المدة : 3 سا

العلامة: 400

النواسات

أولا: اختر الإجابة الصحيحة:

١) عزم الإرجاع في نواس الفتل يعطى بالعلاقة:

$$\bar{\Gamma} = -k \, \bar{\theta}^2$$
 (d $\bar{\Gamma} = -k \, \bar{\theta}$ (c $\bar{F} = -k \, \bar{\theta}$ (b $\bar{\Gamma} = -k \, x$ (a

٢) يزداد الدور الخاص لنواس الفتل ب:

a) بازدياد السعة الزاوية (b) بازدياد السعة الزاوية c) بازدياد طول سلك الفتل (d) بنقصان طول سلك الفتل

: نواس مرن دوره الخاص T_0 نجعل $m=rac{m}{10}$ و $k=rac{k}{4}$ فإن النبض الجديد (٣

کل ما سبق خاطئ (d
$$\frac{10}{T_0}$$
 (c $\frac{2 T_0}{\pi}$ (b $\frac{2 T_0}{10}$ (a

غ) نواس فتل دوره الخاص $T_0 = 2$ نقسم سلك الفتل إلى ثمانية أقسام متساوية و نعلق الساق بسلكي الفتل معا بعد أن نضاعف القطر لسلك الفتل فيكون $T_0 = 2$:

$$2\sqrt{16}$$
 (a $\frac{1}{\sqrt{2}}$ (a $\frac{1}{8}$ (a

١) انطلاقا من علاقة قوة الإرجاع استنتج طبيعة حركة نواس المرن

- ۲) التصرف من عرف قوه الإرجاع المستنج طبيعة خرخة تواس المرل
 ۲) استنتج طبيعة حركة النواس الثقلي المركب و دوره الخاص
- ب مرن $u = \omega_0 \sqrt{X_{max}^2 x^2}$ أثبت صحة العلاقة $u = \omega_0 \sqrt{X_{max}^2 x^2}$
- لدينا تابع المطال من الشكل $\chi = X_{max}\cos(\omega_0 t)$ استنتج تابع السرعة ثم حدد متى يكون أعظمي ومتى ينعدم وارسم المنحني البياني لتغيرات تابع السرعة خلال دور واحد
 - ٥) ادرس تحولات الطاقة في الهزازة التوافقية البسيطة
 - ٦) أعط تفسيرا علميا باستخدام العلاقات الرياضية لكل مما يأتى:
- $(I_{\Delta} = \frac{1}{12} \, m \, l^2)$ لا يتعلق الدور الخاص لساق متجانسة تنوس حول محور مار من طرفها العلوي بكتلتها علما أن (a

ثالثا: حل المسائل التالية

المسألة الأولى (60 درجة)

نواس ثقلي يتألف من ساق شاقولية مهملة الكتلة طولها m_0 نعلق في كل من نهايتيها كتلتين نقطيتان متساويتان $(m_1 = m_2)$ تهتز في مستويها الشاقولي و ما بنقطة تبعد $(m_1 = m_2)$ عن نهايتها العلوية و المطلوب:

- a. احسب الدور الخاص لهذا النواس
- b. احسب طول النواس البسيط المواقت لهذا النواس
- . نزیح عن وضع توازنه زاویة θ_{max} و نترکه دون سرعة ابتدائیة فتکون السرعة الخطیة لمرکز عطالته لحظة المرور بالشاقول $0.2\sqrt{10}~m.s^{-1}$ احسب
- نعلق الساق من منتصفها بسلك فتل شاقولي فتهتز بدور قدره 2π استنتج قيم كل من m_1,m_2 اذا علمت أن ثابت فتل .d $\pi^2=10$ ، $g=10~m.s^{-1}$ علما أن $g=10~m.s^{-1}$

<u>المسألة الثانية</u> (45 درجة)

نواس ثقلي مؤلف من ساق متجانسة شاقولية طولها 1.5~m كتلتها $M\!=\!0.5~kg$ معلقة من طرفها العلوي و نثبت عليها بعد m=0.5~kg من محور الدوران كتلة نقطية m=0.5~kg احسب :

- a. الدور الخاص لهذا النواس للسعات الصغيرة
- θ الدور الخاص في حال كان النواس ينوس بسعة زاوية θ 0 = 0.
- c. احسب طول النواس البسيط المواقت لهذا النواس في حال السعات الصغيرة
- d. في حال السعة °60 = θ تترك الجملة دون سرعة ابتدائية، استنتج بالرموز العلاقة المحددة للسرعة الزاوية للجملة لحظة المرور بالشاقول ثم احسب قيمتها

المسألة الثالثة (85 درجة)

يتألف نواس فتل من ساق أفقية متجانسة معلقة بسلك فتل شاقولي من منتصفها و بعد أن تتوازن نديرها بزاوية يتألف نواس فتل من ساق أفقي و نتركها دون سرعة ابتدائية في مبدأ الزمن فتهتز بدور خاص $T_0=1$ فإذا علمت أن $H_0=2$ $H_0=1$ المطلوب:

- a. استنتج التابع الزمني للمطال الزاوي انطلاقا من شكله العام
- b. احسب السرعة الزاوية للساق لحظة مرورها الثاني بوضع التوازن
- التسارع الزاوي للساق عندما تصنع زاوية $\theta = -\frac{\pi}{4} rad$ مع وضع التوازن .c
 - d. احسب ثابت فتل السلك
 - e. احسب الطاقة الميكانيكية للنواس لحظة المرور في وضع التوازن
- f. نجعل طول سلك الفتل ربع ما كان عليه احسب الدور الخاص الجديد في هذه الحالة

المسألة الرابعة 55)

هزازة توافقية بسيطة مؤلفة من نقطة مادية كتلتها $m_1=1\,kg$ معلقة بنابض مرن مهمل الكتلة حلقاته متباعدة فيكون الدور خاص z=1 بفرض مبدأ الزمن عندما تكون النقطة المادية في مطالها الأعظمي الموجب و الطاقة التي يقدمها المجرب z=12.5

- a. استنتج التابع الزمني للمطال انطلاقا من شكله العام
- احسب طول القطعة المستقيمة التي تتحرك عليها النقطة
- c. عين لحظتي المرور الأول و الثاني للنقطة المادية في مركز التوازن
 - d. احسب قيمة السرعة العظمى للحركة في مركز الاهتزاز
 - e. احسب الاستطالة السكونية للنقطة المادية المعلقة

حلمك ليس له تاريخ انتهاء...

خذ نفساً عميقا و حاول مرّة أخرى!

مرة أخرى!

مرة أخرى!

مرة أخرى!

مرة أخرى!

مرة أخرى!

مرة أسعد السلامبولي