"REVIEW' QUESTIONS FOR CHAPTER 5"

Q 1. The chemical reaction reaches the equilibrium state when :

A. Concentration of reactants are equal to that of products.
B. The rate of forward < rate of backward directions.
C. The rate of forward $>$ rate of backward directions.
D. The rate of forward = rate of backward.

Q 2. When an acid reacts with a base the reaction is called

 reaction.A. Neutralization.
B. Precipitation.

C. Redox.
D. Single displacement.

Q 3. Given the following equation, the equilibrium

 expression will be:$$
2 \mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

A. $[\mathrm{CO}]^{2} /\left[\mathrm{CO}_{2}\right]$.
B. $\left[\mathrm{CO}_{2}\right] /[\mathrm{CO}]^{2}$.
C. $[\mathrm{CO}]^{2} /[\mathrm{C}]\left[\mathrm{CO}_{2}\right]$.
D. $[\mathrm{C}]\left[\mathrm{CO}_{2}\right] /[\mathrm{CO}]^{2}$.

Q 4. For the equilibrium reactions, the equilibrium position favors the formation of products when:
A. $\mathrm{K}_{\mathrm{eq}}>1$.
B. $\mathrm{K}_{\text {eq. }}<1$.

Q 5. For the following reaction: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$

 Knowing that: $K=50$, thus the equilibrium constant for the following equation is: $2 \mathrm{HI}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{(\mathrm{g})}+\mathrm{I}_{\mathrm{g}(\mathrm{g})}$A. 0.2 .
B. 0.02 .
C. 0.002 .

D. 20 .

Q 6. Consider the following chemical system at equilibrium

$$
\text { Heat }+\mathrm{O}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

Which of the following effects would shift the equilibrium to the left?
A. increasing the concentration of O_{2}.
B. increasing the concentration of N_{2}.
C. decreasing the concentration of NO.
D. decreasing the reaction temperature.

Q 7. A Bronsted-Lowry acid is defined as a substance that

A. increases the $[\mathrm{H}+]$ concentration when placed in water.
B. decreases the $[\mathrm{H}+]$ concentration when placed in water.
C. acts as a proton donor.
D. acts as a proton acceptor.

Q 8. What is the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$?

A. $\mathrm{HPO}_{4}{ }^{2-}$.
B. $\mathrm{PO}_{4}{ }^{3-}$.
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$.
D. $\mathrm{H}_{3} \mathrm{O}^{+}$.

Q 9. Calculate the pH for an aqueous solution of acetic acid that contains $2.15 \times 10^{-3} \mathrm{M}$ hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$.
A. $4.65 \times 10^{-12} \mathrm{M}$.
B. $2.15 \times 10^{-3} \mathrm{M}$.
C. 2.67 M .
D. 11.33

Q $10 . \mathbf{C O}_{2}$ acts as a Lewis acid in the following reaction:

$$
\mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3(\mathrm{~s})}
$$

because it \qquad -
A. turns blue litmus to red.
B. reacts with a metal.
C. is a proton donor.
D. is an electron-pair acceptor.

Q 11. Given the following equation, the equilibrium

 expression will be:$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

A. $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$.
B. $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]$.
C. $\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]$.

D. $\left[\mathrm{CO}_{2}\right] /\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]$.

Q 12. At $700^{\circ} \mathrm{C}, \mathrm{Kc}=\mathbf{2 0 . 4}$ for the reaction shown below,

$$
\mathrm{SO}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{3(\mathrm{~g})}
$$

Thus, Kc for the following reaction is

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

A. -20.4 .
B. 20.4 .
C. 40.8 .
D. 416.2.
 Stated that "when a chemical equilibrium is disturbed, the system shifts in a direction that minimizes that disturbance so, a system tends to maintain the equilibrium state".
A. Avogadro.
B. Dalton.
C. Le Chatelier.
D. Rutherford.

Q 14. Consider the following chemical system at

 equilibrium$$
\mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{4(\mathrm{~g})}
$$

To which direction the reaction would shift if the volume is reduced?
A. left.
B. right.
C. No shift.

D. None.

Q 15. For the following equilibrium reaction:

$$
2 \mathrm{SO}_{3(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}, \mathrm{Kp}=0.338 \text { (at } 1000 \mathrm{~K} \text {) }
$$

If the partial pressure of SO_{3} is $\mathbf{0 . 1 0}$ atm and that of SO_{2} is
0.15 atm . What is the partial pressure of O_{2} ?
A. 0.10 .

$$
\begin{aligned}
\mathrm{K} p & =\frac{\mathrm{P}_{\mathrm{SO} 2}^{2} . \mathrm{P}_{\mathrm{O} 2}}{P_{\mathrm{SO} 3}^{2}} \\
0.338 & =\frac{(0.15)^{2} \cdot \mathrm{Po}_{2}}{(0.10)^{2}} \quad \Rightarrow \mathrm{P}_{\mathrm{O} 2}=0.15 \mathrm{~atm}
\end{aligned}
$$

D. 0.25 .

With my best wishes Khaled Khalil
\& khalidkhalil@chemist.com \&

