INTRODUCTION TO CHEMISTRY

Lecture Presentation Chapter 4 Stoichiometry, Solution Concentration and Chemical Reactions

CHEM 101

<u>Topic 13</u>

- Reaction Stoichiometry
- Limiting Reactant,
 Theoretical Yield &
 Percent Yield

- Stoichiometry: calculations of the <u>quantities of reactants and</u> <u>products</u> in a chemical reaction.
 - ✓ Stoichiometry allows us to predict the amounts of products that will form in a chemical reaction based on the amount of reactants.
 - ✓ Stoichiometry also allows us to determine the amount of reactants necessary to form a given amount of product.

The <u>coefficients</u> in a balanced chemical equation specify the <u>relative</u> <u>amounts in moles</u> of each of the substances involved in the reaction: Example: $2 C_8 H_{18}(I) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g)$ 2 molecules of C_8H_{18} react with 25 molecules of O_2 to form 16 molecules of CO_2 and 18 molecules of H_2O_2 . **Or:** <u>2 moles</u> of C_8H_{18} react with <u>25 moles</u> of O_2 to form <u>16 moles</u> of CO_2 and <u>18 moles</u> of H_2O . 2 mol C_8H_{18} : 25 mol O_2 : 16 mol CO_2 : 18 mol H_2O

From the balanced equation of the combustion of octane:

 $2 C_8 H_{18}(I) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2 O(g)$

we can write the following stoichiometric ratio:

2 moles C₈H₁₈(l) : **16** moles CO₂

(This ratio is called: The Conversion Factor)

Suppose that we burn 22 moles of C_8H_{18} : the amount of CO_2 produced can be calculated using the conversion factor, as follows:

 $\frac{22 \text{ moles of } C_8 H_{18} \times 16 \text{ moles of } CO_2}{2 \text{ moles of } C_8 H_{18}} = 176 \text{ moles of } CO_2$

Making Molecules: Mass-to-Mass Conversions

Conversions in Stoichiometry Calculations

Example 1: Estimate the mass of CO_2 emitted into the atmosphere in 2010 by the combustion of 3.5 x 10¹⁵ g gasoline.

$$2 \operatorname{C}_8\operatorname{H}_{18}(l) + 25 \operatorname{O}_2(g) \longrightarrow 16 \operatorname{CO}_2(g) + 18 \operatorname{H}_2\operatorname{O}(g)$$

Example 2: How many grams of glucose can be synthesized from 37.8 g of CO₂ in photosynthesis?

$$6 \operatorname{CO}_2(g) + 6 \operatorname{H}_2\operatorname{O}(l) \xrightarrow{\text{sunlight}} 6 \operatorname{O}_2(g) + \operatorname{C}_6\operatorname{H}_{12}\operatorname{O}_6(aq)$$

1. Calculate the number of NO_2 moles that will be formed when each amount of N_2O_5 completely dissociates:

 $2 \ N_2O_5(g) \rightarrow 4 \ NO_2(g) + O_2(g)$

a) 1.3 mol of N_2O_5 **b)** 1.55 kg of N_2O_5 **c)** 10.5 g of N_2O_5 **d)** 2.25 × 10²³ molecules of N_2O_5

2. How many moles of H_2O would be produced when 5 moles of C_2H_6O completely react with oxygen gas according to the equation?

 $\mathbf{C_2H_6O} + \mathbf{3}\ \mathbf{O_2} \rightarrow \mathbf{2}\ \mathbf{CO_2} + \mathbf{3}\ \mathbf{H_2O}$

3. What is the mass (in g) of AICl₃ that will be produced when 95 grams of Al completely react with excess Cl_2 according to this equation?

 $2\operatorname{Al} + 3\operatorname{Cl}_2 \to 2\operatorname{AICl}_3$

4. How many moles of CO₂ would be produced when 4.5×10^{23} molecules of C₃H₇COOH completely react with oxygen gas according to the following equation?

$C_3H_7COOH + 5 O_2 \rightarrow 4 CO_2 + 4 H_2O$

5. Lithium and nitrogen react to produce lithium nitride as follows: $6 \operatorname{Li}(s) + \operatorname{N}_2(g) \rightarrow 2 \operatorname{Li}_3 \operatorname{N}(s)$

How many grams of N_2 are needed to fully react with 15 g of lithium?

6. Given the following reaction: $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

a) How many grams of N_2 are required by 35 g of H_2 to make a complete reaction?

b) What is the mass (in g) of NH_3 that will be produced from 35 g of H_2 ?

4.2 Limiting Reactant and Theoretical Yield

Limiting Reactant: Consider this food analogy, making cheese sandwiches: 2 slices of bread + 1 slice of cheese = 1 sandwich (the equation) Starting with <u>28 slices of bread</u> and <u>11 slices of cheese</u>, one may prepare <u>11 sandwiches</u>.

In this scenario, the number of sandwiches prepared has been <u>limited</u> by the number of cheese slices, and the bread slices have been provided in <u>excess</u>.

4.2 Limiting Reactant and Theoretical Yield

Now, consider the same concept with regard to a chemical reaction:

For the following reaction, if we started with **6H**₂, and **4Cl**₂, find: Limiting Reactant, Excess Reactant, and Theoretical Yield?

Limiting Reactant and Theoretical Yield: Summary

- Limiting Reactant: is the reactant that is completely consumed in a chemical reaction and limits the amount of product.
 - ✓ Reactant that is in short supply
- Excess Reactant: is any reactant that occurs in a quantity greater than is required to completely react with the limiting reactant.
 - \checkmark Present in excess, will be left over after the reaction
- Theoretical Yield: is the calculated amount of product that can be made in a chemical reaction based on the amount of the <u>limiting reactant</u>.
- Actual Yield: is the amount of product <u>actually produced</u> in a chemical reaction.
 - \checkmark Less than theoretical yield
- > Percent Yield:

Limiting Reactant and Theoretical Yield: Exercise

 If we have five molecules of CH₄ and eight molecules of O₂, which is the limiting reactant?

$$CH_4(g) + 2 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(l)$$

 ✓ First, we calculate the number of CO₂ molecules that can be made from 5 CH₄ molecules.

Limiting Reactant and Theoretical Yield: Exercise

© 2014 Pearson Education. In

- Then, we calculate the number of CO_2 molecules that can be made from 8 O_2 molecules: $8 O_2 \times \frac{1 CO_2}{2 O_2} = 4 CO_2$
 - We have enough CH_4 to make 5 CO_2 molecules and enough O_2 to make $4 CO_2$ molecules.
 - Therefore, O_2 is the limiting reactant, and
 - 4 CO₂ molecules is the theoretical yield (based on limiting reactant).
 - CH₄ is the reactant in excess (or, the excess reactant).

Limiting Reactant and Theoretical Yield: Exercise

In the following reaction, determine the limiting reactant, the excess reactant, and the theoretical yield if 1 mole N₂ reacted with 6 moles H₂, according to the following balanced equation:

 $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

- What is the percent yield if 225.10 g of HI were isolated out of a possible yield of 255.824 g HI?
- Given: actual yield = 225.10 g, and

theoretical yield = 255.824 g

The percent yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$

% yield =
$$\frac{225.10 \text{ g HI}}{255.826 \text{ g HI}} \times 100 = 87.989\%$$

Hint: if both Actual and theoretical yields are given in the same unit (grams or moles), then no need to convert any of them. **But**, if one of them is in <u>grams</u> and the other is in <u>moles</u>, then you must <u>convert one of them first</u>!

Limiting Reactant and Percent Yield: Gram-to-Gram

Example: $2 \operatorname{Na}(s) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{Na}\operatorname{Cl}(s)$

If we have: 53.2 g of Na, and 65.8 g of Cl_2

Find: a) The limiting reactant and theoretical yield (in g)

b) If the actual yield = 86.4 g NaCl, calculate % yield.

Solution:

Limiting Reactant and Percent Yield: Gram-to-Gram

EXAMPLE 4.2 Limiting Reactant and Theoretical Yield

Ammonia, NH₃, can be synthesized by the reaction:

 $2 \operatorname{NO}(g) + 5 \operatorname{H}_2(g) \longrightarrow 2 \operatorname{NH}_3(g) + 2 \operatorname{H}_2\operatorname{O}(g)$

Starting with 86.3 g NO and 25.6 g H₂, find the theoretical yield of ammonia in grams.

between moles of reactant and moles of product. The reactant that makes *the least amount of product* is the limiting reactant. Convert the number of moles of product obtained using the limiting reactant to grams of product.

SOLVE Beginning with the given mass of each reactant, calculate the amount of product that can be made in moles. Convert the amount of product made by the limiting reactant to grams—this is the theoretical yield.

RELATIONSHIPS USED

molar mass NO = 30.01 g/molmolar mass H₂ = 2.02 g/mol2 mol NO : 2 mol NH₃ (from chemical equation) 5 mol H₂ : 2 mol NH₃ (from chemical equation) molar mass NH₃ = 17.03 g/mol

Since NO makes the least amount of product, it is the limiting reactant, and the theoretical yield of ammonia is 49.0 g.

Keep in mind: before working on stoichiometric calculations, make sure that:

1- The chemical equation is **balanced**.

2- The amounts of substances are in "moles". If they are given in "grams" or Kg, convert them first to "moles".

1- For the following reaction, find the limiting reactant, excess reactant, and theoretical yield (in moles) if we started the reaction with 12.6 mol
 Na and 6.9 mol Br₂

$$2 \operatorname{Na}(s) + \operatorname{Br}_2(g) \rightarrow 2 \operatorname{NaBr}(s)$$

2- For the following reaction, calculate the theoretical yield of product (in g) if we started the reaction with 7.5 g Al and 24.8 g Cl₂

$$2 \operatorname{Al}(s) + 3 \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{AlCl}_3(s)$$

3- What is the **percent yield** for a reaction if its theoretical yield is 83 **g** and its actual yield is 75 **g**?

INTRODUCTION TO CHEMISTRY

Lecture Presentation Chapter 4 Stoichiometry, Solution Concentration and Chemical Reactions

CHEM 101

<u>Topic 14</u>

- Solution Concentration
- Types of Aqueous

Solutions

What Is a "Solution"?

Solution: A homogenous mixture of two or more substances:

- **Solvent**: material present in largest amount.
- **Solute**: all other materials present.

- Example:

Consider sugar dissolved in water:

- Water is the solvent.
- Sugar is the solute.

Concentration: is the <u>amount of solute</u> present in the solution.

Molarity: is a method to express the concentration. It shows the relationship between the moles of solute and liters of solution.

✓ Unit of molarity (M) = moles of solute / liter of solution

 $M = mol/L = mol.L^{-1} = molar$

Example: Find the molarity of a solution that has 25.5 g KBr dissolved in 1.75 L of solution

Given: Find:	25.5 g KBr, 1.75 L solution molarity, M								
Plan:	$\begin{array}{c c} g \ KBr \\ \hline 1 mol \\ 119.00 \ g \end{array} \begin{array}{c} mol \ KBr \\ \hline L \ sol'n \end{array} \begin{array}{c} mol \\ M = \frac{mol}{L} \end{array}$								
Relationships:	1 mol KBr = 119.00 g, M = moles/L								
Solution: $25.5 \text{ gKBr} \times \frac{1 \text{ mol KBr}}{119.00 \text{ gKBr}} = 0.21429 \text{ mol KBr}$									
molarity, M = $\frac{\text{moles KBr}}{\text{L solution}} = \frac{0.21429 \text{ mol KBr}}{1.75 \text{ L}} = 0.122 \text{ M}$									
Check:	because most solutions are between 0 and 18 M, the answer makes sense								

Example: Preparing 1 L of a 1 M NaCl Solution

Preparing a Solution of Specified Concentration

© 2014 Pearson Education, Inc.

Solution Dilution

- Often, solutions are stored as concentrated stock solutions.
- To make solutions of lower concentrations from these stock solutions, more solvent is added.
 - The amount of solute doesn't change, just the volume of solution:

solute moles in solution 1 = solute moles in solution 2

 The concentrations and volumes of the stock and new solutions are inversely proportional:

$$M_1V_1 = M_2V_2$$

Suppose a laboratory procedure requires **3.00 L** of a **0.500 M** CaCl2 solution. How should we prepare this solution from a **10.0 M** stock solution?

Answer:
$$V_1 = \frac{M_2 V_2}{M_1}$$

= $\frac{0.500 \text{ mol/L} \times 3.00 \text{ L}}{10.0 \text{ mol/L}}$
= 0.150 L

Example: How to Prepare 3.00 L of 0.500 M CaCl₂ from a 10.0 M Stock Solution?

Diluting a Solution

Practice: How would you prepare 200.0 mL of 0.25 M NaCI solution from a 2.0 M solution?

Given: Find:	$M_1 = 2.0 \text{ M}, M_2 = 0.25 \text{ M}, V_2 = 200.0 \text{ mL}$ $V_1 \text{ (in mL)}$
Plan:	$ \begin{array}{c} M_1, M_2, V_2 \\ V_1 = \frac{M_2 \bullet V_2}{M_1} \end{array} $
Relationships:	$M_1V_1 = M_2V_2$
Solution:	$\frac{\left(0.25 \frac{\text{prol}}{\text{L}}\right) \bullet \left(200.0 \text{ mL}\right)}{\left(2.0 \frac{\text{rpol}}{\text{L}}\right)} = 25 \text{ mL}$
Dilute	25 mL of 2.0 M solution up to 200.0 mL
Check:	because the solution is diluted by a factor of 8, the volume should increase by a factor of 8, and it does

Assessment

- **1-** Calculate the molarity of each solution:
 - a) 4.3 mol of LiCl in 2.75 L solution.
 - b) 21.5 g $C_6H_{12}O_6$ in 1.85 L of solution.
- **2-** How many moles of KCl are there in each solution?
 - a) 0.55 L of a 2.3 M KCl solution.
 - b) 114 mL of a 1.85 M KCl solution.
- **3-** A saline solution contains 1.5 g of sodium chloride, NaCl, dissolved in 100 mL of solution. What is the molar concentration of the solution?
- 4- A laboratory procedure calls for making 400 mL of a 1.3 M NaNO₃ solution. What mass of NaNO₃ (in g) is needed?
- 5- If 123 mL of a 1.1 M glucose solution is diluted to 500 mL, what is the molarity of the diluted solution?
- 6- To what volume should you dilute 50 mL of a 12 M stock HNO₃ solution to obtain a 0.1 M HNO₃ solution?

4.4 Types of Aqueous Solutions and Solubility

- Consider two familiar aqueous solutions: salt water and sugar water:
 - Salt water is a homogeneous mixture of NaCl and H_2O .
 - Sugar water is a homogeneous mixture of $C_{12}H_{22}O_{11}$ and H_2O .
- As you stir either of these two substances into the water, it seems to disappear.
 - How do solids such as salt and sugar dissolve in water?

What Happens When a Solute Dissolves?

- There are attractive forces between the solute particles holding them together.
- There are also attractive forces between the solvent molecules.
- When we mix the solute with the solvent, there are attractive forces between the solute particles and the solvent molecules.
- If the attractions between solute and solvent are <u>strong enough</u>, the solute will <u>dissolve</u>.

Charge Distribution in a Water Molecule

- There is an uneven distribution of electrons within the water molecule.
 - This causes the oxygen side of the molecule to have a partial negative charge (δ⁻) and the hydrogen side to have a partial positive charge (δ⁺).

Solute and Solvent Interactions in a Sodium Chloride Solution (or Other lonic Compounds)

 When sodium chloride is put into water, the attraction of Na⁺ and Cl⁻ ions to water molecules competes with the attraction among the oppositely charged ions themselves.

Dissolving Sodium Chloride in Water

- Each ion is attracted to the surrounding water molecules and pulled off and away from the crystal.
- Compounds such as salt that dissociate into ions when dissolved in water are called electrolytes, and the resulting solutions is able to conduct electricity.

Dissolution of an Ionic Compound

Dissolving Sugar in Water

✓ Sucrose (C₁₂H₂₂O₁₁)

molecules homogeneously mixed with the water molecules.

 Compounds such as sugar that <u>do not dissociate into</u> <u>ions</u> when dissolved in water are called <u>nonelectrolytes</u>, and the resulting solutions <u>do</u>

not conduct electricity.

sugar molecule (sucrose)

Interactions between Sugar and Water Molecules

Substances that dissolve in water to form solutions that conduct electricity are called <u>Electrolytes</u>.

Electrolyte and Nonelectrolyte Solutions

Solution of salt (an electrolyte)

Solution of sugar (a nonelectrolyte)

Electrolyte and Nonelectrolyte Solutions

Strong Electrolytes:

- Include substances that <u>completely ionize</u> when dissolve in water.
- ✓ They can conduct electrical current strongly.
- ✓ Examples: Soluble <u>ionic salts</u> (NaCl, MgBr₂...), <u>strong acids</u> (HCl or HNO₃) or <u>strong bases</u> (NaOH or Mg(OH)₂).

Weak Electrolytes:

- Include substances that partially ionize when dissolve in water.
- ✓ They can conduct electrical current weakly.
- ✓ Examples: weak acids (HF or CH_3COOH) or weak bases (NH₄OH).

Nonelectrolytes:

- Include substances that <u>do not ionize</u> when dissolve in water.
 - ✓ They don't conduct electrical current.
 - ✓ Example: polar molecular substances (such as sugar or alcohol).

Electrolytes and Nonelectrolytes: A Summary

Strong Electrolyte

Weak Electrolyte HC₂H₃O₂ C₂H₃O₂⁻

Nonelectrolyte

 $C_{12}H_{22}O_{11}(aq)$

Complete Ionizing in water (full dissociation) **Examples**: ionic salts, strong acids & strong bases

Partial Ionizing in water (partial dissociation) **Examples**: weak acids & weak bases No lonizing in water (no dissociation) **Examples**: many molecular (covalent) compounds as sugar All of the following compounds are soluble in water, indicate which of them is expected to produce strong, weak or non-electrolyte solution?

- a. CsCl
- b. CH₃OH
- c. $Ca(NO_2)_2$
- d. $C_6 H_{12} O_6$
- e. Acetic acid, vinegar (CH₃COOH) (weak acid)
- f. HCl (strong acid)
- g. NaOH (strong base)
- h. HF (weak acid)
- i. NH₄OH (weak base)

INTRODUCTION TO CHEMISTRY

Lecture Presentation Chapter 4 Stoichiometry, Solution Concentration and Chemical Reactions

CHEM 101

<u>Topic 15</u>

- Acid Base Reactions
- Oxidation Reduction

Reactions

Acid: a substance that produces H⁺ ions (*also known as H-protons*) in aqueous solutions:

$$\operatorname{HCl}(aq) \longrightarrow \operatorname{H}^+(aq) + \operatorname{Cl}^-(aq)$$

Examples (Important):

- <u>Strong Acids</u>: HCI, HBr, HI, H₂SO₄, HNO₃
- Weak Acids: acetic acid (vinegar, CH₃COOH), HF

Note: H^+ ion is a bare proton. Protons associate with water molecules in solution to form <u>hydronium ions</u> (H_3O^+):

 $\mathbf{H}^{+}(aq) + \mathbf{H}_{2}\mathbf{O}(h) \rightarrow \mathbf{H}_{3}\mathbf{O}^{+}(aq)$

HCl is an acid because it dissociates in water to produce $H^+(aq)$ ions.

Base (Also known as Alkali): a substance that produces OH⁻ ions (*hydroxide ions*) in aqueous solutions:

 $NaOH(aq) \longrightarrow Na^+(aq) + OH^-(aq)$

Examples (Important):

- <u>Strong Bases</u>: NaOH, KOH, LiOH, Ba(OH)₂ and Ca(OH)₂
- Weak Base: NH₄OH

NaOH is a base because it produces $OH^{-}(aq)$ ions when added to water.

4.7 Acid – Base Reactions (Neutralization Reactions)

Acid–Base Neutralization Reactions:

Acid + Base → Water + Salt (acid-base reactions)

• Example:

$$\mathrm{H}^+(aq) + \mathrm{OH}^-(aq) \longrightarrow \mathrm{H}_2\mathrm{O}(l)$$

• Another Example:

H₂O Cl-Na⁺

Na⁺ Na⁺ H₂O

Salty water

CI

H₂O

Oxidation-reduction reactions or redox reactions are reactions in which electrons are transferred from one reactant to the other.

- **Oxidation:** is the **loss** of electrons.
- **Reduction:** is the **gain** of electrons.
 - ✓ Based on these definitions, redox reactions do not need to involve oxygen.
 - ✓ One cannot occur without the other.
- Example on Redox Reactions:

$$2 \operatorname{Na}(s) + \operatorname{Cl}_2(g) \longrightarrow 2 \operatorname{NaCl}(s)$$

✓ In this reaction, a metal (which has a tendency to lose electrons) reacts with a nonmetal (which has a tendency to gain electrons). In other words, metal atoms lose electrons to nonmetal atoms.

Oxidation – Reduction Reactions (Redox): Examples

Oxidation-Reduction Reaction

• Other common redox reactions:

 $\begin{array}{ll} 4 \ \mathrm{Fe}(s) + 3 \ \mathrm{O}_2(g) \longrightarrow 2 \ \mathrm{Fe}_2 \mathrm{O}_3(s) & (\mathrm{rusting of iron}) \\ 2 \ \mathrm{C}_8 \mathrm{H}_{18}(l) + 25 \ \mathrm{O}_2(g) \longrightarrow 16 \ \mathrm{CO}_2(g) + 18 \ \mathrm{H}_2 \mathrm{O}(g) & (\mathrm{combustion of octane}) \\ 2 \ \mathrm{H}_2(g) + \mathrm{O}_2(g) \longrightarrow 2 \ \mathrm{H}_2 \mathrm{O}(g) & (\mathrm{combustion of hydrogen}) \end{array}$

Oxidation Numbers (Oxidation States)

- Before we can identify an oxidation-reduction reaction, we must keep track of <u>lost</u> and <u>gained</u> electrons
- ✓ To do this, the concept of oxidation numbers (also called oxidation states) is used.
- ✓ Each atom in a neutral substance or ion is assigned an <u>oxidation</u> <u>number.</u>
- ✓ See the "Rules for Assigning Oxidation States" in the next section.

Rules for Assigning Oxidation States

Do not confuse oxidation state with ionic charge. Unlike ionic charge which is a real property of an ion—the oxidation state of an atom is merely a theoretical (but useful) construct.

Oxidation S	tates of Nor	metals				
Nonmetal	Oxidation State	Example				
Fluorine	-1	MgF ₂ -1 ox state				
Hydrogen	+1	H ₂ O +1 ox state				
Oxygen	-2	CO ₂ -2 ox state				
Group 7A	-1	CCl ₄ –1 ox state				
Group 6A	-2	H ₂ S -2 ox state				
Group 5A	-3	NH ₃ -3 ox state				

charge-	Rules for Assigning Oxidation States		Examples
n is merely a	(These rules are hierarchical. If any two rules conflict, follow	the rule that is higher on	the list.)
onstruct.	1. The oxidation state of an atom in a free element is 0.	Cl_2 0 ox state	
	2. The oxidation state of a monoatomic ion is equal to its charge.	Ca ²⁺ +2 ox state	Cl^{-} -1 ox state
nmetals Example	3. The sum of the oxidation states of all atoms in:A neutral molecule or formula unit is 0.	H_2O 2(H ox state) + 1(O	ox state) = 0
MgF_2 -1 ox state	• An ion is equal to the charge of the ion.	NO_3^- 1(N ox state) + 3(O o	ox state) = -1
+1 ox state CO_2 -2 ox state CCl_4 -1 ox state	 4. In their compounds, metals have positive oxidation states. Group 1A metals <i>always</i> have an oxidation state of +1. 	NaCl +1 ox sta	ite
H ₂ S -2 ox state	• Group 2A metals <i>always</i> have an oxidation state of +2.	CaF_2 +2 ox sta	ite
NH ₃ -3 ox state	5. In their compounds, nonmetals are assigned oxidation left. Entries at the top of the table take precedence ov the table.	n states according to the er entries at the bottom	table, of

Identifying Redox Reactions

Oxidation states can be used to identify redox reactions, even between nonmetals. For example, is the following reaction between carbon and sulfur a redox reaction?

 $C + 2 S \longrightarrow CS_2$

If so, what element is oxidized? What element is reduced? We can use the oxidation state rules to assign oxidation states to all elements on both sides of the equation.

Oxidation states:
$$C + 2S \longrightarrow CS_2$$

Reduction CS_2

Carbon changed from an oxidation state of 0 to an oxidation state of +4. In terms of our electron bookkeeping scheme (the assigned oxidation state), carbon *lost electrons* and was *oxidized*. Sulfur changed from an oxidation state of 0 to an oxidation state of -2.

In terms of our electron bookkeeping scheme, sulfur *gained electrons* and was *reduced*. In terms of oxidation states, oxidation and reduction are defined as follows.

- Oxidation An increase in oxidation state
- Reduction A decrease in oxidation state

Identifying Redox Reactions

Reduction:

- The gaining of electrons, or:
- Decrease in the oxidation state

Oxidation:

- ✓ The loss of electrons, or:
- ✓ Increase in the oxidation state

EXAMPLE 4.9 Using Oxidation States to Identify Oxidation and Reduction

Use oxidation states to identify the element that is being oxidized and the element that is being reduced in the following redox reaction.

$$Mg(s) + 2 H_2O(l) \longrightarrow Mg(OH)_2(aq) + H_2(g)$$

Solution

Begin by assigning oxidation states to each atom in the reaction.

✓ Since Mg increased in oxidation state, it was oxidized.

✓ Since H decreased in oxidation state, it was reduced.

Oxidizing Agent:

✓ A Substance that <u>oxidizes</u> something else. The oxidizing agent itself is <u>reduced</u> in the same reaction:

In the following reaction, identify the <u>oxidizing agent</u> and the <u>reducing agent</u>?

$$P_4(s) + 6 \operatorname{Br}_2(I) \rightarrow 4 \operatorname{PBr}_3(g)$$

Oxidizing Agent & Reducing Agent: Practice

Identifying Redox Reactions, Oxidizing Agents, and Reducing Agents

Determine whether each reaction is an oxidation-reduction reaction. If the reaction is an oxidation-reduction, identify the oxidizing agent and the reducing agent.

(a) $2 \operatorname{Mg}(s) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{MgO}(s)$

(b)
$$2 \operatorname{HBr}(aq) + \operatorname{Ca}(\operatorname{OH})_2(aq) \longrightarrow 2 \operatorname{H}_2\operatorname{O}(l) + \operatorname{CaBr}_2(aq)$$

(c)
$$\operatorname{Zn}(s) + \operatorname{Fe}^{2+}(aq) \longrightarrow \operatorname{Zn}^{2+}(aq) + \operatorname{Fe}(s)$$

SOLUTION

This is a redox reaction because magnesium increases in oxidation number (oxidation) and oxygen decreases in oxidation number (reduction).

This is not a redox reaction because none of the atoms undergoes a change in oxidation number.

This is a redox reaction because zinc increases in oxidation number (oxidation) and iron decreases in oxidation number (reduction).

(**b**)
$$2 \operatorname{HBr}(aq) + \operatorname{Ca}(OH)_2(aq) \rightarrow 2H_2O(l) + \operatorname{CaBr}_2(aq) + \frac{1-2}{2} + \frac{1-2}{2}$$

(c)
$$Zn(s) + Fe^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Fe(s)$$

 $0 +2 +2 +2 = 0$
Oxidation
Oxidizing agent: Fe^{2+}
Reducing agent: Zn

Assessment

1-Assign oxidation states to each atom in each ion or compound.

a.	Ag	b.	Ag^+
c.	CaF ₂	d.	H_2S
e.	CO_{3}^{2-}	f.	CrO ₄ ²⁻

- 2- What is the oxidation state of Cr in each compound?
 - a. CrO
 - **b.** CrO_3
 - c. Cr_2O_3
- 3-Which reactions are redox reactions? For each redox reaction, identify the oxidizing agent and the reducing agent.

a.
$$4 \operatorname{Li}(s) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{Li}_2\operatorname{O}(s)$$

- **b.** $Mg(s) + Fe^{2+}(aq) \rightarrow Mg^{2+}(aq) + Fe(s)$
- c. $Pb(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow PbSO_4(s) + 2 NaNO_3(aq)$
- **d.** $HBr(aq) + KOH(aq) \rightarrow H_2O(l) + KBr(aq)$

		Main	group	55		Perio	dic Ta	able o	of the	Elem	ents			Main group						
Perio	od ber	1A 1	Group number										1					8A 18		
1	Hyo 1	H drogen .008	2A 2		Key Atomic number $- \overset{6}{\overset{6}{\overset{-}}}$ Symbol									3A 13	4A 14	5A 15	6A 16	7 <mark>A</mark> 17	Helium 4.003	
2] Li	3 Li ithium 5.941	Beryllium 9.012		Name Carbon 12.01 atomic mass An element										6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18	
-	s I So	11 Na odium	Magnesium	3B	Transition metals 3B 4B 5B 6B 7B 8B 1B 2B									Aluminum	14 Si Silicon	Phosphorus	16 S Sulfur	Cl Chlorine	Argon	
4	4	19 K	^{24.31} ²⁰ Ca	Sc Sc	²² Ti	23 V	²⁴ Cr	Mn ²⁵	Fe	27 Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	Ge	^{30.97} ³³ As	^{32.07} ³⁴ Se	^{35,45} ³⁵ Br	^{39,95} ³⁶ Kr	
	Pot 3	9.10	40.08	44.96	47.87	Vanadium 50.94	52.00	Manganese 54.94	55.85	58.93	58.69	63.55	65.41	69.72	Germanium 72.64	Arsenic 74.92	78.96	8romine 79.90	83.80	
5	Rul	37 Rb bidium	38 Sr Strontium	39 Y Yttrium	⁴⁰ Zr Zirconium	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn Tin	Sb Antimony	52 Te Tellurium	53 I Iodine	Xenon	
e		55 CS esium 32.9	56 Ba Barium 137,3	57 La Lanthanum 138.9	72 Hf Hafnium 178.5	73 Ta Tantalum 180.9	74 W Tungsten 183.8	75 Re Rhenium 186.2	76 OS Osmium 190,2	77 Ir Iridium 192.2	78 Pt Platinum 195.1	79 Au Gold 197.0	80 Hg Mercury 200,6	81 Tl Thallium 204,4	82 Pb Lead 207,2	83 Bi Bismuth 209.0	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)	
7	Fra	87 Fr ancium 223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (267)	105 Db Dubnium (268)	106 Sg Seaborgium (271)	107 Bh Bohrium (272)	108 HS Hassium (270)	109 Mt Meitnerium (276)	110 DS Darmstadtium (281)	111 Rg Roentgenium (280)	112 Cn Copernicium (285)	113 Nh Nihonium (284)	114 Fl Flerovium (289)	115 Mc Moscovium (288)	116 LV Livermorium (293)	117 TS Tennessine (293)	118 Og Oganesson (294)	

Lanthanides 6	Cerium 140.1	59 Pr Prase odymium 140.9	60 Nd Neodymium 144.2	Promethium (145)	62 Sm Samarium 150.4	63 Eu Europium 152.0	Gadolinium 157.3	65 Tb Terbium 158.9	66 Dy Dysprosium 162.5	67 Ho Holmium 164.9	68 Er Erbium 167.3	69 Tm Thulium 168.9	70 Yb Ytterbium 173.0	71 Lu Lutetium 175.0	6
Actinides 7	90 Th Thorium 232.0	91 Pa Protactinium 231.0	92 U Uranium 238.0	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrencium (262)	7

© 2019 Pearson Education, Inc. - This Presentation is NOT an Alternative to the Textbook!