

حل اختبار القبول لطلاب الدراسات العليا- ماجستير

إهداء من : رشوان محمود إلى أعضاء المنتدى التعليمي للفيزياء

1. Which of the following quantities has the same dimensions as kinetic energy, $\frac{1}{2}mv^2$?

Note: $[a] = [g] = LT^{-2}$; [h] = L and $[v] = LT^{-1}$.

- **a.** *ma*
- **b.** *mvx*
- c. mvt
- **d.** mgh
- e. mgt

Energy = [mgh] =
$$M \frac{L}{T^2} L = ML^2T^{-2}$$

- 2. The position of a particle moving along the x axis is given by $x = (21 + 22t 6.0t^2)$ m, where t is in s. What is the average velocity during the time interval t = 1.0 s to t = 3.0 s?
 - **a.** -6.0 m/s
- **b.** -4.0 m/s
- c. -2.0 m/s
- **d.** -8.0 m/s
- **e.** $8.0 \, \text{m/s}$

$$X(t) = 21 + 22t - 6t^{2}$$

$$\overline{V} = \frac{\Delta x}{\Delta t} = \frac{X(3) - X(1)}{3 - 1} = -2m / s$$

- 3. The position of a particle moving along the x axis is given by $x = 6.0t^2 1.0t^3$, where x is in meters and t in seconds. What is the position of the particle when it achieves its maximum speed in the positive x direction?
 - **a.** 24 m
- **b.** 12 m
- **c.** 32 m
- **d.** 16 m
- **e.** 2.0 m

$$X(t) = 6t^2 - t^3$$

$$V(t) = 12t - 3t^2$$

$$a(t) = 12 - 6t$$

$$a(t) = 0 \Rightarrow t = 2$$

$$X(2) = 16m$$

- 4. If A = 12i 16j and B = -24i + 10j, what is the magnitude of the vector C = 2A B?
 - a. 42
- **b.** 22
- **c.** 64
- **d.** 90
- **e.** 13

$$A = 12i - 16j, B = -24i + 10j$$

$$C = 2A - b$$

$$= 24i - 32j + 24i - 10j$$

$$= 48i - 24j$$

$$\|C\| = \sqrt{28^2 + 24^2} = 63.7 \approx 64$$

- 5. A particle starts from the origin at t = 0 with a velocity of 6.0i m/s and moves in the xy plane with a constant acceleration of $(-2.0\mathbf{i} + 4.0\mathbf{j})$ m/s². At the instant the particle achieves its maximum positive x coordinate, how far is it from the origin?
 - **a.** 36 m
- **b.** 20 m
- **c.** 45 m
- **d.** 27 m
- **e.** 37 m

$$a = -2i + 4j$$

$$V = \int a \, dt = -2ti + 4tj + c$$

$$V(0) = c = 6i + oj$$

$$\therefore V = -2ti + 4tj + 6i$$

$$= (-2t + 6)i + 4j$$

$$X(t) = \int V \, dt = (-t^2 + 6t)i + 4tj + c'$$

$$X(0) = 0i + 0j = c'$$

$$\therefore X = (-t^2 + 6t)i + 4tj$$

$$at V = 0 \Rightarrow -2t + 6 = 0 \Rightarrow t = 3$$

$$X(3) = (-9 + 18)i + 4 \times 3j$$

$$\|X\| = \sqrt{9^2 + 12^2} = 15m$$

6. A block is pushed up a frictionless 30° incline by an applied force as shown. If F = 25 Nand M = 3.0 kg, what is the magnitude of the resulting acceleration of the block?

- **a.** 2.3 m/s^2 **b.** 4.6 m/s^2 **c.** 3.5 m/s^2 **d.** 2.9 m/s^2
- **e.** $5.1 \,\mathrm{m/s^2}$

$$F = m a$$

$$= 25 \cos 30 - 3 \times 9.8 \cos 60$$

$$= 3a$$

$$\therefore a = 2.3 \text{ m/s}^2$$

7. Two bodies, A and B, collide as shown in Figures a and b below.

Which statement is true?

- They exert equal and opposite forces on each other in (a) but not in (b).
- They exert equal and opposite force on each other in (b) but not in (a).
- They exert equal and opposite force on each other in both (a) and (b). c.
- The forces are equal and opposite to each other in (a), but only the components of the d. forces parallel to the velocities are equal in (b).
- The forces are equal and opposite in (a), but only the components of the forces e. perpendicular to the velocities are equal in (b).
- 8. A race car travels 40 m/s around a banked (45° with the horizontal) circular (radius = 0.20km) track. What is the magnitude of the resultant force on the 80-kg driver of this car?
 - 0.68 kN a.
- **b.** 0.64 kN
- **c.** 0.72 kN
- **d.** 0.76 kN
- **e.** 0.52 kN

$$F = \frac{mV^2}{r} = \frac{80 \times 40^2}{0.2 \times 100} = 640N = 0.64 \text{ KN}$$

- 9. A constant force of 12 N in the positive *x* direction acts on a 4.0-kg object as it moves from the origin to the point $(6\mathbf{i} - 8\mathbf{j})$ m. How much work is done by the given force during this displacement?
 - +60 J
- **b.** +84 | **c.** +72 |
- **d.** +48 J
- **e.** +57 J

$$\overrightarrow{F} = 12i + oj$$

$$\overrightarrow{X} = 6i - 8j$$

$$W = \overrightarrow{F} \cdot \overrightarrow{X} = 6 \times 12 - 0 = 72 J$$

- 10. As a particle moves along the *x* axis it is acted upon by a single conservative force given by $F_x = (20 - 4.0x)$ N where x is in m. The potential energy associated with this force has the value +30 J at the origin (x = 0). What is the value of the potential energy at x = 4.0 m?
 - **a.** −48 I
- **b.** +78 I
- **c.** –18 I
- **d.** +48 J
- $+80 \, \text{J}$

$$F = 40 - 4X$$

$$V = -\int F dX$$

$$= -20X + 2X^{2} + c$$

$$V (0) = 30J \Rightarrow c = 30$$
∴ $V (X) = -20X + 2X^{2} + 30$

$$V (4) = -18 J$$

- 11. A 2000-kg truck traveling at a speed of 6.0 m/s makes a 90° turn in a time of 4.0 s and emerges from this turn with a speed of 4.0 m/s. What is the magnitude of the average resultant force on the truck during this turn?
 - 4.0 kN a.
- **b.** 5.0 kN
- **c.** 3.6 kN
- **d.** 6.4 kN
- **e.** 0.67 kN

$$\vec{V} = \sqrt{36 + 64} = 10m / s$$

$$\vec{a} = \frac{\vec{V}}{t} = \frac{10}{4} = 2.5m / s^2$$

$$F = ma = 5000N = 5KN$$

- **12.** A 2.4-kg ball falling vertically hits the floor with a speed of 2.5 m/s and rebounds with a speed of 1.5 m/s. What is the magnitude of the impulse exerted on the ball by the floor?
 - 9.6 N s
- **b.** 2.4 N s
- **c.** 6.4 N s
- **d.** 1.6 N s
- **e.** 1.0 N s

$$impluse = m\Delta V$$

= 2.4(2.5-1.5) = 2.4N .s

- 13. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration has an angular velocity of 2.0 rad/s. Two seconds later it has turned through 5.0 complete revolutions. What is the angular acceleration of this wheel?
 - $17 \, \text{rad/s}^2$
- **b.** 14 rad/s^2
- **c.** 20 rad/s^2 **d.** 23 rad/s^2 **e.** 13 rad/s^2
- A particle located at the position vector $\mathbf{r} = (\mathbf{i} + \mathbf{j})$ m has a force $\mathbf{F} = (2\mathbf{i} + 3\mathbf{j})$ N acting on it. **14.** The torque about the origin is:

- $(1k)N \cdot m$ **b.** $(5k)N \cdot m$ **c.** $(-1k)N \cdot m$ **d.** $(-5k)N \cdot m$ **e.** $(2i + 3j)N \cdot m$

$$\vec{F} = 2i + 3j$$

$$\vec{r} = i + j$$

$$\vec{I} = \vec{F} \times \vec{r} = 2 \times 1 - 3 \times 1 = (-1k)Nm$$

- 15. A satellite is in a circular orbit about the Earth at an altitude at which air resistance is negligible. Which of the following statements is true?
 - There is only one force acting on the satellite.
 - There are two forces acting on the satellite, and their resultant is zero. b.
 - There are two forces acting on the satellite, and their resultant is not zero. c.
 - d. There are three forces acting on the satellite.
 - None of the preceding statements are correct.

- When water freezes, it expands about 9 percent. What would be the pressure increase 16. inside your automobile engine block if the water in there froze? The bulk modulus of ice is 2.0×10^9 N/m², and 1 atm = 10^5 N/m².
 - 18 atm
- **b.** 360 atm
- **c.** 1080 atm
- **d.** 1800 atm
- **e.** 600 atm

Bulk modulus; is the ratio of change in pressure acting in a volume to fractional changein a volume

$$B = \frac{\Delta P}{\Delta V / V}$$
$$P = 1800atm$$

- The motion of a particle connected to a spring is described by $x = 10 \sin(\pi t)$. At what time 17. (in s) is the potential energy equal to the kinetic energy?
 - 0 a.
- **b.** 0.25
- **c.** 0.50
- **d.** 0.79
- **e.** 1.0

$$x = 10\sin(\pi t)$$
$$t = 1 \to x = 10$$
$$\therefore t = \frac{1}{2} \to E_k = E_p$$

- The wavelength of light visible to the human eye is on the order of 5×10^{-7} m. If the speed 18. of light in air is 3×10^8 m/s, find the frequency of the light-wave.
 - $3 \times 10^7 \,\mathrm{Hz}$

- **b.** $4 \times 10^9 \,\text{Hz}$ **c.** $5 \times 10^{11} \,\text{Hz}$ **d.** $6 \times 10^{14} \,\text{Hz}$
- **e.** $4 \times 10^{15} \, \text{Hz}$

$$v = \frac{c}{\lambda} = \frac{3 \times 10^8}{5 \times 10^{-7}} = 6 \times 10^{14} Hz$$

- 19. A temperature difference of 5 K is equal to
 - A difference of 9 on the Celsius scale.
 - A difference of 9 on the Fahrenheit scale.
 - A difference of 2.8 on the Rankine scale.
 - A difference of 0.5 on the Fahrenheit scale.
 - A difference of 2.8 on the Celsius scale.

- 20. The velocity of sound in sea water is 1533 m/s. Find the bulk modulus (in N/m^2) of sea water if its density is 1.025×10^3 kg/m³.
 - a. 2.6×10^9
- **b.** 2.2×10^9
- c. 2.0×10^9
- **d.** 2.4×10^9
- **e.** 2.8×10^9
- 21. In order to understand the concept of temperature it is necessary to understand
 - **a.** The Zeroth law of thermodynamics.
 - **b.** The first law of thermodynamics.
 - **c.** The second law of thermodynamics.
 - **d.** All of the above.
 - **e.** Only (b) and (c) above.

- Two thermometers are calibrated, one in degrees Celsius and the other in degrees Fahrenheit. At what temperature (in Kelvins) do their readings measure the same temperature?
 - a. 218.15
- **b.** 233.15
- **c.** 273.15
- **d.** 40.15

$$f = \frac{9}{5}(c+32) \Rightarrow c = \frac{9}{5}(c+32)$$

$$c = 40$$

$$k = 233$$

- 23. Determine the heat capacity (in calories/°C) of a lake containing one million gallons (approximately 4 million kilograms) of water at 15°C.
- **b.** 4×10^9 **c.** 4×10^3
- **d.** 1×10^3
- If a = 3.0 mm, b = 4.0 mm, $Q_1 = 60$ nC, $Q_2 = 80$ nC, and q = 24 nC in the figure, what is the 24. magnitude of the total electric force on *q*?

- 2.7 N a.
- **b.** 1.9 N
- **c.** 2.3 N
- **d.** 1.5 N
- 0.52 N

$$F_{1} = 9 \times 10^{9} \frac{80 \times 24 \times 10^{-18}}{\left(4 \times 10^{-3}\right)} = 1.08N$$

$$F_{2} = 9 \times 10^{9} \frac{60 \times 24 \times 10^{-18}}{\left(5 \times 10^{-3}\right)} = 0.5148N$$

$$F^{2} = F_{1}^{2} + F_{2}^{2} + 2F_{1}F_{2}\cos\theta \quad , \quad \cos\theta = \frac{4}{5}$$

$$\therefore F = 2.3N$$

In the figure, if $Q = 30 \mu C$, $q = 5.0 \mu C$, and d = 30 cm, what is the magnitude of the 25. electrostatic force on *q*?

- **b.** 23 N
- c. zero
- 7.5 N
- 38 N e.

$$F = 9 \times 10^9 \frac{5 \times 30 \times 10^{12}}{0.3^2} - 9 \times 10^9 \frac{5 \times 60 \times 10^{12}}{0.6^2}$$

= 7.5 N

- 26. Two charges of 15 pC and -40 pC are inside a cube with sides that are of 0.40 m length. Determine the net electric flux through the surface of the cube.

 - **a.** $+2.8 \text{ N} \cdot \text{m}^2/\text{C}$ **b.** $-1.1 \text{ N} \cdot \text{m}^2/\text{C}$ **c.** $+1.1 \text{ N} \cdot \text{m}^2/\text{C}$

- **d.** $-2.8 \text{ N} \cdot \text{m}^2/\text{C}$
 - **e.** $-0.47 \text{ N} \cdot \text{m}^2/\text{C}$
- A charged particle (q = -8.0 mC), which moves in a region where the only force acting on 27. the particle is an electric force, is released from rest at point A. At point B the kinetic energy of the particle is equal to 4.8 J. What is the electric potential difference $V_{\rm B}$ – $V_{\rm A}$?
 - -0.60 kV
- **b.** $+0.60 \,\mathrm{kV}$
- c. +0.80 kV
- **d.** -0.80 kV
- **e.** +0.48 kV

$$V_B - V_A = \frac{W}{q} = \frac{4.8}{-8} = -0.6$$

28. Determine the equivalent capacitance of the combination shown when C = 12 pF.

- 48 pF
- **b.** 12 pF
- c. 24 pF
- **d.** 6.0 pF **e.** 59 pF

$$C_1 = 12 + 12 = 24pF$$

$$\frac{1}{C_{total}} = \frac{1}{12} + \frac{1}{24} + \frac{1}{C_1} = \frac{1}{12} + \frac{1}{24} + \frac{1}{12}$$

$$C_{total} = 6pF$$

- **29.** Light bulb A is rated at 60 W and light bulb B is rated at 100 W. Both are designed to operate at 110 V. Which statement is correct?
 - **a.** The 60 W bulb has a greater resistance and greater current than the 100 W bulb.
 - **b.** The 60 W bulb has a greater resistance and smaller current than the 100 W bulb.
 - c. The 60 W bulb has a smaller resistance and smaller current than the 100 W bulb.
 - **d.** The 60 W bulb has a smaller resistance and greater current than the 100 W bulb.
 - **e.** We need to know the resistivities of the filaments to answer this

$$w = IV = I^{2}R$$

$$I_{A} \times 110 = 60 \implies I_{A} = 0.545A$$

$$I_{B} \times 110 = 100 \implies I_{B} = 0.909A$$

$$I^{2}R_{A} = 60 \implies R_{A} = 202\Omega$$

$$I^{2}R_{B} = 100 \implies R_{B} = 121\Omega$$

30. What is the current in the $10-\Omega$ resistor?

- **a.** 0.60 A
- **b.** 3.0 A
- **c.** 1.2 A
- **d.** 2.4 A
- **e.** 0.30 A

$$\frac{1}{R_1} = \frac{1}{5} + \frac{1}{10} + \frac{1}{5} : R_1 = 2\Omega$$

$$R_{total} = R_1 + 5 = 2 + 5 = 7\Omega$$

$$I_{total} = \frac{V}{R_{total}} = \frac{21}{7} = 3A$$

$$V_{10} = I \times R_1 = 3 \times 2 = 6V$$

$$I_{10} = \frac{V_{10}}{10} = 0.6A$$

An electron has a velocity of 6.0×10^6 m/s in the positive x direction at a point where the magnetic field has the components $B_x = 3.0$ T, $B_y = 1.5$ T and $B_z = 2.0$ T. What is the magnitude of the acceleration of the electron at this point?

a.
$$2.1 \times 10^{18} \,\mathrm{m/s^2}$$

a.
$$2.1 \times 10^{18} \text{ m/s}^2$$
 b. $1.6 \times 10^{18} \text{ m/s}^2$ **c.** $2.6 \times 10^{18} \text{ m/s}^2$ **d.** $3.2 \times 10^{18} \text{ m/s}^2$ **e.** $3.7 \times 10^{18} \text{ m/s}^2$

c.
$$2.6 \times 10^{18} \,\mathrm{m/s^2}$$

d.
$$3.2 \times 10^{18} \,\mathrm{m/s^2}$$

e.
$$3.7 \times 10^{18} \,\mathrm{m/s^2}$$

$$B = \sqrt{B_x^2 + B_y^2 + B_z^2} = 3.905T$$

$$\cos \theta = \frac{3}{3.905}$$

$$F = Bqv \cdot \cos \theta = m_e a \qquad , \qquad m_e = 9.1 \times 10^{-31} Kg$$

$$a = F / 9.1 \times 10^{-31} = 3.2 \times 10^{18} \, m / s^2$$

32. The diagram below shows the position of a long straight wire perpendicular to the page and a set of directions labeled A through H.

When the current in the wire is directed up out of the page, the direction of the magnetic field at point P is

- G. e.
- 33. One long wire carries a current of 30 A along the entire x axis. A second long wire carries a current of 40 A perpendicular to the xy plane and passes through the point (0, 4, 0) m. What is the magnitude of the resulting magnetic field at the point y = 2.0 m on the y axis?

c.
$$3.0 \, \mu \text{T}$$
 d. $7.0 \, \mu \text{T}$

$$B = \sqrt{B_x^2 + B_z^2}$$

$$B_x = \frac{\mu}{2\pi} \frac{I_1}{d} = \frac{4\pi \times 10^{-7}}{2\pi} \frac{30}{2} = 3 \times 10^{-6} T$$

$$B_x = \frac{\mu}{2\pi} \frac{I_2}{d} = \frac{4\pi \times 10^{-7}}{2\pi} \frac{40}{2} = 4 \times 10^{-6} T$$

$$B = \sqrt{9 \times 10^{-12} + 16 \times 10^{-12}} = 5 \mu T$$

- A coil is wrapped with 300 turns of wire on the perimeter of a circular frame (radius = 8.0 cm). Each turn has the same area, equal to that of the frame. A uniform magnetic field is turned on perpendicular to the plane of the coil. This field changes at a constant rate from 20 to 80 mT in a time of 20 ms. What is the magnitude of the induced emf in the coil at the instant the magnetic field has a magnitude of 50 mT?
 - a. 24 V
- **b.** 18 V
- **c.** 15 V
- **d.** 10 V
- **e.** 30 V

$$e.m.f = -N \frac{\Delta \phi}{\Delta t} = -N \frac{\Delta (BA)}{\Delta t}$$

$$60mt \longrightarrow 20ms$$

$$30mt \longrightarrow ?ms$$

$$e.m.f = 300 \frac{30}{10} \pi 0.08^2 = 18.1V$$

- **35.** A current may be induced in a coil by
 - **a.** Moving one end of a bar magnet through the coil.
 - **b.** Moving the coil toward one end of the bar magnet.
 - **c.** Holding the coil near a second coil while the electric current in the second coil is increasing.
 - **d.** All of the above.
 - **e.** None of the above.

- What is the inductance of a series RL circuit in which $R = 1.0 \text{ K}\Omega$ if the current increases to 36. one-third of its final value in 30 μ s?
 - 74 mH
- **b.** 99 mH
- **c.** 49 mH
- **d.** 62 mH
- **e.** None of the above

$$e.m.f = L\frac{\Delta I}{\Delta t} = L\frac{(1.3I - I)}{30 \times 10^{-6}} = \frac{0.3I}{30 \times 10^{-6}}$$
$$\frac{e.m.f}{I} = R = \frac{0.3}{30 \times 10^{-6}}L = 1000$$
$$\therefore L = 9 \times 10^{-6}H = 9mH$$

- 37. Inductive reactance X_L is given by
 - Lω
- **b.** L/ω **c.** $1/L\omega$ **d.** ω/L
- e. $\omega^2 L$

$$X_{L} = Lw$$
$$X_{C} = \frac{1}{wC}$$

- At what frequency will a 12- μ F capacitor have a reactance X_C = 300Ω? 38.
 - 44 Hz
- **b.** 88 Hz
- **c.** 176 Hz
- d. 352 Hz
- 278 Hz

$$X_C = \frac{1}{wC} = \frac{1}{2\pi vC} = \frac{1}{2\pi v \cdot 12 \times 10^{-6}} = 300$$

 $v = 88.3 \approx 88Hz$

- Since $\varepsilon_0 = 8.85 \times 10^{-12} \ {\rm C^2/N \cdot m^2}$, the units of $\varepsilon_0 E^2$ are 39.
 - **a.** $\frac{J}{s \cdot m^3}$. **b.** $\frac{N}{s \cdot m^3}$. **c.** $\frac{J}{m^3}$. **d.** $\frac{N}{m^3}$. **e.** $\frac{W}{m^3}$.

- **40.** According to Planck 's theory, the energy of a photon is
 - Proportional to its wavelength. a.
 - Proportional to its frequency.
 - Constant, since the speed of light is a constant. c.
 - d. Quantized, since it always appears in bundles of size, 1.6×10^{-19} C.
 - Proportional to the square of the frequency.

- **41.** Light behaves like
 - **a.** A wave at times, and a particle at other times.
 - **b.** A wave.
 - **c.** A particle.
 - **d.** Both a wave and a particle, because of its dual nature.
- 42. A light ray is incident on the surface of water (n = 1.33) at an angle of 60° relative to the normal to the surface. The angle of the reflected wave is
 - a. 80°
- **b.** 40°
- c. 20°
- **d.** 60°
- **e.** 30°

$$\theta_1 = \theta_2 = 60^0$$

- 43. A concave mirror has a focal length of 20 cm. What is the position (in cm) of the resulting image if the image is inverted and four times smaller than the object?
 - **a.** 15
- **b.** 25
- **c.** 50
- **d.** 100
- **e.** -15
- 44. Two slits separated by 0.050 mm are illuminated with green light (λ = 540 nm). How many bands of bright lines are there between the central maximum and the 12-cm position? (The distance between the double slits and the screen is 1.0 m).
 - **a.** 1111
- **b.** 111
- **c.** 11
- **d.** 1
- **e.** 11111

$$\lambda = 540 \times 10^{-9} m$$

$$R = 1m$$

$$d = 0.05 \times 10^{-3} m$$

$$\Delta y = \frac{\lambda R}{d} = \frac{540 \times 10^{-9} \times 1}{0.05 \times 10^{-3}} = 0.0108m$$

$$n = \frac{12}{\Delta y} = \frac{12}{0.0108} = 11$$

- The binding energy of the ${}_{6}^{12}C$ nuclei is: 45.
 - **a.** 12 MeV
- **b.** 937 MeV
- **c.** 92 MeV
- **d.** 241 MeV
- e. 81.5 MeV

$$E_B = [mass of nucleus - mass number] \times 931$$
$$= [1.0073 \times 6 + 1.0087 \times 6 - 12] \times 931 = 89.3 MeV$$

- A proton's rest mass is 1.67×10^{-27} kg. Calculate its kinetic energy when it is accelerated to 46. a speed of 0.80 c.
- $1.0 \times 10^{-10} \,\mathrm{J}$ b. $1.5 \times 10^{-10} \,\mathrm{J}$ c. $-2.0 \times 10^{-10} \,\mathrm{J}$ d. $2.5 \times 10^{-10} \,\mathrm{J}$ e. $7.5 \times 10^{-10} \,\mathrm{J}$

$$E_k = (\gamma - 1)mC^2$$

$$= \left(\frac{1}{\sqrt{1 - 0.64}} - 1\right)1.67 \times 10^{-27} \times 9 \times 10^{16} = 1.00210^{-27} \times 10^{-10} J$$

- 47. The quantity which does not change in magnitude from that observed in system S when observed in system S' moving away from system S at speed v is
 - a. ma.
- **b.** *m***v** .

- **c.** $(\gamma 1)mc^2$. **d.** $E^2 p^2c^2$. **e.** $x^2 + y^2 + z^2$.
- A stopping potential of 3.2 V is needed for radiation whose wavelength is 200 nm. What is 48. the work function (in eV) of the material?
 - 4.0
- **b.** 3.0
- **c.** 5.0
- d. 6.0
- **e.** 2.0

$$E_{w} = h \vartheta_{c}$$

$$= 6.626 \times 10^{-34} \times \frac{3 \times 10^{8}}{200 \times 10^{-9}} = 9.999 \times 10^{-19} J$$

$$= \frac{9.999 \times 10^{-19}}{1.6 \times 10^{-19}} = 6.2 eV$$

- What is the quantum number n of a particle of mass m confined to a one-dimensional box 49. of length L when its momentum is 4h/L?
 - 1 a.
- **b.** 4
- **c.** 2
- **d.** 8
- **e.** 16
- What value of wavelength is associated with the Lyman series for n = 2? 50. $(R_{\rm H} = 1.097 \times 10^7 \,\mathrm{m}^{-1})$

- **a.** 8.2×10^6 m **b.** 1.2×10^{-7} m **c.** 2.7×10^6 m **d.** 3.6×10^{-7} m **e.** 8.8×10^{-7} m

$$E_n = \frac{13.6}{n^2}$$

$$\Delta E = 13.6 \left(\frac{1}{1} - \frac{1}{2^2}\right) = hv$$

$$\lambda = \frac{c}{v} = 1.2 \times 10^{-7} m$$

Physical constants:

$$\begin{split} g &= 9.8m / \, s^2 \,, c = 3x10^8 \, m / \, s, h = 6.626x10^{-34} \, J.s, \mu_o = 4\pi x10^{-7} \, T.m / \, A, \varepsilon_o = 8.85x10^{-12} \, C^2 \, / \, N.m \\ e &= 1.6x10^{-19} \, C, m_e = 9.1x10^{-31} \, kg, k = 9x10^9 \, N.m^2 \, / \, C^2 \,. \end{split}$$

مع التمنيات بالتوفيق والنجاح