it to null. If you then try to use that pointer again without reassigning it, the
result is unpredictable and, if you are lucky, your program will crash.

It is as though the Acme Mail Order company moved away, but you still pressed the pro-
grammed button on your phone. It is possible that nothing terrible happens—a telephone
rings in a deserted warehouse. On the other hand, perhaps the telephone number has
been reassigned to a munitions factory, and your call detonates an explosive and blows
up your whole city!

In short, be careful not to use a pointer after you have called delete on it. The pointer
still points to the old area of memory, but the compiler is free to put other data there;
using the pointer without reallocating new memory for it can cause your program to
crash. Worse, your program might proceed merrily on its way and crash several minutes
later. This is called a time bomb, and it is no fun. To be safe, after you delete a pointer,
set it to null (@). This disarms the pointer.

| 246

Day 8

NOTE Stray pointers are often called wild pointers or dangling pointers.

Listing 8.9 illustrates creating a stray pointer.

CAUTION This program intentionally creates a stray pointer. Do NOT run this
program—it will crash, if you are lucky.

LisTiING 8.9 Creating a Stray Pointer

1: // Listing 8.9 - Demonstrates a stray pointer
2:
3: typedef unsigned short int USHORT;
4: #include <iostream>
5:
6: 1int main()
7: |
8: USHORT * pInt = new USHORT;
9: *pInt = 10;
10: std::cout << "*pInt: " << *pInt << std::endl;
11: delete pInt;
12:
13: long * pLong = new long;
14: *pLong = 90000;
15: std::cout << "*plLong: " << *pLong << std::endl;
16:
17: *pInt = 20; // uh oh, this was deleted!
18:
19: std::cout << "*pInt: " << *pInt << std::endl;
20: std::cout << "*pLong: " << *pLong << std::endl;
21: delete plLong;
22: return 0;
23: }
*pInt: 10
*pLong: 90000
*pInt: 20

*pLong: 65556

(Do not try to re-create this output; yours will differ if you are lucky; or your computer
will crash if you are not.)

Understanding Pointers 247 |

This is a listing you should avoid running because it could lock up your machine.
On line 8, pInt is declared to be a pointer to USHORT, and is pointed to newly
allocated memory. On line 9, the value 10 is put into that memory allocated for pInt.
The value pointed to is then printed on line 10. After the value is printed, delete is
called on the pointer. After line 11 executes, pInt is a stray, or dangling, pointer.

Line 13 declares a new pointer, pLong, which is pointed at the memory allocated by new.
On line 14, the value 90000 is assigned to pLong, and on line 15, this value prints.

It is on line 17 that the troubles begin. On line 17, the value 20 is assigned to the mem-
ory that pInt points to, but pInt no longer points anywhere that is valid. The memory
that pInt points to was freed by the call to delete on line 11. Assigning a value to that
memory is certain disaster.

On line 19, the value at pInt is printed. Sure enough, it is 20. Line 20 prints the value at
pLong; it has suddenly been changed to 65556. Two questions arise:

1. How could pLong’s value change, given that pLong wasn’t touched?

2. Where did the 20 go when pInt was used on line 177

As you might guess, these are related questions. When a value was placed at pInt on line
17, the compiler happily placed the value 20 at the memory location that pInt previously
pointed to. However, because that memory was freed on line 11, the compiler was free to
reassign it. When pLong was created on line 13, it was given pInt’s old memory loca-
tion. (On some computers, this might not happen, depending on where in memory these
values are stored.) When the value 20 was assigned to the location that pInt previously
pointed to, it wrote over the value pointed to by pLong. This is called “’stomping on a
pointer.” It is often the unfortunate outcome of using a stray pointer.

This is a particularly nasty bug because the value that changed wasn’t associated with the
stray pointer. The change to the value at pLong was a side effect of the misuse of pInt. In
a large program, this would be very difficult to track down.

Just for Fun
Here are the details of how 65,556 got into the memory address of pLong in Listing 8.9:
1. pInt was pointed at a particular memory location, and the value 10 was assigned.

2. delete was called on pInt, which told the compiler that it could put something else
at that location. Then, pLong was assigned the same memory location.

3. The value 90000 was assigned to *pLong. The particular computer used in this exam-
ple stored the four-byte value of 90,000 (¢0 @1 5F 90) in byte-swapped order.
Therefore, it was stored as 5F 90 00 01.

| 248

Day 8

4. pInt was assigned the value 20—or 20 14 in hexadecimal notation. Because pInt still
pointed to the same address, the first two bytes of pLong were overwritten, leaving
00 14 00 01.

5. The value at pLong was printed, reversing the bytes back to their correct order of 00
01 00 14, which was translated into the DOS value of 65556.

FAQ

What is the difference between a null pointer and a stray pointer?

Answer: When you delete a pointer, you tell the compiler to free the memory, but the
pointer itself continues to exist. It is now a stray pointer.

When you then write myPtr = 0; you change it from being a stray pointer to being a
null pointer.

Normally, if you delete a pointer and then delete it again, your program is undefined.
That is, anything might happen—if you are lucky, the program will crash. If you delete a
null pointer, nothing happens; it is safe.

Using a stray or a null pointer (for example, writing myPtr = 5;) is illegal, and it might
crash. If the pointer is null, it will crash, another benefit of null over stray. Predictable
crashes are preferred because they are easier to debug.

Using const Pointers

You can use the keyword const for pointers before the type, after the type, or in both
places. For example, all the following are legal declarations:

const int * pOne;
int * const pTwo;
const int * const pThree;

Each of these, however, does something different:
* pOne is a pointer to a constant integer. The value that is pointed to can’t be

changed.

* pTwo is a constant pointer to an integer. The integer can be changed, but pTwo can’t
point to anything else.

* pThree is a constant pointer to a constant integer. The value that is pointed to can’t
be changed, and pThree can’t be changed to point to anything else.

Understanding Pointers 249 |

The trick to keeping this straight is to look to the right of the keyword const to find out
what is being declared constant. If the type is to the right of the keyword, it is the value

that is constant. If the variable is to the right of the keyword const, it is the pointer vari-
able itself that is constant. The following helps to illustrate this:

const int * p1; // the int pointed to is constant
int * const p2; // p2 is constant, it can't point to anything else

const Pointers and const Member Functions

On Day 6, you learned that you can apply the keyword const to a member function.
When a function is declared const, the compiler flags as an error any attempt to change
data in the object from within that function.

If you declare a pointer to a const object, the only methods that you can call with that
pointer are const methods. Listing 8.10 illustrates this.

LisTING 8.10 Using Pointers to const Objects

1: // Listing 8.10 - Using pointers with const methods
2:

3: #include <iostream>

4: using namespace std;

5:

6: class Rectangle

7: {

8: public:

9: Rectangle();

10: ~Rectangle();

11: void SetlLength(int length) { itsLength = length; }
12: int GetLength() const { return itsLength; }
13: void SetWidth(int width) { itsWidth = width; }
14: int GetWidth() const { return itsWidth; }

15:

16: private:

17: int itslLength;

18: int itsWidth;

19: };
20:

21: Rectangle::Rectangle()

22: {

23: itsWidth = 5;

24: itsLength = 10;

25: }

26:

27: Rectangle::~Rectangle()

28: {}

| 250 Day 8

LisTING 8.10 continued

30: int main()

31: {

32: Rectangle* pRect = new Rectangle;

33: const Rectangle * pConstRect = new Rectangle;

34: Rectangle * const pConstPtr = new Rectangle;

35:

36: cout << "pRect width: " << pRect->GetWidth()

37: << " feet" << endl;

38: cout << "pConstRect width: " << pConstRect->GetWidth()
39: << " feet" << endl;

40: cout << "pConstPtr width: " << pConstPtr->GetWidth()
41: << " feet" << endl;

42:

43: pRect->SetWidth(10);

44: // pConstRect->SetWidth(10);

45: pConstPtr->SetWidth(10);

46:

47: cout << "pRect width: " << pRect->GetWidth()

48: << " feet\n";

49: cout << "pConstRect width: " << pConstRect->GetWidth()
50: << " feet\n";

51: cout << "pConstPtr width: " << pConstPtr->GetWidth()
52: << " feet\n";

53: return 0;

54: }

pRect width: 5 feet
OutpuT pConstRect width: 5 feet

pConstPtr width: 5 feet

pRect width: 10 feet

- pConstRect width: 5 feet

ANALYSIS
pConstPtr width: 10 feet

Lines 6-19 declare the Rectangle class. Line 14 declares the GetWidth () member
method const.

Line 32 declares a pointer to Rectangle called pRect. On line 33, a pointer to a constant
Rectangle object is declared and named pConstRect. On line 34, pConstPtr is declared
as a constant pointer to a Rectangle. Lines 36—41 print the values of these three variables.

On line 43, pRect is used to set the width of the rectangle to 10. On line 44, pConstRect
would be used to set the width, but it was declared to point to a constant Rectangle.
Therefore, it cannot legally call a non-const member function. Because it is not a valid
statement, it is commented out.

On line 45, pConstPtr calls Setwidth(). pConstPtr is declared to be a constant pointer
to a rectangle. In other words, the pointer is constant and cannot point to anything else,

Understanding Pointers

251 |

but the rectangle is not constant, so methods such as GetWidth() and SetWidth() can
be used.

Using a const this Pointers

When you declare an object to be const, you are in effect declaring that the object’s
this pointer is a pointer to a const object. A const this pointer can be used only with
const member functions.

o

DO protect objects passed by reference DON'T use a pointer that has been
with const if they should not be deleted.
changed.

DON'T delete pointers more than once.
DO set pointers to null rather than leav-
ing them uninitialized or dangling.

Constant objects and constant pointers will be discussed again tomorrow, when refer-
ences to constant objects are discussed.

Summary

Pointers provide a powerful way to access data by indirection. Every variable has an
address, which can be obtained using the address-of operator (&). The address can be
stored in a pointer.

Pointers are declared by writing the type of object that they point to, followed by the
indirection operator (*) and the name of the pointer. Pointers should be initialized to
point to an object or to null (0).

You access the value at the address stored in a pointer by using the indirection operator

(*).

You can declare const pointers, which can’t be reassigned to point to other objects, and
pointers to const objects, which can’t be used to change the objects to which they point.

To create new objects on the free store, you use the new keyword and assign the address

that is returned to a pointer. You free that memory by calling the delete keyword on the
pointer. delete frees the memory, but it doesn’t destroy the pointer. Therefore, you must
reassign the pointer after its memory has been freed.

| 252

Day 8

Q&A

Q Why are pointers so important?

A Pointers are important for a number of reasons. These include being able to use

pointers to hold the address of objects and to use them to pass arguments by refer-
ence. On Day 14, “Polymorphism,” you’ll see how pointers are used in class poly-
morphism. In addition, many operating systems and class libraries create objects
on your behalf and return pointers to them.

Why should I bother to declare anything on the free store?

Objects on the free store persist after the return of a function. In addition, the capa-
bility to store objects on the free store enables you to decide at runtime how many
objects you need, instead of having to declare this in advance. This is explored in
greater depth tomorrow.

Why should I declare an object const if it limits what I can do with it?

As a programmer, you want to enlist the compiler in helping you find bugs. One
serious bug that is difficult to find is a function that changes an object in ways that
aren’t obvious to the calling function. Declaring an object const prevents such
changes.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to tomorrow’s
lesson.

Quiz

1.

What operator is used to determine the address of a variable?

2. What operator is used to find the value stored at an address held in a pointer?
3.
4

. What is the difference between the address stored in a pointer and the value at that

What is a pointer?

address?

Understanding Pointers

253 |

5. What is the difference between the indirection operator and the address-of
operator?

6. What is the difference between const int * ptrOne and int * const ptrTwo?

Exercises
1. What do these declarations do?
a. int * pOne;
b. int vTwo;
C. int * pThree = &vTwo;

2. If you have an unsigned short variable named yourAge, how would you declare a
pointer to manipulate yourAge?

3. Assign the value 50 to the variable yourAge by using the pointer that you declared
in Exercise 2.

4. Write a small program that declares an integer and a pointer to integer. Assign the
address of the integer to the pointer. Use the pointer to set a value in the integer
variable.

5. BUG BUSTERS: What is wrong with this code?

#include <iostream>
using namespace std;

int main()
{
int *pInt;
*nInt = 9;
cout << "The value at pInt: " << *plInt;
return 0;
}

6. BUG BUSTERS: What is wrong with this code?

#include <iostream>
using namespace std;
int main()
{
int SomeVariable = 5;
cout << "SomeVariable: " << SomeVariable << endl;
int *pVar = & SomeVariable;
pvar = 9;
cout << "SomeVariable: " << *pVar << endl;
return 0;

WEEK 2

DAY 9

Exploiting References

Yesterday, you learned how to use pointers to manipulate objects on the free
store and how to refer to those objects indirectly. References, the topic of
today’s lesson, give you almost all the power of pointers but with a much easier
syntax.

Today, you will learn

¢ What references are

* How references differ from pointers

* How to create references and use them
¢ What the limitations of references are

* How to pass values and objects into and out of functions by reference

What Is a Reference?

A reference is an alias; when you create a reference, you initialize it with the
name of another object, the target. From that moment on, the reference acts as
an alternative name for the target, and anything you do to the reference is really
done to the target.

| 256

Day 9

You create a reference by writing the type of the target object, followed by the reference
operator (&), followed by the name of the reference, followed by an equal sign, followed
by the name of the target object.

References can have any legal variable name, but some programmers prefer to prefix ref-
erence names with the letter “r.” Thus, if you have an integer variable named someInt,
you can make a reference to that variable by writing the following:

int &rSomeRef = somelnt;

This statement is read as “rSomeRef is a reference to an integer. The reference is initial-
ized to refer to someInt.” References differ from other variables that you can declare in
that they must be initialized when they are declared. If you try to create a reference vari-
able without assigning, you receive a compiler error. Listing 9.1 shows how references
are created and used.

NOTE Note that the reference operator (&) is the same symbol as the one used for

the address-of operator. These are not the same operators, however,
although clearly they are related.

The space before the reference operator is required; the space between the
reference operator and the name of the reference variable is optional. Thus

int &rSomeRef = somelnt; // ok
int & rSomeRef = somelnt; // ok

LisTING 9.1 Creating and Using References

1: //Listing 9.1 - Demonstrating the use of references
2:

3: #include <iostream>

4:

5: int main()

6: {

7: using namespace std;

8: int 1intOne;

9: int &rSomeRef = intOne;

10:

11: intOne = 5;

12: cout << "intOne: " << intOne << endl;

13: cout << "rSomeRef: " << rSomeRef << endl;
14:

15: rSomeRef = 7;

16: cout << "intOne: " << intOne << endl;

17: cout << "rSomeRef: " << rSomeRef << endl;
18:

19: return 0;

Exploiting References 257 |

intOne: 5
rSomeRef: 5
intOne: 7
rSomeRef: 7

OuTPUT

On line 8, a local integer variable, intOne, is declared. On line 9, a reference to
ANALYSIS) i . e .

an integer (int), rSomeRef, is declared and initialized to refer to intOne. As
already stated, if you declare a reference but don’t initialize it, you receive a compile-
time error. References must be initialized.

On line 11, intOne is assigned the value 5. On lines 12 and 13, the values in intOne and
rSomeRef are printed, and are, of course, the same.

On line 15, 7 is assigned to rSomeRef. Because this is a reference, it is an alias for intOne,
and thus the 7 is really assigned to intOne, as is shown by the printouts on lines 16 and 17.

Using the Address-Of Operator (&) on
References

You have now seen that the & symbol is used for both the address of a variable and to
declare a reference. But what if you take the address of a reference variable? If you ask a
reference for its address, it returns the address of its target. That is the nature of refer-
ences. They are aliases for the target. Listing 9.2 demonstrates taking the address of a
reference variable called rSomeRef.

LisTING 9.2 Taking the Address of a Reference

//Listing 9.2 - Demonstrating the use of references

#include <iostream>

{
using namespace std;
int intOne;

1
2
3
4:
5: int main()
6:
7
8:
9: int &rSomeRef = intOne;

10:

11: intOne = 5;

12: cout << "intOne: " << intOne << endl;

13: cout << "rSomeRef: " << rSomeRef << endl;
14:

15: cout << "&intOne: " << &intOne << endl;
16: cout << "&rSomeRef: " << &rSomeRef << endl;
17:

18: return 0;

| 258 Day 9
o intOne: 5
pdlidll rsomeRref: 5
&intOne: 0x3500
&rSomeRef: 0x3500
CAUTION Because the final two lines print memory addresses that might be unique to

your computer or to a specific run of the program, your output might differ.

ANALYSIS Once again, rSomeRef is initialized as a reference to intOne. This time, the

addresses of the two variables are printed in lines 15 and 16, and they are
identical.

C++ gives you no way to access the address of the reference itself because it is not
meaningful as it would be if you were using a pointer or other variable. References are
initialized when created, and they always act as a synonym for their target, even when
the address-of operator is applied.

For example, if you have a class called President, you might declare an instance of that
class as follows:

President George_Washington;
You might then declare a reference to President and initialize it with this object:
President &FatherOfOurCountry = George_Washington;

Only one President exists; both identifiers refer to the same object of the same class.
Any action you take on FatherOfOurCountry is taken on George_Washington as well.

Be careful to distinguish between the & symbol on line 9 of Listing 9.2, which declares a
reference to an integer named rSomeRef, and the & symbols on lines 15 and 16, which
return the addresses of the integer variable intOne and the reference rSomeRef. The com-
piler knows how to distinguish these two uses by the context in which they are being
used.

NOTE Normally, when you use a reference, you do not use the address-of operator.

You simply use the reference as you would use the target variable.

Exploiting References 259 |

Attempting to Reassign References (Not!)

Reference variables cannot be reassigned. Even experienced C++ programmers can be
confused by what happens when you try to reassign a reference. Reference variables are
always aliases for their target. What appears to be a reassignment turns out to be the
assignment of a new value to the target. Listing 9.3 illustrates this fact.

LisTING 9.3 Assigning to a Reference

1: //Listing 9.3 - //Reassigning a reference

2:

3: #include <iostream>

4:

5: int main()

6: {

7: using namespace std;

8: int intOne;

9: int &rSomeRef = intOne;

10:

11: intOne = 5;

12: cout << "intOne: " << intOne << endl;
13: cout << "rSomeRef: " << rSomeRef << endl;
14: cout << "&intOne: " << &intOne << endl;
15: cout << "&rSomeRef: " << &rSomeRef << endl;
16:

17: int intTwo = 8;

18: rSomeRef = intTwo; // not what you think!
19: cout << "\nintOne: " << intOne << endl;
20: cout << "intTwo: " << intTwo << endl;
21: cout << "rSomeRef: " << rSomeRef << endl;
22: cout << "&intOne: " << &intOne << endl;
23: cout << "&intTwo: " << &intTwo << endl;
24: cout << "&rSomeRef: " << &rSomeRef << endl;
25: return 0;
26: }

intOne: 5
rSomeRef: 5

&intOne: 0012FEDC

&rSomeRef: 0012FEDC

intOne: 8
intTwo: 8
rSomeRef: 8

&intOne: 0012FEDC
&intTwo: 0012FEEQ
&rSomeRef: 0012FEDC

| 260 Day 9

ANALYSIS Once again, on lines 8 and 9, an integer variable and a reference to an integer are
declared. The integer is assigned the value 5 on line 11, and the values and their
addresses are printed on lines 12—15.

On line 17, a new variable, intTwo, is created and initialized with the value 8. On line
18, the programmer tries to reassign rSomeRef to now be an alias to the variable intTwo,
but that is not what happens. What actually happens is that rSomeRef continues to act as
an alias for intOne, so this assignment is equivalent to the following:

intOne = intTwo;

Sure enough, when the values of intOne and rSomeRef are printed (lines 19-21), they are
the same as intTwo. In fact, when the addresses are printed on lines 22-24, you see that
rSomeRef continues to refer to intOne and not intTwo.

o

DO use references to create an alias to DON'T try to reassign a reference.
an object.

DON'T confuse the address-of operator
DO initialize all references. with the reference operator.

Referencing Objects

Any object can be referenced, including user-defined objects. Note that you create a ref-
erence to an object, but not to a class. For instance, your compiler will not allow this:

int & rIntRef = int; /] wrong

You must initialize rIntRef to a particular integer, such as this:

int howBig = 200;
int & rIntRef = howBig;

In the same way, you don’t initialize a reference to a Cat:
Cat & rCatRef = Cat; /] wrong

You must initialize a reference to a particular Cat object:

Cat Frisky;
Cat & rCatRef = Frisky;

References to objects are used just like the object itself. Member data and methods are
accessed using the normal class member access operator (.), and just as with the built-in
types, the reference acts as an alias to the object. Listing 9.4 illustrates this.

Exploiting References 261 |

LisTING 9.4 References to Objects

/] Listing 9.4 - References to class objects

#include <iostream>

1
2

3

4:

5: class SimpleCat
6:

7

8

public:

: SimpleCat (int age, int weight);
9: ~SimpleCat() {}
10: int GetAge() { return itsAge; }
11: int GetWeight() { return itsWeight; }
12: private:
13: int itsAge;
14: int itsWeight;
15: };
16:
17: SimpleCat::SimpleCat(int age, int weight)
18: {
19: itsAge = age;
20: itsWeight = weight;
21: }
22:
23: int main()
24: {
25: SimpleCat Frisky(5,8);
26: SimpleCat & rCat = Frisky;
27:
28: std::cout << "Frisky is: ";
29: std::cout << Frisky.GetAge() << " years old." << std::endl;
30: std::cout << "And Frisky weighs: ";
31: std::cout << rCat.GetWeight() << " pounds." << std::endl;
32: return 0;
33: }

o Frisky is: 5 years old.
bbbl And Frisky weighs 8 pounds.
On line 25, Frisky is declared to be a SimpleCat object. On line 26, a
ANALYSIS I . o .
SimpleCat reference, rCat, is declared and initialized to refer to Frisky. On
lines 29 and 31, the SimpleCat accessor methods are accessed by using first the

SimpleCat object and then the SimpleCat reference. Note that the access is identical.
Again, the reference is an alias for the actual object.

| 262

Day 9

References

References act as an alias to another variable. Declare a reference by writing the type,
followed by the reference operator (&), followed by the reference name. References must
be initialized at the time of creation.
Example 1

int hisAge;

int &rAge = hisAge;
Example 2

Cat Boots;
Cat &rCatRef = Boots;

Null Pointers and Null References

When pointers are not initialized or when they are deleted, they ought to be assigned to
null (0). This is not true for references because they must be initialized to what they ref-
erence when they are declared.

However, because C++ needs to be usable for device drivers, embedded systems, and
real-time systems that can reach directly into the hardware, the ability to reference spe-
cific addresses is valuable and required. For this reason, most compilers support a null or
numeric initialization of a reference without much complaint, crashing only if you try to
use the object in some way when that reference would be invalid.

Taking advantage of this in normal programming, however, is still not a good idea. When
you move your program to another machine or compiler, mysterious bugs might develop
if you have null references.

Passing Function Arguments by Reference

On Day 5, “Organizing into Functions,” you learned that functions have two limitations:
Arguments are passed by value, and the return statement can return only one value.

Passing values to a function by reference can overcome both of these limitations. In C++,
passing a variable by reference is accomplished in two ways: using pointers and using
references. Note the difference: You pass by reference using a pointer, or you pass a ref-
erence using a reference.

The syntax of using a pointer is different from that of using a reference, but the net effect
is the same. Rather than a copy being created within the scope of the function, the actual
original object is (effectively) made directly available to the function.

Exploiting References 263 |

Passing an object by reference enables the function to change the object being referred
to. On Day 5, you learned that functions are passed their parameters on the stack. When
a function is passed a value by reference (using either pointers or references), the address
of the original object is put on the stack, not the entire object. In fact, on some comput-
ers, the address is actually held in a register and nothing is put on the stack. In either
case, because an address is being passed, the compiler now knows how to get to the orig-
inal object, and changes are made there and not in a copy.

Recall that Listing 5.5 on Day 5 demonstrated that a call to the swap () function did not
affect the values in the calling function. Listing 5.5 is reproduced here as Listing 9.5, for
your convenience.

LisTING 9.5 Demonstrating Passing by Value

1: //Listing 9.5 - Demonstrates passing by value
2: #include <iostream>
3:
4: using namespace std;
5: void swap(int x, int y);
6:
7: int main()
8: {
9: int x = 5, y = 10;
10:
11: cout << "Main. Before swap, x: " << x << " y: " <<y << endl;
12: swap(x,y);
13: cout << "Main. After swap, x: " << x << " y: " <<y << endl;
14: return 0;
15: }
16:
17: void swap (int x, int y)
18: {
19: int temp;
20:
21: cout << "Swap. Before swap, x: " << x << " y: " <<y << endl;
22:
23: temp = x;
24: X =Y,
25: y = temp;
26:
27: cout << "Swap. After swap, x: " << x << " y: " <<y << endl;
28: }

Main. Before swap, x: 5 y: 10
Swap. Before swap, x: 5 y: 10
Swap. After swap, x: 10 y: 5
Main. After swap, x: 5 y: 10

| 264

Day 9

ANALYSIS This program initializes two variables in main() and then passes them to the

swap () function, which appears to swap them. When they are examined again in
main (), they are unchanged!

The problem here is that x and y are being passed to swap () by value. That is, local
copies were made in the function. These local copies were changed and then thrown
away when the function returned and its local storage was deallocated. What is prefer-
able is to pass x and y by reference, which changes the source values of the variable
rather than a local copy.

Two ways to solve this problem are possible in C++: You can make the parameters of
swap () pointers to the original values, or you can pass in references to the original
values.

Making swap () Work with Pointers

When you pass in a pointer, you pass in the address of the object, and thus the function
can manipulate the value at that address. To make swap () change the actual values of x
and y by using pointers, the function, swap (), should be declared to accept two int
pointers. Then, by dereferencing the pointers, the values of x and y will actually be
accessed and, in fact, be swapped. Listing 9.6 demonstrates this idea.

LISTING 9.6 Passing by Reference Using Pointers

1: //Listing 9.6 Demonstrates passing by reference
2: #include <iostream>

3:

4: using namespace std;

5: void swap(int *x, int *y);

6:

7: int main()

8: {

9: int x = 5, y = 10;

10:

11: cout << "Main. Before swap, x: " << x << " y: " <<y << endl;
12: swap (&x,&y);

13: cout << "Main. After swap, x: " << x << " y: " <<y << endl;
14: return 0;

15: }

16:

17: void swap (int *px, int *py)

18: {

19: int temp;
20:
21: cout << "Swap. Before swap, *px: " << *px <<

55- " *py: << *py << endl;

Exploiting References 265 |

LISTING 9.6 continued

23:

24: temp = *px;

25: *PX = *py;

26: *py = temp;

27:

28: cout << "Swap. After swap, *px: " << *px <<
29: " *py: " << *py << endl;

30:

31: }

Main. Before swap, x: 5 y: 10
Swap. Before swap, *px: 5 *py: 10

Swap. After swap, *px: 10 *py: 5

Main. After swap, x: 10 y: 5

RS Success! On line 5, the prototype of swap () is changed to indicate that its two
parameters will be pointers to int rather than int variables. When swap () is

called on line 12, the addresses of x and y are passed as the arguments. You can see that
the addresses are passed because the address-of operator (&) is being used.

On line 19, a local variable, temp, is declared in the swap () function. temp need not be a
pointer; it will just hold the value of *px (that is, the value of x in the calling function)
for the life of the function. After the function returns, temp is no longer needed.

On line 24, temp is assigned the value at px. On line 25, the value at px is assigned to the
value at py. On line 26, the value stashed in temp (that is, the original value at px) is put
into py.

The net effect of this is that the values in the calling function, whose address was passed
to swap (), are, in fact, swapped.

Implementing swap () with References

The preceding program works, but the syntax of the swap () function is cumbersome in
two ways. First, the repeated need to dereference the pointers within the swap () function
makes it error-prone—for instance, if you fail to dereference the pointer, the compiler
still lets you assign an integer to the pointer, and a subsequent user experiences an
addressing error. This is also hard to read. Finally, the need to pass the address of the
variables in the calling function makes the inner workings of swap () overly apparent to
1ts users.

It is a goal of an object-oriented language such as C++ to prevent the user of a function
from worrying about how it works. Passing by pointers puts the burden on the calling

| 266 Day 9

function rather than where it belongs—on the function being called. Listing 9.7 rewrites
the swap () function, using references.

LisTING 9.7 swap() Rewritten with References

1: //Listing 9.7 Demonstrates passing by reference
2: [/ using references!

3: #include <iostream>

4:

5: using namespace std;

6: void swap(int &x, int &y);

7:

8: int main()

9: {

10: int x = 5, y = 10;

11:

12: cout << "Main. Before swap, x: " << x << " y: "
13: << y << endl;

14:

15: swap(x,Y);

16:

17: cout << "Main. After swap, x: " << x << " y: "
18: << y << endl;

19:

20: return 0;

21: }

22:

23: void swap (int &rx, int &ry)

24: |

25: int temp;

26:

27: cout << "Swap. Before swap, rx: " << rx << " py: "
28: << ry << endl;

29:

30: temp =

31: rx = ry

32: ry = temp;

33:

34:

35: cout << "Swap. After swap, rx: " << rx << " ry: "
36: << ry << endl;

37:

38: }

Main. Before swap, x:5 y: 10
Swap. Before swap, rx:5 ry:10

Swap. After swap, rx:10 ry:5

Main. After swap, x:10, y:5

Exploiting References 267 |

Just as in the example with pointers, two variables are declared on line 10, and
their values are printed on line 12. On line 15, the function swap () is called, but
note that x and y, not their addresses, are passed. The calling function simply passes the
variables.

When swap () is called, program execution jumps to line 23, where the variables are
identified as references. The values from the variables are printed on line 27, but note
that no special operators are required. These variables are aliases for the original vari-
ables and can be used as such.

On lines 30-32, the values are swapped, and then they’re printed on line 35. Program
execution jumps back to the calling function, and on line 17, the values are printed in
main (). Because the parameters to swap () are declared to be references, the variables
from main() are passed by reference, and thus their changed values are what is seen in
main() as well.

As you can see from this listing, references provide the convenience and ease of use of
normal variables, with the power and pass-by-reference capability of pointers!

Understanding Function Headers
and Prototypes

Listing 9.6 shows swap () using pointers, and Listing 9.7 shows it using references.
Using the function that takes references is easier, and the code is easier to read, but how
does the calling function know if the values are passed by reference or by value? As a
client (or user) of swap (), the programmer must ensure that swap () will, in fact, change
the parameters.

This is another use for the function prototype. By examining the parameters declared in
the prototype, which is typically in a header file along with all the other prototypes, the
programmer knows that the values passed into swap () are passed by reference, and thus
will be swapped properly. On line 6 of Listing 9.7, you can see the prototype for

swap ()—you can see that the two parameters are passed as references.

If swap () had been a member function of a class, the class declaration, also available in a
header file, would have supplied this information.

In C++, clients of classes and functions can rely on the header file to tell all that is
needed; it acts as the interface to the class or function. The actual implementation is hid-
den from the client. This enables the programmer to focus on the problem at hand and to
use the class or function without concern for how it works.

| 268

Day 9

When Colonel John Roebling designed the Brooklyn Bridge, he worried in detail about
how the concrete was poured and how the wire for the bridge was manufactured. He was
intimately involved in the mechanical and chemical processes required to create his
materials. Today, however, engineers make more efficient use of their time by using well-
understood building materials, without regard to how their manufacturer produced them.

It is the goal of C++ to enable programmers to rely on well-understood classes and func-
tions without regard to their internal workings. These “‘component parts” can be assem-
bled to produce a program, much the same way wires, pipes, clamps, and other parts are
assembled to produce buildings and bridges.

In much the same way that an engineer examines the spec sheet for a pipe to determine
its load-bearing capacity, volume, fitting size, and so forth, a C++ programmer reads the
declaration of a function or class to determine what services it provides, what parameters
it takes, and what values it returns.

Returning Multiple Values

As discussed, functions can only return one value. What if you need to get two values
back from a function? One way to solve this problem is to pass two objects into the func-
tion, by reference. The function can then fill the objects with the correct values. Because
passing by reference allows a function to change the original objects, this effectively
enables the function to return two pieces of information. This approach bypasses the
return value of the function, which can then be reserved for reporting errors.

Once again, this can be done with references or pointers. Listing 9.8 demonstrates a
function that returns three values: two as pointer parameters and one as the return value
of the function.

LisTING 9.8 Returning Values with Pointers

1: //Listing 9.8 - Returning multiple values from a function
2:

3: #include <iostream>

4:

5: using namespace std;

6: short Factor(int n, int* pSquared, int* pCubed);

7:

8: int main()

9: {

10: int number, squared, cubed;

—_
N =

short error;

Exploiting References 269 |

LisTING 9.8 continued

13: cout << "Enter a number (0 - 20): ";

14: cin >> number;

15:

16: error = Factor(number, &squared, &cubed);
17:

18: if (lerror)

19: {

20: cout << "number: " << number << endl;
21: cout << "square: " << squared << endl;
22: cout << "cubed: " << cubed << endl;
23: }

24: else

25: cout << "Error encountered!!" << endl;
26: return 0;

27: '}

28:

29: short Factor(int n, int *pSquared, int *pCubed)
30: {

31: short Value = 0;

32: if (n > 20)

33: Value = 1;

34: else

35: {

36: *pSquared = n*n;

37: *pCubed = n*n*n;

38: Value = 0;

39: }

40: return Value;

41: }

o Enter a number (0-20): 3
UTPUT number: 3

square: 9
cubed: 27
- On line 10, number, squared, and cubed are defined as short integers. number is
assigned a value based on user input on line 14. On line 16, this number and the
addresses of squared and cubed are passed to the function Factor().

ANALYSIS

On line 32, Factor () examines the first parameter, which is passed by value. If it is
greater than 20 (the maximum value this function can handle), it sets the return value,
Value, to a simple error value. Note that the return value from Function() is reserved
for either this error value or the value 0, indicating all went well, and note that the func-
tion returns this value on line 40.

|270 Day 9

The actual values needed, the square and cube of number, are not returned by using the
return mechanism; rather, they are returned by changing the pointers that were passed
into the function.

On lines 36 and 37, the pointers are assigned their return values. These values are
assigned to the original variables by the use of indirection. You know this by the use of
the dereference operator (*) with the pointer names. On line 38, Value is assigned a suc-
cess value and then on line 40 it is returned.

TIP Because passing by reference or by pointer allows uncontrolled access to
object attributes and methods, you should pass the minimum required for
the function to do its job. This helps to ensure that the function is safer to
use and more easily understandable.

Returning Values by Reference

Although Listing 9.8 works, it can be made easier to read and maintain by using
references rather than pointers. Listing 9.9 shows the same program rewritten to use
references.

Listing 9.9 also includes a second improvement. An enum has been added to make the
return value easier to understand. Rather than returning O or 1, using an enum, the pro-
gram can return SUCCESS or FAILURE.

LisTING 9.9 Rewritten Using References

//Listing 9.9

// Returning multiple values from a function
// using references

#include <iostream>

using namespace std;

0N O~ WN =

enum ERR_CODE { SUCCESS, ERROR };
10: ERR_CODE Factor(int, int&, int&);

12: int main()

13:

14: int number, squared, cubed;
15: ERR_CODE result;

16:

17: cout << "Enter a number (0 - 20): ";

Exploiting References 271 |

LiSTING 9.9 continued

18: cin >> number;
19:
20: result = Factor(number, squared, cubed);
21:
22: if (result == SUCCESS)
23: {
24: cout << "number: " << number << endl;
25: cout << "square: " << squared << endl;
26: cout << "cubed: " << cubed << endl;
27: }
28: else
29: cout << "Error encountered!!" << endl;
30: return 0;
31: }
32:
33: ERR_CODE Factor(int n, int &rSquared, int &rCubed)
34: {
35: if (n > 20)
36: return ERROR; // simple error code
37: else
38: {
39: rSquared = n*n;
40: rCubed = n*n*n;
41: return SUCCESS;
42: }
43: }
Enter a number (0 - 20): 3
number: 3
square: 9
cubed: 27

Listing 9.9 is identical to 9.8, with two exceptions. The ERR_CODE enumeration
ANALYSIS . . y . T
makes the error reporting a bit more explicit on lines 36 and 41, as well as the
error handling on line 22.

The larger change, however, is that Factor () is now declared to take references to
squared and cubed rather than to pointers. This makes the manipulation of these parame-
ters far simpler and easier to understand.

Passing by Reference for Efficiency

Each time you pass an object into a function by value, a copy of the object is made. Each
time you return an object from a function by value, another copy is made.

| 272

Day 9

On Day 5, you learned that these objects are copied onto the stack. Doing so takes time
and memory. For small objects, such as the built-in integer values, this is a trivial cost.

However, with larger, user-created objects, the cost is greater. The size of a user-created
object on the stack is the sum of each of its member variables. These, in turn, can each
be user-created objects, and passing such a massive structure by copying it onto the stack
can be very expensive in performance and memory consumption.

Another cost occurs as well. With the classes you create, each of these temporary copies
is created when the compiler calls a special constructor: the copy constructor. Tomorrow,
you will learn how copy constructors work and how you can make your own, but for
now it is enough to know that the copy constructor is called each time a temporary copy
of the object is put on the stack.

When the temporary object is destroyed, which happens when the function returns, the
object’s destructor is called. If an object is returned by the function by value, a copy of
that object must be made and destroyed as well.

With large objects, these constructor and destructor calls can be expensive in speed and
use of memory. To illustrate this idea, Listing 9.10 creates a stripped-down, user-created
object: SimpleCat. A real object would be larger and more expensive, but this is suffi-
cient to show how often the copy constructor and destructor are called.

LisTING 9.10 Passing Objects by Reference

//Listing 9.10 - Passing pointers to objects

#include <iostream>

1
2
3
4:
5: using namespace std;
6: class SimpleCat

7

8

{
: public:

9: SimpleCat (); /| constructor
10: SimpleCat(SimpleCaté&); // copy constructor
11: ~SimpleCat(); // destructor
12: };

13:

14: SimpleCat::SimpleCat()

15 {

16: cout << "Simple Cat Constructor..." << endl;
17: }

18:

19: SimpleCat::SimpleCat(SimpleCaté&)

20: A

21: cout << "Simple Cat Copy Constructor..." << endl;

Exploiting References

273 |

LisTING 9.10 continued

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:

}
SimpleCat::~SimpleCat()
{
cout << "Simple Cat Destructor..." << endl;
}

SimpleCat FunctionOne (SimpleCat theCat);
SimpleCat* FunctionTwo (SimpleCat *theCat);

int main()

{
cout << "Making a cat..." << endl;
SimpleCat Frisky;
cout << "Calling FunctionOne..." << endl;
FunctionOne(Frisky);
cout << "Calling FunctionTwo..." << endl;
FunctionTwo (&Frisky);
return 0;

}

// FunctionOne, passes by value

SimpleCat FunctionOne(SimpleCat theCat)

{
cout << "Function One. Returning... " << endl;
return theCat;

}

/| functionTwo, passes by reference

SimpleCat* FunctionTwo (SimpleCat *theCat)

{
cout << "Function Two. Returning... " << endl;
return theCat;

OuTPUT

Making a cat...

Simple Cat Constructor...
Calling FunctionOne...

Simple Cat Copy Constructor...
Function One. Returning...
Simple Cat Copy Constructor...
Simple Cat Destructor...
Simple Cat Destructor...
Calling FunctionTwo...
Function Two. Returning...
Simple Cat Destructor...

| 274 Day 9

ANALYSIS Listing 9.10 creates the SimpleCat object and then calls two functions. The first
function receives the Cat by value and then returns it by value. The second one
receives a pointer to the object, rather than the object itself, and returns a pointer to the
object.

The very simplified SimpleCat class is declared on lines 6—12. The constructor, copy
constructor, and destructor all print an informative message so that you can tell when
they’ve been called.

On line 34, main() prints out a message, and that is seen on the first line of the output.
On line 35, a SimpleCat object is instantiated. This causes the constructor to be called,
and the output from the constructor is seen on the second line of output.

On line 36, main() reports that it is calling FunctionOne, which creates the third line of
output. Because FunctionOne () is called passing the SimpleCat object by value, a copy
of the SimpleCat object is made on the stack as an object local to the called function.
This causes the copy constructor to be called, which creates the fourth line of output.

Program execution jumps to line 46 in the called function, which prints an informative
message, the fifth line of output. The function then returns, and returns the SimpleCat
object by value. This creates yet another copy of the object, calling the copy constructor
and producing the sixth line of output.

The return value from FunctionOne () is not assigned to any object, and so the temporary
object created for the return is thrown away, calling the destructor, which produces the
seventh line of output. Because FunctionOne () has ended, its local copy goes out of
scope and is destroyed, calling the destructor and producing the eighth line of output.

Program execution returns to main(), and FunctionTwo () is called, but the parameter is
passed by reference. No copy is produced, so there’s no output. FunctionTwo () prints
the message that appears as the tenth line of output and then returns the SimpleCat
object, again by reference, and so again produces no calls to the constructor or
destructor.

Finally, the program ends and Frisky goes out of scope, causing one final call to the
destructor and printing the final line of output.

The net effect of this is that the call to FunctionOne (), because it passed the Frisky by
value, produced two calls to the copy constructor and two to the destructor, while the call
to FunctionTwo () produced none.

Passing a const Pointer

Although passing a pointer to FunctionTwo () is more efficient, it is dangerous.
FunctionTwo () is not meant to be allowed to change the SimpleCat object it is passed,

Exploiting References 275 |

yet it is given the address of the SimpleCat. This seriously exposes the original object to
change and defeats the protection offered in passing by value.

Passing by value is like giving a museum a photograph of your masterpiece instead of
the real thing. If vandals mark it up, there is no harm done to the original. Passing by ref-
erence is like sending your home address to the museum and inviting guests to come
over and look at the real thing.

The solution is to pass a pointer to a constant SimpleCat. Doing so prevents calling any
non-const method on SimpleCat, and thus protects the object from change.

Passing a constant reference allows your guests to see the original painting, but not to
alter it in any way. Listing 9.11 demonstrates this idea.

LisTING 9.11 Passing Pointer to a Constant Object

//Listing 9.11 - Passing pointers to objects

#include <iostream>

1
2
3
4:
5: using namespace std;
6: class SimpleCat

7

8

{
: public:
9: SimpleCat();
10: SimpleCat(SimpleCat&);
11: ~SimpleCat();
12:
13: int GetAge() const { return itsAge; }
14: void SetAge(int age) { itsAge = age; }
15:
16: private:
17: int itsAge;
18: 1}y
19:
20: SimpleCat::SimpleCat()
21 {
22: cout << "Simple Cat Constructor..." << endl;
23: itsAge = 1;
24: }
25:
26: SimpleCat::SimpleCat(SimpleCaté&)
27: |
28: cout << "Simple Cat Copy Constructor..." << endl;
29: }
30:

31: SimpleCat::~SimpleCat()
32: {

| 276

Day 9

LisTING 9.11

33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:

continued
cout << "Simple Cat Destructor..." << endl;
}
const SimpleCat * const FunctionTwo
(const SimpleCat * const theCat);
int main()
{
cout << "Making a cat..." << endl;
SimpleCat Frisky;
cout << "Frisky is " ;
cout << Frisky.GetAge();
cout << " years old" << endl;
int age = 5;
Frisky.SetAge(age);
cout << "Frisky is " ;
cout << Frisky.GetAge();
cout << " years old" << endl;
cout << "Calling FunctionTwo..." << endl;

}

FunctionTwo (&Frisky);
cout << "Frisky is " ;
cout << Frisky.GetAge();

cout << " years o0ld" << endl;

return 0;

// functionTwo, passes a const pointer

const SimpleCat * const FunctionTwo
(const SimpleCat * const theCat)

{

cout << "Function Two. Returning..." << endl;
cout << "Frisky is now " << theCat->GetAge();

cout << " years old " << endl;
/| theCat->SetAge(8); const!

return theCat;

OuTPUT

Making a cat...

Simple Cat constructor...
Frisky is 1 years old
Frisky is 5 years old
Calling FunctionTwo...
FunctionTwo. Returning...
Frisky is now 5 years old
Frisky is 5 years old
Simple Cat Destructor...

Exploiting References 277 |

ANALYSIS SimpleCat has added two accessor functions, GetAge () on line 13, which is a
const function, and SetAge () on line 14, which is not a const function. It has
also added the member variable itsAge on line 17.

The constructor, copy constructor, and destructor are still defined to print their messages.
The copy constructor is never called, however, because the object is passed by reference
and so no copies are made. On line 42, an object is created, and its default age is printed,
starting on line 43.

On line 47, itsAge is set using the accessor SetAge, and the result is printed on line 48.
FunctionOne is not used in this program, but FunctionTwo () is called. FunctionTwo()
has changed slightly; the parameter and return value are now declared, on line 36, to take
a constant pointer to a constant object and to return a constant pointer to a constant object.

Because the parameter and return value are still passed by reference, no copies are made
and the copy constructor is not called. The object being pointed to in FunctionTwo(),
however, is now constant, and thus cannot call the non-const method, SetAge (). If the
call to SetAge () on line 66 was not commented out, the program would not compile.

Note that the object created in main() is not constant, and Frisky can call SetAge().
The address of this nonconstant object is passed to FunctionTwo (), but because
FunctionTwo()’s declaration declares the pointer to be a constant pointer to a constant
object, the object is treated as if it were constant!

References as an Alternative

Listing 9.11 solves the problem of making extra copies, and thus saves the calls to the
copy constructor and destructor. It uses constant pointers to constant objects, and thereby
solves the problem of the function changing the object. It is still somewhat cumbersome,
however, because the objects passed to the function are pointers.

Because you know the object will never be null, it would be easier to work within the
function if a reference were passed in, rather than a pointer. Listing 9.12 illustrates this.

LisTING 9.12 Passing References to Objects

//Listing 9.12 - Passing references to objects
#include <iostream>

1
2

3

4

5: using namespace std;
6: class SimpleCat

70 A

8 public:

9 SimpleCat();

0

1 SimpleCat(SimpleCaté&);

| 278

Day 9

LisTING 9.12 continued

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

~SimpleCat();

int GetAge() const { return itsAge; }
void SetAge(int age) { itsAge = age; }

private:
int itsAge;
s
SimpleCat::SimpleCat()
{
cout << "Simple Cat Constructor..." << endl;
itsAge = 1;
}
SimpleCat::SimpleCat (SimpleCat&)
{
cout << "Simple Cat Copy Constructor..." << endl;
}
SimpleCat::~SimpleCat()
{
cout << "Simple Cat Destructor..." << endl;
}
const SimpleCat & FunctionTwo (const SimpleCat & theCat);
int main()
{
cout << "Making a cat..." << endl;

SimpleCat Frisky;

cout << "Frisky is " << Frisky.GetAge() << " years old" <<
int age = 5;

Frisky.SetAge(age);

cout << "Frisky is " << Frisky.GetAge() << " years old" <<
cout << "Calling FunctionTwo..." << endl;

FunctionTwo (Frisky);

cout << "Frisky is " << Frisky.GetAge() << " years old" <<
return 0;

}

// functionTwo, passes a ref to a const object
const SimpleCat & FunctionTwo (const SimpleCat & theCat)
{

cout << "Function Two. Returning..." << endl;

cout << "Frisky is now " << theCat.GetAge();

cout << " years old " << endl;

// theCat.SetAge(8); const!

return theCat;

endl;

endl;

endl;

Exploiting References 279 |

o) Making a cat...
UTPUT Simple Cat constructor...

Frisky is 1 years old
Frisky is 5 years old
Calling FunctionTwo...
FunctionTwo. Returning...
Frisky is now 5 years old
Frisky is 5 years old
Simple Cat Destructor...

ANALYSIS The output is identical to that produced by Listing 9.11. The only significant
change is that FunctionTwo () now takes and returns a reference to a constant

object. Once again, working with references is somewhat simpler than working with
pointers, and the same savings and efficiency are achieved, as well as the safety provided
by using const.

const References

C++ programmers do not usually differentiate between “constant reference to a
SimpleCat object” and “reference to a constant SimpleCat object.” References them-
selves can never be reassigned to refer to another object, and so they are always con-
stant. If the keyword const is applied to a reference, it is to make the object referred to
constant.

Knowing When to Use References Versus
Pointers

Experienced C++ programmers strongly prefer references to pointers. References are
cleaner and easier to use, and they do a better job of hiding information, as you saw in
the previous example.

References cannot be reassigned, however. If you need to point first to one object and
then to another, you must use a pointer. References cannot be null, so if any chance
exists that the object in question might be null, you must not use a reference. You must
use a pointer.

An example of the latter concern is the operator new. If new cannot allocate memory on
the free store, it returns a null pointer. Because a reference shouldn’t be null, you must
not initialize a reference to this memory until you’ve checked that it is not null. The fol-
lowing example shows how to handle this:

int *pInt = new int;
if (pInt != NULL)
int &rInt = *plnt;

| 280

Day 9

In this example, a pointer to int, pInt, is declared and initialized with the memory
returned by the operator new. The address in pInt is tested, and if it is not null, pInt is
dereferenced. The result of dereferencing an int variable is an int object, and rInt is
initialized to refer to that object. Thus, rInt becomes an alias to the int returned by the
operator new.

o

DO pass parameters by reference when- DON'T use pointers if references will
ever possible. work.

DO use const to protect references and DON'T try to reassign a reference to a
pointers whenever possible. different variable. You can't.

Mixing References and Pointers

It is perfectly legal to declare both pointers and references in the same function parame-
ter list, along with objects passed by value. Here’s an example:

Cat * SomeFunction (Person &theOwner, House *theHouse, int age);

This declaration says that SomeFunction takes three parameters. The first is a reference
to a Person object, the second is a pointer to a House object, and the third is an integer. It
returns a pointer to a Cat object.

The question of where to put the reference (&) or the indirection operator (*) when
declaring these variables is a great controversy. When declaring a reference, you can
legally write any of the following:

1: Cat& rFrisky;

2: Cat & rFrisky;
3: Cat &rFrisky;

Whitespace is completely ignored, so anywhere you see a space here you can put as
many spaces, tabs, and new lines as you want.

Setting aside freedom of expression issues, which is best? Here are the arguments for
all three:

The argument for case 1 is that rFrisky is a variable whose name is rFrisky and whose
type can be thought of as “reference to Cat object.” Thus, this argument goes, the &
should be with the type.

Exploiting References 281 |

The counterargument is that the type is Cat. The & is part of the “declarator,” which
includes the variable name and the ampersand. More important, having the & near the
Cat can lead to the following bug:

Cat& rFrisky, rBoots;

Casual examination of this line would lead you to think that both rFrisky and rBoots
are references to Cat objects, but you’d be wrong. This really says that rFrisky is a ref-
erence to a Cat, and rBoots (despite its name) is not a reference but a plain old Cat vari-
able. This should be rewritten as follows:

Cat &rFrisky, rBoots;

The answer to this objection is that declarations of references and variables should never
be combined like this. Here’s the right way to declare the reference and nonreference
variable:

Cat& rFrisky;
Cat boots;

Finally, many programmers opt out of the argument and go with the middle position, that
of putting the & in the middle of the two, as illustrated in case 2.

Of course, everything said so far about the reference operator (&) applies equally well to
the indirection operator (*). The important thing is to recognize that reasonable people
differ in their perceptions of the one true way. Choose a style that works for you, and be
consistent within any one program; clarity is, and remains, the goal.

NOTE Many programmers like the following conventions for declaring references
and pointers:

e Put the ampersand and asterisk in the middle, with a space on either
side.

¢ Never declare references, pointers, and variables all on the same line.

Returning Out-of-Scope Object References

After C++ programmers learn to pass by reference, they have a tendency to go hog-wild.
It is possible, however, to overdo it. Remember that a reference is always an alias to
some other object. If you pass a reference into or out of a function, be certain to ask
yourself, “What is the object I'm aliasing, and will it still exist every time it’s used?”

Listing 9.13 illustrates the danger of returning a reference to an object that no longer
exists.

| 282 Day 9

LisTING 9.13 Returning a Reference to a Nonexistent Object

1: // Listing 9.13

2: // Returning a reference to an object
3: // which no longer exists

4:

5: #include <iostream>

6:

7: class SimpleCat

8: {

9: public:

10: SimpleCat (int age, int weight);
11: ~SimpleCat() {}

12: int GetAge() { return itsAge; }
13: int GetWeight() { return itsWeight; }
14: private:

15: int itsAge;

16: int itsWeight;

17: 3}

18:

19: SimpleCat::SimpleCat(int age, int weight)
20: |

21: itsAge = age;

22: itsWeight = weight;

23: }

24:

25: SimpleCat &TheFunction();

26:

27: int main()

28: |

29: SimpleCat &rCat = TheFunction();
30: int age = rCat.GetAge();

31: std::cout << "rCat is " << age << " years old!" << std::endl;
32: return 0;

33: }

34:

35: SimpleCat &TheFunction()

36: {

37: SimpleCat Frisky(5,9);

38: return Frisky;

39: }

Compile error: Attempting to return a reference to a local object!
Ourtput

CAUTION This program won't compile on the Borland compiler. It will compile on
Microsoft compilers; however, it should be noted that it is a poor coding
practice.

Exploiting References 283 |

ANALYSIS On lines 7-17, SimplecCat is declared. On line 29, a reference to a SimpleCat is
initialized with the results of calling TheFunction (), which is declared on line
25 to return a reference to a SimpleCat.

The body of TheFunction() in lines 35-39 declares a local object of type SimpleCat and
initializes its age and weight. It then returns that local object by reference on line 38.
Some compilers are smart enough to catch this error and don’t let you run the program.
Others let you run the program, with unpredictable results.

When TheFunction () returns, the local object, Frisky, is destroyed (painlessly, I assure
you). The reference returned by this function is an alias to a nonexistent object, and this
is a bad thing.

Returning a Reference to an Object on the Heap

You might be tempted to solve the problem in Listing 9.13 by having TheFunction()
create Frisky on the heap. That way, when you return from TheFunction(), Frisky still
exists.

The problem with this approach is: What do you do with the memory allocated for
Frisky when you are done with it? Listing 9.14 illustrates this problem.

LisTING 9.14 Memory Leaks

1: // Listing 9.14 - Resolving memory leaks
2:

3: #include <iostream>

4:

5: class SimpleCat

6: {

7: public:

8: SimpleCat (int age, int weight);

9: ~SimpleCat() {}

10: int GetAge() { return itsAge; }

11: int GetWeight() { return itsWeight; }
12:

13: private:

14: int itsAge;

15: int itsWeight;

16: };

17:

18: SimpleCat::SimpleCat(int age, int weight)
19 {

20: itsAge = age;

21: itsWeight = weight;

22: }

| 284 Day 9

LisTING 9.14 continued

24: SimpleCat & TheFunction();

25:

26: int main()

27: |

28: SimpleCat & rCat = TheFunction();

29: int age = rCat.GetAge();

30: std::cout << "rCat is " << age << " years old!" << std::endl;
31: std::cout << "&rCat: " << &rCat << std::endl;

32: // How do you get rid of that memory?

33: SimpleCat * pCat = &rCat;

34: delete pCat;

35: // Uh oh, rCat now refers to ??

36: return 0;

37: }

38:

39: SimpleCat &TheFunction()

40: |

41: SimpleCat * pFrisky = new SimpleCat(5,9);

42: std::cout << "pFrisky: " << pFrisky << std::endl;
43: return *pFrisky;

44: }

o pFrisky: 0x00431C60
bbbl rcat is 5 years old!

&rCat: 0x00431C60

CAUTION This compiles, links, and appears to work. But it is a time bomb waiting to
go off.

TheFunction() in lines 39-44 has been changed so that it no longer returns a
reference to a local variable. Memory is allocated on the free store and assigned
to a pointer on line 41. The address that pointer holds is printed, and then the pointer is
dereferenced and the SimpleCat object is returned by reference.

On line 28, the return of TheFunction() is assigned to a reference to SimpleCat, and
that object is used to obtain the cat’s age, which is printed on line 30.

To prove that the reference declared in main() is referring to the object put on the free
store in TheFunction(), the address-of operator is applied to rCat. Sure enough, it dis-
plays the address of the object it refers to, and this matches the address of the object on
the free store.

Exploiting References 285 |

So far, so good. But how will that memory be freed? You can’t call delete on the refer-
ence. One clever solution is to create another pointer and initialize it with the address
obtained from rcat. This does delete the memory, and it plugs the memory leak. One
small problem, though: What is rCat referring to after line 34? As stated earlier, a refer-
ence must always alias an actual object; if it references a null object (as this does now),
the program is invalid.

NOTE It cannot be overemphasized that a program with a reference to a null
object might compile, but it is invalid and its performance is unpredictable.

Three solutions exist to this problem. The first is to declare a SimpleCat object on line
28 and to return that cat from TheFunction() by value. The second is to go ahead and
declare the SimpleCat on the free store in TheFunction(), but have TheFunction()
return a pointer to that memory. Then, the calling function can delete the pointer when it
is done.

The third workable solution, and the right one, is to declare the object in the calling func-
tion and then to pass it to TheFunction() by reference.

Pointer, Pointer, Who Has the Pointer?

When your program allocates memory on the free store, a pointer is returned. It is imper-
ative that you keep a pointer to that memory because after the pointer is lost, the memory
cannot be deleted and becomes a memory leak.

As you pass this block of memory between functions, someone will “own” the pointer.
Typically, the value in the block is passed using references, and the function that created
the memory is the one that deletes it. But this is a general rule, not an ironclad one.

It is dangerous for one function to create memory and another to free it, however.
Ambiguity about who owns the pointer can lead to one of two problems: forgetting to
delete a pointer or deleting it twice. Either one can cause serious problems in your pro-
gram. It is safer to build your functions so that they delete the memory they create.

If you are writing a function that needs to create memory and then pass it back to the
calling function, consider changing your interface. Have the calling function allocate the
memory and then pass it into your function by reference. This moves all memory man-
agement out of your program and back to the function that is prepared to delete it.

| 286

Day 9

o

DO pass parameters by value when you DON'T pass by reference if the item
must. referred to might go out of scope.
DO return by value when you must. DON'T lose track of when and where

memory is allocated so you can be cer-
tain it is also freed.

Summary

Today, you learned what references are and how they compare to pointers. You saw that
references must be initialized to refer to an existing object and cannot be reassigned to
refer to anything else. Any action taken on a reference is in fact taken on the reference’s
target object. Proof of this is that taking the address of a reference returns the address of
the target.

You saw that passing objects by reference can be more efficient than passing by value.
Passing by reference also allows the called function to change the value in the arguments
back in the calling function.

You saw that arguments to functions and values returned from functions can be passed
by reference, and that this can be implemented with pointers or with references.

You saw how to use pointers to constant objects and constant references to pass values
between functions safely while achieving the efficiency of passing by reference.

Q&A

Q Why have references if pointers can do everything references can?

A References are easier to use and to understand. The indirection is hidden, and no
need exists to repeatedly dereference the variable.

Q Why have pointers if references are easier?

A References cannot be null, and they cannot be reassigned. Pointers offer greater
flexibility but are slightly more difficult to use.

(e

Why would you ever return by value from a function?

A If the object being returned is local, you must return by value or you will be return-
ing a reference to a nonexistent object.

Q Given the danger in returning by reference, why not always return by value?

A Far greater efficiency is achieved in returning by reference. Memory is saved and
the program runs faster.

Exploiting References 287 |

Workshop

The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to tomorrow’s lesson.

Quiz

1.

A

What is the difference between a reference and a pointer?
When must you use a pointer rather than a reference?
What does new return if there is insufficient memory to make your new object?
What is a constant reference?
What is the difference between passing by reference and passing a reference?
When declaring a reference, which is correct:

a. int& myRef = myInt;

b. int & myRef = mylnt;

Cc. int &myRef myInt;

Exercises

1.

®© N ok

Write a program that declares an int, a reference to an int, and a pointer to an
int. Use the pointer and the reference to manipulate the value in the int.

. Write a program that declares a constant pointer to a constant integer. Initialize the

pointer to an integer variable, varOne. Assign 6 to varone. Use the pointer to
assign 7 to varone. Create a second integer variable, varTwo. Reassign the pointer
to varTwo. Do not compile this exercise yet.

Now compile the program in Exercise 2. What produces errors? What produces
warnings?

Write a program that produces a stray pointer.

Fix the program from Exercise 4.

Write a program that produces a memory leak.

Fix the program from Exercise 6.

BUG BUSTERS: What is wrong with this program?

#include <iostream>
using namespace std;
class CAT

{

a s wWwN =

public:

| 288 Day 9

6: CAT(int age) { itsAge = age; }
7: ~CAT(){}

8: int GetAge() const { return itsAge;}
9: private:

10: int itsAge;

11: };

12:

13: CAT & MakeCat(int age);

14: int main()

15: {

16: int age = 7;

17: CAT Boots = MakeCat(age);

18: cout << "Boots is " << Boots.GetAge()
19: << " years old" << endl;

20: return 0;

21: }

22:

23: CAT & MakeCat(int age)

24: {

25: CAT * pCat = new CAT(age);

26: return *pCat;

27: }

9. Fix the program from Exercise 8.

WEEK 2

DAY 10

Working with Advanced
Functions

On Day 5, “Organizing into Functions,” you learned the fundamentals of work-
ing with functions. Now that you know how pointers and references work, you
can do more with functions.

Today, you will learn

¢ How to overload member functions
¢ How to overload operators

* How to write functions to support classes with dynamically allocated
variables

Overloaded Member Functions

On Day 5, you learned how to implement function polymorphism, or function
overloading, by writing two or more functions with the same name but with dif-
ferent parameters. Class member functions can be overloaded as well, in much
the same way.

| 290

Day 10

The Rectangle class, demonstrated in Listing 10.1, has two DrawShape () functions.
One, which takes no parameters, draws the rectangle based on the class’s current values.
The other takes two values, width and length, and draws the rectangle based on those
values, ignoring the current class values.

LisTING 10.1 Overloading Member Functions

0N O~ WN =

//Listing 10.1 Overloading class member functions
#include <iostream>

// Rectangle class declaration
class Rectangle
{
public:
// constructors
Rectangle(int width, int height);
~Rectangle(){}

// overloaded class function DrawShape
void DrawShape() const;
void DrawShape(int aWidth, int aHeight) const;

private:
int itsWidth;
int itsHeight;
b

//Constructor implementation
Rectangle::Rectangle(int width, int height)

itsWidth = width;
itsHeight = height;

/| Overloaded DrawShape - takes no values
// Draws based on current class member values
void Rectangle::DrawShape() const

DrawShape(itsWidth, itsHeight);

// overloaded DrawShape - takes two values
// draws shape based on the parameters
void Rectangle::DrawShape(int width, int height) const
{
for (int 1 = 0; i<height; i++)
{

Working with Advanced Functions 291 |

LisTiING 10.1 continued

43: for (int j = 0; j< width; j++)

44: {

45: std::cout << "*";

46: }

47: std::cout << std::endl;

48: }

49: }

50:

51: // Driver program to demonstrate overloaded functions
52: 1int main()

53: {

54: // initialize a rectangle to 30,5

55: Rectangle theRect(30,5);

56: std::cout << "DrawShape():" << std::endl;

57: theRect.DrawShape();

58: std::cout << "\nDrawShape(40,2):" << std::endl;
59: theRect.DrawShape (40,2);

60: return 0;

61: }

DrawShape():
OUTPUT kkkkkhkkhkkhkkhkhkhhhkhkhkhkhkhkkkkkkkhkkkkkhkx*k

EERE R R E R RS EEEEEEEEEEEEEEEEES
EEEEEEEEEEEEEEEEEEREEEEEEEEEE L]
EEEEEEEEEEEEEEEEEEEEEEEEEEE RS

EERE R R E R RS EEEEEEEEEEEEEEEEES

DrawShape (40,2):

EERE R SRR R EEEEEEEEEREEEEEEE RS EREEREEEEREEEEREEREREEEEEEEEEE]

EEEEE SRR RS SRS RS SRR SRS SRR SRR SRR EEEEEE SRR EEEEEEEEEEEEEEEEEE S

Listing 10.1 represents a stripped-down version of the Week in Review project
from Week 1. The test for illegal values has been taken out to save room, as have

some of the accessor functions. The main program has been stripped down to a simple
driver program, rather than a menu.

The important code, however, is on lines 13 and 14, where DrawShape () is overloaded.
The implementation for these overloaded class methods is on lines 31-49. Note that the
version of DrawShape () that takes no parameters simply calls the version that takes two
parameters, passing in the current member variables. Try very hard to avoid duplicating
code in two functions. Otherwise, keeping them in sync when changes are made to one
or the other will be difficult and error-prone.

The driver program on lines 52-61 creates a rectangle object and then calls
DrawShape (), first passing in no parameters and then passing in two unsigned short
integers.

292 Day 10

The compiler decides which method to call based on the number and type of parameters
entered. You can imagine a third overloaded function named DrawShape () that takes one
dimension and an enumeration for whether it is the width or height, at the user’s choice.

Using Default Values

Just as global functions can have one or more default values, so can each member func-
tion of a class. The same rules apply for declaring the default values, as illustrated in
Listing 10.2.

LisTING 10.2 Using Default Values

1: //Listing 10.2 Default values in member functions
2: #include <iostream>

3:

4: using namespace std;

5:

6: // Rectangle class declaration

7: class Rectangle

8: {

9: public:

10: /] constructors

11: Rectangle(int width, int height);

12: ~Rectangle(){}

13: void DrawShape(int aWidth, int aHeight,
14: bool UseCurrentVals = false) const;
15:

16: private:

17: int itsWidth;

18: int itsHeight;

19: };

20:

21: //Constructor implementation
22: Rectangle::Rectangle(int width, int height):

23: itsWidth(width), // initializations
24: itsHeight(height)

25: {} /] empty body

26:

27:

28: /] default values used for third parameter
29: void Rectangle::DrawShape(

30: int width,

31: int height,

32: bool UseCurrentValue

33:) const

34: {

Working with Advanced Functions 293 |

LisTING 10.2 continued

35: int printWidth;

36: int printHeight;

37:

38: if (UseCurrentValue == true)

39: {

40: printWidth = itsWidth; /] use current class values
41: printHeight = itsHeight;

42: }

43: else

44: {

45: printWidth = width; /| use parameter values
46: printHeight = height;

47: }

48:

49:

50: for (int i = 0@; i<printHeight; i++)
51: {

52: for (int j = 0; j< printWidth; j++)
53: {

54: cout << "*';

55: }

56: cout << endl;

57: }

58: }

60: // Driver program to demonstrate overloaded functions
61: int main()

62: |

63: // initialize a rectangle to 30,5

64: Rectangle theRect(30,5);

65: cout << "DrawShape(0,0,true)..." << endl;
66: theRect.DrawShape(0,0,true);

67: cout <<"DrawShape(40,2)..." << endl;

68: theRect.DrawShape (40,2);

69: return 0;

70: }

DrawShape (0,0, true)...

OUTPUT EEEEEEEEEEEEEEEEEEEEEEEEEEEESEE]
kkkkkhkkkhkkhkhkhhhkhkhkhkhkhkkkkkkkkkkkkk*%
IR EEEEE R R R RS EEEEEEEEEEEEEES
EEEEEEEEEEEEEEEEEEEEEEEEEEEESEE]
kkkkkhkkkhkkhkhkhkhhkhkhkhkhkhkkkkkkkkkkkkkx*k
DrawShape (40,2)...
EEEEEEEEE RS SRS RS RS RS E RS SRR EEEEEEEEEEREEEEEEEEEEEEEEEE S

R EEE]

294 Day 10

Listing 10.2 replaces the overloaded DrawShape () function with a single function

with default parameters. The function is declared on line 13 to take three parame-

ters. The first two, aWidth and aHeight, are integers, and the third, UseCurrentvals, is a
bool that defaults to false.

The implementation for this somewhat awkward function begins on line 29. Remember
that whitespace doesn’t matter in C++, so the function header is actually on lines 29-33.

Within the method, the third parameter, UseCurrentValue, is evaluated on line 38. If it is
true, the member variables itsWidth and itsHeight are used to set the local variables
printWidth and printHeight, respectively.

If UseCurrentVvalue is false, either because it has defaulted false or was set by the user,
the first two parameters are used for setting printWidth and printHeight.

Note that if UseCurrentValue is true, the values of the other two parameters are com-
pletely ignored.

Choosing Between Default Values and
Overloaded Functions

Listings 10.1 and 10.2 accomplish the same thing, but the overloaded functions in
Listing 10.1 are easier to understand and more natural to use. Also, if a third variation is
needed—perhaps the user wants to supply either the width or the height, but not both—it
is easy to extend the overloaded functions. The default value, however, will quickly
become unusably complex as new variations are added.

How do you decide whether to use function overloading or default values? Here’s a rule
of thumb:

Use function overloading when

¢ No reasonable default value exists.
* You need different algorithms.

* You need to support different types in your parameter list.

The Default Constructor

The point of a constructor is to establish the object; for example, the point of a
Rectangle constructor is to make a valid rectangle object. Before the constructor runs,
no rectangle exists, only an area of memory. After the constructor finishes, there is a
complete, ready-to-use rectangle object. This is a key benefit of object-oriented

Working with Advanced Functions 295 |

programming—the calling program does not have to do anything to ensure that the
object starts in a self-consistent state.

As discussed on Day 6, “Understanding Object-Oriented Programming,” if you do not
explicitly declare a constructor for your class, a default constructor is created that takes
no parameters and does nothing. You are free to make your own default constructor, how-
ever, that takes no arguments but that “sets up” your object as required.

The constructor provided for you is called the “default” constructor, but by convention so
is any constructor that takes no parameters. This can be a bit confusing, but it is usually
clear which one is meant from the context.

Take note that if you make any constructors at all, the default constructor is not provided
by the compiler. So if you want a constructor that takes no parameters and you’ve cre-
ated any other constructors, you must add the default constructor yourself!

Overloading Constructors

Constructors, like all member functions, can be overloaded. The capability to overload
constructors is very powerful and very flexible.

For example, you might have a rectangle object that has two constructors: The first takes
a length and a width and makes a rectangle of that size. The second takes no values and
makes a default-sized rectangle. Listing 10.3 implements this idea.

LisTinG 10.3 Overloading the Constructor

1: // Listing 10.3 - Overloading constructors

2:

3: #include <iostream>

4: using namespace std;

5:

6: class Rectangle

70 {

8: public:

9: Rectangle();

10: Rectangle(int width, int length);

11: ~Rectangle() {}

12: int GetWidth() const { return itsWidth; }
13: int GetLength() const { return itsLength; }
14: private:

15: int itsWidth;

16: int itslLength;

17: 3}

18:

19: Rectangle::Rectangle()
20: {

296 Day 10

LisTiING 10.3 continued

21: itsWidth = 5;

22: itsLength = 10;

23: }

24:

25: Rectangle::Rectangle (int width, int length)

26: |

27: itsWidth = width;

28: itsLength = length;

29: }

30:

31: int main()

32: {

33: Rectangle Recti;

34: cout << "Rectl width: " << Rect1.GetWidth() << endl;
35: cout << "Rectl length: " << Recti1.GetLength() << endl;
36:

37: int aWidth, alLength;

38: cout << "Enter a width: ";

39: cin >> aWidth;

40: cout << "\nEnter a length: ";

41: cin >> alength;

42:

43: Rectangle Rect2(awWidth, alLength);

44: cout << "\nRect2 width: " << Rect2.GetWidth() << endl;
45: cout << "Rect2 length: " << Rect2.GetLength() << endl;
46: return 0;

47: '}

) Rect1 width: 5
bbbl Recti length: 10

Enter a width: 20
Enter a length: 50

Rect2 width: 20
Rect2 length: 50

The Rectangle class is declared on lines 6-17. Two constructors are declared:
ANALYSIS . N . . .
the “default constructor” on line 9 and a second constructor on line 10, which
takes two integer variables.

On line 33, a rectangle is created using the default constructor, and its values are printed
on lines 34 and 35. On lines 38—41, the user is prompted for a width and length, and the
constructor taking two parameters is called on line 43. Finally, the width and height for
this rectangle are printed on lines 44 and 45.

Jus