INTRODUCTION TO CHEMISTRY CHEM 101

Lecture Presentation

Chapter 4

Stoichiometry,

 SolutionConcentration and Chemical Reactions

Topic 13

$>$ Reaction Stoichiometry
$>$ Limiting Reactant, Theoretical Yield \&

Percent Yield

What Is Meant By Stoichiometry?

$>$ Stoichiometry: calculations of the quantities of reactants and products in a chemical reaction.
\checkmark Stoichiometry allows us to predict the amounts of products that will form in a chemical reaction based on the amount of reactants.
\checkmark Stoichiometry also allows us to determine the amount of reactants necessary to form a given amount of product.

4.1 Reaction Stoichiometry: How Much CO_{2} is Produced?

> The coefficients in a balanced chemical equation specify the relative amounts in moles of each of the substances involved in the reaction:

Example: $2 \mathrm{C}_{8} \mathrm{H}_{18}(I)+25 \mathrm{O}_{2}(g) \rightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)$
2 molecules of $\mathrm{C}_{8} \mathrm{H}_{18}$ react with 25 molecules of O_{2} to form 16 molecules of CO_{2} and 18 molecules of $\mathrm{H}_{2} \mathrm{O}$.

Or: 2 moles of $\mathrm{C}_{8} \mathrm{H}_{18}$ react with $\underline{25}$ moles of O_{2} to
form 16 moles of CO_{2} and 18 moles of $\mathrm{H}_{2} \mathrm{O}$.
$2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}: 25 \mathrm{~mol} \mathrm{O}_{2}: 16 \mathrm{~mol} \mathrm{CO} 2: 18 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Making Molecules: Mole-to-Mole Conversions

From the balanced equation of the combustion of octane:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(I)+25 \mathrm{O}_{2}(g) \rightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)
$$

we can write the following stoichiometric ratio:

> 2 moles $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l}): \mathbf{1 6}$ moles CO_{2}
> (This ratio is called: The Conversion Factor)

Suppose that we burn 22 moles of $\mathrm{C}_{8} \mathrm{H}_{18}$: the amount of CO_{2} produced can be calculated using the conversion factor, as follows:

$$
\frac{22 \text { moles of } \mathrm{C}_{8} \mathrm{H}_{18} \times 16 \text { moles of } \mathrm{CO}_{2}}{2 \text { moles of } \mathrm{C}_{8} \mathrm{H}_{18}}=176 \text { moles of } \mathrm{CO}_{2}
$$

Making Molecules: Mass-to-Mass Conversions

Conversions in Stoichiometry Calculations

Example 1: Estimate the mass of CO_{2} emitted into the atmosphere in 2010 by the combustion of $3.5 \times 10^{15} \mathrm{~g}$ gasoline.

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(l)+25 \mathrm{O}_{2}(g) \longrightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Given: $3.4 \times 10^{15} \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}$
Find:
g CO_{2}
Plan:
$\xrightarrow[\frac{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}{114.22 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}}]{\mathbf{g ~ C}_{\mathbf{8}} \mathbf{H}_{\mathbf{1 8}}}$

Relationships: $1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}=114.22 \mathrm{~g}, 1 \mathrm{~mol} \mathrm{CO}_{2}=44.01 \mathrm{~g}, 2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}: 16 \mathrm{~mol} \mathrm{CO}_{2}$

Solution:

$$
3.5 \times 10^{15} \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18} \times \frac{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}{114.22 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}} \times \frac{16 \mathrm{molCO}_{2}}{2 \mathrm{molC}_{8} \mathrm{H}_{18}} \times \frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{molCO}_{2}}=1.1 \times 10^{16} \mathrm{~g} \mathrm{CO}_{2}
$$

Example 2: How many grams of glucose can be synthesized from 37.8 g of CO_{2} in photosynthesis?

$$
6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \xrightarrow{\text { sunlight }} 6 \mathrm{O}_{2}(g)+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)
$$

Solution:

$$
37.8 \mathrm{gCO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{gCO}_{2}^{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{6 \mathrm{molCO}_{2}} \times \frac{180.16 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=25.8 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

Assessment

1. Calculate the number of NO_{2} moles that will be formed when each amount of $\mathrm{N}_{2} \mathrm{O}_{5}$ completely dissociates:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a) 1.3 mol of $\mathrm{N}_{2} \mathrm{O}_{5}$
b) 1.55 kg of $\mathrm{N}_{2} \mathrm{O}_{5}$
c) 10.5 g of $\mathrm{N}_{2} \mathrm{O}_{5}$
d) 2.25×10^{23} molecules of $\mathrm{N}_{2} \mathrm{O}_{5}$
2. How many moles of $\mathrm{H}_{2} \mathrm{O}$ would be produced when 5 moles of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ completely react with oxygen gas according to the equation?

$$
\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

3. What is the mass (in g) of AICl_{3} that will be produced when 95 grams of Al completely react with excess Cl_{2} according to this equation?

$$
2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AICl}_{3}
$$

4. How many moles of CO_{2} would be produced when 4.5×10^{23} molecules of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$ completely react with oxygen gas according to the following equation?

$$
\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

5. Lithium and nitrogen react to produce lithium nitride as follows:

$$
6 \mathrm{Li}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})
$$

How many grams of N_{2} are needed to fully react with 15 g of lithium?
6. Given the following reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g})
$$

a) How many grams of N_{2} are required by 35 g of H_{2} to make a complete reaction?
b) What is the mass (in g) of NH_{3} that will be produced from 35 g of H_{2} ?

4.2 Limiting Reactant and Theoretical Yield

Limiting Reactant: Consider this food analogy, making cheese sandwiches:

$$
2 \text { slices of bread }+1 \text { slice of cheese }=1 \text { sandwich (the equation) }
$$

Starting with $\underline{28}$ slices of bread and 11 slices of cheese, one may prepare 11 sandwiches.

In this scenario, the number of sandwiches prepared has been limited by the number of cheese slices, and the bread slices have been provided in excess.

Limiting Reactant
+11 slices of cheese

We can make:

+6 slices bread left over

4.2 Limiting Reactant and Theoretical Yield

Now, consider the same concept with regard to a chemical reaction:
For the following reaction, if we started with $6 \mathrm{H}_{2}$, and $4 \mathrm{Cl}_{2}$, find: Limiting Reactant, Excess Reactant, and Theoretical Yield?

Limiting Reactant and Theoretical Yield: Summary

- Limiting Reactant: is the reactant that is completely consumed in a chemical reaction and limits the amount of product.
\checkmark Reactant that is in short supply
$>$ Excess Reactant: is any reactant that occurs in a quantity greater than is required to completely react with the limiting reactant.
\checkmark Present in excess, will be left over after the reaction
> Theoretical Yield: is the calculated amount of product that can be made in a chemical reaction based on the amount of the limiting reactant.
> Actual Yield: is the amount of product actually produced in a chemical reaction.
\checkmark Less than theoretical yield
$>$ Percent Yield:

$$
\text { The percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%
$$

Limiting Reactant and Theoretical Yield: Exercise

- If we have five molecules of CH_{4} and eight molecules of O_{2}, which is the limiting reactant?

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

\checkmark First, we calculate the number of CO_{2} molecules that can be made from $5 \mathrm{CH}_{4}$ molecules.

$$
5 \mathrm{CHK}_{4} \times \frac{1 \mathrm{CO}_{2}}{1 \mathrm{CH}_{4}}=5 \mathrm{CO}_{2}
$$

Continued in next slide

Limiting Reactant and Theoretical Yield: Exercise

- Then, we calculate the number of CO_{2} molecules that can be made from $8 \mathrm{O}_{2}$ molecules:

- We have enough CH_{4} to make $5 \mathrm{CO}_{2}$ molecules and enough O_{2} to make $4 \mathrm{CO}_{2}$ molecules.
- Therefore, O_{2} is the limiting reactant, and
- $4 \mathrm{CO}_{2}$ molecules is the theoretical yield (based on limiting reactant).
- CH_{4} is the reactant in excess (or, the excess reactant).

Limiting Reactant and Theoretical Yield: Exercise

> In the following reaction, determine the limiting reactant, the excess reactant, and the theoretical yield if 1 mole \mathbf{N}_{2} reacted with 6 moles H_{2}, according to the following balanced equation:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Calculating The Percent Yield

> What is the percent yield if $\mathbf{2 2 5 . 1 0} \mathrm{g}$ of HI were isolated out of a possible yield of $\mathbf{2 5 5 . 8 2 4} \mathbf{~ g ~ H I ? ~}$

Given: actual yield $=225.10 \mathrm{~g}$, and

$$
\text { theoretical yield }=255.824 \mathrm{~g}
$$

$$
\begin{aligned}
& \text { The percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \% \\
& \% \text { yield }=\frac{225.10 \mathrm{~g} \mathrm{HI}}{255.826 \mathrm{~g} \mathrm{HI}} \times 100=87.989 \%
\end{aligned}
$$

Hint: if both Actual and theoretical yields are given in the same unit (grams or moles), then no need to convert any of them. But, if one of them is in grams and the other is in moles, then you must convert one of them first!

Limiting Reactant and Percent Yield: Gram-to-Gram

Example: $\quad 2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(s)$

If we have: 53.2 g of Na , and 65.8 g of Cl_{2}
Find: a) The limiting reactant and theoretical yield (in g)
b) If the actual yield $=86.4 \mathrm{~g} \mathrm{NaCl}$, calculate \% yield.

Solution:

$$
\begin{aligned}
& 53.2 \mathrm{~g} \mathrm{Aa} \times \frac{1 \mathrm{molNa}}{22.99 \mathrm{~g} \mathrm{Na}} \times \frac{2 \mathrm{molNaCl}}{2 \mathrm{molNa}} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}}=135 \mathrm{~g} \mathrm{NaCl} \\
& \underset{\substack{\mathrm{gCl}_{2}} \frac{1 \mathrm{molCl}_{2}}{70.90 \mathrm{gCl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NaCl}^{1 \mathrm{molCl}_{2}}}{1 \mathrm{~m}_{\text {Limiting }}} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}}=108 \mathrm{~g} \mathrm{NaCl}}{\hat{\text { Least amount }}} \\
& \text { reactant } \\
& \text { Percent yield }=\frac{\text { Actual yield }}{\text { Theoretical yield }} \times 100 \%=\frac{86.4 \mathrm{~g}}{108 \mathrm{~g}} \times 100 \%=80.0 \%
\end{aligned}
$$

Limiting Reactant and Percent Yield: Gram-to-Gram

EXAMPLE 4.2 Limiting Reactant and Theoretical Yield

Ammonia, NH_{3}, can be synthesized by the reaction:

$$
2 \mathrm{NO}(g)+5 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Starting with 86.3 g NO and $25.6 \mathrm{~g} \mathrm{H}_{2}$, find the theoretical yield of ammonia in grams.

SORT You are given the mass of each reactant in grams and asked to find the theoretical yield of a product.

STRATEGIZE Determine which reactant makes the least amount of product by converting from grams of each reactant to moles of the reactant to moles of the product. Use molar masses to convert between grams and moles and use the stoichiometric relationships (deduced from the chemical equation) to convert

GIVEN $86.3 \mathrm{~g} \mathrm{NO}, 25.6 \mathrm{~g} \mathrm{H}$
FIND theoretical yield of NH_{3}

CONCEPTUAL PLAN

Continued to next slide ...
between moles of reactant and moles of product. The reactant that makes the least amount of product is the limiting reactant. Convert the number of moles of product obtained using the limiting reactant to grams of product.

SOLVE Beginning with the given mass of each reactant, calculate the amount of product that can be made in moles. Convert the amount of product made by the limiting reactant to grams-this is the theoretical yield.

RELATIONSHIPS USED

molar mass $\mathrm{NO}=30.01 \mathrm{~g} / \mathrm{mol}$
molar mass $\mathrm{H}_{2}=2.02 \mathrm{~g} / \mathrm{mol}$
$2 \mathrm{~mol} \mathrm{NO} \mathrm{:} 2 \mathrm{~mol} \mathrm{NH}_{3}$ (from chemical equation)
$5 \mathrm{~mol} \mathrm{H}_{2}: 2 \mathrm{~mol} \mathrm{NH}_{3}$ (from chemical equation)
molar mass $\mathrm{NH}_{3}=17.03 \mathrm{~g} / \mathrm{mol}$

Since NO makes the least amount of product, it is the limiting reactant, and the theoretical yield of ammonia is 49.0 g .

Keep in mind: before working on stoichiometric calculations, make sure that:
1- The chemical equation is balanced.
2- The amounts of substances are in "moles". If they are given in "grams" or Kg , convert them first to "moles".

Assessment

1- For the following reaction, find the limiting reactant, excess reactant, and theoretical yield (in moles) if we started the reaction with 12.6 mol Na and $6.9 \mathrm{~mol} \mathrm{Br}_{2}$

$$
2 \mathrm{Na}(s)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{NaBr}(s)
$$

2- For the following reaction, calculate the theoretical yield of product (in
g) if we started the reaction with 7.5 g Al and $24.8 \mathrm{~g} \mathrm{Cl}_{2}$

$$
2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}(s)
$$

3- What is the percent yield for a reaction if its theoretical yield is 83 g and its actual yield is 75 g ?

INTRODUCTION TO CHEMISTRY CHEM 101

Lecture Presentation

Chapter 4

Stoichiometry, Solution

Concentration and Chemical Reactions

Topic 14

$>$ Solution Concentration
$>$ Types of Aqueous
Solutions

4.3 Concentration of Solutions

What Is a "Solution"?

Solution: A homogenous mixture of two or more substances:

- Solvent: material present in largest amount.
- Solute: all other materials present.
- Example:

Consider sugar dissolved in water:

- Water is the solvent.
- Sugar is the solute.

4.3 Concentration of Solutions

$>$ Concentration: is the amount of solute present in the solution.
> Molarity: is a method to express the concentration. It shows the relationship between the moles of solute and liters of solution.

$$
\begin{array}{r}
\text { Molarity }(\mathrm{M})=\frac{\text { amount of solute }(\text { in } \mathrm{mol})}{\text { volume of solution }(\text { in } \mathrm{L})} \\
\mathrm{M}=\frac{\mathrm{n}}{\mathrm{~V}}
\end{array}
$$

\checkmark Unit of molarity $(\mathbf{M})=$ moles of solute $/$ liter of solution

$$
\mathrm{M}=\mathrm{mol} / \mathrm{L}=\mathrm{mol} \cdot \mathrm{~L}^{-1}=\mathrm{molar}
$$

Example: Find the molarity of a solution that has 25.5 g KBr dissolved in 1.75 L of solution

Given: Find:	$25.5 \mathrm{~g} \mathrm{KBr}, 1.75 \mathrm{~L}$ solution molarity, M
Plan: Relationships:	
$\begin{aligned} & \text { Solution: } 25.5 \mathrm{gKBr} \times \frac{1 \mathrm{~mol} \mathrm{KBr}}{119.00 \mathrm{gKBr}}=0.21429 \mathrm{~mol} \mathrm{KBr} \\ & \quad \text { molarity, } \mathrm{M}=\frac{\text { moles } \mathrm{KBr}}{\mathrm{~L} \text { solution }}=\frac{0.21429 \mathrm{~mol} \mathrm{KBr}}{1.75 \mathrm{~L}}=0.122 \mathrm{M} \end{aligned}$	
Check:	because most solutions are between 0 and 18 M , the answer makes sense

Check:
because each L has only 0.125 mol NaOH , it makes sense that 0.255 mol should require a little more than 2 L

Example: Preparing 1 L of a 1 M NaCI Solution

Preparing a Solution of Specified Concentration

© 2014 Pearson Education, Inc.

Solution Dilution

- Often, solutions are stored as concentrated stock solutions.
- To make solutions of lower concentrations from these stock solutions, more solvent is added.
- The amount of solute doesn't change, just the volume of solution:
solute moles in solution 1 = solute moles in solution 2
- The concentrations and volumes of the stock and new solutions are inversely proportional:

$$
M_{1} V_{1}=M_{2} V_{2}
$$

Solution Dilution: Example

Suppose a laboratory procedure requires 3.00 L of a 0.500 M CaCl 2 solution. How should we prepare this solution from a 10.0 M stock solution?

Answer: $\quad V_{1}=\frac{M_{2} V_{2}}{M_{1}}$

$$
\begin{aligned}
& =\frac{0.500 \mathrm{~mol} / \mathrm{L} \times 3.00 \mathrm{~L}}{10.0 \mathrm{~mol} / \mathrm{L}} \\
& =0.150 \mathrm{~L}
\end{aligned}
$$

Example: How to Prepare 3.00 L of $0.500 \mathrm{M} \mathrm{CaCl}_{2}$ from a 10.0 M Stock Solution?

Diluting a Solution

Practice: How would you prepare 200.0 mL of 0.25 M NaCl solution from a 2.0 M solution?

Given: Find:	$\begin{aligned} & \mathrm{M}_{1}=2.0 \mathrm{M}, \mathrm{M}_{2}=0.25 \mathrm{M}, \mathrm{~V}_{2}=200.0 \mathrm{~mL} \\ & \mathrm{~V}_{1}(\text { in } \mathrm{mL}) \end{aligned}$
Plan: Relationships:	M_{1}, M_{2}, V_{2} V_{1} $V_{1}=\frac{M_{2} \cdot V_{2}}{M_{1}}$ $M_{1} V_{1}=M_{2} V_{2}$
Solution: Dilute	$\frac{\left(0.25 \frac{\mathrm{mal}}{\mathrm{~L}}\right) \cdot(200.0 \mathrm{~mL})}{\left(2.0 \frac{\mathrm{~m} .61}{\mathrm{~L}}\right)}=25 \mathrm{~mL}$ mL of 2.0 M solution up to 200.0 mL
Check:	cause the solution is diluted by a factor of 8 , the volume ould increase by a factor of 8 , and it does

Assessment

1- Calculate the molarity of each solution:
a) 4.3 mol of LiCl in 2.75 L solution.
b) $21.5 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in 1.85 L of solution.

2- How many moles of KCl are there in each solution?
a) 0.55 L of a 2.3 M KCl solution.
b) 114 mL of a 1.85 M KCl solution.

3- A saline solution contains 1.5 g of sodium chloride, NaCl , dissolved in 100 mL of solution. What is the molar concentration of the solution?

4- A laboratory procedure calls for making 400 mL of a $1.3 \mathrm{M} \mathrm{NaNO}_{3}$ solution. What mass of $\mathrm{NaNO}_{3}(\mathrm{in} \mathrm{g})$ is needed?

5- If 123 mL of a 1.1 M glucose solution is diluted to 500 mL , what is the molarity of the diluted solution?

6- To what volume should you dilute 50 mL of a 12 M stock HNO_{3} solution to obtain a 0.1 M HNO 3 solution?

4.4 Types of Aqueous Solutions and Solubility

- Consider two familiar aqueous solutions: salt water and sugar water:
- Salt water is a homogeneous mixture of NaCl and $\mathrm{H}_{2} \mathrm{O}$.
- Sugar water is a homogeneous mixture of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ and $\mathrm{H}_{2} \mathrm{O}$.
- As you stir either of these two substances into the water, it seems to disappear.
- How do solids such as salt and sugar dissolve in water?

What Happens When a Solute Dissolves?

- There are attractive forces between the solute particles holding them together.
- There are also attractive forces between the solvent molecules.
- When we mix the solute with the solvent, there are attractive forces between the solute particles and the solvent molecules.
- If the attractions between solute and solvent are strong enough, the solute will dissolve.

Charge Distribution in a Water Molecule

- There is an uneven distribution of electrons within the water molecule.
- This causes the oxygen side of the molecule to have a partial negative charge (δ^{-}) and the hydrogen side to have a partial positive charge (δ^{+}).

Solute and Solvent Interactions in a Sodium Chloride Solution (or Other Ionic Compounds)

- When sodium chloride is put into water, the attraction of Na^{+}and Cl^{-}ions to water molecules competes with the attraction among the oppositely charged ions themselves.

Dissolving Sodium Chloride in Water

\checkmark Each ion is attracted to the surrounding water molecules

Dissolution of an Ionic Compound
 electricity.

Dissolving Sugar in Water

\checkmark Sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
molecules homogeneously
mixed with the water molecules.
\checkmark Compounds such as sugar that do not dissociate into ions when dissolved in water are called nonelectrolytes,

Interactions between Sugar and Water Molecules
 and the resulting solutions do not conduct electricity.

Electrolytes and Nonelectrolytes

Substances that dissolve in water to form solutions that conduct electricity are called Electrolytes.

-2003Pesmentacaten le
$>$ Solution of salt (an electrolyte)
> Solution of sugar (a nonelectrolyte)

Electrolyte and Nonelectrolyte Solutions

> Strong Electrolytes:

- Include substances that completely ionize when dissolve in water.
\checkmark They can conduct electrical current strongly.
\checkmark Examples: Soluble ionic salts ($\mathrm{NaCl}, \mathrm{MgBr}_{2} \ldots$), strong acids (HCl or HNO_{3}) or strong bases $\left(\mathrm{NaOH}\right.$ or $\left.\mathrm{Mg}(\mathrm{OH})_{2}\right)$.
> Weak Electrolytes:
- Include substances that partially ionize when dissolve in water.
\checkmark They can conduct electrical current weakly.
\checkmark Examples: weak acids (HF or $\mathrm{CH}_{3} \mathrm{COOH}$) or weak bases $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$.
> Nonelectrolytes:
- Include substances that do not ionize when dissolve in water.
\checkmark They don't conduct electrical current.
\checkmark Example: polar molecular substances (such as sugar or alcohol).

Electrolytes and Nonelectrolytes: A Summary

Strong Electrolyte

$\mathrm{NaCl}(a q)$
Complete lonizing in water (full dissociation) Examples: ionic salts, strong acids \& strong bases

Weak Electrolyte

Partial lonizing in water (partial dissociation)
Examples: weak acids \& weak bases

Nonelectrolyte

No lonizing in water (no dissociation) Examples: many molecular (covalent) compounds as sugar

Assessment

All of the following compounds are soluble in water, indicate which of them is expected to produce strong, weak or non-electrolyte solution?
a. CsCl
b. $\mathrm{CH}_{3} \mathrm{OH}$
c. $\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}$
d. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
e. Acetic acid, vinegar $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ (weak acid)
f. HCl (strong acid)
g. NaOH (strong base)
h. HF (weak acid)
i. $\mathrm{NH}_{4} \mathrm{OH}$ (weak base)

INTRODUCTION TO CHEMISTRY CHEM 101

Lecture Presentation

Chapter 4

Stoichiometry, Solution

Concentration and Chemical Reactions

Topic 15

> Acid - Base Reactions

- Oxidation - Reduction

Reactions

Acids

> Acid: a substance that produces H^{+}ions (also known as H-protons) in aqueous solutions:

$$
\mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Examples (Important):

- Strong Acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}$
- Weak Acids: acetic acid (vinegar, $\mathrm{CH}_{3} \mathrm{COOH}$), HF

Note: H^{+}ion is a bare proton. Protons associate with water molecules in solution to form hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$:

$$
\mathbf{H}^{+}(a q)+\mathbf{H}_{\mathbf{2}} \mathbf{O}(I) \rightarrow \mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}(a q)
$$

HCl is an acid because it dissociates in water to produce $\mathrm{H}^{+}(a q)$ ions.

Bases (Alkalis)

> Base (Also known as Alkali): a substance that produces OH^{-}ions (hydroxide ions) in aqueous solutions:

$$
\mathrm{NaOH}(a q) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Examples (Important):

- Strong Bases: $\mathrm{NaOH}, \mathrm{KOH}, \mathrm{LiOH}, \mathrm{Ba}(\mathrm{OH})_{2}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$
- Weak Base: $\mathrm{NH}_{4} \mathrm{OH}$

NaOH is a base because it produces $\mathrm{OH}^{-}(a q)$ ions when added to water.

4.7 Acid - Base Reactions (Neutralization Reactions)

- Acid-Base Neutralization Reactions:

Acid + Base \longrightarrow Water + Salt (acid-base reactions)

- Example:

Oxidation - Reduction Reactions (Redox)

Oxidation-reduction reactions or redox reactions are reactions in which electrons are transferred from one reactant to the other.

- Oxidation: is the loss of electrons.
- Reduction: is the gain of electrons.
\checkmark Based on these definitions, redox reactions do not need to involve oxygen.
\checkmark One cannot occur without the other.
> Example on Redox Reactions:

$$
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NaCl}(s)
$$

\checkmark In this reaction, a metal (which has a tendency to lose electrons) reacts with a nonmetal (which has a tendency to gain electrons). In other words, metal atoms lose electrons to nonmetal atoms.

Oxidation - Reduction Reactions (Redox): Examples

Oxidation-Reduction Reaction

- Other common redox reactions:

$$
\begin{array}{ll}
4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s) & \text { (rusting of iron) } \\
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \text { (combustion of octane) } \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \text { (combustion of hydrogen) }
\end{array}
$$

Oxidation Numbers (Oxidation States)

\checkmark Before we can identify an oxidation-reduction reaction, we must keep track of lost and gained electrons
\checkmark To do this, the concept of oxidation numbers (also called oxidation states) is used.
\checkmark Each atom in a neutral substance or ion is assigned an oxidation number.
\checkmark See the "Rules for Assigning Oxidation States" in the next section.

Rules for Assigning Oxidation States

Do not confuse oxidation state with ionic charge. Unlike ionic chargewhich is a real property of an ion-the oxidation state of an atom is merely a theoretical (but useful) construct.		
Oxidation S	tates of Non	metals
Nonmetal	Oxidation State	Example
Fluorine	-1	$\begin{aligned} & \mathrm{MgF}_{2} \\ & -1 \text { ox state } \end{aligned}$
Hydrogen	$+1$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O} \\ & +1 \text { ox state } \end{aligned}$
Oxygen	-2	$\begin{aligned} & \mathrm{CO}_{2} \\ & -2 \text { ox state } \end{aligned}$
Group 7A	-1	$\begin{aligned} & \mathrm{CCl}_{4} \\ & -1 \text { ox state } \end{aligned}$
Group 6A	-2	$\begin{aligned} & \mathrm{H}_{2} \mathrm{~S} \\ & -2 \text { ox state } \end{aligned}$
Group 5A	-3	NH_{3} -3 ox state

Rules for Assigning Oxidation States

Examples

(These rules are hierarchical. If any two rules conflict, follow the rule that is higher on the list.)

1. The oxidation state of an atom in a free element is 0 .
2. The oxidation state of a monoatomic ion is equal to its charge.

$$
\begin{gathered}
\mathrm{Cu} \\
0 \text { ox state }
\end{gathered}
$$

$$
\mathrm{Ca}^{2+}
$$

$$
+2 \text { ox state }
$$

Cl_{2} 0 ox state
Cl^{-} -1 ox state
3. The sum of the oxidation states of all atoms in:

- A neutral molecule or formula unit is 0 .
$\mathrm{H}_{2} \mathrm{O}$
$2(\mathrm{H}$ ox state $)+1(\mathrm{O}$ ox state $)=0$
- An ion is equal to the charge of the ion.
NO_{3}^{-}
$1(\mathrm{~N}$ ox state $)+3(\mathrm{O}$ ox state $)=-1$

4. In their compounds, metals have positive oxidation states.

- Group 1A metals always have an oxidation state of +1 .

> NaCl
> +1 ox state

- Group 2A metals always have an oxidation state of +2 .
CaF_{2}
+2 ox state

5. In their compounds, nonmetals are assigned oxidation states according to the table, left. Entries at the top of the table take precedence over entries at the bottom of the table.

Identifying Redox Reactions

Oxidation states can be used to identify redox reactions, even between nonmetals. For example, is the following reaction between carbon and sulfur a redox reaction?

$$
\mathrm{C}+2 \mathrm{~S} \longrightarrow \mathrm{CS}_{2}
$$

If so, what element is oxidized? What element is reduced? We can use the oxidation state rules to assign oxidation states to all elements on both sides of the equation.

Carbon changed from an oxidation state of 0 to an oxidation state of +4 . In terms of our electron bookkeeping scheme (the assigned oxidation state), carbon lost electrons and was oxidized. Sulfur changed from an oxidation state of 0 to an oxidation state of -2 .

In terms of our electron bookkeeping scheme, sulfur gained electrons and was reduced. In terms of oxidation states, oxidation and reduction are defined as follows.

- Oxidation An increase in oxidation state
- Reduction A decrease in oxidation state

Identifying Redox Reactions

> Reduction:

- The gaining of electrons, or:
- Decrease in the oxidation state

$>$ Oxidation:
\checkmark The loss of electrons, or:
\checkmark Increase in the oxidation state

Identifying Redox Reactions: Practice

EXAMPLE 4.9 Using Oxidation States to Identify Oxidation and Reduction

Use oxidation states to identify the element that is being oxidized and the element that is being reduced in the following redox reaction.

$$
\mathrm{Mg}(s)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Solution

Begin by assigning oxidation states to each atom in the reaction.

\checkmark Since Mg increased in oxidation state, it was oxidized.
\checkmark Since H decreased in oxidation state, it was reduced.

Oxidizing Agent \& Reducing Agent

> Oxidizing Agent:

\checkmark A Substance that oxidizes something else. The oxidizing agent itself is reduced in the same reaction:

Oxidizing agent:
O_{2} oxidizes methane and
is itself reduced.

> Reducing Agent: \qquad
\checkmark A Substance that reduces something else. The reducing agent itself is oxidized in the same reaction:

Oxidizing Agent \& Reducing Agent: Practice

In the following reaction, identify the oxidizing agent and the reducing agent?

$$
\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{Br}_{2}(I) \rightarrow 4 \mathrm{PBr}_{3}(g)
$$

Oxidizing Agent \& Reducing Agent: Practice

Identifying Redox Reactions, Oxidizing Agents, and Reducing Agents

Determine whether each reaction is an oxidation-reduction reaction. If the reaction is an oxidation-reduction, identify the oxidizing agent and the reducing agent.
(a) $2 \mathrm{Mg}(s)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{MgO}(s)$
(b) $2 \mathrm{HBr}(a q)+\mathrm{Ca}(\mathrm{OH})_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CaBr}_{2}(a q)$
(c) $\mathrm{Zn}(s)+\mathrm{Fe}^{2+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Fe}(s)$

SOLUTION

This is a redox reaction because magnesium increases in oxidation number (oxidation) and oxygen decreases in oxidation number (reduction).

This is not a redox reaction because none of the atoms undergoes a change in oxidation number.

This is a redox reaction because zinc increases in oxidation number (oxidation) and iron decreases in oxidation number (reduction).
(a) $2 \mathrm{Mg}(s)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{MgO}(s)$

Oxidizing agent: O_{2}
Reducing agent: Mg
(b) $\underset{+1-1}{2 \mathrm{HBr}}(a q)+\underset{+2-2+1}{\mathrm{Ca}(\mathrm{OH})_{2}}(a q) \rightarrow \underset{+1-2}{2 \mathrm{H}_{2} \mathrm{O}}(l)+\underset{+2-1}{\mathrm{CaBr}_{2}}(a q)$
(c) $\mathrm{Zn}(s)+\mathrm{Fe}^{2+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Fe}(s)$

Oxidizing agent: Fe^{2+}
Reducing agent: Zn

Assessment

1-Assign oxidation states to each atom in each ion or compound.
a. Ag
b. Ag^{+}
c. CaF_{2}
d. $\mathrm{H}_{2} \mathrm{~S}$
e. $\mathrm{CO}_{3}{ }^{2-}$
f. $\mathrm{CrO}_{4}{ }^{2-}$

2- What is the oxidation state of Cr in each compound?
a. CrO
b. CrO_{3}
c. $\mathrm{Cr}_{2} \mathrm{O}_{3}$

3- Which reactions are redox reactions? For each redox reaction, identify the oxidizing agent and the reducing agent.
a. $4 \mathrm{Li}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}(s)$
b. $\mathrm{Mg}(s)+\mathrm{Fe}^{2+}(a q) \rightarrow \mathrm{Mg}^{2+}(a q)+\mathrm{Fe}(s)$
c. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{Na}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{PbSO}_{4}(s)+2 \mathrm{NaNO}_{3}(a q)$
d. $\mathrm{HBr}(a q)+\mathrm{KOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{KBr}(a q)$

Lanthanides 6	$\stackrel{58}{\text { Cerium }}$		${ }^{60} \mathrm{~d}$ Neodymium 144.2	$\stackrel{61}{\text { Pm }}$ Promethium (145)	$\underset{\substack{\text { Samarium } \\ 150.4}}{62}$	$\begin{array}{\|c\|} \hline 63 \\ \text { Europium } \\ \text { Euro } \\ \hline 152.0 \\ \hline \end{array}$	$\underset{\substack{\text { Gadolinium } \\ 157.3}}{\text { G4d }}$	$\stackrel{\substack{\text { Terbium } \\ 158.9}}{\substack{\text { an }}}$		${ }^{67}$ Holmium 164.9	${ }^{68} \mathrm{Er}$ Erbium 167.3	$\underset{\substack{\text { Thulium } \\ 168.9}}{69}$	$\underset{\substack{\text { Ytterbium } \\ 173.0}}{\substack{\text { Yb }}}$	$\underset{\substack{\text { Lutetium } \\ 175.0}}{\text { Lul }^{21}}$	6
Actinides 7	$\begin{gathered} 90 \\ \text { Th } \\ \substack{\text { Thorium } \\ 232.0} \end{gathered}$	$\underset{\substack{\text { Protactinium } \\ 231.0}}{\substack{91 \\ \mathrm{~Pa}}}$	$\underset{\substack{\text { Uranium } \\ 238.0}}{\mathbf{~}}$	$\underset{\substack{\text { Neptunium } \\(237)}}{\stackrel{93}{\mathrm{~Np}}}$	$\stackrel{94}{\mathrm{Pu}}$ Plutonium (244)	$\underset{\substack{\text { Americium } \\ \text { (243) }}}{95}$	${ }^{96}$ Curium (247)	${ }^{97} \mathrm{Bk}$ Berkelium (247)	$\stackrel{\substack{\text { Californium } \\(251)}}{\mathrm{Cf}}$	$\underset{\substack{\text { Einsteinium } \\(252)}}{\text { ES }}$	$\underset{\substack{\text { Fermium } \\(257)}}{\stackrel{100}{\text { Fm }}}$	${ }^{101}{ }^{10}$ Mendelevium (258)	$\begin{array}{\|c\|} \hline 102 \\ \mathrm{No} \\ \substack{\text { Nobelium } \\ (259)} \end{array}$	$\underset{\substack{\text { Lawrencium } \\(262)}}{103}$	7

