Acids and Bases

The Arrhenius concept
Acid: a substance that dissociates in water to produce $\mathbf{H}_{3} \mathbf{O}^{+}$ions
$\mathrm{H}_{3} \mathrm{O}^{+}$some times shown as $\mathrm{H}^{+}(\mathrm{aq})$

Oxides may be incorporated into the Arrhenius scheme

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

Note: The Arrhenius concept is based on presence of water

The Brønsted-Lowry Concept

Acid : a substance that can donate a proton
Base: a substance that can accept a proton
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
$\mathrm{CH}_{3} \mathrm{COOH}$: is the acid (lost a proton)
$\mathrm{H}_{2} \mathrm{O}$: is the base (accepted a proton)
Now look at the reverse reaction:
$\mathrm{CH}_{3} \mathrm{COO}^{-}$: is the base (accepted a proton)
$\mathrm{H}_{3} \mathrm{O}^{+}$: is the acid (lost a proton)

Pairs that are related through the loss or gain of a proton are

Conjugate pairs

$$
\begin{array}{cccc}
\text { Acid }_{1} & \text { Base }_{2} & \text { Acid }_{2} & \text { Base }_{1} \\
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) & \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathbf{a q})
\end{array}
$$

$\mathrm{H}_{2} \mathrm{O}$ is the conjugate base of $\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{H}_{3} \mathrm{O}^{+}$is the conjugate acid of $\mathrm{H}_{2} \mathrm{O}$

Water can also act as an acid

$$
\begin{array}{lcc}
\text { Acid }_{1} & \text { Base }_{2} & \text { Acid }_{2} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \text { Base }_{1} \\
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{array}
$$

$\mathrm{H}_{2} \mathrm{O}$ is the conjugate acid of OH^{-}
OH^{-}is the conjugate base of $\mathrm{H}_{2} \mathrm{O}$

The Lewis definition

Acid: a substance that can form a covalent bond by accepting an electron pair from a base

Base: a substance that have an unshared electron pair with which it can form a covalent bond with an atom, molecule or ion.

$$
\mathrm{BF}_{3}+: \mathrm{NH}_{3}
$$

Accepts e's Donates e's

$$
\rightarrow \quad-B-N-
$$

Electrolytes

Strong electrolytes are completely ionized in water solution
NaOH is a strong electrolyte

$$
\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathbf{O H}^{-}
$$

0.2 M solution of NaOH contains:
0.2 M of Na^{+}ions and
0.2 M of OH^{-}ions

Weak electrolytes are incompletely ionized in water solution
Dissolved molecules exist in equilibrium with their ions in weak electrolytes solutions
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

Water dissociation

Pure water is a very weak electrolyte
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
In simplified form
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$
Ionization constant
$K=\frac{\left[H^{+} \llbracket O H^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}$
In dilute solutions the concentration of water is constant

$$
\begin{aligned}
& K\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[O H^{-}\right] \\
& K\left[\mathrm{H}_{2} \mathrm{O}\right]=K_{w}
\end{aligned}
$$

Water dissociation constant, at $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}=\mathbf{1 . 0} \times 10^{-14}$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]\left[O H^{-}\right]=1.0 \times 10^{-14}} \\
& {\left[\mathrm{H}^{+}\right]=\left[O H^{-}\right]=x} \\
& x^{2}=1.0 \times 10^{-14} \\
& x=1.0 \times 10^{-7}
\end{aligned}
$$

In pure water

$$
\left[H^{+}\right]=1.0 \times 10^{-7} M
$$

$$
\left[O H^{-}\right]=1.0 \times 10^{-7} M
$$

In acidic solutions
$\left[H^{+}\right]>1.0 \times 10^{-7} \mathrm{M}$

In basic solutions

$\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7} \mathrm{M}$

Example

What are $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a 0.020 M solution of HCl ?

HCl is a strong electrolyte

$$
\mathrm{HCl} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

$\left[\mathrm{H}^{+}\right]=\mathbf{0 . 0 2 0 M}$
$\left[H^{+}\right]\left[O H^{-}\right]=1.0 \times 10^{-14}$
$0.020 \times\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$\left[O H^{-}\right]=\frac{1.0 \times 10^{-14}}{0.020}=5.0 \times 10^{-13} \mathrm{M}$

pH

$$
p H=\log \frac{1}{\left[H^{+}\right]}=-\log \left[H^{+}\right]
$$

The $\mathbf{p H}$ is the negative logarithm of the hydrogen ion concentration

For pure water

$$
\begin{aligned}
& {\left[H^{+}\right]=1.0 \times 10^{-7} M} \\
& \log =1.0 \times 10^{-7}=-7 \\
& p H=7
\end{aligned}
$$

pOH of a solution is defined in the same terms

$$
p H=\log \frac{1}{\left[O H^{-}\right]}=-\log \left[O H^{-}\right]
$$

The relationship between pH and pOH can be derived from the water dissociation constant

$$
\left[H^{+}\right]\left[O H^{-}\right]=1.0 \times 10^{-14}
$$

Take the logarithm of each term

$$
\log \left[H^{+}\right]+\log \left[O H^{-}\right]=\log \left(1.0 \times 10^{-14}\right)
$$

Multiply by -1

$$
\begin{aligned}
& -\log \left[H^{+}\right]-\log \left[O H^{-}\right]=-\log \left(1.0 \times 10^{-14}\right) \\
& p H+p O H=14
\end{aligned}
$$

The pH scale

Example

For a 0.05 M HCl solution

a. Calculate $\left[\mathrm{H}^{+}\right] \&\left[\mathrm{OH}^{-}\right]$
b. Calculate $\mathbf{p H}$
c. Calculate $\mathbf{p O H}$
a.

$$
\begin{aligned}
& {\left[\mathbf{H}^{+}\right]=\mathbf{0 . 0 5 M}} \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} \\
& 0.05 \times\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
& {\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{0.05}=2.0 \times 10^{-13} \mathrm{M}}
\end{aligned}
$$

b. $\quad p H=-\log \left[H^{+}\right]$

$$
p H=-\log \left(5.0 \times 10^{-13}\right)=1.30
$$

c.

$$
p H+p O H=14
$$

$$
p O H=14-p H=14-1.30
$$

$$
p O H=12.7
$$

Example

If $\mathbf{p H}$ for a solution $=\mathbf{1 0 . 6 0}$ Determine [H^{+}]

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right] \\
& 10.60=-\log \left[H^{+}\right] \\
& -10.60=\log \left[H^{+}\right] \\
& {\left[H^{+}\right]=10^{-10.60}=2.5 \times 10^{-11} M}
\end{aligned}
$$

Weak electrolytes

Acetic acid as an example
$\begin{array}{ccc}\mathbf{C H}_{3} \mathbf{C O O H} & \mathbf{H}^{+}+\mathrm{CH}_{3} \mathbf{C O O}^{-} & K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\ \mathbf{C}_{\mathbf{a}} & \mathbf{0} & \mathbf{0}\end{array}$
$\mathbf{C}_{\mathrm{a}}=\mathbf{x} \quad \mathbf{x} \quad \mathbf{x}$

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=x
$$

$K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{C_{a}-x} \longrightarrow K_{a}=\frac{\left[H^{+}\right]^{2}}{C_{a}} \longrightarrow\left[H^{+}\right]=\sqrt{K_{a} C_{a}}$
Assume x:too small

For a weak base
$\mathrm{BOH} \rightleftharpoons \mathrm{B}^{+}+\mathrm{OH}^{-}$

$$
K_{b}=\frac{\left[B^{+}\right]\left[O H^{-}\right]}{[B O H]}
$$

$$
K_{b}=\frac{\left[O H^{-}\right]^{2}}{C_{b}} \longrightarrow\left[O H^{-}\right]=\sqrt{K_{b} C_{b}}
$$

Example

What is the $\mathbf{p H}$ for a 0.080 M solution of acetic acid? ($\mathrm{K}_{\mathrm{a}}=\mathbf{1 . 8 0} \times 10^{-5}$)

$$
\begin{gathered}
{\left[H^{+}\right]=\sqrt{K_{a} C_{a}}} \\
{\left[H^{+}\right]=\sqrt{1.80 \times 10^{-5} \times 0.080}=1.2 \times 10^{-3} \mathrm{M}}
\end{gathered}
$$

$$
p H=-\log \left[H^{+}\right]
$$

$$
p H=2.92
$$

Example

What is the $\mathbf{p H}$ for a $\mathbf{0 . 2 0 0 M}$ solution of $\mathrm{NH}_{3} ?\left(\mathrm{~K}_{\mathrm{b}}=1.80 \times 10^{-5}\right)$

$$
\begin{gathered}
{\left[O H^{-}\right]=\sqrt{K_{b} C_{b}}} \\
{\left[O H^{-}\right]=\sqrt{1.80 \times 10^{-5} \times 0.200}=1.90 \times 10^{-3} \mathrm{M}} \\
p O H=-\log \left[O H^{-}\right] \\
p O H=2.72 \\
p H+p O H=14 \\
p H=14-2.72=11.28
\end{gathered}
$$

Buffer solutions

Are solutions capable of maintaining their pH at some fairly constant value even when small amounts of acids or base are added

A buffer solution can be prepared from Both a weak acid and a salt of the acid
Or Both a weak base and a salt of the base
Examples of buffer solutions
Acetic acid + sodium acetate
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

Ammonia +ammonium chloride $\mathbf{N H}_{\mathbf{3}}+\mathbf{N H}_{4} \mathbf{C l}$

Calculating the $\mathbf{p H}$ of buffer solutions

weak acid + salt of the acid

$$
p H=p K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]}
$$

weak base + salt of the base

$$
p O H=p K_{b}+\log \frac{[\text { salt }]}{[\text { base }]}
$$

Henderson-Hasselbalch equations

In general, the ratio of ionic species to molecular species for an effective buffer should be between $1 / 10$ and 10/1.

Applying the equation to get the $\mathbf{p H}$ range :

$$
\begin{array}{rll}
p H=p K_{a}+\log \frac{1}{10} & \xrightarrow{\text { to }} \quad p H=p K_{a}+\log \frac{10}{1} \\
p H=p K_{a}-1 \quad \xrightarrow{\text { to }} & p H=p K_{a}+1
\end{array}
$$

A buffer solution can be prepared with a pH of any value between $\left(p K_{a}+1\right)$ and $\left(p K_{a}-1\right)$

Example

What is the $\mathbf{p H}$ of a solution made by adding 2.05 g of Sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ into one liter of 0.09 M acetic acid $\left(\mathrm{CH}_{3} \mathbf{C O O H}\right) ? \mathrm{~K}_{\text {acetic acid }}=1.80 \times 10^{-5}$
M.wt. of $\mathrm{CH}_{3} \mathrm{COONa}=82.0 \mathrm{~g} / \mathrm{mol}$
$\#$ moles $_{\text {salt }}=\frac{2.05 \mathrm{~g}}{82 \mathrm{~g} / \mathrm{mol}}=0.025 \mathrm{~mol}$

$$
\begin{gathered}
C_{\text {salt }}=\frac{0.025 \mathrm{~mol}}{1 L}=0.025 \mathrm{M} \\
p H=p K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]}
\end{gathered}
$$

$$
p H=-\log \left(1.80 \times 10^{-5}\right)+\log \left(\frac{0.025}{0.09}\right)=4.2
$$

Example

What weight of $\mathrm{CH}_{3} \mathrm{COONa}$ should be added to 1.0 L of 0.1 M $\mathbf{C H}_{3} \mathrm{COOH}$ to prepare a buffer solution with a $\mathbf{~} \mathbf{H H}$ of 5.0

$$
\begin{aligned}
& p H=p K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]} \\
& 5.0=-\log \left(1.80 \times 10^{-5}\right)+\log \frac{[\text { salt }]}{0.1} \\
& {[\text { salt }]=0.18 M} \\
& M=\frac{n}{V} \longrightarrow n=0.18 M \times 1.0 \mathrm{~L}=0.18 \mathrm{~mol} \\
& n=\frac{w t(g)}{M . w t .(\mathrm{g} / \mathrm{mol})} \longrightarrow \text { wieght }=0.18 \mathrm{~mol} \times 82.0 \mathrm{~g} / \mathrm{mol}=14 \mathrm{~g}
\end{aligned}
$$

Example

$2.45 \times 10^{-3} \mathrm{~g}$ of NaCN is added to 500 mL of 0.1 M HCN . The pH of the solution $=6.4$
Determine $\mathbf{K}_{\mathbf{H C N}}$

$$
\begin{aligned}
& M w t_{N a C N}=49 \mathrm{~g} / \mathrm{mol} \\
& n=\frac{w t(\mathrm{~g})}{M \cdot w t .(\mathrm{g} / \mathrm{mol})}=\frac{2.45 \times 10^{-3} \mathrm{~g}}{49 \mathrm{~g} / \mathrm{mol}}=5.0 \times 10^{-5} \mathrm{~mol} \\
& M_{N a C N}=\frac{5.0 \times 10^{-5} \mathrm{~mol}}{0.500 \mathrm{~L}}=1.0 \times 10^{-4} \mathrm{M} \\
& \quad 6.4=p K_{a}+\log \frac{1.0 \times 10^{-4}}{0.10} \longrightarrow K_{a}=4.0 \times 10^{-10}
\end{aligned}
$$

Solubility product

If an "insoluble" or "slightly soluble" salt is placed in water, An equilibrium is established

$$
\mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

The equilibrium constant is

$$
K=\frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]}{[\mathrm{AgCl}]}
$$

Since the concentration of a pure solid is a constant, we can write

$$
K_{S P}=K[\mathrm{AgCl}]=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]
$$

$K_{S P}$ is called a solubility product

$$
\begin{aligned}
\mathbf{M g}(\mathbf{O H})_{2}(\mathbf{s}) & \rightleftharpoons \mathbf{M g}^{2+}(\mathbf{a q})+2 \mathbf{O H} \cdot(\mathbf{a q}) \\
K_{S P} & =\left[\mathrm{Mg}^{2+}\right]\left[O H^{-}\right]^{2}
\end{aligned}
$$

$$
\mathrm{Bi}_{2} \mathrm{~S}_{3}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{Bi}^{3+}(\mathrm{aq})+3 \mathrm{~S}^{2-}(\mathrm{aq})
$$

$$
K_{S P}=\left[B i^{3+}\right]^{2}\left[S^{2-}\right]^{3}
$$

The solubility of a salt usually varies widely with temperature, the numerical value of K_{SP} for a salt changes with temperature.

Example

At $25^{\circ} \mathrm{C}, 0.00188 \mathrm{~g}$ of AgCl dissolves in 1 L of water. What is the solubility product of AgCl ?

$$
\begin{aligned}
& M w t_{A_{g} C l}=143 \mathrm{~g} / \mathrm{mol} \\
& n_{A g C l}=\frac{w t(\mathrm{~g})}{M . w t .(\mathrm{g} / \mathrm{mol})}=\frac{0.00188 \mathrm{~g}}{143 \mathrm{~g} / \mathrm{mol}}=1.31 \times 10^{-5} \mathrm{~mol}
\end{aligned}
$$

$$
\mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

$$
1.31 \times 10^{-5} \quad 1.31 \times 10^{-5}
$$

$$
K_{S P}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\left(1.31 \times 10^{-5}\right) \times\left(1.31 \times 10^{-5}\right)=1.72 \times 10^{-10}
$$

Example

At $25^{\circ} \mathrm{C}, 7.8 \times 10^{-5} \mathrm{~mol}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ dissolves in 1 L of water. What is the solubility product of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$?

$$
\begin{gathered}
\mathbf{A g}_{2} \mathrm{CrO}_{4}(\mathbf{s}) \rightleftharpoons 2 \mathrm{Ag}^{+}(\mathbf{a q})+\mathbf{C r O}_{4}{ }^{2-}(\mathbf{a q}) \\
2\left(7.8 \times 10^{-5}\right) \quad 7.8 \times 10^{-5} \\
K_{S P}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]=\left[2\left(7.8 \times 10^{-5}\right)\right]^{2} \times\left[7.8 \times 10^{-5}\right] \\
K_{S P}=1.9 \times 10^{-12}
\end{gathered}
$$

Molar solubility: number of moles dissolved per liter

At $25^{\circ} \mathrm{C}, 0.00188 \mathrm{~g}$ of AgCl dissolves in 1 L of water.

$$
\begin{array}{r}
n_{A g C l}=\frac{w t(g)}{M \cdot w t \cdot(g / \mathrm{mol})}=\frac{0.00188 \mathrm{~g}}{143 \mathrm{~g} / \mathrm{mol}}=1.31 \times 10^{-5} \mathrm{~mol} \\
\mathbf{A g C l}(\mathbf{s}) \rightleftharpoons \mathbf{A g}^{+}(\mathbf{a q})+\mathbf{C l}^{-}(\mathbf{a q}) \\
1.31 \times 10^{-5} \mathrm{M} \\
\mathbf{S} \\
\mathbf{S}
\end{array}
$$

$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$

$$
\begin{gathered}
\mathbf{S} \\
K_{S P}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right]=S \times S=S^{2} \\
S=\sqrt{K_{S P}}
\end{gathered}
$$

Example

What is the relation between solubility, S , and K_{SP} for $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?

$$
\begin{gathered}
\mathbf{C a}_{\mathbf{3}}\left(\mathbf{P O}_{4}\right)_{\mathbf{2}}(\mathbf{s}) \rightleftharpoons 3 \mathbf{C a}^{2+}(\mathbf{a q})+2 \mathbf{P O}_{\mathbf{4}}{ }^{3-}(\mathbf{a q}) \\
\mathbf{3 S} \\
K_{S P}=\left[C a^{2+}\right]^{3}\left[P O_{4}^{3-}\right]^{2} \\
=[(3 S)]^{3} \times[(2 S)]^{2} \\
= \\
=108 S^{5}
\end{gathered}
$$

Example

What is the solubility, S , of BaF_{2} ?

$$
\begin{gathered}
K_{S P\left(B a_{2}\right)}=1.8 \times 10^{-7} \\
\mathbf{B a F}_{2}(\mathbf{s}) \rightleftharpoons \mathbf{B a}^{2+}(\mathbf{a q})+2 \mathbf{F} \cdot(\mathbf{a q}) \\
K_{S P}=\left[B a^{2+}\right]\left[F^{-}\right]^{2}=S \times(2 S)^{2}=4 S^{3} \\
4 S^{3}=1.8 \times 10^{-7} \longrightarrow S^{3}=\frac{1.8 \times 10^{-7}}{4} \\
S=\sqrt[3]{\frac{1.8 \times 10^{-7}}{4}} \\
S=3.56 \times 10^{-3} \mathrm{M}
\end{gathered}
$$

Example

What is the relation between solubility, S , and $K_{S P}$ for $\mathrm{Ag}_{3} \mathrm{PO}_{4}$?

$$
\begin{gathered}
\mathbf{A g}_{3} \mathbf{P O}_{4}(\mathbf{s}) \rightleftharpoons 3 \mathbf{A g}^{+}(\mathbf{a q})+\mathbf{P O}_{4}^{3-}(\mathbf{a q}) \\
\mathbf{3 S} \\
K_{S P}= \\
=\left[A g^{+}\right]^{3}\left[P O_{4}^{3-}\right] \\
= \\
=(3 S)^{3} \times(S) \\
= \\
\end{gathered}
$$

Example

The solubility of CaSO_{4} is $0.67 \mathrm{~g} / \mathrm{L}$ at certain temperature. What is K_{SP} for CaSO_{4} ?

Determine S in units of M

$$
S=\frac{0.67 \mathrm{~g} / \mathrm{L}}{136.2 \mathrm{~g} / \mathrm{mol}}=4.9 \times 10^{-3} \mathrm{~mol} / \mathrm{L}
$$

$\mathrm{CaSO}_{4}(\mathrm{~s}) \leftrightharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2--}(\mathrm{aq})$

$$
\begin{aligned}
& K_{S P}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=S \times S \\
& K_{S P}=\left(4.9 \times 10^{-3}\right)^{2}=2.4 \times 10^{-5}
\end{aligned}
$$

Example

What is pH and pOH for a solution of $\mathrm{Fe}(\mathrm{OH})_{2}$? given that $\mathrm{K}_{\mathrm{SP}}=1.6 \times 10^{-14}$.

$$
\begin{gathered}
\mathrm{Fe}(\mathbf{O H})_{2}(\mathbf{s}) \rightleftharpoons \mathrm{Fe}^{2+}(\mathbf{a q})+\underset{\mathbf{S}}{2 \mathrm{OH}^{-}(\mathbf{a q})} \\
K_{S P}=\left[\mathrm{Fe}^{2+}\right]\left[O H^{-}\right]^{2}=(S)(2 S)^{2}=4 S^{3} \\
4 S^{3}=1.6 \times 10^{-14} \longrightarrow S^{3}=\frac{1.6 \times 10^{-14}}{4} \\
S=\sqrt[3]{\frac{1.6 \times 10^{-14}}{4}} \\
S=1.6 \times 10^{-5} M
\end{gathered}
$$

$$
\begin{gathered}
{\left[O H^{-}\right]=2 S=2\left(1.6 \times 10^{-5}\right)=3.2 \times 10^{-5} \mathrm{M}} \\
p O H=-\log \left[O H^{-}\right]=-\log \left(3.2 \times 10^{-5}\right)=4.5 \\
p H+p O H=14 \longrightarrow p H=14-4.5=9.5
\end{gathered}
$$

